WO2024060459A1 - 改性硅橡胶及其制备方法 - Google Patents

改性硅橡胶及其制备方法 Download PDF

Info

Publication number
WO2024060459A1
WO2024060459A1 PCT/CN2022/143172 CN2022143172W WO2024060459A1 WO 2024060459 A1 WO2024060459 A1 WO 2024060459A1 CN 2022143172 W CN2022143172 W CN 2022143172W WO 2024060459 A1 WO2024060459 A1 WO 2024060459A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone rubber
component
modified silicone
modified
rubber
Prior art date
Application number
PCT/CN2022/143172
Other languages
English (en)
French (fr)
Inventor
刘聪
司康
刘宇
李治方
Original Assignee
武汉联影医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉联影医疗科技有限公司 filed Critical 武汉联影医疗科技有限公司
Priority to US18/322,575 priority Critical patent/US20240117124A1/en
Publication of WO2024060459A1 publication Critical patent/WO2024060459A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/42Nitriles
    • C08F20/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present specification relates to the technical field of acoustic materials, and in particular to a modified silicone rubber and a preparation method thereof.
  • Ultrasound diagnostic equipment is a clinical diagnostic equipment that applies ultrasound in acoustics to medical disciplines. It has the advantages of non-invasiveness, high ability to identify soft tissues, and no radiation damage to the human body. Its working principle is to generate incident ultrasonic waves (or transmitted waves) and receive reflected ultrasonic waves (or echoes) through an ultrasonic probe, and finally display them on the oscilloscope in the form of echoes.
  • the ultrasonic probe is a key component for realizing the mutual conversion of ultrasonic signals and electrical signals in ultrasonic diagnostic equipment.
  • the ultrasonic probe is mainly composed of acoustic lens (Acoustic Lens), matching layer (Matching Layer), piezoelectric element and backing (Back) and other components.
  • the acoustic lens is located on the outermost layer of the ultrasound probe and is in direct contact with the human body medium. As a contact interface, the acoustic lens not only needs to have the lowest possible sound attenuation, but also needs to have an acoustic impedance similar to that of human tissue to achieve impedance matching with human tissue, thereby improving probe sensitivity and ultimately improving image quality.
  • the modified silicone rubber includes: raw materials that can form silicone rubber, including a first component and a second component; and raw materials that can form a modified material, including a third component and a fourth component.
  • the mass fraction of the first component is in the range of 50-150; the mass fraction of the second component is in the range of 0-20 and greater than 0; the mass fraction of the third component is in the range of 25-150; or the mass fraction of the fourth component is in the range of 0-20 and greater than 0.
  • the mass ratio of the first component, the second component, the third component and the fourth component is 10:1:(5-10):(0.5- 1).
  • the first component includes vinyl silicone rubber and a cross-linking agent; or the second component includes a catalyst capable of catalyzing the addition of the vinyl silicone rubber and the cross-linking agent.
  • the structural formula of the vinyl silicone rubber is as shown in Formula I: Wherein, R 1a , R 1b , R 1c , and R 1d are each independently selected from H, substituted or unsubstituted C 1 -C 5 linear alkyl or branched alkyl, substituted or unsubstituted C 6 -C 20 aromatic hydrocarbon groups, n ⁇ 1000; the cross-linking agent includes silicon-hydrogen bonds; or the second component includes at least one of the transition metals of Group VIII of the Periodic Table of Elements, their compounds, or their complexes.
  • the second component further includes at least one of methyl silicone oil, vinyl silicone oil, hydroxyl silicone oil, hydroxymethyl fluorosilicone oil or terminal epoxy silicone oil.
  • the structural formula of the vinyl silicone rubber is as shown in Formula I':
  • the cross-linking agent is polymethylhydrogensiloxane.
  • the first component further includes at least one of an inhibitor or a filler.
  • the inhibitor includes at least one of acetylenic alcohols, nitrogen-containing compounds, or organic peroxides.
  • the filler includes at least one of white carbon black, titanium dioxide, quartz powder, aluminum oxide, zinc oxide, or tungsten oxide.
  • the third component includes butadiene compounds and acrylonitrile compounds
  • the fourth component includes a compound capable of catalyzing the addition of the butadiene compounds and the acrylonitrile compound.
  • the fourth component includes a catalyst capable of catalyzing the addition of the butadiene compound; or the third component includes a fluorine-containing carbon chain
  • the fourth component includes polycarbodiimide.
  • the structural formula of the butadiene compound is shown in Formula II, wherein, R 2a , R 2b , R 2c , and R 2d are each independently selected from H, substituted or unsubstituted C 1 -C 3 linear alkyl or branched alkyl, substituted or unsubstituted C 6 -C 20 aromatic hydrocarbon group;
  • the structural formula of the acrylonitrile compound is shown in formula III, Wherein, R 3a and R 3b are each independently selected from H, substituted or unsubstituted C 1 -C 3 linear or branched alkyl group, substituted or unsubstituted C 6 -C 20 aromatic hydrocarbon group;
  • the structural formula of the fluorine-containing carbon chain is shown in Formula IV, Wherein, m is not less than 200, a is in the range of 1-8, and a is an integer; or the fourth component includes at least one of the transition metals of Group VIII of the Periodic Table of Elements, their compounds, or their complexes
  • the fourth component includes platinum, a platinum-containing compound, or a platinum-containing complex.
  • the fourth component includes organotin or organobismuth.
  • the butadiene compound is 1,3-butadiene, or the acrylonitrile compound is acrylonitrile.
  • the embodiments of this specification also provide a method for preparing modified silicone rubber, which includes: mixing the above raw material compositions of modified silicone rubber, and solidifying and molding to obtain the modified silicone rubber.
  • the acoustic impedance of the modified silicone rubber is in the range of 1.25Mrayl-1.50Mrayl; the sound attenuation coefficient of the modified silicone rubber at a frequency of 5MHz is not greater than 42dB/cm; or the modified silicone The Shore hardness of rubber is in the range of 30HA-70HA.
  • the modified silicone rubber serves as a sound-transmissive material.
  • the acoustically transparent material includes acoustically transparent elements applied to ultrasound probes.
  • the embodiments of this specification also provide a modified silicone rubber, which is prepared by using the above preparation method of modified silicone rubber.
  • the embodiments of this specification also provide a modified material of silicone rubber, the modified material is at least one of nitrile rubber, butadiene rubber or fluorine rubber; or the raw materials that can form the modified material include a third component and a fourth component, wherein the third component includes a butadiene compound and an acrylonitrile compound, and the fourth component includes a compound capable of catalyzing the butadiene compound and the acrylonitrile compound.
  • the structural formula of the butadiene compound is shown in Formula II, wherein, R 2a , R 2b , R 2c , and R 2d are each independently selected from H, substituted or unsubstituted C 1 -C 3 linear alkyl or branched alkyl, substituted or unsubstituted C 6 -C 20 aromatic hydrocarbon group;
  • the structural formula of the acrylonitrile compound is shown in formula III, Wherein, R 3a and R 3b are each independently selected from H, substituted or unsubstituted C 1 -C 3 linear or branched alkyl group, substituted or unsubstituted C 6 -C 20 aromatic hydrocarbon group;
  • the structural formula of the fluorine-containing carbon chain is shown in Formula IV, Wherein, m is not less than 200, a is in the range of 1-8, and a is an integer; or the fourth component includes at least one of the transition metals of Group VIII of the Periodic Table of Elements, their compounds, or their complexes
  • the fourth component includes platinum, a platinum-containing compound, or a platinum-containing complex.
  • the fourth component includes organotin or organobismuth.
  • the butadiene compound is 1,3-butadiene, or the acrylonitrile compound is acrylonitrile.
  • the embodiments of this specification provide a raw material composition for modified silicone rubber.
  • the raw material composition may include raw materials that can form silicone rubber and raw materials that can form modified materials.
  • Modified materials can modify silicone rubber (for example, room temperature vulcanized (RTV) silicone rubber) to prepare modified silicone rubber, thereby improving its acoustic impedance and giving it a relatively high acoustic impedance matching effect. , relatively low sound attenuation and relatively high mechanical properties (e.g., hardness).
  • RTV room temperature vulcanized
  • the silicone rubber-forming raw material may include a first component and a second component.
  • the first component may include vinyl silicone rubber and a cross-linking agent.
  • the structural formula of the vinyl silicone rubber may be as shown in Formula I: Wherein, R 1a , R 1b , R 1c , and R 1d can be independently selected from H, substituted or unsubstituted C 1 -C 5 straight-chain alkyl or branched-chain alkyl, substituted or unsubstituted C 6 -C 20 aromatic hydrocarbon group, and n ⁇ 1000.
  • R 1a , R 1b , R 1c , and R 1d may be selected from H.
  • R 1a , R 1b , R 1c , and R 1d are simultaneously selected from H, the structural formula of vinyl silicone rubber can be as shown in Formula I':
  • n in the structure shown in Formula I, n may be in the range of 1000-5000. In some embodiments, in the structure shown in Formula I, n may be in the range of 2000-5000. In some embodiments, in the structure shown in Formula I, n may be in the range of 2000-4000. In some embodiments, in the structure shown in Formula I, n may be in the range of 2000-3000. In some embodiments, in the structure shown in Formula I, n may be 1000, or 2000, or 3000, or 4000, or 5000.
  • the vinyl silicone rubber may have a number average molecular weight in the range of 1,000-200,000. In some embodiments, the vinyl silicone rubber may have a number average molecular weight in the range of 5,000-200,000. In some embodiments, the vinyl silicone rubber may have a number average molecular weight in the range of 10,000-190,000. In some embodiments, the vinyl silicone rubber may have a number average molecular weight in the range of 20,000-180,000. In some embodiments, the vinyl silicone rubber may have a number average molecular weight in the range of 30,000-170,000. In some embodiments, the vinyl silicone rubber may have a number average molecular weight in the range of 40,000-160,000.
  • the vinyl silicone rubber may have a number average molecular weight in the range of 50,000-150,000. In some embodiments, the vinyl silicone rubber may have a number average molecular weight in the range of 60,000-140,000. In some embodiments, the vinyl silicone rubber may have a number average molecular weight in the range of 70,000-130,000. In some embodiments, the vinyl silicone rubber may have a number average molecular weight in the range of 80,000-120,000. In some embodiments, the vinyl silicone rubber may have a number average molecular weight in the range of 90,000-110,000.
  • cross-linking agents may include silicon-hydrogen bonds.
  • the structure of the cross-linking agent can be expressed as R ⁇ SiH. Wherein, R can be selected from substituted or unsubstituted alkyl or aromatic hydrocarbon groups.
  • the cross-linking agent may be polymethylhydrogensiloxane. In some embodiments, the structural formula of polymethylhydrogensiloxane can be
  • the first component may also include additives.
  • the additive may include at least one of an inhibitor or a filler.
  • the additives have no effect on the main structure of the silicone rubber.
  • the inhibitor may be an agent capable of inhibiting the addition reaction between the vinyl silicone rubber and the cross-linking agent in the first component.
  • the inhibitor may include at least one of acetylenic alcohols, nitrogen-containing compounds, or organic peroxides.
  • the inhibitor may include methylbutynol.
  • the inhibitor may include 2-methyl-3-butyn-2-ol.
  • Fillers can not only increase the density of silicone rubber to improve the acoustic impedance of modified silicone rubber, but also improve the mechanical properties and wear resistance of modified silicone rubber, such as hardness.
  • the filler may include at least one of white carbon black, titanium dioxide, quartz powder, aluminum oxide, zinc oxide, or tungsten oxide.
  • the filler may be silica.
  • the second component may include a catalyst capable of catalyzing the reaction (eg, addition reaction) of the vinyl silicone rubber and the cross-linking agent.
  • the second component may have an addition catalytic effect on R ⁇ SiH in the first component.
  • the second component may include at least one of a transition metal of Group VIII of the Periodic Table of Elements, a compound thereof, or a complex thereof.
  • the second component may include platinum, a platinum-containing compound, or a platinum-containing complex.
  • the compound of the transition metal of Group VIII of the Periodic Table of Elements or its complex in the second component can be used as a catalyst or curing agent instead of a filler.
  • the amount of transition metal compounds or complexes of Group VIII of the periodic table in the second component is small and is a catalytic amount, while the amount of filler added is generally larger, and can even exceed the amount of silicone rubber.
  • the compound of the transition metal of Group VIII of the Periodic Table of Elements or its complex in the second component may be liquid, while the filler generally exists in the form of powder.
  • the second component may further include at least one of methyl silicone oil, vinyl silicone oil, hydroxyl silicone oil, hydroxymethyl fluorosilicone oil, or terminated epoxy silicone oil.
  • the second component may also include vinyl silicone oil.
  • the raw material that can form silicone rubber can be a raw material that can form two-component addition type liquid silicone rubber.
  • two-component addition type may mean that two components can form silicone rubber through an addition reaction.
  • the silicone rubber can be a two-component addition liquid silicone rubber.
  • the silicone rubber may be RTV630 silicone rubber or RTV615 silicone rubber produced by Momentive.
  • RTV630 and RTV615 are two-component room temperature vulcanized liquid silicone rubber.
  • Two-component addition-type liquid silicone rubber usually uses polymethylhydrogensiloxane containing silicon-hydrogen (Si-H) bonds as a crosslinker, and is cured at room temperature or high temperature (for example, 30°C-100°C, or 50°C-70°C) under the action of a catalyst (for example, a platinum catalyst).
  • the main structure of the two-component addition-type liquid silicone rubber can be polydimethylsiloxane containing two or more vinyl groups.
  • the polydiorganosiloxane containing two vinyl groups can be represented by the structure shown in Formula I':
  • the first component includes vinyl silicone rubber and a cross-linking agent including silicon-hydrogen bonds
  • the second component includes a catalyst capable of catalyzing the reaction (e.g., addition reaction) of the vinyl silicone rubber and the cross-linking agent
  • the addition reaction of vinyl silicone rubber and a cross-linking agent including silicon-hydrogen bonds occurs under the catalysis of a catalyst (for example, a platinum-containing compound).
  • the first component and the second component can be thoroughly mixed in a preset ratio and then placed at room temperature or high temperature (e.g., 30°C-100°C, or 50°C-70°C) for a preset time (e.g., 12h-60h, or 36h-60h, or 48h), curing and molding to obtain silicone rubber.
  • room temperature or high temperature e.g., 30°C-100°C, or 50°C-70°C
  • a preset time e.g., 12h-60h, or 36h-60h, or 48h
  • the first component and the second component can be thoroughly mixed in a preset proportion and then placed at room temperature (for example, 20°C-30°C) for 24h-48h to be cured and molded to obtain silicone rubber.
  • the first component and the second component can be thoroughly mixed according to a preset ratio, and then placed at a high temperature (for example, greater than 30°C and not greater than 100°C, or 50°C-70°C) for 12h-24h, Silicone rubber is obtained by curing and molding.
  • a high temperature for example, greater than 30°C and not greater than 100°C, or 50°C-70°C
  • Parts by mass can refer to counting the different components in a mixture in units of mass. Parts by mass can be used to express the mass relationship between different components in a mixture. The same parts by mass represent the same mass.
  • the mass fraction of the first component may be in the range of 50-150. In some embodiments, the mass fraction of the first component may be in the range of 60-140. In some embodiments, the mass fraction of the first component may be in the range of 70-130. In some embodiments, the mass fraction of the first component may be in the range of 75-125. In some embodiments, the mass fraction of the first component may be in the range of 80-120. In some embodiments, the mass fraction of the first component may be in the range of 90-110.
  • the mass fraction of the first component may be 50, or 70, or 75, or 80, or 90, or 100, or 110, or 120, or 125, or 150.
  • the mass fraction of the first component may represent the sum of the mass fractions of vinyl silicone rubber and cross-linking agent.
  • the mass fraction of the second component may be in the range of 0-20 and greater than 0. In some embodiments, the mass fraction of the second component may range from 2 to 18. In some embodiments, the mass fraction of the second component may be in the range of 5-15. In some embodiments, the mass fraction of the second component may be in the range of 8-12. In some embodiments, the mass fraction of the second component may be in the range of 10-20. In some embodiments, the mass fraction of the second component may be in the range of 10-15. In some embodiments, the mass fraction of the second component may be 5, or 8, or 10, or 12, or 14, or 15.
  • the mass ratio of the first component to the second component may be (5-15):1. In some embodiments, the mass ratio of the first component to the second component may be (6-14):1. In some embodiments, the mass ratio of the first component to the second component may be (7-13):1. In some embodiments, the mass ratio of the first component to the second component may be (8-12):1. In some embodiments, the mass ratio of the first component to the second component may be (9-11):1. In some embodiments, the mass ratio of the first component to the second component may be 5:1, or 8:1, or 10:1, or 12:1, or 15:1.
  • the mass ratio of the first component to the second component can be 10:1.
  • the first component may be 100 parts, and the second component may be 10 parts.
  • the first component and the second component can be The components are mixed evenly according to a preset ratio (for example, the mass ratio of the first component to the second component is 10:1), and then heated at room temperature or high temperature (for example, 30°C-100°C, or 50°C-70°C). Leave it for a preset time (for example, 12h-60h, or 36h-60h, or 48h), and solidify to obtain RTV630 silicone rubber or RTV615 silicone rubber.
  • a preset ratio for example, the mass ratio of the first component to the second component is 10:1
  • room temperature or high temperature for example, 30°C-100°C, or 50°C-70°C.
  • a preset time for example, 12h-60h, or 36h-60h, or 48h
  • the first component and the second component can be thoroughly mixed in a preset ratio and then placed at room temperature (for example, 20°C-30°C) for 24h-48h to solidify and form to obtain RTV630 silicone rubber or RTV615 silicone rubber.
  • room temperature for example, 20°C-30°C
  • the first component and the second component can be thoroughly mixed according to a preset ratio, and then placed at a high temperature (for example, greater than 30°C and not greater than 100°C, or 50°C-70°C) for 12h-24h, After curing and molding, RTV630 silicone rubber or RTV615 silicone rubber is obtained.
  • the feedstock from which the modified material can be formed can include a third component and a fourth component.
  • the third component may include at least one of "butadiene-based compounds and acrylonitrile-based compounds", butadiene-based compounds, or fluorine-containing carbon chains.
  • butadiene compounds and acrylonitrile compounds means both butadiene compounds and acrylonitrile compounds.
  • the structural formula of the butadiene compound can be as shown in Formula II, Among them, R 2a , R 2b , R 2c , and R 2d can each be independently selected from H, substituted or unsubstituted C 1 -C 3 linear alkyl or branched alkyl, substituted or unsubstituted C 6 - C 20 aromatic hydrocarbon group. In some embodiments, in the structure shown in Formula II, one or more of R 2a , R 2b , R 2c and R 2d may be selected from H. In some embodiments, the butadiene compound may be 1,3-butadiene.
  • the structural formula of the acrylonitrile compound can be shown as Formula III, Among them, R 3a and R 3b can each be independently selected from H, substituted or unsubstituted C 1 -C 3 linear or branched alkyl group, and substituted or unsubstituted C 6 -C 20 aromatic hydrocarbon group. In some embodiments, in the structure shown in Formula III, R 3a and/or R 3b can be selected from H. In some embodiments, the acrylonitrile compound may be acrylonitrile.
  • the structural formula of the fluorine-containing carbon chain can be as shown in Formula IV, Wherein, m may be not less than 200, a may be in the range of 1-8, and a is an integer. In some embodiments, m may be in the range of 200-1000. For example, m may be 200, or 300, or 500, or 800, or 1000. In some embodiments, a may be in the range of 1-5, and a is an integer. For example, a may be 1, or 2, or 3, or 4, or 5. In some embodiments, the structural formula of the fluorine-containing carbon chain may be
  • the fourth component when the third component includes butadiene compounds and acrylonitrile compounds, the fourth component may include a catalyst that can catalyze the reaction (e.g., addition reaction) of butadiene compounds and acrylonitrile compounds. In some embodiments, when the third component includes butadiene compounds, the fourth component may include a catalyst that can catalyze the reaction (e.g., addition reaction) of butadiene compounds. In some embodiments, when the third component includes a fluorine-containing carbon chain, the fourth component may include aziridine or polycarbodiimide.
  • the fourth component when the third component includes "butadiene compounds and acrylonitrile compounds", or butadiene compounds, the fourth component may include transition metals from Group VIII of the Periodic Table of Elements, or other compound, or at least one of its complexes.
  • the fourth component may include platinum, a platinum-containing compound, or a platinum-containing complex.
  • the fourth component may include organotin or organobismuth.
  • the organotin may be dibutyltin dilaurate or stannous octoate.
  • the compound of the transition metal of Group VIII of the Periodic Table of Elements or its complex in the fourth component can be used as a catalyst or curing agent instead of as a filler.
  • the amount of the compound or complex of the transition metal of Group VIII of the periodic table in the fourth component is small and is a catalytic amount.
  • the amount of filler added is generally larger, and can even exceed the amount of silicone rubber (for example, RTV silicone rubber).
  • the compound of the transition metal of Group VIII of the Periodic Table of Elements or its complex in the fourth component may be liquid. Fillers generally come in powder form.
  • the fourth component when the third component includes a fluorine-containing carbon chain, the fourth component may also include a catalyst.
  • the catalyst may include at least one of a transition metal of Group VIII of the Periodic Table of Elements, a compound thereof, or a complex thereof.
  • the catalyst may include platinum, a platinum-containing compound, or a platinum-containing complex.
  • the catalyst may include organotin or organobismuth.
  • the organotin may be dibutyltin dilaurate or stannous octoate.
  • the modified material may be at least one of nitrile rubber, butadiene rubber, or fluorine rubber.
  • the raw material that can form the modified material can be at least one of a two-component raw material that can form nitrile rubber, a two-component raw material that can form butadiene rubber, or a two-component raw material that can form fluorine rubber. kind.
  • the third component may include butadiene compounds and acrylonitrile compounds
  • the fourth component may include catalysts such as organic tin or organic bismuth.
  • the organotin may be dibutyltin dilaurate or stannous octoate.
  • the mass percentage of acrylonitrile in the nitrile rubber may range from 42% to 46%. In some embodiments, the mass percentage of acrylonitrile in the nitrile rubber may range from 36% to 41%. In some embodiments, the mass percentage of acrylonitrile in the nitrile rubber may range from 31% to 35%.
  • the mass percentage of acrylonitrile in the nitrile rubber may range from 25% to 30%. In some embodiments, the mass percentage of acrylonitrile in the nitrile rubber may range from 18% to 24%. In some embodiments, the two-component nitrile rubber-forming raw material may be independently packaged by two packaging devices (eg, packaging barrels).
  • the two-component raw materials that can form nitrile rubber can be fully mixed in a preset ratio (for example, determined according to the mass fraction of each of the two components), and then heated at room temperature or high temperature (for example, 30°C-100°C) , or 50°C-70°C) for a preset time (for example, 12h-60h, or 36h-60h, or 48h), and cured and molded to obtain nitrile rubber.
  • a preset ratio for example, determined according to the mass fraction of each of the two components
  • room temperature or high temperature for example, 30°C-100°C) , or 50°C-70°C
  • a preset time for example, 12h-60h, or 36h-60h, or 48h
  • two-component raw materials that can form nitrile rubber can be thoroughly mixed in a preset proportion and then placed at room temperature (for example, 20°C-30°C) for 24h-48h to solidify and shape to obtain nitrile-butadiene rubber.
  • the two-component raw materials that can form nitrile rubber can be thoroughly mixed in a preset ratio and then placed at a high temperature (for example, greater than 30°C and not greater than 100°C, or 50°C-70°C) for 12h- After 24 hours, the nitrile rubber was cured and formed.
  • the two-component nitrile rubber-forming raw material can be purchased from the market.
  • the two-component raw material that can form nitrile rubber can be purchased from the product model LNBR820 produced by Shandong Wang Brothers Plastic Technology Co., Ltd.
  • the third component may include butadiene compounds
  • the fourth component may include catalysts such as organic tin or organic bismuth.
  • the two-component butadiene rubber-forming raw material may be independently packaged by two packaging devices (eg, packaging drums). When used, the two-component raw materials that can form butadiene rubber can be fully mixed in a preset ratio (for example, determined according to the mass fraction of each of the two components), and then heated at room temperature or high temperature (for example, 30°C-100°C).
  • butadiene rubber for example, 12h-60h, or 36h-60h, or 48h
  • a preset time for example, 12h-60h, or 36h-60h, or 48h
  • solidified and molded to obtain butadiene rubber for example, two-component raw materials that can form butadiene rubber can be thoroughly mixed in a preset proportion and then placed at room temperature (for example, 20°C-30°C) for 24h-48h to solidify and shape to obtain butadiene rubber.
  • the two-component raw material that can form butadiene rubber can be fully mixed evenly in a preset ratio, and then placed at a high temperature (for example, greater than 30°C and not greater than 100°C, or 50°C-70°C) for 12h- After 24 hours, the butadiene rubber was cured and molded.
  • the two-component butadiene rubber-forming raw material can be purchased from the market.
  • the two-component raw material that can form butadiene rubber can be purchased from the product model PBR-4040 produced by Yuyao Huihong Plastic Factory.
  • the third component can include fluorine-containing carbon chains
  • the fourth component can include aziridine or polycarbodiimide.
  • the two-component fluoroelastomer-forming raw material may be independently packaged by two packaging devices (eg, packaging drums).
  • the two-component raw materials that can form fluorine rubber can be thoroughly mixed in a preset ratio (for example, determined based on the mass fraction of each of the two components), and then heated at room temperature or high temperature (for example, 30°C-100°C).
  • two-component raw materials that can form fluororubber can be fully mixed in a preset ratio and evenly mixed, and then placed at room temperature (for example, 20°C-30°C) for 24h-48h to solidify and shape to obtain fluororubber.
  • the two-component raw materials that can form fluorine rubber can be fully mixed in a preset ratio and then placed at a high temperature (for example, greater than 30°C and not greater than 100°C, or 50°C-70°C) for 12h-24h.
  • the two-component fluororubber-forming raw material can be purchased from the market.
  • the two-component raw material that can form fluorine rubber can be purchased from the product model FAQ-008 produced by Shanghai Silicon Mountain Polymer Materials Co., Ltd.
  • the mass fraction of the third component may be in the range of 25-150. In some embodiments, the mass fraction of the third component may be in the range of 50-150. In some embodiments, the mass fraction of the third component may be in the range of 100-150. In some embodiments, the mass fraction of the third component may be in the range of 25-125. In some embodiments, the mass fraction of the third component may be in the range of 50-125. In some embodiments, the mass fraction of the third component may be in the range of 75-125. In some embodiments, the mass fraction of the third component may be in the range of 25-100. In some embodiments, the mass fraction of the third component may be in the range of 50-100. In some embodiments, the mass fraction of the third component may be in the range of 25-75. In some embodiments, the mass fraction of the third component may be 25, or 50, or 75, or 100, or 125, or 150.
  • the mass fraction of the fourth component may be in the range of 0-20 and greater than 0. In some embodiments, the mass fraction of the fourth component may range from 2 to 18. In some embodiments, the mass fraction of the fourth component may range from 4 to 16. In some embodiments, the mass fraction of the fourth component may be in the range of 5-10. In some embodiments, the mass fraction of the fourth component may be 5, or 8, or 10, or 12, or 15, or 20.
  • the mass ratio of the third component to the fourth component may be (5-15):1. In some embodiments, the mass ratio of the third component to the fourth component may be (6-14):1. In some embodiments, the mass ratio of the third component to the fourth component may be (7-13):1. In some embodiments, the mass ratio of the third component to the fourth component may be (8-12):1. In some embodiments, the mass ratio of the third component to the fourth component may be (9-11):1. In some embodiments, the mass ratio of the third component to the fourth component may be 5:1, or 8:1, or 10:1, or 12:1, or 15:1. For example, the third component may be 100 parts, and the fourth component may be 10 parts. For another example, the third component may be 50 parts, and the fourth component may be 5 parts.
  • modified silicone rubber can be prepared by fully mixing the raw materials that can form silicone rubber and the raw materials that can form modified materials.
  • the modified silicone rubber may include a large amount of Si-O bonds, methyl groups and a small amount of vinyl groups.
  • the modified silicone rubber may further include at least one of acrylonitrile groups, butadienyl groups or fluorine atoms.
  • the mass ratio of the first component, the second component, the third component and the fourth component may be 10:1:(5-10):(0.5-1). In some embodiments, the mass ratio of the first component, the second component, the third component and the fourth component may be 10:1:(6-9):(0.5-1). In some embodiments, the mass ratio of the first component, the second component, the third component and the fourth component may be 10:1:(7-8):(0.5-1). In some embodiments, the mass ratio of the first component, the second component, the third component and the fourth component may be 10:1:(5-10):(0.6-0.9).
  • the mass ratio of the first component, the second component, the third component and the fourth component may be 10:1:(5-10):(0.7-0.8). In some embodiments, the mass ratio of the first component, the second component, the third component and the fourth component may be 10:1:10:1, or 10:1:10:0.5, or 10: 1:5:0.5, or 10:1:5:1.
  • the mass ratio of the first component to the third component may be (1-2):1. In some embodiments, the mass ratio of the first component to the third component may be (1.2-1.8):1. In some embodiments, the mass ratio of the first component to the third component may be (1.4-1.6):1. In some embodiments, the mass ratio of the first component to the third component may be 1:1, or 1.2:1, or 1.4:1, or 1.6:1, or 1.8:1, or 2:1.
  • the raw material that can form silicone rubber is two-component room temperature vulcanization liquid silicone rubber RTV615, the third component can be 100 parts, and the fourth component can be 10 parts. In some embodiments, the raw material that can form silicone rubber is two-component room temperature vulcanization liquid silicone rubber RTV630, the third component can be 50 parts, and the fourth component can be 5 parts.
  • the raw material composition of the modified silicone rubber may include: 50-150 parts of the first component, 0-20 parts of the second component, 25-150 parts of the third component, and 0-20 parts of the fourth component. Among them, the mass fractions of the second component and the fourth component are not 0. In some embodiments, in parts by mass, the raw material composition of modified silicone rubber may include: 100 parts of the first component, 10 parts of the second component, 50-100 parts of the third component, and 0-10 parts The fourth component. Among them, the mass fraction of the fourth component is not 0.
  • the raw material composition of the modified silicone rubber may include: 100 parts of the first component of RTV silicone rubber, 10 parts of the second component of RTV silicone rubber, 50-100 parts of the second component. Three components and 0-10 parts of the fourth component. Among them, the mass fraction of the fourth component is not 0.
  • the raw material composition of modified silicone rubber may include: 100 parts of the first component of RTV silicone rubber, 10 parts of the second component of RTV silicone rubber, 50-100 parts of " Butadiene and acrylonitrile" and 0-10 parts of "Organotin or Organobismuth". Among them, the mass fraction of "organotin or organic bismuth" is not 0.
  • the raw material composition of modified silicone rubber may include: 100 parts of the first component of RTV silicone rubber, 10 parts of the second component of RTV silicone rubber, 50-100 parts of butyl rubber. diene and 0-10 parts of "organotin or organobismuth". Among them, the mass fraction of "organotin or organic bismuth" is not 0.
  • the raw material composition of modified silicone rubber may include: 100 parts of the first component of RTV silicone rubber, 10 parts of the second component of RTV silicone rubber, 50-100 parts of Fluorocarbon chain and 0-10 parts of "aziridine or polycarbodiimide". Among them, the mass fraction of "aziridine or polycarbodiimide” is not 0.
  • the raw material composition of the modified silicone rubber and its dosage can also be any one of numbers 1-8 in Table 1.
  • the embodiments of this specification also provide a preparation method of modified silicone rubber.
  • the preparation method may include mixing raw material compositions of modified silicone rubber, curing and molding to obtain modified silicone rubber.
  • the raw material composition of modified silicone rubber please refer to the relevant descriptions in the previous part of this specification and will not be repeated here.
  • the curing temperature can be determined according to the properties of each raw material in the raw material composition of the modified silicone rubber.
  • the curing temperature can be room temperature.
  • the curing temperature can be 30°C-100°C.
  • the curing temperature can be 50°C-70°C.
  • the room temperature can be 25°C ⁇ 5°C, or 20°C-30°C.
  • the curing time can be determined according to the properties of each raw material in the modified silicone rubber raw material composition, and generally the reaction should be ensured to be complete.
  • the curing time can be 12h-60h.
  • the curing time can be 36h-60h.
  • the curing time can be 48 hours.
  • the raw materials in the modified silicone rubber raw material composition can be thoroughly mixed in a preset proportion and evenly mixed, and then placed at room temperature (for example, 20°C-30°C) for 24h-48h to solidify and shape to obtain the modified silicone rubber.
  • the raw materials in the modified silicone rubber raw material composition can be thoroughly mixed according to a preset proportion, and then placed at a high temperature (for example, greater than 30°C and not greater than 100°C, or 50°C-70°C) for 12h- After 24 hours, the modified silicone rubber was obtained by curing and molding.
  • a high temperature for example, greater than 30°C and not greater than 100°C, or 50°C-70°C
  • the curing process can be performed in the mold.
  • the preparation method may also include performing a bubble removal process after mixing the raw material composition of the modified silicone rubber and before performing a curing process.
  • the preparation method of modified silicone rubber may include the following steps: (1) Mix the first component and the third component for the first time to obtain mixture A; (2) Mix mixture A and the second component The second component and the fourth component are mixed to obtain mixture B; (3) Mixture B is cured and molded to obtain modified silicone rubber.
  • the preparation method of modified silicone rubber may include the following steps: weigh 100 parts by mass of the first component of RTV silicone rubber and 0-100 (not zero) parts by mass of the third component and mix them evenly (for example, in a beaker (mix evenly), then add 10 parts by mass of the second component of RTV silicone rubber and 0-10 (not zero) parts by mass of the fourth component, and mix evenly to obtain a mixed liquid.
  • the obtained mixed liquid is poured into a mold, and solidified and molded at room temperature or high temperature (for example, 30°C-100°C, or 50°C-70°C) to obtain modified silicone rubber.
  • the embodiments of this specification also provide a modified silicone rubber, which is prepared by using the above preparation method of modified silicone rubber.
  • the viscosity of the modified silicone rubber may be greater than or equal to 10,000 mPa ⁇ s. In some embodiments, when the raw material that can form the silicone rubber is a raw material that can form RTV615 silicone rubber, the viscosity of the modified silicone rubber may be 10,000 mPa ⁇ s-30,000 mPa ⁇ s. In some embodiments, when the raw material that can form the silicone rubber is a raw material that can form RTV630 silicone rubber, the viscosity of the modified silicone rubber may be greater than or equal to 150,000 mPa ⁇ s.
  • the embodiments of this specification also provide a modified silicone rubber, which can be a random copolymer composed of structural units in any of the following 1-3 conditions: 1 represented by general formula I-1 and general formula II-1 Structural units; 2 Structural units represented by general formula I-1, general formula II-1 and general formula III-1; 3 general formula I-1, general formula IV-1 and "general formula V or general formula VI"
  • the structural units shown are the structural units represented by the general formula I-1, the general formula IV-1 and the general formula V, or the structural units represented by the general formula I-1, the general formula IV-1 and the general formula VI. .
  • R 1a , R 1b , R 1c , R 1d , R 2a , R 2b , R 2c , R 2d , R 3a , R 3b , n, m, and a are as defined above.
  • the acoustic impedance of the modified silicone rubber in the embodiments of this specification is greater than the acoustic impedance of the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1.
  • the difference in acoustic impedance between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be ⁇ 0.05Mrayl.
  • the difference in acoustic impedance between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 may be ⁇ 0.05Mrayl and ⁇ 0.5Mrayl.
  • the difference in acoustic impedance between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be ⁇ 0.1Mrayl and ⁇ 0.45Mrayl. In some embodiments, the difference in acoustic impedance between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be ⁇ 0.15Mrayl and ⁇ 0.4Mrayl. In some embodiments, the difference in acoustic impedance between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 may be ⁇ 0.2Mrayl and ⁇ 0.35Mrayl.
  • the difference in acoustic impedance between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 may be ⁇ 0.25Mrayl and ⁇ 0.3Mrayl.
  • the difference in acoustic impedance between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 0.06Mrayl, or 0.09Mrayl, or 0.12Mrayl, or 0.20Mrayl, or 0.21Mrayl, or 0.26Mrayl, or 0.31Mrayl, or 0.32Mrayl, or 0.35Mrayl, or 0.4Mrayl, or 0.45Mrayl, or 0.5Mrayl.
  • the silicone rubber obtained by polymerizing the structural units represented by the general formula I-1 with different degrees of polymerization has differences in acoustic impedance
  • the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit shown in general formula I-1 have the same silicone rubber structure. Compare under unit conditions.
  • the silicone rubber component in the modified silicone rubber of the embodiments of this specification is RTV630 silicone rubber
  • the difference in acoustic impedance between the modified silicone rubber of the embodiments of this specification and RTV630 silicone rubber i.e., silicone rubber obtained by polymerization of the structural units shown in general formula I-1
  • the silicone rubber component in the modified silicone rubber of the embodiments of this specification is RTV630 silicone rubber
  • the difference in acoustic impedance between the modified silicone rubber of the embodiments of this specification and RTV630 silicone rubber may be ⁇ 0.1 Mrayl and ⁇ 0.25 Mrayl.
  • the difference in acoustic impedance between the modified silicone rubber of the embodiments of this specification and RTV630 silicone rubber may be ⁇ 0.15 Mrayl and ⁇ 0.2 Mrayl.
  • the silicone rubber component in the modified silicone rubber of the embodiment of this specification is RTV630 silicone rubber
  • the difference in acoustic impedance between the modified silicone rubber of the embodiment of this specification and the RTV630 silicone rubber may be 0.06 Mrayl, or 0.09 Mrayl, or 0.12 Mrayl, or 0.20 Mrayl.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the modified silicone rubber and RTV615 silicone rubber that is, represented by the general formula I-1
  • the difference in acoustic impedance of the silicone rubber obtained by polymerizing the structural units can be ⁇ 0.2Mrayl and ⁇ 0.5Mrayl.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the difference in acoustic impedance between the modified silicone rubber and RTV615 silicone rubber in the embodiments of this specification can be ⁇ 0.25Mrayl And ⁇ 0.45Mrayl.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the difference in acoustic impedance between the modified silicone rubber and RTV615 silicone rubber in the embodiments of this specification can be ⁇ 0.3Mrayl And ⁇ 0.4Mrayl.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the difference in acoustic impedance between the modified silicone rubber and RTV615 silicone rubber in the embodiments of this specification can be ⁇ 0.32Mrayl And ⁇ 0.35Mrayl.
  • the silicone rubber component in the modified silicone rubber in the embodiment of this specification is RTV615 silicone rubber
  • the difference in acoustic impedance between the modified silicone rubber and RTV615 silicone rubber in the embodiment of this specification can be 0.21Mrayl, or 0.26Mrayl, Or 0.31Mrayl, or 0.32Mrayl.
  • the acoustic impedance of the modified silicone rubber in the embodiments of this specification may be in the range of 1.25 MRayl-1.50 MRayl. In some embodiments, the acoustic impedance of the modified silicone rubber in the embodiments of this specification may be in the range of 1.30 MRayl-1.50 MRayl. In some embodiments, the acoustic impedance of the modified silicone rubber in the embodiments of this specification may be in the range of 1.35 MRayl-1.50 MRayl. In some embodiments, the acoustic impedance of the modified silicone rubber in the embodiments of this specification may be in the range of 1.40 MRayl-1.50 MRayl.
  • the acoustic impedance of the modified silicone rubber in the embodiments of this specification may be in the range of 1.45 MRayl-1.50 MRayl.
  • the acoustic impedance of the modified silicone rubber in the embodiments of this specification may be 1.26MRayl, or 1.31MRayl, or 1.36MRayl, or 1.37MRayl, or 1.39MRayl, or 1.42MRayl, or 1.50MRayl.
  • the acoustic impedance of the modified silicone rubber can be in the range of 1.30MRayl-1.50MRayl. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the acoustic impedance of the modified silicone rubber can be in the range of 1.35MRayl-1.50MRayl. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the acoustic impedance of the modified silicone rubber can be in the range of 1.40 MRayl-1.50 MRayl.
  • the acoustic impedance of the modified silicone rubber can be in the range of 1.45 MRayl-1.50 MRayl.
  • the acoustic impedance of the modified silicone rubber may be 1.36Mrayl, or 1.39Mrayl, or 1.42Mrayl, or 1.50Mrayl.
  • the acoustic impedance of the modified silicone rubber can be in the range of 1.20MRayl-1.40MRayl. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the acoustic impedance of the modified silicone rubber can be in the range of 1.25 MRayl-1.40 MRayl. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the acoustic impedance of the modified silicone rubber can be in the range of 1.30MRayl-1.40MRayl.
  • the acoustic impedance of the modified silicone rubber can be in the range of 1.35 MRayl-1.40 MRayl.
  • the acoustic impedance of the modified silicone rubber can be 1.26MRayl, or 1.31MRayl, or 1.36MRayl, or 1.37MRayl, or 1.40MRayl .
  • the acoustic impedance of the modified silicone rubber can be obtained by using an oscilloscope to measure the acoustic impedance using water.
  • the material sound velocity of the modified silicone rubber sample can be obtained by the water immersion insertion method, and the acoustic impedance of the modified silicone rubber sample can be calculated.
  • the calculation formula is as follows:
  • C represents the material sound speed of modified silicone rubber
  • l 1 is the thickness of modified silicone rubber sample 1
  • l 2 is the thickness of modified silicone rubber sample 2
  • ⁇ t is the insertion of modified silicone rubber sample 1 and modified silicon
  • C 0 is the sound speed in water
  • Z is the acoustic impedance of the modified silicone rubber sample.
  • the sound attenuation of the modified silicone rubber in the embodiments of this specification is greater than or less than the sound attenuation of the silicone rubber obtained by polymerizing the structural units represented by the general formula I-1.
  • the absolute value of the sound attenuation difference between the modified silicone rubber and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 0.0-15.0dB/cm.
  • the absolute value of the difference in sound attenuation between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 1.0dB/cm-14.0dB/cm .
  • the absolute value of the difference in sound attenuation between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 2.0dB/cm-13.0dB/cm . In some embodiments, the absolute value of the difference in sound attenuation between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 3.0dB/cm-12.0dB/cm .
  • the absolute value of the difference in sound attenuation between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 4.0dB/cm-11.0dB/cm . In some embodiments, the absolute value of the difference in sound attenuation between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 5.0dB/cm-10.0dB/cm .
  • the absolute value of the difference in sound attenuation between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 6.0dB/cm-9.0dB/cm . In some embodiments, the absolute value of the difference in sound attenuation between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 7.0dB/cm-8.0dB/cm .
  • the absolute value of the difference in sound attenuation between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 10.0dB/cm, or 8.0dB/cm, or 2.9 dB/cm, or 2.3dB/cm, or 1.3dB/cm, or 9.6dB/cm, or 11.0dB/cm, or 13.7dB/cm.
  • the silicone rubber obtained by polymerizing the structural units represented by the general formula I-1 with different degrees of polymerization has differences in sound attenuation
  • the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural units shown in general formula I-1 have the same silicone rubber structure. Compare under unit conditions.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber
  • the modified silicone rubber and RTV630 silicone rubber that is, the structural unit represented by the general formula I-1 is polymerized to obtain
  • the absolute value of the difference in sound attenuation of silicone rubber can be 0.0-15.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber
  • the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV630 silicone rubber can be 2.0dB/cm- 15.0dB/cm.
  • the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV630 silicone rubber can be 4.0dB/cm- 15.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV630 silicone rubber can be 6.0dB/cm- 15.0dB/cm.
  • the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV630 silicone rubber can be 8.0dB/cm- 15.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV630 silicone rubber can be 10.0dB/cm- 15.0dB/cm.
  • the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV630 silicone rubber can be 12.0dB/cm- 15.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV630 silicone rubber can be 14.0dB/cm- 15.0dB/cm.
  • the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV630 silicone rubber can be 10.0dB/cm, or 8.0dB/ cm, or 1.3dB/cm, or 11.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the modified silicone rubber and RTV615 silicone rubber that is, the structural unit represented by the general formula I-1 is polymerized to obtain
  • the absolute value of the difference in sound attenuation of silicone rubber can be 0.0-15.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV615 silicone rubber can be 2.0dB/cm- 15.0dB/cm.
  • the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV615 silicone rubber can be 4.0dB/cm- 15.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV615 silicone rubber can be 6.0dB/cm- 15.0dB/cm.
  • the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV615 silicone rubber can be 8.0dB/cm- 15.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV615 silicone rubber can be 10.0dB/cm- 15.0dB/cm.
  • the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV615 silicone rubber can be 12.0dB/cm- 15.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV615 silicone rubber can be 14.0dB/cm- 15.0dB/cm.
  • the absolute value of the difference in sound attenuation between the modified silicone rubber and RTV615 silicone rubber can be 2.9dB/cm, or 2.3dB/cm. cm, or 9.6dB/cm, or 13.7dB/cm.
  • the sound attenuation coefficient (which may be referred to as sound attenuation) of the modified silicone rubber at a frequency of 5 MHz may not be greater than 42.0 dB/cm.
  • the sound attenuation of the modified silicone rubber in the embodiments of this specification may be no more than 38.0 dB/cm at a frequency of 5 MHz.
  • the sound attenuation of the modified silicone rubber in the embodiments of this specification may be no more than 34.0 dB/cm at a frequency of 5 MHz.
  • the sound attenuation of the modified silicone rubber in the embodiments of this specification may be no more than 30.0 dB/cm at a frequency of 5 MHz.
  • the sound attenuation of the modified silicone rubber in the embodiments of this specification may be no more than 26.0 dB/cm at a frequency of 5 MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be no more than 22.0 dB/cm at a frequency of 5 MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be no more than 18.0 dB/cm at a frequency of 5 MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be no more than 14.0 dB/cm at a frequency of 5 MHz.
  • the sound attenuation of the modified silicone rubber in the embodiments of this specification may be no more than 10.0 dB/cm at a frequency of 5 MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be no more than 6.0 dB/cm at a frequency of 5 MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be no more than 2.0 dB/cm at a frequency of 5 MHz.
  • the sound attenuation of the modified silicone rubber in the embodiments of this specification may be 12.0dB/cm-42.0dB/cm at a frequency of 5MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be 12.0dB/cm-38.0dB/cm at a frequency of 5MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be 12.0dB/cm-34.0dB/cm at a frequency of 5MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be 12.0dB/cm-30.0dB/cm at a frequency of 5MHz.
  • the sound attenuation of the modified silicone rubber in the embodiments of this specification may be 12.0dB/cm-26.0dB/cm at a frequency of 5MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be 12.0dB/cm-22.0dB/cm at a frequency of 5MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be 12.0dB/cm-18.0dB/cm at a frequency of 5MHz. In some embodiments, the sound attenuation of the modified silicone rubber in the embodiments of this specification may be 12.0dB/cm-14.0dB/cm at a frequency of 5MHz.
  • the sound attenuation of the modified silicone rubber in the embodiment of this specification at a frequency of 5MHz can be 12.5dB/cm, or 13.1dB/cm, or 20.0dB/cm, or 22.0dB/cm, or 25.0dB/cm, or 29.1dB/cm, or 31.3dB/cm, or 41.0dB/cm.
  • the sound attenuation of the modified silicone rubber can be 20.0dB/cm-42.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the sound attenuation of the modified silicone rubber can be 20.0dB/cm-38.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the sound attenuation of the modified silicone rubber can be 20.0dB/cm-34.0dB/cm.
  • the sound attenuation of the modified silicone rubber can be 20.0dB/cm-30.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the sound attenuation of the modified silicone rubber can be 20.0dB/cm-26.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the sound attenuation of the modified silicone rubber can be 20.0dB/cm-22.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiment of this specification is RTV630 silicone rubber
  • the sound attenuation of the modified silicone rubber can be 20.0dB/cm, or 22.0dB/cm, or 31.3dB/cm, or 41.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the sound attenuation of the modified silicone rubber can be 12.0dB/cm-42.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the sound attenuation of the modified silicone rubber can be 12.0dB/cm-38.0dB/cm. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the sound attenuation of the modified silicone rubber can be 12.0 dB/cm-34.0 dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the sound attenuation of the modified silicone rubber can be 12.0dB/cm-30.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the sound attenuation of the modified silicone rubber can be 12.0dB/cm-26.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the sound attenuation of the modified silicone rubber can be 12.0dB/cm-22.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the sound attenuation of the modified silicone rubber can be 12.0dB/cm-18.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the sound attenuation of the modified silicone rubber can be 12.0dB/cm-14.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the sound attenuation of the modified silicone rubber can be 20.0dB/cm-42.0dB/cm.
  • the silicone rubber component in the modified silicone rubber in the embodiment of this specification is RTV615, the sound attenuation of the modified silicone rubber can be 12.5dB/cm, or 13.1dB/cm, or 25.0dB/cm, or 29.1dB /cm.
  • the sound attenuation of the modified silicone rubber can be measured using underwater sound with an oscilloscope.
  • the sound attenuation coefficient of a modified silicone rubber sample can be obtained through the water immersion insertion method.
  • the calculation formula is as follows:
  • (20lg(A 1 /A 2 ))/(l 1 -l 2 )+ ⁇ 0 ;
  • l 1 is the thickness of modified silicone rubber sample 1
  • l 2 is the thickness of modified silicone rubber sample 2
  • ⁇ 0 is the sound attenuation coefficient in water
  • a 1 and A 2 are modified silicone rubber sample 1 and modified The amplitude of the pulse signal received by silicone rubber sample 2 respectively
  • is the sound attenuation coefficient of the modified silicone rubber sample in water.
  • the hardness of the modified silicone rubber in the embodiments of this specification is greater than the hardness of the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1.
  • the difference in hardness between the modified silicone rubber and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 0-30HA.
  • the difference in hardness between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 2HA-28HA.
  • the difference in hardness between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 4HA-26HA.
  • the difference in hardness between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 6HA-24HA. In some embodiments, the difference in hardness between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 8HA-22HA. In some embodiments, the difference in hardness between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 may be 10HA-20HA. In some embodiments, the difference in hardness between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 may be 12HA-18HA.
  • the difference in hardness between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be 14HA-16HA.
  • the difference in hardness between the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural unit represented by the general formula I-1 can be OHA, or 1HA, or 10HA, or 13HA, or 15HA, or 16HA, Or 25HA, or 27HA.
  • the silicone rubber obtained by polymerizing the structural units represented by the general formula I-1 with different degrees of polymerization has differences in hardness, it is necessary to compare the modified silicone rubber and the modified silicone rubber of the general formula I-1 in the embodiments of this specification.
  • the modified silicone rubber in the embodiments of this specification and the silicone rubber obtained by polymerizing the structural units represented by general formula I-1 have the same silicone rubber structural units. conditions for comparison.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber
  • the modified silicone rubber and RTV630 silicone rubber that is, the structural unit represented by the general formula I-1 is polymerized to obtain
  • the difference in hardness of silicone rubber can be 0-15HA.
  • the silicone rubber component in the modified silicone rubber is RTV630 silicone rubber
  • the difference in hardness between the modified silicone rubber and RTV630 silicone rubber may be 2HA-13HA.
  • the silicone rubber component in the modified silicone rubber is RTV630 silicone rubber
  • the difference in hardness between the modified silicone rubber and RTV630 silicone rubber may be 4HA-11HA.
  • the difference in hardness between the modified silicone rubber and RTV630 silicone rubber may be 6HA-9HA. In some embodiments, when the silicone rubber component in the modified silicone rubber is RTV630 silicone rubber, the difference in hardness between the modified silicone rubber and RTV630 silicone rubber may be 7HA-8HA.
  • the difference in hardness between the modified silicone rubber and RTV630 silicone rubber can be OHA, or 1HA, or 10HA, or 15HA.
  • the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber
  • the modified silicone rubber and RTV615 silicone rubber that is, the structural unit represented by the general formula I-1 is polymerized to obtain
  • the difference in hardness of silicone rubber can be 0-30HA.
  • the silicone rubber component in the modified silicone rubber is RTV615 silicone rubber
  • the difference in hardness between the modified silicone rubber and RTV615 silicone rubber may be 2HA-28HA.
  • the silicone rubber component in the modified silicone rubber is RTV615 silicone rubber
  • the difference in hardness between the modified silicone rubber and RTV615 silicone rubber may be 4HA-26HA.
  • the difference in hardness between the modified silicone rubber and RTV615 silicone rubber may be 6HA-24HA. In some embodiments, when the silicone rubber component in the modified silicone rubber is RTV615 silicone rubber, the difference in hardness between the modified silicone rubber and RTV615 silicone rubber may be 8HA-22HA. In some embodiments, when the silicone rubber component in the modified silicone rubber is RTV615 silicone rubber, the difference in hardness between the modified silicone rubber and RTV615 silicone rubber may be 10HA-20HA. In some embodiments, when the silicone rubber component in the modified silicone rubber is RTV615 silicone rubber, the difference in hardness between the modified silicone rubber and RTV615 silicone rubber may be 12HA-18HA.
  • the difference in hardness between the modified silicone rubber and RTV615 silicone rubber may be 14HA-16HA.
  • the difference in hardness between the modified silicone rubber and RTV615 silicone rubber can be 13HA, or 16HA, or 25HA, or 27HA.
  • the hardness of the modified silicone rubber may be 30HA-70HA. In some embodiments, the hardness of the modified silicone rubber in the embodiments of this specification may be 34HA-66HA. In some embodiments, the hardness of the modified silicone rubber in the embodiments of this specification may be 38HA-62HA. In some embodiments, the hardness of the modified silicone rubber in the embodiments of this specification may be 42HA-58HA. In some embodiments, the hardness of the modified silicone rubber in the embodiments of this specification may be 46HA-54HA. In some embodiments, the hardness of the modified silicone rubber in the embodiments of this specification may be 48HA-50HA. For example, the hardness of the modified silicone rubber in the embodiments of this specification may be 38HA, or 41HA, or 50HA, or 51HA, or 52HA, or 60HA, or 65HA.
  • the hardness of the modified silicone rubber when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the hardness of the modified silicone rubber may be 45HA-70HA. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the hardness of the modified silicone rubber may be 50HA-65HA. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV630 silicone rubber, the hardness of the modified silicone rubber may be 55HA-60HA. For example, when the silicone rubber component in the modified silicone rubber in the embodiment of this specification is RTV630 silicone rubber, the hardness of the modified silicone rubber may be 50HA, or 51HA, or 60HA, or 65HA.
  • the hardness of the modified silicone rubber when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the hardness of the modified silicone rubber may be 30HA-60HA. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the hardness of the modified silicone rubber may be 35HA-55HA. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the hardness of the modified silicone rubber may be 40HA-50HA. In some embodiments, when the silicone rubber component in the modified silicone rubber in the embodiments of this specification is RTV615 silicone rubber, the hardness of the modified silicone rubber may be 44HA-46HA. For example, when the silicone rubber component in the modified silicone rubber in the embodiment of this specification is RTV615 silicone rubber, the hardness of the modified silicone rubber may be 38HA, or 41HA, or 50HA, or 52HA.
  • the method for detecting the hardness of modified silicone rubber can be obtained by referring to the GB/T531.1-2008 standard test using a Shore hardness tester.
  • the structural unit represented by the general formula I-1 and the compound represented by the general formula I have a structural correspondence.
  • the compound represented by the general formula I can be reacted to obtain the compound represented by the general formula I-1. structural unit.
  • the mass fractions of the structural unit represented by the general formula I-1 and the compound represented by the general formula I may also correspond.
  • the structural unit represented by the general formula II-1 and the compound represented by the general formula II have a corresponding relationship in structure and mass fraction;
  • the structural unit represented by the general formula III-1 and the compound represented by the general formula III The compound shown has a corresponding relationship in structure and mass fraction;
  • the structural unit represented by the general formula VI and polycarbodiimide have a corresponding relationship in structure and mass fraction.
  • the structural unit represented by the general formula I-1 can be 50-150 parts, and the structural unit represented by the general formula II-1 can be 25-150 parts.
  • the structural unit represented by the general formula I-1 may be 50-150 parts by weight, and the sum of the structural unit represented by the general formula II-1 and the structural unit represented by the general formula III-1 may be 25-150 parts by weight.
  • the structural unit represented by the general formula I-1 is 50-150 parts
  • the structural unit represented by the general formula IV-1 is 25-150 parts
  • the structural unit shown in VI is 0-20 (not 0) parts.
  • the viscosity of the modified silicone rubber may be greater than or equal to 10,000 mpa ⁇ s.
  • the viscosity of the modified silicone rubber when the structural unit represented by the general formula I-1 can form RTV615 silicone rubber, the viscosity of the modified silicone rubber can be 10000mpa ⁇ s-30000mpa ⁇ s.
  • the structural unit represented by the general formula I-1 when the structural unit represented by the general formula I-1 can form RTV630 silicone rubber, the viscosity of the modified silicone rubber can be 150,000 mpa ⁇ s or more.
  • the mass content of the structural unit represented by the general formula III-1 in the modified silicone rubber can be 15%-50%.
  • modified silicone rubber can be used as a sound-transmitting material for the transducer.
  • modified silicone rubber can be used as a sound-transparent material for the transducer.
  • the acoustically transparent material may include acoustically transparent elements applied to ultrasound probes.
  • the acoustically transparent material may be an acoustic lens material.
  • Embodiments of this specification also provide an acoustic lens including modified silicone rubber.
  • the embodiments of this specification also provide an application of the modified material as a sound-transmitting material.
  • the embodiments of this specification also provide a modified material of silicone rubber.
  • the modified material may be at least one of nitrile rubber, butadiene rubber, or fluorine rubber.
  • the acoustically transparent material may be an acoustic lens material.
  • the nitrile rubber may be nitrile rubber as described above.
  • the butadiene rubber may be butadiene rubber as described above.
  • the fluororubber may be the fluororubber as described above.
  • the feedstock from which the modified material can be formed can include a third component and a fourth component. For relevant descriptions of the third component and the fourth component, please refer to the relevant descriptions in the previous part of this specification and will not be repeated here.
  • Fluorine rubber raw materials were purchased from Shanghai Silicon Mountain Polymer Materials Co., Ltd., model FAQ-008.
  • the commercially available form is that the third component and the fourth component are packaged separately.
  • Butadiene rubber raw material was purchased from Yuyao Huihong Plastic Factory, model PBR-4040.
  • the commercially available form is that the third component and the fourth component are packaged separately.
  • the raw material of nitrile rubber was purchased from Shandong Wang Brothers Plastic Technology Co., Ltd., and the model is LNBR820.
  • the commercially available form is that the third component and the fourth component are packaged separately.
  • the acoustic properties of materials are measured using an oscilloscope using hydroacoustic measurements.
  • the calculation formula is as follows:
  • (20lg(A 1 /A 2 ))/(l 1 -l 2 )+ ⁇ 0 ;
  • C represents the material sound speed of modified silicone rubber
  • l 1 is the thickness of modified silicone rubber sample 1
  • l 2 is the thickness of modified silicone rubber sample 2
  • ⁇ t is the insertion of modified silicone rubber sample 1 and modified silicon
  • C 0 is the sound speed in water
  • ⁇ 0 is the sound attenuation coefficient in water
  • a 1 and A 2 are the pulse signals received by modified silicone rubber sample 1 and modified silicone rubber sample 2 respectively.
  • Amplitude ⁇ is the sound attenuation coefficient of the modified silicone rubber sample in water
  • Z is the acoustic impedance of the modified silicone rubber sample.
  • the mechanical properties (for example, hardness) of the material are measured using a Shore hardness tester with reference to the GB/T531.1-2008 standard.
  • Comparative Example 1 Weigh 100g of the first component of RTV630 silicone rubber and 10g of the second component of RTV630 silicone rubber in a beaker, use a stirring device to mix evenly, and use a defoaming device to perform defoaming treatment, and then pour them into In the mold, it was cured for 48 hours in a constant temperature and humidity chamber at 25°C, 50% RH (Relative Humidity, Relative Humidity), and then molded.
  • the acoustic impedance of RTV630 silicone rubber was 1.30MRayl, and the acoustic attenuation at 5MHz was 30.0dB/cm. Shao Shore A hardness is 50.
  • RTV630 silicone rubber includes Si-O bonds, methyl, vinyl and silica.
  • Example 1 Weigh the first component of 100g RTV630 silicone rubber and the third component of 50g fluororubber and mix them evenly using a stirring device, then add the second component of 10g RTV630 silicone rubber and the fourth component of 5g fluororubber. , use the stirring device to mix evenly and use the debugging device to perform defoaming treatment. After completion, pour it into the mold and cure it in a constant temperature and humidity box at 25°C and 50% RH for 48 hours. The resulting RTV630 silicone rubber/fluorine rubber The acoustic impedance of the composite material (ie, modified silicone rubber) is 1.50MRayl, the sound attenuation at 5MHz is 31.3dB/cm, and the Shore A hardness is 65. The obtained RTV630 silicone rubber/fluorine rubber composite material contains Si-O bonds, methyl groups, vinyl groups, silica black and fluorine atoms.
  • Comparing Example 1 with Comparative Example 1 it can be seen that adding liquid fluorine rubber to RTV630 silicone rubber effectively improves the impedance and hardness of the material, and its sound attenuation increases very little.
  • Example 2 Weigh the first component of 100g RTV630 silicone rubber and the third component of 50g butadiene rubber and mix them evenly using a stirring device, then add the second component of 10g RTV630 silicone rubber and the fourth component of 5g butadiene rubber. The components are mixed evenly using a stirring device and defoamed using a debugging device. After completion, the components are poured into the mold and cured for 48 hours in a constant temperature and humidity box at 25°C and 50% RH.
  • the resulting RTV630 silicone rubber/ The acoustic impedance of butadiene rubber composite material i.e., modified silicone rubber
  • the acoustic impedance of butadiene rubber composite material is 1.42MRayl
  • the sound attenuation at 5MHz is 41.0dB/cm
  • the Shore hardness (Shore A) is 60.
  • the obtained RTV630 silicone rubber/butadiene rubber composite material contains Si-O bonds, methyl, vinyl, silica and butadiene-based components.
  • Example 3 Weigh the first component of 100g RTV630 silicone rubber and the third component of 50g nitrile rubber and mix them evenly using a stirring device, then add the second component of 10g RTV630 silicone rubber and the fourth component of 5g nitrile rubber. The components are mixed evenly using a stirring device and defoamed using a debugging device. After completion, the components are poured into the mold and cured for 48 hours in a constant temperature and humidity box at 25°C and 50% RH.
  • the resulting RTV630 silicone rubber/ The acoustic impedance of nitrile rubber composite material is 1.39MRayl, the sound attenuation at 5MHz is 22.0dB/cm, and the Shore hardness (Shore A) is 50.
  • the obtained RTV630 silicone rubber/nitrile rubber composite material contains Si-O bonds, methyl, vinyl, acrylonitrile, silica and butadiene-based components.
  • Example 4 Weigh the first component of 100g RTV630 silicone rubber and the third component of 100g nitrile rubber and mix them evenly using a stirring device, then add the second component of 10g RTV630 silicone rubber and the fourth component of 10g nitrile rubber. The components are mixed evenly using a stirring device and defoamed using a debugging device. After completion, the components are poured into the mold and cured for 48 hours in a constant temperature and humidity box at 25°C and 50% RH.
  • the resulting RTV630 silicone rubber/ The acoustic impedance of nitrile rubber composite is 1.36MRayl, the sound attenuation at 5MHz is 20.0dB/cm, and the Shore A hardness (Shore A) is 51.
  • the obtained RTV630 silicone rubber/nitrile rubber composite material contains Si-O bonds, methyl, vinyl, acrylonitrile, silica and butadiene-based components.
  • Example 4 Comparing Example 4 with Example 3 and Comparative Example 1, it can be seen that increasing the amount of liquid nitrile rubber in RTV630 silicone rubber reduces its sound attenuation, but the impedance decreases and the hardness changes very little.
  • Comparative Example 2 Weigh 100g of the first component of RTV615 silicone rubber and 10g of the second component of RTV615 silicone rubber in a beaker, use a stirring device to mix evenly and use a defoaming device to perform defoaming treatment, and then pour it into In the mold and cured for 48 hours in a constant temperature and humidity chamber at 25°C and 50% RH, the resulting RTV615 silicone rubber has an acoustic impedance of 1.05MRayl, a sound attenuation of 15.4dB/cm at 5MHz, and a Shore A hardness of 25 .
  • RTV615 substrates include Si-O bonds, methyl and vinyl.
  • Example 5 Weigh the first component of 100g RTV615 silicone rubber and the second component of 50g fluororubber and mix them evenly using a stirring device, then add the second component of 10g RTV615 silicone rubber and the fourth component of 5g fluororubber. , use the stirring device to mix evenly and use the debugging device to perform defoaming treatment. After completion, pour it into the mold and cure it in a constant temperature and humidity box at 25°C and 50% RH for 48 hours.
  • RTV615 silicone rubber/fluorine rubber The acoustic impedance of the composite material (i.e., modified silicone rubber) is 1.31MRayl, the sound attenuation at 5MHz is 25.0dB/cm, and the Shore A hardness is 50.
  • RTV615 silicone rubber/fluorine rubber composite material includes Si-O bonds, methyl groups, vinyl groups and fluorine atoms.
  • Example 6 Weigh the first component of 100g RTV615 silicone rubber and the third component of 50g butadiene rubber and mix them evenly using a stirring device, then add the second component of 10g RTV615 silicone rubber and the fourth component of 5g butadiene rubber. The components are mixed evenly using a stirring device and defoamed using a defoaming device. After completion, the components are poured into the mold and cured for 48 hours in a constant temperature and humidity box at 25°C and 50% RH.
  • RTV615 silicone rubber/butadiene rubber composite material i.e., modified silicone rubber
  • the acoustic impedance of butadiene rubber composite material is 1.36MRayl
  • the acoustic attenuation at 5MHz is 29.1dB/cm
  • the Shore A hardness is 52.
  • RTV615 silicone rubber/butadiene rubber composite material includes Si-O bond, methyl, vinyl and butadiene-based components.
  • Example 6 By comparing Example 6 with Comparative Example 2, it can be seen that adding liquid butadiene rubber to RTV615 silicone rubber improves the impedance and hardness of the material, but the sound attenuation also increases sharply.
  • Example 7 Weigh the first component of 100g RTV615 silicone rubber and the third component of 50g nitrile rubber and mix them evenly using a stirring device, then add the second component of 10g RTV615 silicone rubber and the fourth component of 5g nitrile rubber. The components are mixed evenly using a stirring device and defoamed using a defoaming device. After completion, the components are poured into the mold and cured for 48 hours in a constant temperature and humidity box at 25°C and 50% RH.
  • the resulting RTV615 silicone rubber/ The acoustic impedance of nitrile rubber composite material is 1.26MRayl, the sound attenuation at 5MHz is 13.1dB/cm, and the Shore A hardness is 38.
  • the obtained RTV615 silicone rubber/nitrile rubber composite material contains Si-O bonds, methyl, vinyl, acrylonitrile and butadienyl components.
  • Example 8 Weigh the first component of 100g RTV615 silicone rubber and the third component of 100g nitrile rubber and mix them evenly using a stirring device, then add the second component of 10g RTV615 silicone rubber and the fourth component of 10g nitrile rubber. The components are mixed evenly using a stirring device and defoamed using a defoaming device. After completion, the components are poured into the mold and cured for 48 hours in a constant temperature and humidity box at 25°C and 50% RH.
  • the resulting RTV615 silicone rubber/ The acoustic impedance of nitrile rubber composite is 1.37MRayl, the sound attenuation at 5MHz is 12.5dB/cm, and the Shore A hardness is 41.
  • the obtained RTV615 silicone rubber/nitrile rubber composite material contains Si-O bonds, methyl, vinyl, acrylonitrile and butadiene components.
  • Example 8 Comparing Example 8 with Example 7 and Comparative Example 2, it can be seen that increasing the amount of liquid nitrile rubber in RTV615 silicone rubber reduces the sound attenuation of the material and increases its impedance and hardness.
  • Example 9 Weigh the third component of 100g of nitrile rubber and the fourth component of 10g of nitrile rubber in a beaker, mix them evenly using a stirring device, and perform defoaming treatment using a defoaming device. After completion, pour them into In the mold and cured for 48 hours in a constant temperature and humidity chamber at 25°C and 50% RH, the two-component nitrile rubber matrix material obtained has an acoustic impedance of 1.52MRayl, a sound attenuation of 10.5dB/cm at 5MHz, and a Shore hardness of ( Shore A) is 60. The resulting nitrile rubber contains butadienyl and acrylonitrile-based structures.
  • Example 10 Weigh the third component of 100g butadiene rubber and the fourth component of 10g butadiene rubber in a beaker, mix them evenly using a stirring device, and perform defoaming treatment using a debugging device. After completion, pour them into The mold was cured for 48 hours in a constant temperature and humidity chamber at 25°C and 50% RH, and then molded to obtain a two-component butadiene rubber matrix material with an acoustic impedance of 1.61 MRayl, a sound attenuation of 40.0 dB/cm (5MHz), and a Shore hardness of A) is 80.
  • the obtained butadiene rubber contains a butadienyl structure.
  • Example 11 Weigh 100g of the third component of fluororubber and 10g of the fourth component of fluororubber in a beaker, mix them evenly using a stirring device and perform defoaming treatment using a debugging device, and then pour them into the mold. It was cured for 48 hours in a constant temperature and humidity chamber at 25°C and 50% RH, and then molded to obtain a two-component fluororubber matrix material with an acoustic impedance of 1.70MRayl, a sound attenuation of 40.0dB/cm (5MHz), and a Shore A hardness of 60. The obtained fluororubber contains fluorine atoms.
  • Examples 1-11 and Comparative Examples 1-2 are shown in Table 2 and Table 3 respectively. It can be seen from Examples 1-11 and Comparative Examples 1 and 2 that the improvement in acoustic performance (for example, acoustic impedance, sound attenuation) and hardness of RTV630 silicone rubber and RTV615 silicone rubber comes from blended rubber (for example, fluorine rubber, butadiene rubber). Rubber, nitrile rubber) good acoustic performance and hardness.
  • blended rubber for example, fluorine rubber, butadiene rubber. Rubber, nitrile rubber
  • the dosage unit in Table 2 is g, and "/" means it does not contain this component.
  • the amount of the first component refers to the sum of the masses of the multiple components; when the third component contains multiple components, the amount of the third component refers to the multiple components.
  • the third component includes butadiene and acrylonitrile.
  • the amount of the third component means that the sum of the masses of butadiene and acrylonitrile is 100g.
  • the ratio between butadiene and acrylonitrile can be It is a common ratio in this field.
  • the viscosity of the modified silicone rubber of the RTV615 silicone rubber obtained in Examples 5-8 is 10000mpa ⁇ s-30000mpa ⁇ s.
  • the viscosity of the modified silicone rubber of the RTV630 silicone rubber obtained in Examples 1-4 is greater than or equal to 150000 mpa ⁇ s.
  • Possible beneficial effects brought by the embodiments of this specification include but are not limited to: (1) Proposing a blending modification method of silicone rubber, which can effectively improve the acoustic impedance of the modified silicone rubber (i.e., modified silicone rubber) , it can also reduce the sound attenuation of modified silicone rubber and improve the mechanical strength of modified silicone rubber.
  • the Shore hardness of RTV630 silicone rubber can be increased from 50 to 51-65
  • the acoustic impedance can be increased from 1.30MRayl to 1.36MRayl-1.50MRayl
  • the sound attenuation at 5MHz frequency can be reduced from 30dB/cm to 20.0dB/cm.
  • the Shore hardness of RTV615 silicone rubber can be increased from 25 to 38-52, the acoustic impedance can be increased from 1.05MRayl to 1.26MRayl-1.37MRayl, and the sound attenuation can be reduced from 15.4dB/cm to 12.5dB/cm-13.1dB/ cm;
  • the prepared modified silicone rubber has an acoustic impedance that matches the human body and can be used as an acoustic lens for ultrasound probes. It not only has a high service life, but also improves the imaging sensitivity and imaging quality of ultrasound diagnostic equipment; (3 )
  • the preparation process of modified silicone rubber is simple, can be molded at room temperature, and meets the preparation requirements of conventional acoustic lenses.
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,” “approximately,” or “substantially” means that the stated number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical ranges and parameters used to identify the breadth of ranges in some embodiments of this specification are approximations, in specific embodiments, such numerical values are set as accurately as is feasible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本说明书实施例提供一种改性硅橡胶及其制备方法。该改性硅橡胶的原料组合物包括可形成硅橡胶的原料以及可形成改性材料的原料。可形成硅橡胶的原料包括第一组分和第二组分。可形成改性材料的原料包括第三组分和第四组分。该改性硅橡胶的制备方法包括:将改性硅橡胶的原料组合物混合,固化成型得到改性硅橡胶。

Description

改性硅橡胶及其制备方法
交叉引用
本说明书要求2022年09月21日提交的中国申请号202211152905.1的优先权,其全部内容通过引用并入本文。
技术领域
本说明书涉及声学材料技术领域,特别是涉及一种改性硅橡胶及其制备方法。
背景技术
超声诊断设备是一种将声学中的超声学应用于医学学科的临床诊断设备,具有无创、对软组织鉴别力高及对人体无辐射伤害的优点。它的工作原理是通过超声探头产生入射超声波(或称为发射波)和接收反射超声波(或称为回波),最终以回波的形式在示波器上显示出来。超声探头是实现超声诊断设备中超声信号和电信号相互转换的关键部件。超声探头主要由声透镜(Acoustic Lens)、匹配层(Matching Layer)、压电元件和背衬(Back)等部件组成。声透镜位于超声探头最外层,与人体介质直接接触。作为接触界面的声透镜,不仅需要尽可能低的声衰减,还需要具有与人体组织相近的声阻抗,以达到与人体组织的阻抗匹配效果,从而提高探头灵敏度,最终提升图像质量。目前制备声透镜的透声材料很难同时具备相对低的声衰减、相对高的声阻抗匹配效果和硬度,故难以满足相对高的成像灵敏度和成像质量,以及相对长的使用寿命的需求。因此,有必要提供一种改性硅橡胶及其制备方法,以得到同时满足以上需求的透声材料。
发明内容
本说明书实施例之一提供一种改性硅橡胶的原料组合物。该改性硅橡胶包括:可形成硅橡胶的原料,包括第一组分和第二组分;以及可形成改性材料的原料,包括第三组分和第四组分。
在一些实施例中,所述第一组分的质量份数在50-150范围内;所述第二组分的质量份数在0-20范围内且大于0;所述第三组分的质量份数在25-150范围内;或所述第四组分的质量份数在0-20范围内且大于0。
在一些实施例中,所述第一组分、所述第二组分、所述第三组分与所述第四组分的质量比为10:1:(5-10):(0.5-1)。
在一些实施例中,所述第一组分包括乙烯基硅橡胶和交联剂;或所述第二组分包括能够催化所述乙烯基硅橡胶和所述交联剂加成的催化剂。
在一些实施例中,所述乙烯基硅橡胶的结构式如式I所示:
Figure PCTCN2022143172-appb-000001
其中,R 1a、R 1b、R 1c、R 1d各自独立地选自H、取代或未取代的C 1-C 5的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基,n≥1000;所述交联剂包括硅氢键;或所述第二组分包括元素周期表第Ⅷ族的过渡金属、其化合物、或其络合物中的至少一种。
在一些实施例中,所述第二组分还包括甲基硅油、乙烯基硅油、羟基硅油、羟甲基氟硅油或端环 氧硅油中的至少一种。
在一些实施例中,所述乙烯基硅橡胶的结构式如式I’所示:
Figure PCTCN2022143172-appb-000002
在一些实施例中,所述交联剂为聚甲基氢硅氧烷。
在一些实施例中,所述第一组分还包括抑制剂或填料中的至少一种。
在一些实施例中,所述抑制剂包括炔醇类化合物、含氮化合物或有机过氧化物中的至少一种。
在一些实施例中,所述填料包括白炭黑、钛白粉、石英粉、氧化铝、氧化锌或氧化钨中的至少一种。
在一些实施例中,所述第三组分包括丁二烯类化合物和丙烯腈类化合物,所述第四组分包括能够催化所述丁二烯类化合物和所述丙烯腈类化合物加成的催化剂;或所述第三组分包括丁二烯类化合物,所述第四组分包括能够催化所述丁二烯类化合物加成的催化剂;或所述第三组分包括含氟碳链,所述第四组分包括聚碳化二亚胺。
在一些实施例中,所述丁二烯类化合物的结构式如式II所示,
Figure PCTCN2022143172-appb-000003
其中,R 2a、R 2b、R 2c、R 2d各自独立地选自H、取代或未取代的C 1-C 3的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基;所述丙烯腈类化合物的结构式如式III所示,
Figure PCTCN2022143172-appb-000004
其中,R 3a、R 3b各自独立地选自H、取代或未取代的C 1-C 3的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基;所述含氟碳链的结构式如式IV所示,
Figure PCTCN2022143172-appb-000005
其中,m不小于200,a在1-8范围内,且a为整数;或所述第四组分包括元素周期表第Ⅷ族的过渡金属、其化合物、或其络合物中的至少一种。
在一些实施例中,所述第四组分包括铂、含铂化合物或含铂络合物。
在一些实施例中,所述第四组分包括有机锡或有机铋。
在一些实施例中,所述丁二烯类化合物为1,3-丁二烯,或所述丙烯腈类化合物为丙烯腈。
本说明书实施例还提供一种改性硅橡胶的制备方法,包括:将上述改性硅橡胶的原料组合物混合,固化成型得到所述改性硅橡胶。
在一些实施例中,所述改性硅橡胶的声阻抗在1.25Mrayl-1.50Mrayl范围内;所述改性硅橡胶在5MHz频率下的声衰减系数不大于42dB/cm;或所述改性硅橡胶的邵氏硬度在30HA-70HA范围内。
在一些实施例中,所述改性硅橡胶作为透声材料。
在一些实施例中,所述透声材料包括应用于超声探头的透声元件。
本说明书实施例还提供一种改性硅橡胶,采用上述改性硅橡胶的制备方法制得。
本说明书实施例还提供一种硅橡胶的改性材料,所述改性材料为丁腈橡胶、顺丁橡胶或氟橡胶中的至少一种;或可形成所述改性材料的原料包括第三组分和第四组分,其中,所述第三组分包括丁二烯类化合物和丙烯腈类化合物,所述第四组分包括能够催化所述丁二烯类化合物和所述丙烯腈类化合物加成的催化剂;或所述第三组分包括丁二烯类化合物,所述第四组分包括能够催化所述丁二烯类化合物加成的催化剂;或所述第三组分包括含氟碳链,所述第四组分包括聚碳化二亚胺。
在一些实施例中,所述丁二烯类化合物的结构式如式II所示,
Figure PCTCN2022143172-appb-000006
其中,R 2a、R 2b、R 2c、R 2d各自独立地选自H、取代或未取代的C 1-C 3的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基;所述丙烯腈类化合物的结构式如式III所示,
Figure PCTCN2022143172-appb-000007
其中,R 3a、R 3b各自独立地选自H、取代或未取代的C 1-C 3的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基;所述含氟碳链的结构式如式IV所示,
Figure PCTCN2022143172-appb-000008
其中,m不小于200,a在1-8范围内,且a为整数;或所述第四组分包括元素周期表第Ⅷ族的过渡金属、其化合物、或其络合物中的至少一种。
在一些实施例中,所述第四组分包括铂、含铂化合物或含铂络合物。
在一些实施例中,所述第四组分包括有机锡或有机铋。
在一些实施例中,所述丁二烯类化合物为1,3-丁二烯,或所述丙烯腈类化合物为丙烯腈。
具体实施方式
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书实施例提供一种改性硅橡胶的原料组合物。该原料组合物可以包括可形成硅橡胶的原料 和可形成改性材料的原料。改性材料可以对硅橡胶(例如,室温硫化(Room temperature vulcanized,RTV)硅橡胶)进行改性,以制备得到改性硅橡胶,从而提高其声阻抗,使其具备相对高的声阻抗匹配效果、相对低的声衰减以及相对高的机械性能(例如,硬度)。
在一些实施例中,可形成硅橡胶的原料可以包括第一组分和第二组分。在一些实施例中,第一组分可以包括乙烯基硅橡胶和交联剂。
在一些实施例中,乙烯基硅橡胶的结构式可以如式I所示:
Figure PCTCN2022143172-appb-000009
其中,R 1a、R 1b、R 1c、R 1d可以各自独立地选自H、取代或未取代的C 1-C 5的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基,n≥1000。
在一些实施例中,式I所示的结构中,R 1a、R 1b、R 1c、R 1d中一个或多个可以选自H。当式I所示的结构中,R 1a、R 1b、R 1c、R 1d同时选自H时,乙烯基硅橡胶的结构式可以如式I’所示:
Figure PCTCN2022143172-appb-000010
在一些实施例中,式I所示的结构中,n可以在1000-5000范围内。在一些实施例中,式I所示的结构中,n可以在2000-5000范围内。在一些实施例中,式I所示的结构中,n可以在2000-4000范围内。在一些实施例中,式I所示的结构中,n可以在2000-3000范围内。在一些实施例中,式I所示的结构中,n可以为1000、或2000、或3000、或4000、或5000。
在一些实施例中,乙烯基硅橡胶的数均分子量可以在1000-200000范围内。在一些实施例中,乙烯基硅橡胶的数均分子量可以在5000-200000范围内。在一些实施例中,乙烯基硅橡胶的数均分子量可以在10000-190000范围内。在一些实施例中,乙烯基硅橡胶的数均分子量可以在20000-180000范围内。在一些实施例中,乙烯基硅橡胶的数均分子量可以在30000-170000范围内。在一些实施例中,乙烯基硅橡胶的数均分子量可以在40000-160000范围内。在一些实施例中,乙烯基硅橡胶的数均分子量可以在50000-150000范围内。在一些实施例中,乙烯基硅橡胶的数均分子量可以在60000-140000范围内。在一些实施例中,乙烯基硅橡胶的数均分子量可以在70000-130000范围内。在一些实施例中,乙烯基硅橡胶的数均分子量可以在80000-120000范围内。在一些实施例中,乙烯基硅橡胶的数均分子量可以在90000-110000范围内。
在一些实施例中,交联剂可以包括硅氢键。在一些实施例中,交联剂的结构可以表示为R≡SiH。其中,R可以选自取代或未取代的烷基或芳烃基。在一些实施例中,交联剂可以为聚甲基氢硅氧烷。在一 些实施例中,聚甲基氢硅氧烷的结构式可以为
Figure PCTCN2022143172-appb-000011
在一些实施例中,第一组分还可以包括添加剂。例如,添加剂可以包括抑制剂或填料中的至少一种。在一些实施例中,添加剂对硅橡胶的主体结构无影响。
在一些实施例中,抑制剂可以为能够抑制第一组分中的乙烯基硅橡胶和交联剂发生加成反应的试剂。在一些实施例中,抑制剂可以包括炔醇类化合物、含氮化合物或有机过氧化物中的至少一种。例如,抑制剂可以包括甲基丁炔醇。又例如,抑制剂可以包括2-甲基-3-丁炔-2醇。
填料不仅可以提高硅橡胶的密度,以提高改性硅橡胶的声阻抗,还可以提高改性硅橡胶的机械性能和耐磨性能,例如,硬度。在一些实施例中,填料可以包括白炭黑、钛白粉、石英粉、氧化铝、氧化锌或氧化钨中的至少一种。例如,填料可以为白炭黑。
在一些实施例中,第二组分可以包括能够催化乙烯基硅橡胶和交联剂反应(例如,加成反应)的催化剂。例如,第二组分可以对第一组分中的-SiCH=CH 2具有加成催化作用。又例如,第二组分可以对第一组分中的R≡SiH具有加成催化作用。在一些实施例中,第二组分可以包括元素周期表第Ⅷ族的过渡金属、其化合物、或其络合物中的至少一种。例如,第二组分可以包括铂、含铂化合物或含铂络合物。在一些实施例中,第二组分中的元素周期表第Ⅷ族的过渡金属的化合物或其络合物可以作为催化剂或固化剂,而不作为填料。相应地,第二组分中的元素周期表第Ⅷ族的过渡金属的化合物或其络合物的用量较少,为催化量,而填料的添加量一般较大,甚至可以超过硅橡胶的用量。在一些实施例中,第二组分中的元素周期表第Ⅷ族的过渡金属的化合物或其络合物可以为液体,而填料一般以粉末形式存在。
在一些实施例中,第二组分还可以包括甲基硅油、乙烯基硅油、羟基硅油、羟甲基氟硅油或端环氧硅油中的至少一种。例如,第二组分还可以包括乙烯基硅油。
在一些实施例中,可形成硅橡胶的原料可以为可形成双组分加成型液体硅橡胶的原料。在一些实施例中,双组分加成型可以指两个组分通过加成反应可以形成硅橡胶。
在一些实施例中,可形成硅橡胶的原料中,硅橡胶可以为双组分加成型液体硅橡胶。仅作为示例,硅橡胶可以为迈图(Momentive)公司生产的RTV630硅橡胶或RTV615硅橡胶。RTV630和RTV615为双组分室温硫化液体硅橡胶。
双组分加成型液体硅橡胶通常以含有硅氢(Si-H)键的聚甲基氢硅氧烷作为交联剂,且在催化剂(例如,铂催化剂)的作用下,于室温或高温(例如,30℃-100℃,或50℃-70℃)下固化成型。双组分加成型液体硅橡胶的主要结构可以为包含两个或两个以上乙烯基的聚二甲基硅氧烷。包含两个乙烯基的聚二有机基硅氧烷可以表示为式I’所示的结构:
Figure PCTCN2022143172-appb-000012
第一组分包括乙烯基硅橡胶和包括硅氢键的交联剂,第二组分包括能够催化乙烯基硅橡胶和交联剂反应(例如,加成反应)的催化剂时,硅橡胶的固化机理可以描述为:乙烯基硅橡胶和包括硅氢键的交联剂在催化剂(例如,含铂化合物)的催化下发生加成反应。使用时,可以将第一组分与第二组分按预设比例充分混合均匀,然后在室温或高温(例如,30℃-100℃,或50℃-70℃)下放置预设时间(例如,12h-60h,或36h-60h,或48h),固化成型得到硅橡胶。例如,可以将第一组分与第二组分按预设比例充分混合均匀,然后在室温(例如,20℃-30℃)下放置24h-48h,固化成型得到硅橡胶。又例如,可以将第一组分与第二组分按预设比例充分混合均匀,然后在高温(例如,大于30℃且不大于100℃,或50℃-70℃)下放置12h-24h,固化成型得到硅橡胶。
质量份数可以指以质量为单位对混合物中的不同组分进行计数。质量份数可以用于表示混合物中不同组分的质量关系。相同质量份数代表相同质量。在一些实施例中,第一组分的质量份数可以在50-150范围内。在一些实施例中,第一组分的质量份数可以在60-140范围内。在一些实施例中,第一组分的质量份数可以在70-130范围内。在一些实施例中,第一组分的质量份数可以在75-125范围内。在一些实施例中,第一组分的质量份数可以在80-120范围内。在一些实施例中,第一组分的质量份数可以在90-110范围内。在一些实施例中,第一组分的质量份数可以为50、或70、或75、或80、或90、或100、或110、或120、或125、或150。本说明书实施例中,第一组分的质量份数可以表示乙烯基硅橡胶和交联剂的质量份数之和。
在一些实施例中,第二组分的质量份数可以在0-20范围内且大于0。在一些实施例中,第二组分的质量份数可以在2-18范围内。在一些实施例中,第二组分的质量份数可以在5-15范围内。在一些实施例中,第二组分的质量份数可以在8-12范围内。在一些实施例中,第二组分的质量份数可以在10-20范围内。在一些实施例中,第二组分的质量份数可以在10-15范围内。在一些实施例中,第二组分的质量份数可以为5、或8、或10、或12、或14、或15。
在一些实施例中,第一组分与第二组分的质量比可以为(5-15):1。在一些实施例中,第一组分与第二组分的质量比可以为(6-14):1。在一些实施例中,第一组分与第二组分的质量比可以为(7-13):1。在一些实施例中,第一组分与第二组分的质量比可以为(8-12):1。在一些实施例中,第一组分与第二组分的质量比可以为(9-11):1。在一些实施例中,第一组分与第二组分的质量比可以为5:1、或8:1、或10:1、或12:1、或15:1。例如,双组分加成型液体硅橡胶为迈图(Momentive)公司生产的双组分室温硫化液体硅橡胶RTV630或RTV615时,第一组分与第二组分的质量比可以为10:1。又例如,第一组分可以为100份,第二组分可以为10份。
在一些实施例中,双组分加成型液体硅橡胶为迈图(Momentive)公司生产的双组分室温硫化液体硅橡胶RTV630或RTV615时,使用过程中,可以将第一组分和第二组分按预设比例(例如,第一组分与第二组分的质量比为10:1)混合均匀,然后在室温或高温(例如,30℃-100℃,或50℃-70℃)下放置预设时间(例如,12h-60h,或36h-60h,或48h),固化成型得到RTV630硅橡胶或RTV615硅橡胶。例如, 可以将第一组分与第二组分按预设比例充分混合均匀,然后在室温(例如,20℃-30℃)下放置24h-48h,固化成型得到RTV630硅橡胶或RTV615硅橡胶。又例如,可以将第一组分与第二组分按预设比例充分混合均匀,然后在高温(例如,大于30℃且不大于100℃,或50℃-70℃)下放置12h-24h,固化成型得到RTV630硅橡胶或RTV615硅橡胶。
在一些实施例中,可形成改性材料的原料可以包括第三组分和第四组分。
在一些实施例中,第三组分可以包括“丁二烯类化合物和丙烯腈类化合物”、丁二烯类化合物、或含氟碳链中的至少一种。其中,“丁二烯类化合物和丙烯腈类化合物”表示既包括丁二烯类化合物,也包括丙烯腈类化合物。
在一些实施例中,丁二烯类化合物的结构式可以如式II所示,
Figure PCTCN2022143172-appb-000013
其中,R 2a、R 2b、R 2c、R 2d可以各自独立地选自H、取代或未取代的C 1-C 3的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基。在一些实施例中,式II所示的结构中,R 2a、R 2b、R 2c和R 2d中的一个或多个可以选自H。在一些实施例中,丁二烯类化合物可以为1,3-丁二烯。
在一些实施例中,丙烯腈类化合物的结构式可以如式III所示,
Figure PCTCN2022143172-appb-000014
其中,R 3a、R 3b可以各自独立地选自H、取代或未取代的C 1-C 3的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基。在一些实施例中,式III所示的结构中,R 3a和/或R 3b可以选自H。在一些实施例中,丙烯腈类化合物可以为丙烯腈。
在一些实施例中,含氟碳链的结构式可以如式IV所示,
Figure PCTCN2022143172-appb-000015
其中,m可以不小于200,a可以在1-8范围内,且a为整数。在一些实施例中,m可以在200-1000范围内。例如,m可以为200、或300、或500、或800、或1000。在一些实施例中,a可以在1-5范围内,且a为整数。例如,a可以为1、或2、或3、或4、或5。在一些实施例中,含氟碳链的结构式可以为
Figure PCTCN2022143172-appb-000016
在一些实施例中,第三组分包括丁二烯类化合物和丙烯腈类化合物时,第四组分可以包括能够催化丁二烯类化合物和丙烯腈类化合物反应(例如,加成反应)的催化剂。在一些实施例中,第三组分包括丁二烯类化合物时,第四组分可以包括能够催化丁二烯类化合物反应(例如,加成反应)的催化剂。在一些实施例中,第三组分包括含氟碳链时,第四组分可以包括氮丙啶或聚碳化二亚胺。
在一些实施例中,第三组分包括“丁二烯类化合物和丙烯腈类化合物”、或丁二烯类化合物时,第四组分可以包括元素周期表第Ⅷ族的过渡金属、或其化合物、或其络合物中的至少一种。例如,第四组分可以包括铂、含铂化合物或含铂络合物。在一些实施例中,第四组分可以包括有机锡或有机铋。例如,有机锡可以为二月桂酸二丁基锡或辛酸亚锡。
在一些实施例中,第四组分中的元素周期表第Ⅷ族的过渡金属的化合物或其络合物可以作为催化剂或固化剂,而不作为填料。相应地,第四组分中的元素周期表第Ⅷ族的过渡金属的化合物或其络合物的用量较少,为催化量。而填料的添加量一般较大,甚至可以超过硅橡胶(例如,RTV硅橡胶)的用量。在一些实施例中,第四组分中的元素周期表第Ⅷ族的过渡金属的化合物或其络合物可以为液体。而填料一般以粉末形式存在。
在一些实施例中,第三组分包括含氟碳链时,第四组分还可以包括催化剂。在一些实施例中,催化剂可以包括元素周期表第Ⅷ族的过渡金属、或其化合物、或其络合物中的至少一种。例如,催化剂可以包括铂、含铂化合物或含铂络合物。在一些实施例中,催化剂可以包括有机锡或有机铋。在一些实施例中,有机锡可以为二月桂酸二丁基锡或辛酸亚锡。
在一些实施例中,改性材料可以为丁腈橡胶、顺丁橡胶或氟橡胶中的至少一种。相应地,可形成改性材料的原料可以为双组分的可形成丁腈橡胶的原料、双组分的可形成顺丁橡胶的原料或双组分的可形成氟橡胶的原料中的至少一种。
在一些实施例中,在双组分的可形成丁腈橡胶的原料中,第三组分可以包括丁二烯类化合物和丙烯腈类化合物,第四组分可以包括有机锡或有机铋等催化剂。仅作为示例,有机锡可以为二月桂酸二丁基锡或辛酸亚锡。在一些实施例中,丁腈橡胶中丙烯腈的质量百分含量可以在42%-46%范围内。在一些实施例中,丁腈橡胶中丙烯腈的质量百分含量可以在36%-41%范围内。在一些实施例中,丁腈橡胶中丙烯腈的质量百分含量可以在31%-35%范围内。在一些实施例中,丁腈橡胶中丙烯腈的质量百分含量可以在25%-30%范围内。在一些实施例中,丁腈橡胶中丙烯腈的质量百分含量可以在18%-24%范围内。在一些实施例中,双组分的可形成丁腈橡胶的原料可以由两个包装设备(例如,包装桶)独立包装。使用时,可以将双组分的可形成丁腈橡胶的原料按预设比例(例如,根据双组份各自的质量分数确定)充分混合均匀,然后在室温或高温(例如,30℃-100℃,或50℃-70℃)下放置预设时间(例如,12h-60h,或36h-60h,或48h),固化成型得到丁腈橡胶。例如,可以将双组分的可形成丁腈橡胶的原料按预设比例充分混合均匀,然后在室温(例如,20℃-30℃)下放置24h-48h,固化成型得到丁腈橡胶。又例如,可以将双组分的可形成丁腈橡胶的原料按预设比例充分混合均匀,然后在高温(例如,大于30℃且不大于100℃,或50℃-70℃)下放置12h-24h,固化成型得到丁腈橡胶。在一些实施例中,双组分的可形成丁腈橡胶的原料可以从市场采购得到。例如,双组分的可形成丁腈橡胶的原料可以购自山东王氏兄弟塑料科技有限公司生产的型号为LNBR820的产品。
在一些实施例中,双组分的可形成顺丁橡胶的原料中,第三组分可以包括丁二烯类化合物,第四组分可以包括有机锡或有机铋等催化剂。在一些实施例中,双组分的可形成顺丁橡胶的原料可以由两个包装设备(例如,包装桶)独立包装。使用时,可以将双组分的可形成顺丁橡胶的原料按预设比例(例如,根据双组份各自的质量分数确定)充分混合均匀,然后在室温或高温(例如,30℃-100℃,或50℃-70℃)下放置预设时间(例如,12h-60h,或36h-60h,或48h),固化成型得到顺丁橡胶。例如,可以将双组分的可形成顺丁橡胶的原料按预设比例充分混合均匀,然后在室温(例如,20℃-30℃)下放置24h-48h,固化成型得到顺丁橡胶。又例如,可以将双组分的可形成顺丁橡胶的原料按预设比例充分混合均匀,然后在高温(例如,大于30℃且不大于100℃,或50℃-70℃)下放置12h-24h,固化成型得到顺丁橡胶。在一些实施例中,双组分的可形成顺丁橡胶的原料可以从市场采购得到。例如,双组分的可形成顺丁橡胶的原料可 以购自余姚市汇鸿塑料厂生产的型号为PBR-4040的产品。
在一些实施例中,双组分的可形成氟橡胶的原料中,第三组分可以包括含氟碳链,第四组分可以包括氮丙啶或聚碳化二亚胺。在一些实施例中,双组分的可形成氟橡胶的原料可以由两个包装设备(例如,包装桶)独立包装。使用时,可以将双组分的可形成氟橡胶的原料按预设比例(例如,根据双组份各自的质量分数确定)充分混合均匀,然后在室温或高温(例如,30℃-100℃,或50℃-70℃)下放置预设时间(例如,12h-60h,36h-60h,或48h),固化成型得到氟橡胶。例如,可以将双组分的可形成氟橡胶的原料按预设比例充分混合均匀,然后在室温(例如,20℃-30℃)下放置24h-48h,固化成型得到氟橡胶。又例如,可以将双组分的可形成氟橡胶的原料按预设比例充分混合均匀,然后在高温(例如,大于30℃且不大于100℃,或50℃-70℃)下放置12h-24h,固化成型得到氟橡胶。在一些实施例中,双组分的可形成氟橡胶的原料可以从市场采购得到。例如,双组分的可形成氟橡胶的原料可以购自上海硅山高分子材料有限公司生产的型号为FAQ-008的产品。
在一些实施例中,第三组分的质量份数可以在25-150范围内。在一些实施例中,第三组分的质量份数可以在50-150范围内。在一些实施例中,第三组分的质量份数可以在100-150范围内。在一些实施例中,第三组分的质量份数可以在25-125范围内。在一些实施例中,第三组分的质量份数可以在50-125范围内。在一些实施例中,第三组分的质量份数可以在75-125范围内。在一些实施例中,第三组分的质量份数可以在25-100范围内。在一些实施例中,第三组分的质量份数可以在50-100范围内。在一些实施例中,第三组分的质量份数可以在25-75范围内。在一些实施例中,第三组分的质量份数可以为25、或50、或75、或100、或125、或150。
在一些实施例中,第四组分的质量份数可以在0-20范围内且大于0。在一些实施例中,第四组分的质量份数可以在2-18范围内。在一些实施例中,第四组分的质量份数可以在4-16范围内。在一些实施例中,第四组分的质量份数可以在5-10范围内。在一些实施例中,第四组分的质量份数可以为5、或8、或10、或12、或15、或20。
在一些实施例中,第三组分与第四组分的质量比可以为(5-15):1。在一些实施例中,第三组分与第四组分的质量比可以为(6-14):1。在一些实施例中,第三组分与第四组分的质量比可以为(7-13):1。在一些实施例中,第三组分与第四组分的质量比可以为(8-12):1。在一些实施例中,第三组分与第四组分的质量比可以为(9-11):1。在一些实施例中,第三组分与第四组分的质量比可以为5:1、或8:1、或10:1、或12:1、或15:1。例如,第三组分可以为100份,第四组分可以为10份。又例如,第三组分可以为50份,第四组分可以为5份。
本说明书实施例中,通过将可形成硅橡胶的原料与可形成改性材料的原料充分混合均匀后,可以制备得到改性硅橡胶。该改性硅橡胶可以包括大量Si-O键、甲基和少量乙烯基。在一些实施例中,改性硅橡胶还可以包括丙烯腈基、丁二烯基或氟原子中的至少一种。
在一些实施例中,第一组分、第二组分、第三组分与第四组分的质量比可以为10:1:(5-10):(0.5-1)。在一些实施例中,第一组分、第二组分、第三组分与第四组分的质量比可以为10:1:(6-9):(0.5-1)。在一些实施例中,第一组分、第二组分、第三组分与第四组分的质量比可以为10:1:(7-8):(0.5-1)。在一些实施例中,第一组分、第二组分、第三组分与第四组分的质量比可以为10:1:(5-10):(0.6-0.9)。在一些实施例中,第一组分、第二组分、第三组分与第四组分的质量比可以为10:1:(5-10):(0.7-0.8)。在一些实施例中,第一组分、第二组分、第三组分与第四组分的质量比可以为10:1:10:1、或10:1:10:0.5、或10:1:5:0.5、或10:1:5:1。
在一些实施例中,第一组分与第三组分的质量比可以为(1-2):1。在一些实施例中,第一组分与第三组分的质量比可以为(1.2-1.8):1。在一些实施例中,第一组分与第三组分的质量比可以为(1.4-1.6):1。在一些实施例中,第一组分与第三组分的质量比可以为1:1、或1.2:1、或1.4:1、或1.6:1、或1.8:1、或2:1。
在一些实施例中,可形成硅橡胶的原料为双组分室温硫化液体硅橡胶RTV615,第三组分可以为100份,第四组分可以为10份。在一些实施例中,可形成硅橡胶的原料为双组分室温硫化液体硅橡胶RTV630,第三组分可以为50份,第四组分可以为5份。
在一些实施例中,以质量份数计,改性硅橡胶的原料组合物可以包括:50-150份第一组分、0-20份第二组分、25-150份第三组分以及0-20份第四组分。其中,第二组分和第四组分的质量份数均不为0。在一些实施例中,以质量份数计,改性硅橡胶的原料组合物可以包括:100份第一组分、10份第二组分、50-100份第三组分以及0-10份第四组分。其中,第四组分的质量份数不为0。在一些实施例中,以质量份数计,改性硅橡胶的原料组合物可以包括:100份RTV硅橡胶的第一组分、10份RTV硅橡胶的第二组分、50-100份第三组分以及0-10份第四组分。其中,第四组分的质量份数不为0。在一些实施例中,以质量份数计,改性硅橡胶的原料组合物可以包括:100份RTV硅橡胶的第一组分、10份RTV硅橡胶的第二组分、50-100份“丁二烯和丙烯腈”以及0-10份“有机锡或有机铋”。其中,“有机锡或有机铋”的质量份数不为0。在一些实施例中,以质量份数计,改性硅橡胶的原料组合物可以包括:100份RTV硅橡胶的第一组分、10份RTV硅橡胶的第二组分、50-100份丁二烯以及0-10份“有机锡或有机铋”。其中,“有机锡或有机铋”的质量份数不为0。在一些实施例中,以质量份数计,改性硅橡胶的原料组合物可以包括:100份RTV硅橡胶的第一组分、10份RTV硅橡胶的第二组分、50-100份含氟碳链以及0-10份“氮丙啶或聚碳化二亚胺”。其中,“氮丙啶或聚碳化二亚胺”的质量份数不为0。
在一些实施例中,以质量份数计,改性硅橡胶的原料组合物及其用量还可以为表1中编号1-8中的任意一种。
表1改性硅橡胶的原料组合物及其用量
Figure PCTCN2022143172-appb-000017
应当注意的是,上述描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。
本说明书实施例还提供一种改性硅橡胶的制备方法。该制备方法可以包括将改性硅橡胶的原料组合物混合,固化成型得到改性硅橡胶。关于改性硅橡胶的原料组合物的相关说明可以参见本说明书前述部分的相关描述,在此不再赘述。
在一些实施例中,固化的温度可以根据改性硅橡胶的原料组合物中各原料的性质确定。例如,改性硅橡胶的原料组合物中各原料可以在室温下固化时,固化的温度可以为室温。又例如,固化的温度可以为30℃-100℃。又例如,固化的温度可以为50℃-70℃。本说明书实施例中,室温可以为25℃±5℃,或20℃-30℃。
在一些实施例中,固化的时间可以根据改性硅橡胶的原料组合物中各原料的性质确定,一般应保证反应完全。例如,固化的时间可以为12h-60h。例如,固化的时间可以为36h-60h。又例如,固化的时间可以为48h。例如,可以将改性硅橡胶的原料组合物中各原料按预设比例充分混合均匀,然后在室温(例如,20℃-30℃)下放置24h-48h,固化成型得到改性硅橡胶。又例如,可以将改性硅橡胶的原料组合物中各原料按预设比例充分混合均匀,然后在高温(例如,大于30℃且不大于100℃,或50℃-70℃)下放置12h-24h,固化成型得到改性硅橡胶。
在一些实施例中,改性硅橡胶的原料组合物为液态时,固化处理可以在模具中进行。
在一些实施例中,制备方法还可以包括在混合改性硅橡胶的原料组合物后、进行固化处理前,进行除气泡处理。
在一些实施例中,改性硅橡胶的制备方法可以包括如下步骤:(1)将第一组分、第三组分经第一次混合得到混合物A;(2)将混合物A、第二组分和第四组分经第二次混合得到混合物B;(3)将混合物B固化成型得到改性硅橡胶。例如,改性硅橡胶的制备方法可以包括如下步骤:称量100质量份的RTV硅橡胶第一组分和0-100(不为零)质量份第三组分并混合均匀(例如,在烧杯中混合均匀),再在其中加入10质量份的RTV硅橡胶第二组分和0-10(不为零)质量份第四组分,混合均匀后,得到混合液。将得到的混合液浇灌进模具中,在室温或高温(例如,30℃-100℃、或50℃-70℃)下固化成型,得到改性硅橡胶。
本说明书实施例还提供一种改性硅橡胶,其采用上述改性硅橡胶的制备方法制得。
在一些实施例中,改性硅橡胶的粘度可以大于或等于10000mpa·s。在一些实施例中,可形成硅橡胶的原料为可形成RTV615硅橡胶的原料时,改性硅橡胶的粘度可以为10000mpa·s-30000mpa·s。在一些实施例中,可形成硅橡胶的原料为可形成RTV630硅橡胶的原料时,改性硅橡胶的粘度可以为大于或等于150000mpa·s。
本说明书实施例还提供一种改性硅橡胶,其可以是由下述①-③中任一条件的结构单元组成的无规共聚物:①通式I-1和通式II-1所示的结构单元;②通式I-1、通式II-1和通式III-1所示的结构单元;③通式I-1、通式IV-1和“通式V或通式VI”所示的结构单元,即,通式I-1、通式IV-1和通式V所示的结构单元,或通式I-1、通式IV-1和通式VI所示的结构单元。
Figure PCTCN2022143172-appb-000018
Figure PCTCN2022143172-appb-000019
其中,R 1a、R 1b、R 1c、R 1d、R 2a、R 2b、R 2c、R 2d、R 3a、R 3b、n、m、a的定义如前所述。
在一些实施例中,本说明书实施例的改性硅橡胶声阻抗大于通式I-1所示的结构单元聚合得到的硅橡胶的声阻抗。本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声阻抗之差可以为≥0.05Mrayl。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声阻抗之差可以为≥0.05Mrayl且≤0.5Mrayl。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声阻抗之差可以为≥0.1Mrayl且≤0.45Mrayl。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声阻抗之差可以为≥0.15Mrayl且≤0.4Mrayl。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声阻抗之差可以为≥0.2Mrayl且≤0.35Mrayl。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声阻抗之差可以为≥0.25Mrayl且≤0.3Mrayl。例如,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声阻抗之差可以为0.06Mrayl、或0.09Mrayl、或0.12Mrayl、或0.20Mrayl、或0.21Mrayl、或0.26Mrayl、或0.31Mrayl、或0.32Mrayl、或0.35Mrayl、或0.4Mrayl、或0.45Mrayl、或0.5Mrayl。
本说明书实施例中,因为不同聚合度的通式I-1所示的结构单元聚合得到的硅橡胶在声阻抗上存在差异,因而在比较本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶声阻抗之差时,在本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶中具有相同的硅橡胶结构单元的条件下进行比较。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,本说明书实施例的改性硅橡胶和RTV630硅橡胶(即,通式I-1所示的结构单元聚合得到的硅橡胶)的声阻抗之差可以为≥0.06Mrayl且≤0.3Mrayl。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,本说明书实施例的改性硅橡胶和RTV630硅橡胶的声阻抗之差可以为≥0.1Mrayl且≤0.25Mrayl。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,本说明书实施例的改性硅橡胶和RTV630硅橡胶的声阻抗之差可以为≥0.15Mrayl且≤0.2Mrayl。例如,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,本说明书实施例的改性硅橡胶和RTV630硅橡胶的声阻抗之差可以为0.06Mrayl、或0.09Mrayl、或0.12Mrayl、或0.20Mrayl。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,本说明书实施例的改性硅橡胶和RTV615硅橡胶(即,通式I-1所示的结构单元聚合得到的硅橡胶)的声阻抗之差可以为≥0.2Mrayl且≤0.5Mrayl。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,本说明书实施例的改性硅橡胶和RTV615硅橡胶的声阻抗之差可以为≥0.25Mrayl且≤0.45Mrayl。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,本说明书实施例的改性硅橡胶和RTV615硅橡胶的声阻抗之差可以为≥0.3Mrayl且≤0.4Mrayl。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,本说明书实施例的改性硅橡胶和RTV615硅橡胶的声阻抗之差可以为≥0.32Mrayl且≤0.35Mrayl。例如,本说明书实施例的改性硅橡胶中的 硅橡胶组分为RTV615硅橡胶时,本说明书实施例的改性硅橡胶和RTV615硅橡胶的声阻抗之差可以为0.21Mrayl、或0.26Mrayl、或0.31Mrayl、或0.32Mrayl。
在一些实施例中,本说明书实施例的改性硅橡胶的声阻抗可以在1.25MRayl-1.50MRayl范围内。在一些实施例中,本说明书实施例的改性硅橡胶的声阻抗可以在1.30MRayl-1.50MRayl范围内。在一些实施例中,本说明书实施例的改性硅橡胶的声阻抗可以在1.35MRayl-1.50MRayl范围内。在一些实施例中,本说明书实施例的改性硅橡胶的声阻抗可以在1.40MRayl-1.50MRayl范围内。在一些实施例中,本说明书实施例的改性硅橡胶的声阻抗可以在1.45MRayl-1.50MRayl范围内。例如,本说明书实施例的改性硅橡胶的声阻抗可以为1.26MRayl、或1.31MRayl、或1.36MRayl、或1.37MRayl、或1.39MRayl、或1.42Mrayl、或1.50Mrayl。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声阻抗可以在1.30MRayl-1.50MRayl范围内。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声阻抗可以在1.35MRayl-1.50MRayl范围内。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声阻抗可以在1.40MRayl-1.50MRayl范围内。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声阻抗可以在1.45MRayl-1.50MRayl范围内。例如,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声阻抗可以为1.36MRayl、或1.39MRayl、或1.42Mrayl、或1.50Mrayl。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声阻抗可以在1.20MRayl-1.40MRayl范围内。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声阻抗可以在1.25MRayl-1.40MRayl范围内。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声阻抗可以在1.30MRayl-1.40MRayl范围内。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声阻抗可以在1.35MRayl-1.40MRayl范围内。例如,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声阻抗可以为1.26MRayl、或1.31MRayl、或1.36Mrayl、或1.37MRayl、或1.40MRayl。
本说明书实施例中,改性硅橡胶的声阻抗可以通过示波器利用水声测量得到。例如,首先,通过密度公式:ρ=m/V,计算得到改性硅橡胶样品的密度。其中,m为改性硅橡胶样品的质量,V为改性硅橡胶样品的体积。接着,通过水浸插入法可以得到改性硅橡胶样品的材料声速,并计算得到改性硅橡胶样品的声阻抗,计算公式如下:
C=(l 1-l 2)C 0/(ΔtC 0+(l 1-l 2));
Z=ρC;
其中,C表示改性硅橡胶的材料声速,l 1是改性硅橡胶样品1的厚度,l 2是改性硅橡胶样品2的厚度,△t是插入改性硅橡胶样品1和改性硅橡胶样品2时引起的声传播时差,C 0是水中声速,Z是改性硅橡胶样品的声阻抗。
在一些实施例中,本说明书实施例的改性硅橡胶声衰减大于或小于通式I-1所示的结构单元聚合得到的硅橡胶的声衰减。本说明书实施例中,改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声衰减之差的绝对值可以为0.0-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声衰减之差的绝对值可以为1.0dB/cm-14.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声衰减之差的绝对值可以为2.0dB/cm-13.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得 到的硅橡胶的声衰减之差的绝对值可以为3.0dB/cm-12.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声衰减之差的绝对值可以为4.0dB/cm-11.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声衰减之差的绝对值可以为5.0dB/cm-10.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声衰减之差的绝对值可以为6.0dB/cm-9.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声衰减之差的绝对值可以为7.0dB/cm-8.0dB/cm。例如,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的声衰减之差的绝对值可以为10.0dB/cm、或8.0dB/cm、或2.9dB/cm、或2.3dB/cm、或1.3dB/cm、或9.6dB/cm、或11.0dB/cm、或13.7dB/cm。
本说明书实施例中,因为不同聚合度的通式I-1所示的结构单元聚合得到的硅橡胶在声衰减上存在差异,因而在比较本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶声衰减之差时,在本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶中具有相同的硅橡胶结构单元的条件下进行比较。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶(即,通式I-1所示的结构单元聚合得到的硅橡胶)的声衰减之差的绝对值可以为0.0-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的声衰减之差的绝对值可以为2.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的声衰减之差的绝对值可以为4.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的声衰减之差的绝对值可以为6.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的声衰减之差的绝对值可以为8.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的声衰减之差的绝对值可以为10.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的声衰减之差的绝对值可以为12.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的声衰减之差的绝对值可以为14.0dB/cm-15.0dB/cm。例如,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的声衰减之差的绝对值可以为10.0dB/cm、或8.0dB/cm、或1.3dB/cm、或11.0dB/cm。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶(即,通式I-1所示的结构单元聚合得到的硅橡胶)的声衰减之差的绝对值可以为0.0-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的声衰减之差的绝对值可以为2.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的声衰减之差的绝对值可以为4.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的声衰减之差的绝对值可以为6.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的声衰减之差的绝对值可以为8.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的声衰减之差的绝对值可以为10.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时, 改性硅橡胶和RTV615硅橡胶的声衰减之差的绝对值可以为12.0dB/cm-15.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的声衰减之差的绝对值可以为14.0dB/cm-15.0dB/cm。例如,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的声衰减之差的绝对值可以为2.9dB/cm、或2.3dB/cm、或9.6dB/cm、或13.7dB/cm。
本说明书实施例中,改性硅橡胶在5MHz频率下的声衰减系数(可以简称为声衰减)可以不大于42.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以不大于38.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以不大于34.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以不大于30.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以不大于26.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以不大于22.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以不大于18.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以不大于14.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以不大于10.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以不大于6.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以不大于2.0dB/cm。
在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以为12.0dB/cm-42.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以为12.0dB/cm-38.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以为12.0dB/cm-34.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以为12.0dB/cm-30.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以为12.0dB/cm-26.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以为12.0dB/cm-22.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以为12.0dB/cm-18.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以为12.0dB/cm-14.0dB/cm。例如,本说明书实施例的改性硅橡胶在5MHz频率下的声衰减可以为12.5dB/cm、或13.1dB/cm、或20.0dB/cm、或22.0dB/cm、或25.0dB/cm、或29.1dB/cm、或31.3dB/cm、或41.0dB/cm。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声衰减可以为20.0dB/cm-42.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声衰减可以为20.0dB/cm-38.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声衰减可以为20.0dB/cm-34.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声衰减可以为20.0dB/cm-30.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声衰减可以为20.0dB/cm-26.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声衰减可以为20.0dB/cm-22.0dB/cm。例如,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的声衰减可以为20.0dB/cm、或22.0dB/cm、或31.3dB/cm、或41.0dB/cm。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声衰减可以为12.0dB/cm-42.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声衰减可以为12.0dB/cm-38.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声衰减可以为12.0dB/cm-34.0 dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声衰减可以为12.0dB/cm-30.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声衰减可以为12.0dB/cm-26.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声衰减可以为12.0dB/cm-22.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声衰减可以为12.0dB/cm-18.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声衰减可以为12.0dB/cm-14.0dB/cm。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的声衰减可以为20.0dB/cm-42.0dB/cm。例如,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615时,改性硅橡胶的声衰减可以为12.5dB/cm、或13.1dB/cm、或25.0dB/cm、或29.1dB/cm。
本说明书实施例中,改性硅橡胶的声衰减可以通过示波器利用水声测量得到。例如,通过水浸插入法可以得到改性硅橡胶样品的声衰减系数,计算公式如下:
α=(20lg(A 1/A 2))/(l 1-l 2)+α 0
其中,l 1是改性硅橡胶样品1的厚度,l 2是改性硅橡胶样品2的厚度,α 0是水中的声衰减系数,A 1和A 2是改性硅橡胶样品1和改性硅橡胶样品2分别接收到的脉冲信号幅值,α是改性硅橡胶样品在水中的声衰减系数。
在一些实施例中,本说明书实施例的改性硅橡胶硬度大于通式I-1所示的结构单元聚合得到的硅橡胶的硬度。本说明书实施例中,改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的硬度之差可以为0-30HA。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的硬度之差可以为2HA-28HA。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的硬度之差可以为4HA-26HA。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的硬度之差可以为6HA-24HA。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的硬度之差可以为8HA-22HA。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的硬度之差可以为10HA-20HA。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的硬度之差可以为12HA-18HA。在一些实施例中,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的硬度之差可以为14HA-16HA。例如,本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶的硬度之差可以为0HA、或1HA、或10HA、或13HA、或15HA、或16HA、或25HA、或27HA。
本说明书实施例中,因为不同聚合度的通式I-1所示的结构单元聚合得到的硅橡胶在硬度上存在差异,因而在比较本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶硬度之差时,在本说明书实施例的改性硅橡胶和通式I-1所示的结构单元聚合得到的硅橡胶中具有相同的硅橡胶结构单元的条件下进行比较。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶(即,通式I-1所示的结构单元聚合得到的硅橡胶)的硬度之差可以为0-15HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的硬度之差可以为2HA-13HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的硬度之差可以为4HA-11HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的硬度之差可以为6HA-9HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的硬度之差可以为7HA-8HA。例如, 改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶和RTV630硅橡胶的硬度之差可以为0HA、或1HA、或10HA、或15HA。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶(即,通式I-1所示的结构单元聚合得到的硅橡胶)的硬度之差可以为0-30HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的硬度之差可以为2HA-28HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的硬度之差可以为4HA-26HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的硬度之差可以为6HA-24HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的硬度之差可以为8HA-22HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的硬度之差可以为10HA-20HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的硬度之差可以为12HA-18HA。在一些实施例中,改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的硬度之差可以为14HA-16HA。例如,改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶和RTV615硅橡胶的硬度之差可以为13HA、或16HA、或25HA、或27HA。
本说明书实施例中,改性硅橡胶的硬度可以为30HA-70HA。在一些实施例中,本说明书实施例的改性硅橡胶的硬度可以为34HA-66HA。在一些实施例中,本说明书实施例的改性硅橡胶的硬度可以为38HA-62HA。在一些实施例中,本说明书实施例的改性硅橡胶的硬度可以为42HA-58HA。在一些实施例中,本说明书实施例的改性硅橡胶的硬度可以为46HA-54HA。在一些实施例中,本说明书实施例的改性硅橡胶的硬度可以为48HA-50HA。例如,本说明书实施例的改性硅橡胶的硬度可以为38HA、或41HA、或50HA、或51HA、或52HA、或60HA、或65HA。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的硬度可以为45HA-70HA。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的硬度可以为50HA-65HA。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的硬度可以为55HA-60HA。例如,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV630硅橡胶时,改性硅橡胶的硬度可以为50HA、或51HA、或60HA、或65HA。
在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的硬度可以为30HA-60HA。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的硬度可以为35HA-55HA。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的硬度可以为40HA-50HA。在一些实施例中,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的硬度可以为44HA-46HA。例如,本说明书实施例的改性硅橡胶中的硅橡胶组分为RTV615硅橡胶时,改性硅橡胶的硬度可以为38HA、或41HA、或50HA、或52HA。
本说明书实施例中,改性硅橡胶的硬度的检测方法可以通过邵氏硬度计参考GB/T531.1-2008标准测试得到。
本说明书实施例中,通式I-1所示的结构单元和通式I所示的化合物具有结构上的对应关系,例如,通式I所示的化合物经反应后能获得I-1所示的结构单元。
本说明书实施例中,通式I-1所示的结构单元和通式I所示的化合物的质量份数也可以对应。
本说明书实施例中,通式II-1所示的结构单元和通式II所示的化合物在结构和质量份数上具有对 应关系;通式III-1所示的结构单元和通式III所示化合物在结构和质量份数上具有对应关系;通式VI所示的结构单元和聚碳化二亚胺在结构和质量份数上具有对应关系。
本说明书实施例中,以质量份数计,通式I-1所示的结构单元可以为50-150份,通式II-1所示的结构单元可以为25-150份。
本说明书实施例中,以质量份数计,通式I-1所示的结构单元可以为50-150份,通式II-1所示的结构单元和通式III-1所示的结构单元之和可以为25-150份。
本说明书实施例中,以质量份数计,通式I-1所示的结构单元为50-150份,通式IV-1所示的结构单元为25-150份,通式V或通式VI所示的结构单元为0-20(不为0)份。
本说明书实施例中,改性硅橡胶的粘度可以为大于或等于10000mpa·s。本说明书实施例中,通式I-1所示的结构单元可形成RTV615硅橡胶时,改性硅橡胶的粘度可以为10000mpa·s-30000mpa·s。本说明书实施例中,通式I-1所示的结构单元可形成RTV630硅橡胶时,改性硅橡胶的粘度可以为150000mpa·s以上。
本说明书实施例中,通式II-1所示的结构单元和如通式III-1所示的结构单元发生加成反应时,改性硅橡胶中,通式III-1所示的结构单元的质量含量可以为15%-50%。
本说明书实施例还提供一种改性硅橡胶作为透声材料的应用。例如,改性硅橡胶可以作为换能器的透声材料。在一些实施例中,透声材料可以包括应用于超声探头的透声元件。在一些实施例中,透声材料可以为声透镜材料。
本说明书实施例还提供一种声透镜,其包含改性硅橡胶。
本说明书实施例还提供一种改性材料作为透声材料的应用。本说明书实施例还提供一种硅橡胶的改性材料。在一些实施例中,改性材料可以为丁腈橡胶、顺丁橡胶或氟橡胶中的至少一种。在一些实施例中,透声材料可以为声透镜材料。在一些实施例中,丁腈橡胶可以为如前所述的丁腈橡胶。在一些实施例中,顺丁橡胶可以为如前所述的顺丁橡胶。在一些实施例中,氟橡胶可以为如前所述的氟橡胶。在一些实施例中,可形成改性材料的原料可以包括第三组分和第四组分。关于第三组分和第四组分的相关说明可以参见本说明书前述部分的相关描述,在此不再赘述。
应当注意的是,上述描述仅仅是为了示例和说明,而不限定本申请的适用范围。对于本领域技术人员来说,在本申请的指导下可以进行各种修正和改变。然而,这些修正和改变仍在本申请的范围之内。
为了使本发明的目的、技术方案及优点更加简洁明了,本发明用以下具体实施例进行说明,但本发明绝非仅限于这些实施例。以下所描述的实施例仅为本发明较好的实施例,可用于描述本发明,不能理解为对本发明的范围的限制。应当指出的是,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
为了更好地说明本发明,下面结合实施例对本发明内容作进一步说明。以下为具体实施例及对比例。本说明书实施例所用试剂和原料均市售可得。双组分室温硫化液体硅橡胶RTV630和RTV615为迈图(Momentive)公司生产,市售形式为第一组分、第二组分分开包装。在使用过程中,可以按照质量比10:1的比例(第一组分/第二组分=10:1)混合均匀,接着在室温或高温(例如,50℃-70℃)下固化成型可以分别得到RTV630硅橡胶和RTV615硅橡胶。
氟橡胶原料购自上海硅山高分子材料有限公司,型号FAQ-008。市售形式为第三组分、第四组分分开包装。在使用过程中,可按照质量比10:1的比例(第三组分/第四组分=10:1)混合均匀,接着在室温或高温(例如,50℃-70℃)下固化成型。
顺丁橡胶原料购自余姚市汇鸿塑料厂,型号PBR-4040。市售形式为第三组分、第四组分分开包装。在使用过程中,可以按照质量比10:1的比例(第三组分/第四组分=10:1)混合均匀,接着在室温或 高温(例如,50℃-70℃)下固化成型。
丁腈橡胶原料购自山东王氏兄弟塑料科技有限公司,型号为LNBR820。市售形式为第三组分、第四组分分开包装。在使用过程中,可以按照质量比10:1的比例(第三组分/第四组分=10:1)混合均匀,接着在室温或高温(例如,50℃-70℃)下固化成型。
材料的声性能通过示波器利用水声测量的方式得到。其中,声阻抗和声衰减的检测方法以及计算公式如下:首先,通过密度公式:ρ=m/V,计算得到改性硅橡胶样品的密度;其中,m为改性硅橡胶样品的质量,V为改性硅橡胶样品的体积;接着,通过水浸插入法可以得到改性硅橡胶样品的材料声速和声衰减系数,并计算得到改性硅橡胶样品的声阻抗,计算公式如下:
C=(l 1-l 2)C 0/(ΔtC 0+(l 1-l 2));
α=(20lg(A 1/A 2))/(l 1-l 2)+α 0
Z=ρC。
其中,C表示改性硅橡胶的材料声速,l 1是改性硅橡胶样品1的厚度,l 2是改性硅橡胶样品2的厚度,△t是插入改性硅橡胶样品1和改性硅橡胶样品2时引起的声传播时差,C 0是水中声速,α 0是水中的声衰减系数,A 1和A 2是改性硅橡胶样品1和改性硅橡胶样品2分别接收到的脉冲信号幅值,α是改性硅橡胶样品在水中的声衰减系数,Z是改性硅橡胶样品的声阻抗。
材料的机械性能(例如,硬度)通过邵氏硬度计参考GB/T531.1-2008标准测试得到。
对比例1:称量100g RTV630硅橡胶的第一组分与10g RTV630硅橡胶的第二组分于烧杯中,利用搅拌装置混合均匀,并利用除气泡装置进行除泡处理,再将其浇灌进模具中并在25℃、50%RH(Relative Humidity,相对湿度)恒温恒湿箱中固化48h,成型,得到RTV630硅橡胶的声阻抗为1.30MRayl、5MHz下的声衰减为30.0dB/cm,邵氏硬度(Shore A)为50。RTV630硅橡胶包括Si-O键、甲基、乙烯基和白炭黑。
实施例1:称量100g RTV630硅橡胶的第一组分与50g氟橡胶的第三组分利用搅拌装置混合均匀,接着加入10g RTV630硅橡胶的第二组分与5g氟橡胶的第四组分,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到的RTV630硅橡胶/氟橡胶复合材料(即,改性硅橡胶)的声阻抗为1.50MRayl、5MHz下的声衰减为31.3dB/cm,邵氏硬度(Shore A)为65。得到的RTV630硅橡胶/氟橡胶复合材料包含Si-O键、甲基、乙烯基、白炭黑和氟原子。
将实施例1与对比例1对比可知,在RTV630硅橡胶中加入液体氟橡胶有效地提升了材料的阻抗和硬度,且其声衰减增长非常小。
实施例2:称量100g RTV630硅橡胶的第一组分与50g顺丁橡胶的第三组分利用搅拌装置混合均匀,接着加入10g RTV630硅橡胶的第二组分与5g顺丁橡胶的第四组分,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到的RTV630硅橡胶/顺丁橡胶复合材料(即,改性硅橡胶)的声阻抗为1.42MRayl、5MHz下的声衰减为41.0dB/cm,邵氏硬度(Shore A)为60。得到的RTV630硅橡胶/顺丁橡胶复合材料包含Si-O键、甲基、乙烯基、白炭黑和丁二烯基成分。
将实施例2与对比例1对比可知,在RTV630硅橡胶中加入液体顺丁橡胶有效地提升了材料的阻抗和硬度,少量提升了其声衰减。
实施例3:称量100g RTV630硅橡胶的第一组分与50g丁腈橡胶的第三组分利用搅拌装置混合均匀,接着加入10g RTV630硅橡胶的第二组分与5g丁腈橡胶的第四组分,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到 的RTV630硅橡胶/丁腈橡胶复合材料(即,改性硅橡胶)的声阻抗为1.39MRayl、5MHz下的声衰减为22.0dB/cm,邵氏硬度(Shore A)为50。得到的RTV630硅橡胶/丁腈橡胶复合材料包含Si-O键、甲基、乙烯基、丙烯腈基、白炭黑和丁二烯基成分。
将实施例3与对比例1对比可知,在RTV630硅橡胶中加入液体丁腈橡胶有效地提升了材料的阻抗,并降低了其声衰减,硬度未发生改变。
实施例4:称量100g RTV630硅橡胶的第一组分与100g丁腈橡胶的第三组分利用搅拌装置混合均匀,接着加入10g RTV630硅橡胶的第二组分与10g丁腈橡胶的第四组分,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到的RTV630硅橡胶/丁腈橡胶复合材料(即,改性硅橡胶)的声阻抗为1.36MRayl、5MHz下的声衰减为20.0dB/cm,邵氏硬度(Shore A)为51。得到的RTV630硅橡胶/丁腈橡胶复合材料包含Si-O键、甲基、乙烯基、丙烯腈基、白炭黑和丁二烯基成分。
将实施例4与实施例3和对比例1对比可知,在RTV630硅橡胶中增加液体丁腈橡胶的用量降低了其声衰减,但阻抗降低,硬度变化非常小。
对比例2:称量100g RTV615硅橡胶的第一组分与10g RTV615硅橡胶的第二组分于烧杯中,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到RTV615硅橡胶声阻抗为1.05MRayl、5MHz下的声衰减为15.4dB/cm,邵氏硬度(Shore A)为25。RTV615基材包括Si-O键、甲基和乙烯基。
实施例5:称量100g RTV615硅橡胶的第一组分与50g氟橡胶的第二组分利用搅拌装置混合均匀,接着加入10g RTV615硅橡胶的第二组分与5g氟橡胶的第四组分,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到的RTV615硅橡胶/氟橡胶复合材料(即,改性硅橡胶)的声阻抗为1.31MRayl、5MHz下的声衰减为25.0dB/cm,邵氏硬度(Shore A)为50。RTV615硅橡胶/氟橡胶复合材料包括Si-O键、甲基、乙烯基和氟原子。
将实施例5与对比例2对比可知,在RTV615硅橡胶中加入液体氟橡胶提升了材料的阻抗和硬度,但声衰减急剧提升。
实施例6:称量100g RTV615硅橡胶的第一组分与50g顺丁橡胶的第三组分利用搅拌装置混合均匀,接着加入10g RTV615硅橡胶的第二组分与5g顺丁橡胶的第四组分,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到的RTV615硅橡胶/顺丁橡胶复合材料(即,改性硅橡胶)的声阻抗为1.36MRayl、5MHz下的声衰减为29.1dB/cm的声透镜材料,邵氏硬度(Shore A)为52。RTV615硅橡胶/顺丁橡胶复合材料包括Si-O键、甲基、乙烯基和丁二烯基成分。
将实施例6与对比例2对比可知,在RTV615硅橡胶中加入液体顺丁橡胶提升了材料的阻抗和硬度,但声衰减也急剧提升。
实施例7:称量100g RTV615硅橡胶的第一组分与50g丁腈橡胶的第三组分利用搅拌装置混合均匀,接着加入10g RTV615硅橡胶的第二组分与5g丁腈橡胶的第四组分,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到的RTV615硅橡胶/丁腈橡胶复合材料(即,改性硅橡胶)的声阻抗为1.26MRayl、5MHz下的声衰减为13.1dB/cm,邵氏硬度(Shore A)为38。得到的RTV615硅橡胶/丁腈橡胶复合材料包含Si-O键、甲基、乙烯基、丙烯腈基和丁二烯基成分。
将实施例7与对比例2对比可知,在RTV615硅橡胶中加入液体丁腈橡胶提升了材料的阻抗和硬 度,并降低了其声衰减。
实施例8:称量100g RTV615硅橡胶的第一组分与100g丁腈橡胶的第三组分利用搅拌装置混合均匀,接着加入10g RTV615硅橡胶的第二组分与10g丁腈橡胶的第四组分,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到的RTV615硅橡胶/丁腈橡胶复合材料(即,改性硅橡胶)的声阻抗为1.37MRayl、5MHz下的声衰减为12.5dB/cm,邵氏硬度(Shore A)为41。得到的RTV615硅橡胶/丁腈橡胶复合材料包含Si-O键、甲基、乙烯基、丙烯腈基和丁二烯成分。
将实施例8与实施例7和对比例2对比可知,在RTV615硅橡胶中增加液体丁腈橡胶的用量降低了材料声衰减并增加其阻抗和硬度。
实施例9:称量100g丁腈橡胶的第三组分与10g丁腈橡胶的第四组分于烧杯中,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到双组分丁腈橡胶基体材料声阻抗为1.52MRayl、5MHz下的声衰减为10.5dB/cm、邵氏硬度(Shore A)为60。得到的丁腈橡胶包含丁二烯基和丙烯腈基结构。
实施例10:称量100g顺丁橡胶的第三组分与10g顺丁橡胶的第四组分于烧杯中,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到双组分顺丁橡胶基体材料声阻抗为1.61MRayl、声衰减40.0dB/cm(5MHz)、邵氏硬度(Shore A)为80。得到的顺丁橡胶包含丁二烯基结构。
实施例11:称量100g氟橡胶的第三组分与10g氟橡胶的第四组分于烧杯中,利用搅拌装置混合均匀并利用除气泡装置进行除泡处理,结束后将其浇灌进模具中并在25℃、50%RH恒温恒湿箱中固化48h,成型,得到双组分氟橡胶基体材料声阻抗为1.70MRayl、声衰减40.0dB/cm(5MHz)、邵氏硬度(Shore A)为60。得到的氟橡胶包含氟原子。
实施例1-11及对比例1-2的原料及实验结果分别见表2和表3。由实施例1-11及对比例1、2可知,RTV630硅橡胶和RTV615硅橡胶中声性能(例如,声阻抗、声衰减)和硬度的提高来源于共混橡胶(例如,氟橡胶、顺丁橡胶、丁腈橡胶)良好的声性能和硬度。
表2实施例1-11及对比例1-2的原料
Figure PCTCN2022143172-appb-000020
Figure PCTCN2022143172-appb-000021
表2中的用量单位为g,“/”表示不含有该组分。第一组分中含有多个组分时,第一组分的用量是指多个组分的质量之和;第三组分中含有多个组分时,第三组分的用量是指多个组分的质量之和。例如,实施例3中第三组分包含丁二烯和丙烯腈,第三组分的用量是指丁二烯和丙烯腈的质量之和为100g,丁二烯和丙烯腈之间的比例可以为本领域常规的比例。
表2中,(1)聚乙烯基聚硅氧烷的结构式为:
Figure PCTCN2022143172-appb-000022
(2)丁二烯的结构式为:
Figure PCTCN2022143172-appb-000023
(3)丙烯腈的结构式为:
Figure PCTCN2022143172-appb-000024
(4)含氟碳链的结构式为:
Figure PCTCN2022143172-appb-000025
(5)聚碳化二亚胺的结构式为HN=C=NH;(6)铂金催化剂为均相铂金催化剂;(7)有机锡为二月桂酸二丁基锡或辛酸亚锡。
表3实施例1-11及对比例1-2的实验结果
编号 硅橡胶 改性材料 声阻抗 5MHz下的声衰减 邵氏硬度
对比例1 RTV630 / 1.30MRayl 30.0dB/cm 50
实施例1 RTV630 氟橡胶 1.50MRayl 31.3dB/cm 65
实施例2 RTV630 顺丁橡胶 1.42MRayl 41.0dB/cm 60
实施例3 RTV630 丁腈橡胶 1.39MRayl 22.0dB/cm 50
实施例4 RTV630 丁腈橡胶 1.36MRayl 20.0dB/cm 51
对比例2 RTV615 / 1.05MRayl 15.4dB/cm 25
实施例5 RTV615 氟橡胶 1.31MRayl 25.0dB/cm 50
实施例6 RTV615 顺丁橡胶 1.36MRayl 29.1dB/cm 52
实施例7 RTV615 丁腈橡胶 1.26MRayl 13.1dB/cm 38
实施例8 RTV615 丁腈橡胶 1.37MRayl 12.5dB/cm 41
实施例9 / 丁腈橡胶 1.52Mrayl 10.5dB/cm 60
实施例10 / 顺丁橡胶 1.61MRayl 40.0dB/cm 80
实施例11 / 氟橡胶 1.70MRayl 40.0dB/cm 60
实施例1-11及对比例1-2制得的最终材料的主要结构单元如表4所示。
表4实施例1-11及对比例1-2制得的最终材料的主要结构单元表
Figure PCTCN2022143172-appb-000026
Figure PCTCN2022143172-appb-000027
Figure PCTCN2022143172-appb-000028
Figure PCTCN2022143172-appb-000029
实施例5-8中获得的RTV615硅橡胶的改性硅橡胶的粘度为10000mpa·s-30000mpa·s。实施例1-4中获得的RTV630硅橡胶的改性硅橡胶的粘度为大于或等于150000mpa·s。
本说明书实施例可能带来的有益效果包括但不限于:(1)提出一种硅橡胶的共混改性方式,可以有效提升改性后的硅橡胶(即,改性硅橡胶)的声阻抗,还可以降低改性后的硅橡胶声衰减,改善改性后的硅橡胶机械强度。例如,RTV630硅橡胶的邵氏硬度可由50提升至51-65,声阻抗可以由1.30MRayl提升至1.36MRayl-1.50MRayl,5MHz频率下的声衰减可以由30dB/cm降低至20.0dB/cm。又例如,RTV615硅橡胶的邵氏硬度可由25提升至38-52,声阻抗可以由1.05MRayl提升至1.26MRayl-1.37MRayl,声衰减可以由15.4dB/cm降低至12.5dB/cm-13.1dB/cm;(2)制备的改性硅橡胶具有与人体匹配的声阻抗,可以用作超声探头声透镜,不仅具有较高的使用寿命,还可以提升超声诊断设备的成像灵敏度和成像质量;(3)改性硅橡胶的制备工艺简单,可以室温成型,满足常规声透镜的制备要求。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意 的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的申请历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (26)

  1. 一种改性硅橡胶的原料组合物,包括:
    可形成硅橡胶的原料,包括第一组分和第二组分;以及
    可形成改性材料的原料,包括第三组分和第四组分。
  2. 根据权利要求1所述的原料组合物,其中,
    所述第一组分的质量份数在50-150范围内;
    所述第二组分的质量份数在0-20范围内且大于0;
    所述第三组分的质量份数在25-150范围内;或
    所述第四组分的质量份数在0-20范围内且大于0。
  3. 根据权利要求1所述的原料组合物,其中,
    所述第一组分、所述第二组分、所述第三组分与所述第四组分的质量比为10:1:(5-10):(0.5-1)。
  4. 根据权利要求1所述的原料组合物,其中,
    所述第一组分包括乙烯基硅橡胶和交联剂;或
    所述第二组分包括能够催化所述乙烯基硅橡胶和所述交联剂加成的催化剂。
  5. 根据权利要求4所述的原料组合物,其中,
    所述乙烯基硅橡胶的结构式如式I所示:
    Figure PCTCN2022143172-appb-100001
    其中,R 1a、R 1b、R 1c、R 1d各自独立地选自H、取代或未取代的C 1-C 5的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基,n≥1000;
    所述交联剂包括硅氢键;或
    所述第二组分包括元素周期表第Ⅷ族的过渡金属、其化合物、或其络合物中的至少一种。
  6. 根据权利要求4所述的原料组合物,其中,所述第二组分还包括甲基硅油、乙烯基硅油、羟基硅油、羟甲基氟硅油或端环氧硅油中的至少一种。
  7. 根据权利要求5所述的原料组合物,其中,所述乙烯基硅橡胶的结构式如式I’所示:
    Figure PCTCN2022143172-appb-100002
  8. 根据权利要求5所述的原料组合物,其中,所述交联剂为聚甲基氢硅氧烷。
  9. 根据权利要求4所述的原料组合物,其中,所述第一组分还包括抑制剂或填料中的至少一种。
  10. 根据权利要求9所述的原料组合物,其中,所述抑制剂包括炔醇类化合物、含氮化合物或有机过氧化物中的至少一种。
  11. 根据权利要求9所述的原料组合物,其中,所述填料包括白炭黑、钛白粉、石英粉、氧化铝、氧化锌或氧化钨中的至少一种。
  12. 根据权利要求1所述的原料组合物,其中,
    所述第三组分包括丁二烯类化合物和丙烯腈类化合物,所述第四组分包括能够催化所述丁二烯类化合物和所述丙烯腈类化合物加成的催化剂;或
    所述第三组分包括丁二烯类化合物,所述第四组分包括能够催化所述丁二烯类化合物加成的催化剂;或
    所述第三组分包括含氟碳链,所述第四组分包括聚碳化二亚胺。
  13. 根据权利要求12所述的原料组合物,其中,
    所述丁二烯类化合物的结构式如式II所示,
    Figure PCTCN2022143172-appb-100003
    其中,R 2a、R 2b、R 2c、R 2d各自独立地选自H、取代或未取代的C 1-C 3的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基;
    所述丙烯腈类化合物的结构式如式III所示,
    Figure PCTCN2022143172-appb-100004
    其中,R 3a、R 3b各自独立地选自H、取代或未取代的C 1-C 3的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基;
    所述含氟碳链的结构式如式IV所示,
    Figure PCTCN2022143172-appb-100005
    其中,m不小于200,a在1-8范围内,且a为整数;或
    所述第四组分包括元素周期表第Ⅷ族的过渡金属、其化合物、或其络合物中的至少一种。
  14. 根据权利要求13所述的原料组合物,其中,所述第四组分包括铂、含铂化合物或含铂络合物。
  15. 根据权利要求13所述的原料组合物,其中,所述第四组分包括有机锡或有机铋。
  16. 根据权利要求13所述的原料组合物,其中,
    所述丁二烯类化合物为1,3-丁二烯,或
    所述丙烯腈类化合物为丙烯腈。
  17. 一种改性硅橡胶的制备方法,包括:
    将权利要求1-16中任一项所述的改性硅橡胶的原料组合物混合,固化成型得到所述改性硅橡胶。
  18. 根据权利要求17所述的制备方法,其中,
    所述改性硅橡胶的声阻抗在1.25Mrayl-1.50Mrayl范围内;
    所述改性硅橡胶在5MHz频率下的声衰减系数不大于42dB/cm;或
    所述改性硅橡胶的邵氏硬度在30HA-70HA范围内。
  19. 根据权利要求17所述的制备方法,其中,所述改性硅橡胶作为透声材料。
  20. 根据权利要求19所述的制备方法,其中,所述透声材料包括应用于超声探头的透声元件。
  21. 一种改性硅橡胶,采用如权利要求17所述的改性硅橡胶的制备方法制得。
  22. 一种硅橡胶的改性材料,其中,
    所述改性材料为丁腈橡胶、顺丁橡胶或氟橡胶中的至少一种;或
    可形成所述改性材料的原料包括第三组分和第四组分,其中,
    所述第三组分包括丁二烯类化合物和丙烯腈类化合物,所述第四组分包括能够催化所述丁二烯类化合物和所述丙烯腈类化合物加成的催化剂;或
    所述第三组分包括丁二烯类化合物,所述第四组分包括能够催化所述丁二烯类化合物加成的催化剂;或
    所述第三组分包括含氟碳链,所述第四组分包括聚碳化二亚胺。
  23. 根据权利要求22所述的改性材料,其中,
    所述丁二烯类化合物的结构式如式II所示,
    Figure PCTCN2022143172-appb-100006
    其中,R 2a、R 2b、R 2c、R 2d各自独立地选自H、取代或未取代的C 1-C 3的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基;
    所述丙烯腈类化合物的结构式如式III所示,
    Figure PCTCN2022143172-appb-100007
    其中,R 3a、R 3b各自独立地选自H、取代或未取代的C 1-C 3的直链烷基或支链烷基、取代或未取代的C 6-C 20芳烃基;
    所述含氟碳链的结构式如式IV所示,
    Figure PCTCN2022143172-appb-100008
    其中,m不小于200,a在1-8范围内,且a为整数;或
    所述第四组分包括元素周期表第Ⅷ族的过渡金属、其化合物、或其络合物中的至少一种。
  24. 根据权利要求23所述的改性材料,其中,所述第四组分包括铂、含铂化合物或含铂络合物。
  25. 根据权利要求23所述的改性材料,其中,所述第四组分包括有机锡或有机铋。
  26. 根据权利要求23所述的改性材料,其中,
    所述丁二烯类化合物为1,3-丁二烯,或
    所述丙烯腈类化合物为丙烯腈。
PCT/CN2022/143172 2022-09-21 2022-12-29 改性硅橡胶及其制备方法 WO2024060459A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/322,575 US20240117124A1 (en) 2022-09-21 2023-05-23 Modified silicone rubber and preparation methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211152905.1 2022-09-21
CN202211152905.1A CN117777731A (zh) 2022-09-21 2022-09-21 改性硅橡胶、原料组合物及其制备方法和应用、含其的声透镜

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/322,575 Continuation US20240117124A1 (en) 2022-09-21 2023-05-23 Modified silicone rubber and preparation methods thereof

Publications (1)

Publication Number Publication Date
WO2024060459A1 true WO2024060459A1 (zh) 2024-03-28

Family

ID=90382177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143172 WO2024060459A1 (zh) 2022-09-21 2022-12-29 改性硅橡胶及其制备方法

Country Status (3)

Country Link
US (1) US20240117124A1 (zh)
CN (1) CN117777731A (zh)
WO (1) WO2024060459A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942202A (en) * 1987-10-30 1990-07-17 Japan Synthetic Rubber Co., Ltd. Rubber composition and vulcanized rubber product
CN1618879A (zh) * 2003-09-29 2005-05-25 株式会社东芝 声透镜组份、超声探头和超声诊断设备
CN103154062A (zh) * 2010-06-14 2013-06-12 朗盛德国有限责任公司 部分氢化的丁腈橡胶和硅橡胶共混物、以及基于其的可固化混合物以及固化橡胶
CN106280475A (zh) * 2016-08-30 2017-01-04 安徽蓝德集团股份有限公司 一种石墨烯改性硅橡胶电缆护套材料
US20170000455A1 (en) * 2014-03-27 2017-01-05 Fujifilm Corporation Composition for ultrasonic probe, and silicone resin for ultrasonic probe
CN106459582A (zh) * 2014-04-15 2017-02-22 3M创新有限公司 可固化有机硅组合物
CN106916451A (zh) * 2015-12-25 2017-07-04 北京中石伟业科技无锡有限公司 一种导电橡胶组合物及其制备方法
CN107005770A (zh) * 2014-12-01 2017-08-01 富士胶片株式会社 声波探针用组合物、使用声波探针用组合物的声波探针用硅酮树脂、声波探针及超声波探针、以及声波测定装置、超声波诊断装置、光声波测定装置及超声波内窥镜
CN108129842A (zh) * 2017-12-28 2018-06-08 长沙无道工业设计有限公司 一种硅胶及其制备方法
CN108192346A (zh) * 2017-11-26 2018-06-22 天长市荣盛有机硅科技有限公司 一种高韧性耐磨耐热硅橡胶料
CN108192345A (zh) * 2017-11-26 2018-06-22 天长市荣盛有机硅科技有限公司 一种耐寒耐磨改性硅橡胶料
JP2018143703A (ja) * 2017-03-09 2018-09-20 富士フイルム株式会社 音響波プローブ用樹脂材料、音響波プローブ用樹脂混合物、音響レンズ、音響波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
CN114930875A (zh) * 2019-12-24 2022-08-19 富士胶片株式会社 声透镜用组合物、声透镜、声波探头、超声波探头、声波测定装置、超声波诊断装置、光声波测定装置及超声波内窥镜以及声波探头的制造方法
CN114933804A (zh) * 2022-05-25 2022-08-23 歌尔股份有限公司 发声装置的振膜及其制备方法、发声装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942202A (en) * 1987-10-30 1990-07-17 Japan Synthetic Rubber Co., Ltd. Rubber composition and vulcanized rubber product
CN1618879A (zh) * 2003-09-29 2005-05-25 株式会社东芝 声透镜组份、超声探头和超声诊断设备
CN103154062A (zh) * 2010-06-14 2013-06-12 朗盛德国有限责任公司 部分氢化的丁腈橡胶和硅橡胶共混物、以及基于其的可固化混合物以及固化橡胶
US20170000455A1 (en) * 2014-03-27 2017-01-05 Fujifilm Corporation Composition for ultrasonic probe, and silicone resin for ultrasonic probe
CN106459582A (zh) * 2014-04-15 2017-02-22 3M创新有限公司 可固化有机硅组合物
CN107005770A (zh) * 2014-12-01 2017-08-01 富士胶片株式会社 声波探针用组合物、使用声波探针用组合物的声波探针用硅酮树脂、声波探针及超声波探针、以及声波测定装置、超声波诊断装置、光声波测定装置及超声波内窥镜
CN106916451A (zh) * 2015-12-25 2017-07-04 北京中石伟业科技无锡有限公司 一种导电橡胶组合物及其制备方法
CN106280475A (zh) * 2016-08-30 2017-01-04 安徽蓝德集团股份有限公司 一种石墨烯改性硅橡胶电缆护套材料
JP2018143703A (ja) * 2017-03-09 2018-09-20 富士フイルム株式会社 音響波プローブ用樹脂材料、音響波プローブ用樹脂混合物、音響レンズ、音響波プローブ、音響波測定装置、超音波診断装置、光音響波測定装置および超音波内視鏡
CN108192346A (zh) * 2017-11-26 2018-06-22 天长市荣盛有机硅科技有限公司 一种高韧性耐磨耐热硅橡胶料
CN108192345A (zh) * 2017-11-26 2018-06-22 天长市荣盛有机硅科技有限公司 一种耐寒耐磨改性硅橡胶料
CN108129842A (zh) * 2017-12-28 2018-06-08 长沙无道工业设计有限公司 一种硅胶及其制备方法
CN114930875A (zh) * 2019-12-24 2022-08-19 富士胶片株式会社 声透镜用组合物、声透镜、声波探头、超声波探头、声波测定装置、超声波诊断装置、光声波测定装置及超声波内窥镜以及声波探头的制造方法
CN114933804A (zh) * 2022-05-25 2022-08-23 歌尔股份有限公司 发声装置的振膜及其制备方法、发声装置

Also Published As

Publication number Publication date
US20240117124A1 (en) 2024-04-11
CN117777731A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
Cannon et al. Novel tissue mimicking materials for high frequency breast ultrasound phantoms
US10076305B2 (en) Composition for ultrasonic probe, and silicone resin for ultrasonic probe
EP2062620B1 (en) Rubber composition for golf ball
US20090243436A1 (en) Silicone rubber compositions comprising bismuth oxide and articles made therefrom
Cabrelli et al. Acoustic and elastic properties of glycerol in oil-based gel phantoms
EP3409209A1 (en) Composition for acoustic wave probe, silicone resin for acoustic wave probe using same, acoustic wave probe, and ultrasonic probe, and acoustic wave measurement device, ultrasonic diagnostic device, photoacoustic wave measurement device, and ultrasonic endoscope
CN107005770A (zh) 声波探针用组合物、使用声波探针用组合物的声波探针用硅酮树脂、声波探针及超声波探针、以及声波测定装置、超声波诊断装置、光声波测定装置及超声波内窥镜
WO2024060459A1 (zh) 改性硅橡胶及其制备方法
JPH059039B2 (zh)
JP3105151B2 (ja) 音響レンズ用組成物
JPH08615A (ja) 超音波診断装置用接触子の音響レンズ
EP3777696A1 (en) Acoustic wave probe resin material, acoustic lens, acoustic wave probe, acoustic wave measuring apparatus, ultrasonic diagnostic apparatus, photoacoustic wave measuring apparatus, ultrasonic endoscope, and method for manufacturing acoustic lens
JP2002095081A (ja) 超音波探触子とその製造方法及び音響レンズとその製造方法
CN106483200A (zh) 一种应用于超声探头的吸声背衬材料及其制备方法
CN117050529A (zh) 声透镜用组合物及其原料和制备方法、声透镜、超声探头
US20140179860A1 (en) Modified conjugated diene polymer and synthesis method thereof
Cho et al. Effect of alumina composition and surface integrity in alumina/epoxy composites on the ultrasonic attenuation properties
JP4567232B2 (ja) 耐熱性シリコーンゴム組成物の硬化物
WO2021048237A1 (en) Ultrasound phantom
JP6011369B2 (ja) 音響媒体
JP5182869B2 (ja) 変性シリコン系発泡体の製造方法
Burke et al. Acoustic properties of butadiene and silicone elastomers at megahertz frequencies
WO2023216624A1 (zh) 一种改性硅橡胶及其制备方法、声透元件、超声探头及超声诊断设备
JP2022160287A (ja) 超音波プローブ用組成物及び超音波プローブ用シリコーン樹脂
US20230365808A1 (en) Modified silicone rubbers and methods for preparing thereof, acoustic permeable components, ultrasonic probes, and ultrasonic diagnostic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959456

Country of ref document: EP

Kind code of ref document: A1