WO2024060312A1 - 变流器模块及变流器 - Google Patents

变流器模块及变流器 Download PDF

Info

Publication number
WO2024060312A1
WO2024060312A1 PCT/CN2022/123524 CN2022123524W WO2024060312A1 WO 2024060312 A1 WO2024060312 A1 WO 2024060312A1 CN 2022123524 W CN2022123524 W CN 2022123524W WO 2024060312 A1 WO2024060312 A1 WO 2024060312A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
chopper
switch tube
variable sub
resonant
Prior art date
Application number
PCT/CN2022/123524
Other languages
English (en)
French (fr)
Inventor
周帅
宋森
陈思
耿志东
易滔
刘海涛
赵清良
饶沛南
张庆
王佳佳
刘金榕
Original Assignee
株洲中车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲中车时代电气股份有限公司 filed Critical 株洲中车时代电气股份有限公司
Publication of WO2024060312A1 publication Critical patent/WO2024060312A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • H02M3/015Resonant DC/DC converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the technical field of train converters, and in particular to a water converter module and a converter.
  • the high-frequency auxiliary converter suitable for subway DC (Direct Current) 1500V input includes: filter unit, chopper unit, resonance unit, inverter unit and charging unit.
  • the present disclosure provides a converter module and a converter, which can connect the first variable sub-circuit and the second variable sub-circuit through a composite busbar to construct multiple circuit topologies. , can adapt to multiple application scenarios.
  • the present disclosure provides a converter module, including: a first variable sub-circuit and a second variable sub-circuit, and a composite busbar, wherein the first variable sub-circuit and the second variable sub-circuit The structure is the same.
  • the first variable circuit and the second variable sub-circuit include: a first chopper switch tube, a second chopper switch tube, a first chopper diode, a second chopper diode, and a first chopper capacitor.
  • the second chopper capacitor, the first resonant switch tube, the second resonant switch tube, the third resonant switch tube, the fourth resonant switch tube, the resonant capacitor, the collector of the first chopper switch tube is connected to the first chopper switch
  • the anode of the diode, the cathode of the first chopper diode is connected to the anode of the first chopper capacitor and the collector of the first resonant switch, and the emitter of the first chopper switch is connected to the second chopper switch.
  • the collector and the cathode of the first chopper capacitor, the emitter of the second chopper switch tube are connected to the cathode of the second chopper diode, the cathode of the second chopper capacitor is connected to the anode of the second chopper diode and the fourth resonance
  • the emitter of the switch, the emitter of the first resonant switch tube is connected to the positive electrode of the resonant capacitor and the collector of the second resonant switch tube, and the emitter of the third resonant switch tube is connected to the collector of the fourth resonant switch tube;
  • the collector of the first chopper switch tube of the first variable sub-circuit is connected to the positive electrode of the power supply network, and the emitter of the second chopper switch tube of the second variable sub-circuit is connected to the negative electrode of the power supply network.
  • the composite busbar can be used to connect the first variable sub-circuit and the second variable sub-circuit to construct multiple circuit topologies, and each circuit top
  • the composite busbar includes a first connection structure, the first connection structure is used to connect the set of the first resonant switch tubes in the first variable sub-circuit and the second variable sub-circuit.
  • the electrode is connected to the collector of the third resonant switch tube, and the emitter of the second resonant switch tube in the first variable sub-circuit and the second variable sub-circuit is connected to the emitter of the fourth resonant switch tube, and
  • the emitter of the second chopper switch tube of the first variable circuit is connected to the collector of the first chopper switch tube of the second variable circuit.
  • the voltage of the power supply network includes 1500V.
  • the composite busbar further includes: a second connection structure, the second connection structure is used to connect the emission of the second resonant switch tube in the first variable sub-circuit and the second variable sub-circuit.
  • the pole is connected to the negative pole of the first chopper capacitor and the collector of the third resonant switch tube; and the emitter of the second chopper switch tube in the first variable sub-circuit is connected to the second chopper pole in the second variable sub-circuit.
  • the collector connection of the switch tube is used to connect the emission of the second resonant switch tube in the first variable sub-circuit and the second variable sub-circuit.
  • the voltage of the power supply network includes: 3600V.
  • the composite busbar further includes: a third connection structure, the third connection structure is used to connect the first resonant switch tubes in the first variable sub-circuit and the second variable sub-circuit.
  • the electrode is connected to the emitter of the third resonant switch tube, and the emitter of the second resonant switch tube in the first variable sub-circuit and the second variable sub-circuit is connected to the emitter of the fourth resonant switch tube, and the emitter of the third resonant switch tube is connected.
  • the collector of the first chopper switch in a variable subcircuit is connected to the collector of the first chopper unit in the second variable subcircuit, and the emitter of the second chopper switch in the first variable subcircuit is connected. Connected to the emitter of the second chopper unit of the second chopper switch tube in the second variable sub-circuit.
  • the voltage of the power supply network includes: 750V.
  • the rated voltage of the chopper switch tube is 1200V, and the rated voltage of the resonant switch tube is 1700V.
  • An embodiment of the present disclosure provides a converter, including the converter module.
  • the converter further includes: a heat sink, and the converter module is disposed on the heat sink.
  • the present disclosure provides a converter module and a converter.
  • the first variable sub-circuit and the second variable sub-circuit are connected through a composite busbar.
  • Variable sub-circuit connections can construct multiple circuit topologies. Each circuit topology can adapt to the corresponding power supply network and be applicable to multiple application scenarios.
  • Figure 1 is a schematic structural diagram of a high-frequency auxiliary converter provided in the related art
  • Figure 2 is a schematic structural diagram of the first variable sub-circuit and the second variable sub-circuit provided by an embodiment of the present disclosure
  • FIG3 is a schematic structural diagram of a composite busbar connecting the first variable sub-circuit and the second variable sub-circuit provided by an embodiment of the present disclosure
  • Figure 4 is a schematic structural diagram of another composite busbar connecting the first variable sub-circuit and the second variable sub-circuit provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of another composite busbar connecting the first variable sub-circuit and the second variable sub-circuit provided by an embodiment of the present disclosure.
  • first ⁇ second ⁇ third If similar descriptions of "first ⁇ second ⁇ third" appear in public documents, add the following explanation. In the following description, the terms “first ⁇ second ⁇ third” involved are only used to distinguish similar terms. The objects do not represent a specific ordering of the objects. It is understood that the "first ⁇ second ⁇ third” can be interchanged in a specific order or sequence if permitted, so that the embodiments of the disclosure described here can be Implementation in sequences other than those illustrated or described herein.
  • FIG. 1 is a schematic structural diagram of a high-frequency auxiliary converter provided in the related art.
  • the chopper unit uses a three-level chopper circuit
  • the high-frequency isolation unit uses a resonant conversion circuit (LLC) series resonant circuit
  • the three-phase inverter unit uses a three-level inverter circuit
  • the charger unit uses an isolation Type half-bridge DC/DC circuit.
  • the high-frequency auxiliary converter has a wide input voltage range of DC1000V-DC1800V. It is pre-stabilized by the chopper unit and converted into a DC voltage of 1050V.
  • the intermediate voltage is isolated and transformed by the LLC resonant circuit, converted to 700VDC, and then passed through the three-phase The inverter outputs 3AC380V alternating current.
  • the charger also takes power from the LLC output voltage and converts it into DC110V (or 24V) direct current through an isolated half-bridge DC/DC circuit.
  • This circuit is mainly used in the urban rail 1500V power supply system, but there are problems in the application scenarios of light rail DC750V power supply or DC3600V power supply. If the DC3600V power supply system is used, the input voltage of the downstream LLC will be as high as 2520V, and a 3300V withstand voltage is required. Power devices, resulting in higher device losses and expensive material costs.
  • the input voltage of the downstream LLC is only 525V. Since the LLC soft switching time margin is positively related to the input voltage, it will cause higher power in high-power applications. High switching losses increase the risk of device damage. In other words, current high-frequency auxiliary converters are unable to adapt to a wide input voltage range and can only be used in subway DC1500V application scenarios.
  • the converter module includes: a first variable sub-circuit and a second variable sub-circuit, and a composite busbar, wherein: The first variable sub-circuit has the same structure as the second variable sub-circuit.
  • the first variable circuit and the second variable sub-circuit include: a first chopper switch, a second chopper switch, a first Chopper diode, second chopper diode, first chopper capacitor, second chopper capacitor, first resonant switch tube, second resonant switch tube, third resonant switch tube, fourth resonant switch tube, resonant capacitor, so
  • the collector of the first chopper switch tube is connected to the anode of the first chopper diode
  • the cathode of the first chopper diode is connected to the anode of the first chopper capacitor and the collector of the first resonant switch.
  • the emitter of the switch tube is connected to the collector of the second chopper switch and the cathode of the first chopper capacitor.
  • the emitter of the second chopper switch is connected to the cathode of the second chopper diode.
  • the cathode of the second chopper capacitor is connected to the emitter of the switch tube.
  • the cathode is connected to the anode of the second chopper diode and the emitter of the fourth resonant switch.
  • the emitter of the first resonant switch is connected to the anode of the resonant capacitor and the collector of the second resonant switch.
  • the emitter is connected to the collector of the fourth resonant switch tube; the collector of the first chopper switch tube of the first variable sub-circuit is used to connect the positive electrode of the power supply network, and the third variable sub-circuit of the second variable sub-circuit is connected to the positive electrode of the power supply network.
  • the emitters of the two chopper switch tubes are connected to the negative pole of the power supply network, and the composite busbar can be used to connect the first variable sub-circuit and the second variable sub-circuit to construct multiple circuit topologies, each Each circuit topology can adapt to the corresponding power supply network.
  • FIG. 2 is a schematic structural diagram of the first variable sub-circuit and the second variable sub-circuit provided by the embodiment of the present disclosure.
  • the first variable circuit includes: a first chopper switch Qb1, a second chopper switch Qb2, a first chopper diode Db1, a second chopper diode Db2, a first chopper diode Capacitor Cb1, second chopper capacitor Cb2, first resonant switch tube Q1, second resonant switch tube Q2, third resonant switch tube Q3, fourth resonant switch tube Q4, resonant capacitor Cs, the c terminal of Qb1 is connected to the + of Db1 end, the - end of Db1 is connected to the + end of Cb1, and at the same time connected to the c end of Q1; the e end of Qb1 is connected to the c end of Qb
  • the second variable circuit includes: a first chopper switch Qb3, a second chopper switch Qb4, a first chopper diode Db3, a second chopper diode Db4, a first chopper capacitor Cb3, and a second chopper diode Db4.
  • Capacitor Cb4 first resonant switch tube Q5, second resonant switch tube Q5, third resonant switch tube Q6, fourth resonant switch tube Q7, resonant capacitor, the c terminal of Qb3 is connected to the + terminal of Db3, and the - terminal of Db3 is connected to Cb3
  • the + terminal of Qb4 is connected to the c terminal of Q5 at the same time;
  • the e terminal of Qb3 is connected to the c terminal of Qb4 and the - terminal of Cb3;
  • the e terminal of Qb4 is connected to the - terminal of Db4, and the - terminal of Cb4 is connected to the + terminal of Db4.
  • the e terminal of Q8; the e terminal of Q5 is connected to the + terminal of Cs, the e terminal of Q5 is connected to the c terminal of Q6, the e terminal of Q7 is connected to the c terminal of Q8, and the c terminal of Qb3 is used to connect the positive electrode of the power supply network.
  • the composite busbar can be used to connect the first variable sub-circuit and the second variable sub-circuit to construct multiple circuit topologies, and each circuit topology can be adapted to a corresponding power supply network.
  • the composite busbar can be used to connect the first variable sub-circuit and the second variable sub-circuit to form three circuit topologies.
  • the power supply network voltage corresponding to each circuit topology may include: 1500V, 3600V ,750V.
  • the converter module provided by the embodiment of the present disclosure sets the basic structure of the first variable sub-circuit and the second variable sub-circuit, and connects the first variable sub-circuit and the second variable sub-circuit through a composite busbar , multiple circuit topologies can be constructed, each circuit topology can adapt to the corresponding power supply network, and can be applied to multiple application scenarios.
  • the composite busbar includes a first connection structure, the first connection structure is used to connect the set of the first resonant switch tubes in the first variable sub-circuit and the second variable sub-circuit.
  • the electrode is connected to the collector of the third resonant switch tube, and the emitter of the second resonant switch tube in the first variable sub-circuit and the second variable sub-circuit is connected to the emitter of the fourth resonant switch tube, and
  • the emitter of the second chopper switch tube of the first variable circuit is connected to the collector of the first chopper switch tube of the second variable circuit.
  • Figure 3 is a schematic structural diagram of a composite busbar connecting the first variable sub-circuit and the second variable sub-circuit provided by an embodiment of the present disclosure.
  • the c terminal of Q1 Connect the c terminal of Q3, the c terminal of Q5 to the c terminal of Q7, the e terminal of Q2 to the e terminal of Q4, the e terminal of Q6 to the e terminal of Q8, and the e terminal of Qb2 to the c terminal of Qb3.
  • the first connection structure of the composite busbar connects two three-level chopper circuits in series, and the rear-stage resonant circuit is a full-bridge LLC topology.
  • This structure is suitable for DC1500V power supply network.
  • the input of the single-channel chopper circuit is DC750V and the output is DC1050V. Therefore, the chopper tube can use 1200V switching devices, and the resonant tube can use 1700V switching devices.
  • the composite busbar further includes: a second connection structure, the second connection structure is used to connect the emission of the second resonant switch tube in the first variable sub-circuit and the second variable sub-circuit.
  • the pole is connected to the negative pole of the first chopper capacitor and the collector of the third resonant switch tube; and the emitter of the second chopper switch tube in the first variable sub-circuit is connected to the second chopper pole in the second variable sub-circuit.
  • the collector connection of the switch tube is used to connect the emission of the second resonant switch tube in the first variable sub-circuit and the second variable sub-circuit.
  • Figure 4 is a schematic structural diagram of another composite busbar connecting the first variable sub-circuit and the second variable sub-circuit provided by the embodiment of the present disclosure.
  • e of Q2 The terminal is connected to the - terminal of Cb1 and the c terminal of Q3; the e terminal of Q6 is connected to the - terminal of Cb3 and the c terminal of Q7; the e terminal of Qb2 is connected to the c terminal of Qb3.
  • two three-level chopper circuits are connected in series through the second connection structure of the composite busbar, and the rear-stage resonant circuit is a series half-bridge LLC topology.
  • This structure is suitable for DC3600V power supply network.
  • the input of the single-channel chopper circuit is DC1800V and the output is DC2100V. Therefore, both the chopper tube and the resonant tube can use 1700V switching devices. If the first connection structure is still used in the 3600V power supply network, the resonant tube must use 3300V devices, and the cost and size will increase significantly.
  • the composite busbar further includes: a third connection structure, the third connection structure is used to connect the first resonant switch tubes in the first variable sub-circuit and the second variable sub-circuit.
  • the electrode is connected to the emitter of the third resonant switch tube, and the emitter of the second resonant switch tube in the first variable sub-circuit and the second variable sub-circuit is connected to the emitter of the fourth resonant switch tube, and the emitter of the third resonant switch tube is connected.
  • the collector of the first chopper switch in a variable subcircuit is connected to the collector of the first chopper unit in the second variable subcircuit, and the emitter of the second chopper switch in the first variable subcircuit is connected. Connected to the emitter of the second chopper unit of the second chopper switch tube in the second variable sub-circuit.
  • Figure 5 is a schematic structural diagram of another composite busbar connecting the first variable sub-circuit and the second variable sub-circuit provided by the embodiment of the present disclosure.
  • c of Q1 The c terminal of Q3 is connected to the c terminal of Q5, the c terminal of Q5 is connected to the c terminal of Q7, the e terminal of Q2 is connected to the e terminal of Q4, the e terminal of Q6 is connected to the e terminal of Q8, the e terminal of Qb2 is connected to the e terminal of Qb4, and the c terminal of Qb3 Terminate the c terminal of Qb1.
  • two three-level chopper circuits are connected in parallel through the third connection structure of the composite busbar, and the rear-stage resonant circuit is a full-bridge LLC topology structure.
  • This structure is suitable for a DC750V power supply network.
  • the input of a single chopper circuit is DC750V and the output is DC1050V. Therefore, a 1200V switch device can be selected for the chopper tube, and a 1700V switch device can be selected for the resonant tube.
  • the soft switching margin of LLC is the soft switching margin of LLC:
  • This formula represents the freewheeling time of the body diode of the switching device. During this period of time, it is turned on at zero voltage. The larger the margin, the higher the tolerance for pulse and drive delay errors, that is, the higher the possibility of achieving soft switching. . It can be seen from the following formula that the soft switching margin is positively related to the square of the LLC input voltage. If the composite busbar is connected with the first connection structure under DC750V power supply, the LLC input voltage is only 525V. The third connection structure of the composite busbar is used to connect the third connection structure. The connection between the first variable sub-circuit and the second variable sub-circuit can increase the LLC input voltage to DC1050V, and the soft switching margin is greatly improved.
  • An embodiment of the present disclosure provides a converter module that designs a basic module (i.e., a first variable sub-circuit and a second variable sub-circuit) that can be transformed into a variety of topological structures to adapt to different application scenarios.
  • a basic module i.e., a first variable sub-circuit and a second variable sub-circuit
  • the structure of the module does not need to be changed.
  • Capacitors and switching devices only need to be replaced accordingly to adapt to the input network voltage and power level, thereby reducing the workload of module design.
  • the configured composite busbar includes: a first connection structure, a second connection structure and a third connection structure, and the topology can be flexibly changed.
  • the composite busbar has a fixed shape and structure. Only a small part of the connection form needs to be modified to realize the half-bridge series LLC topology scheme at DC3600V network voltage and the input three-level chopper parallel topology scheme at DC750V network voltage and high power. The configuration is flexible. .
  • the design of a new module only requires configuring the composite busbars, capacitors, and switching devices in the module to complete the module design work.
  • the structural parts of different configuration modules are completely unified, and mass production can greatly reduce costs.
  • modules with different input voltage levels and capacities have uniform design styles and consistent sizes, forming a family product and enhancing replaceability.
  • an embodiment of the present disclosure further provides a converter, which includes the converter module in any of the above embodiments.
  • the converter further includes: a heat sink, and the converter module is disposed on the heat sink.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division.
  • the coupling, direct coupling, or communication connection between the components shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be electrical, mechanical, or other forms. of.
  • the units described above as separate components may or may not be physically separated; the components shown as units may or may not be physical units; they may be located in one place or distributed to multiple network units; Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • all functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may be separately configured as a unit, or two or more units may be integrated into one unit; the above-mentioned integrated units may be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-mentioned integrated units of the present disclosure are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure are essentially or the parts that contribute to related technologies can be embodied in the form of software products.
  • the computer software products are stored in a storage medium and include a number of instructions to enable A controller performs all or part of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: mobile storage devices, ROMs, magnetic disks or optical disks and other media that can store program codes.

Abstract

本公开提供的一种变流器模块及变流器,通过设置第一可变子电路和第二可变子电路的基础结构,通过复合母排来将第一可变子电路和第二可变子电路连接,能够构造多个电路拓扑,每个电路拓扑能够适应对应的供电网,能够适用多个应用场景。

Description

变流器模块及变流器
相关申请的交叉引用
本公开要求享有2022年09月21日提交的名称为“变流器模块及变流器”的中国专利申请CN202211152220.7的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及列车变流器技术领域,特别地涉及一种水变流器模块及变流器。
背景技术
适用于地铁直流(DC,Direct Current)1500V输入的高频辅助变流器包括:滤波单元、斩波单元、谐振单元、逆变单元和充电单元组成。
发明内容
针对上述相关技术中的问题本公开提供一种变流器模块及变流器,通过复合母排能够将所述第一可变子电路和第二可变子电路连接,以构造多个电路拓扑,能适应多个应用场景。
本公开提供了一种变流器模块,包括:第一可变子电路和第二可变子电路、复合母排,其中,所述第一可变子电路与所述第二可变子电路结构相同,所述第一可变电路和第二可变子电路包括:第一斩波开关管、第二斩波开关管、第一斩波二极管、第二斩波二极管、第一斩波电容、第二斩波电容、第一谐振开关管、第二谐振开关管、第三谐振开关管、第四谐振开关管、谐振电容,所述第一斩波开关管的集电极连接第一斩波二极管的正极,所述第一斩波二极管的负极连接第一斩波电容的正极、第一谐振开关管的集电极,第一斩波开关管的发射极连接所述第二斩波开关管的集电极、第一斩波电容的负极,第二斩波开关管的发射极连接第二斩波二极管的负极,第二斩波电容的负极连接所述第二斩波二极管的正极、第四谐振开关的发射极,第一谐振开关管的发射极连接谐振电容的正极、第二谐振开关管管的集电极,第三谐振开关管的发射极连接所述第四谐振开关管的集电极;所述第一可变子电路的第一斩波开关管的集电极用于连接供电网的正极,所述第二可变子电路的第二斩波开关管的发射极连接所述供电网的负极,所述复合母排能够用于将所述第一可变子电路和第二可变子电路连接,以构造多个电路拓扑,每个电路拓扑能够适应对应的供电网。
在一些实施例中,所述复合母排包括第一连接结构,所述第一连接结构用于将第一可 变子电路和第二可变子电路中的所述第一谐振开关管的集电极与第三谐振开关管的集电极连接,及将第一可变子电路和第二可变子电路中的第二谐振开关管的发射极接与第四谐振开关管的发射极连接,以及将第一可变电路的第二斩波开关管的发射极与第二可变电路的第一斩波开关管的集电极连接。
在一些实施例中,所述供电网的电压包括1500V。
在一些实施例中,所述复合母排还包括:第二连接结构,所述第二连接结构用于将第一可变子电路和第二可变子电路中的第二谐振开关管的发射极与第一斩波电容的负极、第三谐振开关管的集电极连接;及将第一可变子电路中第二斩波开关管的发射极与第二可变子电路中第二斩波开关管的集电极连接。
在一些实施例中,所述供电网的电压包括:3600V。
在一些实施例中,所述复合母排还包括:第三连接结构,所述第三连接结构用于将第一可变子电路和第二可变子电路中的第一谐振开关管的集电极与第三谐振开关管的发射极连接,并将第一可变子电路和第二可变子电路中第二谐振开关管的发射极与第四谐振开关管的发射极连接,并将第一可变子电路中第一斩波开关的集电极与第二可变子电路中第一斩波单元的集电极连接,以及将第一可变子电路中第二斩波开关管的发射极与第二可变子电路中第二斩波开关管的第二斩波单元的发射极连接。
在一些实施例中,所述供电网的电压包括:750V。
在一些实施例中,所述斩波开关管的额定电压为1200V,谐振开关管的额定电压为1700V。
本公开实施例提供一种变流器,包括所述的变流器模块。
在一些实施例中,所述变流器还包括:散热器,所述变流器模块设置于所述散热器上。
本公开提供的一种变流器模块及变流器,通过设置第一可变子电路和第二可变子电路的基础结构,通过复合母排来将第一可变子电路和第二可变子电路连接,能够构造多个电路拓扑,每个电路拓扑能够适应对应的供电网,能够适用多个应用场景。
附图说明
图1为相关技术中提供的一种高频辅助变流器的结构示意图;
图2为本公开实施例提供的第一可变子电路和第二可变子电路的结构示意图;
图3为本公开实施例提供的一种复合母排将所述第一可变子电路和第二可变子电路连接的结构示意图;
图4为本公开实施例提供的另一种复合母排将所述第一可变子电路和第二可变子电路连接的结构示意图;
图5为本公开实施例提供的另一种复合母排将所述第一可变子电路和第二可变子电路连接的结构示意图。
在附图中,相同的部件使用相同的附图标记,附图并未按照实际的比例绘制。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,所描述的实施例不应视为对本公开的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。
如果公开文件中出现“第一\第二\第三”的类似描述则增加以下的说明,在以下的描述中,所涉及的术语“第一\第二\第三”仅仅是是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本公开实施例能够以除了在这里图示或描述的以外的顺序实施。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本公开实施例的目的,不是旨在限制本公开。
图1为相关技术中提供的一种高频辅助变流器的结构示意图。如图1所示,斩波单元采用三电平斩波电路,高频隔离单元采用谐振转换电路(LLC)串联谐振电路,三相逆变单元采用三电平逆变电路,充电机单元采用隔离型半桥DC/DC电路。该高频辅助变流器输入电压范围较宽为DC1000V-DC1800V,经斩波单元预稳压变换为1050V的DC电压,该中间电压通过LLC谐振电路隔离变压,转换为700VDC,再经三相逆变器输出3AC380V交流电。充电机同样从LLC输出电压取电,通过隔离型半桥DC/DC电路转换为DC110V(或24V)直流电。该电路主要用在城轨道1500V的供电系统中,但是对于轻轨DC750V供电或列供DC3600V供电的应用场景存在问题,如果对于DC3600V供电系统,后级LLC输入电压将高达2520V,需要使用3300V耐压的功率器件,导致较高的器件损耗及昂贵的物料成本,对于DC750V供电系统,后级LLC输入电压仅为525V,由于LLC软开关时间裕度与输入电压正相关,在大功率应用时会导致较高的开关损耗,增加器件损坏的风险,也就是说,现在的高频辅助变流器存在无法适应宽输入电压范围的问题,只能用于地铁DC1500V的应用场景。
基于相关技术中存在的问题,本公开实施例提供一种变流器模块,所述变流器模块包括:第一可变子电路和第二可变子电路、复合母排,其中,所述第一可变子电路与所述第二可变子电路结构相同,所述第一可变电路和第二可变子电路包括:第一斩波开关管、第二斩波开关管、第一斩波二极管、第二斩波二极管、第一斩波电容、第二斩波电容、第一谐振开关管、第二谐振开关管、第三谐振开关管、第四谐振开关管、谐振电容,所述第一斩波开关管的集电极连接第一斩波二极管的正极,所述第一斩波二极管的负极连接第一斩波电容的正极、第一谐振开关管的集电极,第一斩波开关管的发射极连接所述第二斩波开关管的集电极、第一斩波电容的负极,第二斩波开关管的发射极连接第二斩波二极管的负极,第二斩波电容的负极连接所述第二斩波二极管的正极、第四谐振开关的发射极,第一谐振开关管的发射极连接谐振电容的正极、第二谐振开关管管的集电极,第三谐振开关管的发射极连接所述第四谐振开关管的集电极;所述第一可变子电路的第一斩波开关管的集电极用于连接供电网的正极,所述第二可变子电路的第二斩波开关管的发射极连接所述供电网的负极,所述复合母排能够用于将所述第一可变子电路和第二可变子电路连接,以构造多个电路拓扑,每个电路拓扑能够适应对应的供电网。
图2为本公开实施例提供的第一可变子电路和第二可变子电路的结构示意图,如图2所示,为了区分第一可变子电路和第二可变子电路,在图中用不同的符号表示,所述第一可变电路包括:第一斩波开关管Qb1、第二斩波开关管Qb2、第一斩波二极管Db1、第二斩波二极管Db2、第一斩波电容Cb1、第二斩波电容Cb2、第一谐振开关管Q1、第二谐振开关管Q2、第三谐振开关管Q3、第四谐振开关管Q4、谐振电容Cs,Qb1的c端接Db1的+端,Db1的-端接Cb1的+端,同时接Q1的c端;Qb1的e端接Qb2的c端,同时接Cb1的-端;Qb2的e端接Db2的-端,Cb2的-端接Db2的+端,同时接Q4的e端;Q1的e端接Cs的+端,Q1的e端接Q2的c端,Q3的e端接Q4的c端;所述Qb1的c端用于连接供电网的正极。
所述第二可变电路包括:第一斩波开关管Qb3、第二斩波开关管Qb4、第一斩波二极管Db3、第二斩波二极管Db4、第一斩波电容Cb3、第二斩波电容Cb4、第一谐振开关管Q5、第二谐振开关管Q5、第三谐振开关管Q6、第四谐振开关管Q7、谐振电容,Qb3的c端接Db3的+端,Db3的-端接Cb3的+端,同时接Q5的c端;Qb3的e端接Qb4的c端,同时接Cb3的-端;Qb4的e端接Db4的-端,Cb4的-端接Db4的+端,同时接Q8的e端;Q5的e端接Cs的+端,Q5的e端接Q6的c端,Q7的e端接Q8的c端,所述Qb3的c端用于连接供电网的正极。
所述复合母排能够用于将所述第一可变子电路和第二可变子电路连接,以构造多个电路拓扑,每个电路拓扑能够适应对应的供电网。
本公开实施例中,复合母排能够用于将所述第一可变子电路和第二可变子电路连接构成3个电路拓扑,每个电路拓扑对应的供电网电压可以包括:1500V、3600V、750V。
本公开实施例提供的变流器模块,通过设置第一可变子电路和第二可变子电路的基础结构,通过复合母排来将第一可变子电路和第二可变子电路连接,能够构造多个电路拓扑,每个电路拓扑能够适应对应的供电网,能够适用多个应用场景。
在一些实施例中,所述复合母排包括第一连接结构,所述第一连接结构用于将第一可变子电路和第二可变子电路中的所述第一谐振开关管的集电极与第三谐振开关管的集电极连接,及将第一可变子电路和第二可变子电路中的第二谐振开关管的发射极接与第四谐振开关管的发射极连接,以及将第一可变电路的第二斩波开关管的发射极与第二可变电路的第一斩波开关管的集电极连接。
承接上面的示例,图3为本公开实施例提供的一种复合母排将所述第一可变子电路和第二可变子电路连接的结构示意图,如图3所示,Q1的c端接Q3的c端,Q5的c端接Q7的c端,Q2的e端接Q4的e端,Q6的e端接Q8的e端,Qb2的e端接Qb3的c端。
本公开实施例中,复合母排的第一连接结构将两路三电平斩波电路串联,后级谐振电路为全桥LLC拓扑结构。这种结构适合DC1500V供电网,单路斩波电路输入为DC750V,输出为DC1050V,因此斩波管可选用1200V的开关器件,谐振管可选用1700V的开关器件。
在一些实施例中,所述复合母排还包括:第二连接结构,所述第二连接结构用于将第一可变子电路和第二可变子电路中的第二谐振开关管的发射极与第一斩波电容的负极、第三谐振开关管的集电极连接;及将第一可变子电路中第二斩波开关管的发射极与第二可变子电路中第二斩波开关管的集电极连接。
承接上面的示例,图4为本公开实施例提供的另一种复合母排将所述第一可变子电路和第二可变子电路连接的结构示意图,如图4所示,Q2的e端接Cb1的-端,同时接Q3的c端;Q6的e端接Cb3的-端,同时接Q7的c端;Qb2的e端接Qb3的c端。
本公开实施例中,通过复合母排的第二连接结构将两路三电平斩波电路串联,后级谐振电路为串联半桥LLC拓扑结构。这种结构适合DC3600V供电网,单路斩波电路输入为DC1800V,输出为DC2100V,因此斩波管和谐振管均可选用1700V的开关器件。在供电网3600V为若仍采用第一连接结构连接的方案,谐振管必须用3300V器件,成本和尺寸将显著增加。
在一些实施例中,所述复合母排还包括:第三连接结构,所述第三连接结构用于将第一可变子电路和第二可变子电路中的第一谐振开关管的集电极与第三谐振开关管的发射极连接,并将第一可变子电路和第二可变子电路中第二谐振开关管的发射极与第四谐振开关 管的发射极连接,并将第一可变子电路中第一斩波开关的集电极与第二可变子电路中第一斩波单元的集电极连接,以及将第一可变子电路中第二斩波开关管的发射极与第二可变子电路中第二斩波开关管的第二斩波单元的发射极连接。
承接上面的示例,图5为本公开实施例提供的另一种复合母排将所述第一可变子电路和第二可变子电路连接的结构示意图,如图5所示,Q1的c端接Q3的c端,Q5的c端接Q7的c端,Q2的e端接Q4的e端,Q6的e端接Q8的e端,Qb2的e端接Qb4的e端,Qb3的c端接Qb1的c端。
本公开实施例中,通过复合母排的第三连接结构将两路三电平斩波电路并联,后级谐振电路为全桥LLC拓扑结构。这种结构适合DC750V供电网,单路斩波电路输入为DC750V,输出为DC1050V,因此斩波管可选用1200V的开关器件,谐振管可选用1700V的开关器件。
本公开实施例中,以下公式为LLC的软开关裕度:
Figure PCTCN2022123524-appb-000001
该公式表征开关器件体二极管续流的时间,在这段时间内开通即为零电压开通,裕度越大,对脉冲、驱动延迟误差的容忍度越高,即实现软开关的可能性越高。由下式可见,软开关裕度与LLC输入电压的平方正相关,DC750V供电下复合母排如果用第一连接结构连接,LLC输入电压仅为525V,利用复合母排的第三连接结构将第一可变子电路和第二可变子电路连接,可将LLC输入电压提高至DC1050V,软开关裕度大大提升。
本公开实施例提供的一种变流器模块,设计一款基础模块(即第一可变子电路和第二可变子电路),可变型成多种拓扑结构适应不同应用场景。在一定的电压等级和功率范围内,模块的结构不需要改变,电容、开关器件只需要适应输入网压和功率等级做相应的替代,从而减小模块设计的工作量。
本公开实施例中,配置的复合母排包括:第一连接结构、第二连接结构和第三连接结构,可以灵活改变拓扑结构。复合母排外形结构固定,只需修改小部分连接形式,就能在DC3600V网压时实现半桥串联LLC拓扑方案、在DC750V网压大功率时实现输入三电平斩波并联拓扑方案,配置灵活。
本公开实施例中,新模块的设计,只需要对模块中的复合母排、电容、开关器件进行配置,即可完成模块的设计工作。其中不同配置模块的结构件完全统一,批量生产,可以大大降低成本。
本公开实施例中,可以保证不同输入电压等级、不同容量的模块设计风格统一,尺寸一致,形成家族化产品,增强可替换性。
基于前述的变流器模块,本公开实施例再提供一种变流器,所述变流器包括上述任一实施例中的变流器模块。
在一些实施例中,所述变流器还包括:散热器,所述变流器模块设置于所述散热器上。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本公开的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、对象或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、对象或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、对象或者装置中还存在另外的相同要素。
在本公开所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本公开各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本公开上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售 或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台控制器执行本公开各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种变流器模块,包括:第一可变子电路和第二可变子电路、复合母排,其中,
    所述第一可变子电路与所述第二可变子电路结构相同,所述第一可变电路和所述第二可变子电路包括:第一斩波开关管、第二斩波开关管、第一斩波二极管、第二斩波二极管、第一斩波电容、第二斩波电容、第一谐振开关管、第二谐振开关管、第三谐振开关管、第四谐振开关管、谐振电容,
    所述第一斩波开关管的集电极连接第一斩波二极管的正极,所述第一斩波二极管的负极连接第一斩波电容的正极、第一谐振开关管的集电极,第一斩波开关管的发射极连接所述第二斩波开关管的集电极、第一斩波电容的负极,第二斩波开关管的发射极连接第二斩波二极管的负极,第二斩波电容的负极连接所述第二斩波二极管的正极、第四谐振开关的发射极,第一谐振开关管的发射极连接谐振电容的正极、第二谐振开关管管的集电极,第三谐振开关管的发射极连接所述第四谐振开关管的集电极;所述第一可变子电路的第一斩波开关管的集电极用于连接供电网的正极,所述第二可变子电路的第二斩波开关管的发射极连接所述供电网的负极,所述复合母排能够用于将所述第一可变子电路和第二可变子电路连接,以构造多个电路拓扑,每个电路拓扑能够适应对应的供电网。
  2. 根据权利要求1所述的变流器模块,其中,所述复合母排包括第一连接结构,所述第一连接结构用于将第一可变子电路和第二可变子电路中的所述第一谐振开关管的集电极与第三谐振开关管的集电极连接,及将第一可变子电路和第二可变子电路中的第二谐振开关管的发射极接与第四谐振开关管的发射极连接,以及将第一可变电路的第二斩波开关管的发射极与第二可变电路的第一斩波开关管的集电极连接。
  3. 根据权利要求2所述的变流器模块,其中,所述供电网的电压包括1500V。
  4. 根据权利要求2所述的变流器模块,其中,所述复合母排还包括:第二连接结构,所述第二连接结构用于将第一可变子电路和第二可变子电路中的第二谐振开关管的发射极与第一斩波电容的负极、第三谐振开关管的集电极连接;及将第一可变子电路中第二斩波开关管的发射极与第二可变子电路中第二斩波开关管的集电极连接。
  5. 根据权利要求4所述的变流器模块,其中,所述供电网的电压包括:3600V。
  6. 根据权利要求4所述的变流器模块,其中,所述复合母排还包括:第三连接结构,所述第三连接结构用于将第一可变子电路和第二可变子电路中的第一谐振开关管的集电极与第三谐振开关管的发射极连接,并将第一可变子电路和第二可变子电路中第二谐振开关管的发射极与第四谐振开关管的发射极连接,并将第一可变子电路中第一斩波开关的集电极与第二可变子电路中第一斩波单元的集电极连接,以及将第一可变子 电路中第二斩波开关管的发射极与第二可变子电路中第二斩波开关管的第二斩波单元的发射极连接。
  7. 根据权利要求6所述的变流器模块,其中,所述供电网的电压包括:750V。
  8. 根据权利要求1所述的变流器模块,其中,所述斩波开关管的额定电压为1200V,谐振开关管的额定电压为1700V。
  9. 一种变流器,包括权利要求1-8任一项所述的变流器模块。
  10. 根据权利要求9所述的变流器,还包括:散热器,所述变流器模块设置于所述散热器上。
PCT/CN2022/123524 2022-09-21 2022-09-30 变流器模块及变流器 WO2024060312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211152220.7 2022-09-21
CN202211152220.7A CN115622375A (zh) 2022-09-21 2022-09-21 变流器模块及变流器

Publications (1)

Publication Number Publication Date
WO2024060312A1 true WO2024060312A1 (zh) 2024-03-28

Family

ID=84858104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123524 WO2024060312A1 (zh) 2022-09-21 2022-09-30 变流器模块及变流器

Country Status (2)

Country Link
CN (1) CN115622375A (zh)
WO (1) WO2024060312A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206650590U (zh) * 2017-04-24 2017-11-17 株洲中车时代电气股份有限公司 低地板车辅助变流器
WO2017213030A1 (ja) * 2016-06-09 2017-12-14 株式会社村田製作所 電力変換装置
CN110768531A (zh) * 2018-07-27 2020-02-07 株洲中车时代电气股份有限公司 双向高频隔离型dc/dc模块
CN112583260A (zh) * 2019-09-27 2021-03-30 株洲中车时代电气股份有限公司 一种稳压电路、变流器及轨道列车
CN112787485A (zh) * 2019-11-11 2021-05-11 中车株洲电力机车研究所有限公司 高频dc-dc变流器模块及辅助变流器系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017213030A1 (ja) * 2016-06-09 2017-12-14 株式会社村田製作所 電力変換装置
CN206650590U (zh) * 2017-04-24 2017-11-17 株洲中车时代电气股份有限公司 低地板车辅助变流器
CN110768531A (zh) * 2018-07-27 2020-02-07 株洲中车时代电气股份有限公司 双向高频隔离型dc/dc模块
CN112583260A (zh) * 2019-09-27 2021-03-30 株洲中车时代电气股份有限公司 一种稳压电路、变流器及轨道列车
CN112787485A (zh) * 2019-11-11 2021-05-11 中车株洲电力机车研究所有限公司 高频dc-dc变流器模块及辅助变流器系统

Also Published As

Publication number Publication date
CN115622375A (zh) 2023-01-17

Similar Documents

Publication Publication Date Title
CN102005957B (zh) 单电源级联多电平变流器
TW201824680A (zh) 模組化電源系統
CN106301042B (zh) 一种七电平逆变器
CN104868725A (zh) 一种升压型非隔离三端口直流变换器及其控制方法
Dung et al. A novel low‐loss control strategy for bidirectional DC–DC converter
CN103391001B (zh) 用于光伏逆变器mppt环节的高增益dc/dc变换器
CN105099249A (zh) 高可靠性双输入逆变器
CN205356152U (zh) 一种基于模块化多电平的三列式dc/dc变换器
WO2024060312A1 (zh) 变流器模块及变流器
CN102545682A (zh) 一种单相逆变器
CN109327144A (zh) 一种宽输入电压范围的llc谐振变换器
CN105262355A (zh) 一种多端口逆变器
Liao et al. Analysis on topology derivation of single-phase transformerless photovoltaic grid-connect inverters
CN216599417U (zh) 一种级联开关电容耦合电感高增益dc-dc变换器
CN110098755B (zh) 一种五电平混合π型变换器
CN104868768A (zh) 五电平逆变拓扑电路及五电平逆变器
CN112332682B (zh) 五电平有源中点钳位h桥变流器的叠层母排结构布局
CN103684030A (zh) 一种新型高性能并网光伏逆变器
WO2020182083A1 (zh) 光伏电源系统、逆变器和逆变装置及其控制方法
CN210444193U (zh) 混合钳位型五电平三相逆变器
CN114189168A (zh) 一种宽输入和中高压交流输出的光伏逆变器的拓扑结构
CN116584015A (zh) 一种直流变换器、控制方法、直流汇流箱及光伏发电系统
CN112510994B (zh) 一种多重降压的三相llc谐振直流变换器
CN217590610U (zh) 一种低开关损耗多端口直流-交流变换器
CN211606419U (zh) 三相逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959314

Country of ref document: EP

Kind code of ref document: A1