WO2024060586A1 - 一种连续制浆设备 - Google Patents

一种连续制浆设备 Download PDF

Info

Publication number
WO2024060586A1
WO2024060586A1 PCT/CN2023/086951 CN2023086951W WO2024060586A1 WO 2024060586 A1 WO2024060586 A1 WO 2024060586A1 CN 2023086951 W CN2023086951 W CN 2023086951W WO 2024060586 A1 WO2024060586 A1 WO 2024060586A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersing
cylinder
dispersion
slurry
rotor
Prior art date
Application number
PCT/CN2023/086951
Other languages
English (en)
French (fr)
Inventor
杜保东
可建
金旭东
石桥
张旺
Original Assignee
深圳市尚水智能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市尚水智能股份有限公司 filed Critical 深圳市尚水智能股份有限公司
Publication of WO2024060586A1 publication Critical patent/WO2024060586A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/513Flexible receptacles, e.g. bags supported by rigid containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/75455Discharge mechanisms characterised by the means for discharging the components from the mixer using a rotary discharge means, e.g. a screw beneath the receptacle
    • B01F35/754551Discharge mechanisms characterised by the means for discharging the components from the mixer using a rotary discharge means, e.g. a screw beneath the receptacle using helical screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/005Devices for making primary cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of pulping equipment, and in particular to a continuous pulping equipment.
  • the screw extruder has good feeding performance, mixing and plasticizing performance, exhaust performance, extrusion stability and other characteristics, and has been widely used in the molding and processing of extruded products.
  • some lithium battery equipment manufacturers have directly introduced twin-screw extruders for lithium battery slurry production.
  • the traditional screw extruder includes a powder conveying section, a powder-liquid mixing section, a kneading section, a dilution section, and a terminal dilution section.
  • the powder conveying section, the powder-liquid mixing section, the kneading section, the dilution section, and the terminal dilution section are all connected in series on the same screw, so the rotation speed of all elements on the screw is the same, and the tip line speed of the element blades is the same.
  • the technical problem to be solved by this application is to overcome the shortcomings in the prior art that the twin-screw extruder itself is not strong in dispersing ability and cannot fully meet the pulping needs of lithium batteries, thereby providing a continuous pulping equipment.
  • a continuous pulping device comprising:
  • a screw extrusion device includes a barrel and a screw extrusion element located in the barrel;
  • the dispersing device includes a dispersing cylinder connected to one side of the discharging end of the cylinder, a driving member installed on the dispersing cylinder, and a driving member driven by the driving member to rotate in the dispersing cylinder to disperse the slurry. Dispersing rotor for shearing and dispersing.
  • a discharge port is provided on the dispersion cylinder, and a dispersion gap channel for the slurry to pass through is formed between the dispersion rotor and the dispersion cylinder.
  • a dispersion gap channel for the slurry to pass through is formed between the dispersion rotor and the dispersion cylinder.
  • a dispersion stator extending toward the center of the dispersion cylinder is provided on the inner wall of the dispersion cylinder, and the dispersion stator and the dispersion rotor are arranged at offset intervals in the axial direction of the dispersion cylinder. , the gap between the dispersion stator and the dispersion rotor is the dispersion gap channel.
  • the rotation speed of the dispersion rotor is adjustable, and/or the width of the dispersion gap channel is adjustable.
  • the gap between the dispersion stator and the dispersion rotor is 0.5-5.0mm; when the rotation speed of the dispersion rotor is 10-30m/s , the gap between the dispersion stator and the dispersion rotor is 1-3mm.
  • linear speed of the dispersing rotor is greater than the linear speed of the screw extrusion element.
  • the efficiency of the dispersing device in shearing the dispersed slurry is greater than or equal to the efficiency of the screw extruder in transporting the slurry into the dispersing barrel.
  • the dispersing cylinder is sealingly connected to the end plate of the discharging end of the cylinder
  • the driving member is a motor
  • the output end of the motor is connected to a main shaft extending into the dispersing cylinder
  • the The dispersing rotor is connected to the outer periphery of the main shaft, and the dispersing cylinder is sealingly connected to the main shaft.
  • the size of the interval is 0.5-100mm.
  • the screw extrusion device includes a powder conveying section, a powder-liquid mixing section and a kneading section arranged in sequence along the slurry conveying direction, or the screw extruder includes a powder conveying section arranged in sequence along the slurry conveying direction. section, powder-liquid mixing section, kneading section and dilution section.
  • the length of the barrel along the length extension direction of the screw extrusion element is adjustable, and/or the length of the dispersing device in its axial direction is adjustable.
  • the dilution section for diluting the slurry, the dilution section is provided with a diluent feed port; the dilution section is arranged at the end of the screw extrusion device, or the dilution section is arranged at the end of the screw extrusion device.
  • the front section of the dispersion barrel, or the dilution section is disposed at both the front section of the dispersion barrel and the end section of the screw extruder.
  • the screw extrusion element includes a screw shaft and a spiral structure arranged on the outer circumference of the screw shaft.
  • the spiral structure causes the raw material in the barrel to flow out into the barrel. Axial thrust in the direction of the material end; the part of the screw shaft corresponding to the kneading section is provided with a protruding element for engaging the raw material.
  • the screw extrusion device is provided with a powder inlet and a liquid inlet.
  • screw extrusion device and the dispersion device are of an integrated structure.
  • a medium heat exchange channel is provided on the wall of the dispersion cylinder, and the medium heat exchange channel has a medium inlet and a medium outlet.
  • the continuous pulping equipment provided by this application directly connects an independently driven dispersing device to the discharge end of the screw extruding device.
  • the slurry processed by the screw extruding device enters the dispersing cylinder, and the driving parts of the dispersing device are independently driven.
  • the dispersing rotor is driven to rotate. When the dispersing rotor rotates, the slurry in the dispersing cylinder is sheared and dispersed. The slurry after shearing and dispersing is flowed out through the outlet.
  • Such an arrangement can be configured according to the dispersion needs of different slurries.
  • Different dispersing devices and targeted control of the dispersing rotor speed to improve High slurry dispersion effect and dispersion rate enable continuous production of slurry.
  • Compared with the existing method of directly setting the dilution section at the end of the screw extrusion device it not only improves the slurry dispersion efficiency, but also does not need to set up a relatively long dilution section for slurry dispersion, and the screw extrusion device can be shortened.
  • the length of the screw shaft is reduced to reduce the deformation amount of the screw shaft during use, thereby extending the service life of the screw shaft and its functional components.
  • a dispersion gap channel for the slurry to pass is formed between the dispersion rotor and the dispersion cylinder.
  • the slurry must pass through the dispersion gap channel and be sheared and dispersed by the dispersion rotor before it can flow.
  • the discharge port prevents the slurry from flowing out directly without shearing and dispersing, and improves the shearing and dispersing effect of the slurry.
  • the continuous pulping equipment provided by this application uses a dispersing rotor and a dispersing stator arranged at staggered intervals to shear and disperse the slurry, which can extend the path of the slurry in the shearing and dispersing process and further improve the shearing ability of the slurry.
  • the dispersion effect and dispersion efficiency are reduced, which is conducive to the continuous production of slurry.
  • the gap between the dispersing stator and the dispersing rotor is 0.5-5.0mm; when the rotating speed of the dispersing rotor is between 10-30m/s s, the gap between the dispersing stator and the dispersing rotor is 1-3mm, which can ensure that the shearing and dispersing effect of the slurry meets the dispersion requirements of lithium battery slurry.
  • the rate at which the dispersing device shears and disperses the slurry is greater than or equal to the amount of slurry delivered to the dispersing cylinder by the screw extruder.
  • the outlet can continuously output the sheared and dispersed slurry after completion. of slurry, thereby achieving large-scale continuous production of slurry.
  • the continuous pulping equipment provided in this application has a structural design in which the dispersion cylinder is directly sealed and connected to the end plate at the discharge end of the cylinder, which is not only simple in structure and easy to install, but also helps to shorten the screw extrusion element.
  • the distance between the end and the dispersing rotor can avoid the problem of local sedimentation of the slurry due to too long a distance, which will affect the quality of the slurry product.
  • the continuous pulping equipment provided by this application has an adjustable length of the cylinder and/or dispersing cylinder.
  • the length of the cylinder and/or dispersing cylinder can be adjusted according to the needs of the slurry to better adapt to different slurries. production needs.
  • Figure 1 is a schematic diagram of the overall structure of the continuous pulping equipment provided in Embodiment 1 of the present application;
  • Figure 2 is a schematic structural diagram of the screw extrusion device and the dispersion device when they are separated in Example 1 of the present application;
  • FIG. 3 is a schematic diagram of the connection relationship between the screw extruder and the dispersing device in the first embodiment of the present application;
  • FIG4 is a cross-sectional view of a dispersing device in a second embodiment of Example 1 of the present application.
  • Figure 5 is an enlarged view of B in Figure 4.
  • Figure 6 is a schematic diagram of the connection relationship between the motor, gearbox, and screw extrusion components in Embodiment 1 of the present application;
  • Figure 7 is a schematic diagram of the overall structure of the continuous pulping equipment provided in Embodiment 2 of the present application.
  • Figure 8 is a schematic diagram of the overall structure of the continuous pulping equipment provided in Embodiment 3 of the present application.
  • Screw extrusion device 100. Screw extrusion device; 110. Barrel; 111. Barrel end plate; 120. Screw extrusion element; 130, gear box; 140, main drive motor; 150, powder inlet; 160, liquid inlet; 200, dispersing device; 210, dispersing cylinder; 211, discharge port; 212, dispersing cylinder End plate; 220, motor; 230, dispersed rotor; 240, main shaft; 250, dispersed stator; 260, dispersed gap channel; 270, coolant channel; 300, straight pipe; 400, special-shaped pipe.
  • connection should be understood in a broad sense.
  • connection or integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection or integral connection
  • connection or integral connection
  • connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two components.
  • specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • a continuous pulping equipment as shown in Figures 1-3 includes a screw extrusion device 100 and a dispersion device 200.
  • the screw extrusion device 100 includes a main drive motor 140 and is connected to the output end of the main drive motor 140.
  • There is a gear box 130 on the screw extruder 130 a screw extrusion element 120 connected to the output end of the gear box 130 , and a barrel 110 sleeved around the outer circumference of the screw extrusion element 120 .
  • the cylinder 110 is provided with a powder inlet 150 and a liquid inlet 160 at one end close to the gear box 130.
  • the powder inlet 150 is closer to the gear box 130 than the liquid inlet 160.
  • the powder raw material enters the cylinder 110 through the powder inlet 150 at a uniform speed.
  • the solvent raw material enters the cylinder 110 at a constant speed through the liquid material inlet 160, and the feeding amounts of the powder raw material and the solvent raw material are set according to a fixed ratio.
  • the main drive motor 140 drives the screw extrusion element 120 to rotate in the barrel 110 through the gearbox 130.
  • the screw extrusion element 120 is provided with a spiral structure. When the spiral structure rotates, it will generate an axial thrust, which is used to rotate the barrel.
  • the raw materials in the cylinder 110 are transported from one end to the discharge end of the cylinder 110 .
  • the discharge end of the cylinder 110 is specifically the end of the cylinder 110 away from the gear box 130 .
  • the dispersing device 200 includes a dispersing cylinder 210 connected to the discharge end side of the cylinder 110, a driving member installed on the dispersing cylinder 210, and driven by the driving member to rotate in the dispersing cylinder 210 to shear the slurry. Cut the dispersing rotor 230.
  • the driving part that drives the dispersing rotor 230 to rotate and the driving part that drives the screw extrusion element 120 to rotate are two different driving parts that are provided independently of each other.
  • the dispersing cylinder 210 is provided with a discharge port 211 .
  • This kind of continuous pulping equipment is directly connected to the independently driven dispersing device 200 at the discharge end of the screw extruding device 100.
  • the slurry processed by the screw extruding device 100 enters the dispersing cylinder 210, and the driving parts of the dispersing device 200
  • the dispersing rotor 230 is independently driven to rotate. When the dispersing rotor 230 rotates, the slurry in the dispersing cylinder 210 is sheared and dispersed. The slurry after shearing and dispersion flows out through the outlet 211.
  • the length of the screw shaft in the device 100 reduces the deformation amount of the screw shaft during use, thereby extending the service life of the screw shaft and its functional components.
  • a single stirring tank cannot achieve this.
  • Continuous output of finished slurry while multiple mixing tanks occupy an area of The area is large and the pipeline structure is complex.
  • the complex pipeline structure also brings problems such as metal pollution and difficulty in maintenance. Therefore, the continuous pulping equipment of this application is simple and easy to control. It occupies a small area and does not have a traditional pipeline valve switching system. , simple maintenance, economical and affordable, and can realize the advantages of continuous production of slurry.
  • a dispersion gap channel 260 for the slurry to pass is formed between the dispersion rotor 230 and the dispersion cylinder 210.
  • the dispersion cylinder 210 serves as a shear In the stator in the dispersion structure, when the slurry passes through the dispersion gap channel 260, it is sheared and dispersed by the dispersion rotor 230 and the dispersion cylinder 210 as the stator, and then flows to the discharge port 211.
  • the slurry must pass through the dispersion gap channel 260 and be sheared and dispersed by the dispersing rotor 230 before flowing to the outlet 211, which prevents the slurry from flowing out directly without shearing and dispersing, and improves the shearing and dispersing effect of the slurry.
  • the end of the main shaft 240 close to the barrel 110 is flush with the end of the dispersing rotor 230 close to the barrel 110.
  • the end of the dispersing rotor 230 close to the barrel 110 and the screw extrusion element 120 are close to the dispersing barrel 210.
  • the size of the spacing is 0.5-100mm; preferably, the size of the spacing is 0.5-3mm; secondly, the size of the spacing is 3-5mm; again preferably, the size of the spacing is 5-100mm.
  • the dispersing cylinder 210 is sealingly connected to the end plate of the discharge end of the cylinder 110.
  • one end of the dispersing cylinder 210 is fixedly provided with a dispersing cylinder end plate 212, and the discharging end of the cylinder 110 is provided with a cylinder end plate 111.
  • the dispersing cylinder end plate 212 and the cylinder end plate 111 are connected through multiple connections. Bolted connections.
  • the connection surface between the dispersion cylinder end plate 212 and the cylinder end plate 111, the connection surface between the dispersion cylinder end plate 212 and the dispersion cylinder 210, and the connection surface between the cylinder end plate 111 and the cylinder 110 are all padded. It is provided with a sealing component.
  • This arrangement can not only ensure good sealing at the connection between the dispersing cylinder 210 and the cylinder 110 and prevent slurry leakage; it also has a simple structure and is easy to install, which is conducive to shortening the end of the screw extrusion element 120 and the dispersing rotor.
  • the interval between 230° can avoid the problem of local settlement of the slurry caused by too long interval, which affects the quality of the slurry product.
  • the driving member is a motor 220.
  • the output end of the motor 220 is connected to a main shaft 240 extending into the dispersing cylinder 210.
  • the dispersing rotor 230 is connected to the outer periphery of the main shaft 240.
  • the dispersing cylinder 210 and the main shaft 240 are sealed. .
  • a sealing structure is provided at the connection between the dispersing cylinder 210 and the main shaft 240. The sealing structure can prevent the slurry from leaking out from the gap at the connection between the dispersing cylinder 210 and the main shaft 240 .
  • the difference from the first specific implementation is that the inner wall of the dispersing cylinder 210 is fixed with a direction oriented toward the center of the dispersing cylinder 210.
  • the multiple dispersing stators 250 and the multiple dispersing rotors 230 are arranged at offset intervals in the axial direction of the dispersing cylinder 210 .
  • the dispersing stators 250 and The gaps between the dispersion rotors 230 are dispersion gap channels 260 .
  • the shearing and dispersing method can extend the path of the slurry during the shearing and dispersing process, further improve the shearing and dispersing effect and dispersion efficiency of the slurry, and is conducive to the continuous production of the slurry.
  • the rotation speed of the screw extrusion element 120 remains unchanged, and the rotation speed of the screw extrusion element 120 is 300-600 r/min.
  • the gap between the dispersing stator 250 and the dispersing rotor 230 is 0.5-5.0mm; when the rotating speed of the dispersing rotor 230 is 10-30m/s, the gap between the dispersing stator 250 and the dispersing rotor 230
  • the gap between 230 is 1-3mm, more preferably, the gap is 2mm. This setting ensures that the shear dispersion effect of the slurry meets the dispersion requirements of lithium battery slurry.
  • the rotation speed of the dispersing rotor 230 is adjustable, and/or the width of the dispersing gap channel 260 is adjustable.
  • the rotation speed of the dispersing rotor 230, the width of the dispersion gap channel 260, or the rotation speed of the dispersion rotor 230 and the width of the dispersion gap channel 260 can be adjusted simultaneously according to the composition, viscosity and other characteristics of the slurry. , to match the requirements of different slurries for shear dispersion efficiency.
  • the speed adjustment method of the dispersion rotor 230 can be adjusted by changing the speed of the motor 220 through the PLC controller; the dispersion gap channel 260 can be adjusted by dismantling or reassembling part of the dispersion rotor 230 and/or the dispersion stator 250, or using additional
  • the adjustment component can be adjusted by adjusting the gap between two adjacent dispersion rotors 230 and the dispersion stator 250, or by directly replacing the dispersion rotor 230 and/or the dispersion stator 250 of different types and sizes.
  • There are many methods for adjusting the rotation speed of the dispersing rotor 230 and adjusting the width of the dispersing gap channel 260 which will not be described here.
  • the linear speed of the dispersing rotor 230 is greater than the linear speed of the screw extrusion element 120,
  • the linear speed of the screw extrusion element 120 is less than 10m/s, which is suitable for kneading high solid content slurry;
  • the linear speed of the dispersing rotor 230 is greater than 10m/s, which is suitable for dispersing low solid content slurry; for example, screw extrusion
  • the linear speed of the element 120 is 3m/s, and the linear speed of the dispersing rotor 230 is 20m/s.
  • the efficiency of the dispersing device 200 in shearing the dispersed slurry is greater than or equal to the efficiency of the screw extruder 100 in transporting the slurry into the dispersing cylinder 210; that is to say, the screw extruding device 100 transports the slurry into the dispersing cylinder 210 per unit time.
  • the amount of slurry is A, and the amount of slurry that the dispersing device 200 can shear and disperse in unit time is also A, but the maximum amount of slurry that the dispersing device 200 can shear and disperse in unit time is greater than or equal to A.
  • the discharge port 211 of the cylinder 110 can continuously output the sheared and dispersed slurry, thereby realizing large-scale continuous production of slurry and greatly increasing the slurry production capacity of the equipment.
  • the difference from the first specific implementation is that the screw extrusion device 100 and the dispersion device 200 have an integrated structure.
  • the dispersion cylinder 210 and the cylinder 110 It is an integrated structure design; this is conducive to the continuous production of slurry.
  • a medium heat exchange channel is provided on the wall of the dispersion cylinder 210 .
  • the medium heat exchange channel has a medium inlet and a medium outlet.
  • the medium heat exchange channel is spirally arranged around the peripheral wall of the dispersion cylinder 210 .
  • the medium heat exchange channel is a refrigerant channel.
  • the refrigerant medium enters from the medium inlet through the refrigerant channel and then flows out from the medium outlet.
  • the refrigerant medium can take away part of the heat of the cylinder 110 to cool down the slurry in the cylinder 110 .
  • the medium heat exchange channel is a heat medium channel.
  • the heat medium enters through the heat medium channel from the medium inlet and then flows out from the medium outlet.
  • the heat medium medium can heat the slurry in the cylinder 110 .
  • the screw extruder 100 includes a powder conveying section, a powder-liquid mixing section and a kneading section arranged sequentially along the slurry conveying direction; or the screw extruding device 100 includes a The powder conveying section, powder-liquid mixing section, kneading section and dilution section are arranged in sequence in the slurry conveying direction.
  • the length of the barrel 110 is adjustable along the length extension direction of the screw extrusion element 120, and/or the length of the dispersing device 200 is adjustable in its axial direction. With this arrangement, the length of the barrel 110 and/or the dispersing device 200 can be adjusted according to the production requirements of different slurries.
  • the adjustment of the length of the dispersing device 200 in the axial direction includes the adjustment of the length of the dispersing cylinder 210 , the dispersing rotor 230 and the dispersing stator 250 in the axial direction.
  • the length of the cylinder 110 and/or the dispersing cylinder 210 is composed of two or more cylinder segments nested with each other.
  • the length of the cylinder 110 and/or the dispersion cylinder 210 is adjusted by adjusting the telescopic length of the cylinder segments.
  • the cylinder 110 and/or the dispersing cylinder 210 is composed of two or more cylinder sections.
  • the cylinder 110 and/or the dispersing cylinder 210 are composed of two or more cylinder segments that are axially spliced to each other. The splicing structures between any two adjacent cylinder segments are the same. By changing the shape of the cylinder segments, The number of sections enables adjustment of the length of the cylinder 110 and/or the dispersion cylinder 210 . There are many ways to adjust the length of the dispersing rotor 230.
  • the dispersing rotor 230 can be composed of multiple rotor disks, and the overall axial length of the dispersing rotor 230 can be adjusted by changing the number of rotor disks.
  • the dispersing stator 250 is fixedly connected to the dispersing cylinder 210 or the dispersing cylinder 210 itself functions as a dispersing stator, the axial length of the dispersing stator 250 is adjusted simultaneously with the axial length of the dispersing cylinder 210 ;
  • the dispersion stator 250 is detachably connected to the dispersion cylinder 210, the dispersion stator 250 can be composed of multiple stator disks, and the overall axial length of the dispersion stator 250 can be adjusted by changing the number of stator disks.
  • it also includes a dilution section for diluting the slurry, and the dilution section is provided with a diluent feed port.
  • the dilution section is arranged at the end section of the screw extruder 100 , or the dilution section is arranged at the front section of the dispersion barrel 210 , or the dilution section is set at both the front section of the dispersion barrel 210 and the end section of the screw extrusion device 100 .
  • the front section of the dispersing barrel 210 is provided with a dilution section, there is no need to provide a dilution section at the end of the screw extrusion device 100 or the length of the dilution section required at the end of the screw extrusion device 100 is shortened, which is beneficial to shortening the time of the continuous pulping equipment.
  • Overall length when the total length of the continuous pulping equipment is fixed, the length of the kneading section can be increased to improve the kneading capacity to adapt to the kneading needs of different slurries.
  • the screw extrusion element 120 includes a screw shaft and a spiral structure arranged on the outer periphery of the screw shaft.
  • the spiral structure produces an axis direction for the raw material in the barrel 110 toward the discharge end of the barrel 110 . thrust; the part of the screw shaft corresponding to the kneading section is provided with protruding elements for engaging the raw materials.
  • the gearbox 130 has two parallel output shafts.
  • the screw extrusion element 120 has a twin-screw structure. The two screw shafts of the twin-screw structure are respectively connected to the two parallel output shafts of the gearbox 130.
  • the screw extrusion element 120 may also be a single-screw structure or a three-screw structure.
  • the continuous pulping equipment shown in Figure 7 is different from the first embodiment in that one end of the dispersion device 200 is connected to the discharge end of the screw extrusion device 100 through a straight pipe 300.
  • the straight pipe 300 is provided with an on-off valve that controls the on-off of the straight pipe 300 .
  • the continuous pulping equipment shown in Figure 8 is different from the first embodiment in that one end of the dispersion device 200 is connected to the discharge end of the screw extrusion device 100 through a special-shaped pipe 400.
  • the dispersing device 200 is arranged vertically as a whole, so that the entire linear length of the pulping equipment can be saved.
  • the continuous pulping equipment provided by this application directly connects the independently driven dispersing device 200 to the discharge end of the screw extrusion device 100, thereby improving the dispersing effect and dispersing efficiency of the slurry and overcoming the disadvantages of traditional screws.
  • the extrusion device 100 has the disadvantage of insufficient dispersion capacity, but has the advantages that the entire equipment is simple and easy to control, occupies a small area, does not have a traditional pipeline valve switching system, is simple to maintain, is economical and affordable, and can realize large-scale continuous production of slurry.

Abstract

本申请公开了一种连续制浆设备,包括:螺杆挤出装置,包括筒体和设于所述筒体内的螺杆挤出元件;分散装置,包括连接在所述筒体出料端一侧的分散筒体,安装在所述分散筒体上的驱动件,以及由所述驱动件驱动在所述分散筒体内转动以对浆料进行剪切分散的分散转子。通过在螺杆挤出装置的出料端直接连接独立驱动的分散装置,螺杆挤出装置处理后的浆料进入分散筒体内,分散装置的驱动件单独驱动分散转子转动,分散转子转动时对分散筒体内的浆料进行剪切分散,剪切分散完成后的浆料通过出料口向外流出。如此设置,可以根据不同浆料的分散需求,配置不同的分散装置,并针对性地控制分散转子转速,提高浆料的分散效果和分散速率,实现浆料的连续化生产。

Description

一种连续制浆设备
相关申请的交叉引用
本申请要求在2022年9月23日提交中国专利局、申请号为202211171289.4、发明名称为“一种连续制浆设备”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及制浆设备技术领域,具体涉及一种连续制浆设备。
背景技术
螺杆挤出机具有良好的加料性能、混炼塑化性能、排气性能、挤出稳定性等特点,已经广泛应用于挤出制品的成型加工。随着于动力电池需求的明显增长趋势,现有已经有锂电装备厂家直接引进双螺杆挤出机用于锂电池浆料制作。
传统螺杆挤出机包括粉体输送段、粉液混合段、捏合段、稀释段、末端稀释段,粉体输送段、粉液混合段、捏合段、稀释段、末端稀释段全部串联于同一根螺杆上,因此螺杆上的全部元件的转速相同,元件叶片尖端线速度相同。由于粉体输送段以及捏合段不能使用高线速度,这就决定了末端的稀释段的最高分散线速度低,而线速度低不利于浆料分散,不利于团聚体的打开,导致螺杆挤出机生产的最终浆料分散性不足,品质不合格。
因此,由于传统螺杆挤出机自身并不具备强分散能力,不能完全满足锂电制浆的需求,导致螺杆挤出机在锂电池制浆上不能大范围应用,功能上存在分散不足的局限性。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中双螺杆挤出机自身分散能力不强、不能完全满足锂电池制浆需求的缺陷,从而提供一种连续制浆设备。
为解决上述技术问题,本申请的技术方案如下:
一种连续制浆设备,包括:
螺杆挤出装置,包括筒体和设于所述筒体内的螺杆挤出元件;
分散装置,包括连接在所述筒体出料端一侧的分散筒体,安装在所述分散筒体上的驱动件,以及由所述驱动件驱动在所述分散筒体内转动以对浆料进行剪切分散的分散转子。
进一步地,所述分散筒体上设有出料口,所述分散转子和所述分散筒体之间形成有供浆料经过的分散间隙通道,浆料经过所述分散间隙通道时被所述分散转子剪切分散后流向所述出料口。
进一步地,所述分散筒体的内壁上设有向所述分散筒体中心方向延伸的分散定子,所述分散定子和所述分散转子在所述分散筒体的轴向方向上错位间隔排布,所述分散定子和所述分散转子之间空隙为所述分散间隙通道。
进一步地,所述分散转子的转速可调,和/或所述分散间隙通道的宽度可调。
进一步地,当所述分散转子的转速为5-50m/s时,所述分散定子和所述分散转子之间空隙为0.5-5.0mm;当所述分散转子的转速为10-30m/s时,所述分散定子和所述分散转子之间空隙为1-3mm。
进一步地,所述分散转子的线速度大于所述螺杆挤出元件的线速度。
进一步地,所述分散装置剪切分散浆料的效率大于或等于所述螺杆挤出装置将浆料输送至所述分散筒体内的效率。
进一步地,所述分散筒体密封连接在所述筒体出料端的端板上,所述驱动件为电机,所述电机的输出端上连接有伸向所述分散筒体内的主轴,所述分散转子连接在所述主轴的外周,所述分散筒体和所述主轴密封连接。
进一步地,所述主轴与所述分散转子靠近所述筒体的端部和所述螺杆挤出元件靠近所述分散筒体的端部之间具有间隔。
进一步地,所述间隔的大小为0.5-100mm。
进一步地,所述螺杆挤出装置包括沿浆料输送方向依次设置的粉体输送段、粉液混合段和捏合段,或所述螺杆挤出装置包括沿浆料输送方向依次设置的粉体输送段、粉液混合段、捏合段和稀释段。
进一步地,所述筒体沿所述螺杆挤出元件长度延伸方向上的长度可调,和/或所述分散装置在其轴向方向上的长度可调。
进一步地,还包括对浆料进行稀释的稀释段,所述稀释段设有稀释液进料口;所述稀释段设置在所述螺杆挤出装置的末段,或所述稀释段设置在所述分散筒体的前段,或所述稀释段同时设置在所述分散筒体的前段和所述螺杆挤出装置的末段。
进一步地,所述螺杆挤出元件包括螺杆轴和设置在所述螺杆轴外周的螺旋结构,当所述螺杆轴转动时,所述螺旋结构对所述筒体内的原料产生向所述筒体出料端方向的轴向推力;所述螺杆轴对应所述捏合段的部分设有用于对原料进行啮合的凸起元件。
进一步地,所述螺杆挤出装置上设有粉料进口和液料进口。
进一步地,所述螺杆挤出装置和所述分散装置为一体式结构。
进一步地,所述分散筒体的筒壁上设有介质换热通道,所述介质换热通道具有介质入口和介质出口。
本申请技术方案,具有如下优点:
1.本申请提供的连续制浆设备,通过在螺杆挤出装置的出料端直接连接独立驱动的分散装置,经螺杆挤出装置处理后的浆料进入分散筒体内,分散装置的驱动件单独驱动分散转子转动,分散转子转动时对分散筒体内的浆料进行剪切分散,剪切分散完成后的浆料通过出料口向外流出;如此设置,可以根据不同浆料的分散需求,配置不同的分散装置,并针对性地控制分散转子转速,提 高浆料的分散效果和分散速率,实现浆料的连续化生产。与现有技术中直接在螺杆挤出装置末端设置稀释段的方式相比,不仅提高了浆料分散效率,而且不需要设置相当长的稀释段用于浆料的分散,可以缩短螺杆挤出装置中螺杆轴的长度,缩小螺杆轴在使用过程中的形变量,从而延长螺杆轴及其上功能元件的使用寿命。与现有技术中在螺杆挤出装置的出料端外接搅拌罐的方式相比,由于搅拌罐需要较长的一端时间才可以将浆料剪切分散为成品浆料,单一搅拌罐无法实现成品浆料的连续输出,而多搅拌罐占地面积大、管道结构复杂、复杂的管道结构又带来金属污染、维护难度大等问题,因此本申请的连续制浆设备具有整个设备简单易控,占地面积小,没有传统的管道阀门切换系统,维护简单,经济实惠,可以实现浆料连续化生产的优点。
2.本申请提供的连续制浆设备,分散转子和分散筒体之间形成有供浆料经过的分散间隙通道,如此设置,浆料必须经过分散间隙通道被分散转子剪切分散后才可以流向出料口,避免浆料未经剪切分散作用后直接流出,提高浆料的剪切分散效果。
3.本申请提供的连续制浆设备,采用分散转子和分散定子错位间隔排布对浆料进行剪切分散的方式,可以延长浆料在剪切分散过程中的路径,进一步提高浆料的剪切分散效果和分散效率,有利于实现浆料连续化生产。
4.本申请提供的连续制浆设备,当分散转子的转速在5-50m/s之间时,分散定子和分散转子之间空隙为0.5-5.0mm;当分散转子的转速在10-30m/s之间时,分散定子和分散转子之间空隙为为1-3mm,可以确保浆料的剪切分散效果满足锂电池浆料的分散需求。
5.本申请提供的连续制浆设备,分散装置剪切分散浆料的速率大于或等于螺杆挤出装置输送至分散筒体内的浆料量,出料口可以持续不断的输出剪切分散完成后的浆料,从而实现浆料的大规模连续化生产。
6.本申请提供的连续制浆设备,分散筒体直接密封连接在筒体出料端的端板上的结构设计,不仅结构简单、安装方便,而且还有利于缩短螺杆挤出元件 末端和分散转子之间的间隔,避免因间隔过长导致浆料出现局部沉降而影响浆料产品质量的问题。
7.本申请提供的连续制浆设备,当稀释段可以通过稀释液进料口注入稀释液,对浆料进行稀释,当稀释段仅设置在分散筒体时,使得无需在螺杆挤出装置上额外设置稀释段,有利于缩短连续制浆设备的整体长度,在连续制浆设备的总长度固定时,可以增加捏合段的长度,提高捏合能力,以适应不同浆料的捏合需求。
8.本申请提供的连续制浆设备,筒体和/或分散筒体的长度可调,可以根据浆料需要设置调节筒体和/或分散筒体的长度,以更好适应不同浆料的生产需求。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一提供的连续制浆设备的整体结构示意图;
图2为本申请实施例一中螺杆挤出装置和分散装置分开时的结构示意图;
图3为本申请实施例一的第一种实施方式中螺杆挤出装置和分散装置的连接关系示意图;
图4为本申请实施例一的第二种实施方式中分散装置的剖视图;
图5为图4中B处的放大图;
图6为本申请实施例一中电机、齿轮箱、螺杆挤出元件的连接关系示意图;
图7为本申请实施例二提供的连续制浆设备的整体结构示意图;
图8为本申请实施例三提供的连续制浆设备的整体结构示意图。
附图标记说明:100、螺杆挤出装置;110、筒体;111、筒体端板;120、 螺杆挤出元件;130、齿轮箱;140、主驱动电机;150、粉料进口;160、液料进口;200、分散装置;210、分散筒体;211、出料口;212、分散筒体端板;220、电机;230、分散转子;240、主轴;250、分散定子;260、分散间隙通道;270、冷却液通道;300、直管道;400、异形管。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例一
如图1-3所示的一种连续制浆设备,包括螺杆挤出装置100和分散装置200。其中,螺杆挤出装置100包括主驱动电机140、连接在主驱动电机140输出端 上的齿轮箱130、连接在齿轮箱130输出端上的螺杆挤出元件120、以及套设在螺杆挤出元件120外周的筒体110。筒体110靠近齿轮箱130的一端设有粉料进口150和液料进口160,粉料进口150相对于液料进口160更靠近齿轮箱130,粉体原料通过粉料进口150匀速进入筒体110内,溶剂原料通过液料进口160匀速进入筒体110内,粉体原料和溶剂原料的进料量按固定配比设置。主驱动电机140通过齿轮箱130驱动螺杆挤出元件120在筒体110内转动,螺杆挤出元件120上设有螺旋结构,螺旋结构转动时会产生轴向的推力,该推力用于将筒体110内的原料由一端输送至筒体110的出料端,筒体110的出料端具体为筒体110远离齿轮箱130的一端。分散装置200包括连接在筒体110的出料端一侧的分散筒体210,安装在分散筒体210上的驱动件,以及由驱动件驱动在分散筒体210内转动以对浆料进行剪切分散的分散转子230。驱动分散转子230转动的驱动件和驱动螺杆挤出元件120转动的驱动件为相互独立设置的两个不同驱动件,分散筒体210上设有出料口211。
这种连续制浆设备,通过在螺杆挤出装置100的出料端直接连接独立驱动的分散装置200,螺杆挤出装置100处理后的浆料进入分散筒体210内,分散装置200的驱动件单独驱动分散转子230转动,分散转子230转动时对分散筒体210内的浆料进行剪切分散,剪切分散完成后的浆料通过出料口211向外流出。如此设置,由于分散装置200和螺杆挤出装置100都是连续式工作,可以根据不同浆料的分散需求,配置不同的分散装置200,并针对性地控制分散转子230转速,提高浆料的分散效果和分散速率,实现浆料的连续化生产。与现有技术中直接在螺杆挤出装置100末端设置稀释段的方式相比,不仅提高了浆料分散效率,而且不需要设置相当长的稀释段用于浆料的分散,可以缩短螺杆挤出装置100中螺杆轴的长度,缩小螺杆轴在使用过程中的形变量,从而延长螺杆轴及其上功能元件的使用寿命。与现有技术中在螺杆挤出装置100的出料端外接搅拌罐的方式相比,由于搅拌罐需要较长的一端时间才可以将浆料剪切分散成成品浆料,单一搅拌罐无法实现成品浆料的连续输出,而多搅拌罐占地 面积大、管道结构复杂、复杂的管道结构又带来金属污染、维护难度大等问题,因此本申请的连续制浆设备具有整个设备简单易控,占地面积小,没有传统的管道阀门切换系统,维护简单,经济实惠,可以实现浆料连续化生产的优点。
如图3所示,在实施例一的第一种具体实施方式中,分散转子230和分散筒体210之间形成有供浆料经过的分散间隙通道260,此时分散筒体210作为剪切分散结构中的定子,浆料经过分散间隙通道260时被分散转子230和作为定子的分散筒体210剪切分散后流向出料口211。如此设置,浆料必须经过分散间隙通道260被分散转子230剪切分散后才可以流向出料口211,避免浆料未经剪切分散作用后直接流出,提高浆料的剪切分散效果。
如图3所示,主轴240靠近筒体110的端部和分散转子230靠近筒体110的端部齐平,分散转子230靠近筒体110的端部和螺杆挤出元件120靠近分散筒体210的端部之间具有间隔。间隔的大小为0.5-100mm;优选地,间隔的大小为0.5-3mm;次选地,间隔的大小为3-5mm;再次选地,间隔的大小为5-100mm。
如图3所示,分散筒体210密封连接在筒体110出料端的端板上。具体的,分散筒体210的一端固定设有分散筒体端板212,筒体110的出料端设有筒体端板111,分散筒体端板212和筒体端板111通过多个连接螺栓固定连接。分散筒体端板212和筒体端板111之间的连接面上、分散筒体端板212和分散筒体210的连接面上、筒体端板111和筒体110的连接面上均垫设有密封部件,如此设置,不仅可以保证分散筒体210和筒体110连接处的良好密封,防止出现浆料泄漏;而且结构简单、安装方便,有利于缩短螺杆挤出元件120末端和分散转子230之间的间隔,避免因间隔过长导致浆料出现局部沉降而影响浆料产品质量的问题。
如图3所示,驱动件为电机220,电机220的输出端上连接有伸向分散筒体210内的主轴240,分散转子230连接在主轴240的外周,分散筒体210和主轴240密封连接。具体的,分散筒体210和主轴240的连接处设有密封结构, 密封结构可以防止浆料从分散筒体210和主轴240连接处的缝隙向外泄漏。
如图4和图5所示,在实施例一的第二种具体实施方式中,与第一种具体实施方式的不同之处在于,分散筒体210的内壁上固定有向分散筒体210中心方向延伸的分散定子250,分散定子250和分散转子230均具有多个,且多个分散定子250和多个分散转子230在分散筒体210的轴向方向上错位间隔排布,分散定子250和分散转子230之间的空隙为分散间隙通道260。分散转子230转动时,与分散定子250形成速度差,可以对分散间隙通道260内的浆料进行剪切分散;而采用多个分散转子230和多个分散定子250错位间隔排布对浆料进行剪切分散的方式,可以延长浆料在剪切分散过程中的路径,进一步提高浆料的剪切分散效果和分散效率,有利于实现浆料连续化生产。
具体的,螺杆挤出元件120的转速保持不变,螺杆挤出元件120的转速为300-600r/min。当分散转子230的转速为5-50m/s时,分散定子250和分散转子230之间空隙为0.5-5.0mm;当分散转子230的转速为10-30m/s时,分散定子250和分散转子230之间空隙为1-3mm,更优选地,间隙为2mm。如此设置,确保浆料的剪切分散效果满足锂电池浆料的分散需求。
在本实施方式中,分散转子230的转速可调,和/或分散间隙通道260的宽度可调。在实际应用中,可以根据浆料的组分、黏度等特性,调节分散转子230的转速、或调节分散间隙通道260的宽度、或同时调节调节分散转子230的转速和调节分散间隙通道260的宽度,以匹配不同浆料对剪切分散效率的要求。分散转子230的转速调节方式可以通过PLC控制器改变电机220的转速的方式进行调节;分散间隙通道260可以通过拆除或重新组装部分分散转子230和/或分散定子250的方式进行调节,或者采用额外的调节部件调节相邻两个分散转子230和分散定子250之间间隙的方式进行调节,或者直接更换不同类型、尺寸的分散转子230和/或分散定子250的方式进行调节。分散转子230的转速调节方式和分散间隙通道260的宽度可调方式有多种,此处不一一赘述。
在本实施方式中,分散转子230的线速度大于螺杆挤出元件120的线速度, 螺杆挤出元件120的线速度小于10m/s,适用于高固含浆料的捏合;分散转子230的线速度大于10m/s,适用于较低固含浆料的分散;例如,螺杆挤出元件120的线速度为3m/s,分散转子230的线速度为20m/s。分散装置200剪切分散浆料的效率大于或等于螺杆挤出装置100将浆料输送至分散筒体210内的效率;也就是说,螺杆挤出装置100在单位时间输送至分散筒体210内的浆料量为A,分散装置200在单位时间内剪切分散浆料量也为A,但分散装置200在单位时间内能够剪切分散浆料的最大浆料量大于或等于A。如此设置,筒体110的出料口211可以持续不断的输出剪切分散完成后的浆料,实现浆料的大规模连续化生产,可以大幅提高设备生产浆料的产能。
在实施例一的第三种具体实施方式中,与第一种具体实施方式的不同之处在于,螺杆挤出装置100和分散装置200为一体式结构,此时分散筒体210和筒体110为一体式结构设计;如此有利于实现浆料的连续化生产。
如图4所示,分散筒体210的筒壁上设有介质换热通道,介质换热通道具有介质入口和介质出口,介质换热通道环绕分散筒体210的周壁螺旋设置。具体的,介质换热通道为冷媒通道,冷媒介质从介质入口进入经过冷媒通道后从介质出口流出,冷媒介质可以带走筒体110的一部分热量,以对筒体110内浆料进行降温。或者,介质换热通道为热媒通道,热媒介质从介质入口进入经过热媒通道后从介质出口流出,热媒介质可以对筒体110内浆料进行加热。
结合图1和图6所示,在本实施例中,螺杆挤出装置100包括沿浆料输送方向依次设置的粉体输送段、粉液混合段和捏合段;或螺杆挤出装置100包括沿浆料输送方向依次设置的粉体输送段、粉液混合段、捏合段和稀释段。筒体110沿螺杆挤出元件120长度延伸方向上的长度可调,和/或分散装置200在其轴向方向上的长度可调。如此设置,可以根据不同浆料的生产需求,调节筒体110和/或分散装置200的长度。分散装置200轴向方向上的长度调节包括分散筒体210、分散转子230和分散定子250轴向方向上的长度调节。具体的,筒体110和/或分散筒体210的长度调节方式有多种,例如筒体110和/或分散筒体 210采用两节及以上相互嵌套设置的筒体段组成,通过调节筒体段的伸缩长度调节筒体110和/或分散筒体210的长度。又例如,筒体110和/或分散筒体210由两节及以上的筒体段组成,相邻两节筒体段之间通过密封且具有伸缩功能的波纹管段连接,通过波纹管段的伸缩实现筒体110和/或分散筒体210长度的调节。再例如,筒体110和/或分散筒体210由两节及以上的筒体段轴向相互拼接而成,任意相邻两节筒体段之间的拼接结构相同,通过改变筒体段的节数实现筒体110和/或分散筒体210长度的调节。分散转子230的长度调节方式有多种,例如分散转子230可以由多个转子盘组成,通过改变转子盘的个数实现分散转子230整体轴向长度的调节。当分散定子250固定连接在分散筒体210上或分散筒体210本身起到分散定子的作用时,分散定子250轴向方向上的长度随分散筒体210轴向方向上的长度的调节同时进行;当分散定子250可拆卸连接在分散筒体210上时,分散定子250可以由多个定子盘组成,通过改变定子盘的个数实现分散定子250整体轴向长度的调节。
在本实施例中,还包括对浆料进行稀释的稀释段,稀释段设有稀释液进料口。稀释段设置在螺杆挤出装置100的末段,或稀释段设置在分散筒体210的前段,或稀释段同时设置在分散筒体210的前段和螺杆挤出装置100的末段。当分散筒体210的前段设有稀释段时,可以无需在螺杆挤出装置100的末端设置稀释段或者缩短螺杆挤出装置100末端所需设置稀释段的长度,有利于缩短连续制浆设备的整体长度,在连续制浆设备的总长度固定时,可以增加捏合段的长度,提高捏合能力,以适应不同浆料的捏合需求。
结合图6所示,螺杆挤出元件120包括螺杆轴和设置在螺杆轴外周的螺旋结构,当螺杆轴转动时,螺旋结构对筒体110内的原料产生向筒体110出料端方向的轴向推力;螺杆轴对应捏合段的部分设有用于对原料进行啮合的凸起元件。齿轮箱130有两根平行输出轴,螺杆挤出元件120为双螺杆结构,双螺杆结构的两根螺杆轴分别连接齿轮箱130的两根平行输出轴。在螺杆轴转动时,两根螺杆轴上的凸起元件可以对原料进行混合,进入筒体110的粉、液原材料 在凸起元件的捏合作用下形成半成品浆料,半成品浆料被螺杆轴挤出至分散筒体210内。在其他可替代的实施方式中,螺杆挤出元件120为还可以为单螺杆结构或三螺杆结构。
实施例二
如图7所示的一种连续制浆设备,与实施例一的不同之处在于,分散装置200的一端通过直管道300连接在螺杆挤出装置100的出料端。直管道300上设有控制直管道300通断的通断阀。
实施例三
如图8所示的一种连续制浆设备,与实施例一的不同之处在于,分散装置200的一端通过异形管400连接在螺杆挤出装置100的出料端。分散装置200整体呈竖向设置,如此设置可以节省制浆设备整体的直线长度。
综上所述,本申请提供的连续制浆设备,通过在螺杆挤出装置100的出料端直接连接独立驱动的分散装置200,提高了对浆料的分散效果和分散效率,克服了传统螺杆挤出装置100分散能力不足的缺陷,具有整个设备简单易控,占地面积小,没有传统的管道阀门切换系统,维护简单,经济实惠,可以实现浆料大规模连续化生产的优点。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (17)

  1. 一种连续制浆设备,其特征在于,包括:
    螺杆挤出装置(100),包括筒体(110)和设于所述筒体(110)内的螺杆挤出元件(120);
    分散装置(200),包括连接在所述筒体(110)出料端一侧的分散筒体(210),安装在所述分散筒体(210)上的驱动件,以及由所述驱动件驱动在所述分散筒体(210)内转动以对浆料进行剪切分散的分散转子(230)。
  2. 根据权利要求1所述的连续制浆设备,其特征在于,所述分散筒体(210)上设有出料口(211),所述分散转子(230)和所述分散筒体(210)之间形成有供浆料经过的分散间隙通道(260),浆料经过所述分散间隙通道(260)时被所述分散转子(230)剪切分散后流向所述出料口(211)。
  3. 根据权利要求2所述的连续制浆设备,其特征在于,所述分散筒体(210)的内壁上设有向所述分散筒体(210)中心方向延伸的分散定子(250),所述分散定子(250)和所述分散转子(230)在所述分散筒体(210)的轴向方向上错位间隔排布,所述分散定子(250)和所述分散转子(230)之间空隙为所述分散间隙通道(260)。
  4. 根据权利要求3所述的连续制浆设备,其特征在于,所述分散转子(230)的转速可调,和/或所述分散间隙通道(260)的宽度可调。
  5. 根据权利要求3所述的连续制浆设备,其特征在于,当所述分散转子(230)的转速为5-50m/s时,所述分散定子(250)和所述分散转子(230)之间空隙为0.5-5.0mm;当所述分散转子(230)的转速为10-30m/s时,所述分散定子(250)和所述分散转子(230)之间空隙为1-3mm。
  6. 根据权利要求1-5中任意一项所述的连续制浆设备,其特征在于,所述分散转子(230)的线速度大于所述螺杆挤出元件(120)的线速度。
  7. 根据权利要求1-5中任意一项所述的连续制浆设备,其特征在于,所述分散装置(200)剪切分散浆料的效率大于或等于所述螺杆挤出装置(100)将浆料输送至所述分散筒体(210)内的效率。
  8. 根据权利要求1-5中任意一项所述的连续制浆设备,其特征在于,所述分散筒体(210)密封连接在所述筒体(110)出料端的端板上,所述驱动件为电机(220),所述电机(220)的输出端上连接有伸向所述分散筒体(210)内的主轴(240),所述分散转子(230)连接在所述主轴(240)的外周,所述分散筒体(210)和所述主轴(240)密封连接。
  9. 根据权利要求8所述的连续制浆设备,其特征在于,所述主轴(240)与所述分散转子(230)靠近所述筒体(110)的端部和所述螺杆挤出元件(120)靠近所述分散筒体(210)的端部之间具有间隔。
  10. 根据权利要求9所述的连续制浆设备,其特征在于,所述间隔的大小为0.5-100mm。
  11. 根据权利要求1-5中任意一项所述的连续制浆设备,其特征在于,所述螺杆挤出装置(100)包括沿浆料输送方向依次设置的粉体输送段、粉液混合段和捏合段,或所述螺杆挤出装置(100)包括沿浆料输送方向依次设置的粉体输送段、粉液混合段、捏合段和稀释段。
  12. 根据权利要求1-5中任意一项所述的连续制浆设备,其特征在于,所述筒体(110)沿所述螺杆挤出元件(120)长度延伸方向上的长度可调,和/或所述分散 装置(200)在其轴向方向上的长度可调。
  13. 根据权利要求1-5中任意一项所述的连续制浆设备,其特征在于,还包括对浆料进行稀释的稀释段,所述稀释段设有稀释液进料口;所述稀释段设置在所述螺杆挤出装置(100)的末段,或所述稀释段设置在所述分散筒体(210)的前段,或所述稀释段同时设置在所述分散筒体(210)的前段和所述螺杆挤出装置(100)的末段。
  14. 根据权利要求11所述的连续制浆设备,其特征在于,所述螺杆挤出元件(120)包括螺杆轴和设置在所述螺杆轴外周的螺旋结构,当所述螺杆轴转动时,所述螺旋结构对所述筒体(110)内的原料产生向所述筒体(110)出料端方向的轴向推力;所述螺杆轴对应所述捏合段的部分设有用于对原料进行啮合的凸起元件。
  15. 根据权利要求1-5中任意一项所述的连续制浆设备,其特征在于,所述螺杆挤出装置(100)上设有粉料进口(150)和液料进口(160)。
  16. 根据权利要求1-5中任意一项所述的连续制浆设备,其特征在于,所述螺杆挤出装置(100)和所述分散装置(200)为一体式结构。
  17. 根据权利要求1-5中任意一项所述的连续制浆设备,其特征在于,所述分散筒体(210)的筒壁上设有介质换热通道,所述介质换热通道具有介质入口和介质出口。
PCT/CN2023/086951 2022-09-23 2023-04-07 一种连续制浆设备 WO2024060586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211171289.4 2022-09-23
CN202211171289.4A CN115445516A (zh) 2022-09-23 2022-09-23 一种连续制浆设备

Publications (1)

Publication Number Publication Date
WO2024060586A1 true WO2024060586A1 (zh) 2024-03-28

Family

ID=84307485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086951 WO2024060586A1 (zh) 2022-09-23 2023-04-07 一种连续制浆设备

Country Status (2)

Country Link
CN (1) CN115445516A (zh)
WO (1) WO2024060586A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115445516A (zh) * 2022-09-23 2022-12-09 深圳市尚水智能设备有限公司 一种连续制浆设备
CN116832679B (zh) * 2023-08-22 2024-04-12 深圳市尚水智能股份有限公司 制浆设备及制浆设备的螺杆挤出元件的取出方法
CN116870775B (zh) * 2023-08-22 2024-04-26 深圳市尚水智能股份有限公司 制浆机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202146733U (zh) * 2011-06-10 2012-02-22 北京化工大学 转子三角形排列的三转子连续混炼机组
CN104400931A (zh) * 2014-11-20 2015-03-11 福建师范大学 一种高转速高剪切高分散的双阶挤出造粒设备
CN205007887U (zh) * 2015-10-09 2016-02-03 佛山市金银河智能装备股份有限公司 一种锂电池浆料均质机
JP2017100117A (ja) * 2015-11-19 2017-06-08 国立研究開発法人産業技術総合研究所 スラリーの製造に用いる分散混合ポンプを備えた分散混合システム
CN108380078A (zh) * 2018-03-08 2018-08-10 四川西丹孚能源科技有限公司 基于双螺杆的电极物料生产加工系统
CN215463957U (zh) * 2021-03-16 2022-01-11 欣旺达电动汽车电池有限公司 捏合装置和电池浆料的制作设备
CN217042143U (zh) * 2022-03-01 2022-07-26 宏工科技股份有限公司 一种浆式分散装置
CN115445516A (zh) * 2022-09-23 2022-12-09 深圳市尚水智能设备有限公司 一种连续制浆设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202146733U (zh) * 2011-06-10 2012-02-22 北京化工大学 转子三角形排列的三转子连续混炼机组
CN104400931A (zh) * 2014-11-20 2015-03-11 福建师范大学 一种高转速高剪切高分散的双阶挤出造粒设备
CN205007887U (zh) * 2015-10-09 2016-02-03 佛山市金银河智能装备股份有限公司 一种锂电池浆料均质机
JP2017100117A (ja) * 2015-11-19 2017-06-08 国立研究開発法人産業技術総合研究所 スラリーの製造に用いる分散混合ポンプを備えた分散混合システム
CN108380078A (zh) * 2018-03-08 2018-08-10 四川西丹孚能源科技有限公司 基于双螺杆的电极物料生产加工系统
CN215463957U (zh) * 2021-03-16 2022-01-11 欣旺达电动汽车电池有限公司 捏合装置和电池浆料的制作设备
CN217042143U (zh) * 2022-03-01 2022-07-26 宏工科技股份有限公司 一种浆式分散装置
CN115445516A (zh) * 2022-09-23 2022-12-09 深圳市尚水智能设备有限公司 一种连续制浆设备

Also Published As

Publication number Publication date
CN115445516A (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2024060586A1 (zh) 一种连续制浆设备
CN109664429B (zh) 一种模块化多腔室连续捏合机
CN101837633A (zh) 一种嵌入式行星螺杆脉动塑化排气挤出装置及其方法
CN215463957U (zh) 捏合装置和电池浆料的制作设备
CN210211293U (zh) 环保型粉末涂料挤压破碎装置
CN212949081U (zh) 一种用于聚丙烯酸树脂的双螺杆挤出机
CN116020302A (zh) 一种剪切分散装置及连续制浆设备
CN103358514A (zh) 长径比33的高效聚烯烃单螺杆挤出机
CN213533714U (zh) 一种同向旋转双螺杆挤出机
WO2024051094A1 (zh) 多功能捏合式制浆机
CN103057089B (zh) 一种具有特制阴阳转子型线的双螺杆挤出机
CN219168171U (zh) 一种连续制浆设备
WO2024051093A1 (zh) 循环捏合式制浆系统
CN106863745A (zh) 一种强制均化可调速螺杆挤出机
CN217068685U (zh) 一种用于混合物料的可调节搅拌罐
CN207153513U (zh) 一种螺旋搅拌设备
CN210097575U (zh) 一种锂电池浆料的双螺旋轴连续匀浆系统
CN210097440U (zh) 一种高效连续螺旋式匀浆机
CN212045642U (zh) 一种具有比例调节功能的双螺杆挤出机
CN213556612U (zh) 用于锶铁氧体预烧料生产的混料搅拌装置
JP3938683B2 (ja) ゴムあるいはゴム系組成物の混練装置
CN216704194U (zh) 一种多段式均浆装置
JP3682867B2 (ja) ゴムあるいはゴム系組成物の混練装置および混練方法
CN202895662U (zh) 星型差速螺杆挤出机
CN215703953U (zh) 一种橡胶螺杆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866883

Country of ref document: EP

Kind code of ref document: A1