WO2024060517A1 - 动子及具有其的混合输送线 - Google Patents

动子及具有其的混合输送线 Download PDF

Info

Publication number
WO2024060517A1
WO2024060517A1 PCT/CN2023/079425 CN2023079425W WO2024060517A1 WO 2024060517 A1 WO2024060517 A1 WO 2024060517A1 CN 2023079425 W CN2023079425 W CN 2023079425W WO 2024060517 A1 WO2024060517 A1 WO 2024060517A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
magnet
guide rail
conveyor line
friction
Prior art date
Application number
PCT/CN2023/079425
Other languages
English (en)
French (fr)
Inventor
池峰
李文华
郭琳
Original Assignee
上海果栗自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222504907.4U external-priority patent/CN218201017U/zh
Priority claimed from CN202211219655.9A external-priority patent/CN117856567A/zh
Priority claimed from CN202211211003.0A external-priority patent/CN117842614A/zh
Application filed by 上海果栗自动化科技有限公司 filed Critical 上海果栗自动化科技有限公司
Priority to EP23828139.8A priority Critical patent/EP4365116A1/en
Publication of WO2024060517A1 publication Critical patent/WO2024060517A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic

Definitions

  • the present application relates to the technical field of conveying devices, specifically, to a mover and a mixing conveying line having the mover.
  • transmission lines generally include movers used to transport materials.
  • Some high-precision, high-speed transportation environments generally use magnetic power transmission, that is, the movers use magnetic power as the driving force to move on the stator (i.e. guide rail).
  • stator i.e. guide rail
  • the present application provides a mover and a mixed transmission line with the mover, which can effectively reduce the overall installation cost of the transmission line.
  • a mover which can be applied to at least a magnetic power conveyor line and a hybrid conveyor line.
  • the mover is movably installed on the magnetic power conveyor line or the mixed conveyor line.
  • the magnetic power conveyor line includes a first The armature winding
  • the hybrid transmission line includes a first driving mechanism;
  • the mover includes: a mover body including a first permanent magnet array, the first permanent magnet array includes two first permanent magnets arranged at opposite intervals, and the two first permanent magnets are
  • the first armature winding drives the mover body to move along the magnetic power transmission line in the form of current excitation;
  • the driven component is connected to the mover body, and the driven component is used for transmission connection with the first driving mechanism and drives the mover body along the magnetic power transmission line.
  • Magnetically powered conveyor lines or mixed conveyor lines move.
  • the mover body includes: a connecting portion, which is connected to both the first permanent magnet array and the driven component.
  • the driven component and the first permanent magnet array are located on opposite sides of the connecting portion.
  • the transmission mode between the driven component and the first driving mechanism is at least one of friction transmission, magnetic adsorption transmission and fixed contact transmission.
  • the transmission mode between the driven component and the first driving mechanism is friction transmission.
  • the driven component includes: a fixed structure connected to the mover body; a friction structure used to contact the first driving mechanism and generate frictional resistance;
  • the tensioning structure is located between the fixed structure and the friction structure. The tensioning structure connects the fixed structure and the friction structure and is used to press the friction structure against the first driving mechanism.
  • the friction structure includes: a friction block for contacting the first driving mechanism and generating frictional resistance; a fixed block fixedly connected to the friction block, and the orthographic projection of the fixed block on the friction block covers the friction block, and the friction block is configured on the surface of the fixed block away from the tensioning structure;
  • the tensioning structure includes: a guide rod, one end of the guide rod is movablely connected to the fixed structure, and the other end of the guide rod is fixedly connected to the fixed block; an elastic member is sleeved on the guide rod, and the elastic member One end of the elastic member is in contact with the fixed block, and the other end of the elastic member is in contact with the fixed structure.
  • the friction block is made of at least one of rubber or resin.
  • the driven component includes two groups, the two groups of driven components are located on opposite sides of the mover body, and the two relatively spaced apart first permanent magnets are located between the two groups of driven components.
  • the first driving mechanism includes a second armature winding
  • the driven component includes: a second permanent magnet array including at least one second permanent magnet.
  • the second permanent magnet and the second armature winding drive the drive in a current excitation manner.
  • the sub-body moves along the magnetic power conveyor line or the hybrid conveyor line.
  • the mover also includes: a first sliding component, which is arranged on the mover body, and the first sliding component is used to be movably installed on the magnetic power transmission line; a second sliding component, which is arranged on the driven component and is spaced apart from the first sliding component, and the second sliding component is used to be movably installed on the hybrid transmission line; or, the mover includes: a first sliding component, which is arranged on the mover body, and the first sliding component is used to be movably installed on the magnetic power transmission line, and the first sliding component and the driven component are spaced apart.
  • the mover further includes: a distance sensing device connected to the mover body, and the distance sensing device is used to detect the movement position of the mover.
  • the movable body has a receiving groove, which extends along a first preset direction to pass through both ends of the movable body, and the receiving groove extends along a second preset direction to form a slot on one side of the movable body for allowing the armature winding to enter and exit the receiving groove, and the second preset direction is perpendicular to the first preset direction;
  • the receiving groove includes a first slot wall, a second slot wall and a third slot wall, the third slot wall is arranged opposite to the slot, the first slot wall is arranged opposite to the second slot wall, and are respectively located on both sides of the third slot wall;
  • the first permanent magnet includes a first magnetic steel group arranged on the first slot wall and a second magnetic steel group arranged on the second slot wall, the second magnetic steel group is arranged opposite to the first magnetic steel group and spaced apart, the first magnetic steel group and the second magnetic steel group each include at least one magnet module arranged along the first preset direction, the magnet module is detachably connected to the movable
  • the permanent magnets in the second magnet group correspond to the permanent magnets in the first magnet group, and the magnetization direction of the permanent magnets in the second magnet group is consistent with the corresponding permanent magnets in the first magnet group. Magnets are magnetized in the same direction.
  • one or more sub-magnets in the magnet module are arranged in a Halbach array; the magnet module includes a mounting frame, the mounting frame is detachably connected to the mover body, and the plurality of sub-magnets are adjacent or spaced on the mounting frame.
  • the magnet module includes a first sub-magnet, a second sub-magnet, a third sub-magnet and a fourth sub-magnet arranged along a first preset direction.
  • the magnetization direction of the first sub-magnet is along the third preset direction, and the third preset direction is perpendicular to the first preset direction and the second preset direction; the magnetization direction of the second sub-magnet is along the fourth preset direction, The fourth preset direction is parallel to the first preset direction; the magnetization direction of the third sub-magnet is along the fifth preset direction, and the fifth preset direction is opposite to the third preset direction; the magnetization direction of the fourth sub-magnet is along the sixth preset direction.
  • the preset direction, the sixth preset direction is opposite to the fourth preset direction.
  • the plurality of magnet modules of the first magnet group include at least one first magnet module or/and at least one second magnet module; wherein, the first sub-magnet, the second magnet module in the first magnet module The sub-magnets, the third sub-magnets and the fourth sub-magnets are arranged sequentially along the first preset direction; the second sub-magnets, the first sub-magnets, the fourth sub-magnets and the third sub-magnets in the second magnet module are all arranged along the first preset direction.
  • the first preset directions are arranged in sequence.
  • the magnetization direction of the permanent magnet located at the first end of the first magnet group is along the third preset direction
  • the magnetization direction of the permanent magnet located at the second end of the first magnet group is along the third preset direction. Five preset directions.
  • the magnetization direction of the permanent magnet located at the first end of the first magnet group is along the fourth preset direction
  • the magnetization direction of the permanent magnet located at the second end of the first magnet group is along the fourth preset direction
  • the magnetization direction of the permanent magnet is along the sixth preset direction.
  • the plurality of permanent magnets in the magnet module are arranged in a Halbeck array; among them, the side of the first magnet group close to the second magnet group obtains magnetic field enhancement, and the second magnet group is close to the side of the first magnet group. One side gets magnetic field enhancement.
  • a hybrid conveyor line includes a magnetic power conveyor line, an auxiliary conveyor line and a mover provided as above.
  • the mover is movably installed on the magnetic power conveyor line or the auxiliary conveyor.
  • the magnetic power transmission line includes a first armature winding and a first guide rail, the first permanent magnet array cooperates with the first armature winding to drive the mover to move along the first guide rail;
  • the auxiliary transmission line includes a first driving mechanism and a second Guide rail; the driven component cooperates with the first driving mechanism to drive the mover to move along the second guide rail.
  • each mover includes a buffer.
  • the buffer parts are correspondingly provided on the mover body. opposite sides of.
  • the mixing conveyor line has at least one arc section, and at the arc section, the first guide rail and the second guide rail are arranged non-collinearly.
  • the first driving mechanism includes a transmission member and a docking structure.
  • the transmission member is drivingly connected to the docking structure to drive at least part of the docking structure to move along the guiding direction of the second guide rail.
  • the docking structure is used to connect the mover so that the mover moves along the guiding direction of the second guide rail.
  • the second guide rail moves;
  • the auxiliary conveyor line includes a position sensing component.
  • the position sensing component includes a plurality of position sensors and a controller electrically connected to the multiple position sensors.
  • the plurality of position sensors are arranged sequentially along the second guide rail and are used for detection.
  • the position information of the mover is obtained, and the position information is output to the controller.
  • the controller is used to adjust the driving speed of the mover by the first driving mechanism according to the position information.
  • the position sensor includes a signal transmitter and a signal receiver, one of the signal transmitter and the signal receiver is arranged on one side of the second guide rail, and the other is used to connect with the mover; or, the signal transmitter and the signal receiver are both arranged on the second guide rail; wherein, when the signal receiver receives a change in the signal sent by the signal transmitter, the signal receiver outputs the position information of the mover to the controller.
  • the position sensor includes at least one of a magnetic grating sensor, a grating sensor, an infrared sensor, a color sensor and a Hall sensor.
  • the first driving mechanism includes at least one of a friction transmission structure, a fixed transmission structure and a magnetic transmission structure.
  • the docking structure includes: a synchronous belt, and the transmission direction of the synchronous belt is consistent with the third transmission structure.
  • the guiding directions of the two guide rails are parallel; the transmission parts include: two synchronous pulleys, the two synchronous pulleys are arranged at intervals; and a support structure for supporting the synchronous belt.
  • the synchronous belt is sleeved on the circumferential sides of the two synchronous pulleys, and the support structure is located at Between the two synchronous pulleys and within the range surrounded by the two synchronous pulleys and the synchronous belt, the support structure extends along the transmission direction of the synchronous belt.
  • the support structure includes a hard support plate and a soft support plate.
  • the hard support plate and the soft support plate are stacked in a direction perpendicular to the surface of the synchronous belt, and the soft support plate is located between the hard support plate and the synchronous belt. During the period, the soft support plate is used to support the part where the synchronous belt drives the mover to move.
  • the support structure further includes at least two transition pieces, the two transition pieces are arranged between the soft support plate and the synchronous belt, and are located at both ends of the soft support plate close to the synchronous pulley.
  • the first driving mechanism includes at least one of a friction transmission structure, a fixed transmission structure and a magnetic transmission structure.
  • the docking structure includes: a synchronous belt, and the transmission direction of the synchronous belt is consistent with the third transmission structure.
  • the guiding directions of the two guide rails are parallel;
  • the transmission member includes: a plurality of synchronous pulleys, the plurality of synchronous pulleys are arranged at intervals, and the synchronous belt is sleeved on the peripheral side of the synchronous pulley.
  • the magnetodynamic conveying line and the auxiliary conveying line are arranged in sequence along the second guide rail and are docked, and the mover movably moves between the magnetodynamic conveying line and the auxiliary conveying line along the second guide rail.
  • the first driving mechanism includes: a docking structure that realizes docking by friction transmission; or a docking structure that realizes docking by fixed transmission; or a docking structure that realizes docking by magnetic adsorption.
  • the mover includes: a mover body; a driven component including a fixed structure and a friction structure.
  • the fixed structure is fixed to the mover body.
  • the friction structure includes a guide rod and an elastic member. One end of the guide rod is movably connected to the fixed structure. The other end of the guide rod is movably connected to the fixed structure. One end is fixedly connected to the friction structure, and the friction structure is used to contact the synchronous belt and generate friction.
  • the elastic member is set on the peripheral side of the guide rod and is located between the fixed structure and the friction structure.
  • the fixed structure has an installation surface close to the synchronous belt, and the friction structure has a friction surface close to the synchronous belt;
  • the synchronous belt has an inner contact surface and an outer contact surface, and the inner contact surface is used to contact the synchronous pulley, so that the synchronous belt and Frictional resistance is generated between the synchronous pulleys, and the outer contact surface and the mounting surface are arranged oppositely;
  • the friction structure is used to contact the outer contact surface.
  • the distance from the mounting surface to the inner contact surface is L1
  • the distance from the mounting surface to the outer contact surface is L1.
  • the distance between the contact surfaces is L2, the distance between the mounting surface and the friction surface is L3, and the conditional expression is satisfied: L1>L3>L2.
  • the mover includes a slider, and the slider can be slidably connected to the second guide rail or the first guide rail; when the auxiliary conveyor line and the magnetic power conveyor line are docked, the second guide rail is docked with the first guide rail, and the slider can be connected to the second guide rail. move between the guide rail and the first guide rail.
  • the mixing conveyor line also includes a connecting component, which is arranged in at least two groups.
  • One connecting component connects the tail of the magnetic power conveying line to the head of the auxiliary conveying line, and the other connecting component connects the magnetic power conveying line to the first part of the auxiliary conveying line.
  • the head part is connected to the tail part of the auxiliary conveying line, and the mover is movably connected to the magnetic power conveying line and the auxiliary conveying line along the second guide rail.
  • auxiliary conveying lines there are multiple groups of magnetic power conveying lines, and there are multiple groups of auxiliary conveying lines, one of which serves as the return section; multiple groups of magnetic power conveying lines and multiple groups of auxiliary conveying lines are alternately arranged along the second guide rail to form a conveying section.
  • the connecting component connects the tail of the conveying section and the head of the return section, and the other connecting component connects the head of the returning section and the tail of the conveying section.
  • the movers in addition to being used on magnetic power transmission lines, the movers can also be transmitted on non-magnetic power transmission lines through driven components and driving mechanisms in other transmission modes, resulting in lower conveying accuracy.
  • the magnetic power transmission line can be replaced with a non-magnetic power transmission line, and the mover in the embodiment of the present application can still be used to continue transportation, thereby reducing the overall installation cost of the transmission line.
  • Figure 1 shows a schematic structural diagram of the assembly of a mover and a magnetic power transmission line according to an embodiment of the present application
  • Figure 2 shows a schematic structural diagram of the assembly of a mover and a mixing conveyor line according to an embodiment of the present application
  • Figure 3 shows a schematic structural diagram of a mover provided according to an embodiment of the present application
  • Figure 4 shows a schematic structural diagram of a mover from a first perspective according to another embodiment of the present application
  • Figure 5 shows a schematic structural diagram of a mover provided according to another embodiment of the present application.
  • Figure 6 shows a schematic structural diagram of a mover from a first perspective according to yet another embodiment of the present application
  • Figure 7 shows a schematic structural diagram of a mover from a second perspective according to yet another embodiment of the present application.
  • Figure 8 shows a schematic structural diagram of the mover from a second perspective according to another embodiment of the present application.
  • FIG9 shows a schematic structural diagram of a first magnetic steel group of a mover provided according to another embodiment of the present application.
  • Figure 10 shows a schematic structural diagram of the first magnet group of the mover provided according to another embodiment of the present application.
  • Figure 11 shows a schematic structural diagram of the first magnet group of the mover provided according to another embodiment of the present application.
  • Figure 12 shows a schematic structural diagram of the first magnet group of the mover provided according to another embodiment of the present application.
  • Figure 13 shows a schematic diagram of the first magnet group and the second magnet group of the mover on the mover body according to another embodiment of the present application
  • Figure 14 shows a schematic structural diagram of the assembly of multiple movers and a mixing conveyor line according to an embodiment of the present application
  • Figure 15 is an enlarged structural schematic diagram of position C in Figure 14;
  • Figure 16 shows a schematic structural diagram of the assembly of multiple movers and a mixing conveyor line according to another embodiment of the present application
  • Figure 17 is an enlarged structural schematic diagram of D in Figure 16;
  • Figure 18 shows a schematic structural diagram of a mixing conveyor line provided according to an embodiment of the present application.
  • Figure 19 shows a schematic diagram of the overall structure of the auxiliary conveyor line of the mixing conveyor line provided according to an embodiment of the present application.
  • Figure 20 shows a schematic structural diagram of the cooperation between the auxiliary conveying line and the magnetic power conveying line of the mixing conveying line provided according to an embodiment of the present application
  • Figure 21 shows another structural schematic diagram of the cooperation between the auxiliary conveying line and the magnetodynamic conveying line of the mixing conveying line according to an embodiment of the present application
  • Figure 22 shows a schematic structural diagram of the friction transmission structure (including two synchronous pulleys) of the mixing conveyor line provided according to an embodiment of the present application;
  • Figure 23 shows a schematic structural diagram of the friction transmission structure (including multiple synchronous pulleys) of the mixing conveyor line provided according to an embodiment of the present application;
  • Figure 24 shows a schematic structural diagram of a mover of a mixing conveyor line provided according to an embodiment of the present application
  • Figure 25 shows a simplified structural schematic diagram of the cooperation between the mover and the friction transmission structure of the mixing conveyor line according to an embodiment of the present application
  • Figure 26 shows another structural schematic diagram of the cooperation between the auxiliary conveying line and the magnetic power conveying line of the mixing conveying line according to an embodiment of the present application
  • Figure 27 shows a schematic structural diagram of the auxiliary conveying line and the magnetic power conveying line of the mixing conveying line provided according to an embodiment of the present application being located on the same horizontal installation table;
  • Figure 28 shows a schematic structural diagram of a connecting component of a mixing conveyor line provided according to an embodiment of the present application
  • Figure 29 shows a schematic structural diagram of the auxiliary conveyor line and the magnetic power conveyor line of the mixing conveyor line provided according to an embodiment of the present application being located on the same vertical installation table;
  • Figure 30 shows a schematic structural diagram of a hybrid conveyor line (the conveyor section includes an auxiliary conveyor line and a magnetodynamic conveyor line) provided according to an embodiment of the present application.
  • some high-precision and high-speed transportation environments generally use magnetic power conveyor lines for transportation, that is, the mover uses magnetic power as the driving force to move on the stator (i.e. guide rail), but the installation cost of the magnetic power conveyor line Also higher.
  • Some sections of the transmission line only need to have a conveying function, but have low requirements for conveying accuracy and speed. If the magnetic power conveyor line is also used for transportation (especially in long straight conveyance sections that do not require accuracy or speed), Then the overall purchase cost of the transmission line will be relatively high.
  • This application proposes a mover 43, which can be applied to at least the magnetic power transmission line 41 and the mixing transmission line 40.
  • the mover 43 is movably installed on the magnetic transmission line 41.
  • the power transmission line 41 or the mixing transmission line 40 , the magnetic power transmission line 41 includes a first armature winding 411 , and the mixing transmission line 40 includes a first driving mechanism 421 .
  • the magnetic power transmission line 41 can be a magnetic power transmission line 41 formed by splicing multiple stators.
  • the first armature winding 411 and the mover 43 drive the mover 43 to move by current excitation; the hybrid transmission line 40 can be
  • the mover 43 is driven to move by two or more types of power.
  • the embodiment of the present application does not limit the specific structure of the mixing conveyor line 40.
  • the mixing conveyor line 40 can cooperate with other transmission methods through magnetic power, such as magnetic power and friction transmission, magnetic power and fixed contact transmission.
  • the mixed conveyor line 40 can be driven by magnetic force, but the mixed conveyor line 40 can use different magnetic drive methods to push the mover 43 to move, such as through current excitation and traveling wave magnetic field. Act jointly or independently.
  • the mover 43 includes a mover body 10 and a driven assembly 20.
  • the mover body 10 includes a first permanent magnet array 11.
  • the first permanent magnet array 11 includes two first permanent magnets arranged at opposite intervals. 111.
  • the two first permanent magnets 111 and the first armature winding 411 drive the mover body 10 to move along the magnetic power transmission line 41 in the form of current excitation;
  • the driven component 20 is connected to the mover body 10, and the driven component 20 is used for It is transmission connected with the first driving mechanism 421 and drives the mover body 10 to move along the magnetic power transmission line 41 or the mixing transmission line 40 .
  • the first armature winding 411 on the magnetic power transmission line 41, by energizing the first armature winding 411, the first armature winding 411 generates a changing magnetic field, and the first permanent magnet array 11 of the mover body 10 and the first armature winding 411 The generated magnetic field interacts to generate a driving force, thereby pushing the entire mover 43 to move along the extension direction of the magnetic power transmission line 41; on the mixing conveyor line 40, the driven component 20 of the mover 43 can be driven by the first driving mechanism 421 , thereby pushing the entire mover 43 to move along the extension direction of the mixing conveyor line 40 .
  • the embodiment of the present application does not specifically limit the number of the first permanent magnet arrays 11.
  • the number of the first permanent magnet arrays 11 may be one pair or multiple pairs.
  • the embodiment of the present application does not limit the specific structure of the first driving mechanism 421.
  • the specific transmission method of the driven component 20 and the first driving mechanism 421 will be introduced in detail below.
  • the driven component 20 is provided so that the mover 43 can be applied in different transmission line types.
  • the mover 43 in the embodiment of the present application can also be transmitted on the mixing conveying line 40 in other transmission ways through the driven assembly 20 and the first driving mechanism 421 .
  • the arrangement of the driven component 20 makes the transmission mode of the mover 43 have diversified characteristics.
  • the arrangement of the driven component 20 can make the mover 43 suitable for different conveying lines, increasing the efficiency of the mover 43. Universality; on the other hand, the universality of the driven component 20 can reduce the overall installation cost of the conveyor line.
  • the driven component 20 is driven by the first driving mechanism 421 to move, so that the driven component 20 can drive the mover body 10 to move; for the mover body 10 , the driven component 20 can be used as the driving component to drive the mover body 10 to move.
  • the mover body 10 can also include a first back plate 14, a connecting plate 16 and a second back plate 15.
  • the first back plate 14, the connecting plate 16 and The second back plates 15 can be connected in sequence, or the first back plate 14, the connecting plate 16 and the second back plate 15 can be integrally formed; the first back plate 14 and the second back plate 15 are relatively spaced apart.
  • the magnets 111 are respectively arranged on the relatively close surfaces of the first back plate 14 and the second back plate 15; there is a placement gap between the two first permanent magnets 111, and the placement gap is used to place the first armature winding 411, that is, when When the mover 43 is arranged in cooperation with the magnetic power transmission line 41, the two first permanent magnets are arranged on both sides of the first armature winding 411; when the first armature winding 411 is energized, the first armature winding 411 changes.
  • the magnetic field, the magnetic field and the first permanent magnet are coupled to each other and generate a relative force to drive the mover body 10 in the magnetic power Movement on conveyor line 41.
  • first back plate 14 and the second back plate 15 can provide a mounting base for the two first permanent magnets 111, thereby preventing the first permanent magnets 111 from being offset and ensuring that the mover 43 is on the magnetic power transmission line 41. Stable operation.
  • the mover body 10 includes a connecting portion 12.
  • the connecting portion 12 is connected to the first permanent magnet array 11 and the driven component 20.
  • the driven component 20 The first permanent magnet array 11 is located on opposite sides of the connecting portion 12 .
  • the first permanent magnet array 11 and the driven component 20 are respectively disposed on opposite sides of the connecting portion 12, the first armature winding 411 that cooperates with the first permanent magnet array 11 and the driven component 20 are arranged on opposite sides of the connecting portion 12 respectively.
  • the first driving mechanism 421 matched with the component 20 should also be provided on opposite sides of the connecting part 12; further, it can be understood that the movement path of the first permanent magnet array 11 driven by the first armature winding 411, The movement path of the driven component 20 driven by the first driving mechanism 421 is relatively non-collinear. That is to say, the arrangement of the driven component 20 will not interfere with the movement of the mover body 10 driven by the first permanent magnet array 11.
  • the driven component 20 can also make the mover 43 move smoothly while ensuring the smooth movement of the mover body 10. Driven by more ways to drive.
  • the mover 43 needs to turn at the arc section 44 of the transmission line. Since the driven component 20 and the first permanent magnet array 11 are disposed on opposite sides of the connecting portion 12, the first permanent magnet array 11 and the driven component 20 have different steering angles/turning radii when turning.
  • the actual working conditions require that the movement form of the mover 43 at the arc section 44 be selected, that is, the mover 43 can be driven by the first permanent magnet array 11 or driven by the driven assembly 20 when turning, according to the requirements of the working conditions.
  • the driven component 20 and the first driving mechanism 421 have a more stable matching structure than the first permanent magnet array 11 and the first armature winding 411 , in the arc section 44 At , the driven component 20 may have a longer motion stroke, or the driven component 20 may have a larger steering angle to ensure the stability of the movement of the mover 43 in the arc section 44; in some embodiments, the driven component 20 may have a longer motion stroke.
  • the component 20 may have a shorter movement stroke, or the driven component 20 may have a smaller steering angle, so that the mover 43 can also have a higher movement speed in the arc section 44; in some embodiments, the mover 43
  • the sub-section 43 only cooperates with one of the first armature winding 411 and the first driving mechanism 421 at the arc section 44, thereby reducing the installation cost of the transmission line body. It can be understood that in some embodiments, if the driven component 20 and the first driving mechanism 421 have lower installation costs than the first permanent magnet array 11 and the first armature winding 411, in the straight line segment Or at the arc section 44, only the driven component 20 may be provided for transmission connection with the first driving mechanism 421, so as to reduce the installation cost of the entire conveyor line.
  • the transmission mode between the driven component 20 and the first driving mechanism 421 is at least one of friction transmission, magnetic adsorption transmission and fixed contact transmission. It can be understood that the driven component 20 and the first driving mechanism 421 can be driven in only the above three transmission modes, or can be combined with each other and driven together.
  • the driven component 20 and the first driving mechanism 421 can be transmitted through various transmission methods, so that the mover 43 can be applied in different transmission line types.
  • the first driving mechanism 421 may include a motor and a synchronous belt, and the driven component 20 may be provided with a friction block 221 , the motor is used to drive the synchronous belt to move, and the friction block 221 on the driven component 20 is frictionally matched with the synchronous belt, so that the movement of the synchronous belt can drive the friction block 221 to move, and then drive the mover 43 to move.
  • the driven component 20 can be provided with a permanent magnet
  • the first driving mechanism 421 can include a traveling wave magnetic field.
  • the magnets are coupled to the peaks of the traveling magnetic field.
  • the movement of the peaks of the traveling magnetic field can generate electromagnetic thrust to drive the permanent magnets on the driven component 20 to move, driving the driven component 20 and the mover body 10 to move; or, the first driving mechanism 421 may also include a three-phase AC coil.
  • the three-phase AC coil is energized and coupled with the permanent magnet under current excitation to generate driving force, thereby driving the driven component 20 and the mover body 10 to move.
  • the first driving mechanism 421 may include a rotating disk and a conveying block.
  • the plurality of conveying blocks are arranged in rotational symmetry about the axis of the rotating disk, and the rotating disk is The shaft rotates, thereby driving the movement of the conveyor block; the driven component 20 is provided with a shift fork.
  • the shift fork moves to the friction plate
  • the rotation of the friction disk causes the conveyor block to abut and cooperate with the shift fork, and the shift fork follows the movement of the conveyor block. Rotation moves, thereby driving the mover 43 to move.
  • the first driving mechanism 421 may include a motor and a rack, and the driven component 20 may be provided with tooth slots or gears, and the motor is used to drive The rack moves, and the tooth grooves or gears on the driven component 20 cooperate with the rack, so that the rack can drive the mover 43 to move; alternatively, the first driving mechanism 421 can also include a motor and a slot.
  • a buckle can be provided, and the buckle is inserted into the card slot, and the motor drives the card slot to move, thereby causing the driven component 20 and the mover body 10 to move.
  • the transmission mode between the driven component 20 and the first driving mechanism 421 is friction transmission.
  • the driven component 20 includes a fixed structure 21, a friction structure 22 and a tensioning structure 23.
  • the fixed structure 21 is connected to the mover body 10; the friction structure 22 is used to contact the first driving mechanism 421 and generate friction resistance; the tensioning structure 23 Located between the fixed structure 21 and the friction structure 22 , the tensioning structure 23 connects the fixed structure 21 and the friction structure 22 , and is used to press the friction structure 22 against the first driving mechanism 421 .
  • the tensioning structure 23 between the fixed structure 21 and the friction structure 22 is in a compressed state, and the tensioning structure 23 is between the fixed structure 21 and the friction structure. Elastic force is generated between 22 so that the friction structure 22 can more closely contact the first driving mechanism 421, And when the first driving mechanism 421 moves, friction resistance is generated between the friction structure 22 and the first driving mechanism 421 , so that the first driving mechanism 421 can drive the driven assembly 20 and the mover body 10 on the mixing conveyor line 40 move.
  • the fixed structure 21 is fixedly connected to the mover body 10, so that when the driven component 20 drives the mover 43 to move, the positional relationship between the driven component 20 and the mover body 10 is more stable.
  • the embodiment of the present application does not limit the connection method between the fixed structure 21 and the mover body 10.
  • the specific connection method between the fixed structure 21 and the mover body 10 includes but is not limited to screw connection, snap connection or integrated molding. wait.
  • the friction structure 22 includes a friction block 221 and a fixed block 222.
  • the friction block 221 is used to abut against the first driving mechanism 421 and generate friction resistance;
  • the fixed block 222 is fixedly connected to the friction block 221, and the positive projection of the fixed block 222 on the friction block 221 covers the friction block 221, and the friction block 221 is arranged on the surface of the fixed block 222 away from the tensioning structure 23.
  • the friction block 221 may be made of at least one of rubber or resin, or the friction block 221 may be made of a mixed material of rubber and resin. Furthermore, the rubber material and the resin material have a high friction coefficient, thereby allowing the friction block 221 and the first driving mechanism 421 to have a more stable friction transmission; and the rubber material and the resin material have good elasticity and shock absorption. This allows the friction block 221 to have a longer service life.
  • the friction block 221 has a friction surface 2211 in contact with the first driving mechanism 421 , and the connection between the friction surface 2211 and its peripheral surface can be set as an arc surface to prevent the friction structure 22 from damaging the first driving mechanism 421 due to scratching.
  • the fixed block 222 is fixedly connected to the friction block 221 to provide a foundation for the friction block 221 .
  • the embodiment of the present application does not limit the connection method between the fixed block 222 and the friction block 221.
  • the connection method can be at least one of screw connection, glue connection, and snap connection.
  • the front end of the friction block 221 along the moving direction is first frictionally connected with the first driving mechanism 421, and the friction block 221
  • the rear end along the moving direction is frictionally connected with the first driving mechanism 421; in the embodiment of the present application, the orthographic projection of the fixed block 222 on the friction block 221 covers the friction block 221, so that the friction block 221 is in friction with the first driving mechanism 421.
  • the fixed block 222 When in contact, the fixed block 222 can completely cover the friction block 221, so that the elastic force of the friction block 221 can be more evenly distributed on the fixed block 222, preventing the friction block 221 from deforming during long-term use, and further extending the use of the friction block 221. life.
  • the mover 43 needs to turn at the arc section 44 of the transmission line. Since the friction block 221 is spaced apart from the first permanent magnet array 11 , the friction block 221 and the first permanent magnet array 11 have different steering angles/steering radii when turning, and the mover 43 can be selected according to actual working conditions.
  • the motion pattern at arc segment 44 That is, according to the requirements of the working conditions, the mover 43 can be driven by using the first permanent magnet array 11 or using the friction block 221 when turning.
  • the driving method of selecting the first permanent magnet array 11 to drive or using the friction block 221 at the arc segment 44 is the same as the selection of the first permanent magnet array 11 to drive or using the driven component 20 at the arc segment 44 as mentioned above.
  • the drive selection and driving methods are the same and will not be described in detail in this embodiment.
  • the tensioning structure 23 includes a guide rod 231 and an elastic member 232 .
  • One end of the guide rod 231 is movably connected to the fixed structure 21, and the other end of the guide rod 231 is fixedly connected to the fixed block 222; the elastic member 232 is sleeved on the guide rod 231, and one end of the elastic member 232 is in contact with the fixed block. The other end is in contact with the fixed structure 21 .
  • the embodiment of the present application does not limit the specific type of the elastic member 232.
  • the elastic member 232 may be an elastic piece, a spring or a spring tube.
  • the fixed structure 21 is provided with a guide hole for the guide rod 231 to pass through, and the guide rod 231 can move in the guide hole along the expansion and contraction direction of the elastic member 232 .
  • the guide rod 231 can move relatively in the guide hole.
  • the friction block 221 is frictionally driven with the first driving mechanism 421
  • the spring generates compression deformation, pressing the friction structure 22 against the The first driving mechanism 421.
  • the embodiment of the present application provides a guide rod 231 between the fixed structure 21 and the friction structure 22, and the spring is sleeved on the guide rod 231, so that the spring can only move along the guide rod.
  • the guide rod 231 telescopically moves in the axial direction to prevent the spring from shifting in other directions.
  • the guide rod 231 moves relative to the fixed structure 21, the spring is further compressed, and the elastic force of the spring is applied to the fixed structure 21 and the fixed block 222 to tighten the spring.
  • the friction block 221 is pressed against the first driving mechanism 421 .
  • the embodiment of the present application does not limit the material of the guide rod 231.
  • the guide rod 231 can be made of metal, wood, or hard plastic.
  • the driven component 20 includes two groups.
  • the two groups of driven components 20 are located on opposite sides of the mover body 10. Two relatively spaced apart first permanent magnets 111 are located in the two groups. between driven components 20.
  • the embodiment of the present application does not limit the specific transmission methods of the two groups of driven components 20.
  • the two groups of driven components 20 can have the same transmission method or different transmission methods, and the transmission methods of the two groups of driven components 20 should be It is at least one of friction transmission, magnetic adsorption transmission and fixed contact transmission. Further, when the transmission modes of the two sets of driven assemblies 20 are the same, the two sets of driven assemblies 20 may have the same arrangement structure or different arrangement structures.
  • the friction blocks 221 in one set of driven components 20 can be made of rubber, and the friction blocks 221 in another set of driven components 20 can be made of resin; for another example, when two sets of driven components
  • one group of driven components 20 can be transmission connected with the first driving mechanism 421 through the traveling wave magnetic field, and the other group of driven components 20 can be connected with the third driving mechanism 421 through the three-phase armature winding.
  • a driving mechanism 421 is connected in transmission.
  • both sets of driven components 20 are located on opposite sides of the mover body 10, which can make the mover 43 more stable during operation. At the same time, both sets of driven components 20 can be connected to the first driving mechanism 421 in a transmission manner. Compared with one group of driven components 20 , the mover 43 having two groups of driven components 20 is equivalent to the mover 43 having two driving forces, so that the transport efficiency of the mover 43 is higher.
  • the driven component 20 disposed on one side of the mover body 10 is called the first driven component 25.
  • the driven component 20 on the other side of the mover body 10 is called the second driven component 26; that is, the first driven component 25 is spaced apart from the first permanent magnet array 11, and the second driven component 26 is spaced apart from the first permanent magnet array 11.
  • the driven component 25 and the first permanent magnet array 11 are arranged at intervals.
  • the movement form of the mover 43 at the arc section 44 is to choose according to the requirements of the working conditions to use the first permanent magnet array 11 to drive the mover 43 when turning, or to use the first driven component 25 to drive, or to use The second driven assembly 26 drives.
  • the movement form selection method of the first driven component 25 at the arc section 44 in the embodiment of the present application is the same as the movement of the driven component 20 at the arc section 44 (as shown in Figure 14).
  • the form selection method is the same; the movement form selection method of the second driven component 26 at the arc section 44 in the embodiment of the present application is the same as the movement form selection method of the driven component 20 at the arc section 44 mentioned above, where No longer.
  • driven assemblies 20 are respectively provided on opposite sides of the mover body 10 .
  • sliding grooves can also be provided on both sides of the mover body 10 .
  • 171 of the sliding block 17 the sliding groove 171 on the sliding block 17 can cooperate with the third guide rail 46 (shown in Figure 1) on the transmission line, thereby guiding the mover 43 to move along the extension direction of the transmission line, and the mover 43 can pass through
  • the sliding groove 171 is installed on the third guide rail 46 of the transmission line, so that the sliding block 17 functions to support the mover 43 .
  • the mover 43 further includes a first sliding component 31 and a second sliding component 32 .
  • the first sliding component 31 is disposed on the mover body 10 , and the first sliding component 31 is used to be movably installed on the magnetic power transmission line 41 ;
  • the second sliding component 32 is disposed on the driven component 20 , and is connected with the first sliding component 31 Disposed at intervals, the second sliding assembly 32 is used to be movably mounted on the mixing conveyor line 40 .
  • the mixing conveyor line 40 or the magnetic power conveyor line 41 may include a third guide rail 46 , and the first sliding component 31 and the second sliding component 32 may cooperate with the third guide rail 46 at different positions and move along the third guide rail 46 to provide the mover 43 The movement plays a guiding role.
  • the mover 43 needs to turn at the arc section 44 of the transmission line. Since the first sliding component 31 and the second sliding component 32 directly cooperate with the guide rail, and the first sliding component 31 and the second sliding component 32 are disposed on both sides of the first permanent magnet array 11, the first sliding component 31 and the second sliding component 32 are arranged on both sides of the first permanent magnet array 11.
  • the second sliding assembly 32 has different The steering angle/steering radius can be selected according to the actual working conditions.
  • the movement form of the mover 43 at the arc section 44 can be selected according to the requirements of the working conditions.
  • the mover 43 can be selected to use the first sliding component 31 to move or move when turning.
  • the selection of the first sliding component 32 and/or the second sliding component 32 is the same as the selection method of selecting the mover 43 to drive using the first permanent magnet array 11 or using the driven component 20 when turning, and will not be described again here.
  • the embodiment of the present application does not limit the specific types of the first sliding component 31 and the second sliding component 32.
  • the first sliding component 31 may have the same arrangement structure or different arrangement structures.
  • the first sliding component 31 and/or the second sliding component 32 may include a sliding block with a sliding groove.
  • the sliding groove is used to accommodate the third guide rail 46 .
  • the mover 43 moves, it can drive the sliding block.
  • the block moves along the third guide rail 46; as another example, as shown in Figure 7, the first sliding component 31 and/or the second sliding component 32 may include sliding rollers for rolling along the third guide rail 46, and the mover 43 can drive the sliding roller to roll along the third guide rail 46 when moving.
  • first sliding component 31 and/or the second sliding component 32 can also include a sliding block with a slide groove and a sliding roller.
  • the mover 43 When moving, the slider moves along the third guide rail 46, and the sliding roller rolls along the third guide rail 46; for another example, the first sliding component 31 and/or the second sliding component 32 may include a slider with balls, and a mover. When 43 moves, the ball can be driven to roll on the third guide rail 46 to drive the slider to move along the third guide rail 46 .
  • the mover 43 includes a first sliding component 31.
  • the first sliding component 31 is provided on the mover body 10 and is used to be movably installed on the magnetic power transmission line 41, and the first sliding component 31 is connected with the slave.
  • the moving components are set at 20 intervals.
  • the first sliding component 31 in the embodiment of the present application is the same as the first sliding component 31 above, and will not be described again here.
  • the first permanent magnet array 11 on the mover body 10 interacts with the first armature winding 411 in a current excitation manner, and the first sliding component 31 on the mover body 10
  • the interaction force ie, magnetic drive
  • the driven component 20 is transmission connected with the first driving mechanism 421, and drives the mover 43 to move along the guide rail with the driving of the first driving mechanism 421.
  • the mover 43 needs to turn at the arc section 44 of the transmission line.
  • the first sliding component 31 and the driven component 20 are spaced apart, the first sliding component 31 and the driven component 20 have different steering angles/turning radii when turning, and the mover 43 can be selected according to actual working conditions.
  • the movement form at the arc section 44 is to select whether the mover 43 is driven through the first sliding component 31 or driven through the driven component 20 during turning according to the requirements of the working conditions.
  • the selection method of driving via the first sliding component 31 or driving via the driven component 20 is the same as the selection method mentioned above for selecting the mover 43 to be driven by the first permanent magnet array 11 or driven by the driven component 20 when turning. This is No further details will be given.
  • the first driving mechanism 421 includes a second armature winding (not shown in the figures)
  • the driven component 20 includes a second permanent magnet array 24
  • the second permanent magnet array 24 includes at least one second permanent magnet 241
  • the second permanent magnet 241 and the second armature winding drive the mover body 10 to move along the magnetic power transmission line 41 or the hybrid transmission line 40 by current excitation.
  • the second permanent magnet array 24 in the driven component 20 is coupled with the second armature winding in the first driving mechanism 421 , thereby driving the mover body 10 to move along the magnetic power transmission line 41 or the mixing transmission line 40 .
  • the number of second permanent magnets 241 may be one or more.
  • the movement of the peak of the traveling wave magnetic field can generate electromagnetic thrust to drive the movement of the second permanent magnet array 24 and drive the driven component 20 and the mover body.
  • the mover 43 also includes a distance sensing device (not shown in the figure), the distance sensing device is connected to the mover body 10 , and the distance sensing device is connected to the magnetic power transmission line 41 or The mixing conveyor line 40 is used to detect the moving position of the mover 43 .
  • the distance sensing device can detect the movement position of the mover 43 , thereby calculating the movement speed of the mover 43 based on the movement time of the mover 43 and the movement distance of the mover 43 .
  • the embodiment of the present application places no specific restrictions on the type of the position sensing device and the location of the position sensing device.
  • a reflective strip is provided on the magnetodynamic conveyor line 41 or the mixed conveyor line 40, and the distance sensor is an infrared sensor.
  • the infrared sensor can emit infrared rays and learn the initial position of the mover 43 at this time through the infrared rays reflected by the reflective strips.
  • the moving distance of the mover 43 can be obtained through the infrared sensor; for another example, the distance sensor is an ultrasonic sensor, and the ultrasonic sensor emits ultrasonic waves, and the initial position of the mover 43 at this time is known through the ultrasonic waves reflected by the reflective strips. position, after the mover 43 moves a certain distance, the movement distance of the mover 43 can be obtained through the ultrasonic sensor.
  • This application provides a mover and a mixed conveyor line to solve the problem that in a mixed conveyor line driven by magnetic power, when the mover is required to bear a larger load, the mover often needs to be replaced to adapt to different loads. .
  • the mover 43 includes a mover body 10 and a first magnet group 1111.
  • the mover body 10 has a receiving groove 13.
  • the receiving groove 13 extends along the first preset direction AA to penetrate both ends of the mover body 10, and the receiving groove 13 extends along the second preset direction BB to accommodate the movement of the mover body.
  • a slot 131 is formed on one side of 10 for the first armature winding 411 to enter and exit the receiving slot 13.
  • the second preset direction BB is perpendicular to the first preset direction AA;
  • the receiving slot 13 includes a first slot wall 132, a second slot
  • the first groove wall 132 and the second groove wall 133 are respectively located on both sides of the third groove wall 134;
  • the steel group 1111 is provided on the first slot wall 132.
  • the first magnet steel group 1111 includes at least one magnet module arranged along the first preset direction AA.
  • the magnet module is detachably connected to the mover body 10.
  • the magnet module includes A plurality of sub-magnets arranged along the first preset direction AA.
  • the mover 43 is used to carry the object to be transported, and the mover 43 is a magnetodynamic mover 43. See Figure 18. During operation, the mover 43 can be placed on the magnetodynamic conveying line 41. Taking FIG. 18 as an example, the first preset direction AA is parallel to the length extension direction of the magnetic power transmission line 41 , and the second preset direction BB is parallel to the width extension direction of the magnetopower transmission line 41 .
  • the magnetic power transmission line 41 has a first armature winding 411.
  • the first armature winding 411 is inserted into the receiving slot 13 through the slot 131 along the second preset direction BB.
  • the first armature winding 411 has a coil (not shown in the figure). ), the coil will generate a magnetic field when energized, and the first magnet group 1111 of the mover 43 will generate driving force under the current excitation of the coil, pushing the entire mover 43 to move along the extension direction of the first armature winding 411, thereby achieving
  • the specific working principle of the transport of objects to be transported; the magnetic power conveying line 41 has long been published in the relevant technology, and will not be described in detail in this application.
  • the magnet module is detachably disposed on the first slot wall 132, and the magnetic force of the first magnet group 1111 is changed by changing the number of magnet modules in the first magnet group 1111.
  • the magnetic force of the first magnet steel group 1111 can be increased only by increasing the number of magnet modules, thereby increasing the load-carrying capacity of the mover 43 without the need to replace the mover 43 to adapt to different conditions. of load.
  • the magnet module can be detachably connected to the mover body 10 through threaded connection, snap connection, glue connection and other connection methods; the number of magnet modules in the first magnet group 1111 can be 1, 2 or More, the number of magnet modules can be selected according to the load capacity requirement of the mover 43.
  • multiple sub-magnets in the magnet module are arranged into a Halbach Array.
  • the Halbach array is a magnet structure that can use a small number of sub-magnets to generate a stronger magnetic field.
  • the Halbach array can converge the magnetic field lines on one side of the magnet and weaken the magnetic field lines on the other side of the magnet, thereby making the
  • the intensity of the magnetic field generated by the magnet module is enhanced to obtain a more ideal unilateral magnetic field; the specific principle of the Halbach array has long been disclosed in the relevant technology, and this application does not Make redundant remarks.
  • the side of the Halbach array with denser magnetic field lines should be placed closer to the coil to further enable the mover 43 to obtain greater driving force.
  • the magnet module also includes a mounting bracket 1113.
  • the mounting bracket 1113 is detachably connected to the mover body 10.
  • the mounting bracket 1113 is detachably connected to the mover body 10.
  • the connection method includes but is not limited to at least one of screw connection, glue connection, and snap connection. It can be understood that the sub-magnets in the magnet module are installed on the mounting bracket 1113 to facilitate the installation of the sub-magnets on the mover body 10 and to ensure that the sub-magnets installed on the mover body 10 are in the first preset direction.
  • the arrangement on AA is more orderly, so that the magnet module has a more uniform and stable magnetic field; the sub-magnets can be fixed on the mounting bracket 1113 to prevent the neutrons from moving during the movement of the mover 43 The magnet falls from the mounting bracket 1113.
  • the sub-magnet can also be detachably connected to the mounting bracket 1113.
  • the sub-magnets are powerful magnets and have strong magnetism.
  • the mounting bracket 1113 can be made of a material that is difficult to be magnetized.
  • the mounting frame 1113 can be made of materials such as stainless steel, aluminum, copper, etc., and can also isolate strong magnets on the basis of ensuring stable installation of the sub-magnets.
  • the embodiment of the present application does not limit the arrangement of the sub-magnets provided on the mounting bracket 1113.
  • the mounting bracket 1113 is provided with mounting slots 11131 that correspond to the sub-magnets one by one. Two adjacent sub-magnets are spaced apart and installed in the corresponding mounting slots 11131.
  • the mounting slots 11131 can prevent the sub-magnets from moving, and at the same time can provide space for the sub-magnets.
  • the magnet provides installation positioning; alternatively, the mounting bracket 1113 is provided with a mounting slot 11131, and two adjacent sub-magnets are adjacent and arranged in the mounting slot 11131.
  • the magnet module includes a first sub-magnet 1114, a second sub-magnet 1115, a third sub-magnet 1116 and a fourth sub-magnet arranged along the first preset direction AA. 1117. It can be understood that when the number of sub-magnets in the magnet module is too small, the magnetic force of each magnet module is small. When the magnetic force of the mover 43 needs to be increased, more magnet modules need to be loaded, which will increase the work intensity. In addition, when the number of sub-magnets in the magnet module is too small, it is difficult to arrange the sub-magnets in the magnet module to form a Halbach array.
  • the first sub-magnet 1114, the second sub-magnet 1115, the third sub-magnet 1116 and the fourth sub-magnet 1117 are ordinary magnets/strong magnets, and the first sub-magnet 1114, the second sub-magnet 1115, The arrangement of the third sub-magnet 1116 and the fourth sub-magnet 1117 may be NSNS or SNSN.
  • the magnetization direction of the first sub-magnet 1114 is along the third preset direction X, and the third preset direction X is perpendicular to the first preset direction AA and the second preset direction BB;
  • the magnetization direction of the second sub-magnet 1115 is along the fourth preset direction Y, and the fourth preset direction Y is parallel to the first preset direction AA;
  • the magnetization direction of the third sub-magnet 1116 is along the fifth preset direction -X, and the fifth preset direction -X is opposite to the third preset direction X;
  • the magnetization direction of the fourth sub-magnet 1117 is along the sixth preset direction -Y, and the sixth preset direction -Y is opposite to the fourth preset direction Y.
  • first sub-magnet 1114, the second sub-magnet 1115, the third sub-magnet 1116 and the fourth sub-magnet 1117 are typically arranged in a Halbeck array, where the first sub-magnet 1114 and the third sub-magnet 1116 is the main magnet, and the second sub-magnet 1115 and the fourth sub-magnet 1117 are auxiliary magnets; or the first sub-magnet 1114 and the third sub-magnet 1116 are both ordinary magnets/powerful magnets, and the second sub-magnet 1115 and the fourth sub-magnet are The magnets 1117 are both Halbach magnets, and the second sub-magnet 1115 and the fourth sub-magnet 1117 can at least affect the first sub-magnet.
  • the magnetic field arrangement of the body 1114 and the third sub-magnet 1116 causes the magnet module to have denser magnetic lines of force on the side close to the first armature winding 411 .
  • the third preset direction X as the direction in which the first sub-magnet 1114 points to the first armature winding 411 when the first armature winding 411 is inserted into the receiving slot 13 as an example
  • the first sub-magnet 1114 is close to the first armature winding 411
  • the magnetic pole on one side is N pole
  • the magnetic pole on the side of the third sub-magnet 1116 close to the first armature winding 411 is S pole.
  • the first magnet group 1111 includes multiple magnet modules, and the multiple magnet modules in the first magnet group 1111 are arranged along the first preset direction AA. , and multiple magnet modules are detachably connected to the mover body 10 respectively. It can be understood that the connection between each magnet module and the mover body 10 is independent, that is, each magnet module can be disassembled and assembled from the mover body 10 independently.
  • the plurality of magnet modules of the first magnet group 1111 include at least one first magnet module 1118 or/and at least one second magnet module 1119.
  • the first sub-magnet 1114, the second sub-magnet 1115, the third sub-magnet 1116 and the fourth sub-magnet 1117 in the first magnet module 1118 are arranged in sequence along the first preset direction AA; the second magnet module 1119
  • the second sub-magnet 1115, the first sub-magnet 1114, the fourth sub-magnet 1117 and the third sub-magnet 1116 are all arranged in sequence along the first preset direction AA.
  • the number of the first magnet modules 1118 may be 1, 2 or more;
  • the number of the second magnet modules 1119 can be 1, 2 or more; with the first sub-magnet 1114 close to the first armature
  • the magnetic pole on one side of the winding 411 is N pole, and the magnetic pole on the side of the third sub-magnet 1116 close to the first armature winding 411 is S pole, and H refers to the second sub-magnet 1115 and the fourth sub-magnet 1117 as an example.
  • the arrangement of the neutron magnets in the first magnet module 1118 is NHSH
  • the arrangement of the neutron magnets in the second magnet module 1119 is HNHS, so that the sub-magnets in the first magnet module 1118 and the second magnet module 1119 can be arranged into a Halbach array; in addition, the first magnet module 1118 and the second magnet module 1119 can also be combined with each other, thereby increasing the structural diversity of the first magnet steel group 1111 in the mover 43; by changing the first The number of magnet modules 1118 and/or the second magnet modules 1119 is provided to change the load-bearing range of the mover 43 .
  • the first magnet module 1118 and the second magnet module 1119 can be arranged closely in sequence, and the first magnet module 1118 and the second magnet module 1119 can also be spaced apart from each other.
  • the multiple first magnet modules 1118 or/ and multiple second magnet modules 1119 can be arranged continuously.
  • the arrangement of the multiple first magnet modules 1118 can be NHSH ⁇ NHSH
  • the arrangement of the multiple first magnet modules 1118 can be HNHS ⁇ HNHS. .
  • first magnet modules 1118 and the second magnet modules 1119 may also be arranged alternately, for example, the arrangement may be NHSH ⁇ HNHS ⁇ NHSH.
  • the magnetization direction of the sub-magnet located at the first end of the first magnetic steel group 1111 is along the third preset direction X
  • the magnetization direction of the sub-magnet located at the second end of the first magnetic steel group 1111 is along the fifth preset direction -X, so that the two sub-magnets located at the two ends of the first magnetic steel group 1111 have the N pole and the S pole on the side close to the first armature winding 411, respectively, to form a closed loop of magnetic flux lines.
  • the magnetization direction of the sub-magnet located at the first end of the first magnet group 1111 is along the fourth In the preset direction Y
  • the magnetization direction of the sub-magnet located at the second end of the first magnet module 1118 is along the sixth preset direction -Y. That is, along the first preset direction AA, the magnetic poles at both ends of the first magnet group 1111 are N poles and S poles respectively, so as to form a closed loop of magnetic flux lines.
  • the mover 43 also includes a second magnetic steel group 1112, the second magnetic steel group 1112 is arranged on the second slot wall 133, the second magnetic steel group 1112 is arranged opposite to and spaced from the first magnetic steel group 1111; the second magnetic steel group 1112 includes at least one magnet module, the sub-magnets in the second magnetic steel group 1112 correspond one-to-one to the sub-magnets in the first magnetic steel group 1111, and the magnetization direction of the sub-magnets in the second magnetic steel group 1112 is the same as the magnetization direction of the corresponding sub-magnets in the first magnetic steel group 1111.
  • the first armature winding 411 when the first armature winding 411 is inserted into the receiving slot 13, the first armature winding 411 is located between the first magnet group 1111 and the second magnet group 1112. Two rows of oppositely arranged sub-magnet arrays are provided on each side. On the basis that the volume of the mover 43 remains unchanged, the magnetic force of the mover 43 can be further enhanced.
  • a side of the first magnetic steel group 1111 close to the second magnetic steel group 1112 obtains an enhanced magnetic field
  • a side of the second magnetic steel group 1112 close to the first magnetic steel group 1111 obtains an enhanced magnetic field.
  • the side of the first magnetic steel group 1111 close to the second magnetic steel group 1112 is the side of the first magnetic steel group 1111 facing the first armature winding 411
  • the side of the second magnetic steel group 1112 close to the first magnetic steel group 1111 is the side of the second magnetic steel group 1112 facing the first armature winding 411.
  • the Halbach array has a single-sided magnetic density characteristic (i.e., magnetic field enhancement).
  • the side of the first magnetic steel group 1111 that obtains the magnetic field enhancement is set to the side of the first magnetic steel group 1111 facing the first armature winding 411
  • the side of the second magnetic steel group 1112 that obtains the magnetic field enhancement is set to the side of the second magnetic steel group 1112 facing the first armature winding 411.
  • This application proposes a hybrid conveyor line 40, which includes a magnetodynamic conveyor line 41, an auxiliary conveyor line 42, and a mover 43 as in any of the above embodiments.
  • the mover 43 can It is movably installed on the magnetic power transmission line 41 or the auxiliary transmission line 42.
  • the magnetic power transmission line 41 includes a first armature winding 411 and a first guide rail 412.
  • the first permanent magnet array 11 cooperates with the first armature winding 411 to drive the motor.
  • the sub 43 moves along the first guide rail 412 moving;
  • the auxiliary conveying line 42 includes a first driving mechanism 421 and a second guide rail 422; the driven component 20 cooperates with the first driving mechanism 421 to drive the mover 43 to move along the second guide rail 422.
  • the driven component 20 is provided on the mover 43 so that the mover 43 can be used in different transmission line types, especially for those that require lower conveying accuracy and no conveying speed.
  • the transmission line section can be replaced with a hybrid transmission line 40 to reduce the overall transmission line installation cost.
  • the extension direction of the magnetic power transmission line 41 may be the same as the extension direction of the auxiliary transmission line 42 , or the extension direction of the magnetic power transmission line 41 may be different from the extension direction of the auxiliary transmission line 42 .
  • the mover 43 may include a sliding component that cooperates with the first guide rail 412 or the second guide rail 422, and the sliding component is used to move along the first guide rail 412 or the second guide rail 422.
  • the first guide rail 412 or The second guide rail 422 can be used to guide and limit the moving path of the mover 43 so that the mover 43 can move along the extension direction of the first guide rail 412 or the second guide rail 422 to avoid negative situations such as derailment of the mover 43 during operation. .
  • each mover 43 includes a buffer 33 (as shown in Figure 5), and the multiple movers 43 are installed on magnetic
  • the buffer members 33 are correspondingly disposed on opposite sides of the mover body 10.
  • each mover 43 moves independently relative to all other movers 43 .
  • the buffer members 33 of two adjacent movers 43 provided in this embodiment contact first, and the buffer members 33 can first deform to absorb the impact. energy to slow down the impact force to protect the safety of the mover 43 and the materials being transported on the mover 43.
  • the buffer member 33 may be made of elastic and tough materials, such as rubber, resin or plastic.
  • the mixing conveyor line 40 has at least one arc section 44. At the arc section 44, the first guide rail 412 and the second guide rail 422 are arranged non-collinearly. .
  • the mover 43 when the mover 43 moves on the mixing conveying line 40 and the mixing conveying line 40 has an arc section 44, the mover 43 needs to turn at the arc section 44 of the conveying line. Since the first guide rail 412 and the second guide rail 422 are arranged non-collinearly, the first guide rail 412 and the second guide rail 422 have different steering angles/turning radii when turning, and the mover 43 can be selected according to actual working conditions. The movement form at the arc section 44 is to select whether the mover 43 is guided through the first guide rail 412 or through the second guide rail 422 when turning according to the requirements of the working conditions.
  • the driven component 20 and the first driving mechanism 421 that is, the mover 43 moves on the second guide rail 422 are compared with the first permanent magnet array 11 and the first armature winding, 411 (that is, the mover 43 moves on the first guide rail 412) has a more stable matching structure.
  • the second guide rail 422 It may have a longer motion stroke, or the second guide rail 422 may have a larger steering angle to ensure the stability of the movement of the mover 43 in the arc section 44; in some embodiments, the second guide rail 422 may have a shorter movement stroke, or the second guide rail 422 can have a smaller steering angle, so that the mover 43 can also have a higher movement speed in the arc section 44; in some embodiments, the mover 43 can have a higher movement speed in the arc section.
  • Position 44 only cooperates with one of the first armature winding 411 and the first driving mechanism 421, that is, the mover 43 only moves on one of the first guide rail 412 and the second guide rail 422, thereby reducing the Transmission line body set-up cost. It can be understood that in some embodiments, if the driven component 20 and the first driving mechanism 421 have lower installation costs than the first permanent magnet array 11 and the first armature winding 411, in a straight line segment or an arc At the shape section 44, only the driven component 20 can be provided for transmission connection with the first driving mechanism 421, so as to reduce the installation cost of the entire conveyor line.
  • magnetic power conveyor lines are increasingly used in the transportation links of product processing and manufacturing to realize the transfer of semi-finished products between different processing stations.
  • the magnetic power conveyor line has the characteristics of fast conveying speed, high positioning accuracy and flexible production cycle (the moving speed of the mover transporting semi-finished products on the magnetic power conveyor line can be set according to the time cycle requirements of the production cycle) and other characteristics in the product transportation link. Its role has been affirmed; however, the cost of magnetic power conveyor lines is high, and the use of magnetic power conveyor lines for the entire production line results in excessively high deployment costs for the production line.
  • An embodiment of the present application provides an auxiliary conveying line 42 and a mixing conveying line 40 .
  • the mixing conveying line 40 includes a magnetodynamic conveying line 41 , an auxiliary conveying line 42 and a mover 43 .
  • the auxiliary conveyor line 42 is used to cooperate with the magnetic power conveyor line 41 and both can drive the mover 43 to move.
  • the deployment cost of the auxiliary conveyor line 42 is low, and the deployment cost of the magnetic power conveyor line 41 is high.
  • the auxiliary conveying line 42 can be used in the reflow process, process links that do not require high positioning accuracy and transmission speed, and the magnetic power conveying line 41 can be used in process links that require high conveying accuracy and transmission speed; and the auxiliary conveying line 42 and the magnetic power conveying
  • the lines 41 can be combined to form a mixing conveyor line 40, ensuring that the production line is flexible and efficient and reducing the deployment cost of the production line.
  • the auxiliary conveyor line 42 may include a second guide rail 422 , a first driving mechanism 421 and a position sensing assembly 423 .
  • the mover 43 may include a slider 34 .
  • the second guide rail 422 is usually along a straight line. Extended, the slide block 34 and the second guide rail 422 form a linear guide rail, the slide block 34 can move along the extension direction of the second guide rail 422, and the second guide rail 422 guides and limits the movement path of the mover 43.
  • This embodiment does not limit the arrangement form of the auxiliary conveying line 42.
  • the auxiliary conveying line 42 can be set as a straight conveying line or a curved conveying line, such as an arc-shaped conveying line.
  • the embodiment of the present application does not limit the specific arrangement structure of the slider 34.
  • the slider 34 can cooperate with the second guide rail 422 in various types of structures to achieve movement on the second guide rail 422.
  • slider 34 may include a strap
  • the slide block of the chute is used to accommodate the second guide rail 422.
  • the slide block 34 can be a sliding roller, and the sliding roller is used to Rolling along the second guide rail 422, when the mover 43 moves, it can drive the sliding roller to roll along the second guide rail 422.
  • the slide block 34 can also include a slide block with a slide groove and a sliding roller at the same time.
  • the slider 34 can be a slider with balls (i.e., a ball slider), and when the mover 43 moves, The balls in the ball slider can be driven to roll on the second guide rail 422 , thereby causing the ball slider to move along the second guide rail 422 .
  • the slider 34 is usually made of quenched and tempered 45 steel.
  • the quenched and tempered 45 steel can increase the wear resistance of the slider 34 and enable the slider 34 to withstand the sliding friction generated by the sliding connection with the second guide rail 422. , thereby improving the service life of the slider 34;
  • the material of the second guide rail 422 is usually bearing steel, carbon steel, stainless steel, etc.
  • the application of such materials can improve the strength, hardness and wear resistance of the second guide rail 422 to improve The service life of the second guide rail 422; further, the second guide rail 422 is usually made by mechanical processing, cold drawing processing, etc., which can increase the tensile strength of the second guide rail 422 to ensure that the slider 34 and the second guide rail 422 sliding connection for smoothness and stability.
  • the first driving mechanism 421 is used to drive the slider 34 to move along the second guide rail 422 (for example, the second guide rail 422 in FIG. 20 extends along a straight line).
  • the first driving mechanism 421 may include a transmission member 4211 and a docking structure. 4214, the transmission member 4211 may include a synchronous pulley 4212, a linear motor, a rotary motor, a screw rod, a rack, etc.
  • the docking structure 4214 may include at least one of a friction transmission structure, a fixed transmission structure, and a magnetic transmission structure, which is not limited in this embodiment.
  • the synchronous pulley 4212 is drivingly connected to the synchronous belt 4215 to drive at least part of the synchronous belt 4215 along the guide To move in the direction S, the synchronous belt 4215 is used to connect the mover 43 so that the mover 43 moves along the second guide rail 422 .
  • the first driving mechanism 421 can include a docking structure 4214 that implements docking with a friction transmission structure.
  • the docking structure 4214 can include a synchronous belt 4215;
  • the transmission member 4211 includes a synchronous pulley 4212 and a support.
  • the direction S is parallel; the synchronous pulley 4212 drives the synchronous belt 4215 to rotate; in some embodiments, the synchronous pulley 4212 can be provided with connecting teeth on the peripheral side, and the synchronous belt 4215 is provided with tooth grooves on the side close to the synchronous pulley 4212.
  • the connecting teeth and the tooth slots are engaged and disengaged, so that the synchronous pulley 4212 drives the synchronous belt 4215 to rotate; at the same time, the synchronous pulley 4212 can be made to rotate by utilizing the engagement and disengagement between the connecting teeth and the tooth slots.
  • the connection with the synchronous belt 4215 is relatively stable to improve the smooth operation of the synchronous belt 4215.
  • the transmission connection between the synchronous pulley 4212 and the synchronous belt 4215 can also be provided with mutually meshing transmission teeth. As the synchronous pulley 4212 rotates, the synchronous belt 4215 is driven to rotate. It should be noted that the transmission connection method of the synchronous belt 4215 and the synchronous pulley 4212 is not limited in this application and can be set according to actual needs.
  • first driving mechanism 421 can be located in the same installation plane as the second guide rail 422 (please refer to Figure 19, the synchronous belt 4215 and the second guide rail 422 are installed on the same horizontal surface), and the synchronous belt 4215 can be located on the second guide rail 422.
  • the timing belt 4215 can also be installed in the same vertical plane as the second guide rail 422 (for example, the timing belt 4215 installed on the same vertical table as the second guide rail 422), the timing belt 4215 is located on the upper or lower side of the second guide rail 422; it should be noted that the position of the timing belt 4215 relative to the second guide rail 422 depends on the structure of the mover 43 , if the spatial position permits, the structure of the mover 43 can be adjusted to determine the positional relationship between the synchronous belt 4215 and the second guide rail 422; this application does not limit the positional relationship between the synchronous belt 4215 and the second guide rail 422. Can be set according to actual needs.
  • multiple synchronous pulleys 4212 may be provided, the multiple synchronous pulleys 4212 are arranged at intervals, and the synchronous belt 4215 is sleeved on the circumferential side of the multiple synchronous pulleys 4212; multiple synchronous pulleys 4212 are arranged at intervals.
  • the synchronous pulleys 4212 located at both ends of the pulley 4212 serve as the driving pulleys and can provide power for the transmission of the synchronous belt 4215, while the synchronous pulleys 4212 located in the middle position serve as the driven pulleys and can provide support for the synchronous belt 4215 to avoid
  • the synchronous belt 4215 deforms due to excessive load, which affects the rotation of the synchronous belt 4215; in some embodiments, the synchronous pulley 4212 located in the middle also serves as a driving wheel (the synchronous pulley 4212 located in the middle is driven by the driving force), which is important for the synchronous belt 4215. On the basis of supporting the belt 4215, it can also provide power for the transmission of the synchronous belt 4215. It should be noted that the spacing between two adjacent ones of the plurality of synchronous pulleys 4212 can be set according to the length of the synchronous belt 4215 .
  • the first driving mechanism 421 may also include a docking structure 4214 that implements docking with a fixed transmission structure.
  • a docking structure 4214 that implements docking with a fixed transmission structure.
  • one of the docking structure 4214 and the mover 43 is provided with a gear, and the other is provided with a rack.
  • the meshing of the gear and the rack drives the mover 43 to move linearly, so that the mover 43 can be driven along the guiding direction S of the second guide rail 422; or, in some embodiments, the first driving mechanism 421 can also include a
  • the belt transmission system realizes the docking of the docking structure 4214 and the belt.
  • the docking structure 4214 can be a plate chain.
  • the plate chain is provided on the belt and can be fixedly connected to the mover 43.
  • the first driving mechanism 421 includes a synchronous belt 4215 and a synchronous pulley 4212.
  • the synchronous belt 4215 has a lever that can be fixedly connected to the shift fork, and the mover 43 has a shift fork.
  • the lever is fixedly connected to the shift fork along with the movement of the synchronous pulley 4212, and then drives the mover 43 to drive along the guiding direction S of the second guide rail 422.
  • the synchronous belt 4215 is used to connect the mover 43 so that the mover 43 moves along the guiding direction S of the second guide rail 422.
  • the synchronous belt 4215 can be docked with the mover 43 in a friction transmission manner.
  • the mover 43 43 is used to carry the semi-finished product, and transport the semi-finished product to the corresponding processing station through the positional movement of the mover 43.
  • the mover 43 includes the mover body 10, the fixed structure 21 and the driven component 20.
  • the fixed structure 21 is installed and fixed to the mover body 10 through screws to ensure the connection between the fixed structure 21 and the mover body 10.
  • the slider 34 is slidingly matched with the second guide rail 422 and moves along the guide direction S of the second guide rail 422.
  • the slider 34 is fixedly connected to the mover body 10, so that the slider 34 can move along the guide direction S of the second guide rail 422. S moves.
  • the fixed structure 21 and the slider 34 can be installed on the mover body 10 through welding or clamping; the fixed structure 21 and the slider 34 can also be integrally cast with the mover body 10 to improve the fixed structure 21 Integral with the mover body 10, the casting material may be cast alloy (including cast iron, cast steel, cast non-ferrous alloy, etc.) or cast plastic (including polystyrene, polyester resin, epoxy resin, etc.).
  • the fixed structure 21 can be set in a plate shape, and the plane where the plate-shaped fixed structure 21 is located is parallel to the belt surface of the synchronous belt 4215; the fixed structure 21 is provided with a through hole (in the figure (not shown), and the central axis of the through hole is perpendicular to the belt surface of the synchronous belt 4215.
  • the driven component 20 may include a friction structure 22, a guide rod 231 and an elastic member (not shown in the figure).
  • One end of the guide rod 231 can be movably inserted into the through hole, and the other end is fixedly connected to the friction structure 22 through screws.
  • the friction structure 22 is allowed to reciprocate along the central axis direction of the through hole (the direction perpendicular to the belt surface of the synchronous belt 4215) under the limitation of the position of the through hole.
  • the fixing method of the guide rod 231 and the friction structure 22 can be welding or integral molding, which is not limited in this application and can be set according to actual needs.
  • the end of the guide rod 231 away from the friction structure 22 is provided with a gear portion 2311.
  • the gear portion 2311 can be a gear ring or a gear ring. It is the first gear to prevent the guide rod 231 from deviating from the movement range defined by the through hole of the fixed structure 21 .
  • the friction structure 22 is frictionally driven with the synchronous belt 4215, and the friction structure 22 can be moved in position driven by the synchronous belt 4215, so that the synchronous belt 4215 can drive the mover 43 to move along the guiding direction S of the second guide rail 422;
  • the friction transmission method is simple and can save the cost of realizing the transmission connection between the friction structure 22 and the synchronous belt 4215.
  • an elastic member can be sleeved on the peripheral side of the guide rod 231 and located between the fixed structure 21 and the friction structure 231 . Between the structures 22, the elastic force of the elastic parts is used to ensure that the friction structure 22 transmits the pressure to the synchronous belt 4215.
  • the docking structure 4214 of the mover 43 and the synchronous belt 4215 may also include a docking structure 4214 that implements docking in a fixed transmission manner, and a docking structure 4214 that implements docking in a magnetic adsorption manner.
  • a docking structure 4214 that implements docking in a fixed transmission manner may also include a docking structure 4214 that implements docking in a magnetic adsorption manner.
  • the fixed structure 21 has a mounting surface 211 close to the belt surface of the synchronous belt 4215
  • the friction structure 22 has a friction surface 2211 close to the synchronous belt 4215.
  • the synchronous belt 4215 has an inner contact surface 4216 and an outer contact surface 4217 (the inner contact surface 4216 and the outer contact surface 4217 of the synchronous belt 4215 are the opposite surfaces of the synchronous belt 4215, and the inner contact surface 4216 is located in the annular shape surrounded by the synchronous belt 4215.
  • the inner contact surface 4216 and the outer contact surface 4217 of the synchronous belt 4215 can be parallel to the horizontal plane.
  • the synchronous pulley 4212 is in contact with the inner contact surface 4216 of the synchronous belt 4215, and the synchronous pulley 4212 drives the synchronous belt 4215 to rotate through friction transmission; the friction structure 22 is in contact with the outer contact surface 4217 of the synchronous belt 4215, and the friction structure 22 is in contact with the outer contact surface 4217 of the synchronous belt 4215.
  • the external contact surface 4217 of the synchronous belt 4215 is frictionally driven to drive the friction structure 22 to move, so as to realize the position movement of the mover 43 .
  • the outer contact surface 4217 of the synchronous belt 4215 is arranged corresponding to the mounting surface 211 of the fixed structure 21.
  • the distance between the mounting surface 211 of the fixed structure 21 and the inner contact surface 4216 of the synchronous belt 4215 is L1mm.
  • the distance between the mounting surface 211 of the fixed structure 21 and the external contact surface 4217 of the synchronous belt 4215 is L2mm
  • the distance between the mounting surface 211 of the fixed structure 21 and the friction surface 2211 of the friction structure 22 is L3mm, satisfying the conditional expression: L1mm> L3mm>L2mm.
  • the interference fit between the friction structure 22 and the external contact surface 4217 of the synchronous belt 4215 can be made, thereby increasing the pressure between the friction structure 22 and the external contact surface 4217 of the synchronous belt 4215, thereby increasing the friction between the friction structure 22 and the synchronous belt.
  • the friction between the friction structure 22 and the synchronous belt 4215 improves the reliability of the friction transmission between the friction structure 22 and the synchronous belt 4215, so that the synchronous belt 4215 drives the friction structure 22 to move.
  • both the inner contact surface 4216 and the outer contact surface 4217 of the synchronous belt 4215 can also be perpendicular to the horizontal plane, and the distance between the outer contact surface 4217 and the mounting surface 211 is smaller than the distance between the friction surface 2211 and the mounting surface 211 The distance between the friction structure 22 and the belt surface of the synchronous belt 4215 causes an interference fit to increase the friction between the two.
  • the transmission member 4211 also includes a support structure 4213 for supporting the synchronous belt 4215.
  • the support structure 4213 extends along the transmission direction of the synchronous belt 4215; at this time, it will be located between the two synchronous belts.
  • the internal contact surfaces 4216 of the synchronous belt 4215 between the wheels 4212 and oppositely arranged are respectively marked as the first internal connection part 42161 and the second internal connection part 42162; the support structure 4213 is located between the two synchronous pulleys 4212 and between the two synchronous belts.
  • the support structure 4213 may include two groups, one group is in contact with the first internal part 42161, and the other is in contact with the second internal part 42162, so that the support structure 4213 can support and
  • the first internal connection part 42161 and the second internal connection part 42162 correspond to the synchronous belt 4215 to prevent the synchronous belt 4215 from deforming under the action of gravity to ensure the smoothness of the rotation of the synchronous belt 4215.
  • the mover 43 can be frictionally driven with the outer contact surface 4217 of the synchronous belt 4215 corresponding to the first internal connection portion 42161 and the second internal connection portion 42162. , to improve the diversity and flexibility of the conveying methods of the auxiliary conveying line 42.
  • the support structure 4213 may also include a group and be in contact with the first internal connection part 42161 (or the second internal connection part 42162) to support the synchronous belt 4215; at the same time, the mover 43 may be connected to the first internal connection part 42161 (or the second internal connection part 42162).
  • the external contact surface 4217 of the synchronous belt 4215 corresponding to an internal connection part 42161 is frictionally driven (or the mover 43 can be frictionally driven with the external contact surface 4217 of the synchronous belt 4215 corresponding to the second internal connection part 42162), and the position of the support structure 4213 can be Set according to actual needs and are not limited in this application.
  • the support structure 4213 may include a hard support plate 42131 and a soft support plate 42132.
  • the hard support plate 42131 and the soft support plate 42132 may be stacked in a direction perpendicular to the surface of the synchronous belt 4215, and
  • the soft support plate 42132 is located between the hard support plate 42131 and the synchronous belt 4215.
  • the soft support plate 42132 is used to support the position where the synchronous belt 4215 drives the mover 43 to move.
  • the soft support plate 42132 can be made of plastic and is in contact with the synchronous belt 4215 to buffer the load of the mover 43; the hard support plate 42131 can be a profile and used to support the synchronous belt 4215 to ensure that the synchronous belt 4215 Running smoothness. At the same time, the soft support plate 42132 has a smooth surface in contact with the synchronous belt 4215. When the stator has a heavy load, the hard support plate 42131 is used to support the synchronous belt 4215 to ensure the rotation of the synchronous belt 4215.
  • the soft support plate 42132 can reduce the friction between the synchronous belt 4215 and the soft support plate 42132 to increase the conveying speed of the synchronous belt 4215; and when the stator has a heavier load, the soft support plate 42132 can also be a hard support
  • the setting of plate 42131 acts as a buffer.
  • the support structure 4213 also includes at least two transition pieces 42133.
  • the two transition pieces 42133 are arranged between the soft support plate 42132 and the synchronous belt 4215, and play the role of tensioning the synchronous belt 4215; at the same time, the two transition pieces 42133 are located in the soft support plate 42132 and the synchronous belt 4215.
  • the two ends of the mass support plate 42132 close to the synchronous pulley 4212 can raise the end surface height of the synchronous belt 4215 so that the raised belt surface of the synchronous belt 4215 is parallel to the horizontal plane; at the same time, by raising the end surface height of the synchronous belt 4215, the friction The blocks are in better contact with the synchronous belt 4215, thereby increasing the friction between the friction structure 22 and the synchronous belt 4215.
  • the arrangement of the transition piece 42133 enables the friction structure 22 to be connected with the synchronous belt 4215 in a relatively stable friction transmission, and when the mover 43 transitions from the auxiliary conveying line 42 to the magnetic power conveying line 41, the arrangement of the transition piece 42133 enables the mover 43 to 43 can move to the magnetic power transmission line 41 more stably.
  • the position sensing assembly 423 includes a plurality of position sensors 4231 and a controller (not shown in the figure) electrically connected to the plurality of position sensors 4231.
  • a plurality of position sensors 4231 are arranged in sequence along the guiding direction S of the second guide rail 422 and are screwed to the second guide rail 422 through the connecting plate, so that the position sensors 4231 are firmly connected to the auxiliary sensors.
  • the connection method between the position sensor 4231 and the second guide rail 422 can also be bonded or clamped, or can be set according to actual needs, which is not limited in this application.
  • the position sensor 4231 can detect the position information of the mover 43 (the position information includes the position of the mover 43 and the speed of the mover 43), and output the position information of the mover 43 to the controller.
  • the device adjusts the transmission speed of the synchronous belt 4215 according to the received position information of the mover 43.
  • the mover 43 is frictionally driven with the synchronous belt 4215, and then the moving speed of the mover 43 changes according to the change of the speed of the synchronous belt 4215, which can then According to the actual demand for movement of the mover 43, the rotation speed of the synchronous pulley 4212 is adjusted by the controller.
  • the position sensor 4231 may include a signal transmitter (not shown in the figure) and a signal receiver (not shown in the figure).
  • the signal receiver may be installed on one side of the second guide rail 422 and pass through the second guide rail 422 Bolted connection, the signal transmitter can be installed on the mover 43, the mover 43 moves along the second guide rail 422, which can trigger the signal transmitter to send a signal.
  • the signal receiver receives a change in the signal sent by the signal transmitter, the signal receiver The position information of the mover 43 is output to the controller.
  • the moving speed of the mover 43 is adjusted, and then when the mover 43 moves from the magnetic power conveying line 41 to the auxiliary conveying line 42, the moving speed of the mover 43 can be increased, so that the mover 43 It can move quickly when it is on the auxiliary conveyor line 42.
  • the moving speed of the mover 43 can be reduced so that the mover 43 can be smoothly transported by the auxiliary conveyor.
  • Line 42 moves to magnetodynamic transfer line 41 .
  • the signal transmitter can also be installed on one side of the second guide rail 422, and the signal receiver is installed on the mover 43.
  • the signal receiver receives a change in the signal sent by the signal transmitter, the signal receiver outputs The position information of the mover 43 is sent to the controller.
  • both the signal transmitter and the signal receiver can be installed on the second guide rail 422.
  • the signal receiver receives the signal sent by the signal transmitter.
  • the signal receiver outputs the position information of the mover 43 to the controller.
  • the position sensor 4231 may include a magnetic grating sensor, which may include a magnetic grating, a magnetic head, and a detection circuit; the magnetic grating is used to record a sinusoidal signal or a rectangular signal of a certain power, and the magnetic head is used to read and write on the magnetic grating. sinusoidal signal or rectangular signal, and convert the read and write signals into electrical signals and transmit them to the controller.
  • a magnetic grating sensor which may include a magnetic grating, a magnetic head, and a detection circuit
  • the magnetic grating is used to record a sinusoidal signal or a rectangular signal of a certain power
  • the magnetic head is used to read and write on the magnetic grating. sinusoidal signal or rectangular signal, and convert the read and write signals into electrical signals and transmit them to the controller.
  • Magnetic heads can include dynamic magnetic heads and static magnetic heads. The distinction between dynamic magnetic heads and static magnetic heads is determined by the way they read signals.
  • the dynamic magnetic head includes a set of output windings. When the dynamic magnetic head moves relative to the magnetic grid, the dynamic magnetic head can read and write signals on the magnetic grid, and can convert the read and write signals into electrical signals and transmit them to the controller; then the dynamic magnetic head can be installed As the mover 43 moves along the second guide rail 422 driven by the synchronous belt 4215, the dynamic magnetic head outputs a sinusoidal signal or a rectangular signal of a certain frequency to the controller.
  • the static magnetic head has two coils wound around the iron core.
  • the two coils include the excitation winding and the output winding. There is no relative movement between the static magnetic head and the magnetic grid.
  • several magnetic heads are connected in series to form the static magnetic head body.
  • the static magnetic head body is placed on the iron core. One side of the magnetic grid.
  • the two excitation signals in each alternating signal cycle When an alternating excitation signal is applied to the excitation winding, the two excitation signals in each alternating signal cycle generate magnetic flux that saturates the iron core.
  • the magnetic resistance of the iron core is very large, and the signal flux on the magnetic grid cannot pass through the magnetic head. , so the output winding cannot output induced electromotive force; when the excitation signal crosses zero twice in each alternating signal cycle, the iron core is not saturated, and the signal flux on the magnetic grid can pass through the iron core of the output winding, so that the output winding outputs Induced potential.
  • the static magnetic head as a signal transmitter and the magnetic grid as a signal receiver can both be installed on the second guide rail 422, and the mover 43 moves along the guiding direction S of the second guide rail 422, so that the static magnetic head can read and write the signal on the magnetic grid and transmit the read and written signal to the controller.
  • one or more of the position sensors 4231 may also be Hall sensors, and the Hall sensors are disposed on at least one side of the second guide rail 422 .
  • the magnetic field generated by the permanent magnet in the mover 43 will distort the charge carrier magnetic field in the Hall sensor; that is, when the mover 43 moves to the Hall sensor At this time, the magnetic flux density of the permanent magnet in the mover 43 exceeds the preset threshold of the Hall sensor.
  • the sensor detects this magnetic flux density and generates a Hall voltage, that is, detects the relationship between the mover 43 and the Hall through the Hall effect.
  • the distance between the sensors then transmits a signal with distance data to the controller, so that the controller controls the transmission speed of the synchronous belt 4215 and thereby controls the movement speed of the mover 43 .
  • the position sensor 4231 may also include at least one of a grating sensor, an infrared sensor, a color sensor, and a Hall sensor.
  • a grating sensor an infrared sensor
  • a color sensor a color sensor
  • a Hall sensor a Hall sensor
  • the hybrid conveyor line 40 includes multiple sets of magnetodynamic conveyor lines 41 and multiple sets of auxiliary conveyor lines 42, and the multiple sets of magnetodynamic conveyor lines 42 41 and multiple sets of auxiliary conveying lines 42 are arranged alternately along the guiding direction S of the second guide rail 422 to form a conveying structure of the magnetic power conveying line 41 - the auxiliary conveying line 42 - the magnetic power conveying line 41; or the auxiliary conveying line 42——Magnetic power conveying line 41——Conveying structure of auxiliary conveying line 42.
  • the magnetic power conveyor line can be used in processes with high positioning accuracy and high conveying speed requirements
  • the auxiliary conveying line 42 can be used in processes with high positioning accuracy and low conveying speed requirements, which can meet the speed and speed of the mover 43 for conveying semi-finished products. accuracy requirements, while also reducing the deployment cost of the production line.
  • the magnetodynamic conveying line 41 also includes a first guide rail 412.
  • the magnetodynamic conveying line 41 is docked with the auxiliary conveying line 42, the first The second guide rail 422 is docked with the first guide rail 412.
  • the cross-sections of the second guide rail 422 and the first guide rail 412 are consistent, so that the slider can slide between the second guide rail 422 and the first guide rail 412; thus the magnetic power transmission line 41 Yufu
  • the auxiliary conveying lines 42 are alternately arranged, the slider 34 can move from the magnetic power conveying line 41 to the auxiliary conveying line 42, and from the auxiliary conveying line 42 to the magnetic power conveying line 41, thereby ensuring that the slider 34 moves smoothly.
  • the production line movement consists of the magnetic power conveying line 41 and the auxiliary conveying line 42 being arranged alternately.
  • the magnetic power transmission line 41 also includes a first armature winding 411.
  • the mover body 10 is connected to the first armature winding 411.
  • the coils in the first armature winding 411 are passed through an alternating current to change
  • the first armature winding 411 corresponds to the moving speed of the mover 43 .
  • multiple movers 43 can be provided on the same first armature winding 411, and by controlling the alternating current in the coils at corresponding positions of different movers 43, the movement of the movers 43 at different positions can be controlled respectively.
  • multiple different movers 43 can also be provided on the auxiliary conveying line 42, so that the semi-finished products can be transported at the same time to increase the semi-finished product. Processing efficiency.
  • the processing station corresponding to the magnetic power conveyor line 41 When the processing station corresponding to the magnetic power conveyor line 41 is changed, the positioning accuracy and transportation speed of the semi-finished product at the corresponding position of the magnetic power conveyor line 41 are relatively low.
  • the synchronous belt 4215 can be extended to the magnetic power conveyor line. 41 corresponds to the position. At this time, no alternating current flows into the coil in the first armature winding 411, and the synchronous belt 4215 can drive the mover located on the first guide rail 412 of the magnetic power transmission line 41.
  • the mixing conveyor line 40 may further include a connecting assembly 45 for connecting the magnetodynamic conveying line 41 and the auxiliary conveying line 42 .
  • auxiliary conveying line 42 is located on one side of the magnetic power conveying line 41 and is parallel to the magnetic power conveying line 41 . It can be understood that both the auxiliary conveying line 42 and the magnetic power conveying line 41 are guided by the second guide rail 422 Direction S is parallel. At the same time, in order to facilitate the connection assembly 45 to connect the auxiliary transmission line 42 and the magnetic power transmission line 41, the extension length of the auxiliary transmission line 42 along the second guide rail 422 must be consistent with the extension length of the magnetodynamic transmission line 41 along the second guide rail 422.
  • the connecting assembly 45 includes two groups. One group of connecting assembly 45 is used to connect the head of the auxiliary conveying line 42 and the tail of the magnetic power conveying line 41 , and the other group of connecting assembly 45 is used to connect the tail of the auxiliary conveying line 42 and the magnetic power.
  • the magnetic power conveyor line 41 can be deployed in the conveyor link where the positioning accuracy of the semi-finished products is high and the transportation speed of the semi-finished products is required, and the auxiliary conveyor line 42 can be used as a return conveyor line to move the mover 43 from the magnetic
  • the tail of the power conveyor line 41 is transmitted to the head of the magnetic power conveyor line 41, so that the mover 43 can transport semi-finished products to the corresponding work station; and the mover 43 can be recycled, and the magnetic power conveyor line 41 can be used to improve production efficiency.
  • the arrangement of the auxiliary conveyor line 42 to return the movers 43 to the magnetic power conveyor line can save the number of semi-finished movers 43, thereby further saving the deployment cost of the production line.
  • the arrangement of the connecting component 45 can make the installation and connection of the mixed conveyor line 40 composed of the auxiliary conveyor line 42 and the magnetic power conveyor line 41 more convenient, greatly reducing the installation difficulty, and thus greatly improving the performance of the mixed conveyor line 40. applicability.
  • connection assembly 45 may include a connection slide rail 451, a connection slide block 452 and a connection guide rail 453.
  • the connection slide rail 451 is perpendicular to the second guide rail 422, and the connection slide block 452 is slidably disposed on on the connecting slide rail 451, and can reciprocate along the guiding direction S of the connecting slide rail 451.
  • the connecting guide rail 453 is fixedly connected to the connecting slide block 452 through screws, and the guiding direction S of the connecting guide rail 453 is perpendicular to the guiding direction S of the connecting slide rail 451, that is, the connecting guide rail 453 and the auxiliary conveying line 42 and the magnetic force Both conveyor lines are parallel, and when the connecting assembly 45 is connected to the magnetic power transmission line, the connecting guide rail 453 of the connecting assembly 45 is docked with the first guide rail 412, and the connecting guide rail 453 and the magnetic power conductor are collinear.
  • the mover 43 can be transported from the first guide rail 412 to the connecting guide rail 453, and from the connecting guide rail 453 to the first guide rail 412; when the connecting component 45 is docked with the auxiliary conveying line 42, the connecting guide rail 453 of the connecting component 45 Butt with the second guide rail 422, and make the connection guide rail 453 and the second guide rail 422 collinear, so that the mover 43 can be transported from the second guide rail 422 to the connection guide rail 453, and from the connection guide rail 453 to the second guide rail 422 ;
  • the connecting assembly 45 it is easy to switch the conveyor line, so that the hybrid conveyor line composed of the magnetic power conveyor line and the auxiliary conveyor line 42 can be used in more transportation scenarios.
  • the auxiliary conveying line 42 can be arranged on the same horizontal installation surface as the magnetic power conveying line 41.
  • the auxiliary conveying line 42 and the magnetic power conveying line 41 are arranged parallel to each other in the horizontal direction, and the connecting assembly 45 is provided with
  • the auxiliary conveying line 42 can also be arranged on the same vertical installation platform as the magnetic power conveying line 41.
  • the auxiliary conveying line 42 and the magnetic power conveying line are perpendicular to each other.
  • the connecting component 45 is used to connect the auxiliary conveying line 42 and the magnetic power conveying line 41; thus, the mixed conveying line 40 composed of the auxiliary conveying line 42 and the magnetic power conveying line 41 can be arranged in different conveying environments. , to increase the applicability of the mixing conveyor line 40.
  • the second guide rail 422 can also be configured in a curved shape.
  • the transmission member 4211 can be a friction disk that rotates around the central axis of the standard arc.
  • the friction disk has the function As for the contact surface with the friction surface 2211 of the friction structure 22, the distance between the outer contact surface 4217 and the mounting surface 211 is slightly smaller than the distance between the friction surface 2211 and the mounting surface 211, so that the friction structure 22 and the timing belt 4215
  • the interference fit between the belt surfaces improves the friction between the two; or a conveyor belt matching the standard arc-shaped curved profile is provided to realize the conveyance of the mover 43 in a non-standard arc-shaped curve; the curved profile
  • friction disks with different diameters can be set according to the arcs at different positions of the curved profile; or a conveyor belt matching the non-standard arc shape can be set up to realize the movement of the mover 43 in the non-standard
  • FIG. 30 There can be multiple groups of magnetodynamic conveying lines 41 and multiple groups of auxiliary conveying lines 42.
  • One group of auxiliary conveying lines 42 serves as a return section; multiple groups of magnetodynamic conveying lines 41 and multiple groups of auxiliary conveying lines 42 are alternately arranged along the second guide rail 422 to form a conveying section.
  • a set of connecting components 45 connects the tail of the conveying section to the head of the return section, and another set of connecting components 45 connects the head of the returning section to the tail of the conveying section. connect.
  • the conveying section can be used for product conveying lines, and then the magnetic power conveying line 41 is set up at a position where the positioning accuracy of the product conveying line is high and the speed requirements are high, and the magnetic power conveying line 41 is set up at a position where the product conveying line has low positioning accuracy and low speed requirements.
  • the auxiliary conveying line 42 and thus the magnetic power conveying line and the auxiliary conveying line 42 can be reasonably deployed on the product conveying line to reduce the cost of production line deployment.
  • the return section of the production line does not have high requirements on the positioning accuracy and speed of the mover 43, and an auxiliary conveying line 42 can be provided, which can further ensure the conveying accuracy and conveying speed of semi-finished products while reducing the deployment cost of the production line.
  • the magnetic power conveying line 41 and the auxiliary conveying line 42 can be flexibly set according to the different time rhythm requirements of different process links for the transportation of semi-finished products, so that the entire transmission line can more flexibly meet the customer's needs.
  • the modular arrangement of the auxiliary conveying line 42, the magnetic power conveying line 41 and the connecting component 45 can improve the convenience of conveying line assembly and save installation space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Non-Mechanical Conveyors (AREA)

Abstract

本申请提供了一种动子及具有其的混合输送线,该动子至少能够应用于磁动力输送线以及混合输送线,动子可移动地安装于磁动力输送线或者混合输送线,磁动力输送线包括第一电枢绕组,混合输送线包括第一驱动机构;动子包括:动子本体,包括第一永磁阵列,第一永磁阵列包括两相对间隔设置的第一永磁体,两第一永磁体与第一电枢绕组以电流励磁的方式驱动动子本体沿磁动力输送线移动;从动组件,与动子本体连接,从动组件用于与第一驱动机构传动连接,并驱动动子本体沿磁动力输送线或者混合输送线移动。通过本申请提供的技术方案,能够有效降低传输线整体的设置成本。

Description

动子及具有其的混合输送线
本申请要求以下三个专利申请的优先权:
1、于2022年9月30日提交至中国国家知识产权局、申请号为202211219655.9、发明名称为“一种动子及混合传输线”的专利申请的优先权;
2、于2022年9月21日提交至中国国家知识产权局、申请号为202222504907.4、发明名称为“一种动子及输送装置”的专利申请的优先权;
3、于2022年9月30日提交至中国国家知识产权局、申请号为202211211003.0、发明名称为“辅助输送线及混合输送线”的专利申请的优先权。
技术领域
本申请涉及输送装置技术领域,具体而言,涉及一种动子及具有其的混合输送线。
背景技术
在相关技术中,传输线一般包括用于运输物料的动子,一些高精度、高速度的输送环境一般会采用磁动力输送,即动子以磁动力为驱动力在定子(即导轨)上移动,对于输送精度要求较低、无输送速度控制要求的输送路段,仍使用磁动力输送线将提高运行成本。
发明内容
本申请提供一种动子及具有其的混合输送线,能够有效降低传输线整体的设置成本。
根据本申请的一个方面,提供了一种动子,至少能够应用于磁动力输送线以及混合输送线,动子可移动地安装于磁动力输送线或者混合输送线,磁动力输送线包括第一电枢绕组,混合输送线包括第一驱动机构;动子包括:动子本体,包括第一永磁阵列,第一永磁阵列包括两相对间隔设置的第一永磁体,两第一永磁体与第一电枢绕组以电流励磁的方式驱动动子本体沿磁动力输送线移动;从动组件,与动子本体连接,从动组件用于与第一驱动机构传动连接,并驱动动子本体沿磁动力输送线或者混合输送线移动。
进一步地,动子本体包括:连接部,与第一永磁阵列以及从动组件均连接,从动组件与第一永磁阵列位于连接部的相对两侧。
进一步地,从动组件与第一驱动机构的传动方式为通过摩擦传动、磁性吸附传动和固定接触传动中的至少一种。
进一步地,从动组件与第一驱动机构的传动方式为摩擦传动,从动组件包括:固定结构,与动子本体连接;摩擦结构,用于与第一驱动机构抵接并产生摩擦阻力;张紧结构,位于固定结构与摩擦结构之间,张紧结构连接固定结构及摩擦结构,且用于将摩擦结构抵紧于第一驱动机构。
进一步地,摩擦结构包括:摩擦块,用于与第一驱动机构抵接并产生摩擦阻力;固定块,与摩擦块固定连接,且固定块在摩擦块上的正投影覆盖摩擦块,摩擦块设置于固定块背离张紧结构的表面;张紧结构包括:导向杆,导向杆的一端与固定结构活动连接,导向杆的另一端与固定块固定连接;弹性件,套设于导向杆,弹性件的一端与固定块抵接,弹性件的另一端与固定结构抵接。
进一步地,摩擦块的制备材料为橡胶或树脂中的至少一种。
进一步地,从动组件包括两组,两组从动组件位于动子本体的相对两侧,两相对间隔设置的第一永磁体位于两组从动组件之间。
进一步地,第一驱动机构包括第二电枢绕组,从动组件包括:第二永磁阵列,包括至少一个第二永磁体,第二永磁体与第二电枢绕组以电流励磁的方式驱动动子本体沿磁动力输送线或者混合输送线移动。
进一步地,动子还包括:第一滑动组件,设置于动子本体,第一滑动组件用于可移动地安装于磁动力输送线;第二滑动组件,设置于从动组件,且与第一滑动组件间隔设置,第二滑动组件用于可移动地安装于混合输送线;或者,动子包括:第一滑动组件,设置于动子本体,第一滑动组件用于可移动地安装于磁动力输送线,且第一滑动组件与从动组件间隔设置。
进一步地,动子还包括:距离传感装置,与动子本体连接,距离传感装置用于检测动子的运动位置。
进一步地,动子本体具有容纳槽,容纳槽沿第一预设方向延伸以贯穿动子本体的两端,且容纳槽沿第二预设方向延伸,以在动子本体的一侧上形成供电枢绕组出入容纳槽的槽口,第二预设方向与第一预设方向垂直;容纳槽包括第一槽壁、第二槽壁以及第三槽壁,第三槽壁与槽口相对设置,第一槽壁与第二槽壁相对设置,且分别位于第三槽壁的两侧;第一永磁体包括设置于第一槽壁的第一磁钢组以及设置于第二槽壁的第二磁钢组,第二磁钢组与第一磁钢组相对设置且相间隔,第一磁钢组及第二磁钢组均包括至少一沿第一预设方向排布的磁体模组,磁体模组与动子本体可拆卸连接,磁体模组包括多个沿第一预设方向排布的子磁体。
进一步地,第二磁钢组中的永磁体与第一磁钢组中的永磁体一一对应,且第二磁钢组中的永磁体的磁化方向,与第一磁钢组中对应的永磁体的磁化方向相同。
进一步地,磁体模组中的一个或多个子磁体排列成海尔贝克阵列;磁体模组包括安装架,安装架与动子本体可拆卸连接,多个子磁体邻接或间隔设置于安装架。
进一步地,磁体模组包括沿第一预设方向排布的第一子磁体、第二子磁体、第三子磁体以及第四子磁体。
进一步地,第一子磁体的磁化方向沿第三预设方向,第三预设方向与第一预设方向以及第二预设方向垂直;第二子磁体的磁化方向沿第四预设方向,第四预设方向与第一预设方向平行;第三子磁体的磁化方向沿第五预设方向,第五预设方向与第三预设方向相反;第四子磁体的磁化方向沿第六预设方向,第六预设方向与第四预设方向相反。
进一步地,第一磁钢组的多个磁体模组中具有至少一第一磁体模组或/和至少一第二磁体模组;其中,第一磁体模组中的第一子磁体、第二子磁体、第三子磁体以及第四子磁体沿第一预设方向依次排布;第二磁体模组中的第二子磁体、第一子磁体、第四子磁体以及第三子磁体均沿第一预设方向依次排布。
进一步地,第一磁钢组中,位于第一磁钢组的第一端的永磁体的磁化方向沿第三预设方向,位于第一磁钢组的第二端的永磁体的磁化方向沿第五预设方向。
进一步地,第一磁钢组中,沿第一预设方向,位于第一磁钢组的第一端的永磁体的磁化方向沿第四预设方向,位于第一磁钢组的第二端的永磁体的磁化方向沿第六预设方向。
进一步地,磁体模组中的多个永磁体排列成海尔贝克阵列;其中,第一磁钢组靠近第二磁钢组的一侧获得磁场增强,第二磁钢组靠近第一磁钢组的一侧获得磁场增强。
根据本申请的另一方面,提供了一种混合输送线,混合输送线包括磁动力输送线、辅助输送线以及如上述提供的动子,动子可移动地安装于磁动力输送线或者辅助输送线,磁动力输送线包括第一电枢绕组以及第一导轨,第一永磁阵列与第一电枢绕组配合以驱动动子沿第一导轨移动;辅助输送线包括第一驱动机构以及第二导轨;从动组件与第一驱动机构配合以驱动动子沿第二导轨移动。
进一步地,动子设置有多个,每一动子均包括缓冲件,多个动子均安装于磁动力输送线或者辅助输送线时,沿动子的移动方向,缓冲件对应设置于动子本体的相对两侧。
进一步地,混合输送线具有至少一弧形段,在弧形段处,第一导轨与第二导轨非共线设置。
进一步地,第一驱动机构包括传送件以及对接结构,传送件与对接结构传动连接,以带动至少部分对接结构沿第二导轨的引导方向移动,对接结构用于连接动子,以使动子沿第二导轨移动;辅助输送线包括位置传感组件,位置传感组件包括多个位置传感器以及与多个位置传感器电连接的控制器,多个位置传感器沿第二导轨依次排布且用于检测动子的位置信息,并输出位置信息至控制器,控制器用于根据位置信息调节第一驱动机构对动子的驱动速度。
进一步地,位置传感器包括信号发射器以及信号接收器,信号发射器与信号接收器两者之一设置于第二导轨的一侧,另一用于与动子连接;或者,信号发射器与信号接收器均设置于第二导轨上;其中,信号接收器接收到信号发射器发出的信号发生变化时,信号接收器输出动子的位置信息至控制器。
进一步地,位置传感器包括磁栅式传感器、光栅式传感器、红外传感器、颜色传感器以及霍尔传感器中的至少一种。
进一步地,第一驱动机构包括摩擦传送结构、固定传送结构以及磁传送结构中的至少一种,当第一驱动机构包括摩擦传送结构时,对接结构包括:同步带,同步带的传送方向与第二导轨的引导方向平行;传送件包括:两同步带轮,两个同步带轮间隔设置;以及用于支撑同步带的支撑结构,同步带套接于两同步带轮的周侧,支撑结构位于两同步带轮之间,且位于两同步带轮与同步带围设的范围内,支撑结构沿同步带的传送方向延伸。
进一步地,支撑结构包括硬质支撑板以及软质支撑板,硬质支撑板与软质支撑板沿垂直于同步带表面的方向堆叠设置,且软质支撑板位于硬质支撑板与同步带之间,软质支撑板用于支撑同步带带动动子移动的部分。
进一步地,支撑结构还包括至少两个过渡件,两过渡件设置在软质支撑板与同步带之间,且位于软质支撑板的靠近同步带轮的两端。
进一步地,第一驱动机构包括摩擦传送结构、固定传送结构以及磁传送结构中的至少一种,当第一驱动机构包括摩擦传送结构时,对接结构包括:同步带,同步带的传送方向与第二导轨的引导方向平行;传送件包括:多个同步带轮,多个同步带轮间隔设置,且同步带套接于同步带轮的周侧。
进一步地,磁动力输送线与辅助输送线沿第二导轨依次排布且两者对接,动子沿第二导轨可移动地运动于磁动力输送线与辅助输送线。
进一步地,第一驱动机构包括:以摩擦传动方式实现对接的对接结构;或者,以固定传送方式实现对接的对接结构;或者,以磁性吸附方式实现对接的对接结构。
进一步地,动子包括:动子本体;从动组件,包括固定结构和摩擦结构,固定结构固定于动子本体,摩擦结构包括导向杆和弹性件,导向杆的一端与固定结构活动连接,另一端与摩擦结构固定连接,且摩擦结构用于与同步带接触并产生摩擦力,弹性件套设在导向杆的周侧,且位于固定结构与摩擦结构之间。
进一步地,固定结构具有靠近同步带的安装面,摩擦结构具有靠近同步带的摩擦面;同步带具有内接触面以及外接触面,内接触面用于与同步带轮接触,以使同步带与同步带轮间产生摩擦阻力,外接触面与安装面相对设置;摩擦结构用于与外接触面接触,沿弹性件的伸缩方向,安装面至内接触面间的距离为L1,安装面至外接触面间的距离为L2,安装面至摩擦面间的距离为L3,且满足条件式:L1>L3>L2。
进一步地,磁动力输送线为多组,辅助输送线为多组,且磁动力输送线与辅助输送线沿第二导轨依次交替排布。
进一步地,动子包括滑块,且滑块可滑动连接于第二导轨或者第一导轨;辅助输送线与磁动力输送线对接时,第二导轨与第一导轨对接,滑块可在第二导轨与第一导轨之间移动。
进一步地,混合输送线还包括接驳组件,接驳组件至少设置为两组,一接驳组件将磁动力输送线的尾部与辅助输送线的首部连接,另一接驳组件将磁动力输送线的首部与辅助输送线的尾部连接,动子沿第二导轨可移动地连接于磁动力输送线与辅助输送线。
磁动力输送线为多组,辅助输送线为多组,其中一辅助输送线作为回流段;多组磁动力输送线与多组辅助输送线沿第二导轨依次交替排布以构成输送段,一接驳组件将输送段的尾部与回流段的首部连接,另一接驳组件将回流段的首部与输送段的尾部连接。
应用本申请的技术方案,动子除了可以在磁动力输送线上使用以外,还可以通过从动组件与驱动机构以其他传动方式在非磁动力输送线上进行传输,从而使得在输送精度较低、输送速度无要求的传输线路段上,可以将磁动力输送线更换为非磁动力输送线,且仍可使用本申请实施例中的动子继续运输,从而可以降低传输线整体的设置成本。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请一实施例提供的动子与磁动力输送线装配的结构示意图;
图2示出了根据本申请一实施例提供的动子与混合输送线装配的结构示意图;
图3示出了根据本申请一实施例提供的动子的结构示意图;
图4示出了根据本申请另一实施例提供的动子的第一视角的结构示意图;
图5示出了根据本申请又一实施例提供的动子的结构示意图;
图6示出了根据本申请再一实施例提供的动子的第一视角的结构示意图;
图7示出了根据本申请再一实施例提供的动子的第二视角的结构示意图;
图8示出了根据本申请另一实施例提供的动子的第二视角的动子的结构示意图;
图9示出了根据本申请另一实施例提供的动子的第一磁钢组的结构示意图;
图10示出了根据本申请另一实施例提供的动子的第一磁钢组的结构示意图;
图11示出了根据本申请另一实施例提供的动子的第一磁钢组的结构示意图;
图12示出了根据本申请另一实施例提供的动子的第一磁钢组的结构示意图;
图13示出了根据本申请另一实施例提供的动子的第一磁钢组和第二磁钢组在动子本体上的分别示意图;
图14示出了根据本申请一实施例提供的多个动子与混合输送线装配的结构示意图;
图15为图14中C处的放大结构示意图;
图16示出了根据本申请另一实施例提供的多个动子与混合输送线装配的结构示意图;
图17为图16中D处的放大结构示意图;
图18示出了根据本申请一实施例提供的混合输送线的结构示意图;
图19示出了根据本申请一实施例提供的混合输送线的辅助输送线的整体结构示意图;
图20示出了根据本申请一实施例提供的混合输送线的辅助输送线与磁动力输送线配合的结构示意图;
图21示出了根据本申请一实施例提供的混合输送线的辅助输送线与磁动力输送线配合的另一形式的结构示意图;
图22示出了根据本申请一实施例提供的混合输送线的摩擦传送结构(包括两同步带轮)的结构示意图;
图23示出了根据本申请一实施例提供的混合输送线的摩擦传送结构(包括多个同步带轮)的结构示意图;
图24示出了根据本申请一实施例提供的混合输送线的动子的结构示意图;
图25示出了根据本申请一实施例提供的混合输送线的动子与摩擦传送结构配合的结构简化示意图;
图26示出了根据本申请一实施例提供的混合输送线的辅助输送线与磁动力输送线配合的又一形式的结构示意图;
图27示出了根据本申请一实施例提供的混合输送线的辅助输送线与磁动力输送线位于同一水平安装台面的结构示意图;
图28示出了根据本申请一实施例提供的混合输送线的接驳组件的结构示意图;
图29示出了根据本申请一实施例提供的混合输送线的辅助输送线与磁动力输送线位于同一竖直安装台面的结构示意图;
图30示出了根据本申请一实施例提供的混合输送线(输送段包括辅助输送线以及磁动力输送线)的结构示意图。
其中,上述附图包括以下附图标记:
10、动子本体;11、第一永磁阵列;111、第一永磁体;1111、第一磁钢组;1112、第二磁钢组;1113、安装架;11131、安装槽;1114、第一子磁体;1115、第二子磁体;1116、第三子磁体;1117、第四子磁体;1118、第一磁体模组;1119、第二磁体模组;12、连接部;13、容纳槽;131、槽口;132、第一槽壁;133、第二槽壁;134、第三槽壁;14、第一背板;15、第二背板;16、连接板;17、滑动块;171、滑动槽;
20、从动组件;21、固定结构;211、安装面;22、摩擦结构;221、摩擦块;2211、摩擦面;222、固定块;23、张紧结构;231、导向杆;2311、挡位部;232、弹性件;24、第二永磁阵列;241、第二永磁体;25、第一从动组件;26、第二从动组件;
31、第一滑动组件;32、第二滑动组件;33、缓冲件;34、滑块;
40、混合输送线;41、磁动力输送线;411、第一电枢绕组;412、第一导轨;42、辅助输送线;421、第一驱动机构;4211、传送件;4212、同步带轮;4213、支撑结构;42131、硬质支撑板;42132、软质支撑板;42133、过渡件;4214、对接结构;4215、同步带;4216、内接触面;42161、第一内接部;42162、第二内接部;4217、外接触面;422、第二导轨;423、位置传感组件;4231、位置传感器;43、动子;44、弧形段;45、接驳组件;451、接驳滑轨;452、接驳滑块;453、接驳导轨;46、第三导轨;
L1、安装面至内接触面间的距离;
L2、安装面至外接触面间的距离;
L3、安装面至摩擦面间的距离;
S、引导方向。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在相关技术中,一些高精度、高速度的输送环境一般会采用磁动力输送线进行运输,即动子以磁动力为驱动力在定子(即导轨)上移动,但是磁动力输送线的设置成本也较高。在传输线上的有些路段仅需起到输送功能,而对输送的精度以及速度要求较低,若同样采用磁动力输送线进行运输(尤其是在对精度、速度无要求的长直线运送路段),则传输线整体的购置成本会比较高。
针对上述情况,第一方面,请参见图1至图30,本申请提出了一种动子43,至少能够应用于磁动力输送线41以及混合输送线40,动子43可移动地安装于磁动力输送线41或者混合输送线40,磁动力输送线41包括第一电枢绕组411,混合输送线40包括第一驱动机构421。可以理解的是,磁动力输送线41可以为多个定子拼接形成的磁动力输送线41,第一电枢绕组411与动子43以电流励磁的方式驱动动子43移动;混合输送线40可以通过两种及以上类型的动力作用以推动动子43移动。进一步的,本申请实施例对混合输送线40的具体结构不作限定,例如,混合输送线40可以通过磁动力与其他传动方式共同作用,如磁动力与摩擦传动共同作用、磁动力与固定接触传 动共同作用;又如,混合输送线40的驱动方式均可以为磁力驱动,但混合输送线40可以以不同的磁驱方式以推动动子43移动,如通过电流励磁及行波磁场等不同方式共同或独立作用。
请参见图1至图6,动子43包括动子本体10和从动组件20,动子本体10包括第一永磁阵列11,第一永磁阵列11包括两相对间隔设置的第一永磁体111,两第一永磁体111与第一电枢绕组411以电流励磁的方式驱动动子本体10沿磁动力输送线41移动;从动组件20与动子本体10连接,从动组件20用于与第一驱动机构421传动连接,并驱动动子本体10沿磁动力输送线41或者混合输送线40移动。
具体地,在磁动力输送线41上,通过对第一电枢绕组411通电,第一电枢绕组411产生变化的磁场,动子本体10的第一永磁阵列11与第一电枢绕组411产生的磁场相互作用产生驱动力,从而推动整个动子43沿磁动力输送线41的延伸方向运动;在混合输送线40上,动子43的从动组件20可以通过第一驱动机构421的传动,从而推动整个动子43沿混合输送线40的延伸方向运动。其中,本申请实施例对第一永磁阵列11的数量不做具体限制,例如第一永磁阵列11的数量可以为一对或者多对。本申请实施例对第一驱动机构421的具体结构不作限定,从动组件20与第一驱动机构421的具体传动方式会在下文中进行详细介绍。
需要说明的是,本申请实施例通过设置从动组件20,使得动子43可以在不同的传输线类型中进行应用。本申请实施例中的动子43除了可以在磁动力输送线41上使用以外,还可以通过从动组件20与第一驱动机构421以其他传动方式在混合输送线40上进行传输。可以理解的是,从动组件20的设置使得动子43的传输方式具有多样性的特点,一方面,从动组件20的设置可以使得动子43适用于不同的输送线,增加动子43的普适性;另一方面,从动组件20的普适性可以降低输送线整体的设置成本。
需要注意的是,对于输送线体而言,从动组件20在第一驱动机构421的带动下产生移动,从而使得从动组件20可以带动动子本体10产生移动;对于动子本体10而言,从动组件20可以作为主动件带动动子本体10产生移动。
还需要说明的是,请参照图1、图3、图4,动子本体10还可以包括第一背板14、连接板16以及第二背板15,第一背板14、连接板16以及第二背板15之间可以依次连接,或者第一背板14、连接板16以及第二背板15一体成型制造;第一背板14与第二背板15相对间隔设置,两第一永磁体111分别设置于第一背板14及第二背板15的相对靠近面;两个第一永磁体111之间具有放置间隙,放置间隙用于放置第一电枢绕组411,也即,当动子43与磁动力输送线41配合设置时,两第一永磁铁设置于第一电枢绕组411的两侧;当对第一电枢绕组411通电时,第一电枢绕组411产生变化的磁场,磁场与第一永磁体相互耦合并产生相对作用力,以驱动动子本体10在磁动力 输送线41上的运动。进一步的,第一背板14和第二背板15可以为两个第一永磁体111提供安装基础,从而可以防止第一永磁体111发生偏移,保证动子43在磁动力输送线41上运行的稳定。
可以理解的是,请结合图1和图4,若第一电枢绕组411的设置位置垂直于水平面,则动子43的两个第一永磁体111均沿竖向相对设置,此时可以由连接板16背离两第一永磁体的表面承载运输物料;如图3所示,若磁动力输送线41的设置位置平行于水平面,则动子43的两个第一永磁体111均沿水平方向相对设置,此时可以由第一背板14/第二背板15背离第一永磁体的表面承载运输物料。
请结合图1、图3及图4,在本申请一些实施例中,动子本体10包括连接部12,连接部12与第一永磁阵列11以及从动组件20均连接,从动组件20与第一永磁阵列11位于连接部12的相对两侧。
可以理解的是,由于第一永磁阵列11与从动组件20分别设置于连接部12的相对两侧,由此,与第一永磁阵列11配合的第一电枢绕组411、与从动组件20配合的第一驱动机构421也应当分别设置于连接部12的相对两侧;进一步的,可以理解为,被第一电枢绕组411所驱动的第一永磁阵列11的移动路径、被第一驱动机构421所驱动的从动组件20的移动路径相对非共线设置。也即,从动组件20的设置并不会对第一永磁阵列11驱动动子本体10运动产生干涉,从动组件20在保证动子本体10顺畅移动的基础上,还可以使得动子43被更多的驱动方式所驱动。
进一步的,当磁动力输送线41或者混合输送线40上具有弧形段44(如图14所示)时,动子43需要在传输线的弧形段44处进行转弯。由于从动组件20与第一永磁阵列11设置于连接部12的相对两侧,由此使得第一永磁阵列11与从动组件20在转弯时具有不同的转向角度/转向半径,可以根据实际工况需求以选择动子43在弧形段44处的运动形态,也即根据工况的需求以选择动子43在转弯时使用第一永磁阵列11驱动或者使用从动组件20驱动。可以理解的是,在一些实施例中,若从动组件20与第一驱动机构421相较于第一永磁阵列11与第一电枢绕组411具有更加稳定的配合结构,在弧形段44处,从动组件20可以具有较长的运动行程,或者,从动组件20可以具有较大的转向角度,以保证动子43在弧形段44运动的稳定;在一些实施例中,从动组件20可以具有较短的运动行程,或者,从动组件20可以具有较小的转向角度,以使得动子43在弧形段44也可以具有较高的运动速度;在一些实施例中,动子43在弧形段44处仅与第一电枢绕组411及第一驱动机构421中的一者配合,由此可以降低传输线体的设置成本。可以理解的是,在一些实施例中,若从动组件20与第一驱动机构421相较于第一永磁阵列11与第一电枢绕组411具有更低的设置成本,在直线段 或弧形段44处,可以仅设置从动组件20与第一驱动机构421传动连接,以降低整体输送线的设置成本。
在本申请一些实施例中,从动组件20与第一驱动机构421的传动方式为通过摩擦传动、磁性吸附传动和固定接触传动中的至少一种。可以理解的是,从动组件20与第一驱动机构421既可以仅以以上三种传动方式传动,也可以相互结合一同传动。
需要说明的是,从动组件20与第一驱动机构421可以通过多种传动方式传动,使得动子43可以在不同的传输线类型中进行应用。例如,如图2及图4所示,以从动组件20与第一驱动机构421通过摩擦传动为例,第一驱动机构421可以包括电机和同步带,从动组件20上可以设置摩擦块221,电机用于带动同步带移动,从动组件20上的摩擦块221与同步带摩擦配合,从而使得同步带的移动可以带动摩擦块221的移动,进而带动动子43移动。又如,以从动组件20与第一驱动机构421通过磁性吸附传动(如图17所示)为例,从动组件20上可以设置永磁体,第一驱动机构421可以包括行波磁场,永磁体与行波磁场的波峰相互耦合,行波磁场波峰的移动可以产生电磁推力,以带动从动组件20上永磁体运动,驱动从动组件20以及动子本体10移动;或者,第一驱动机构421还可以包括三相交流线圈,三相交流线圈通电并在电流励磁下与永磁体耦合产生驱动力,从而驱动从动组件20以及动子本体10移动。再如,以从动组件20与第一驱动机构421通过固定接触传动为例,第一驱动机构421可以包括转动盘和输送块,多个输送块关于转动盘的轴呈旋转对称设置,转动盘绕轴自转,进而带动输送块的运动;从动组件20上设置有拨叉,当拨叉运行至摩擦盘时,摩擦盘的转动使得输送块与拨叉抵接配合,拨叉随着输送块的转动进行移动,进而带动动子43的移动。又如,以从动组件20与第一驱动机构421通过固定接触传动传动为例,第一驱动机构421可以包括电机和齿条,从动组件20上可以设置齿槽或齿轮,电机用于带动齿条移动,从动组件20上的齿槽或齿轮与齿条配合,从而使得齿条可以带动动子43移动;或者,第一驱动机构421还可以包括电机和卡槽,从动组件20上可以设置卡扣,卡扣插入卡槽,通过电机带动卡槽移动,从而使得从动组件20与动子本体10移动。
请参见图2-4,在本申请一些实施例中,从动组件20与第一驱动机构421的传动方式为摩擦传动。从动组件20包括固定结构21、摩擦结构22以及张紧结构23,固定结构21与动子本体10连接;摩擦结构22用于与第一驱动机构421抵接并产生摩擦阻力;张紧结构23位于固定结构21与摩擦结构22之间,张紧结构23连接固定结构21及摩擦结构22,且用于将摩擦结构22抵紧于第一驱动机构421。
需要说明的是,在从动组件20与第一驱动机构421进行传动连接时,固定结构21与摩擦结构22之间的张紧结构23处于压缩状态,张紧结构23在固定结构21及摩擦结构22间产生弹力,以使得摩擦结构22可以更紧密地与第一驱动机构421抵接, 并在第一驱动机构421移动时,使得摩擦结构22与第一驱动机构421之间产生摩擦阻力,从而使得第一驱动机构421可以带动从动组件20及动子本体10在混合输送线40上移动。
具体地,固定结构21与动子本体10固定连接,使得从动组件20带动动子43移动时,从动组件20与动子本体10之间的位置关系更加稳定。其中,本申请实施例对固定结构21与动子本体10之间的连接方式不做限制,固定结构21与动子本体10之间的具体连接方式包括但不限于螺接、卡接或一体成型等。
进一步的,如图4所示,摩擦结构22包括摩擦块221以及固定块222。摩擦块221用于与第一驱动机构421抵接并产生摩擦阻力;固定块222与摩擦块221固定连接,且固定块222在摩擦块221上的正投影覆盖摩擦块221,摩擦块221设置于固定块222背离张紧结构23的表面。
可以理解的是,本申请实施例对摩擦块221的具体材质不作限定。摩擦块221的制备材料可以为橡胶或树脂中的至少一种,或者,摩擦块221的制备材料可以为橡胶及树脂的混合材料。进一步的,橡胶材料与树脂材料具有较高的摩擦因数,由此使得摩擦块221与第一驱动机构421具有更稳定的摩擦传动;且橡胶材料与树脂材料具有较好的弹性及减震性,使得摩擦块221具有更长的使用寿命。
可以理解的是,摩擦块221具有与第一驱动机构421接触的摩擦面2211,摩擦面2211与其周侧表面的连接处可以设置为弧形面,以防止摩擦结构22因刮蹭而损伤第一驱动机构421。
进一步的,固定块222与摩擦块221固定连接,以为摩擦块221提供设置基础。本申请实施例对固定块222与摩擦块221间的连接方式不作限定,连接方式可以为螺接、胶接、卡接中的至少一种。可以理解的是,在摩擦块221与第一驱动机构421摩擦传动的过程中,沿动子43的移动方向,摩擦块221沿移动方向的前端先与第一驱动机构421摩擦连接,摩擦块221沿移动方向的后端后与第一驱动机构421摩擦连接;本申请实施例通过设置固定块222在摩擦块221上的正投影覆盖摩擦块221,使得摩擦块221在与第一驱动机构421摩擦接触时,固定块222可以完全覆盖摩擦块221,使得摩擦块221的弹力可以更均匀地分布在固定块222上,避免摩擦块221在长期使用的过程中发生变形,进一步延长摩擦块221的使用寿命。
可以理解的是,当磁动力输送线41或者混合输送线40上具有弧形段44(如图14所示)时,动子43需要在传输线的弧形段44处进行转弯。由于摩擦块221与第一永磁阵列11间隔设置,由此使得摩擦块221与第一永磁阵列11在转弯时具有不同的转向角度/转向半径,可以根据实际工况需求以选择动子43在弧形段44处的运动形态, 也即根据工况的需求以选择动子43在转弯时使用第一永磁阵列11驱动或者使用摩擦块221驱动。本实施例中弧形段44处选择第一永磁阵列11驱动或者使用摩擦块221驱动的选择驱动方式与上文中在弧形段44处选择第一永磁阵列11驱动或使用从动组件20驱动的选择驱动方式相同,本实施例对此不做赘述。
请参见图2-4,张紧结构23包括导向杆231以及弹性件232。导向杆231的一端与固定结构21活动连接,导向杆231的另一端与固定块222固定连接;弹性件232套设于导向杆231,弹性件232的一端与固定块抵接,弹性件232的另一端与固定结构21抵接。本申请实施例对弹性件232的具体类型不做限制,例如弹性件232可以为弹片、弹簧或弹簧管等。
在一些实施例中,固定结构21设置有供导向杆231穿设的导向孔,导向杆231可以沿弹性件232的伸缩方向在导向孔内移动。进一步的,以弹性件232为弹簧为例,导向杆231可以在导向孔内进行相对移动,当摩擦块221与第一驱动机构421摩擦传动时,弹簧产生压缩形变,将摩擦结构22抵紧于第一驱动机构421。为了避免弹簧的移动方向及设置位置发生偏移,本申请实施例通过在固定结构21与摩擦结构22之间设置导向杆231,且弹簧套设于导向杆231上,使得弹簧只能沿导向杆231的轴向进行伸缩移动,从而避免弹簧发生其他方向的位置偏移。以弹簧加强压缩状态的过程为例,在弹簧进一步增强压缩状态的过程中,导向杆231相对于固定结构21移动,弹簧进一步被压缩,弹簧的弹力施加于固定结构21以及固定块222,以将摩擦块221抵紧于第一驱动机构421。其中,本申请实施例对导向杆231的制备材料不做限制,例如,导向杆231的制备材料可以为金属、木材或硬质塑料等。
请参见图5,在本申请一些实施例中,从动组件20包括两组,两组从动组件20位于动子本体10的相对两侧,两相对间隔设置的第一永磁体111位于两组从动组件20之间。本申请实施例对两组从动组件20的具体传动方式不作限定,两组从动组件20既可以具有相同的传动方式,也可以具有不同的传动方式,且两从动组件20的传动方式应当为摩擦传动、磁性吸附传动及固定接触传动中的至少一种。进一步的,当两组从动组件20的传动方式相同时,两组从动组件20既可以具有相同的设置结构,也可以具有不同的设置结构,例如,当两组传动组件的传动方式均为摩擦传动时,一组从动组件20中的摩擦块221的制备材料可以为橡胶,另一组从动组件20中的摩擦块221的制备材料可以为树脂;又如,当两组从动组件20的传动方式均为磁性吸附时,一组从动组件20可以通过行波磁场的方式与第一驱动机构421传动连接,另一组从动组件20可以通过三相电枢绕组的方式与第一驱动机构421传动连接。
可以理解的是,两组从动组件20位于动子本体10的相对两侧,可以使得动子43在运行过程中更加平稳。同时,两组从动组件20均可以与第一驱动机构421传动连接, 与一组从动组件20相比,动子43具有两组从动组件20相当于动子43具有两个驱动力,使得动子43的运输效率更高。
进一步的,由于两组从动组件20分别设置于动子本体10的相对两侧,可以理解的是,设置于动子本体10一侧的从动组件20称为第一从动组件25,设置于动子本体10另一侧的从动组件20称为第二从动组件26;也即,第一从动组件25与第一永磁阵列11间隔设置,第二从动组件26与第一从动组件25及第一永磁阵列11间隔设置。当磁动力输送线41或者混合输送线40上具有弧形段44时,动子43需要在传输线的弧形段44处进行转弯,由于两组从动组件20设置于动子本体10的相对两侧,由此使得第一永磁阵列11、第一从动组件25及第二从动组件26在转弯时具有不同的转向角度/转向半径,进而使得动子43可以根据实际工况需求以选择动子43在弧形段44处的运动形态,也即,根据工况的需求以选择动子43在转弯时使用第一永磁阵列11驱动、或者使用第一从动组件25驱动、或者使用第二从动组件26驱动。可以理解的是,本申请实施例中的第一从动组件25在弧形段44处的运动形态选择方式与前文中从动组件20在弧形段44(如图14所示)处的运动形态选择方式相同;本申请实施例中的第二从动组件26在弧形段44处的运动形态选择方式与前文中从动组件20在弧形段44处的运动形态选择方式相同,此处不再赘述。
需要说明的是,如图5所示,在一些实施例中,动子本体10的相对两侧分别设置有从动组件20,同时,动子本体10的两侧还可以分别设置有带滑动槽171的滑动块17,滑动块17上的滑动槽171可以与传输线上的第三导轨46(如图1所示)配合,从而引导动子43沿传输线的延伸方向移动,且动子43可以通过滑动槽171安装于传输线的第三导轨46上,以使滑动块17起到支撑动子43的作用。
请参见图6-7,在本申请一些实施例中,动子43还包括第一滑动组件31以及第二滑动组件32。第一滑动组件31设置于动子本体10,且第一滑动组件31用于可以动地安装于磁动力输送线41;第二滑动组件32设置于从动组件20,且与第一滑动组件31间隔设置,第二滑动组件32用于可移动地安装于混合输送线40。
可以理解的是,第一滑动组件31以及第二滑动组件32为动子43的移动起到支撑与导向限位的作用,使得动子43在运行过程中仍保持平稳。混合输送线40或者磁动力输送线41可以包括第三导轨46,第一滑动组件31及第二滑动组件32可以与不同位置的第三导轨46配合并沿第三导轨46移动,以为动子43的移动起到导向作用。
进一步的,当磁动力输送线41或者混合输送线40上具有弧形段44(如图14所示)时,动子43需要在传输线的弧形段44处进行转弯。由于第一滑动组件31及第二滑动组件32直接与导轨配合,且第一滑动组件31以及第二滑动组件32设置于第一永磁阵列11的两侧,由此使得第一滑动组件31与第二滑动组件32在转弯时具有不同的 转向角度/转向半径,可以根据实际工况需求以选择动子43在弧形段44处的运动形态,也即根据工况的需求以选择动子43在转弯时使用第一滑动组件31移动或使用第二滑动组件32移动。第一滑动及/或第二滑动组件32的选择同上文中选择动子43在转弯时使用第一永磁阵列11驱动或者使用从动组件20驱动选择方式,此处不再赘述。
本申请实施例对第一滑动组件31及第二滑动组件32的具体类型不做限制,第一滑动组件31既可以具有相同的设置结构,也可以具有不同的设置结构。例如,如图5所示,第一滑动组件31及/或第二滑动组件32可以包括带滑槽的滑块,滑槽用于容纳第三导轨46,动子43在移动时,可以带动滑块沿第三导轨46移动;再如,如图7所示,第一滑动组件31及/或第二滑动组件32可以包括滑动滚子,滑动滚子用于沿第三导轨46滚动,动子43在移动时,可以带动滑动滚子沿第三导轨46滚动,当然,第一滑动组件31及/或第二滑动组件32也可以同时包括具有滑槽的滑块以及滑动滚子,动子43在移动时,滑块沿第三导轨46移动,同时滑动滚子沿第三导轨46滚动;又如,第一滑动组件31及/或第二滑动组件32可以包括带滚珠的滑块,动子43在移动时,可以带动滚珠在第三导轨46上进行滚动,以带动滑块沿第三导轨46移动。
在一些实施例中,动子43包括第一滑动组件31,第一滑动组件31设置于动子本体10,且用于可移动地安装于磁动力输送线41,且第一滑动组件31与从动组件20间隔设置。本申请实施例中的第一滑动组件31与上文的第一滑动组件31相同,此处不做赘述。
可以理解的是,在本实施例中,动子本体10上的第一永磁阵列11与第一电枢绕组411以电流励磁的方式相互作用,动子本体10上的第一滑动组件31在相互作用力(即磁驱)下带动动子43沿导轨移动;从动组件20与第一驱动机构421传动连接,随第一驱动机构421的驱动带动动子43沿导轨移动。进一步的,当磁动力输送线41或者混合输送线40上具有弧形段44时,动子43需要在传输线的弧形段44处进行转弯。由于第一滑动组件31与从动组件20间隔设置,由此使得第一滑动组件31与从动组件20在转弯时具有不同的转向角度/转向半径,可以根据实际工况需求以选择动子43在弧形段44处的运动形态,也即根据工况的需求以选择动子43在转弯时经由第一滑动组件31带动或者经由从动组件20带动。本实施例中的经由第一滑动组件31带动或者经由从动组件20带动的选择方式同上文中选择动子43在转弯时使用第一永磁阵列11驱动或者使用从动组件20驱动选择方式,此处不再赘述。
请继续参见图6-7,在本申请一些实施例中,第一驱动机构421包括第二电枢绕组(图中未示出),从动组件20包括第二永磁阵列24,第二永磁阵列24包括至少一个第二永磁体241,第二永磁体241与第二电枢绕组以电流励磁的方式驱动动子本体10沿磁动力输送线41或者混合输送线40移动。
需要说明的是,当从动组件20与第一驱动机构421之间通过磁性吸附传动时,从动组件20中的第二永磁阵列24与第一驱动机构421中的第二电枢绕组耦合,从而驱动动子本体10沿磁动力输送线41或者混合输送线40移动。其中,第二永磁体241的数量可以为一个或多个。
还需要说明的是,以第一电枢绕组411产生行波磁场为例,行波磁场波峰的移动可以产生电磁推力,以带动第二永磁阵列24运动,驱动从动组件20以及动子本体10移动;以第一电枢绕组411为三相交流线圈为例,三相交流线圈通电并在励磁电流下产生驱动力,从而带动第二永磁阵列24运动,驱动从动组件20以及动子本体10移动。
进一步地,在本申请一些实施例中,动子43还包括距离传感装置(图中未示出),距离传感装置与动子本体10连接,距离传感装置与磁动力输送线41或者混合输送线40配合,用于检测动子43的运动位置。
需要说明的是,距离传感装置可以检测动子43的运动位置,由此可以根据动子43的运动时间及动子43的运动距离以计算出动子43的运动速度。其中,本申请实施例对位置传感装置的类型以及位置传感装置的设置位置均不做具体限制。例如,在磁动力输送线41或者混合输送线40上设置有反射条,距离传感器为红外线传感器,红外线传感器可以发射红外线,并通过反射条反射的红外线得知动子43此时的初始位置,在动子43运动一段距离后,可以通过红外线传感器得到动子43的运动距离;又如,距离传感器为超声波传感器,超声波传感器发射出超声波,通过反射条反射的超声波得知动子43此时的初始位置,在动子43运动一段距离后,可以通过超声波传感器得到动子43的运动距离。
本申请提供一种动子及混合输送线,以解决以磁动力作为动力驱动的混合输送线中,当需要动子承担更大的载重时,往往需要更换动子以适配不同的载重的问题。
本申请提供一种动子,如图8和图18所示,动子43包括动子本体10以及第一磁钢组1111。
其中,动子本体10具有容纳槽13,容纳槽13沿第一预设方向AA延伸以贯穿动子本体10的两端,且容纳槽13沿第二预设方向BB延伸,以在动子本体10的一侧上形成供第一电枢绕组411出入容纳槽13的槽口131,第二预设方向BB与第一预设方向AA垂直;容纳槽13包括第一槽壁132、第二槽壁133以及第三槽壁134,第三槽壁134与槽口131相对设置,第一槽壁132与第二槽壁133相对设置,且分别位于第三槽壁134的两侧;第一磁钢组1111设置于第一槽壁132,第一磁钢组1111包括至少一沿第一预设方向AA排布的磁体模组,磁体模组与动子本体10可拆卸连接,磁体模组包括多个沿第一预设方向AA排布的子磁体。
需要说明的是,动子43用于承载待输运物,动子43为磁动力动子43,参见图18,工作时,动子43可以放置在磁动力输送线41上。以图18为例,第一预设方向AA与磁动力输送线41的长度延伸方向平行,第二预设方向BB与磁动力输送线41的宽度延伸方向平行。
磁动力输送线41具有第一电枢绕组411,第一电枢绕组411沿第二预设方向BB通过槽口131插入容纳槽13中,第一电枢绕组411具有线圈(图中未示出),线圈在通电时会产生磁场,动子43的第一磁钢组1111在线圈的电流励磁下产生驱动力,推动整个动子43沿着第一电枢绕组411的延伸方向移动,从而实现待输运物的输运;磁动力输送线41的具体工作原理在相关技术中早有公示,本申请不做赘叙。
还需要说明的是,在线圈中的电流不变的基础上,第一磁钢组1111所产生的磁场越强,从而使得第一磁钢组1111的磁力越强,当线圈在通电时,动子43可以获得更大的驱动力,从而使得动子43可以承担的载重也越大。在本申请实施例中,磁体模组可拆卸地设置于第一槽壁132,通过改变第一磁钢组1111中磁体模组的数量来改变第一磁钢组1111的磁力。当需要动子43承担更大的载重时,可以仅通过增加磁体模组的数量来提高第一磁钢组1111的磁力,从而提高动子43的载重能力,无需更换动子43以适配不同的载重。
其中,磁体模组可以通过螺纹连接、卡扣连接、胶接等连接方式实现与动子本体10的可拆卸连接;第一磁钢组1111中磁体模组的数量可以为1个、2个或更多个,磁体模组的数量可以根据动子43的载重需求进行选择。
在本申请一实施例中,磁体模组中的多个子磁体排列成海尔贝克阵列(Halbach Array)。可以理解的是,海尔贝克阵列是一种磁体结构,可以用少量的子磁体产生较强的磁场,海尔贝克阵列可以在磁体的一侧汇聚磁力线,在磁体的另一侧削弱磁力线,从而使得在磁体模组中子磁体的数量不变的基础上,增强磁体模组产生的磁场的强度,以获得较为理想的单边磁场;海尔贝克阵列的具体原理在相关技术中早有公示,本申请不做赘叙。可以理解的是,海尔贝克阵列中磁力线较密集的一侧应当靠近线圈设置,以进一步使得动子43获得更大的驱动力。
继续参见图8和图18所示,在本申请一实施例中,磁体模组还包括安装架1113,安装架1113与动子本体10可拆卸连接,安装架1113与动子本体10的可拆卸连接方式包括但不限于螺接、胶接、卡接的至少一种。可以理解的是,磁体模组中的子磁体安装于安装架1113上,以便于子磁体在动子本体10上的安装,且使得安装于动子本体10上的子磁体在第一预设方向AA上的排布更加整齐,由此使得磁体模组具有更加均匀、稳定的磁场;子磁体可以固定于安装架1113上,以防止动子43移动过程中子 磁体从安装架1113上掉落,当然,根据实际需求,子磁体也可以与安装架1113可拆卸连接。
在一些实施例中,子磁体为强力磁体且具有强磁,为避免磁泄露或避免强磁对电子元件造成负面影响,安装架1113可以由难以被磁化的材料制成。例如,安装架1113可以为如不锈钢、铝、铜等材料,在保证子磁体安装稳定的基础上,还可以隔离强磁。
本申请实施例对设置于安装架1113上的子磁体的排布方式不作限定。例如,安装架1113上设置有与子磁体一一对应的安装槽11131,相邻两个子磁体间隔设置且安装于对应的安装槽11131中,安装槽11131可以防止子磁体发生移动,同时可以为子磁体提供安装定位;或者,安装架1113上设置有一个安装槽11131,相邻的两子磁体邻接且设置于安装槽11131中。
参见图9所示,在本申请一些实施例中,磁体模组包括沿第一预设方向AA排布的第一子磁体1114、第二子磁体1115、第三子磁体1116以及第四子磁体1117。可以理解的是,磁体模组中的子磁体数量过少时,每一磁体模组的磁力较小,需要增加动子43的磁力时需要装载更多的磁体模组,这会增加工作强度,此外,磁体模组中的子磁体数量过少时,磁体模组中的子磁体难以排列形成海尔贝克阵列。
在一些实施例中,第一子磁体1114、第二子磁体1115、第三子磁体1116以及第四子磁体1117均为普通磁体/强力磁体,且第一子磁体1114、第二子磁体1115、第三子磁体1116以及第四子磁体1117的排布方式可以为NSNS或者SNSN。
进一步的,继续参见图9所示,第一子磁体1114的磁化方向沿第三预设方向X,第三预设方向X与第一预设方向AA以及第二预设方向BB垂直;
第二子磁体1115的磁化方向沿第四预设方向Y,第四预设方向Y与第一预设方向AA平行;
第三子磁体1116的磁化方向沿第五预设方向-X,第五预设方向-X与第三预设方向X相反;
第四子磁体1117的磁化方向沿第六预设方向-Y,第六预设方向-Y与第四预设方向Y相反。
可以理解的是,第一子磁体1114、第二子磁体1115、第三子磁体1116以及第四子磁体1117典型地采用海尔贝克阵列进行排布,其中,第一子磁体1114和第三子磁体1116为主磁体,第二子磁体1115和第四子磁体1117为辅助磁体;或者,第一子磁体1114及第三子磁体1116均为普通磁体/强力磁体,第二子磁体1115及第四子磁体1117均为海尔贝克磁体,第二子磁体1115及第四子磁体1117至少可以影响第一子磁 体1114及第三子磁体1116的磁场排布,由此使得磁体模组在靠近第一电枢绕组411的一侧具有更加密集的磁力线。以第一电枢绕组411插入容纳槽13时第三预设方向X为由第一子磁体1114指向第一电枢绕组411的方向为例,第一子磁体1114靠近第一电枢绕组411的一侧的磁极为N极,第三子磁体1116靠近第一电枢绕组411的一侧的磁极为S极。
继续参见图9所示,在本申请一些实施例中,第一磁钢组1111包括多个磁体模组,第一磁钢组1111中的多个磁体模组沿第一预设方向AA排布,且多个磁体模组分别与动子本体10可拆卸连接。可以理解的是,每个磁体模组与动子本体10的连接均是独立的,即每个磁体模组均可以单独从动子本体10上进行拆装。
在本申请一实施例中,第一磁钢组1111的多个磁体模组中具有至少一第一磁体模组1118或/和至少一第二磁体模组1119。
其中,第一磁体模组1118中的第一子磁体1114、第二子磁体1115、第三子磁体1116以及第四子磁体1117沿第一预设方向AA依次排布;第二磁体模组1119中的第二子磁体1115、第一子磁体1114、第四子磁体1117以及第三子磁体1116均沿第一预设方向AA依次排布。
需要说明的是,第一磁钢组1111的多个磁体模组中具有第一磁体模组1118时,第一磁体模组1118的数量可以为1个、2个或更多个;第一磁钢组1111的多个磁体模组中具有第二磁体模组1119时,第二磁体模组1119的数量可以为1个、2个或更多个;以第一子磁体1114靠近第一电枢绕组411的一侧的磁极为N极,第三子磁体1116靠近第一电枢绕组411的一侧的磁极为S极,并以H指代第二子磁体1115和第四子磁体1117为例,第一磁体模组1118中子磁体的排布方式NHSH,第二磁体模组1119中子磁体的排布方式HNHS,以使得第一磁体模组1118与第二磁体模组1119中的子磁体均可以排列成海尔贝克阵列;此外,第一磁体模组1118与第二磁体模组1119也可以相互组合,从而可以增加动子43中第一磁钢组1111的结构多样性;通过改变第一磁体模组1118及/或第二磁体模组1119的设置数量,以改变动子43的承重范围。
进一步的,当第一磁钢组1111的多个磁体模组中同时具有至少一第一磁体模组1118和至少一第二磁体模组1119时,第一磁体模组1118与第二磁体模组1119既可以紧密地依次排列,第一磁体模组1118与第二磁体模组1119也可以相互间隔设置。
如图10所示,当第一磁钢组1111的多个磁体模组中具有多个第一磁体模组1118和多个第二磁体模组1119时,多个第一磁体模组1118或/和多个第二磁体模组1119可以连续排布,例如多个第一磁体模组1118的排布方式可以为NHSH\NHSH,多个第一磁体模组1118的排布方式可以为HNHS\HNHS。
当然,如图11所示,第一磁体模组1118也可以与第二磁体模组1119交替排布,例如,排布方式可以为NHSH\HNHS\NHSH。
在本申请一实施例中,如图12所示,第一磁钢组1111中,位于第一磁钢组1111的第一端的子磁体的磁化方向沿第三预设方向X,位于第一磁钢组1111的第二端的子磁体的磁化方向沿第五预设方向-X,以使得位于第一磁钢组1111的两端的两个子磁体,靠近第一电枢绕组411的一侧的磁极分别为N极和S极,以形成磁感线的闭环。
在本申请一些实施例中,如图12所示,第一磁钢组1111中,沿第一预设方向AA,位于第一磁钢组1111的第一端的子磁体的磁化方向沿第四预设方向Y,位于第一磁体模组1118的第二端的子磁体的磁化方向沿第六预设方向-Y。也即,沿第一预设方向AA,第一磁钢组1111两端的磁极分别为N极和S极,以形成磁感线的闭环。
如图13所示,在本申请一实施例中,动子43还包括第二磁钢组1112,第二磁钢组1112设置于第二槽壁133,第二磁钢组1112与第一磁钢组1111相对设置且相间隔;第二磁钢组1112包括至少一个磁体模组,第二磁钢组1112中的子磁体与第一磁钢组1111中的子磁体一一对应,且第二磁钢组1112中的子磁体的磁化方向,与第一磁钢组1111中对应的子磁体的磁化方向相同。
可以理解的是,第一电枢绕组411插入容纳槽13时,第一电枢绕组411位于第一磁钢组1111与第二磁钢组1112之间,通过在第一电枢绕组411的两侧分别设置两排相对设置的子磁体阵列,在动子43体积不变的基础上,可以进一步增强动子43的磁力。
进一步的,第一磁钢组1111靠近第二磁钢组1112的一侧获得磁场增强,第二磁钢组1112靠近第一磁钢组1111的一侧获得磁场增强。可以理解的是,第一电枢绕组411插入容纳槽13时,第一磁钢组1111靠近第二磁钢组1112的一侧为第一磁钢组1111面向第一电枢绕组411的一侧,第二磁钢组1112靠近第一磁钢组1111的一侧为第二磁钢组1112面向第一电枢绕组411的一侧,海尔贝克阵列具有单侧磁密特性(即磁场增强),本申请实施例中将第一磁钢组1111获得磁场增强的一侧设置为第一磁钢组1111面向第一电枢绕组411的一侧,将第二磁钢组1112获得磁场增强的一侧设置为第二磁钢组1112面向第一电枢绕组411的一侧,当线圈在通电时,动子43可以获得更大的驱动力,从而可以进一步提高动子43的载重能力。
第二方面,请参见图14-30,本申请提出了一种混合输送线40,包括磁动力输送线41、辅助输送线42以及如上述任一实施例中的动子43,动子43可移动地安装于磁动力输送线41或辅助输送线42,磁动力输送线41包括第一电枢绕组411以及第一导轨412,第一永磁阵列11与第一电枢绕组411配合以驱动动子43沿第一导轨412移 动;辅助输送线42包括第一驱动机构421以及第二导轨422;从动组件20与第一驱动机构421配合以驱动动子43沿第二导轨422移动。
需要说明的是,本申请实施例通过在动子43上设置从动组件20,使得动子43可以在不同的传输线类型中进行应用,尤其是对于一些输送精度要求较低、输送速度无要求的传输线路段,可以将该传输线路段更换为混合输送线40,以降低整体传输线的设置成本。
请参照图14,在一些实施例中,磁动力输送线41的延伸方向既可以与辅助输送线42的延伸方向相同,磁动力输送线41的延伸方向也可以与辅助输送线42的延伸方向不同。
具体地,如图15所示,动子43可以包括与第一导轨412或第二导轨422配合的滑动组件,滑动组件用于沿第一导轨412或第二导轨422移动,第一导轨412或第二导轨422可以用于引导和限制动子43的移动路径,使得动子43可以沿第一导轨412或第二导轨422的延伸方向移动,避免动子43在运行过程中出现脱轨等负面情况。
进一步地,请参见图14,在本申请一些实施例中,动子43设置有多个,每一动子43均包括缓冲件33(如图5所示),多个动子43均安装于磁动力输送线41或辅助输送线42时,沿动子43的移动方向,缓冲件33对应设置于动子本体10的相对两侧。
需要说明的是,在磁动力输送线41或辅助输送线42上,每个动子43相对于所有的其他动子43而言,都是相互独立运动的。为降低多个动子43在同一传输线2上运行发生意外碰撞时造成的负面影响,本实施例设置的相邻两个动子43的缓冲件33先接触,缓冲件33可以首先变形吸收冲击产生的能量,减缓撞击力,以保护动子43和动子43上被运输物料的安全。其中,缓冲件33的制备材料可以使用具有弹性和韧性的材料,例如橡胶、树脂或塑料等。
进一步地,请参见图14-17,在本申请一些实施例中,混合输送线40具有至少一弧形段44,在弧形段44处,第一导轨412与第二导轨422非共线设置。
需要说明的是,当动子43在混合输送线40上移动且混合输送线40具有弧形段44时,动子43需要在传输线的弧形段44处进行转弯。由于第一导轨412与第二导轨422非共线设置,由此使得第一导轨412与第二导轨422在转弯时具有不同的转向角度/转向半径,可以根据实际工况需求以选择动子43在弧形段44处的运动形态,也即根据工况的需求以选择动子43在转弯时经由第一导轨412导向或者经由第二导轨422导向。可以理解的是,在一些实施例中,若从动组件20与第一驱动机构421(即动子43在第二导轨422上运动)相较于第一永磁阵列11与第一电枢绕组411(即动子43在第一导轨412上运动)具有更加稳定的配合结构,在弧形段44处,第二导轨422 可以具有较长的运动行程,或者,第二导轨422可以具有较大的转向角度,以保证动子43在弧形段44运动的稳定;在一些实施例中,第二导轨422可以具有较短的运动行程,或者,第二导轨422可以具有较小的转向角度,以使得动子43在弧形段44也可以具有较高的运动速度;在一些实施例中,动子43在弧形段44处仅与第一电枢绕组411及第一驱动机构421中的一者配合,也即,动子43仅在第一导轨412及第二导轨422中的一者上移动,由此可以降低传输线体的设置成本。可以理解的是,在一些实施例中,若从动组件20与第一驱动机构421相较于第一永磁阵列11与第一电枢绕组411具有更低的设置成本,在直线段或弧形段44处,可以仅设置从动组件20与第一驱动机构421传动连接,以降低整体输送线的设置成本。
随着生产制造自动化的发展,磁动力输送线越来越多地应用于产品加工制造的输送环节,以实现处于不同加工工位之间的半成品传递。
磁动力输送线的输送速度快、定位精确高且生产节拍柔性(磁动力输送线上的运送半成品的动子的移动速度可根据生产节拍的时间周期需求进行设置)等特点在产品的输送环节的作用得到肯定;但是磁动力输送线造价较高,整条生产线使用磁动力输送线导致生产线的部署成本过高。
为了解决上述问题,请参见图19至图20,本申请实施例提供一种辅助输送线42以及混合输送线40,混合输送线40包括磁动力输送线41、辅助输送线42以及动子43。
辅助输送线42用于与磁动力输送线41配合且两者都可驱动动子43移动,辅助输送线42的部署成本较低,磁动力输送线41的部署成本较高,实际生产线部署时,回流工序环节、定位精度以及传输速度要求不高的工序环节可使用辅助输送线42,输送精度以及传输速度要求较高的工艺环节可使用磁动力输送线41;且辅助输送线42与磁动力输送线41可以组合以构成混合输送线40,确保生产线具有柔性高效的基础上,降低生产线的部署成本。
进一步地,请结合图19至图21,辅助输送线42可包括第二导轨422、第一驱动机构421以及位置传感组件423,动子43可包括滑块34,第二导轨422通常沿直线延伸,滑块34与第二导轨422构成直线导轨,滑块34可沿第二导轨422的延伸方向移动,第二导轨422以引导和限制动子43的移动路径。本实施例对辅助输送线42的设置形式不作限定,辅助输送线42既可以设置为直线输送线,也可以设置为曲线输送线,例如弧形输送线。
本申请实施例对滑块34的具体设置结构不作限定,滑块34可以以多种类型的结构与第二导轨422配合,以实现在第二导轨422上的运动。例如,滑块34可以包括带 滑槽的滑块,滑槽用于容纳第二导轨422,动子43在移动时,可以带动滑块沿第二导轨422移动;再如滑块34可以为滑动滚子,滑动滚子用于沿第二导轨422滚动,动子43在移动时,可以带动滑动滚子沿第二导轨422滚动,当然,滑块34也可以同时包括具有滑槽的滑块以及滑动滚子,动子43在移动时,滑块沿第二导轨422移动,同时滑动滚子沿第二导轨422滚动;又如,滑块34可以为带滚珠的滑块(即滚珠滑块),动子43在移动时,可以带动滚珠滑块中的滚珠在第二导轨422上进行滚动,进而使得滚珠滑块沿第二导轨422移动。
滑块34通常采用经过调质处理的45钢,因经过调质处理的45钢可增加滑块34的耐磨性,可使滑块34承受与第二导轨422滑动连接而产生的滑动摩擦力,进而可提高滑块34的使用寿命;第二导轨422的材料通常为轴承钢、碳钢以及不锈钢等,此种材料的应用可提高第二导轨422的强度、硬度以及耐磨性,以提高第二导轨422的使用寿命;进一步地,第二导轨422通常采用机械加工方式以及冷拔加工方式等方式制成,可增加第二导轨422的抗拉强度,以保证滑块34与第二导轨422滑动连接的顺畅性以及稳定性。
进一步地,第一驱动机构421用以驱动滑块34沿第二导轨422(例如附图20中的第二导轨422沿直线延伸)进行移动,第一驱动机构421可包括传送件4211以及对接结构4214,传送件4211可以包括同步带轮4212、直线电机、旋转电机、丝杆、齿条等。对接结构4214可包括摩擦传送结构、固定传送结构以及磁传送结构中的至少一种,本实施例对此不作限定。
以传送件4211为同步带轮4212和摩擦传送结构为同步带4215为例进行展开叙述,请结合图19至图22,同步带轮4212与同步带4215传动连接以带动至少部分同步带4215沿引导方向S移动,同步带4215用于连接动子43,以使动子43沿第二导轨422移动。
请参照图22结合图19,第一驱动机构421可包括以摩擦传送结构实现对接的对接结构4214,具体地,对接结构4214可包括同步带4215;传送件4211包括同步带轮4212以及用于支撑同步带4215的支撑结构4213。同步带轮4212可设置为两个,两个同步带轮4212间隔设置,且同步带4215套设于两个同步带轮4212的周侧,且同步带4215的传送方向与第二导轨422的引导方向S平行;同步带轮4212带动同步带4215进行转动;在一些实施例中,同步带轮4212周侧可设置有连接齿,同步带4215靠近同步带轮4212的一侧开设有齿槽,随着同步带轮4212的转动,连接齿与齿槽卡接以及脱离,使同步带轮4212带动同步带4215进行转动;同时利用连接齿与齿槽间的卡接以及脱离,可使同步带轮4212与同步带4215连接地较为稳定,以提高同步带4215运行平稳性。
同步带轮4212与同步带4215的传动连接处也可设置相互啮合的传动齿,随着同步带轮4212的转动,带动同步带4215进行转动。需要说明的是,同步带4215以及同步带轮4212的传动连接的方式在本申请中不做限定,可根据实际的需求进行设置。
进一步地,第一驱动机构421可与第二导轨422位于同一安装平面内(请结合图19,同步带4215与第二导轨422安装于同一水平台面),同步带4215可位于第二导轨422的左侧或者右侧(根据查看角度不同,也可认为是前侧或者后侧);在一些实施例中,同步带4215也可与第二导轨422安装于同一竖直面内(例如同步带4215与第二导轨422安装于同一垂直台面),同步带4215位于第二导轨422的上侧或者下侧;需要说明的是,同步带4215相对于第二导轨422的位置取决于动子43的结构,空间位置允许的情况下,可通过调整动子43的结构,以确定同步带4215与第二导轨422的位置关系;本申请对同步带4215与第二导轨422间的位置关系不做限定,可根据实际的需求设置。
在一些实施例中,请参见图23,同步带轮4212可设置有多个,多个同步带轮4212间隔设置,且同步带4215套接于多个同步带轮4212的周侧;多个同步带轮4212中位于两端部的同步带轮4212作为主动轮,可为同步带4215的传动提供动力,而位于中部位置的同步带轮4212作为从动轮,可为同步带4215提供支撑,以避免同步带4215因承载过大发生变形而影响同步带4215的转动;在一些实施例中,位于中部的同步带轮4212也作为主动轮(位于中部的同步带轮4212受到驱动力驱动),对同步带4215进行支撑的基础上也可为同步带4215的传动提供动力。需要说明的是,多个同步带轮4212中相邻两者间的间隔可根据同步带4215的长度进行设置。
在一些实施例中,第一驱动机构421也可包括以固定传送结构实现对接的对接结构4214,例如,对接结构4214与动子43中的一者设置有齿轮,另一者设置有齿条,通过齿轮与齿条的啮合以带动动子43做直线运动,进而可使动子43沿第二导轨422的引导方向S传动;或者,在一些实施例中,第一驱动机构421也可包括以皮带传送系统实现对接的对接结构4214以及皮带,具体地,对接结构4214可为板链,板链设置于皮带且可以与动子43固定连接,通过皮带的运动,带动板链的运动,进而带动动子43的运动,由此使得动子43可以沿第二导轨422的引导方向S传动;又如,在一些实施例中,第一驱动机构421包括同步带4215以及同步带轮4212,同步带4215具有可以与拨叉固定连接的拨杆,动子43具有拨叉,拨杆随同步带轮4212的运动与拨叉固定连接,进而带动动子43沿第二导轨422的引导方向S传动。
进一步地,同步带4215用于连接动子43,以使动子43沿第二导轨422的引导方向S移动,同步带4215可以以摩擦传动方式与动子43实现对接,具体来说,动子43用于承载半成品,通过动子43的位置移动将半成品运送至对应的加工工位。请参见图 24并结合图19,动子43包括动子本体10、固定结构21以及从动组件20,固定结构21通过螺钉安装固定于动子本体10,以确保固定结构21与动子本体10间连接的牢固性;滑块34与第二导轨422滑动配合且沿第二导轨422的引导方向S移动,滑块34与动子本体10固定连接,进而可使滑块34沿第二导轨422的引导方向S移动。
在一些实施例中,固定结构21以及滑块34两者可通过焊接或卡接安装于动子本体10;固定结构21以及滑块34也可与动子本体10一体铸造成型,提高固定结构21与动子本体10的整体性,铸造材料可为铸造合金(包括铸铁、铸钢以及铸造非铁合金等)或者铸造塑料(包括聚苯乙烯、聚酯树脂以及环氧树脂等)。
进一步地,请参见图24结合图19,固定结构21可设置为板状,且板状的固定结构21所在的平面与同步带4215的带面平行;固定结构21上开设有通孔(图中未示出),且通孔的中轴线与同步带4215的带面垂直。
从动组件20可包括摩擦结构22、导向杆231以及弹性件(图中未示出),导向杆231的一端可活动穿设于通孔内,另一端与摩擦结构22通过螺钉固定连接,以使摩擦结构22可在通孔的位置限定下,沿通孔的中轴线方向(垂直于同步带4215的带面的方向)做往复运动。为了确保摩擦结构22与导向杆231连接牢固性,导向杆231与摩擦结构22的固定的方式可为焊接或是一体成型等,本申请不做限定,可根据实际的需求进行设置。
为了使摩擦结构22在导向杆231的长度范围内沿通孔的中轴线方向做往复运动,导向杆231远离摩擦结构22的一端设置有挡位部2311,挡位部2311可为档位圈或是档位头等,以避免导向杆231脱离固定结构21的通孔限定的移动区间。
进一步地,摩擦结构22与同步带4215摩擦传动,摩擦结构22可在同步带4215的带动下发生位置移动,进而可使同步带4215带动动子43沿第二导轨422的引导方向S进行移动;摩擦传动的传动方式简单,可节省实现摩擦结构22与同步带4215间传动连接的成本。
为了确保摩擦结构22与同步带4215之间产生的摩擦力,足以使同步带4215带动摩擦结构22进行位置移动,可将弹性件套设在导向杆231的周侧,且位于固定结构21与摩擦结构22之间,利用弹性件的弹力以确保摩擦结构22传输至同步带4215的压力,根据摩擦力的公式:f=μ*FN,在摩擦系数μ一定的情况下,摩擦结构22传递至同步带4215的压力FN越大,摩擦结构22与同步带4215间的摩擦力f越大。
在一些实施例中,动子43与同步带4215的对接结构4214也可包括以固定传送方式实现对接的对接结构4214,以及以磁性吸附方式实现对接的对接结构4214,两者的作用过程以及作用原理较为常规,不做具体叙述。
为了进一步地提高摩擦结构22施加于同步带4215带面的压力,请参见图25,固定结构21具有靠近同步带4215带面的安装面211,摩擦结构22具有靠近同步带4215的摩擦面2211,同步带4215具有内接触面4216以及外接触面4217(同步带4215的内接触面4216以及外接触面4217为同步带4215带面的相对两面,内接触面4216位于同步带4215围成的环状结构的内部,而外接触面4217位于同步带4215围成的环状结构的外部),同步带4215的内接触面4216以及外接触面4217两者的传送部位都可与水平面平行。同步带轮4212与同步带4215的内接触面4216接触,通过摩擦传动的方式以使同步带轮4212带动同步带4215转动;摩擦结构22与同步带4215的外接触面4217接触,摩擦结构22与同步带4215的外接触面4217摩擦传动以带动摩擦结构22位置移动,以实现动子43的位置移动。
同步带4215的外接触面4217与固定结构21的安装面211对应设置,沿通孔的中轴线的延伸方向,固定结构21的安装面211至同步带4215的内接触面4216间的距离为L1mm,固定结构21的安装面211至同步带4215的外接触面4217间的距离为L2mm,固定结构21的安装面211至摩擦结构22的摩擦面2211间的距离为L3mm,满足条件式:L1mm>L3mm>L2mm。
通过满足上述的条件式,可使摩擦结构22与同步带4215的外接触面4217过盈配合,增加摩擦结构22与同步带4215的外接触面4217间的压力,进而增加摩擦结构22与同步带4215间的摩擦力,提高摩擦结构22与同步带4215间的摩擦传动的可靠性,以使同步带4215带动摩擦结构22进行移动。
在一些实施例中,同步带4215的内接触面4216以及外接触面4217两者也都可与水平面垂直,外接触面4217与安装面211之间的距离小于摩擦面2211与安装面211之间的距离,使摩擦结构22与同步带4215的带面之间过盈配合以增加两者间的摩擦力。
进一步地,请参见图22并结合图19、图25,传送件4211还包括用于支撑同步带4215的支撑结构4213,支撑结构4213沿同步带4215的传送方向延伸;此时将位于两同步带轮4212之间且相对设置的同步带4215的内接触面4216分别记为第一内接部42161以及第二内接部42162;支撑结构4213位于两同步带轮4212之间,且位于两同步带轮4212与同步带4215围设范围内,支撑结构4213可包括两组,一组与第一内接部42161抵接,另一与第二内接部42162抵接,进而支撑结构4213可支撑与第一内接部42161以及第二内接部42162对应的同步带4215,避免同步带4215在重力的作用下变形,以确保同步带4215转动的平顺性。
在一些实施例中,根据动子43与同步带4215对接的位置不同,动子43可分别与第一内接部42161以及第二内接部42162对应的同步带4215的外接触面4217摩擦传动,以提高辅助输送线42的输送方式的多样性以及灵活性。
在一些实施例中,支撑结构4213也可包括一组,且与第一内接部42161(或者第二内接部42162)抵接,以对同步带4215进行支撑;同时动子43可与第一内接部42161对应的同步带4215的外接触面4217摩擦传动(或者动子43可与第二内接部42162对应的同步带4215的外接触面4217摩擦传动),支撑结构4213的位置可根据实际需求进行设置,本申请不做限定。
进一步地,请参见图22,支撑结构4213可包括硬质支撑板42131以及软质支撑板42132,硬质支撑板42131与软质支撑板42132可沿垂直于同步带4215表面的方向堆叠设置,且软质支撑板42132位于硬质支撑板42131与同步带4215之间,软质支撑板42132用于支撑同步带4215带动动子43移动的位置。
软质支撑板42132的材料可为塑料,且与同步带4215接触,用于缓冲动子43的负载;硬质支撑板42131可为型材,用于对同步带4215进行支撑,以保证同步带4215运行的平顺性。同时软质支撑板42132具有与同步带4215接触的光滑面,当定子具有较重的负载时,硬质支撑板42131用于支撑同步带4215,以确保同步带4215的转动,同时软质支撑板42132的光滑面可减小同步带4215与软质支撑板42132间的摩擦,以提高同步带4215的输送速度;且当定子具有较重的负载时,软质支撑板42132也可以为硬质支撑板42131的设置起到缓冲作用。
进一步地,支撑结构4213还包括至少两个过渡件42133,两过渡件42133设置在软质支撑板42132与同步带4215之间,起到张紧同步带4215的作用;同时两过渡件42133位于软质支撑板42132的靠近同步带轮4212的两端,可以抬升同步带4215的端面高度,以使抬高的同步带4215的带面与水平面平行;同时通过抬升同步带4215的端面高度以使得摩擦块与同步带4215更好地抵接,进而提高摩擦结构22与同步带4215间的摩擦力。
进一步地,过渡件42133的设置使摩擦结构22可较为稳定地与同步带4215摩擦传动连接,且动子43由辅助输送线42过渡至磁动力输送线41时,过渡件42133的设置使得动子43可更稳定地移动至磁动力输送线41。
为了能够根据需求调整动子43的移动速度,请参见图21结合图19,位置传感组件423包括多个位置传感器4231以及与多个位置传感器4231电连接的控制器(图中未示出),多个位置传感器4231沿第二导轨422的引导方向S依次排布且与第二导轨422通过连接板螺接,以使位置传感器4231与辅助传感器牢固连接。在一些实施例中, 位置传感器4231与第二导轨422的连接方式也可为粘接或是卡接等,也可根据实际的需求进行设置,本申请不做限定。
动子43经过位置传感器4231时,位置传感器4231可检测动子43的位置信息(位置信息包括动子43的位置以及动子43的速度),并输出动子43的位置信息至控制器,控制器根据接收到的动子43的位置信息调节同步带4215的传动速度,同时动子43与同步带4215摩擦传动,进而动子43的移动速度根据同步带4215的速度的变化而变化,进而可根据动子43移动的实际需求,通过控制器对同步带轮4212的转动速度进行调节。
进一步地,位置传感器4231可包括信号发射器(图中未示出)以及信号接收器(图中未示出),信号接收器可安装于第二导轨422的一侧且与第二导轨422通过螺栓固定连接,信号发射器可安装于动子43,动子43沿第二导轨422移动,可触发信号发射器发出信号,信号接收器接收到信号发射器发出的信号发生变化时,信号接收器输出动子43的位置信息至控制器。
通过控制同步带4215的转动速度,以调节动子43的移动速度,进而动子43由磁动力输送线41移动至辅助输送线42时,可增加动子43的移动速度,以使动子43在辅助输送线42上时可快速移动,动子43由辅助输送线42移动至磁动力输送线41时,可减小动子43的移动速度,以使动子43可较为平稳地由辅助输送线42移动至磁动力输送线41。
在一些实施例中,信号发射器也可安装于第二导轨422的一侧,而信号接收器安装于动子43,信号接收器接收到信号发射器发出的信号发生变化时,信号接收器输出动子43的位置信息至控制器。
在一些实施例中,信号发射器以及信号接收器两者都可安装于第二导轨422,动子43沿第二导轨422的引导方向S进行移动时,信号接收器接收到信号发射器发出的信号发生变化时,信号接收器输出动子43的位置信息至控制器。
进一步地,位置传感器4231可包括磁栅式传感器,磁栅式传感器可包括磁栅、磁头以及检测电路;磁栅用于记录一定功率的正弦信号或是矩形信号,磁头用于读写磁栅上的正弦信号或是矩形信号,且将读写的信号转换为电信号传输至控制器。
磁头可包括动态磁头以及静态磁头两种,动态磁头与静态磁头区分是由两者读取信号的方式决定的。动态磁头包括一组输出绕组,动态磁头相对于磁栅运动时,动态磁头才能读写磁栅上的信号,且可将读写的信号转换为电信号传输至控制器;进而可将动态磁头安装于动子43,随着动子43在同步带4215的带动下沿第二导轨422移动,以使动态磁头输出一定频率的正弦信号或是矩形信号至控制器。
静态磁头在铁芯上绕有两个线圈,两个线圈包括激磁绕组以及输出绕组;静态磁头与磁栅间无相对运动,通常由若干个磁头串行连接构成静态磁头体,静态磁头体置于磁栅的一侧。
当在激磁绕组上施加交变的激磁信号时,每个交变信号周期内两次激磁信号产生磁通使铁芯饱和,铁芯的磁阻很大,磁栅上的信号磁通不能通过磁头,因而输出绕组不能输出感应电势;当每个交变信号周期内激磁信号两次过零时,铁芯不饱和,磁栅上的信号磁通能够通过输出绕组的铁芯,以使输出绕组输出感应电势。
此时可静态磁头作为信号发射器以及磁栅作为信号接收器两者都可安装于第二导轨422,动子43沿第二导轨422的引导方向S移动,以使静态磁头可读写出磁栅上的信号,并将读写的信号输送至控制器。
在一些实施例中,位置传感器4231也可以一个或多个为霍尔传感器,霍尔传感器设置于第二导轨422的至少一侧。当动子43运行至霍尔传感器处时,动子43中的永磁体所产生的磁场将使得霍尔传感器中的电荷载流子磁场发生畸变;也即,当动子43运动至霍尔传感器处时,动子43中的永磁体所具有的磁通密度超过霍尔传感器的预设阈值,传感器检测到此磁通密度并产生霍尔电压,即通过霍尔效应检测出动子43与霍尔传感器之间的距离,随后将带有距离数据的信号输送至控制器,使得控制器以控制同步带4215的传送速度,进而控制动子43的运动速度。
在一些实施例中,位置传感器4231也可包括光栅式传感器、红外传感器、颜色传感器以及霍尔传感器中的至少一种,具体的作用的原理以及作用的过程较为常规,在此处不做叙述。
进一步地,本申请的第二方面提供了一种混合输送线40,请参见图21,混合输送线40包括多组磁动力输送线41以及多组辅助输送线42,且多组磁动力输送线41与多组辅助输送线42沿第二导轨422的引导方向S依次交替排布,以形成磁动力输送线41——辅助输送线42——磁动力输送线41的输送结构;或者辅助输送线42——磁动力输送线41——辅助输送线42的输送结构。进而可在定位精度高且对输送速度要求高的工序使用磁动力输送线,而在定位精度高以及传输速度要求不高的工序使用辅助输送线42,可满足动子43对半成品输送的速度以及精度的要求,同时也可降低生产线的部署成本。
进一步地,为了便于磁动力输送线与辅助输送线42对接,请参见图21结合图1,磁动力输送线41还包括第一导轨412,磁动力输送线41与辅助输送线42对接时,第二导轨422与第一导轨412对接,需要说明的是,第二导轨422与第一导轨412的截面一致,以使滑块可在第二导轨422与第一导轨412滑动;进而磁动力输送线41与辅 助输送线42交替排布时,滑块34可从磁动力输送线41移动至辅助输送线42,以及从辅助输送线42移动至磁动力输送线41,进而可确保滑块34较为顺畅地在由磁动力输送线41以及辅助输送线42交替排布构成的生产线移动。
请参见图1至图21,磁动力输送线41还包括第一电枢绕组411,动子本体10连接于第一电枢绕组411,第一电枢绕组411内的线圈通一交流电,以改变第一电枢绕组411对应位置的动子43的移动速度。进一步地,同一第一电枢绕组411上可设置多个动子43,且通过控制不同动子43对应位置的线圈内的交流电,以分别控制位于不同位置的动子43运动。那么,为了配合第一电枢绕组411上的多个不同的动子43的移动,辅助输送线42上也可设置多个不同的动子43,进而可同时对半成品进行输送,以提高半成本加工的效率。
进一步地,请参见图26,磁动力输送线41对应的加工工位改变时,磁动力输送线41对应位置对半成品的定位精度以及运输速度要求较低,同步带4215可延伸至磁动力输送线41对应的位置,此时,第一电枢绕组411内的线圈内不通进交流电,同步带4215可带动位于磁动力输送线41的第一导轨412上的动子。
在一些实施例中,请参见图27,混合输送线40还可包括接驳组件45,接驳组件45用以连接磁动力输送线41与辅助输送线42。
进一步地,辅助输送线42位于磁动力输送线41的一侧且与磁动力输送线41平行,可以理解的是,辅助输送线42以及磁动力输送线41两者都与第二导轨422的引导方向S平行。同时为了便于接驳组件45连接辅助输送线42与磁动力输送线41,需满足辅助输送线42沿第二导轨422的延伸长度与磁动力输送线41的沿第二导轨422的延伸长度一致。
接驳组件45包括两组,一组接驳组件45用于连接辅助输送线42首部与磁动力输送线41的尾部,另一组接驳组件45用于连接辅助输送线42的尾部与磁动力输送线41的首部,进而可在半成品的定位精度高且对半成品的运输速度有要求的输送环节部署磁动力输送线41,而辅助输送线42可作为回流输送线,以将动子43由磁动力输送线41的尾部传输至磁动力输送线41的首部,以使动子43运送半成品至对应的工位;且可实现对动子43的循环利用,利用磁动力输送线41提高生产效率的同时,辅助输送线42使动子43回流至磁动力输送线的设置,可节省半成品动子43的数量,进而可进一步地节省生产线的部署成本。
接驳组件45的设置可使辅助输送线42与磁动力输送线41组合成的混合输送线40的安装以及连接较为便捷,极大减小了安装难度,进而可极大地提高混合输送线40的适用性。
请参见图28,接驳组件45可包括接驳滑轨451、接驳滑块452以及接驳导轨453,接驳滑轨451与第二导轨422垂直,接驳滑块452可滑动地设置在接驳滑轨451上,且可沿接驳滑轨451的引导方向S往复运动。
接驳导轨453通过螺钉固定连接于接驳滑块452,且接驳导轨453的引导方向S与接驳滑轨451的引导方向S垂直,即是接驳导轨453与辅助输送线42以及磁动力输送线两者都平行,进而接驳组件45与磁动力输送线连接时,接驳组件45的接驳导轨453与第一导轨412对接,且使接驳导轨453与磁动力导共线,以使动子43可由第一导轨412输送至接驳导轨453,以及由接驳导轨453输送至第一导轨412;接驳组件45与辅助输送线42对接时,接驳组件45的接驳导轨453与第二导轨422对接,且使接驳导轨453与第二导轨422共线,以使动子43可由第二导轨422输送至接驳导轨453,以及由接驳导轨453输送至第二导轨422;通过使用接驳组件45易于实现输送线的切换,以使由磁动力输送线与辅助输送线42组成的混合输送线应用于更多的运输场景。
进一步地,请参见图27,辅助输送线42可与磁动力输送线41设置在同一水平安装台面内,辅助输送线42与磁动力输送线41沿水平方向上平行设置,且接驳组件45用于连接辅助输送线42与磁动力输送线41;请参见图29,辅助输送线42也可与磁动力输送线41设置在同一竖直安装台面内,辅助输送线42与磁动力输送线沿垂直方向上平行设置,且接驳组件45用于连接辅助输送线42与磁动力输送线41;进而可将辅助输送线42与磁动力输送线41组成的混合输送线40设置在不同的输送环境内,以增加混合输送线40的适用性。
在一些实施例中,第二导轨422也可设置为曲线状,曲线状的轮廓为标准弧形时,传送件4211可为绕标准弧形的中轴线转动的摩擦盘体,摩擦盘体具有用于与摩擦结构22的摩擦面2211接触的接触面,外接触面4217与安装面211之间的距离略小于摩擦面2211与安装面211之间的距离,以使摩擦结构22与同步带4215的带面之间过盈配合,提高两者之间的摩擦力;或者设置与标准弧形曲线状的轮廓匹配的输送带以实现对动子43在非标准弧形曲线状输送;曲线状的轮廓为非标准弧形时,可根据曲线状轮廓的不同位置弧线的设置不同直径的摩擦盘体;或者设置与非标准弧形匹配的输送带以实现对动子43在非标准弧形曲线状输送。
进一步地,请参见图30,磁动力输送线41可为多组,辅助输送线42为多组,其中一组辅助输送线42作为回流段;多组磁动力输送线41与多组辅助输送线42沿第二导轨422依次交替排布以构成输送段,一组接驳组件45将输送段的尾部与回流段的首部连接,另一组接驳组件45将回流段的首部与输送段的尾部连接。
输送段可用于产品输送线路,进而在产品的输送线路的定位精度高且对速度要求高的位置设置磁动力输送线41,而在产品输送线路的定位精度低且对速度要求较低的位置设置辅助输送线42,进而可在产品输送线路合理地部署磁动力输送线以及辅助输送线42,以降低生产线的部署的成本。生产线的回流段对动子43的定位精度以及速度的要求不高,可设置辅助输送线42,进而可进一步地在保证半成品的输送精度以及输送速度的同时可降低生产线的部署成本。
进而可在产品加工制造的输送环节根据不同工艺环节对半成品输送的不同的时间节拍的需求,灵活设置磁动力输送线41以及辅助输送线42,进而可使整条传输线更能灵活的满足客户的不同需求;同时辅助输送线42、磁动力输送线41以及接驳组件45三者的模块化设置,可提高输送线组装的便利性的同时可节省安装空间。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种动子,其特征在于,至少能够应用于磁动力输送线以及混合输送线,所述动子可移动地安装于所述磁动力输送线或者所述混合输送线,所述磁动力输送线包括第一电枢绕组,所述混合输送线包括第一驱动机构;所述动子包括:
    动子本体,包括第一永磁阵列,所述第一永磁阵列包括两相对间隔设置的第一永磁体,两所述第一永磁体与所述第一电枢绕组以电流励磁的方式驱动所述动子本体沿所述磁动力输送线移动;
    从动组件,与所述动子本体连接,所述从动组件用于与所述第一驱动机构传动连接,并驱动所述动子本体沿所述磁动力输送线或者所述混合输送线移动。
  2. 根据权利要求1所述的动子,其特征在于,
    所述动子本体包括连接部,所述连接部与所述第一永磁阵列以及所述从动组件均连接,所述从动组件与所述第一永磁阵列位于所述连接部的相对两侧;
    所述从动组件与所述第一驱动机构的传动方式为通过摩擦传动、磁性吸附传动和固定接触传动中的至少一种。
  3. 根据权利要求1所述的动子,其特征在于,所述从动组件与所述第一驱动机构的传动方式为摩擦传动,所述从动组件包括:
    固定结构,与所述动子本体连接;
    摩擦结构,用于与所述第一驱动机构抵接并产生摩擦阻力;
    张紧结构,位于所述固定结构与所述摩擦结构之间,所述张紧结构连接所述固定结构及所述摩擦结构,且用于将所述摩擦结构抵紧于所述第一驱动机构。
  4. 根据权利要求3所述的动子,其特征在于,所述摩擦结构包括:
    摩擦块,用于与所述第一驱动机构抵接并产生摩擦阻力;
    固定块,与所述摩擦块固定连接,且所述固定块在所述摩擦块上的正投影覆盖所述摩擦块,所述摩擦块设置于所述固定块背离所述张紧结构的表面;
    所述张紧结构包括:
    导向杆,所述导向杆的一端与所述固定结构活动连接,所述导向杆的另一端与所述固定块固定连接;
    弹性件,套设于所述导向杆,所述弹性件的一端与所述固定块抵接,所述弹性件的另一端与所述固定结构抵接。
  5. 根据权利要求4所述的动子,其特征在于,所述摩擦块的制备材料为橡胶或树脂中的至少一种。
  6. 根据权利要求1所述的动子,其特征在于,
    所述从动组件包括两组,两组所述从动组件位于所述动子本体的相对两侧,两相对间隔设置的所述第一永磁体位于两组所述从动组件之间;
    所述第一驱动机构包括第二电枢绕组,所述从动组件包括第二永磁阵列,所述第二永磁阵列包括至少一个第二永磁体,所述第二永磁体与所述第二电枢绕组以电流励磁的方式驱动所述动子本体沿所述磁动力输送线或者所述混合输送线移动。
  7. 根据权利要求1所述的动子,其特征在于,所述动子还包括:
    第一滑动组件,设置于所述动子本体,所述第一滑动组件用于可移动地安装于所述磁动力输送线;
    第二滑动组件,设置于所述从动组件,且与所述第一滑动组件间隔设置,所述第二滑动组件用于可移动地安装于所述混合输送线;
    或者,所述动子包括:
    第一滑动组件,设置于所述动子本体,所述第一滑动组件用于可移动地安装于所述磁动力输送线,且所述第一滑动组件与所述从动组件间隔设置。
  8. 根据权利要求1至7中任一项所述的动子,其特征在于,所述动子还包括:
    距离传感装置,与所述动子本体连接,所述距离传感装置用于检测所述动子的运动位置。
  9. 根据权利要求1所述的动子,其特征在于,所述动子本体具有容纳槽,所述容纳槽沿第一预设方向延伸以贯穿所述动子本体的两端,且所述容纳槽沿第二预设方向延伸,以在所述动子本体的一侧上形成供电枢绕组出入容纳槽的槽口,所述第二预设方向与所述第一预设方向垂直;所述容纳槽包括第一槽壁、第二槽壁以及第三槽壁,所述第三槽壁与所述槽口相对设置,所述第一槽壁与所述第二槽壁相对设置,且分别位于所述第三槽壁的两侧;
    所述第一永磁体包括设置于所述第一槽壁的第一磁钢组以及设置于所述第二槽壁的第二磁钢组,所述第二磁钢组与所述第一磁钢组相对设置且相间隔,所述第一磁钢组及所述第二磁钢组均包括至少一沿所述第一预设方向排布的磁体模组,所述磁体模组与所述动子本体可拆卸连接,所述磁体模组包括多个沿所述第 一预设方向排布的子磁体。
  10. 根据权利要求9所述的动子,其特征在于,
    所述第二磁钢组中的永磁体与所述第一磁钢组中的永磁体一一对应,且所述第二磁钢组中的永磁体的磁化方向,与所述第一磁钢组中对应的永磁体的磁化方向相同;
    所述磁体模组中的一个或多个所述子磁体排列成海尔贝克阵列;
    所述磁体模组包括安装架,所述安装架与所述动子本体可拆卸连接,多个所述子磁体邻接或间隔设置于所述安装架。
  11. 根据权利要求9所述的动子,其特征在于,所述磁体模组包括沿所述第一预设方向排布的第一子磁体、第二子磁体、第三子磁体以及第四子磁体;
    或者,第一子磁体的磁化方向沿第三预设方向,所述第三预设方向与所述第一预设方向以及所述第二预设方向垂直;
    第二子磁体的磁化方向沿第四预设方向,所述第四预设方向与所述第一预设方向平行;
    第三子磁体的磁化方向沿第五预设方向,所述第五预设方向与所述第三预设方向相反;
    第四子磁体的磁化方向沿第六预设方向,所述第六预设方向与所述第四预设方向相反。
  12. 根据权利要求11所述的动子,其特征在于,所述第一磁钢组的多个所述磁体模组中具有至少一第一磁体模组或/和至少一第二磁体模组;
    其中,所述第一磁体模组中的所述第一子磁体、所述第二子磁体、所述第三子磁体以及所述第四子磁体沿所述第一预设方向依次排布;所述第二磁体模组中的所述第二子磁体、所述第一子磁体、所述第四子磁体以及所述第三子磁体均沿所述第一预设方向依次排布。
  13. 根据权利要求11所述的动子,其特征在于,
    所述第一磁钢组中,位于所述第一磁钢组的第一端的永磁体的磁化方向沿第三预设方向,位于所述第一磁钢组的第二端的永磁体的磁化方向沿第五预设方向;或者,
    所述第一磁钢组中,沿所述第一预设方向,位于所述第一磁钢组的第一端的 永磁体的磁化方向沿第四预设方向,位于所述第一磁钢组的第二端的永磁体的磁化方向沿第六预设方向。
  14. 根据权利要求9至13中任一项所述的动子,其特征在于,所述磁体模组中的多个所述永磁体排列成海尔贝克阵列;
    其中,所述第一磁钢组靠近所述第二磁钢组的一侧获得磁场增强,所述第二磁钢组靠近所述第一磁钢组的一侧获得磁场增强。
  15. 一种混合输送线,其特征在于,所述混合输送线包括磁动力输送线、辅助输送线以及如上述权利要求1至14中任一项所述的动子,所述动子可移动地安装于所述磁动力输送线或者所述辅助输送线,所述磁动力输送线包括第一电枢绕组以及第一导轨,所述第一永磁阵列与所述第一电枢绕组配合以驱动所述动子沿所述第一导轨移动;所述辅助输送线包括第一驱动机构以及第二导轨;所述从动组件与所述第一驱动机构配合以驱动所述动子沿所述第二导轨移动。
  16. 根据权利要求15所述的混合输送线,其特征在于,
    所述动子设置有多个,每一所述动子均包括缓冲件,多个所述动子均安装于所述磁动力输送线或者所述辅助输送线时,沿所述动子的移动方向,所述缓冲件对应设置于所述动子本体的相对两侧;或者,
    所述混合输送线具有至少一弧形段,在所述弧形段处,所述第一导轨与所述第二导轨非共线设置。
  17. 根据权利要求15所述的混合输送线,其特征在于,
    所述第一驱动机构包括传送件以及对接结构,所述传送件与所述对接结构传动连接,以带动至少部分所述对接结构沿所述第二导轨的引导方向移动,所述对接结构用于连接所述动子,以使所述动子沿所述第二导轨移动;
    所述辅助输送线包括位置传感组件,所述位置传感组件包括多个位置传感器以及与多个所述位置传感器电连接的控制器,多个所述位置传感器沿所述第二导轨依次排布且用于检测所述动子的位置信息,并输出所述位置信息至所述控制器,所述控制器用于根据所述位置信息调节所述第一驱动机构对所述动子的驱动速度。
  18. 根据权利要求17所述的混合输送线,其特征在于,所述位置传感器包括信号发射器以及信号接收器,所述信号发射器与所述信号接收器两者之一设置于所述第二导轨的一侧,另一用于与所述动子连接;或者,
    所述信号发射器与所述信号接收器均设置于所述第二导轨上;
    其中,所述信号接收器接收到所述信号发射器发出的信号发生变化时,所述信号接收器输出所述动子的位置信息至所述控制器。
  19. 根据权利要求18所述的混合输送线,其特征在于,所述位置传感器包括磁栅式传感器、光栅式传感器、红外传感器、颜色传感器以及霍尔传感器中的至少一种。
  20. 根据权利要求17所述的混合输送线,其特征在于,所述第一驱动机构包括摩擦传送结构、固定传送结构以及磁传送结构中的至少一种,当所述第一驱动机构包括所述摩擦传送结构时,所述对接结构包括:
    同步带,所述同步带的传送方向与所述第二导轨的引导方向平行;
    所述传送件包括:
    两同步带轮,两个所述同步带轮间隔设置;以及
    用于支撑所述同步带的支撑结构,所述同步带套接于两所述同步带轮的周侧,所述支撑结构位于两所述同步带轮之间,且位于两所述同步带轮与所述同步带围设的范围内,所述支撑结构沿所述同步带的传送方向延伸。
  21. 根据权利要求20所述的混合输送线,其特征在于,所述支撑结构包括硬质支撑板以及软质支撑板,所述硬质支撑板与所述软质支撑板沿垂直于所述同步带表面的方向堆叠设置,且所述软质支撑板位于所述硬质支撑板与所述同步带之间,所述软质支撑板用于支撑所述同步带带动所述动子移动的部分。
  22. 根据权利要求21所述的混合输送线,其特征在于,所述支撑结构还包括至少两个过渡件,两所述过渡件设置在所述软质支撑板与所述同步带之间,且位于所述软质支撑板的靠近所述同步带轮的两端。
  23. 根据权利要求17所述的混合输送线,其特征在于,所述第一驱动机构包括摩擦传送结构、固定传送结构以及磁传送结构中的至少一种,当所述第一驱动机构包括所述摩擦传送结构时,所述对接结构包括:
    同步带,所述同步带的传送方向与所述第二导轨的引导方向平行;
    所述传送件包括:
    多个同步带轮,多个所述同步带轮间隔设置,且所述同步带套接于所述同步带轮的周侧。
  24. 根据权利要求20至23中任一项所述的混合输送线,其特征在于,所述磁动力输送线与所述辅助输送线沿所述第二导轨依次排布且两者对接,所述动子沿所述第二导轨可移动地运动于所述磁动力输送线与所述辅助输送线。
  25. 根据权利要求24所述的混合输送线,其特征在于,所述第一驱动机构包括:以摩擦传动方式实现对接的对接结构;或者,以固定传送方式实现对接的对接结构;或者,以磁性吸附方式实现对接的对接结构。
  26. 根据权利要求25所述的混合输送线,其特征在于,所述动子包括:
    动子本体;
    从动组件,包括固定结构和摩擦结构,所述固定结构固定于所述动子本体,所述摩擦结构包括导向杆和弹性件,所述导向杆的一端与所述固定结构活动连接,另一端与所述摩擦结构固定连接,且所述摩擦结构用于与所述同步带接触并产生摩擦力,所述弹性件套设在所述导向杆的周侧,且位于所述固定结构与所述摩擦结构之间。
  27. 根据权利要求26所述的混合输送线,其特征在于,所述固定结构具有靠近所述同步带的安装面,所述摩擦结构具有靠近所述同步带的摩擦面;
    所述同步带具有内接触面以及外接触面,所述内接触面用于与所述同步带轮接触,以使所述同步带与所述同步带轮间产生摩擦阻力,所述外接触面与所述安装面相对设置;
    所述摩擦结构用于与所述外接触面接触,沿所述弹性件的伸缩方向,所述安装面至所述内接触面间的距离为L1,所述安装面至所述外接触面间的距离为L2,所述安装面至所述摩擦面间的距离为L3,且满足条件式:L1>L3>L2。
  28. 根据权利要求24所述的混合输送线,其特征在于,
    所述磁动力输送线为多组,所述辅助输送线为多组,且所述磁动力输送线与所述辅助输送线沿所述第二导轨依次交替排布;或者,
    所述动子包括滑块,且所述滑块可滑动连接于所述第二导轨或者所述第一导轨;
    所述辅助输送线与所述磁动力输送线对接时,所述第二导轨与所述第一导轨对接,所述滑块可在所述第二导轨与所述第一导轨之间移动。
  29. 根据权利要求17至23中任一项所述的混合输送线,其特征在于,所述混合输送线还包括接驳组件,所述接驳组件至少设置为两组,一所述接驳组件将所述磁动 力输送线的尾部与所述辅助输送线的首部连接,另一所述接驳组件将所述磁动力输送线的首部与所述辅助输送线的尾部连接,所述动子沿所述第二导轨可移动地连接于所述磁动力输送线与所述辅助输送线。
  30. 根据权利要求29所述的混合输送线,其特征在于,所述磁动力输送线为多组,所述辅助输送线为多组,其中一所述辅助输送线作为回流段;多组所述磁动力输送线与多组所述辅助输送线沿所述第二导轨依次交替排布以构成输送段,一所述接驳组件将所述输送段的尾部与所述回流段的首部连接,另一所述接驳组件将所述回流段的首部与所述输送段的尾部连接。
PCT/CN2023/079425 2022-09-21 2023-03-02 动子及具有其的混合输送线 WO2024060517A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23828139.8A EP4365116A1 (en) 2022-09-21 2023-03-02 Mover and hybrid conveyor line having same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202222504907.4U CN218201017U (zh) 2022-09-21 2022-09-21 一种动子及输送装置
CN202222504907.4 2022-09-21
CN202211219655.9A CN117856567A (zh) 2022-09-30 2022-09-30 一种动子及混合传输线
CN202211219655.9 2022-09-30
CN202211211003.0A CN117842614A (zh) 2022-09-30 2022-09-30 辅助输送线及混合输送线
CN202211211003.0 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024060517A1 true WO2024060517A1 (zh) 2024-03-28

Family

ID=89573782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079425 WO2024060517A1 (zh) 2022-09-21 2023-03-02 动子及具有其的混合输送线

Country Status (2)

Country Link
EP (1) EP4365116A1 (zh)
WO (1) WO2024060517A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082046A (ko) * 2017-01-09 2018-07-18 김기찬 유기성폐기물의 퇴비화 발효조 및 가연성 생활쓰레기 고형연료화 설비의 건조조 교반설비의 에스컬레이터
WO2019171456A1 (ja) * 2018-03-06 2019-09-12 株式会社Fuji 搬送装置、及び搬送路
CN113401666A (zh) * 2021-07-05 2021-09-17 苏州纵苇自动化有限公司 用于同磁浮模组配合的传输线和磁浮混合物流线
CN113859892A (zh) * 2021-10-09 2021-12-31 上海果栗自动化科技有限公司 一种线性传输系统
CN216917445U (zh) * 2022-03-02 2022-07-08 东莞市猎声电子科技有限公司 一种具有定位功能的传送装置
CN218201017U (zh) * 2022-09-21 2023-01-03 上海果栗自动化科技有限公司 一种动子及输送装置
CN218464740U (zh) * 2022-09-30 2023-02-10 上海果栗自动化科技有限公司 辅助输送线及混合输送线
CN218733809U (zh) * 2022-09-30 2023-03-24 上海果栗自动化科技有限公司 一种动子及混合传输线

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082046A (ko) * 2017-01-09 2018-07-18 김기찬 유기성폐기물의 퇴비화 발효조 및 가연성 생활쓰레기 고형연료화 설비의 건조조 교반설비의 에스컬레이터
WO2019171456A1 (ja) * 2018-03-06 2019-09-12 株式会社Fuji 搬送装置、及び搬送路
CN113401666A (zh) * 2021-07-05 2021-09-17 苏州纵苇自动化有限公司 用于同磁浮模组配合的传输线和磁浮混合物流线
CN113859892A (zh) * 2021-10-09 2021-12-31 上海果栗自动化科技有限公司 一种线性传输系统
CN216917445U (zh) * 2022-03-02 2022-07-08 东莞市猎声电子科技有限公司 一种具有定位功能的传送装置
CN218201017U (zh) * 2022-09-21 2023-01-03 上海果栗自动化科技有限公司 一种动子及输送装置
CN218464740U (zh) * 2022-09-30 2023-02-10 上海果栗自动化科技有限公司 辅助输送线及混合输送线
CN218733809U (zh) * 2022-09-30 2023-03-24 上海果栗自动化科技有限公司 一种动子及混合传输线

Also Published As

Publication number Publication date
EP4365116A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
US7715166B2 (en) Method and reciprocating apparatus for permanent magnet erasure of magnetic storage media
CN218733809U (zh) 一种动子及混合传输线
KR100840927B1 (ko) 선형전동기 및 비접촉 급전시스템을 이용한 철도차량시스템
US5606256A (en) Linear encoder and a guide unit on which it is equipped
TWI552894B (zh) 用於提供電力給一移動元件之系統與方法
CN1970410A (zh) 传送装置
US4848242A (en) Linear induction propelled track guided runner
CN216763528U (zh) 一种用于同磁浮模组配合的传输线和磁浮混合物流线
KR960000832B1 (ko) 리니어 액추에이터
CN218464740U (zh) 辅助输送线及混合输送线
WO2024060517A1 (zh) 动子及具有其的混合输送线
CN113401666A (zh) 用于同磁浮模组配合的传输线和磁浮混合物流线
CN113859892A (zh) 一种线性传输系统
KR20120059933A (ko) 정지 성능이 향상된 자기부상 이송 시스템
US7701656B2 (en) Method and apparatus for permanent magnet erasure of magnetic storage media
CN111655599B (zh) 物品输送机
US4700119A (en) Apparatus for positioning carriage in automatic transportation system
CN106505913B (zh) 双磁轮无反向间隙永磁非接触前进驱动装置
JP3175554B2 (ja) 直流リニアモータ
JP3464058B2 (ja) 電動作動体への非接触誘導給電装置
CN117842614A (zh) 辅助输送线及混合输送线
CN104597040B (zh) 一种化学发光免疫分析仪及其反应杯加载存储机构
US5261860A (en) Drive apparatus
CN117775740A (zh) 一种电磁驱动的多滑块独立控制的环形轨道输送系统
JP3702665B2 (ja) 搬送装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023828139

Country of ref document: EP

Effective date: 20240102