WO2024060014A1 - 车辆控制方法、装置、车辆及存储介质 - Google Patents

车辆控制方法、装置、车辆及存储介质 Download PDF

Info

Publication number
WO2024060014A1
WO2024060014A1 PCT/CN2022/119912 CN2022119912W WO2024060014A1 WO 2024060014 A1 WO2024060014 A1 WO 2024060014A1 CN 2022119912 W CN2022119912 W CN 2022119912W WO 2024060014 A1 WO2024060014 A1 WO 2024060014A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
change rate
torque change
torque
unstable state
Prior art date
Application number
PCT/CN2022/119912
Other languages
English (en)
French (fr)
Inventor
凌铭泽
马文涛
周勇有
刘栋豪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/119912 priority Critical patent/WO2024060014A1/zh
Publication of WO2024060014A1 publication Critical patent/WO2024060014A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability

Definitions

  • the present application relates to the field of automotive technology, and in particular to a vehicle control method, device, vehicle and storage medium.
  • ABS or TCS Activation of ABS or TCS will cause the vehicle's ADS to exit and switch to manual driving mode. When ADS exits, it no longer provides driving torque or braking torque. If the driver does not take over in time, it may easily lead to a traffic accident.
  • the present application provides a vehicle control method, device, vehicle and storage medium, so that vehicle control using the control method of the present application can increase the safety of vehicle driving.
  • this application provides a vehicle control method, which method includes: when the vehicle enters an unstable state in an autonomous driving mode, determining a second torque change rate based on the first torque change rate when the vehicle enters the unstable state. ; Taking the torque when the vehicle enters an unstable state as the initial value, periodically calculate the vehicle's torque according to the second torque change rate, and use the calculated vehicle's torque to control the vehicle until the vehicle exits the automatic driving mode. After exiting, based on Torque control of the vehicle when the vehicle exits autonomous driving mode. Wherein, the second torque change rate is smaller than the first torque change rate.
  • the unstable state is the state of the vehicle when the driving torque or braking torque of the vehicle does not match the road condition within a period of time.
  • the torque change rate is reduced to delay the time when the torque reaches the ABS or TCS activation threshold, thereby delaying the ABS or TCS activation time and delaying the exit time of ADS, allowing the driver to have more time. More time to prepare to take over control of the vehicle; in addition, torque is still provided after ADS exits, so even if the driver does not take over in time, an accident will not occur.
  • whether the vehicle enters an unstable state can be determined based on the state of the vehicle.
  • the method further includes: periodically acquiring status information of the vehicle; and determining whether the vehicle enters an unstable state based on the status information of the vehicle.
  • the status information of the vehicle includes at least one of the following information: vehicle controller information, driver input information, speed information, vehicle environment information, ADS decision information, and feedback information.
  • the state information includes the torque of the vehicle
  • determining whether the vehicle enters an unsteady state includes: determining the torque change rate of the vehicle in two adjacent periods based on the periodically acquired torque of the vehicle. ; Based on the vehicle's torque change rate in two adjacent cycles, determine whether the vehicle enters an unstable state.
  • the torque of the vehicle can be one of the driving torque and braking torque of the vehicle.
  • the braking torque of the vehicle is obtained at this time, and the corresponding torque change rate is the braking torque change rate;
  • the driving torque of the vehicle is obtained at this time, and the corresponding torque change rate is the driving torque change rate. Since the principles of the control methods in the two scenarios are basically the same, the other steps of this application will not be explained separately, but both include these two scenarios.
  • determining whether the vehicle enters an unsteady state includes: determining the minimum distance between the vehicle and the obstacle based on the vehicle environment information.
  • the minimum distance between the vehicle and the obstacle is the distance between the vehicle and the obstacle.
  • the minimum distance between the vehicle and the obstacle is determined. If the minimum distance between the vehicle and the obstacle is too close, if the torque change rate is adjusted at this time, the vehicle and the obstacle are likely to collide. In this case, it can be considered that the vehicle has not entered an unstable state, and the control function of this application is not enabled. If the minimum distance between the vehicle and the obstacle exceeds the threshold, and the duration of the torque change rate greater than the torque change rate threshold exceeds the first duration threshold, it is considered to have entered an unstable state. At this time, the safe distance between the vehicle and the obstacle can be guaranteed, and the ADS can be prevented from exiting prematurely by adjusting the torque change rate.
  • the wheel slip rate of each cycle is the ratio of the difference between the average vehicle speed and the average wheel speed to the average vehicle speed; based on the wheel slip rate of the vehicle in each cycle, it is determined whether the vehicle has entered an unstable state.
  • determining whether the vehicle enters an unstable state includes: determining the minimum distance between the vehicle and the obstacle based on the vehicle environment information.
  • the minimum distance between the vehicle and the obstacle is the distance between the vehicle and the vehicle.
  • the minimum distance between the vehicle and the obstacle is determined. If the minimum distance between the vehicle and the obstacle is too close, if the torque change rate is adjusted at this time, the vehicle and the obstacle are likely to collide. In this case, it can be considered that the vehicle has not entered an unstable state, and the control function of this application is not enabled. If the minimum distance between the vehicle and the obstacle exceeds the threshold, and the duration of the wheel slip rate being greater than the wheel slip rate threshold exceeds the second time threshold, it is considered to have entered an unstable state. At this time, the safe distance between the vehicle and the obstacle can be guaranteed, and the ADS can be prevented from exiting prematurely by adjusting the torque change rate.
  • determining the second torque change rate based on the first torque change rate when the vehicle enters the unstable state includes: determining the torque change rate based on the first torque change rate when the vehicle enters the unstable state. The difference, the magnitude of the torque change rate difference is positively related to the magnitude of the first torque change rate; based on the first torque change rate and the torque change rate difference, the second torque change rate is determined.
  • the time to reach the ABS or TCS activation threshold may be faster.
  • a larger torque change rate difference needs to be used for adjustment, thereby delaying the vehicle ABS or TCS as much as possible.
  • the TCS activation time provides the driver with sufficient reaction time, and due to the small torque change rate, the vehicle runs more smoothly.
  • determining the second torque change rate based on the first torque change rate when the vehicle enters an unstable state includes: determining the torque change rate difference based on the minimum distance between the vehicle and the obstacle, the vehicle The minimum distance to obstacles is the minimum value of the distances between the vehicle and the obstacles around the vehicle.
  • the magnitude of the torque change rate difference is positively related to the minimum distance between the vehicle and the obstacles.
  • the magnitude of the torque change rate difference is negatively correlated with the minimum distance between the vehicle and the obstacle; based on the first torque change rate and the torque change rate difference, the second torque change rate is determined.
  • this solution is to delay the activation time of the vehicle's ABS or TCS as much as possible while ensuring safety, and provide the driver with sufficient reaction time.
  • the torque change rate difference remains unchanged.
  • only the torque change rate difference and the second torque change rate are calculated, and the second torque change rate is always used thereafter.
  • the torque change rate difference changes as the minimum distance between the vehicle and the obstacle changes.
  • the torque change rate difference and the second torque change rate are calculated periodically, each cycle using the determined second torque change rate of the previous cycle.
  • the method further includes: in response to the vehicle entering an unstable state in the automatic driving mode, outputting prompt information, wherein the prompt information is used to prompt manual control of the vehicle.
  • prompt information is output to prompt the driver to prepare for manual driving takeover, thereby avoiding traffic accidents caused by untimely takeover and improving driving safety.
  • the prompt information can be output through the vehicle panel, and the form includes but is not limited to text prompt information, vibration information, picture prompt information, video prompt information, indicator light flashing prompt information, sound prompt information (voice or buzzer), etc.
  • the method also includes: when a condition is met, stopping the control of the vehicle's torque and manually controlling the vehicle; the condition includes at least one of the following devices detecting input: a vehicle panel button, a brake pedal, an accelerator pedal, and a steering wheel.
  • the vehicle detects manual takeover instructions or instructions, stops the control function of this application, and hands over to manual control.
  • this application provides a vehicle control device, which includes:
  • a determination unit configured to determine, in response to the vehicle in the automatic driving mode entering an unstable state, a second torque change rate according to the first torque change rate when the vehicle enters the unstable state, the second torque change rate being less than the first torque change rate;
  • the control unit is used to use the torque when the vehicle enters an unstable state as an initial value, periodically calculate the vehicle's torque according to the second torque change rate, and use the calculated vehicle's torque to control the vehicle until the vehicle exits the automatic driving mode, Control the vehicle based on the torque when the vehicle exits autonomous driving mode.
  • the device also includes:
  • An acquisition unit is used to periodically acquire vehicle status information
  • the determination unit is also used to determine whether the vehicle enters an unstable state based on the vehicle's status information.
  • the status information includes the torque of the vehicle
  • the determination unit is configured to determine the torque change rate of the vehicle in two adjacent cycles based on the periodically acquired torque of the vehicle; based on the torque change of the vehicle in two adjacent cycles rate to determine whether the vehicle enters an unstable state.
  • the determination unit is configured to determine the minimum distance between the vehicle and the obstacle based on the vehicle environment information.
  • the minimum distance between the vehicle and the obstacle is the minimum value of the distances between the vehicle and various obstacles around the vehicle; when the second torque changes.
  • the status information includes vehicle speed and wheel speed of the vehicle
  • the determination unit is configured to determine the wheel slip rate of the vehicle in each cycle based on the periodically acquired average vehicle speed and average wheel speed of the vehicle, the wheel slip rate. is the ratio of the difference between the average vehicle speed and the average wheel speed to the average vehicle speed; based on the wheel slip rate of the vehicle in each cycle, it is determined whether the vehicle enters an unstable state.
  • the determination unit is configured to determine the minimum distance between the vehicle and the obstacle based on the vehicle environment information.
  • the minimum distance between the vehicle and the obstacle is the minimum value of the distances between the vehicle and various obstacles around the vehicle; when the wheel slip rate When the duration greater than the wheel slip rate threshold exceeds the second duration threshold and the minimum distance is greater than the distance threshold, it is determined that the vehicle enters an unstable state.
  • the determination unit is configured to determine a torque change rate difference according to the first torque change rate when the vehicle enters an unstable state, and the magnitude of the torque change rate difference is positively correlated with the magnitude of the first torque change rate; based on the first The difference between the torque change rate and the torque change rate determines the second torque change rate.
  • the determination unit is configured to determine the torque change rate difference according to the minimum distance between the vehicle and the obstacle.
  • the minimum distance between the vehicle and the obstacle is the minimum value among the distances between the vehicle and various obstacles around the vehicle.
  • the difference in torque change rate is positively correlated with the minimum distance between the vehicle and the obstacle.
  • the difference in torque change rate is negatively correlated with the minimum distance between the vehicle and the obstacle; based on the first torque change rate and the difference between the torque change rate to determine the second torque change rate.
  • the torque change rate difference remains unchanged, or the torque change rate difference changes as the minimum distance between the vehicle and the obstacle changes.
  • the device also includes:
  • An output unit is used to output prompt information in response to the vehicle entering an unstable state in the automatic driving mode, and the prompt information is used to prompt manual control of the vehicle.
  • control unit is also used to stop controlling the torque of the vehicle when the conditions are met, and control the vehicle manually;
  • Conditions include input detected by at least one of the following devices: vehicle panel button, brake pedal, accelerator pedal, steering wheel.
  • the present application provides a vehicle.
  • the vehicle includes the vehicle control device and the vehicle controller as described in the second aspect, and the vehicle control device is connected to the vehicle controller.
  • the present application provides a vehicle control device.
  • the vehicle control device includes a processor and a memory; the memory is used to store software programs and modules, and the processor is stored in the memory by running or executing The software program and/or module enables the vehicle control device to implement the method in any possible implementation of the first aspect.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the memory can be a non-transitory memory, such as a read-only memory (ROM), which can be integrated on the same chip as the processor, or can be set in different On the chip, the embodiment of the present application does not limit the type of memory and the arrangement of the memory and the processor.
  • ROM read-only memory
  • the vehicle control device can be deployed on a public cloud to provide vehicle control services.
  • the present application provides a computer program (product).
  • the computer program (product) includes: computer program code.
  • the computer program code When the computer program code is run by a computer, it causes the computer to execute the above-mentioned first aspect. method in any possible embodiment.
  • the present application provides a computer-readable storage medium, wherein the computer-readable storage medium is used to store program codes executed by a processor, wherein the program codes include a method for implementing any possible implementation of the first aspect above.
  • a chip comprising a processor, wherein the processor is used to call and execute instructions stored in a memory from the memory, so that a communication device equipped with the chip executes a method in any possible implementation manner of the above-mentioned first aspect.
  • another chip including: an input interface, an output interface, a processor, and a memory.
  • the input interface, the output interface, the processor, and the memory are connected through an internal connection path.
  • the processing is configured to execute the code in the memory.
  • the processor is configured to execute the method in any possible implementation manner of the first aspect.
  • Figure 1 is a flow chart of a vehicle control method provided by an embodiment of the present application.
  • Figure 2 is a flow chart of a vehicle control method provided by an embodiment of the present application.
  • Figure 3 is a structural block diagram of a braking system provided by an embodiment of the present application.
  • FIG4 is a schematic diagram of a control process provided by the related art
  • FIG5 is a schematic diagram of a control process provided by an embodiment of the present application.
  • Figure 6 is a flow chart of a vehicle control method provided by an embodiment of the present application.
  • FIG. 7 is a block diagram of a vehicle control device provided by an embodiment of the present application.
  • Figure 8 shows a schematic structural diagram of a vehicle control device provided by an exemplary embodiment of the present application.
  • system architecture of this application is first introduced.
  • the technical solutions provided by the embodiments of this application can be applied in a variety of different system architectures.
  • the two system architectures are introduced below with reference to Figures 1 and 2.
  • FIG. 1 is a flow chart of a vehicle control method provided by an embodiment of the present application. This method can be performed by the vehicle's braking system, such as integrated brake system (IBS), electronic stability control system (ESC), etc. As shown in Figure 1, the method includes the following steps:
  • IBS integrated brake system
  • ESC electronic stability control system
  • the second torque change rate is smaller than the first torque change rate.
  • the automatic driving mode refers to the way in which the automatic driving system of the vehicle controls the operation of the vehicle.
  • the unstable state is the state of the vehicle when the driving torque or braking torque of the vehicle does not match the road condition within a period of time.
  • 102 Using the torque when the vehicle enters an unstable state as the initial value, periodically calculate the vehicle's torque according to the second torque change rate, and use the calculated vehicle's torque to control the vehicle until the vehicle exits the automatic driving mode. Based on the vehicle exit Torque controlled vehicle in autonomous driving mode.
  • the torque when the vehicle enters an unstable state is A
  • the second torque change rate is B
  • torque C is calculated based on A and B
  • torque D is calculated based on C and B
  • torque D is calculated based on D and B, and so on.
  • ABS or TCS Since the vehicle's torque always changes according to the second torque change rate, when the vehicle's torque reaches the torque threshold for ABS or TCS activation, ABS or TCS is activated. When ABS or TCS is activated, the vehicle's ABS exits.
  • the torque change rate is reduced, so that the time for the torque to reach the ABS or TCS activation threshold is delayed, thereby delaying the ABS or TCS activation time and the ADS exit time, so that the driver has more time to prepare to take over the control of the vehicle; in addition, the torque is still provided after the ADS exits, so that even if the driver does not take over in time, there will be no accident.
  • the control method of the present application is used to control the vehicle, which can increase the safety of vehicle driving.
  • FIG. 2 is a flow chart of a vehicle control method provided by an embodiment of the present application. This method can be performed by the vehicle's braking system. As shown in Figure 2, the method includes the following steps:
  • the vehicle status information includes at least one of the following information: vehicle controller information, driver input information, speed information, vehicle environment information, ADS decision information, and feedback information. These status information are provided by different devices. In order to be better applied in the vehicle control method, after receiving these information, data fusion can be performed first, which will not be elaborated here.
  • vehicle controller information refers to the information stored in ADS, brake electronic control unit (ECU), vehicle control unit (VCU) and other devices, such as the status of the last ignition cycle.
  • the function of the vehicle controller information is to determine whether the relevant functions of the vehicle are faulty, thereby determining whether the steps provided in this application can be executed. If there is a fault according to the vehicle controller information, then stop executing the steps provided by this application. If there is no fault according to the vehicle controller information, then execute the steps provided by this application.
  • Driver input information includes input information from vehicle panel buttons, brake pedals, accelerator pedals, steering wheels and other devices.
  • the vehicle panel buttons may include buttons to control the activation of the control function of the present application, and also include manual driving switching buttons.
  • the control function of this application is also the control function realized by the vehicle control method provided by this application.
  • Speed information includes wheel speed, vehicle speed, acceleration, etc., and is provided by the sensor module.
  • Vehicle environment information includes obstacle information, traffic light information, lane line information, zebra crossing information, etc.
  • Obstacle information includes obstacle distance information. Obstacles can include other vehicles around the vehicle and other types of obstacles. The distance of other vehicles around the vehicle Relevant information can be obtained through the network connection module, and other information can be obtained through the environment perception module (such as radar, camera lights).
  • ADS decision-making information includes target acceleration/deceleration, target driving/braking torque, etc., provided by ADS.
  • the feedback information is the demand driving torque fed back by the VCU, motor control unit (MCU), etc., the feedback status of the vehicle actuator, etc., and is provided by the associated ECU.
  • MCU motor control unit
  • FIG. 3 is a structural block diagram of a braking system provided by an embodiment of the present application.
  • the braking system 3 includes a detection module 31 , a judgment module 32 , a control module 33 and an execution module 34 .
  • the detection module is used to perform step 201
  • the judgment module is used to perform step 202
  • the control module is used to perform steps 203 to 207 (only the control part is implemented in 206 and 207)
  • the execution module is used to perform steps 206 to 208 (206 and 207). Only the execution part is implemented in 207).
  • the above modules can be implemented in the form of software.
  • control module includes two parts: braking torque control and driving torque control, which can be controlled according to the vehicle's driving status.
  • the execution module includes a control unit and a pressure unit (such as a hydraulic unit).
  • the control unit generates control instructions according to the torque indicated by the control module.
  • the pressure unit operates under the instruction control of the control unit.
  • the control units here include but are not limited to brake ECU, VCU, MCU, etc.
  • the braking system is decoupled (such as IBS100), motor pressure closed-loop control or solenoid valve control is directly used to make the pressure unit work according to the desired pressure.
  • the system includes 8 solenoid valves.
  • the control function provided by this application works, it uses closed-loop control of the motor and pipeline pressure sensor to respond to the target braking force and perform vehicle braking control.
  • it can be controlled by 8 solenoid valves to adjust the torque change rate to suppress the torque from changing too quickly.
  • motor pressure closed-loop control or solenoid valve control is required to draw brake fluid from the wheel cylinder to achieve the target pressure.
  • motor pressure closed-loop control and solenoid valve control can be used to realize the control function provided by this application.
  • Figure 3 also shows the relationship between the braking system 3, ADS 2 and VCU 1.
  • the three are jointly implemented through information exchange, such as the interactively requested driving torque, braking torque, and feedback status. Vehicle control.
  • steps 203, 204 and subsequent steps are executed, that is, the control function of this application is turned on. Otherwise, steps 203, 204 and subsequent steps are not executed, that is, the control function of this application is not turned on.
  • the status information includes the torque of the vehicle, and determining whether the vehicle enters an unstable state includes:
  • the vehicle's torque may be one of the vehicle's driving torque and braking torque.
  • the vehicle's braking torque When the vehicle is in a braking scenario, what is obtained is the vehicle's braking torque, and the corresponding torque change rate is the braking torque change rate; when the vehicle is in a driving scenario, what is obtained is the vehicle's driving torque, The corresponding torque change rate is the driving torque change rate. Since the principles of the control methods in the two scenarios are basically the same, other steps in this application will not be described separately, but include these two scenarios.
  • determining whether the vehicle enters an unstable state includes:
  • the minimum distance between the vehicle and obstacles is the minimum value of the distances between the vehicle and various obstacles around the vehicle;
  • the minimum distance between the vehicle and the obstacle is determined. If the minimum distance between the vehicle and the obstacle is too close, if the torque change rate is adjusted at this time, a collision between the vehicle and the obstacle is likely to occur. In this case, the vehicle can be considered It has not entered an unstable state, so the control function of this application is not enabled. If the minimum distance between the vehicle and the obstacle exceeds the threshold, and the torque change rate is greater than the torque change rate threshold for more than the first duration threshold, it is considered to have entered an unstable state. At this time, the safe distance between the vehicle and the obstacle can be guaranteed. It can also prevent ADS from exiting prematurely by adjusting the torque change rate.
  • the torque change rate threshold, the first duration threshold and the distance threshold can be selected differently based on different vehicles, and the values of these thresholds can be selected through multiple experiments.
  • the first duration threshold as an example, its order of magnitude is seconds, for example, 3 seconds.
  • the status information includes the vehicle speed and wheel speed
  • determining whether the vehicle enters an unstable state includes:
  • the wheel slip rate of the vehicle in each cycle being the ratio of the difference between the average vehicle speed and the average wheel speed to the average vehicle speed
  • determining whether the vehicle enters an unstable state includes:
  • the minimum distance between the vehicle and the obstacle is determined. If the minimum distance between the vehicle and the obstacle is too close, if the torque change rate is adjusted at this time, a collision between the vehicle and the obstacle is likely to occur. In this case, the vehicle can be considered It has not entered an unstable state, so the control function of this application is not enabled. If the minimum distance between the vehicle and the obstacle exceeds the threshold, and the wheel slip rate is greater than the wheel slip rate threshold for more than the second duration threshold, it is considered to have entered an unstable state, and the safety of the vehicle and the obstacle can be ensured. distance, and can prevent premature ADS exit by adjusting the torque change rate.
  • the wheel slip rate threshold and the second duration threshold can be selected differently based on different vehicles, and the values of these thresholds can be selected through multiple tests.
  • the second duration threshold may be the same as the first duration threshold, or may be different.
  • the vehicle has entered an unstable state based on the driver's input information.
  • the button for turning on the control function has input and the torque change rate/wheel slip rate conditions are met.
  • the button for turning on the control function has input, and if the minimum distance condition to the obstacle is met, it is judged that the vehicle has entered an unstable state.
  • Torque change rate/wheel slip rate minimum distance to obstacle, button input for turning on the control function.
  • Output prompt information which is used to prompt manual control of the vehicle.
  • prompt information is output to prompt the driver to prepare for manual driving takeover, thereby avoiding traffic accidents caused by untimely takeover and improving driving safety.
  • the prompt information can be output through the vehicle panel, and the form includes but is not limited to text prompt information, vibration information, picture prompt information, video prompt information, indicator light flashing prompt information, sound prompt information (voice or buzzer), etc.
  • Step 203 is an optional step, and the order of step 203 and step 204 is not limited.
  • the magnitude of the torque change rate difference is positively related to the magnitude of the first torque change rate.
  • the time to reach the ABS or TCS activation threshold may be faster.
  • a larger torque change rate difference needs to be used for adjustment, thereby delaying the vehicle ABS or TCS as much as possible.
  • the TCS activation time provides the driver with sufficient reaction time, and due to the small torque change rate, the vehicle runs more smoothly.
  • the corresponding relationship between the torque change rate difference and the first torque change rate can be determined in advance through experiments, and the corresponding relationship can be stored in the vehicle.
  • the corresponding relationship can be stored in the vehicle.
  • the correspondence between the torque change rate difference and the first torque change rate can also be fitted into a curve or a formula.
  • the torque change rate difference corresponding to the first torque change rate can be determined by the curve or formula.
  • the period for calculating the vehicle's torque in step 206 and the period for obtaining the vehicle's status information in step 201 may be the same or different; the sizes of the above two periods may be designed based on requirements.
  • the torque when the vehicle enters an unstable state is A
  • the second torque change rate is B
  • the torque C is calculated based on A and B
  • the torque D is calculated based on C and B
  • the moment D is calculated based on D and B, and so on.
  • the torque change rate difference remains unchanged, that is, the torque is adjusted according to a fixed slope straight line.
  • the torque change rate difference changes as the minimum distance between the vehicle and the obstacle changes, that is, the torque is adjusted according to a curve.
  • the braking system instructs the brake ECU to control the braking pressure provided by the hydraulic unit through the calculated torque.
  • the braking system instructs the brake ECU/VCU to request the MCU to control the wheel drive torque through the calculated torque.
  • ABS or TCS Since the vehicle's torque always changes according to the second torque change rate, when the vehicle's torque reaches the torque threshold for ABS or TCS activation, ABS or TCS is activated. When ABS or TCS is activated, the vehicle's ABS exits. Torque is still provided after ADS exits, so even if the driver does not take over in time, an accident will not occur.
  • the vehicle is controlled using the torque when the vehicle exits the autonomous driving mode.
  • the amount of increase or decrease can be within a set range.
  • the condition includes that at least one of the following devices detects input: a vehicle panel button, a brake pedal, an accelerator pedal, and a steering wheel.
  • the input detected by the vehicle panel button means that the driver inputs a switching manual takeover instruction through the vehicle panel button.
  • the brake pedal detects input when the rate of change of the brake pedal's stroke exceeds the threshold and lasts longer than the threshold.
  • the input detected by the accelerator pedal means that the stroke change rate of the accelerator pedal exceeds the threshold and the duration exceeds the threshold.
  • the steering wheel detects input when the steering angle exceeds the threshold and the duration exceeds the threshold.
  • each threshold in the above various implementation methods can be selected differently based on different vehicles, and the values of these thresholds can be selected through multiple experiments.
  • the vehicle detects manual takeover instructions or instructions, stops the control function of this application, and hands over to manual control.
  • step 207 the vehicle executes step 207 until the vehicle stops. If the conditions are not met, then in the driving scenario, the vehicle executes step 207 and stops control after a period of time, exiting the control function provided by the embodiment of the present application.
  • the vehicle can also periodically output prompt information to repeatedly prompt the driver.
  • FIG 4 is a schematic diagram of a control process provided by related technologies.
  • the driving torque or braking torque requested by the vehicle's ADS does not match the road conditions and the vehicle continues to drive, it is easy to activate the vehicle's ABS or TCS.
  • the ADS exits and the torque requested by the ADS increases or decreases.
  • the speed is 0, that is, the ADS request is 0 at this time, and the request pressure acting on the braking system is also 0.
  • the driving mode is automatic driving mode before ADS exits, and manual driving mode after ADS exits.
  • manual driving mode when manual takes over, the driver decelerates or accelerates through the brake pedal or accelerator pedal.
  • FIG 4 it can be seen from Figure 4 that after ADS exits and the driver has not yet taken over, the movement of the vehicle is completely unpredictable and the risk of accidents is high.
  • FIG. 5 is a schematic diagram of a control process provided by an embodiment of the present application.
  • the braking system of this application is set up with 3 working points, which correspond to entering the unstable state, ADS exit and manual takeover. Between the first two working points, the braking system adjusts the torque change rate. Between operating points, the braking system continues to provide braking or driving torque after ADS exits, so that there will be no jump in the ABS/TCS state between ADS exit and manual driving takeover, and the vehicle acceleration/deceleration will not A step change occurs.
  • the use of the control method of the present application for vehicle control can increase the safety of vehicle driving.
  • Figure 6 is a flow chart of a vehicle control method provided by an embodiment of the present application. This method can be performed by the vehicle's braking system. As shown in Figure 6, the method includes the following steps:
  • step 201 For details of this step, please refer to step 201.
  • step 203 is executed, otherwise the subsequent steps are not executed.
  • step 202 For details of this step, please refer to step 202.
  • Step 303 is an optional step, and the order of step 303 and step 304 is not limited.
  • step 203 For details of this step, please refer to step 203.
  • the magnitude of the torque change rate difference is positively correlated with the minimum distance between the vehicle and the obstacle
  • the magnitude of the torque change rate difference is negatively correlated with the minimum distance between the vehicle and the obstacle.
  • step 304 and step 305 are only executed once, and the second torque change rate determined in step 305 is always used thereafter.
  • the torque change rate difference changes as the minimum distance between the vehicle and the obstacle changes.
  • steps 304 and 305 are performed periodically, and each cycle uses the second torque change rate determined in step 305 of the previous cycle.
  • this solution is to delay the activation time of the vehicle's ABS or TCS as much as possible while ensuring safety, and provide the driver with sufficient reaction time.
  • the corresponding relationship between the torque change rate difference and the minimum distance between the vehicle and the obstacle can be determined in advance through experiments, and the corresponding relationship can be stored in the vehicle.
  • just search the stored correspondence when executing step 304, just search the stored correspondence.
  • the correspondence between the torque change rate difference and the minimum distance between the vehicle and the obstacle can also be fitted into a curve or formula.
  • the torque change rate difference corresponding to the minimum distance between the vehicle and the obstacle can be determined by the curve or formula.
  • step 206 For details of this step, please refer to step 206.
  • step 207 For details of this step, please refer to step 207.
  • the condition includes that at least one of the following devices detects input: vehicle panel button, brake pedal, accelerator pedal, steering wheel.
  • step 208 For details of this step, please refer to step 208.
  • FIG. 7 is a block diagram of a vehicle control device provided by an embodiment of the present application.
  • the vehicle control device can be implemented as all or part of a motor control module or motor controller through software, hardware, or a combination of both.
  • the vehicle control device may include: a determination unit 401 and a control unit 402.
  • the determination unit 401 is used to determine the second torque change rate according to the first torque change rate when the vehicle enters the unstable state in response to the vehicle entering the unstable state in the automatic driving mode, and the second torque change rate is smaller than the first torque. rate of change;
  • the control unit 402 is configured to use the torque when the vehicle enters an unstable state as an initial value, periodically calculate the vehicle's torque according to the second torque change rate, and use the calculated vehicle's torque to control the vehicle until the vehicle exits the automatic driving mode. , controlling the vehicle based on the torque when the vehicle exits the autonomous driving mode.
  • the device also includes:
  • the acquisition unit 403 is used to periodically acquire the status information of the vehicle
  • the determination unit 401 is also used to determine whether the vehicle enters an unstable state based on the vehicle's status information.
  • the status information includes the torque of the vehicle
  • the determination unit 401 is configured to determine the torque change rate of the vehicle in two adjacent cycles based on the periodically acquired torque of the vehicle; based on the torque of the vehicle in two adjacent cycles The rate of change determines whether the vehicle enters an unstable state.
  • the determining unit 401 is configured to determine the minimum distance between the vehicle and the obstacle based on the vehicle environment information.
  • the minimum distance between the vehicle and the obstacle is the minimum value of the distances between the vehicle and various obstacles around the vehicle; when the second torque When the duration for which the change rate is greater than the torque change rate threshold exceeds the first duration threshold and the minimum distance is greater than the distance threshold, it is determined that the vehicle has entered an unstable state.
  • the status information includes the vehicle speed and wheel speed of the vehicle
  • the determination unit 401 is configured to determine the wheel slip rate of the vehicle in each cycle based on the periodically acquired average vehicle speed and average wheel speed.
  • the rate is the ratio of the difference between the average vehicle speed and the average wheel speed to the average vehicle speed; based on the wheel slip rate of the vehicle in each cycle, it is determined whether the vehicle enters an unstable state.
  • the determination unit 401 is used to determine the minimum distance between the vehicle and the obstacle based on the vehicle environment information.
  • the minimum distance between the vehicle and the obstacle is the minimum value of the distances between the vehicle and various obstacles around the vehicle; when the wheel slips When the duration for which the rate is greater than the wheel slip rate threshold exceeds the second duration threshold, and the minimum distance is greater than the distance threshold, it is determined that the vehicle has entered an unstable state.
  • the determining unit 401 is configured to determine a torque change rate difference according to the first torque change rate when the vehicle enters an unstable state, and the magnitude of the torque change rate difference is positively correlated with the magnitude of the first torque change rate; based on the first torque change rate The difference between the first torque change rate and the torque change rate determines the second torque change rate.
  • the determining unit 401 is used to determine the torque change rate difference according to the minimum distance between the vehicle and the obstacle.
  • the minimum distance between the vehicle and the obstacle is the minimum value among the distances between the vehicle and various obstacles around the vehicle.
  • the magnitude of the torque change rate difference is positively correlated with the minimum distance between the vehicle and the obstacle.
  • the magnitude of the torque change rate difference is negatively correlated with the minimum distance between the vehicle and the obstacle; based on the first torque change
  • the difference between the rate and the torque change rate determines the second torque change rate.
  • the torque change rate difference remains unchanged, or the torque change rate difference changes as the minimum distance between the vehicle and the obstacle changes.
  • the device also includes:
  • the output unit 404 is used to output prompt information in response to the vehicle entering an unstable state in the automatic driving mode, and the prompt information is used to prompt manual control of the vehicle.
  • control unit 402 is also used to stop controlling the torque of the vehicle when the conditions are met, and control the vehicle manually;
  • Conditions include input detected by at least one of the following devices: vehicle panel button, brake pedal, accelerator pedal, steering wheel.
  • the vehicle control device provided in the above embodiment When the vehicle control device provided in the above embodiment is working, only the division of the above functional units is used as an example. In practical applications, the above function allocation can be completed by different functional units according to needs, that is, the internal structure of the device is divided into Different functional units to complete all or part of the functions described above.
  • the vehicle control device provided by the above embodiments and the vehicle control method embodiments belong to the same concept. Please refer to the method embodiments for the specific implementation process, which will not be described again here.
  • An embodiment of the present application also provides a vehicle.
  • the vehicle includes a vehicle control device and a vehicle controller shown in Figure 6, and the vehicle control device is connected to the vehicle controller.
  • FIG. 8 shows a schematic structural diagram of a vehicle control device 900 provided by an exemplary embodiment of the present application.
  • the vehicle control device 900 shown in FIG. 8 is used to perform operations related to the vehicle control method shown in FIG. 1 , FIG. 2 or FIG. 6 .
  • the vehicle control device 900 may include the aforementioned braking system of the vehicle.
  • the vehicle control device 900 can be implemented by a general bus architecture.
  • the vehicle control device 900 includes at least one processor 901 , a memory 903 and at least one communication interface 904 .
  • the processor 901 is, for example, a general central processing unit (CPU), a digital signal processor (DSP), a network processor (NP), a graphics processor (Graphics Processing Unit, GPU), Neural network processors (neural-network processing units, NPU), data processing units (Data Processing Unit, DPU), microprocessors or one or more integrated circuits used to implement the solution of this application.
  • the processor 901 includes an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • PLD is, for example, a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • the processor may implement or execute the various logical blocks, modules and circuits described in conjunction with the disclosure of embodiments of the present invention.
  • the processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the vehicle control device 900 also includes a bus.
  • the bus is used to transfer information between components of the vehicle control device 900 .
  • the bus can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 8, but it does not mean that there is only one bus or one type of bus.
  • the memory 903 is, for example, a read-only memory (ROM) or other type of static storage device that can store static information and instructions, or a random access memory (random access memory, RAM) or a device that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Other types of dynamic storage devices such as electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical discs Storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can Any other media accessed by a computer, without limitation.
  • the memory 903 exists independently, for example, and is connected to the processor 901 through a bus.
  • the memory 903 may also be integrated with the processor 901.
  • the communication interface 904 uses any device such as a transceiver for communicating with other devices or a communication network.
  • the communication network may be an Ethernet, a radio access network (RAN) or a Bluetooth network, etc.
  • the communication interface 904 may include a wired communication interface and may also include a wireless communication interface. In the embodiment of the present application, the communication interface 904 can be used for the vehicle control device 900 to communicate with other devices.
  • the processor 901 may include one or more CPUs, such as CPU0 and CPU1 as shown in FIG. 8 .
  • Each of these processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the vehicle control device 900 may include multiple processors, such as the processor 901 and the processor 905 shown in FIG. 8 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (such as computer program instructions).
  • the vehicle control device 900 may also include an output device and an input device.
  • Output devices communicate with processor 901 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
  • the input device communicates with the processor 901 and can receive user input in a variety of ways.
  • the input device may be a touch screen device or a sensing device, etc.
  • the memory 903 is used to store the program code 910 for executing the solution of the present application, and the processor 901 can execute the program code 910 stored in the memory 903. That is, the vehicle control device 900 can implement the vehicle control method provided by the method embodiment through the processor 901 and the program code 910 in the memory 903 .
  • Program code 910 may include one or more software modules.
  • the processor 901 itself can also store program codes or instructions for executing the solution of the present application.
  • the vehicle control device 900 of the embodiment of the present application may correspond to the motor control module or motor controller in each of the above method embodiments.
  • the processor 901 in the vehicle control device 900 reads the instructions in the memory 903,
  • the vehicle control device 900 shown in FIG. 8 is enabled to perform all or part of the operations performed by the motor control module or the motor controller.
  • the processor 901 is configured to, in response to the vehicle entering an unstable state in the autonomous driving mode, determine a second torque change rate based on the first torque change rate when the vehicle enters the unstable state, and the second torque change rate is Less than the first torque change rate; taking the torque when the vehicle enters an unstable state as the initial value, periodically calculating the vehicle's torque according to the second torque change rate, using the calculated vehicle.
  • the vehicle is controlled by the torque until the vehicle exits the automatic driving mode, and the vehicle is controlled based on the torque when the vehicle exits the automatic driving mode.
  • the vehicle control device 900 may also correspond to the above-mentioned vehicle control device shown in FIG. 7 , and each functional module in the vehicle control device is implemented using the software of the vehicle control device 900 .
  • the functional modules included in the vehicle control device are generated by the processor 901 of the vehicle control device 900 after reading the program code 910 stored in the memory 903 .
  • Each step of the vehicle control method shown in FIG. 1 , FIG. 2 or FIG. 6 is completed by instructions in the form of hardware integrated logic circuits or software in the processor of the vehicle control device 900 .
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, the details will not be described here.
  • Embodiments of the present application also provide a chip, including: an input interface, an output interface, a processor and a memory.
  • the input interface, the output interface, the processor and the memory are connected through an internal connection path, and the processor is used to execute the code in the memory. , when the code is executed, the processor is used to execute any of the above vehicle control methods.
  • processor may be a CPU, or other general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor can be a microprocessor or any conventional processor, etc. It is worth noting that the processor may be a processor that supports ARM architecture.
  • processors there are one or more processors and one or more memories.
  • the memory may be integrated with the processor, or the memory may be provided separately from the processor.
  • the above-mentioned memory may include read-only memory and random access memory and provide instructions and data to the processor.
  • Memory may also include non-volatile random access memory.
  • the memory may also store reference blocks and target blocks.
  • the memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, PROM, EPROM, EEPROM or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • many forms of RAM are available. For example, SRAM, DRAM, SDRAM, DDR SDRAM, ESDRAM, SLDRAM and DR RAM.
  • a computer-readable storage medium stores computer instructions.
  • the computer device is caused to execute the above. Vehicle control methods provided.
  • a computer program product containing instructions is also provided.
  • the computer program product When run on a computer device, the computer program product causes the computer device to execute the vehicle control method provided above.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

公开了一种车辆控制方法,包括:响应于自动驾驶模式下的车辆进入非稳定状态,根据车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率,第二力矩变化率小于第一力矩变化率;以车辆进入非稳定状态时的力矩为初始值,按照第二力矩变化率,周期性地计算车辆的力矩,采用计算出的车辆的力矩控制车辆,直至车辆退出自动驾驶模式,基于车辆退出自动驾驶模式时的力矩控制车辆;还公开了一种包括该方法的计算机可读存储介质、程序,一种车辆控制装置,以及包括该控制装置的车辆及存储介质。

Description

车辆控制方法、装置、车辆及存储介质 技术领域
本申请涉及汽车技术领域,特别涉及一种车辆控制方法、装置、车辆及存储介质。
背景技术
在雨、雪、雾等天气状况下,车辆的雷达和摄像头等传感器难以有效识别路况条件变化。当车辆的自动驾驶系统(automatic driving system,ADS)所请求的驱动力矩或制动力矩与路况条件不相符且车辆持续行驶时,容易激活车辆的制动防抱死系统(antilock brake system,ABS)或牵引力控制系统(traction control system,TCS)。
ABS或TCS激活会导致车辆的ADS退出并切换到人工驾驶模式。ADS退出不再提供驱动力矩或制动力矩,此时如果驾驶员接管不及时,容易导致交通事故。
发明内容
本申请提供了一种车辆控制方法、装置、车辆及存储介质,使得采用本申请的控制方法进行车辆控制,能够增加车辆驾驶的安全性。
第一方面,本申请提供了一种车辆控制方法,该方法包括:当车辆在自动驾驶模式下进入非稳定状态时,根据车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率;以车辆进入非稳定状态时的力矩为初始值,按照第二力矩变化率,周期性地计算车辆的力矩,采用计算出的车辆的力矩控制车辆,直至车辆退出自动驾驶模式,退出后,基于车辆退出自动驾驶模式时的力矩控制车辆。其中,第二力矩变化率小于第一力矩变化率。
在本申请的实现方式中,非稳定状态是在一段时间内车辆的驱动力矩或制动力矩均和路面状况不匹配时车辆的状态。
在该实现方式中,在车辆进入非稳定状态时,减小力矩变化率,使得力矩达到ABS或TCS激活阈值的时间推迟,从而延迟ABS或TCS激活时间,延迟ADS的退出时间,让驾驶员有更多时间准备接管车辆的控制;另外,在ADS退出后依然提供力矩,即使驾驶员接管不及时,也不至于出现事故。通过上述两个方面,使得采用本申请的控制方法进行车辆控制,能够增加车辆驾驶的安全性。
在本申请的可能的实现方式中,车辆是否进入非稳定状态可以基于车辆的状态来进行判断。可选地,该方法还包括:周期性地获取车辆的状态信息;根据车辆的状态信息,确定车辆是否进入非稳定状态。
示例性地,车辆的状态信息包括如下信息中的至少一项:车辆控制器信息、驾驶员输入信息、速度信息、车辆环境信息、ADS决策信息、反馈信息。
在该实现方式中,仅通过车辆的状态信息即可判断车辆是否进入非稳定状态,判断所需的信息均通过车辆以后器件获取,无需额外硬件,成本低。
在本申请一种可能的实现方式中,状态信息包括车辆的力矩,确定车辆是否进入非稳定 状态,包括:基于周期性地获取的车辆的力矩,确定车辆在相邻两个周期的力矩变化率;基于车辆在相邻两个周期的力矩变化率,确定车辆是否进入非稳定状态。
其中,车辆的力矩可以是车辆的驱动力矩和制动力矩中的一种。当车辆处于制动场景下,此时获取到的是车辆的制动力矩,对应的力矩变化率是制动力矩变化率;当车辆处于驱动场景下,此时获取到的是车辆的驱动力矩,对应的力矩变化率是驱动力矩变化率。由于两种场景下的控制方法的原理基本相同,本申请其他步骤不再单独说明,但均包括这两种场景。
在该实现方式中,通过确定车辆的力矩变化率,从而确定车辆的力矩是否和路面状况匹配,进而确定车辆是否进入非稳定状态,判断结果准确。
示例性地,基于车辆在相邻两个周期的力矩变化率,确定车辆是否进入非稳定状态,包括:基于车辆环境信息确定车辆与障碍物的最小距离,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值;当第二力矩变化率大于力矩变化率阈值的持续时间超过第一时长阈值,且最小距离大于距离阈值时,确定车辆进入非稳定状态。
在该实现方式中,判断车辆和障碍物的最小距离,如果车辆和障碍物的最小距离过近,此时如果调整力矩变化率,容易发生车辆和障碍物的碰撞,这种情况,可以认为车辆未进入非稳定状态,从而不启用本申请的控制功能。而如果车辆与障碍物的最小距离超过阈值,且力矩变化率大于力矩变化率阈值的持续时间超过第一时长阈值,则认为进入非稳定状态,此时既能保证车辆与障碍物的安全距离,又能通过调节力矩变化率避免ADS过早退出。
在本申请另一种可能的实现方式中,状态信息包括车辆的车速和轮速,确定车辆是否进入非稳定状态,包括:基于周期性地获取的车辆的平均车速和平均轮速,确定车辆在每个周期的车轮滑移率,车轮滑移率为平均车速和平均轮速的差值与平均车速的比值;基于车辆在每个周期的车轮滑移率,确定车辆是否进入非稳定状态。
在该实现方式中,通过确定车辆的车轮滑移率,从而反映车辆的力矩是否和路面状况匹配,进而确定车辆是否进入非稳定状态,判断结果准确。
示例性地,基于车辆在每个周期的车轮滑移率,确定车辆是否进入非稳定状态,包括:基于车辆环境信息确定车辆与障碍物的最小距离,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值;当车轮滑移率大于车轮滑移率阈值的持续时间超过第二时长阈值,且最小距离大于距离阈值时,确定车辆进入非稳定状态。
在该实现方式中,判断车辆和障碍物的最小距离,如果车辆和障碍物的最小距离过近,此时如果调整力矩变化率,容易发生车辆和障碍物的碰撞,这种情况,可以认为车辆未进入非稳定状态,从而不启用本申请的控制功能。而如果车辆与障碍物的最小距离超过阈值,且车轮滑移率大于车轮滑移率阈值的持续时间超过第二时长阈值,则认为进入非稳定状态,此时既能保证车辆与障碍物的安全距离,又能通过调节力矩变化率避免ADS过早退出。
在本申请一种可能的实现方式中,根据车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率,包括:根据车辆进入非稳定状态时的第一力矩变化率确定力矩变化率差值,力矩变化率差值的大小和第一力矩变化率的大小正相关;基于第一力矩变化率和力矩变化率差值,确定第二力矩变化率。
在该实现方式中,由于第一力矩变化率越大,导致达到ABS或TCS启动阈值的时间可能越快,为了避免则需要使用越大的力矩变化率差值进行调节,从而尽量延缓车辆ABS或TCS启动的时间,给驾驶员提供充足的反应时间,并且由于力矩变化率小,使得车辆运行更 平稳。
在本申请另一种可能的实现方式中,根据车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率,包括:根据车辆与障碍物的最小距离确定力矩变化率差值,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值,在制动场景下,力矩变化率差值的大小和车辆与障碍物的最小距离正相关,在驱动场景下,力矩变化率差值的大小和车辆与障碍物的最小距离负相关;基于第一力矩变化率和力矩变化率差值,确定第二力矩变化率。
制动场景下,为了避免碰撞到障碍物,尽量避免对制动力矩调节过多,导致减速度减小太多;驱动场景下,为了避免碰撞到障碍物,尽量多调节力矩变化率,减小车辆加速度。
在该实现方式中,车辆与障碍物的最小距离越小,对力矩变化率差值的调节越小。因为此时如果对力矩变化率调节过大,容易造成事故。也即这种方案是在保证安全的前提下,尽量延缓车辆ABS或TCS启动的时间,给驾驶员提供充足的反应时间。
示例性地,力矩变化率差值持续不变。例如,仅计算力矩变化率差值和第二力矩变化率,后续一直使用该第二力矩变化率。
示例性地,力矩变化率差值随着车辆与障碍物的最小距离的变化而变化。例如,周期性地计算力矩变化率差值和第二力矩变化率,每个周期使用上个周期的确定的第二力矩变化率。
可选地,该方法还包括:响应于自动驾驶模式下车辆进入非稳定状态,输出提示信息,提示信息用于提示人工控制车辆。
在该实现方式中,通过输出提示信息,提示驾驶员准备人工驾驶接管,从而避免因为接管不及时造成的交通事故,提高驾驶安全。
示例性地,提示信息可以通过车辆的面板输出,形式包括但不限于文字提示信息、振动信息、图片提示信息、视频提示信息、指示灯闪烁提示信息、声音提示信息(语音或蜂鸣)等。
可选地,该方法还包括:当满足条件时,停止对车辆的力矩的控制,由人工控制车辆;条件包括以下至少一个装置检测到输入:车辆面板按钮、制动踏板、油门踏板、方向盘。
在该实现方式中,车辆检测到人工接管指令或指示,停止本申请的控制功能,交由人工进行控制。
第二方面,本申请提供了一种车辆控制装置,该装置包括:
确定单元,用于响应于自动驾驶模式下的车辆进入非稳定状态,根据车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率,第二力矩变化率小于第一力矩变化率;
控制单元,用于以车辆进入非稳定状态时的力矩为初始值,按照第二力矩变化率,周期性地计算车辆的力矩,采用计算出的车辆的力矩控制车辆,直至车辆退出自动驾驶模式,基于车辆退出自动驾驶模式时的力矩控制车辆。
可选地,该装置还包括:
获取单元,用于周期性地获取车辆的状态信息;
确定单元,还用于根据车辆的状态信息,确定车辆是否进入非稳定状态。
可选地,状态信息包括车辆的力矩,确定单元,用于基于周期性地获取的车辆的力矩,确定车辆在相邻两个周期的力矩变化率;基于车辆在相邻两个周期的力矩变化率,确定车辆 是否进入非稳定状态。
可选地,确定单元,用于基于车辆环境信息确定车辆与障碍物的最小距离,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值;当第二力矩变化率大于力矩变化率阈值的持续时间超过第一时长阈值,且最小距离大于距离阈值时,确定车辆进入非稳定状态。
可选地,状态信息包括车辆的车速和轮速,确定单元,用于基于周期性地获取的车辆的平均车速和平均轮速,确定车辆在每个周期的车轮滑移率,车轮滑移率为平均车速和平均轮速的差值与平均车速的比值;基于车辆在每个周期的车轮滑移率,确定车辆是否进入非稳定状态。
可选地,确定单元,用于基于车辆环境信息确定车辆与障碍物的最小距离,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值;当车轮滑移率大于车轮滑移率阈值的持续时间超过第二时长阈值,且最小距离大于距离阈值时,确定车辆进入非稳定状态。
可选地,确定单元,用于根据车辆进入非稳定状态时的第一力矩变化率确定力矩变化率差值,力矩变化率差值的大小和第一力矩变化率的大小正相关;基于第一力矩变化率和力矩变化率差值,确定第二力矩变化率。
可选地,确定单元,用于根据车辆与障碍物的最小距离确定力矩变化率差值,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值,在制动场景下,力矩变化率差值的大小和车辆与障碍物的最小距离正相关,在驱动场景下,力矩变化率差值的大小和车辆与障碍物的最小距离负相关;基于第一力矩变化率和力矩变化率差值,确定第二力矩变化率。
可选地,力矩变化率差值持续不变,或者,力矩变化率差值随着车辆与障碍物的最小距离的变化而变化。
可选地,该装置还包括:
输出单元,用于响应于自动驾驶模式下车辆进入非稳定状态,输出提示信息,提示信息用于提示人工控制车辆。
可选地,控制单元,还用于当满足条件时,停止对车辆的力矩的控制,由人工控制车辆;
条件包括以下至少一个装置检测到输入:车辆面板按钮、制动踏板、油门踏板、方向盘。
第三方面,本申请提供了一种车辆,所述车辆包括如第二方面所述的车辆控制装置和整车控制器,所述车辆控制装置与所述整车控制器连接。
第四方面,本申请提供了一种车辆控制设备,所述车辆控制设备包括处理器和存储器;所述存储器用于存储软件程序以及模块,所述处理器通过运行或执行存储在所述存储器内的软件程序和/或模块,使所述车辆控制设备实现上述第一方面的任一种可能的实施方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同 的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
可选地,所述车辆控制设备可以部署在公有云上提供车辆控制服务。
第五方面,本申请提供了一种计算机程序(产品),所述计算机程序(产品)包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述第一方面的任一种可能的实施方式中的方法。
第六方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储处理器所执行的程序代码,所述程序代码包括用于实现上述第一方面的任一种可能的实施方式中的方法。
第七方面,提供了一种芯片,包括处理器,处理器用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述第一方面的任一种可能的实施方式中的方法。
第八方面,提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述第一方面的任一种可能的实施方式中的方法。
附图说明
图1是本申请实施例提供的一种车辆控制方法的流程图;
图2是本申请实施例提供的一种车辆控制方法的流程图;
图3是本申请实施例提供的一种制动系统的结构框图;
图4是相关技术提供的一种控制过程示意图;
图5是本申请实施例提供的一种控制过程示意图;
图6是本申请实施例提供的一种车辆控制方法的流程图;
图7是本申请实施例提供的一种车辆控制装置的框图;
图8示出了本申请一个示例性实施例提供的车辆控制设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
为便于对本申请实施例提供的技术方案的理解,首先介绍一下本申请的系统架构。本申请实施例提供的技术方案可以应用在多种不同的系统架构中,下面结合图1和图2对两种系统架构进行介绍。
图1是本申请实施例提供的一种车辆控制方法的流程图。该方法可以由车辆的制动系统执行,例如集成制动系统(integrated brake system,IBS),电子稳定控制系统(electronic stability control system,ESC)等。如图1所示,该方法包括如下步骤:
101:响应于自动驾驶模式下的车辆进入非稳定状态,根据车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率。
其中,第二力矩变化率小于第一力矩变化率。
在本申请实施例中,自动驾驶模式是指车辆的自动驾驶系统控制车辆运行的方式。
在本申请实施例中,非稳定状态是在一段时间内车辆的驱动力矩或制动力矩均和路面状况不匹配时车辆的状态。
102:以车辆进入非稳定状态时的力矩为初始值,按照第二力矩变化率,周期性地计算车辆的力矩,采用计算出的车辆的力矩控制车辆,直至车辆退出自动驾驶模式,基于车辆退出自动驾驶模式时的力矩控制车辆。
例如,车辆进入非稳定状态时的力矩为A,第二力矩变化率为B,在第一个周期,基于A和B计算得到力矩C,在第二个周期基于C和B计算得到力矩D,在第三个周期,基于D和B计算得到力矩D,依次类推。
由于车辆的力矩一直按照第二力矩变化率变化,当车辆的力矩达到ABS或TCS激活的力矩阈值时,ABS或TCS激活,ABS或TCS激活时车辆的ABS退出。
在本申请实施例中,在车辆进入非稳定状态时,减小力矩变化率,使得力矩达到ABS或TCS激活阈值的时间推迟,从而延迟ABS或TCS激活时间,延迟ADS的退出时间,让驾驶员有更多时间准备接管车辆的控制;另外,在ADS退出后依然提供力矩,即使驾驶员接管不及时,也不至于出现事故。通过上述两个方面,使得采用本申请的控制方法进行车辆控制,能够增加车辆驾驶的安全性。
图2是本申请实施例提供的一种车辆控制方法的流程图。该方法可以由车辆的制动系统执行。如图2所示,该方法包括如下步骤:
201:周期性地获取车辆的状态信息。
示例性地,车辆的状态信息包括如下信息中的至少一项:车辆控制器信息、驾驶员输入信息、速度信息、车辆环境信息、ADS决策信息、反馈信息。这些状态信息由不同的器件提供,为了能够更好地应用在车辆控制方法中,在收到这些信息后,可以先进行数据融合,在此不做赘述。
其中,车辆控制器信息是指ADS、制动电子控制单元(electronic control unit,ECU)、整车控制器(vehicle control unit,VCU)等器件中存储的信息,比如,上一次点火循环的状态。车辆控制器信息的作用是判断车辆的相关功能是否故障,从而确定能否执行本申请提供的步骤。如果根据车辆控制器信息存在故障,则停止执行本申请提供的步骤,如果根据车辆控制器信息不存在故障,则执行本申请提供的步骤。
驾驶员输入信息包括车辆面板按钮、制动踏板、油门踏板、方向盘等器件的输入信息。其中,车辆面板按钮可以包括控制本申请的控制功能开启的按钮,也包括人工驾驶切换按钮等。其中,本申请的控制功能也即本申请提供的车辆控制方法实现的控制功能。
速度信息包括轮速、车速、加速度等,由传感器模块提供。
车辆环境信息包括障碍物信息、红绿灯信息、车道线信息、斑马线信息等,其中障碍物信息包括障碍物距离信息,障碍物可以包括车辆周围的其他车辆以及其他类型障碍物,车辆周围的其他车辆的相关信息可以通过网联模块获得,其他信息通过环境感知模块(例如雷达、摄像头灯)获得。
ADS决策信息包括目标加/减速度、目标驱动/制动力矩等,由ADS提供。
反馈信息是VCU、电机控制器(motor control unit,MCU)等反馈的需求驱动力矩、车辆执行器的反馈状态等,由关联ECU提供。
图3是本申请实施例提供的一种制动系统的结构框图。参见图3,该制动系统3包括检测模块31、判断模块32、控制模块33和执行模块34。其中,检测模块用于执行步骤201,判断模块用于执行步骤202,控制模块用于执行步骤203至207(206和207中仅实现控制部分),执行模块用于执行步骤206至208(206和207中仅实现执行部分)。示例性地,上述模块可以采用软件的形式实现。
其中,控制模块包括制动力矩控制和驱动力矩控制两个部分,可根据车辆行驶状态进行控制。
其中,执行模块包括控制单元和压力单元(如液压单元),控制单元根据控制模块指示的力矩生成控制指令,压力单元在控制单元的指令控制下进行动作。这里的控制单元包括但不限于制动ECU、VCU、MCU等。
示例性地,若制动系统解耦(例如IBS100),则直接使用电机压力闭环控制或电磁阀控制,使压力单元按照期望压力来工作。以IBS100系统为例,该系统包括8个电磁阀,当本申请提供的控制功能工作后,通过电机与管路压力传感器闭环控制,响应目标制动力,进行整车制动控制。另外,可以根据工况,配合8个电磁阀控制,对力矩变化率进行调节,抑制力矩变化过快。若制动系统不解耦,则需要使用电机压力闭环控制或电磁阀控制,从轮缸中抽取制动液来实现目标压力。
也即是无论是解耦制动系统还是不解耦制动系统,均可以采用电机压力闭环控制和电磁阀控制相配合来实现本申请提供的控制功能。
除此之外,图3还示出了制动系统3和ADS 2及VCU 1的关系,三者之间通过信息交互,比如交互请求的驱动力矩、制动力矩、以及反馈状态等,共同实现车辆控制。
202:根据车辆的状态信息,确定车辆是否进入非稳定状态。
当车辆进入非稳定状态,执行步骤203、204及后续步骤,也即开启本申请的控制功能,否则不执行203、204及后续步骤,也即不开启本申请的控制功能。
在本申请一种可能的实现方式中,状态信息包括车辆的力矩,确定车辆是否进入非稳定状态,包括:
基于周期性地获取的车辆的力矩,确定车辆在相邻两个周期的力矩变化率;
基于车辆在相邻两个周期的力矩变化率,确定车辆是否进入非稳定状态。
其中,车辆的力矩可以是车辆的驱动力矩和制动力矩中的一种。当车辆处于制动场景下,此时获取到的是车辆的制动力矩,对应的力矩变化率是制动力矩变化率;当车辆处于驱动场景下,此时获取到的是车辆的驱动力矩,对应的力矩变化率是驱动力矩变化率。由于两种场景下的控制方法的原理基本相同,本申请其他步骤不再单独说明,但均包括这两种场景。
在这种实现方式中,通过确定车辆的力矩变化率,从而确定车辆的力矩是否和路面状况匹配,进而确定车辆是否进入非稳定状态。
示例性地,基于车辆在相邻两个周期的力矩变化率,确定车辆是否进入非稳定状态,包括:
基于车辆环境信息确定车辆与障碍物的最小距离,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值;
当第二力矩变化率大于力矩变化率阈值的持续时间超过第一时长阈值,且最小距离大于距离阈值时,确定车辆进入非稳定状态。
在该实现方式中,判断车辆和障碍物的最小距离,如果车辆和障碍物的最小距离过近,此时如果调整力矩变化率,容易发生车辆和障碍物的碰撞,这种情况,可以认为车辆未进入非稳定状态,从而不启用本申请的控制功能。而如果车辆与障碍物的最小距离超过阈值,且力矩变化率大于力矩变化率阈值的持续时间超过第一时长阈值,则认为进入非稳定状态,此时既能保证车辆与障碍物的安全距离,又能通过调节力矩变化率避免ADS过早退出。
在本申请实施例中,力矩变化率阈值、第一时长阈值和距离阈值均基于车辆的不同可以有不同的选择,这些阈值的数值可以通过多次试验选取。以第一时长阈值为例,其数量级为秒级,例如3秒。
在本申请另一种可能的实现方式中,状态信息包括车辆的车速和轮速,确定车辆是否进入非稳定状态,包括:
基于周期性地获取的车辆的平均车速和平均轮速,确定车辆在每个周期的车轮滑移率,车轮滑移率为平均车速和平均轮速的差值与平均车速的比值;
基于车辆在每个周期的车轮滑移率,确定车辆是否进入非稳定状态。
在这种实现方式中,通过确定车辆的车轮滑移率,从而确定车辆的力矩是否和路面状况匹配,进而确定车辆是否进入非稳定状态。
示例性地,基于车辆在每个周期的车轮滑移率,确定车辆是否进入非稳定状态,包括:
基于车辆环境信息确定车辆与障碍物的最小距离,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值;
当车轮滑移率大于车轮滑移率阈值的持续时间超过第二时长阈值,且最小距离大于距离阈值时,确定车辆进入非稳定状态。
在该实现方式中,判断车辆和障碍物的最小距离,如果车辆和障碍物的最小距离过近,此时如果调整力矩变化率,容易发生车辆和障碍物的碰撞,这种情况,可以认为车辆未进入非稳定状态,从而不启用本申请的控制功能。而如果车辆与障碍物的最小距离超过阈值,且车轮滑移率大于车轮滑移率阈值的持续时间超过第二时长阈值,则认为进入非稳定状态,此时既能保证车辆与障碍物的安全距离,又能通过调节力矩变化率避免ADS过早退出。
在本申请实施例中,车轮滑移率阈值、第二时长阈值均基于车辆的不同可以有不同的选择,这些阈值的数值可以通过多次试验选取。其中,第二时长阈值可以和第一时长阈值的取值相同,也可以不同。
在本申请实施例中,除了在同时满足力矩变化率/车轮滑移率、和障碍物的最小距离这两个条件下,判断车辆进入非稳定状态,进而执行后续步骤。
除此之外,还可以根据驾驶员输入信息,例如控制功能开启的按钮有输入,且满足力矩变化率/车轮滑移率条件,判断车辆进入非稳定状态;再例如,控制功能开启的按钮有输入,且满足和障碍物的最小距离条件,判断车辆进入非稳定状态。
也即是说,只要如下三个条件满足其中任两个即判断车辆进入非稳定状态:
力矩变化率/车轮滑移率、和障碍物的最小距离、控制功能开启的按钮输入。
203:输出提示信息,提示信息用于提示人工控制车辆。
在该实现方式中,通过输出提示信息,提示驾驶员准备人工驾驶接管,从而避免因为接 管不及时造成的交通事故,提高驾驶安全。
示例性地,提示信息可以通过车辆的面板输出,形式包括但不限于文字提示信息、振动信息、图片提示信息、视频提示信息、指示灯闪烁提示信息、声音提示信息(语音或蜂鸣)等。
步骤203为可选步骤,并且步骤203和步骤204的先后顺序不限定。
204:根据车辆进入非稳定状态时的第一力矩变化率确定力矩变化率差值。
其中,力矩变化率差值的大小和第一力矩变化率的大小正相关。
在该实现方式中,由于第一力矩变化率越大,导致达到ABS或TCS启动阈值的时间可能越快,为了避免则需要使用越大的力矩变化率差值进行调节,从而尽量延缓车辆ABS或TCS启动的时间,给驾驶员提供充足的反应时间,并且由于力矩变化率小,使得车辆运行更平稳。
在本申请一种可能的实现方式中,可以事先通过试验确定力矩变化率差值和第一力矩变化率的对应关系,并且将该对应关系存储在车辆中。在执行步骤204时,通过查找存储的对应关系即可。
在本申请另一种可能的实现方式中,也可以将力矩变化率差值和第一力矩变化率的对应关系拟合成曲线或公式,在执行步骤204时,通过曲线或公式确定第一力矩变化率对应的力矩变化率差值即可。
205:基于第一力矩变化率和力矩变化率差值,确定第二力矩变化率。
206:以车辆进入非稳定状态时的力矩为初始值,按照第二力矩变化率,周期性地计算车辆的力矩,采用计算出的车辆的力矩控制车辆。
步骤206中计算车辆的力矩的周期和步骤201中获取车辆的状态信息的周期可以相同,也可以不同;上述两个周期的大小可以基于需求设计。
例如,车辆进入非稳定状态时的力矩为A,第二力矩变化率为B,在第一个周期,基于A和B计算得到力矩C,在第二个周期基于C和B计算得到力矩D,在第三个周期,基于D和B计算得到力矩D,依次类推。
在本申请一种可能的实现方式中,力矩变化率差值持续不变,也即按照一固定斜率直线进行力矩调节。
在本申请另一种可能的实现方式中,力矩变化率差值随着车辆与障碍物的最小距离的变化而变化,也即按照一曲线进行力矩调节。
在制动场景下,制动系统通过计算出的力矩,指示制动ECU对液压单元提供的制动压力进行控制。
在驱动场景下,制动系统通过计算出的力矩,指示制动ECU/VCU请求MCU对车轮驱动力矩进行控制。
207:响应于车辆退出自动驾驶模式,基于车辆退出自动驾驶模式时的力矩控制车辆。
由于车辆的力矩一直按照第二力矩变化率变化,当车辆的力矩达到ABS或TCS激活的力矩阈值时,ABS或TCS激活,ABS或TCS激活时车辆的ABS退出。在ADS退出后依然提供力矩,即使驾驶员接管不及时,也不至于出现事故。
在本申请一种可能的实现方式中,采用车辆退出自动驾驶模式时的力矩控制车辆。
在本申请另一种可能的实现方式中,在车辆退出自动驾驶模式时的力矩的基础上,适当 增大或减小,并采用增大或减小后的力矩控制车辆。这里,增大或减小的变化量可以在一个设定范围内。
208:当满足条件时,停止对车辆的力矩的控制,由人工控制车辆。
其中,条件包括以下至少一个装置检测到输入:车辆面板按钮、制动踏板、油门踏板、方向盘。
这里,车辆面板按钮检测到输入是指驾驶员通过车辆面板按钮输入切换人工接管指令。制动踏板检测到输入是指制动踏板的行程变化速率超过阈值且持续时间超过阈值。油门踏板检测到输入是指油门踏板的行程变化速率超过阈值且持续时间超过阈值。方向盘检测到输入是指转角超过阈值且持续时间超过阈值。
其中,上述各种实现方式中的各个阈值均基于车辆的不同可以有不同的选择,这些阈值的数值可以通过多次试验选取。
在该步骤中,车辆检测到人工接管指令或指示,停止本申请的控制功能,交由人工进行控制。
如果一直不满足条件,那么在制动场景下,车辆执行步骤207直到车辆停止。如果一直不满足条件,那么在驱动场景下,车辆执行步骤207一段时间后停止控制,退出本申请实施例提供的控制功能。
另外,在一直不满足条件时,车辆还可以周期性输出提示信息,重复提示驾驶员。
图4是相关技术提供的一种控制过程示意图。参见图4,当车辆的ADS所请求的驱动力矩或制动力矩与路况条件不相符且车辆持续行驶时,容易激活车辆的ABS或TCS,此时ADS退出,ADS所请求的力矩或加/减速度为0,也即此时ADS请求为0,作用在制动系统上的请求压力也随之为0。驾驶模式在ADS退出前为自动驾驶模式,ADS退出后为人工驾驶模式,在人工驾驶模式下,当人工接管时,驾驶员通过制动踏板或油门踏板进行减速或加速。但从图4可以看出,在ADS退出后,驾驶员还未接管时,车辆的运动完全不可预期,事故风险大。
图5是本申请实施例提供的一种控制过程示意图。参见图5,本申请的制动系统设置有3个工作点,分别对应进入非稳定状态、ADS退出和人工接管,在前两个工作点之间,制动系统调节力矩变化率,在后两个工作点之间,制动系统在ADS退出后继续提供制动或驱动力矩,使得从ADS退出开始到人工驾接管之间的ABS/TCS状态不会出现跳变,车辆加/减速度不会出现阶跃性变化。通过上述两个方面使得采用本申请的控制方法进行车辆控制,能够增加车辆驾驶的安全性。
图6是本申请实施例提供的一种车辆控制方法的流程图。该方法可以由车辆的制动系统执行。如图6所示,该方法包括如下步骤:
301:周期性地获取车辆的状态信息。
该步骤详细内容可以参考步骤201。
302:根据车辆的状态信息,确定车辆是否进入非稳定状态。
当车辆进入非稳定状态,执行步骤203,否则不执行后续步骤。
该步骤详细内容可以参考步骤202。
303:输出提示信息,提示信息用于提示人工控制车辆。
步骤303为可选步骤,并且步骤303和步骤304的先后顺序不限定。
该步骤详细内容可以参考步骤203。
304:根据车辆与障碍物的最小距离确定力矩变化率差值。
其中,在制动场景下,力矩变化率差值的大小和车辆与障碍物的最小距离正相关,在驱动场景下,力矩变化率差值的大小和车辆与障碍物的最小距离负相关。
示例性地,力矩变化率差值持续不变。例如,仅执行一次步骤304和步骤305,后续一直使用步骤305确定的第二力矩变化率。
示例性地,力矩变化率差值随着车辆与障碍物的最小距离的变化而变化。例如,周期性地执行步骤304和步骤305,每个周期使用上个周期的步骤305确定的第二力矩变化率。
图6提供的实施例和图2提供的实施例的区别主要在于步骤304和步骤204的区别。
在该实现方式中,车辆与障碍物的最小距离越小,对力矩变化率差值的调节越小。因为此时如果对力矩变化率调节过大,容易造成事故。也即这种方案是在保证安全的前提下,尽量延缓车辆ABS或TCS启动的时间,给驾驶员提供充足的反应时间。
在本申请一种可能的实现方式中,可以事先通过试验确定力矩变化率差值和车辆与障碍物的最小距离的对应关系,并且将该对应关系存储在车辆中。在执行步骤304时,通过查找存储的对应关系即可。
在本申请另一种可能的实现方式中,也可以将力矩变化率差值和车辆与障碍物的最小距离的对应关系拟合成曲线或公式,在执行步骤204时,通过曲线或公式确定车辆与障碍物的最小距离对应的力矩变化率差值即可。
305:基于第一力矩变化率和力矩变化率差值,确定第二力矩变化率。
306:以车辆进入非稳定状态时的力矩为初始值,按照第二力矩变化率,周期性地计算车辆的力矩,采用计算出的车辆的力矩控制车辆。
该步骤详细内容可以参考步骤206。
307:响应于车辆退出自动驾驶模式,基于车辆退出自动驾驶模式时的力矩控制车辆。
该步骤详细内容可以参考步骤207。
308:当满足条件时,停止对车辆的力矩的控制,由人工控制车辆。
其中,条件包括以下至少一个装置检测到输入:车辆面板按钮、制动踏板、油门踏板、方向盘。
该步骤详细内容可以参考步骤208。
图7是本申请实施例提供的一种车辆控制装置的框图。该车辆控制装置可以通过软件、硬件或者两者的结合实现成为电机控制模块或电机控制器的全部或者一部分。该车辆控制装置可以包括:确定单元401和控制单元402。
其中,确定单元401,用于响应于自动驾驶模式下的车辆进入非稳定状态,根据车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率,第二力矩变化率小于第一力矩变化率;
控制单元402,用于以车辆进入非稳定状态时的力矩为初始值,按照第二力矩变化率,周期性地计算车辆的力矩,采用计算出的车辆的力矩控制车辆,直至车辆退出自动驾驶模式,基于车辆退出自动驾驶模式时的力矩控制车辆。
可选地,该装置还包括:
获取单元403,用于周期性地获取车辆的状态信息;
确定单元401,还用于根据车辆的状态信息,确定车辆是否进入非稳定状态。
可选地,状态信息包括车辆的力矩,确定单元401,用于基于周期性地获取的车辆的力矩,确定车辆在相邻两个周期的力矩变化率;基于车辆在相邻两个周期的力矩变化率,确定车辆是否进入非稳定状态。
可选地,确定单元401,用于基于车辆环境信息确定车辆与障碍物的最小距离,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值;当第二力矩变化率大于力矩变化率阈值的持续时间超过第一时长阈值,且最小距离大于距离阈值时,确定车辆进入非稳定状态。
可选地,状态信息包括车辆的车速和轮速,确定单元401,用于基于周期性地获取的车辆的平均车速和平均轮速,确定车辆在每个周期的车轮滑移率,车轮滑移率为平均车速和平均轮速的差值与平均车速的比值;基于车辆在每个周期的车轮滑移率,确定车辆是否进入非稳定状态。
可选地,确定单元401,用于基于车辆环境信息确定车辆与障碍物的最小距离,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值;当车轮滑移率大于车轮滑移率阈值的持续时间超过第二时长阈值,且最小距离大于距离阈值时,确定车辆进入非稳定状态。
可选地,确定单元401,用于根据车辆进入非稳定状态时的第一力矩变化率确定力矩变化率差值,力矩变化率差值的大小和第一力矩变化率的大小正相关;基于第一力矩变化率和力矩变化率差值,确定第二力矩变化率。
可选地,确定单元401,用于根据车辆与障碍物的最小距离确定力矩变化率差值,车辆与障碍物的最小距离是车辆与车辆周围的各个障碍物的距离中的最小值,在制动场景下,力矩变化率差值的大小和车辆与障碍物的最小距离正相关,在驱动场景下,力矩变化率差值的大小和车辆与障碍物的最小距离负相关;基于第一力矩变化率和力矩变化率差值,确定第二力矩变化率。
可选地,力矩变化率差值持续不变,或者,力矩变化率差值随着车辆与障碍物的最小距离的变化而变化。
可选地,该装置还包括:
输出单元404,用于响应于自动驾驶模式下车辆进入非稳定状态,输出提示信息,提示信息用于提示人工控制车辆。
可选地,控制单元402,还用于当满足条件时,停止对车辆的力矩的控制,由人工控制车辆;
条件包括以下至少一个装置检测到输入:车辆面板按钮、制动踏板、油门踏板、方向盘。
上述实施例提供的车辆控制装置在工作时,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将设备的内部结构划分成不同的功能单元,以完成以上描述的全部或者部分功能。另外,上述实施例提供的车辆控制装置与车辆控制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
上述各个附图对应的流程的描述各有侧重,某个流程中没有详述的部分,可以参见其他 流程的相关描述。
本申请实施例还提供了一种车辆。该车辆包括图6所示的车辆控制装置及整车控制器,该车辆控制装置和整车控制器连接。
图8示出了本申请一个示例性实施例提供的车辆控制设备900的结构示意图。图8所示的车辆控制设备900用于执行上述图1、图2或图6所示的车辆控制方法所涉及的操作。该车辆控制设备900可以包括前述车辆的制动系统。该车辆控制设备900可以由一般性的总线体系结构来实现。
如图8所示,车辆控制设备900包括至少一个处理器901、存储器903以及至少一个通信接口904。
处理器901例如是通用中央处理器(central processing unit,CPU)、数字信号处理器(digital signal processor,DSP)、网络处理器(network processer,NP)、图形处理器(Graphics Processing Unit,GPU)、神经网络处理器(neural-network processing units,NPU)、数据处理单元(Data Processing Unit,DPU)、微处理器或者一个或多个用于实现本申请方案的集成电路。例如,处理器901包括专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。PLD例如是复杂可编程逻辑器件(complex programmable logic device,CPLD)、现场可编程逻辑门阵列(field-programmable gate array,FPGA)、通用阵列逻辑(generic array logic,GAL)或其任意组合。其可以实现或执行结合本发明实施例公开内容所描述的各种逻辑方框、模块和电路。所述处理器也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。
可选的,车辆控制设备900还包括总线。总线用于在车辆控制设备900的各组件之间传送信息。总线可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器903例如是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,又如是随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,又如是电可擦可编程只读存储器(electrically erasable programmable read-only Memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器903例如是独立存在,并通过总线与处理器901相连接。存储器903也可以和处理器901集成在一起。
通信接口904使用任何收发器一类的装置,用于与其它设备或通信网络通信,通信网络可以为以太网、无线接入网(RAN)或蓝牙网络等。通信接口904可以包括有线通信接口,还可以包括无线通信接口。在本申请实施例中,通信接口904可以用于车辆控制设备900与 其他设备进行通信。
在具体实现中,作为一种实施例,处理器901可以包括一个或多个CPU,如图8中所示的CPU0和CPU1。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,车辆控制设备900可以包括多个处理器,如图8中所示的处理器901和处理器905。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,车辆控制设备900还可以包括输出设备和输入设备。输出设备和处理器901通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD)、发光二级管(light emitting diode,LED)显示设备、阴极射线管(cathode ray tube,CRT)显示设备或投影仪(projector)等。输入设备和处理器901通信,可以以多种方式接收用户的输入。例如,输入设备可以是触摸屏设备或传感设备等。
在一些实施例中,存储器903用于存储执行本申请方案的程序代码910,处理器901可以执行存储器903中存储的程序代码910。也即是,车辆控制设备900可以通过处理器901以及存储器903中的程序代码910,来实现方法实施例提供的车辆控制方法。程序代码910中可以包括一个或多个软件模块。可选地,处理器901自身也可以存储执行本申请方案的程序代码或指令。
在具体实施例中,本申请实施例的车辆控制设备900可对应于上述各个方法实施例中的电机控制模块或电机控制器,车辆控制设备900中的处理器901读取存储器903中的指令,使图8所示的车辆控制设备900能够执行电机控制模块或电机控制器所执行的全部或部分操作。
具体的,处理器901用于响应于自动驾驶模式下的车辆进入非稳定状态,根据所述车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率,所述第二力矩变化率小于所述第一力矩变化率;以所述车辆进入非稳定状态时的力矩为初始值,按照所述第二力矩变化率,周期性地计算所述车辆的力矩,采用计算出的所述车辆的力矩控制所述车辆,直至所述车辆退出自动驾驶模式,基于所述车辆退出所述自动驾驶模式时的力矩控制所述车辆。
其他可选的实施方式,为了简洁,在此不再赘述。
车辆控制设备900还可以对应于上述图7所示的车辆控制装置,车辆控制装置中的每个功能模块采用车辆控制设备900的软件实现。换句话说,车辆控制装置包括的功能模块为车辆控制设备900的处理器901读取存储器903中存储的程序代码910后生成的。
其中,图1、图2或图6所示的车辆控制方法的各步骤通过车辆控制设备900的处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤,为避免重复,这里不再详细描述。
本申请实施例还提供了一种芯片,包括:输入接口、输出接口、处理器和存储器,输入接口、输出接口、处理器以及存储器之间通过内部连接通路相连,处理器用于执行存储器中的代码,当代码被执行时,处理器用于执行上述任一种的车辆控制方法。
应理解的是,上述处理器可以是CPU,还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者是任何常规的处理器等。值得说明的是,处理器可以是支持ARM架构的处理器。
进一步地,在一种可选的实施例中,上述处理器为一个或多个,存储器为一个或多个。可选地,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。上述存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器还可以包括非易失性随机存取存储器。例如,存储器还可以存储参考块和目标块。
该存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、PROM、EPROM、EEPROM或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用。例如,SRAM、DRAM、SDRAM、DDR SDRAM、ESDRAM、SLDRAM和DR RAM。
本申请实施例中,还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,当计算机可读存储介质中存储的计算机指令被计算机设备执行时,使得计算机设备执行上述所提供的车辆控制方法。
本申请实施例中,还提供了一种包含指令的计算机程序产品,当其在计算机设备上运行时,使得计算机设备执行上述所提供的车辆控制方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (25)

  1. 一种车辆控制方法,其特征在于,所述方法包括:
    响应于自动驾驶模式下的车辆进入非稳定状态,根据所述车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率,所述第二力矩变化率小于所述第一力矩变化率;
    以所述车辆进入非稳定状态时的力矩为初始值,按照所述第二力矩变化率,周期性地计算所述车辆的力矩,采用计算出的所述车辆的力矩控制所述车辆,直至所述车辆退出自动驾驶模式,基于所述车辆退出所述自动驾驶模式时的力矩控制所述车辆。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    周期性地获取所述车辆的状态信息;
    根据所述车辆的状态信息,确定所述车辆是否进入非稳定状态。
  3. 根据权利要求2所述的方法,其特征在于,所述状态信息包括所述车辆的力矩,所述确定所述车辆是否进入非稳定状态,包括:
    基于周期性地获取的所述车辆的力矩,确定所述车辆在相邻两个周期的力矩变化率;
    基于所述车辆在相邻两个周期的力矩变化率,确定所述车辆是否进入非稳定状态。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述车辆在相邻两个周期的力矩变化率,确定所述车辆是否进入非稳定状态,包括:
    基于所述车辆环境信息确定所述车辆与障碍物的最小距离,所述车辆与障碍物的最小距离是所述车辆与所述车辆周围的各个障碍物的距离中的最小值;
    当所述第二力矩变化率大于力矩变化率阈值的持续时间超过第一时长阈值,且所述最小距离大于距离阈值时,确定所述车辆进入非稳定状态。
  5. 根据权利要求2所述的方法,其特征在于,所述状态信息包括所述车辆的车速和轮速,所述确定所述车辆是否进入非稳定状态,包括:
    基于周期性地获取的所述车辆的平均车速和平均轮速,确定所述车辆在每个周期的车轮滑移率,所述车轮滑移率为所述平均车速和所述平均轮速的差值与所述平均车速的比值;
    基于所述车辆在每个周期的车轮滑移率,确定所述车辆是否进入非稳定状态。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述车辆在每个周期的车轮滑移率,确定所述车辆是否进入非稳定状态,包括:
    基于所述车辆环境信息确定所述车辆与障碍物的最小距离,所述车辆与障碍物的最小距离是所述车辆与所述车辆周围的各个障碍物的距离中的最小值;
    当所述车轮滑移率大于车轮滑移率阈值的持续时间超过第二时长阈值,且所述最小距离大于距离阈值时,确定所述车辆进入非稳定状态。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述根据所述车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率,包括:
    根据所述车辆进入非稳定状态时的第一力矩变化率确定力矩变化率差值,所述力矩变化率差值的大小和所述第一力矩变化率的大小正相关;
    基于所述第一力矩变化率和所述力矩变化率差值,确定所述第二力矩变化率。
  8. 根据权利要求1至6任一项所述的方法,其特征在于,所述根据所述车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率,包括:
    根据所述车辆与障碍物的最小距离确定力矩变化率差值,所述车辆与障碍物的最小距离是所述车辆与所述车辆周围的各个障碍物的距离中的最小值,在制动场景下,所述力矩变化率差值的大小和所述车辆与障碍物的最小距离正相关,在驱动场景下,所述力矩变化率差值的大小和所述车辆与障碍物的最小距离负相关;
    基于所述第一力矩变化率和所述力矩变化率差值,确定所述第二力矩变化率。
  9. 根据权利要求8所述的方法,其特征在于,所述力矩变化率差值持续不变,或者,所述力矩变化率差值随着所述车辆与障碍物的最小距离的变化而变化。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述方法还包括:
    响应于自动驾驶模式下车辆进入非稳定状态,输出提示信息,所述提示信息用于提示人工控制所述车辆。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    当满足条件时,停止对所述车辆的力矩的控制,由人工控制所述车辆;
    所述条件包括以下至少一个装置检测到输入:车辆面板按钮、制动踏板、油门踏板、方向盘。
  12. 一种车辆控制装置,其特征在于,所述装置包括:
    确定单元,用于响应于自动驾驶模式下的车辆进入非稳定状态,根据所述车辆进入非稳定状态时的第一力矩变化率确定第二力矩变化率,所述第二力矩变化率小于所述第一力矩变化率;
    控制单元,用于以所述车辆进入非稳定状态时的力矩为初始值,按照所述第二力矩变化率,周期性地计算所述车辆的力矩,采用计算出的所述车辆的力矩控制所述车辆,直至所述车辆退出自动驾驶模式,基于所述车辆退出所述自动驾驶模式时的力矩控制所述车辆。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    获取单元,用于周期性地获取所述车辆的状态信息;
    所述确定单元,还用于根据所述车辆的状态信息,确定所述车辆是否进入非稳定状态。
  14. 根据权利要求13所述的装置,其特征在于,所述状态信息包括所述车辆的力矩,所述确定单元,用于基于周期性地获取的所述车辆的力矩,确定所述车辆在相邻两个周期的力矩变化率;基于所述车辆在相邻两个周期的力矩变化率,确定所述车辆是否进入非稳定状态。
  15. 根据权利要求14所述的装置,其特征在于,所述确定单元,用于基于所述车辆环境信息确定所述车辆与障碍物的最小距离,所述车辆与障碍物的最小距离是所述车辆与所述车辆周围的各个障碍物的距离中的最小值;当所述第二力矩变化率大于力矩变化率阈值的持续时间超过第一时长阈值,且所述最小距离大于距离阈值时,确定所述车辆进入非稳定状态。
  16. 根据权利要求13所述的装置,其特征在于,所述状态信息包括所述车辆的车速和轮速,所述确定单元,用于基于周期性地获取的所述车辆的平均车速和平均轮速,确定所述车辆在每个周期的车轮滑移率,所述车轮滑移率为所述平均车速和所述平均轮速的差值与所述平均车速的比值;基于所述车辆在每个周期的车轮滑移率,确定所述车辆是否进入非稳定状态。
  17. 根据权利要求16所述的装置,其特征在于,所述确定单元,用于基于所述车辆环境信息确定所述车辆与障碍物的最小距离,所述车辆与障碍物的最小距离是所述车辆与所述车辆周围的各个障碍物的距离中的最小值;当所述车轮滑移率大于车轮滑移率阈值的持续时间 超过第二时长阈值,且所述最小距离大于距离阈值时,确定所述车辆进入非稳定状态。
  18. 根据权利要求12至17任一项所述的装置,其特征在于,所述确定单元,用于根据所述车辆进入非稳定状态时的第一力矩变化率确定力矩变化率差值,所述力矩变化率差值的大小和所述第一力矩变化率的大小正相关;基于所述第一力矩变化率和所述力矩变化率差值,确定所述第二力矩变化率。
  19. 根据权利要求12至17任一项所述的装置,其特征在于,所述确定单元,用于根据所述车辆与障碍物的最小距离确定力矩变化率差值,所述车辆与障碍物的最小距离是所述车辆与所述车辆周围的各个障碍物的距离中的最小值,在制动场景下,所述力矩变化率差值的大小和所述车辆与障碍物的最小距离正相关,在驱动场景下,所述力矩变化率差值的大小和所述车辆与障碍物的最小距离负相关;基于所述第一力矩变化率和所述力矩变化率差值,确定所述第二力矩变化率。
  20. 根据权利要求19所述的装置,其特征在于,所述力矩变化率差值持续不变,或者,所述力矩变化率差值随着所述车辆与障碍物的最小距离的变化而变化。
  21. 根据权利要求12至20任一项所述的装置,其特征在于,所述装置还包括:
    输出单元,用于响应于自动驾驶模式下车辆进入非稳定状态,输出提示信息,所述提示信息用于提示人工控制所述车辆。
  22. 根据权利要求12至21任一项所述的装置,其特征在于,所述控制单元,还用于当满足条件时,停止对所述车辆的力矩的控制,由人工控制所述车辆;
    所述条件包括以下至少一个装置检测到输入:车辆面板按钮、制动踏板、油门踏板、方向盘。
  23. 一种车辆,其特征在于,所述车辆包括如权利要求12至22任一项所述的车辆控制装置和整车控制器,所述车辆控制装置与所述整车控制器连接。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储处理器所执行的程序代码,所述程序代码包括用于实现如权利要求1至11任一项所述的方法的指令。
  25. 一种计算机程序,其特征在于,所述计算机程序包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行如权利要求1至11任一项所述的方法的指令。
PCT/CN2022/119912 2022-09-20 2022-09-20 车辆控制方法、装置、车辆及存储介质 WO2024060014A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119912 WO2024060014A1 (zh) 2022-09-20 2022-09-20 车辆控制方法、装置、车辆及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119912 WO2024060014A1 (zh) 2022-09-20 2022-09-20 车辆控制方法、装置、车辆及存储介质

Publications (1)

Publication Number Publication Date
WO2024060014A1 true WO2024060014A1 (zh) 2024-03-28

Family

ID=90453670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119912 WO2024060014A1 (zh) 2022-09-20 2022-09-20 车辆控制方法、装置、车辆及存储介质

Country Status (1)

Country Link
WO (1) WO2024060014A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030069675A1 (en) * 2001-10-10 2003-04-10 Mitsubishi Denki Kabushiki Kaisha Electric power steering control system
JP2015202771A (ja) * 2014-04-14 2015-11-16 スズキ株式会社 車両用制御装置
CN111791879A (zh) * 2020-05-15 2020-10-20 浙江吉利汽车研究院有限公司 车辆稳定行驶的控制方法、装置、电子设备及存储介质
CN111845708A (zh) * 2020-06-10 2020-10-30 武汉理工大学 一种越野车辆纵向驱动力协调控制方法
CN112124418A (zh) * 2020-09-13 2020-12-25 朱斌 车辆电动助力转向系统的阻尼控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030069675A1 (en) * 2001-10-10 2003-04-10 Mitsubishi Denki Kabushiki Kaisha Electric power steering control system
JP2015202771A (ja) * 2014-04-14 2015-11-16 スズキ株式会社 車両用制御装置
CN111791879A (zh) * 2020-05-15 2020-10-20 浙江吉利汽车研究院有限公司 车辆稳定行驶的控制方法、装置、电子设备及存储介质
CN111845708A (zh) * 2020-06-10 2020-10-30 武汉理工大学 一种越野车辆纵向驱动力协调控制方法
CN112124418A (zh) * 2020-09-13 2020-12-25 朱斌 车辆电动助力转向系统的阻尼控制方法

Similar Documents

Publication Publication Date Title
US10065637B2 (en) Method for avoiding a collision of a vehicle with an object
WO2021093853A1 (zh) 支持交通灯识别的自适应巡航系统及控制方法
US10843693B2 (en) System and method for rear collision avoidance
JP6611085B2 (ja) 車両制御装置
US10875508B2 (en) Vehicle traveling assistance method and vehicle traveling assistance device
JP6567994B2 (ja) 近接性に基づくエンジン制御システム
US9789858B1 (en) Methods and systems for braking a vehicle utilizing an electronic parking brake to avoid a collision
JP5146297B2 (ja) 車間距離制御装置
JP7135960B2 (ja) 運転引継装置
WO2017014115A1 (ja) 車両の衝突回避制御装置および衝突回避制御方法
JP7147569B2 (ja) 運転支援装置
WO2017009940A1 (ja) 発進制御装置及び発進制御方法
US20180170368A1 (en) Driving assistance apparatus and driving assistance method
JP7135746B2 (ja) 運転支援装置
US11518350B2 (en) Driving assistance apparatus
US10023119B2 (en) Alert control apparatus
WO2024060014A1 (zh) 车辆控制方法、装置、车辆及存储介质
WO2019129414A2 (en) Garage mode control unit, control system and control method
JP6211289B2 (ja) ブレーキブレンディング制御装置
JP7156015B2 (ja) 車両制御装置
JP2014000926A (ja) 運転支援装置、運転支援方法、プログラム及び媒体
US20220379856A1 (en) Automatic brake control apparatus for vehicle
KR102156904B1 (ko) 비상등 제어 장치 및 방법
JP2021079942A (ja) 車両のアクセルペダル制御の間隔調節器の動作方法および制御機器
US20140132424A1 (en) Parking assistance system, method for operating a parking assistance system, computer program, computer-readable medium and motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959026

Country of ref document: EP

Kind code of ref document: A1