WO2024058169A1 - Weak-anchoring liquid crystal aligning agent and liquid crystal display element - Google Patents

Weak-anchoring liquid crystal aligning agent and liquid crystal display element Download PDF

Info

Publication number
WO2024058169A1
WO2024058169A1 PCT/JP2023/033185 JP2023033185W WO2024058169A1 WO 2024058169 A1 WO2024058169 A1 WO 2024058169A1 JP 2023033185 W JP2023033185 W JP 2023033185W WO 2024058169 A1 WO2024058169 A1 WO 2024058169A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
polymer
carbon atoms
formula
Prior art date
Application number
PCT/JP2023/033185
Other languages
French (fr)
Japanese (ja)
Inventor
一世 三宅
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024058169A1 publication Critical patent/WO2024058169A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention makes it possible to produce an organic film that exhibits weak anchoring properties (weak anchoring film) using a method that is inexpensive and does not involve complicated processes, and enables even higher brightness and lower voltage driving.
  • the present invention relates to a liquid crystal display element for realizing the above, and a weakly anchoring liquid crystal aligning agent and a copolymer that can be used therefor.
  • liquid crystal display elements have been widely used in displays for mobile phones, computers, televisions, and the like.
  • Liquid crystal display elements have characteristics such as being thin, lightweight, and low power consumption, and are expected to be applied to further content such as VR (Virtual Reality) and ultra-high-definition displays in the future.
  • Various display methods have been proposed for liquid crystal displays, including the TN (Twisted Nematic) method, the IPS (In-Plane Switching) method, and the VA (Vertical Alignment) method.
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • VA Very Alignment
  • the IPS method is preferred because the display is less distorted even when touched, and in recent years FFS (Fringe Field Switching ) liquid crystal display elements using the method and liquid crystal alignment technology using the optical alignment method are used.
  • FFS Ringe Field Switching
  • the FFS method has problems in that the manufacturing cost of the substrate is higher than that in the IPS method, and a unique display defect called Vcom shift occurs.
  • the photo-alignment method has the advantage of being easier to adapt to device enlargement and greatly improving display characteristics, but there are some theoretical issues (when using photodegradable materials, Display defects, and if the photoisomerization type is used, there may be burn-in due to insufficient alignment power, etc.).
  • liquid crystal display element manufacturers and liquid crystal alignment film manufacturers are currently making various efforts.
  • a weak anchoring IPS method that applies weak anchoring technology has been proposed. This can improve the contrast ratio and realize significantly lower voltage driving than the conventional IPS method (see Patent Document 2).
  • the weak anchoring IPS method uses a liquid crystal alignment film that has strong anchoring energy on one substrate, and a process that does not have anchoring energy on the other substrate (which is equipped with an electrode that generates a transverse electric field). It is made using organic thin films.
  • a weak anchoring IPS method which uses a liquid crystal alignment film that can generate photoradicals and a compound that can undergo radical polymerization, and generates weak anchoring by irradiating UV in the liquid crystal and causing a radical reaction.
  • Patent Document 3 The method of directly providing a dense polymer brush on a substrate (Patent Document 3) requires a surface treatment step to provide reaction points on the substrate and a step of growing the polymer from the reaction points on the substrate surface, which complicates the process and requires high altitude.
  • This method is technically difficult because it requires strict deoxidation conditions and the environment must be strictly controlled, making it impractical from the perspective of mass production. Therefore, a method has been proposed in which a weakly anchored IPS display element is obtained by applying a bottlebrush polymer having an anchoring site onto a substrate.However, when manufacturing a bottlebrush polymer, a macromonomer having a polymerization initiation site is used.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • the present inventors have proposed a block copolymer having a block segment that is insoluble in liquid crystal or becomes insolubilized by heating and a block segment that is compatible with liquid crystal as a material exhibiting weak anchoring properties (Japanese Patent Application No. 2021-96448 and (See WO2022/260048).
  • the bottle brush polymer and the block copolymer are generally made of NMP (N-methyl-2-pyrrolidone) or GBL ( ⁇ -butyrolactone), which are used in general liquid crystal alignment agents (agents used to form liquid crystal alignment films).
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • the block segments of the block copolymer and the like that are compatible with the liquid crystal have no polarity and low viscosity due to their structure. Therefore, the coating uniformity of the liquid crystal alignment film, especially the coating properties at the edges, tends to deteriorate, and the edges of the liquid crystal alignment film are likely to be not straight or swollen. Due to these factors, there is a problem in that it is difficult to form a high-quality coating film using a flexographic printing method, an inkjet method, or the like used in the liquid crystal aligning agent coating process. Therefore, even if good characteristics are obtained with a weakly anchored IPS display element, a problem arises in that panels for televisions, smartphones, etc. cannot be manufactured in the actual manufacturing process.
  • the present invention was made to solve the above-mentioned problems, and provides a weakly anchoring liquid crystal aligning agent that can form a coating film of higher quality than conventional methods, and a weakly anchoring IPS display element using the same. , even in narrow cell gaps, stable low-voltage drive without the occurrence of pre-tilt angles and high-speed response when the voltage is turned off can be achieved at the same time.In addition, burn-in can be reduced, and high backlight transmittance and low voltage can be achieved in low-temperature environments. It is an object of the present invention to provide a transverse electric field liquid crystal display element that can achieve both driving performance.
  • the present invention includes the following.
  • Q 1 and Q 2 each independently represent an alkyl group having 1 to 4 carbon atoms
  • Q 3 represents a linear, branched, or cyclic alkyl group having 1 to 8 carbon atoms; represents an alkoxyalkyl group having 2 to 8 carbon atoms, an alkylcarbonylalkyl group having 4 to 8 carbon atoms, or a hydrogen atom, and the total number of carbon atoms of Q 1 , Q 2 and Q 3 is 4 or more.
  • the compound represented by the formula (1) is N,N-diethylacetamide, N,N-diethylformamide, N,N-dibutylformamide, N,N-dipropylacetamide, N,N-dimethylpropion Amide, N,N-diethylpropionamide, 3-methoxy-N,N-dimethylpropanamide, 2-methoxy-N,N-diethylacetamide, 3-methoxy-N,N-diethylpropamide, 2-methoxy-N
  • the content of the compound represented by the formula (1) is 10 to 90% by mass with respect to the total amount of the solvent component contained in the weakly anchoring liquid crystal aligning agent [1] to [2] ]
  • the weak anchoring liquid crystal aligning agent according to any one of the above.
  • Polymer ( ⁇ ) A block copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is not compatible with the liquid crystal or becomes insolubilized in the liquid crystal upon firing.
  • the block segment (A) in the polymer ( ⁇ ) and the branch polymer in the polymer ( ⁇ ) are a compound represented by the following formula (2), a compound represented by the following formula (3), Containing as a constituent component at least one selected from the group consisting of a compound represented by the following formula (4) and a compound represented by the following formula (5),
  • the block segment (B) in the polymer ( ⁇ ) and the backbone polymer in the polymer ( ⁇ ) contain a compound represented by the following formula (6) as a constituent component, Weak anchoring liquid crystal aligning agent according to [4].
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond
  • R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein
  • n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein.
  • T represents an organic group represented by the following formula (3-T)
  • n is an integer of 1 to 2.
  • the two Ts may be the same or different.
  • S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.
  • * indicates a bonding site.
  • X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms
  • 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).
  • Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N.
  • * indicates a bonding site.
  • R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted.
  • Ar represents an aromatic hydrocarbon group that may have a substituent
  • X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • n is an integer of 1 to 2.
  • Z represents a group represented by the following formula (6-Z).
  • L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinn
  • J is a single bond or has 1 to 1 carbon atoms.
  • 6 represents an aliphatic hydrocarbon group.
  • K When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, an ether bond, an ester bond, an amide bond, a urea bond, a urethane bond, and a thioether bond. In other cases, it indicates a single bond.
  • * represents a binding site.
  • m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same.
  • M in the formula (2) is any of the structures represented below
  • M in the formula (3) is any of the structures represented below
  • M in the formula (4) is any of the structures represented below
  • M in the formula (5) is any of the structures represented below
  • M in the formula (6) is any of the structures represented below, Weak anchoring liquid crystal aligning agent according to [5].
  • R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms
  • X, Y, and Z each independently represent an oxygen atom or a sulfur atom.
  • the polymer ( ⁇ ) and the polymer ( ⁇ ) contain at least one constituent selected from the group consisting of compounds represented by the following formulas (B-1) to (B-17).
  • a method for manufacturing a liquid crystal display element comprising applying and baking the weakly anchoring liquid crystal aligning agent according to any one of [1] to [8].
  • a stable weak anchoring alignment film can be produced using an extremely simple method compared to the conventional technology, thereby reducing the process load and yield rate required for producing weak anchoring horizontal electric field liquid crystal display elements in actual industrialization. It is possible to improve the By using the material and method of the present invention, the stability of the composition solution is superior to that of the conventional technology, the applicability by flexographic printing is greatly improved, and the material can stably exhibit excellent weak anchoring IPS properties.
  • a transverse electric field liquid crystal display element can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a horizontal electric field liquid crystal display element of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the horizontal electric field liquid crystal display element of the present invention.
  • weak anchoring refers to having a force that regulates the alignment of liquid crystal molecules in the azimuthal or polar direction with respect to the substrate, but with anchoring strength (i.e., maintaining the position of the liquid crystal molecules).
  • anchoring strength i.e., maintaining the position of the liquid crystal molecules.
  • the azimuthal anchoring strength (A 2 ) is smaller than 10 ⁇ 5 [J/m 2 ].
  • a polymer capable of forming a completely wet state with the liquid crystal is provided at the interface of the base material, and when the liquid crystal comes into contact with the polymer, a polymer-liquid crystal mixed layer is formed and weak anchoring is achieved.
  • the condition is known to occur.
  • weak anchoring alignment film refers to a film that forms a weak anchoring state upon contact with liquid crystal, and is not limited to solid films, but also includes liquid films that cover solid surfaces.
  • strong anchoring refers to the ability to regulate the alignment of liquid crystal molecules in a uniaxial alignment and maintain the alignment of the liquid crystal even when energy is applied from the outside, or the ability to maintain the alignment of the liquid crystal even if the alignment of the liquid crystal molecules changes.
  • the strong anchoring of the present invention it refers to the case where the azimuthal anchoring strength (A 2 ) is greater than 10 ⁇ 4 [J/m 2 ].
  • the term “strongly anchoring alignment film” refers to a film that forms a strong anchoring state when it comes into contact with liquid crystal, and is not limited to solid films, but also includes liquid films that cover solid surfaces.
  • a weak anchoring liquid crystal display element can be produced by applying the weak anchoring alignment film and the strong anchoring alignment film defined above to a substrate with electrodes, respectively, and pasting them together in a pair.
  • the azimuthal anchoring strength of one liquid crystal alignment film is extremely small, so a weak electric field or external field energy can induce alignment changes in the liquid crystal, and liquid crystal molecules in areas that normally do not move can also be aligned. This makes it possible to drive liquid crystal molecules on electrodes with weak electric field strength, especially in display elements using comb-shaped electrodes such as IPS and FFS.
  • a liquid crystal display element in which both of the films are composed of strong anchoring alignment films, higher transmittance and lower driving voltage can be achieved.
  • the azimuthal anchoring strength is an index representing the strength of interfacial elastic energy between liquid crystal molecules and a liquid crystal alignment film in the azimuthal direction.
  • a torque balance method As a method for calculating the azimuthal anchoring strength, a torque balance method, a strong electric field method, a geometry method (external field application method), a Frederiks transfer method, etc. are used.
  • the weakly anchoring liquid crystal aligning agent of the present invention is used for forming a liquid crystal aligning film of a liquid crystal cell having a liquid crystal and a liquid crystal aligning film.
  • the weak anchoring liquid crystal aligning agent comprises a polymer (P) obtained from a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group, and a compound represented by the following formula (1) as a solvent (hereinafter referred to as " (sometimes referred to as "specific solvents").
  • Q 1 and Q 2 each independently represent an alkyl group having 1 to 4 carbon atoms
  • Q 3 represents a linear, branched, or cyclic alkyl group having 1 to 8 carbon atoms, represents an alkoxyalkyl group having 2 to 8 carbon atoms, an alkylcarbonylalkyl group having 4 to 8 carbon atoms, or a hydrogen atom, and the total number of carbon atoms in Q 1 , Q 2 and Q 3 is 4 or more.
  • the polymer (P) is preferably at least one selected from the group consisting of polymers ( ⁇ ) and polymers ( ⁇ ).
  • the liquid crystal aligning agent of the present invention includes a solid component consisting of a block copolymer [polymer ( ⁇ )] and/or a graft copolymer [polymer ( ⁇ )] described below as the polymer (P), and A preferred embodiment includes a specific solvent as a solvent for dissolving.
  • Block copolymers and graft copolymers are materials for weak anchoring films, and the specific solvent used as a solvent has very good solubility for the block copolymers and graft copolymers, and Since it shows good applicability in coating and flexographic printing, it is possible to obtain a weakly anchored liquid crystal alignment film of very high quality as a result.
  • block copolymers and graft copolymers used in the present invention have poor solubility in conventionally used solvents such as NMP and GBL, and although they exhibit solubility, they precipitate or gel during storage. However, when these solvents are used for coating, pinholes and unevenness are likely to occur. Further, block copolymers and graft copolymers have block segments that are compatible with liquid crystals and have low polarity and low viscosity due to their structures. Therefore, the coating uniformity of the liquid crystal alignment film obtained by applying the liquid crystal alignment agent, especially the coating properties at the edges, tends to deteriorate, and the edges of the liquid crystal alignment film are not straight or are raised. condition becomes more likely.
  • the specific solvent is also characterized by its high viscosity due to hydrogen bonds derived from amide bonds. It has been found that these problems can be solved by using a specific solvent in the weakly anchoring liquid crystal aligning agent of the present invention, and that it is possible to increase the viscosity and improve the storage stability, coatability, and printability of the liquid crystal aligning agent. Do you get it. Another feature is that it causes less damage to APR printing plates used in flexo printing.
  • Examples of the alkyl group having 1 to 4 carbon atoms in Q 1 and Q 2 in formula (1) include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, and tert-butyl group. Examples include. Among these, methyl group and ethyl group are preferred. Examples of the linear, branched, or cyclic alkyl group having 1 to 8 carbon atoms in Q 3 in formula (1) include methyl group, ethyl group, n-propyl group, i-propyl group, n- Examples include butyl group, tert-butyl group, and cyclohexyl group.
  • Examples of the alkoxyalkyl group having 2 to 8 carbon atoms in Q 3 in formula (1) include C1 to C4 alkoxyC2 to C4 alkyl groups.
  • Examples of the alkoxyalkyl group having 3 to 8 carbon atoms include 2-methoxyethyl group, 2-butoxyethyl group, 1-methoxymethyl group, 2-methoxyethyl group, and 3-methoxypropyl group.
  • Examples of the alkylcarbonylalkyl group having 4 to 8 carbon atoms in Q 3 in formula (1) include 4-oxopentyl group, 3-oxopentyl group, and 5-oxohexyl group.
  • Preferred examples of the specific solvent include N,N-diethylacetamide, N,N-diethylformamide, N,N-dibutylformamide, N,N-dipropylacetamide, N,N-dimethylpropionamide, N,N-diethyl Examples include propionamide, 3-methoxy-N,N-dimethylpropanamide, and the like.
  • Particularly preferred specific solvents include N,N-diethylacetamide, N,N-diethylformamide, 3-methoxy-N,N-dimethylpropanamide, 2-methoxy-N,N-diethylacetamide, 3-methoxy-N,N -diethylpropanamide, 4-oxo-N,N-diethylpentanamide, N,N-diethylcyclohexanecarboxamide and the like.
  • the introduction ratio of the specific solvent is not particularly limited with respect to the total amount of solvent components contained in the liquid crystal aligning agent, it is preferably 10 to 90% by mass, more preferably 30 to 80% by mass.
  • the specific high-boiling point solvent is a solvent with a relatively high boiling point among the specific solvents represented by formula (S1), and refers to a solvent with a boiling point exceeding 200°C.
  • Preferred examples of the specific high boiling point solvent include N,N-dibutylformamide, 4-oxo-N,N-diethylpentanamide, N,N-diethylcyclohexanecarboxamide, and the like.
  • the boiling point here refers to the boiling point at 1 atmosphere.
  • the ratio of the specific high boiling point solvent to the total amount of solvent components contained in the liquid crystal aligning agent is not particularly limited, but is preferably 5 to 50% by mass, more preferably 10 to 30% by mass.
  • the polymer (P) is a polymer obtained from a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group.
  • the polymer (P) is a polymer obtained by polymerizing the polymerizable group of a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group.
  • the polymer (P) is preferably at least one selected from the group consisting of the following polymers ( ⁇ ) and polymers ( ⁇ ).
  • One embodiment of the "copolymer” in the present invention is a copolymer contained in a weakly anchoring liquid crystal aligning agent.
  • the block copolymer [polymer ( ⁇ )] has a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is not compatible with the liquid crystal or becomes insolubilized in the liquid crystal upon firing.
  • the block segment (A) consists of a polymer that is compatible with the liquid crystal even when the copolymer is fired.
  • Block segment (A) is a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), and a compound represented by the following formula (5). It is preferable that at least one kind selected from the group consisting of compounds is included as a constituent component.
  • the block segment (B) contains a compound represented by the following formula (6) as a constituent component.
  • the block copolymer may have three or more types of block segments.
  • the block copolymer is preferably a copolymer in which the main chain extends linearly without branching.
  • a weak anchoring film can be produced more easily than conventional methods. It is possible.
  • the present applicant has proposed a radically polymerizable compound contained in a liquid crystal composition that can stably produce a weakly anchoring horizontal electric field liquid crystal display element without generating a pretilt angle, and which is a radical polymerizable compound that contributes to the occurrence of weak anchoring.
  • a compound represented by the following formula (2), a compound represented by the formula (3), a compound represented by the formula (4), and a compound represented by the formula (5) as chemical compounds.
  • Patent application 2020-134149, Patent application 2020-163212, Patent application 2021-041196, WO2022/030602, PCT/JP2021/35557 (WO2022/071286), WO2019/004433 Patent application 2020-134149, Patent application 2020-163212, Patent application 2021-041196, WO2022/030602, PCT/JP2021/35557 (WO2022/071286), WO2019/004433.
  • the contents of the applications and published publications of are incorporated herein to the same extent as if
  • the weak anchoring liquid crystal aligning agent containing the polymer ( ⁇ ) can produce a weak anchoring film more easily and stably than conventional methods, and that it is also effective in narrowing the cell gap.
  • a transverse electric field that can simultaneously achieve stable low-voltage driving and high-speed response when the voltage is OFF without generating a pre-tilt angle, reduce burn-in, and achieve both high backlight transmittance and low-voltage driving in low-temperature environments.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • X represents a single bond, an ether bond, an ester bond, an amide bond, a urethane bond, a urea bond, or a thioether bond
  • R1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein
  • n is an integer of 1 to 2.
  • the two X's and R1 's may be the same or different.
  • the linking group in the alkyl group having 1 to 20 carbon atoms into which a linking group may be inserted include an ether bond, an ester bond, an amide bond, a urethane bond, a urea bond, a thioether bond, -Si(R 11 )(R 12 )- (R 11 and R 12 each independently represent an alkyl group bonded to Si), -Si(R 13 )(R 14 )-O- (R 13 and R 14 each independently represent an alkyl group bonded to Si), and -N(R 15 )- (R 15 represents a hydrogen atom or an alkyl group bonded to N).
  • the alkyl group in R 11 to R 15 include alkyl groups having 1 to 6 carbon atoms.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein.
  • T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted.)
  • X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
  • the saturated hydrocarbon group in S in formula (3) refers to an n+1 valent group formed by removing n+1 hydrogen atoms from a saturated hydrocarbon (n is the same integer as n in formula (3)). be).
  • n 1, the saturated hydrocarbon group is an alkylene group.
  • a saturated hydrocarbon group having 1 to 6 carbon atoms into which a bonding group is inserted is a saturated hydrocarbon group having a bonding group inserted between carbon atoms in a saturated hydrocarbon group having 2 to 6 carbon atoms. or an n+1-valent group in which a bonding group is inserted between a saturated hydrocarbon group having 1 to 6 carbon atoms and an atom bonded thereto (for example, a carbon atom).
  • Examples of the bonding group for S in formula (3) include a carbon-carbon unsaturated bond, an ether bond (-O-), an ester bond (-COO- or -OCO-), an amide bond (-CONH- or - Examples include NHCO-).
  • Examples of carbon-carbon unsaturated bonds include carbon-carbon double bonds, but a saturated hydrocarbon group having 1 to 6 carbon atoms into which a carbon-carbon double bond is inserted has no It is preferable to have a carbon-carbon double bond inside.
  • examples of the alkylene group having 1 to 6 carbon atoms into which a bonding group may be inserted include alkylene groups having 1 to 6 carbon atoms, oxyalkylene groups having 1 to 6 carbon atoms, etc. .
  • the alkylene group having 1 to 6 carbon atoms may be a straight chain alkylene group, a branched alkylene group, or a cyclic alkylene group.
  • R 1 and R 2 of -Si(R 1 )(R 2 )- in X of formula (3-T) are each independently an alkyl group bonded to Si, for example, an alkyl group having 1 to 6 carbon atoms. It is the basis.
  • R 3 and R 4 of -Si(R 3 )(R 4 )-O- in X of formula (3-T) are each independently an alkyl group bonded to Si, for example, a carbon number of 1 to 6. is an alkyl group.
  • R 5 of -N(R 5 )- in X of formula (3-T) is a hydrogen atom or an alkyl group bonded to N.
  • the alkyl group is, for example, an alkyl group having 1 to 6 carbon atoms.
  • Cy is a 6- to 20-membered non-aromatic cyclic group, preferably an 8- to 18-membered non-aromatic cyclic group. Note that Cy may be a 12- to 20-membered non-aromatic cyclic group.
  • X is bonded to an atom constituting a ring in Cy. Examples of atoms constituting the ring in the non-aromatic cyclic group include carbon atoms, oxygen atoms, nitrogen atoms, and silicon atoms. The bond between the atoms constituting the ring may be a single bond, a double bond, or a triple bond, but a single bond is preferable.
  • Examples of the ring in the non-aromatic cyclic group include cyclic alkanes, cyclic ethers, and cyclic siloxanes.
  • Examples of the cyclic ether include crown ether.
  • the atoms constituting the ring are carbon atoms and oxygen atoms, and the number of members is 12.
  • the ring may be monocyclic or polycyclic.
  • Examples of the number of rings in the polycycle include 2 to 4.
  • ⁇ One-atom sharing For example, spirocyclic compounds
  • ⁇ Two-atom sharing When two rings share two atoms, such as in decalin.
  • ⁇ Bridging structure When two rings share three atoms, such as in norbornane. Cases in which more than one atom is considered to be in common
  • the number of ring members is the number of atoms that make up the ring.
  • norbornane is a 7-membered ring.
  • a halogen atom or an alkyl group having 1 to 6 carbon atoms may be bonded to the atoms constituting the ring instead of a hydrogen atom. Examples of the halogen atom include a fluorine atom and a chlorine atom.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms
  • 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).
  • Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site.
  • R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent.
  • the aliphatic hydrocarbon group in R 1 in formula (4) has 1 to 10 carbon atoms, may have 1 to 8 carbon atoms, may have 1 to 6 carbon atoms, or may have 1 to 6 carbon atoms. It may be 1 to 4.
  • the alkyl group having 1 to 6 carbon atoms in R 2 , R 3 , and R 4 in formula (4-X) may be, for example, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. 4 may be an alkyl group. These alkyl groups may have a linear structure or a branched structure.
  • the aromatic hydrocarbon groups represented by R 2 , R 3 , and R 4 in formula (4-X) may be unsubstituted, or the hydrogen atoms may be substituted with a substituent.
  • substituent of the aromatic hydrocarbon group which may have a substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen having 1 to 4 carbon atoms. Examples include alkyl groups, halogenated alkoxy groups having 1 to 4 carbon atoms, and the like.
  • the halogenation in the halogenated alkyl group and the halogenated alkoxy group may be complete halogenation or partial halogenation.
  • halogen atom examples include a fluorine atom and a chlorine atom.
  • aromatic hydrocarbon group which may have a substituent include a phenyl group and a naphthyl group. The number of substituents in the aromatic hydrocarbon group is not particularly limited.
  • formula (4-X) is one or more, and may be one, two, or three. In formula (4), the three X's are each independent. Therefore, in formula (4), when there are two or more formulas (4-X), the two or more formulas (4-X) may have the same structure or different structures.
  • R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. Therefore, in formula (4-X), one of R 2 , R 3 , and R 4 may be an aromatic hydrocarbon group that may have a substituent, and R 2 , R 3 , and Two of R 4 may be an aromatic hydrocarbon group which may have a substituent, or three of R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. It may be a base.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted.
  • R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted.
  • Ar represents an aromatic hydrocarbon group that may have a substituent
  • X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together.
  • the total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.
  • an alkylene group having 1 to 6 carbon atoms into which a bonding group is inserted is an alkylene group having a bonding group inserted between carbon atoms in the alkylene group having 1 to 6 carbon atoms. or a divalent group in which a bonding group is inserted between an alkylene group having 1 to 6 carbon atoms and a carbon atom bonded thereto.
  • the bonding group include a carbon-carbon unsaturated bond, an ether bond (-O-), an ester bond (-COO- or -OCO-), and an amide bond (-CONH- or -NHCO-).
  • Examples of unsaturated bonds include carbon-carbon double bonds, but alkylene groups with 1 to 6 carbon atoms into which a bonding group is inserted have a carbon-carbon double bond inside, not at the end. It is preferable to have a bond.
  • Examples of the alkylene group having 1 to 6 carbon atoms into which a bonding group may be inserted include alkylene groups having 1 to 6 carbon atoms, oxyalkylene groups having 1 to 6 carbon atoms, and the like.
  • the oxygen atom in the oxyalkylene group having 1 to 6 carbon atoms is bonded to, for example, the carbon atom bonded to M, R 1 , R 2 , and R 3 in formula (5).
  • the alkylene group having 1 to 6 carbon atoms may be a straight chain alkylene group, a branched alkylene group, or a cyclic alkylene group.
  • Examples of the aromatic hydrocarbon group which may have a substituent in X 1 and X 2 of formula (5) include a phenyl group, a naphthyl group, and the like which may have a substituent.
  • Examples of the substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogenated alkyl group having 1 to 4 carbon atoms, a halogenated alkoxy group having 1 to 4 carbon atoms, etc. can be mentioned.
  • the halogenation in the halogenated alkyl group and the halogenated alkoxy group may be complete halogenation or partial halogenation.
  • Examples of the halogen atom include a fluorine atom and a chlorine atom.
  • Examples of R 1 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
  • Examples of R 2 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
  • Examples of R 3 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
  • Examples of X 1 in formula (5) include a hydrogen atom and a phenyl group.
  • Examples of X 2 in formula (5) include a hydrogen atom and a phenyl group.
  • Ar in formula (5) includes, for example, a phenyl group.
  • the total carbon number of R 1 X 1 , R 2 X 2 and R 3 in formula (5) is not particularly limited as long as it is 1 or more, but may be 2 or more. Further, the total carbon number of R 1 , R 2 , and R 3 in formula (5) may be, for example, 18 or less, 15 or less, or 10 or less. . Furthermore, when X 1 and X 2 in formula (5) are hydrogen atoms, the total number of carbon atoms in R 1 , R 2 , and R 3 is not particularly limited as long as it is 1 or more, but even if it is 2 or more, good. In addition, when at least one of X 1 and X 2 in formula (5) is an aromatic hydrocarbon group which may have a substituent, the total carbon number of R 1 , R 2 , and R 3 is 0. It may be.
  • the ring formed by R 1 X 1 , R 2 X 2 , and the carbon atoms bonded to R 1 X 1 and R 2 examples include hydrocarbon rings having 3 to 13 carbon atoms, which may be optional.
  • the binding group is as described above.
  • the block segment (A) is mainly swollen by the liquid crystal in a thin film state and plays the role of forming a weak anchoring film. Since the physical properties of the weak anchoring film vary greatly depending on the molecular weight of the block segment (A), optimization of the molecular weight is not necessary but is important. From the viewpoint of forming a good weak anchoring film, the molecular weight of the block segment (A) is preferably 1,000 to 100,000, more preferably 3,000 to 50,000. Note that this molecular weight is a number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC).
  • Mn number average molecular weight
  • the molecular weight distribution PDI (Mw/Mn), which is expressed as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in terms of polystyrene measured by GPC, is preferably 3.0 or less, and more preferably is 2.0 or less.
  • the block segment (A) may be a single polymer of the above compounds, or a combination of multiple compounds may be used. When used in combination, random copolymerization or block copolymerization may be used.
  • the ratio is not particularly limited regardless of the combination method.
  • the preferred combination ratio of compound species that becomes insolubilized in liquid crystal is 30 mol% or less, more preferably 20 mol% or less, but there are no limitations. do not. It is preferable to use these combination methods, the types of compounds to be combined, and the combination ratio within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
  • the block segment (B) contributes to the stability of the weakly anchoring liquid crystal alignment film in a thin film state.
  • Block segment (B) is preferably a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group.
  • the bonding group includes the specific examples of the bonding group listed in the explanation of formula (2).
  • the block segment (B) contains, for example, a polymerizable compound having the above functional group and a polymerizable group having a polymerizable unsaturated hydrocarbon group as a constituent component.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • n is an integer of 1 to 2.
  • Z represents a group represented by the following formula (6-Z). (If n is 2, the two Zs may be the same or different.)
  • L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinnamic acid aromatic ester group , a cinnamic acid
  • J is a single bond or has 1 to 1 carbon atoms.
  • 6 represents an aliphatic hydrocarbon group.
  • K When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, ether bond, ester bond, amide bond, urea bond, urethane bond, and thioether bond. In other cases, it indicates a single bond.
  • * represents a binding site.
  • m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same. (However, if J is a single bond, m is 1.)
  • the block segment (B) has a side chain structure that is not compatible with the liquid crystal or becomes incompatible with the liquid crystal upon firing.
  • Compounds that are incompatible with the liquid crystal used to form the block segment (B) include highly polar compounds and compounds with a rigid structure. Examples of the compound species that are no longer compatible with the thermosetting compound species include thermosetting compound species.
  • polymerizable compound used to form the block segment (B) is a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a highly polar structure.
  • the above highly polar structure preferably has the following structure. However, it is not limited to these.
  • X and Y each independently represent an oxygen atom or a sulfur atom.
  • R 1 and R 2 each independently represent a single bond or an alkylene group having 1 to 18 carbon atoms.
  • R 3 represents an alkylene group having 1 to 18 carbon atoms. Represents an alkyl group.
  • One of A 1 , A 2 and A 3 represents N, and the remaining two represent CH.
  • One of A 4 and A 5 represents N, and the remaining one represents CH. (* represents the binding site.)
  • polymerizable compound used to form the block segment (B) is a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a rigid structure.
  • the above rigid structure preferably has the following structure. However, it is not limited to these.
  • X, Y, and Z each independently represent an oxygen atom or a sulfur atom.
  • R 1 and R 2 each independently represent a single bond or an alkylene group having 1 to 18 carbon atoms.
  • R 3 represents a carbon number 1 ⁇ 18 represents an alkyl group. * represents a bonding site, n represents an integer from 1 to 5.
  • thermosetting structure preferably has the following structure. However, it is not limited to these.
  • X, Y and Z each independently represent an oxygen atom or a sulfur atom.
  • R 1 , R 2 and R 3 each independently represent an alkyl group having 1 to 18 carbon atoms.
  • R 4 and R 5 are Each independently represents a single bond or an alkylene group having 1 to 18 carbon atoms. * represents a bonding site.
  • the following structures are preferred as the polymerizable group having a polymerizable unsaturated hydrocarbon group.
  • R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms
  • X, Y, and Z each independently represent an oxygen atom or a sulfur atom.
  • *, * 1 and * 2 represent bonding sites, and either one of * 1 and * 2 may be replaced with a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.
  • the block segment (B) is mainly responsible for stabilizing the thin film state and does not significantly affect the physical properties of the weak anchoring film. It is sufficient that the block segment (B) complements the stability of the membrane, and the optimal molecular weight that can complement the stability of the membrane is not particularly limited because it varies depending on the type of compound used. Further, depending on the type of compound used, advantages can be obtained in solvent selectivity and coating properties, so it is preferable to control the type of compound constituting the block segment (B) and its molecular weight depending on the use and purpose.
  • the above polymerizable compounds may be used alone, or a plurality of compounds may be used in combination.
  • the block segment (B) is a block segment that only contributes to the stability of the membrane, and does not significantly contribute to the weak anchoring properties. Therefore, as long as the stabilization of the membrane is complemented, the type of compound to be combined and the method of combination are Not particularly limited.
  • One embodiment of the polymer ( ⁇ ) is characterized in that it is a copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is insoluble in the liquid crystal or becomes insolubilized in the liquid crystal by firing,
  • the number of blocks is not limited, and a configuration having a plurality of block segments, such as (A)-(B)-(A), for example, may be used, and the number and combination of block segments are not particularly limited. It is also possible to introduce block segments that impart electrical properties.
  • the number of block segments is preferably about 2 to 4, and from the viewpoint of membrane stability, the terminal block segment of the polymer is preferably block segment (B).
  • the block segment (A) that is compatible with the liquid crystal controls weak anchoring properties, and the molecular weight of the block segment (A) greatly affects the properties.
  • the molecular weight ratio is not limited.
  • the polymer ( ⁇ ) can be obtained, for example, by living polymerization.
  • Living polymerization is a polymerization reaction in which side reactions such as chain transfer reactions and termination reactions are not involved during the polymerization reaction, and it is possible to obtain a polymer with a narrow molecular weight distribution and a highly controlled structure.
  • one method is to suppress the deactivation of the active site by introducing a stable covalent species called a dormant species into the polymerization active site, thereby preventing the occurrence of side reactions such as chain transfer reactions and termination reactions.
  • Living polymerizations include those using radicals, cations, and anions as active species, and it is important to select one depending on the structure and properties of the polymerizable compound used.
  • cationic polymerization and anionic polymerization may use alkali metals, metal complexes, or halogen compounds to generate active species.
  • the contamination of metal residues and halogen compounds can cause burn-in and display defects, so it is preferable to use radical polymerization that does not use metals or halogen compounds as much as possible.
  • living radical polymerization examples include living radical polymerization (NMP) using nitroxide as a dormant species, atom transfer radical polymerization (ATRP) using a metal complex, and reversible addition/elimination chain transfer polymerization (RAFT) using a sulfur compound as a dormant.
  • Polymerization living radical polymerization
  • TRP atom transfer radical polymerization
  • RAFT reversible addition/elimination chain transfer polymerization
  • SERP living radical polymerization
  • RTCP reversible transfer catalytic polymerization
  • Examples of the polymerization method include living radical polymerization such as NMP, RTCP, and RAFT polymerization, and NMP or RAFT polymerization is particularly preferred.
  • examples of the polymerization initiator include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1,1 Examples include '-bis(tert-butylperoxy)cyclohexane and hydrogen peroxide.
  • the proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • examples of the nitroxide include compounds represented by the following formulas (N-1) to (N-12).
  • the proportion of nitroxide used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
  • RTCP When using RTCP, in addition to low-molecular dormant species (dormant species) that contribute to the expression of living properties, it is necessary to use an iodide catalyst or a hydride catalyst and a polymerization initiator for the purpose of promoting the reaction.
  • the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, and 1,1'-bis(tert). -butylperoxy)cyclohexane, hydrogen peroxide, etc.
  • the proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • Examples of low-molecular dormant species include compounds represented by the following formulas (Q-1) to (Q-3).
  • the proportion of the low molecular weight dormant species used is usually 0.000001 to 0.1 mol part, preferably 0.00001 to 0.01 mol part, per 1 mol part of the monomer used.
  • the iodide catalyst include compounds represented by the following formulas (P-1) to (P-4).
  • the proportion of the iodide catalyst used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the hydride catalyst include compounds represented by the following formulas (O-1) to (O-6).
  • the proportion of the hydride catalyst used is 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
  • examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1, Examples include 1'-bis(tert-butylperoxy)cyclohexane and hydrogen peroxide.
  • the proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • chain transfer agent trithiocarbonate, dithiobenzoate, dithiocarbamate, and xanthate are preferable, and specific examples include compounds represented by the following formulas (R-1) to (R-24). can be mentioned.
  • the proportion of the chain transfer agent used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
  • Living radical properties are expressed in RAFT polymerization because most of the living chains are in the dormant type (dormant type), and there are compounds that can reversibly inactivate the growing radical species. This is because a fast equilibrium exists between the chains.
  • RAFT polymerization By using RAFT polymerization, it is possible to control polymer terminals, advanced molecular weight control, and molecular weight distribution control.
  • polymer terminals can be controlled by thermally and chemically modifying the RAFT terminals present at the growing terminals.
  • thermal modification the terminal can be modified into an unsaturated hydrocarbon group by heating at a temperature higher than the temperature at which the RAFT agent used is thermally decomposed.
  • chemical modification the terminal can be modified into a thiol bond by bringing it into contact with a primary amine, secondary amine, etc., accompanied by aminolysis.
  • molecular weight can be controlled by using the following formula (eq1). Specifically, the number average molecular weight (Mn) changes linearly with the ratio of the molar concentration of the monomer to the molar concentration of the chain transfer agent, making it possible to control the molecular weight.
  • Mn theor
  • [Monomer] 0 the molar concentration of the monomer
  • [CTA] 0 the molar concentration of the chain transfer agent
  • M monomer represents the molar concentration of the monomer.
  • conv. represents the polymerization conversion rate
  • MCTA represents the molecular weight of the chain transfer agent.
  • the reaction solution when the copolymer obtained by the above polymerization is dissolved in the reaction solution, the reaction solution may be used as it is for preparing the liquid crystal aligning agent, or the copolymer contained in the reaction solution may be isolated. Then, it may be used for preparing a liquid crystal aligning agent.
  • the organic solvent used in the synthesis of the copolymer may be any solvent as long as it does not chemically react with the compound species constituting the copolymer and does not scavenge radicals.
  • graft copolymer [polymer ( ⁇ )]
  • One embodiment of the "graft copolymer" in the present invention is a graft copolymer contained in a weakly anchoring liquid crystal aligning agent.
  • Weak anchoring liquid crystal alignment agents are used to form a film for aligning liquid crystals used in liquid crystal display elements, that is, a liquid crystal alignment film.
  • the weak anchoring liquid crystal alignment agent is used for forming a liquid crystal alignment film of a liquid crystal cell having a liquid crystal and a liquid crystal alignment film.
  • the graft copolymer [polymer ( ⁇ )] has a trunk polymer and a branch polymer bonded to the trunk polymer as a side chain of the trunk polymer.
  • the branch polymer is compatible with the liquid crystal.
  • the backbone polymer is not compatible with the liquid crystal or becomes insoluble in the liquid crystal upon firing.
  • Graft copolymer is a general term for polymers with a branched structure, and refers to a polymer that simultaneously has a polymer corresponding to a "trunk” and a polymer corresponding to a "branch” bonded to the trunk as a side chain of the trunk.
  • a graft copolymer is used in one embodiment of the liquid crystal aligning agent of the present invention. It is characterized by being insoluble in liquid crystals or becoming insoluble in liquid crystals by firing.
  • a branch polymer that is compatible with the liquid crystal dissolves in the liquid crystal and swells, thereby contributing to the formation of a weak anchoring state, while as a graft copolymer, it is not compatible with the liquid crystal, or it becomes insolubilized in the liquid crystal by baking.
  • a graft copolymer By preventing the elution of the graft copolymer to the liquid crystal, fixing it to the substrate, crosslinking the polymers with each other, and crosslinking with the sealing component, it is possible to obtain a weakly anchored liquid crystal display element with excellent film hardness and seal adhesion strength. can.
  • a weakly anchoring liquid crystal aligning agent containing a polymer ( ⁇ ) is a weakly anchoring liquid crystal aligning agent that can be easily produced, has good coating properties, and has good adhesion to a seal.
  • this is a weakly anchoring liquid crystal aligning agent that does not generate a pretilt angle and can provide a weakly anchoring liquid crystal aligning film that simultaneously achieves low voltage drive and high-speed response when the voltage is turned off, and has filed an application.
  • Japanese Patent Application No. 2021-156886 and WO2023/048278 By being cited herein, the content of this application is incorporated herein to the same extent as if it were expressly set forth in its entirety.
  • the graft copolymer of the present invention is characterized in that it has branch polymers that are compatible with liquid crystals, but are not compatible with liquid crystals or become insolubilized in liquid crystals upon firing.
  • the backbone polymer in order to prevent the graft copolymer from being compatible with the liquid crystal, or to make the graft copolymer insoluble in the liquid crystal by baking, has a structure that is not compatible with the liquid crystal or becomes insoluble in the liquid crystal by baking. It has become.
  • the graft copolymer of the present invention has a branch polymer that is compatible with liquid crystals and a trunk polymer that is not compatible with liquid crystals or becomes insolubilized by heat etc., and these are preferably connected in a random arrangement by free radical polymerization. . This provides high seal adhesion, solvent selectivity, and coating properties.
  • the structure of the branch polymer that is compatible with the liquid crystal is not particularly limited as long as it is compatible with the liquid crystal, but for example, the branch polymer can be obtained by using a macromonomer represented by the following formula (7). can.
  • the structure of the backbone polymer that is incompatible with the liquid crystal or becomes insolubilized by firing is not particularly limited as long as it satisfies these properties, but for example, the backbone polymer may be obtained by using a compound represented by the above formula (6). Can be done. In obtaining the backbone polymer, for example, only one type of compound represented by the above formula (6) may be used, or if the compound represented by the above formula (6) is used, one type of compound other than this may be used.
  • the branched polymer in the polymer ( ⁇ ) is derived from, for example, a macromonomer represented by the following formula (7).
  • the backbone polymer in the polymer ( ⁇ ) contains, for example, a compound represented by the above formula (6) as a constituent component. The formula of a specific compound is shown below.
  • P represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • Q represents a monomer containing at least one of the compounds represented by formulas (2) to (5) above. It is a structure obtained by polymerization, and n is an integer of 1 to 2. When n is 2, the two Qs may be the same or different.
  • the monomer used in the synthesis of the branched polymer may be a single component, or a combination of multiple monomers may be used. Further, other monomers capable of radical polymerization reaction, which will be described below, may be used in combination.
  • the branched polymers are largely involved in the expression of weak anchoring properties. Optimization of the molecular weight is important because the physical properties of the weak anchoring film change depending on the molecular weight of the branch polymer.
  • the preferred number average molecular weight of the branched polymer is 1,000 to 100,000, more preferably 3,000 to 50,000, and the weight average molecular weight (Mw) and number The molecular weight distribution (PDI) expressed as a ratio to the average molecular weight (Mn) is preferably 3.0 or less, more preferably 2.0 or less. Note that when the graft copolymer is synthesized by a grafting through method using a macromonomer, the molecular weight here corresponds to the molecular weight of the macromonomer.
  • the structure in which the terminal end of the branched polymer is removed may be a single polymer structure using only one type of monomer represented by the above formulas (2) to (5), or a structure in which multiple monomers are used.
  • a copolymer structure consisting of a combination of monomers may also be used. When a plurality of monomers are combined, random copolymerization or block copolymerization may be used.
  • the monomers represented by the above formulas (2) to (5) are combined, the ratio is not particularly limited regardless of the method of combination.
  • the preferred combination ratio of monomers that insolubilize liquid crystals is 30 mol% or less, more preferably 20 mol% or less, from the viewpoint of maintaining properties, but there is no limitation. .
  • These synthesis methods, monomers to be combined, and combination ratios are preferably used within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
  • the macromonomer represented by formula (7) which is the raw material for forming the branch polymer of the graft copolymer that is the polymer ( ⁇ ), can be obtained, for example, by a combination of living polymerization, chain transfer polymerization, or polymer terminal modification reaction. Can be done. Furthermore, it has been reported that a polymer having a radically polymerizable unsaturated bond in the terminal group can be obtained by continuous bulk polymerization at a high temperature of 200° C. or higher (Toagosei Research Annual Report TREND 2002 No. 5).
  • cationic polymerization and anionic polymerization may use alkali metals, metal complexes, or halogen compounds to generate active species.
  • the contamination of metal residues and halogen compounds can cause burn-in and display defects, so it is preferable to use radical polymerization that uses as few metals and halogen compounds as possible.
  • living radical polymerization examples include nitroxide-mediated radical polymerization (NMP) using nitroxide as a dormant species, atom transfer radical polymerization (ATRP) using a metal complex, and reversible addition/fragmentation chain transfer (RAFT) using a sulfur compound as a dormant. ) polymerization, living radical polymerization (TERP) using an organic tellurium compound, etc., reversible transfer catalytic polymerization (RTCP) using an alkyl iodide compound as a dormant species, and using a phosphorus compound, alcohol, etc. as a catalyst, etc. are preferred.
  • the polymerization method examples include living radical polymerization such as NMP, RTCP, and RAFT polymerization, and NMP or RAFT polymerization is particularly preferred. It is also preferable to use chain transfer polymerization.
  • examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1 , 1'-bis(tert-butylperoxy)cyclohexane, hydrogen peroxide, and the like.
  • the proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the chain transfer agent it is preferable to use thiols, and specific examples include compounds represented by the following formulas (S-1) to (S-16).
  • the proportion of the chain transfer agent used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
  • the organic solvent used in the chain transfer polymerization reaction is not particularly limited as long as it dissolves the produced polymer. Specific examples include the above-mentioned specific organic solvents, which may be used alone or in combination of two or more. Furthermore, even a solvent that does not dissolve the produced polymer may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate. Note that in chain transfer polymerization, oxygen in an organic solvent becomes a cause of inhibiting the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
  • chain transfer polymerization polymers are obtained by competitive reactions between chain transfer and growth reactions.
  • the molecular weight and molecular weight distribution of a polymer obtained by chain transfer polymerization are determined by the chain transfer constant (Cs), which is expressed as the quotient of the chain transfer rate constant (kc) and the growth rate constant (kp).
  • Cs chain transfer constant
  • kc chain transfer rate constant
  • kp growth rate constant
  • a structure in which Cs is in the range of 1 to 60 is preferable, and it is important to use the monomer species and chain transfer agent species and the correct combination of these.
  • the chain transfer constant (Cs) varies greatly depending on the type of monomer used and the type of chain transfer agent, so it is necessary to select it correctly.
  • the main synthesis methods for graft copolymers include the Grafting-to method, in which a branch polymer is directly introduced into a trunk polymer, and the Grafting-from method, in which a monomer is polymerized from a macroinitiator (a trunk polymer having a polymerization active site) to extend a branch polymer.
  • the synthesis method is not limited, as any method can be used.
  • the method for producing the graft copolymer is not particularly limited, and any commonly used industrial method can be used. Specifically, it can be produced by radical polymerization, cationic polymerization, or anionic polymerization using the above-mentioned monomers. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
  • radical polymerization initiators Radical thermal polymerization initiators, radical photopolymerization initiators
  • RAFT reversible addition-fragmentation chain transfer
  • a radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature.
  • radical thermal polymerization initiators include, for example, ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxide Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxycyclohexane) etc.), alkyl peroxy esters (peroxyneodecanoic acid tert-butyl ester, peroxypivalic acid tert-butyl ester, peroxy 2-ethylcyclo
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • Such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-Methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(
  • the radical polymerization method is not particularly limited, and emulsion polymerization, suspension polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, solution polymerization, and the like can be used.
  • the organic solvent used in the radical polymerization reaction is not particularly limited as long as it dissolves the produced polymer. Specific examples include the above-mentioned specific organic solvents. These organic solvents may be used alone or in combination of two or more.
  • the reaction solution may be used as it is for preparing the liquid crystal aligning agent, or the graft copolymer contained in the reaction solution may be dissolved in the reaction solution. After separation, the liquid crystal aligning agent may be prepared.
  • the polymerization temperature during radical polymerization can be any temperature in the range of 30 to 150°C, but is preferably in the range of 50 to 100°C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high, making it difficult to stir uniformly. Therefore, the monomer concentration is preferably 1 to 50% by weight, more preferably 5 to 40% by weight.
  • the initial stage of the reaction can be carried out at a high concentration, and then an organic solvent can be added.
  • the molecular weight of the obtained polymer will be small, and if it is small, the molecular weight of the obtained polymer will be large.
  • the amount is preferably 0.1 to 10 mol% based on the monomer to be polymerized.
  • various monomer components, solvents, initiators, etc. can be added during polymerization.
  • the polymer produced from the reaction solution obtained by the above reaction can be recovered by pouring the reaction solution into a poor solvent to precipitate it, but this reprecipitation treatment is not essential.
  • the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water, and the like.
  • the polymer precipitated in a poor solvent can be collected by filtration and then dried under normal pressure or reduced pressure, at room temperature or by heating.
  • the amount of impurities in the polymer can be reduced.
  • the poor solvent in this case include alcohols, ketones, hydrocarbons, etc. It is preferable to use three or more kinds of poor solvents selected from these, since the efficiency of purification will further increase.
  • the weight average molecular weight of the graft copolymer measured by GPC (Gel Permeation Chromatography) method is 2,000 to 5. ,000,000 is preferred, and 5,000 to 2,000,000 is more preferred.
  • Graft copolymers have branch polymers that are compatible with liquid crystals and trunk polymers that are incompatible with liquid crystals or become insolubilized by heat, etc., and are characterized by being linked in a random arrangement by free radical polymerization. . This provides high seal adhesion, solvent selectivity, and coating properties.
  • the introduction ratio of the branch polymer and the trunk polymer is also an important factor.
  • branch polymers play an important role in weak anchoring properties, and if their introduction ratio increases, the strength of the film will be impaired and heat curing will be inhibited, so it is necessary to consider the appropriate amount of introduction. be.
  • the introduction amount and molecular weight of the backbone polymer do not affect the weak anchoring properties (they are small), so in order to achieve both of the above-mentioned properties, the monomer expressed by formula (6) used to synthesize the backbone polymer must be It is preferable that the ratio of the number of molecules (introduction ratio) of the macromonomer represented by formula (7) used in the synthesis of the branched polymer to the number of molecules is small.
  • the preferred introduction ratio (macromonomer represented by formula (7)/monomer represented by formula (6)) is 0.1/99.9 to 50/50 (mol/mol), more preferably It is 0.2/99.8 to 30/70 (mol/mol).
  • the structure of the compound represented by the formula (6) is particularly preferable, but it is not limited to the following compounds. do not.
  • the liquid crystal aligning agent of the present invention contains at least one specific solvent as a solvent component.
  • the organic solvent used for the liquid crystal aligning agent other solvents than the above-mentioned specific solvents may be used.
  • the other solvents include N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2-pyrrolidone, 1, 3-dimethyl-2-imidazolidinone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoramide, ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone , methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl is
  • organic solvents may be used alone or in combination.
  • the content of the organic solvent other than the specific solvent in the liquid crystal aligning agent is not particularly limited, but is preferably 10 to 90% by mass, more preferably 20 to 70% by mass of the total solvent contained in the liquid crystal aligning agent. be.
  • a solvent that improves the uniformity and smoothness of the coating film by mixing it with an organic solvent that has high solubility.
  • Examples include 2-ethylhexyl, 2-ethylhexyl succinate, 2-ethylhexyl glutarate, 2-ethylhexyl adipate, 2-ethylhexyl phthalate, and 2-ethylhexyl maleate.
  • a plurality of types of these solvents may be mixed. When using these solvents, it is preferably 5 to 60% by mass, more preferably 10 to 40% by mass of the total solvent contained in the liquid crystal aligning agent.
  • the weakly anchoring liquid crystal aligning agent of the present invention may contain components other than those mentioned above. Examples include compounds that improve film thickness uniformity and surface smoothness when the composition contained in the weakly anchoring liquid crystal aligning agent is applied, and compounds that improve the adhesion between the composition contained in the weakly anchoring liquid crystal aligning agent and the substrate. Examples include compounds that further improve the film strength of the composition contained in the weak anchoring liquid crystal aligning agent.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorosurfactants, silicone surfactants, and nonionic surfactants. More specifically, for example, FTOP EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals), Megafac F171, F173, R-30 (manufactured by DIC), Florado FC430, FC431 (manufactured by 3M), Asahi Examples include Guard AG710 (manufactured by AGC), Surflon S-382, SC101, SC102, SC103, SC104, SC105, and SC106 (manufactured by AGC Seimi Chemical).
  • the usage ratio is preferably 0.01 to 2 parts by mass based on 100 parts by mass of the total amount of polymers contained in the composition contained in the weakly anchoring liquid crystal aligning agent. , more preferably 0.01 to 1 part by mass.
  • compounds that improve the adhesion between the composition contained in the weak anchoring liquid crystal aligning agent and the substrate include functional silane-containing compounds and epoxy group-containing compounds.
  • phenolic compounds such as 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane and tetra(methoxymethyl)bisphenol are added. You may. When using these compounds, it is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the total amount of polymers contained in the weak anchoring liquid crystal aligning agent. It is. Furthermore, in addition to the above, the composition contained in the weak anchoring liquid crystal alignment agent may have electrical properties such as dielectric constant and conductivity of the weak anchoring liquid crystal alignment film, as long as the effects of the present invention are not impaired. A dielectric or conductive substance for the purpose of changing may be added.
  • a thickener may be added to increase the viscosity of the weakly anchored liquid crystal alignment film.
  • the thickener include a polymer having a structural unit represented by the following formula (8) (hereinafter sometimes referred to as "polymer RSM").
  • polymer RSM polymer having a structural unit represented by the following formula (8)
  • the present applicant has proposed that a weakly anchoring liquid crystal aligning agent containing a polymer having a structural unit represented by the following formula (8) can be easily produced, has high solvent selectivity, and can be used for varnishes in the high to low viscosity range. We have discovered that it is a weakly anchoring liquid crystal aligning agent that can be controlled up to The contents are incorporated herein to the same extent as if set forth in their entirety.)
  • Polymer RSM By adding a small amount of "polymer RSM”, it becomes possible to easily increase the viscosity of a coating varnish (for example, a liquid crystal aligning agent). Therefore, the viscosity of the varnish can be controlled by adjusting the amount of polymer RSM added.
  • polymer RSM has good solvent selectivity, and the inclusion of polymer RSM imparts good coating properties to the coating varnish, so mixing it with materials with poor coating properties improves the overall quality of the material. It is possible to improve the coating properties.
  • the polymer RSM is a polymer having a structural unit represented by the following formula (8).
  • R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms, and X represents -O-R a , -N(R a ) (R b ), or -S-R a (R a represents a monovalent organic group, and R b represents a monovalent group).
  • X in the formula (8) is a group selected from the following structures.
  • R 1 and R 2 each independently represent a hydrogen atom or a straight chain or branched alkyl group having 1 to 12 carbon atoms
  • R 3 represents a straight chain or branched alkylene group having 1 to 12 carbon atoms
  • m and n each independently represent an integer from 1 to 5.
  • * represents a binding site.
  • the polymer (RSM) can be obtained, for example, by reacting a polymer having a structural unit containing a maleic anhydride skeleton (maleic anhydride polymer) with one or more nucleophiles. In this reaction, a nucleophile is added to the carbonyl group of the maleic anhydride skeleton, and a ring-opening reaction proceeds to obtain the structural unit represented by the formula (8).
  • the polymer having a structural unit containing a maleic anhydride skeleton is preferably a maleic anhydride polymer (homopolymer or copolymer) containing a structural unit represented by the following formula (8') (hereinafter also referred to as structural unit (8')), and more preferably a maleic anhydride copolymer (hereinafter also referred to as copolymer (mRSM)) containing the structural unit (8') and a structural unit represented by the following formula (9) (hereinafter also referred to as structural unit (9)).
  • mRSM maleic anhydride copolymer
  • R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms.
  • the polymer (RSM) preferably has a structural unit represented by formula (8) and a structural unit represented by formula (9).
  • the structural unit (9) is, for example, ethylene, propylene, n-butene, isobutylene, n-pentene, n-hexene, alkyl acrylates and methacrylates having 1 to 20 carbon atoms, vinyl acetate, methyl vinyl ether, and the following formula: It is a structural unit derived from a monomer selected from styrenic compounds represented by (10).
  • R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and the benzene ring may be optionally substituted with an alkyl group having 1 to 4 carbon atoms or a hydroxyl group.
  • alkyl acrylates and methacrylates having 1 to 20 carbon atoms alkyl acrylates and methacrylates having 1 to 4 carbon atoms are preferred.
  • alkyl acrylates having 1 to 20 carbon atoms has the same meaning as alkyl esters having 1 to 20 carbon atoms of acrylic acid.
  • Preferred examples of the alkyl acrylates having 1 to 4 carbon atoms include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-propyl acrylate, n-butyl acrylate, and mixtures thereof.
  • alkyl methacrylates having 1 to 4 carbon atoms include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, and mixtures thereof.
  • a mixture of alkyl methacrylates having 1 to 4 carbon atoms and alkyl acrylates having 1 to 4 carbon atoms may be used.
  • Preferred examples of styrenic compounds include styrene, ⁇ -methylstyrene, p-methylstyrene, tert-butylstyrene, and mixtures thereof.
  • isobutylene is particularly preferably used, or a mixture of isobutylene, 1-butene, and 2-butene is preferably used.
  • the structural unit (8') is preferably 10 to 50 mol%, particularly preferably 30 to 50 mol% of all structural units constituting the copolymer (mRSM).
  • the weight average molecular weight of the copolymer is preferably 10,000 to 1,000,000, more preferably 50,000 to 500,000.
  • mRSM copolymer
  • commercially available products can be used, such as ISOBAM-6, ISOBAM-10, and ISOBAM-18 (all manufactured by Kuraray Co., Ltd.).
  • nucleophile examples include the compounds shown below.
  • R 1 and R 2 each independently represent a hydrogen atom or a straight chain or branched alkyl group having 1 to 12 carbon atoms
  • R 3 represents a straight chain or branched alkylene group having 1 to 12 carbon atoms
  • m and n each independently represent an integer of 1 to 5. If multiple R 1 , R 2 or R 3 exist, they may be the same or different.
  • the reaction between the polymer having a structural unit containing a maleic anhydride skeleton and the nucleophile is preferably carried out in an organic solvent.
  • the organic solvent used include alcohols, ethers, ketones, amides, esters, and hydrocarbon compounds.
  • the reaction temperature is preferably 20 to 200°C, more preferably 40 to 150°C.
  • the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
  • the reaction solution obtained by dissolving the polymer can be used as it is, or the reaction solution can be poured into a large amount of poor solvent and the resulting precipitate can be dried under reduced pressure, or the reaction solution can be distilled off under reduced pressure using an evaporator. After isolating the polymer contained in the reaction solution using a known isolation method such as a method such as the method of
  • the reaction amount of the nucleophile is preferably 0.5 to 10 equivalents, more preferably 1 to 5 equivalents, relative to the anhydride group possessed by the structural unit (8').
  • a catalyst When carrying out a ring-opening reaction of a cyclic acid anhydride group, it is preferable to use a small amount of a catalyst to promote the reaction.
  • the catalyst include triethylamine, N,N,N',N'-tetramethylethylenediamine, pyridine, 4-dimethylaminopyridine, imidazole, 2-methylimidazole, 1,8-diazabicyclo[5.4.0]-7 -Undecene, 1,5-diazabicyclo[4.3.0]-5-nonene, 1,4-diazabicyclo[2.2.2]octane, 1,5,7-triazabicyclo[4.4.0]
  • Examples include deca-5-ene and 1,8-bis(dimethylamino)naphthalene, and the catalyst used is usually 0.000001 to 0.1 mole part, preferably 0.000001 to 0.1 mole part, per mole part of the cyclic acid anhydride group. It is 0.00001 to
  • the polymer (RSM) of the present invention may further have structural units other than the structural units represented by formulas (8) and (9) above.
  • Structural units other than those represented by formulas (8) and (9) include acrylic acid, methacrylic acid, ⁇ -ethyl acrylic acid, 2-hydroxyethyl (meth)acrylic acid, 4-vinylbenzoic acid, Carboxy group-containing compounds such as maleic acid; hydroxyl group-containing compounds such as 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, N-methylol (meth)acrylamide; Compounds containing long-chain alkyl groups such as octyl acrylate, isodecyl acrylate, lauryl acrylate, decyl methacrylate, and stearyl acrylate; compounds containing alicyclic groups such as cyclohexyl (meth)acrylate; 2-phenoxyethy
  • Benzene ring-containing compounds such as glycidyl (meth)acrylate, methylglycidyl (meth)acrylate, 4-(glycidyloxy)butyl (meth)acrylate, 2-methacryloyloxyethyl isocyanate (Karens MOI, manufactured by Showa Denko) ), 2-[(3,5-dimethylpyrazoyl)carbonylamino]ethyl methacrylate (Karens MOI-BP, manufactured by Showa Denko), and other compounds having an isocyanate group or a protected isocyanate group; tetrahydropyranyl, such as tetrahydrofurfuryl methacrylate Examples include structural units derived from compounds having groups.
  • the polymer (RSM) may contain one type of structural unit represented by formula (9) alone, or may contain two or more types of structural units.
  • the content of the structural unit represented by formula (9) is preferably 50 to 90 mol%, more preferably 50 to 70 mol%, based on the total structural units of the polymer (RSM).
  • the content of the polymer (RSM) used in the present invention is preferably 1 to 99% by mass, more preferably 5 to 70% by mass, and 10 to 99% by mass, based on the total amount of polymer components contained in the weakly anchoring liquid crystal aligning agent. More preferably 50% by mass.
  • the polymer (RSM) can be used alone or in combination of two or more.
  • the strong anchoring horizontal alignment film described here is a liquid crystal alignment film that can uniformly align liquid crystals in the horizontal direction and has a sufficiently strong force to maintain the aligned liquid crystals, that is, interfacial anchoring energy.
  • the strong anchoring horizontal alignment film is made by aligning polyamic acid, polyimide, polyamic acid ester, polyamide, polyester, polyacrylate, etc. used in known liquid crystal alignment agents in a uniaxial direction by rubbing or photo alignment. It can be obtained by doing.
  • a strong anchoring horizontal alignment film can be obtained, for example, by a combination of monomers used in known liquid crystal alignment agents.
  • the weakly anchoring alignment film of the present invention can be obtained by using the weakly anchoring liquid crystal alignment agent described above.
  • a cured film obtained by applying the weakly anchoring liquid crystal aligning agent used in the present invention to a substrate, followed by drying and baking, can also be used as it is as the weakly anchoring alignment film.
  • this cured film can be aligned by rubbing, irradiating with polarized light or light of a specific wavelength, or ion beam treatment, and it is also possible to irradiate UV to the liquid crystal display element after filling the liquid crystal. be.
  • a strong anchoring alignment film can be obtained by applying a strong anchoring liquid crystal aligning agent to a substrate, followed by drying and baking, and then subjecting a cured film to alignment treatment.
  • a substrate on which a weak anchoring film is formed is a first substrate and a substrate on which a strong anchoring film is formed is a second substrate
  • the first substrate is a substrate having a comb-teeth electrode
  • the second substrate is a substrate on which a weak anchoring film is formed.
  • the substrate may be a counter substrate.
  • the second substrate may be a substrate having comb-teeth electrodes
  • the first substrate may be a counter substrate.
  • the substrate on which each liquid crystal alignment film is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate on which a transparent electrode for driving liquid crystal is formed is preferable.
  • Specific examples include glass plates, polycarbonates, poly(meth)acrylates, polyethersulfones, polyarylates, polyurethanes, polysulfones, polyethers, polyetherketones, trimethylpentene, polyolefins, polyethylene terephthalate, (meth)acrylonitrile, and Examples include substrates in which transparent electrodes are formed on plastic plates such as cellulose acetate, cellulose diacetate, and cellulose acetate butyrate.
  • Substrates that can be used for IPS type liquid crystal display elements include electrode patterns such as standard IPS comb electrodes and PSA (Polymer-Stabilized Alignment) fishbone electrodes, as well as protrusion patterns such as MVA (Multi-domain Vertical Alignment). can.
  • electrode patterns such as standard IPS comb electrodes and PSA (Polymer-Stabilized Alignment) fishbone electrodes, as well as protrusion patterns such as MVA (Multi-domain Vertical Alignment). can.
  • an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate.
  • transmissive type liquid crystal display element When a transmissive type liquid crystal display element is intended, it is common to use a substrate like the one described above, but when a reflective type liquid crystal display element is intended, silicon is used for only one side of the substrate. Opaque substrates such as wafers can also be used. In this case, a material such as aluminum that reflects light can also be used for the electrodes formed on the substrate.
  • Methods for applying liquid crystal aligning agents include spin coating, printing, inkjet, spraying, and roll coating, but transfer printing is widely used industrially due to its productivity. It is also suitably used in the present invention.
  • the drying process after applying the liquid crystal alignment agent is not necessarily required, but if the time from application to firing is not constant for each substrate, or if the board is not fired immediately after application, a drying process is included. is preferable.
  • the drying method is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed due to transportation of the substrate or the like.
  • Preferred conditions for the drying step include drying on a hot plate at a temperature of 40 to 150°C, more preferably 60 to 100°C, for 0.5 to 30 minutes, more preferably 1 to 5 minutes.
  • Preferred conditions for the firing step include a method of firing on a hot plate or thermal circulation oven at a temperature of 80 to 250°C, more preferably 100 to 230°C, for 1 to 120 minutes, more preferably 5 to 30 minutes.
  • the thickness of this cured film can be selected as required, but it is preferably 5 nm or more, more preferably 10 nm or more, since this improves the reliability of the liquid crystal display element. Further, it is preferable that the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, since the power consumption of the liquid crystal display element does not become extremely large.
  • a first substrate or a second substrate having a weak anchoring alignment film and a second substrate or first substrate having a strong anchoring alignment film can be obtained.
  • methods for performing the uniaxial alignment treatment include a photoalignment method, an oblique evaporation method, rubbing, and a uniaxial alignment treatment using a magnetic field.
  • the alignment process can be performed by irradiating the entire surface of the film with polarized UV light of a specific wavelength and heating if necessary.
  • the direction is selected depending on the electrical properties of the liquid crystal, but when using a liquid crystal with positive dielectric anisotropy, the rubbing direction is the direction in which the comb-teeth electrodes extend. It is preferable that the direction is approximately the same as that of .
  • the liquid crystal cell of the present invention has a substrate (for example, a first substrate) having a weakly anchoring alignment film obtained by using the liquid crystal aligning agent of the present invention by the above method, and a known strong anchoring liquid crystal aligning film.
  • a substrate for example, a second substrate
  • the size of the spacer used is usually 1 to 30 ⁇ m, preferably 2 to 10 ⁇ m.
  • an IPS substrate which is a comb-teeth electrode substrate used in the IPS method, includes a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-teeth shape, and a plurality of linear electrodes formed on the base material. It has a liquid crystal alignment film formed so as to cover the liquid crystal alignment film.
  • the FFS substrate which is a comb-teeth electrode substrate used in the FFS method, consists of a base material, a surface electrode formed on the base material, an insulating film formed on the surface electrode, and an insulating film formed on the insulating film. , has a plurality of linear electrodes arranged in a comb-teeth shape, and a liquid crystal alignment film formed on an insulating film so as to cover the linear electrodes.
  • a liquid crystal display element includes, for example, a first substrate, a second substrate disposed opposite to the first substrate, and liquid crystal filled between the first substrate and the second substrate.
  • the liquid crystal display element comprises a first substrate or a second substrate coated with a weak anchoring liquid crystal alignment agent of the present invention and provided with a weak anchoring alignment film, and a second substrate or a second substrate provided with a strong anchoring horizontal alignment film. Fabricated using a first substrate.
  • the liquid crystal display element can be made into a reflective liquid crystal display element by, for example, providing a reflective electrode, a transparent electrode, a ⁇ /4 plate, a polarizing film, a color filter layer, etc. in a liquid crystal cell according to a conventional method as required.
  • a transmissive liquid crystal display element can be obtained by providing a backlight, a polarizing plate, a ⁇ /4 plate, a transparent electrode, a polarizing film, a color filter layer, etc. in a conventional manner to the liquid crystal cell as necessary.
  • FIG. 1 is a schematic cross-sectional view showing an example of a horizontal electric field liquid crystal display element of the present invention, and is an example of an IPS type liquid crystal display element.
  • a liquid crystal 3 is sandwiched between a comb-teeth electrode substrate 2 having a liquid crystal alignment film 2c and a counter substrate 4 having a liquid crystal alignment film 4a.
  • the comb-teeth electrode substrate 2 includes a base material 2a, a plurality of linear electrodes 2b formed on the base material 2a and arranged in a comb-teeth shape, and a plurality of linear electrodes 2b formed on the base material 2a so as to cover the linear electrodes 2b.
  • the counter substrate 4 has a base material 4b and a weak anchoring liquid crystal alignment film or a strong anchoring horizontal alignment film (liquid crystal alignment film 4a) formed on the base material 4b.
  • the liquid crystal alignment film 2c is, for example, a weak anchoring alignment film or a strong anchoring horizontal alignment film of the present invention.
  • the liquid crystal alignment films provided on the opposing substrates are each made of a combination of a strong anchoring alignment film and a weak anchoring liquid crystal alignment film. In this horizontal electric field liquid crystal display element 1, when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by lines of electric force L.
  • FIG. 2 is a schematic cross-sectional view showing another example of the horizontal field liquid crystal display element of the present invention, and is an example of an FFS type liquid crystal display element.
  • a liquid crystal 3 is sandwiched between a comb-teeth electrode substrate 2 having a liquid crystal alignment film 2h and a counter substrate 4 having a liquid crystal alignment film 4a.
  • the comb-teeth electrode substrate 2 is formed on a base material 2d, a surface electrode 2e formed on the base material 2d, an insulating film 2f formed on the surface electrode 2e, and an insulating film 2f, and has a comb-like shape.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 4a is similar to the liquid crystal alignment film 4a in FIG. 1 described above.
  • the liquid crystal alignment film 2h is similar to the liquid crystal alignment film 2c in FIG. 1 described above.
  • this horizontal electric field liquid crystal display element 1 when a voltage is applied to the plane electrode 2e and the linear electrode 2g, an electric field is generated between the plane electrode 2e and the linear electrode 2g as shown by lines of electric force L.
  • Me represents a methyl group
  • Et represents an ethyl group
  • ISOBAM-06 Poly(isobutylene-o-maleic anhydride) (weight average molecular weight 80,000-90,000, manufactured by Kuraray)
  • ISOBAM-10 Poly(isobutylene-o-maleic anhydride) (weight average molecular weight 160,000-170,000, manufactured by Kuraray)
  • ISOBAM-18 Poly(isobutylene-o-maleic anhydride) (weight average molecular weight 300,000-350,000, manufactured by Kuraray)
  • Viscosity measurement The viscosity of polyamic acid solutions, etc. was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) using a sample volume of 1.1 mL (milliliter), a cone rotor TE-1 (1° 34', R24), and a temperature of 25 mm. Measured at °C.
  • the molecular weight of the polymer was determined using a room temperature gel permeation chromatography (GPC) device (CBM-20A) (manufactured by Shimadzu Corporation) and a column (Shodex (registered trademark) KF-804L and KF-803L in series) (manufactured by Showa Denko). It was measured as follows. Column temperature: 40°C Eluent: Tetrahydrofuran Flow rate: 1.0 mL/min Standard sample for creating a calibration curve: Standard polystyrene (molecular weight: 197000, 55100, 12800, 3950, 1260) (manufactured by Tosoh Corporation)
  • N,N-dimethyllaurylamine (2.0 mg) and Xylene (20.0 g) were added, stirred at room temperature to dissolve, and then heated and stirred in an oil bath set at 140° C. for 6 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50.0 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was separated by filtration, slurry washing was performed twice with methanol (50.0 g) for 30 minutes, and the solid was vacuum-dried at 50°C to obtain macromonomer p(A-9)''. Obtained. Mn: 6,100, Mw: 9,900.
  • Example 1 ⁇ Preparation of weak anchoring liquid crystal alignment agent> (Example 1) Weigh 0.6 g of BC-1 obtained in Synthesis Example 2-1 into a 10 mL vial equipped with a stirring bar, add 6.4 g of DEAc, and 3.0 g of PB, and stir at room temperature for 1 hour. In this way, a weakly anchoring liquid crystal aligning agent (WAS-1) was obtained.
  • WAS-1 weakly anchoring liquid crystal aligning agent
  • Examples 2 to 81 Comparative Examples 1 to 3
  • Examples 2 to 81 Comparative Examples 1 to 3
  • Tables 7-1 to 7-3 Weak anchoring liquid crystal alignment agents (WAS-2) to (WAS-84) were obtained.
  • WAS-84 Weak anchoring liquid crystal alignment agents
  • the prepared liquid crystal aligning agent if there was no precipitation or turbidity, it was rated as "good”, and if either precipitation or turbidity occurred, it was rated as "poor”.
  • the results are shown in Table 7-1, Table 7-2 and Table 7-3.
  • % by mass in the table represents the mass ratio (%) of each component in the liquid crystal aligning agent.
  • flexographic printing (flexographic printing machine manufactured by Comratec, substrate: 100 mm x 100 mm Cr vapor-deposited substrate, printing speed: 20 m/min, printing pressure: 0.12 mm, anilox roll: #350- 28 ⁇ m, printing size: #600 mesh, 25%, 52°, 80 mm x 80 mm, leveling time: 40 sec, main firing conditions: 230° C., 1200 sec), and the applicability was evaluated.
  • the printing tact and drying conditions were as shown in Table 10, and the drying time was 120 seconds.
  • the solvent used in the present invention shows good coating properties in flexographic printing tests using specific solvents, but slight defects may occur under conditions where the standing time is long or drying is extremely accelerated. Examples 163, 167). This is due to the fact that the specific solvent has a low boiling point. On the other hand, when a specific high boiling point solvent is used, good coating properties and good film conditions are exhibited even in the above-mentioned severe evaluation (Examples 164 to 166, 168 to 170).
  • a substrate with electrodes was prepared.
  • the substrate used was an alkali-free glass substrate measuring 30 mm x 35 mm and having a thickness of 0.7 mm.
  • An ITO (INDIUM-TIN-OXIDE) electrode is formed on the substrate with a comb-shaped pattern with an electrode width of 3 ⁇ m, an electrode spacing of 6 ⁇ m, and an angle of 10° with respect to the long side of the substrate. and formed pixels.
  • the size of each pixel was 10 mm in length and about 5 mm in width.
  • the liquid crystal aligning agents (WAS-1 to WAS-84) obtained by the above method and the liquid crystal aligning agent for horizontal alignment (NRB-U973 (manufactured by Nissan Chemical Co., Ltd.)) were each passed through a filter with a pore size of 1.0 mm.
  • the prepared IPS substrate and a glass substrate (hereinafter referred to as the counter substrate) having an ITO film formed on the back surface and having columnar spacers with a height of 3.0 ⁇ m were used as the counter substrate.
  • Application and film formation were performed using a spin coating method. Next, it was dried on a hot plate at 80° C. for 2 minutes and then baked at 230° C.
  • the coating film on the IPS substrate was oriented in the direction along the comb-toothed direction, and the coating film on the counter substrate was oriented in the direction perpendicular to the comb-teeth electrodes.
  • a photo-alignment method was used for the alignment treatment of NRB-U973, and for WAS-1 to WAS-84, the substrates after firing were used as they were without any alignment treatment.
  • liquid crystal MLC-3019 (manufactured by Merck)
  • injection port was sealed to obtain an antiparallel-aligned liquid crystal cell.
  • the obtained liquid crystal cell constitutes an IPS type liquid crystal display element.
  • the obtained liquid crystal cell was heat-treated at 120° C. for 10 minutes to obtain a liquid crystal display element.
  • VT curve ⁇ Measurement of VT curve and evaluation of drive threshold voltage, maximum brightness voltage, and transmittance>
  • Set the white LED backlight and brightness meter so that the optical axes are aligned, set the liquid crystal cell (liquid crystal display element) with a polarizing plate attached so that the brightness is the lowest, and apply a voltage up to 8V at 1V intervals.
  • the VT curve was measured by applying the voltage and measuring the brightness at the voltage. A voltage was applied from a state where no voltage was applied, and the voltage value (Vth) at 10% of the maximum transmitted brightness was estimated. The value of the voltage (Vmax) at which the brightness becomes maximum was estimated from the obtained VT curve.
  • the maximum transmittance (Tmax) was estimated by setting the parallel Nicol transmission brightness as 100% through a liquid crystal cell with no voltage applied, and comparing the maximum transmission brightness on the VT curve.
  • the present invention it is possible to produce a stable weak anchoring film using an extremely simple method compared to conventional technology, so it is possible to reduce the process load and improve the yield in the production of weak anchoring IPS in actual industrialization. .
  • the materials and methods of the present invention while suppressing the occurrence of pre-tilt angles due to narrowing of the cell gap, we have achieved faster response when the voltage is turned off, reduced burn-in, and higher backlash in low-temperature environments compared to conventional technology. Since light transmittance and low voltage driving can be realized, it is possible to provide a material and a horizontal electric field liquid crystal display element that can stably exhibit excellent characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

Provided is a weak-anchoring liquid crystal aligning agent which is used for the formation of a liquid crystal alignment film in a liquid crystal cell having a liquid crystal and the liquid crystal alignment film, and comprises a polymer (P) produced by a compound that has a polymerizable group having a polymerizable unsaturated hydrocarbon group and a compound serving as a solvent and represented by formula (1). (In formula (S1), Q1 and Q2 each independently represent an alkyl group having 1 to 4 carbon atoms; and Q3 represents a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, an alkoxyalkyl group having 2 to 8 carbon atoms, an alkylcarbonylalkyl group having 4 to 8 carbon atoms, or a hydrogen atom; in which the total number of carbon atoms in Q1, Q2 and Q3 is 4 or more.)

Description

弱アンカリング液晶配向剤、及び液晶表示素子Weak anchoring liquid crystal alignment agent and liquid crystal display element
 本発明は、安価で複雑な工程を含まない手法にて、弱アンカリング特性を発現する有機膜(弱アンカリング膜)を製造することが可能であり、更なる高輝度化、低電圧駆動化を実現するための液晶表示素子、並びにそれらに利用可能な、弱アンカリング液晶配向剤、及び共重合体に関するものである。 The present invention makes it possible to produce an organic film that exhibits weak anchoring properties (weak anchoring film) using a method that is inexpensive and does not involve complicated processes, and enables even higher brightness and lower voltage driving. The present invention relates to a liquid crystal display element for realizing the above, and a weakly anchoring liquid crystal aligning agent and a copolymer that can be used therefor.
 近年、携帯電話、コンピュータ及びテレビのディスプレイなどには液晶表示素子が広く用いられている。液晶表示素子は薄型、軽量、低消費電力などの特性を有しており、今後はVR(Virtual Reality)や超高精細のディスプレイ等、更なるコンテンツへの応用が期待されている。液晶ディスプレイの表示方式には、TN(Twisted Nematic)方式、IPS(In-Plane Switching)方式、VA(Vertical Alignment)方式など様々な表示方式が提案されているが、すべての表示方式には液晶を所望の配向状態に誘導する膜(液晶配向膜)が使用されている。 In recent years, liquid crystal display elements have been widely used in displays for mobile phones, computers, televisions, and the like. Liquid crystal display elements have characteristics such as being thin, lightweight, and low power consumption, and are expected to be applied to further content such as VR (Virtual Reality) and ultra-high-definition displays in the future. Various display methods have been proposed for liquid crystal displays, including the TN (Twisted Nematic) method, the IPS (In-Plane Switching) method, and the VA (Vertical Alignment) method. A film (liquid crystal alignment film) that induces a desired alignment state is used.
 特にタブレットPCやスマートフォン、スマートTV等のタッチパネルを具備した製品には、タッチしても表示が乱れにくいIPS方式が好まれており、近年ではコントラストや視野角特性を改善するためFFS(Frindge Field Switching)方式を用いた液晶表示素子や光配向法を用いた液晶配向技術が用いられる。 In particular, for products equipped with touch panels such as tablet PCs, smartphones, and smart TVs, the IPS method is preferred because the display is less distorted even when touched, and in recent years FFS (Fringe Field Switching ) liquid crystal display elements using the method and liquid crystal alignment technology using the optical alignment method are used.
 しかしながら、FFS方式はIPS方式に比べて基板の製造コストが高いこと、Vcomシフトと呼ばれる特有の表示不良が発生することが課題である。また光配向法は、ラビング配向法に比べ、素子の拡大に適応しやすい点や表示特性を大きく向上できる点にメリットがある一方、原理上の課題(光分解型材料を用いると分解物由来の表示不良、光異性化型であれば配向力不足による焼き付きなど)が挙げられる。これらの課題を解決するために液晶表示素子メーカーや液晶配向膜メーカーは種々工夫を行っているのが現状である。 However, the FFS method has problems in that the manufacturing cost of the substrate is higher than that in the IPS method, and a unique display defect called Vcom shift occurs. Furthermore, compared to the rubbing alignment method, the photo-alignment method has the advantage of being easier to adapt to device enlargement and greatly improving display characteristics, but there are some theoretical issues (when using photodegradable materials, Display defects, and if the photoisomerization type is used, there may be burn-in due to insufficient alignment power, etc.). In order to solve these problems, liquid crystal display element manufacturers and liquid crystal alignment film manufacturers are currently making various efforts.
 近年、液晶セルにおける液晶と基材の接触界面において、高分子と液晶との相溶界面(完全濡れ状態の液体-液晶界面)を形成することで、面内方向に配向規制力を持たない「ゼロ面アンカリング」状態を作り出せることが見出され、スイッチング閾値がなく、配向メモリ性のある液晶スイッチングデバイスが報告されている(特許文献1参照)。 In recent years, at the contact interface between the liquid crystal and the base material in a liquid crystal cell, a compatible interface (completely wet liquid-liquid crystal interface) is formed between the polymer and the liquid crystal, which has no alignment regulating force in the in-plane direction. It has been discovered that it is possible to create a "zero-plane anchoring" state, and a liquid crystal switching device that has no switching threshold and has orientation memory has been reported (see Patent Document 1).
 弱アンカリング技術を応用した弱アンカリングIPS方式が提案されている。これは従来のIPS方式に比べてコントラスト比の向上や大幅な低電圧駆動が実現できる(特許文献2参照)。 A weak anchoring IPS method that applies weak anchoring technology has been proposed. This can improve the contrast ratio and realize significantly lower voltage driving than the conventional IPS method (see Patent Document 2).
 弱アンカリングIPS方式は、片側の基板に強いアンカリングエネルギーを有する液晶配向膜を、もう一方の基板側(横電界を発生する電極を具備する)にアンカリングエネルギーを有さない処理を施した有機薄膜を用いることで作られる。 The weak anchoring IPS method uses a liquid crystal alignment film that has strong anchoring energy on one substrate, and a process that does not have anchoring energy on the other substrate (which is equipped with an electrode that generates a transverse electric field). It is made using organic thin films.
 近年では、濃厚ポリマーブラシを基板に直接設ける方法を用いた弱アンカリングIPS方式が提案されている(特許文献3参照)。 In recent years, a weak anchoring IPS method using a method of directly providing a thick polymer brush on a substrate has been proposed (see Patent Document 3).
 また、別手法として光ラジカル発生可能な液晶配向膜とラジカル重合可能な化合物を用いて、液晶中でUVを照射しラジカル反応をさせることにより弱アンカリング化させた、弱アンカリングIPS方式が提案されている(特許文献4参照)。この技術により、量産可能な手法によりコントラスト比の向上や大幅な低電圧駆動に加え、高速応答化や焼き付きの低減が実現された。 In addition, as another method, a weak anchoring IPS method has been proposed, which uses a liquid crystal alignment film that can generate photoradicals and a compound that can undergo radical polymerization, and generates weak anchoring by irradiating UV in the liquid crystal and causing a radical reaction. (See Patent Document 4). With this technology, in addition to improving contrast ratio and significantly lower voltage drive using a method that can be mass-produced, we have achieved faster response and reduced burn-in.
特許第2006-84536号公報Patent No. 2006-84536 特許第4053530号公報Patent No. 4053530 特開2013-231757号公報Japanese Patent Application Publication No. 2013-231757 国際公開第2019/004433号パンフレットInternational Publication No. 2019/004433 pamphlet
 濃厚ポリマーブラシを基板に直接設ける方法(特許文献3)は、基板に反応点を設ける表面処理工程、及び基板表面の反応点からポリマーを成長させる工程を要するため工程が複雑化する点、並びに高度な脱酸素条件を要するため環境を厳密に制御する必要がある点から技術的な難易度が高く、量産化の観点で現実的でない。そこで固着部位を有するボトルブラシポリマーを基板上に塗布することで弱アンカリングIPS表示素子を得る方法も提案されているが、ボトルブラシポリマーを製造する際に、重合開始部位を有するマクロモノマーを使用し、加えていずれもリビングラジカル重合を用いて製造するため大量供給が難しいという問題がある。加えてボトルブラシポリマーは溶媒選択性が乏しく、従来頻繁に使用されるN-メチル-2-ピロリドン(NMP)やγ-ブチロラクトン(GBL)などへの溶解性が低いなど、通常使用される塗布工程において大きな課題を有することが考えられ、その構造故、シールや基板上への密着性も乏しいため、それらを解決できるような手法を考える必要がある。 The method of directly providing a dense polymer brush on a substrate (Patent Document 3) requires a surface treatment step to provide reaction points on the substrate and a step of growing the polymer from the reaction points on the substrate surface, which complicates the process and requires high altitude. This method is technically difficult because it requires strict deoxidation conditions and the environment must be strictly controlled, making it impractical from the perspective of mass production. Therefore, a method has been proposed in which a weakly anchored IPS display element is obtained by applying a bottlebrush polymer having an anchoring site onto a substrate.However, when manufacturing a bottlebrush polymer, a macromonomer having a polymerization initiation site is used. However, in addition, since both are produced using living radical polymerization, there is a problem in that it is difficult to supply them in large quantities. In addition, bottle brush polymers have poor solvent selectivity and low solubility in commonly used N-methyl-2-pyrrolidone (NMP) and γ-butyrolactone (GBL). Because of its structure, it has poor sealing and adhesion to substrates, so it is necessary to devise a method that can solve these problems.
 本発明者らは、弱アンカリング性を示す材料として液晶に不溶または加熱によって不溶化するブロックセグメントと液晶に相溶するブロックセグメントを有するブロックコポリマー等を提案している(特願2021-96448、及びWO2022/260048参照)。しかし、前記ボトルブラシポリマーや前記ブロックコポリマーは総じて一般的な液晶配向剤(液晶配向膜を形成するために用いる剤)に用いられるNMP(N-メチル-2-ピロリドン)やGBL(γ-ブチロラクトン)への溶解性が乏しく、溶解性は示すが保存時に析出したりゲル化してしまったりすることが課題であり、これらの溶媒を用いて塗布するとピンホールやムラの発生等が起こりやすくなる。
 さらに、前記ブロックコポリマー等が有する液晶に相溶するブロックセグメントは、その構造故、極性を有さず、粘度が低い。そのため液晶配向膜の塗膜均一性、特に端部の塗膜性が低下しやすく、液晶配向膜の端部が直線ではない、あるいはその端部が盛り上がっている状態が起こりやすくなる。
 これらの要因から、液晶配向剤塗布工程に使用されるフレキソ印刷法やインクジェット方式での塗布等を用いて高品位な塗膜形成が難しいという課題を有している。そのため、弱アンカリングIPS表示素子で良好な特性が得られたとしても実際の製造工程にてテレビやスマートフォンなどのパネルが作製できないという問題が発生する。
The present inventors have proposed a block copolymer having a block segment that is insoluble in liquid crystal or becomes insolubilized by heating and a block segment that is compatible with liquid crystal as a material exhibiting weak anchoring properties (Japanese Patent Application No. 2021-96448 and (See WO2022/260048). However, the bottle brush polymer and the block copolymer are generally made of NMP (N-methyl-2-pyrrolidone) or GBL (γ-butyrolactone), which are used in general liquid crystal alignment agents (agents used to form liquid crystal alignment films). The problem is that although they show solubility, they tend to precipitate or gel during storage, and when these solvents are used for coating, pinholes and unevenness tend to occur.
Furthermore, the block segments of the block copolymer and the like that are compatible with the liquid crystal have no polarity and low viscosity due to their structure. Therefore, the coating uniformity of the liquid crystal alignment film, especially the coating properties at the edges, tends to deteriorate, and the edges of the liquid crystal alignment film are likely to be not straight or swollen.
Due to these factors, there is a problem in that it is difficult to form a high-quality coating film using a flexographic printing method, an inkjet method, or the like used in the liquid crystal aligning agent coating process. Therefore, even if good characteristics are obtained with a weakly anchored IPS display element, a problem arises in that panels for televisions, smartphones, etc. cannot be manufactured in the actual manufacturing process.
 このような技術的課題を解決できればパネルメーカーとしても大きなコストメリットとなり、バッテリーの消費抑制や画質の向上等にもメリットとなることが考えられる。 If such technical issues can be resolved, it will be a huge cost advantage for panel manufacturers, and it is also thought to have benefits such as reducing battery consumption and improving image quality.
 本発明は、上記のような課題を解決するためになされたものであり、従来の手法に比べより高品位な塗膜が形成できる弱アンカリング液晶配向剤、それ用いた弱アンカリングIPS表示素子、及び狭セルギャップ化においてもプレチルト角の発生なく安定的に低電圧駆動と電圧OFF時の高速応答化が同時に実現でき、加えて焼き付きを低減でき、低温環境で高いバックライト透過率と低電圧駆動の両立を実現できる横電界液晶表示素子を提供することを目的とする。 The present invention was made to solve the above-mentioned problems, and provides a weakly anchoring liquid crystal aligning agent that can form a coating film of higher quality than conventional methods, and a weakly anchoring IPS display element using the same. , even in narrow cell gaps, stable low-voltage drive without the occurrence of pre-tilt angles and high-speed response when the voltage is turned off can be achieved at the same time.In addition, burn-in can be reduced, and high backlight transmittance and low voltage can be achieved in low-temperature environments. It is an object of the present invention to provide a transverse electric field liquid crystal display element that can achieve both driving performance.
 本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。 In order to solve the above problems, the present inventors conducted intensive studies, and as a result found that the above problems could be solved, and completed the present invention having the following gist.
 すなわち、本発明は以下を包含する。
 [1] 液晶と、液晶配向膜とを有する液晶セルの前記液晶配向膜の形成に用いられ、
 重合可能な不飽和炭化水素基を有する重合性基を有する化合物から得られる重合体(P)、及び溶媒として下記式(1)で表される化合物を含有する弱アンカリング液晶配向剤。
Figure JPOXMLDOC01-appb-C000013
(式(S1)中、Q及びQはそれぞれ独立に炭素数1~4のアルキル基を表し、Qは炭素数1~8の直鎖状、分岐状、あるいは環状のアルキル基、炭素数2~8のアルコキシアルキル基、炭素数4~8のアルキルカルボニルアルキル基または水素原子を表し、Q、Q及びQの炭素数の合計は4以上である。)
 [2] 前記式(1)で表される化合物が、N,N-ジエチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジブチルホルムアミド、N,N-ジプロピルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジエチルプロピオンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、2-メトキシ-N,N-ジエチルアセトアミド、3-メトキシ-N,N-ジエチルプロパンアミド、4-オキソ-N,N-ジエチルペンタンアミド、及びN,N-ジエチルシクロヘキサンカルボアミドから選ばれる少なくとも1種である[1]に記載の弱アンカリング液晶配向剤。
 [3] 前記式(1)で表される化合物の含有量が、前記弱アンカリング液晶配向剤に含まれる溶媒成分の全体量に対して、10~90質量%である[1]~[2]のいずれかに記載の弱アンカリング液晶配向剤。
 [4] 前記重合体(P)が、下記重合体(α)及び重合体(β)からなる群から選択される少なくとも1種である、[1]~[3]のいずれかに記載の弱アンカリング液晶配向剤。
 重合体(α):前記液晶に相溶するブロックセグメント(A)と、前記液晶に相溶しない又は焼成により前記液晶に不溶化するブロックセグメント(B)とを有するブロック共重合体。
 重合体(β):幹ポリマーと、前記幹ポリマーの側鎖として前記幹ポリマーに結合した枝ポリマーとを有するグラフト共重合体であり、前記枝ポリマーが、前記液晶と相溶し、前記幹ポリマーが、前記液晶に相溶しない又は焼成により前記液晶に不溶化する、グラフト共重合体。
 [5] 前記重合体(α)における前記ブロックセグメント(A)及び前記重合体(β)における枝ポリマーが、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、及び下記式(5)で表される化合物からなる群から選択される少なくとも1種を、構成成分として含み、
 前記重合体(α)における前記ブロックセグメント(B)及び前記重合体(β)における幹ポリマーが、下記式(6)で表される化合物を、構成成分として含む、
[4]に記載の弱アンカリング液晶配向剤。
Figure JPOXMLDOC01-appb-C000014
(式(2)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、又はチオエーテル結合を表し、Rは結合基が挿入されていてもよい炭素数1~20のアルキル基を表し、nは1~2の整数である。nが2の場合、2つのX及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000015
(式(3)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Sは単結合、又は結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表し、Tは下記式(3-T)で表される有機基を表し、nは1~2の整数である。nが2の場合、2つのTは同一であってもよいし、異なっていてもよい。ただし、nが2の場合、Sは結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000016
(式(3-T)中、*は結合部位を示す。Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又はアルキル基を表す。)から選ばれる結合基であり、Cyは6~20員環の非芳香族の環状基を表す。)
Figure JPOXMLDOC01-appb-C000017
(式(4)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子又は下記式(4-X)を表す。ただし、3つのXの少なくとも一つは式(4-X)を表す。)
Figure JPOXMLDOC01-appb-C000018
(式(4-X)中、Yは単結合、-O-、-S-又は-N(R)-(RはNに結合する、水素原子又は炭素数1~4のアルキル基を表す。)を表し、*は結合部位を示す。R、R、及びRは、それぞれ独立して、炭素数1~6のアルキル基又は置換基を有していてもよい芳香族炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000019
(式(5)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、R~Rはそれぞれ独立して単結合、又は結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、X及びXはそれぞれ独立して水素原子、又は置換基を有していてもよい芳香族炭化水素基を表し、RとRとR及びRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、R及びRの合計炭素数は1以上である。)
Figure JPOXMLDOC01-appb-C000020
(式(6)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、nは1~2の整数である。Zは下記式(6-Z)で表される基を表す。nが2の場合、2つのZは同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000021
(式(6-Z)中、Lはトリアルコキシシリル基、イソシアネート基、ブロックイソシアネート基、エポキシ基、オキセタン基、ビニル基、アリル基、オキサゾリン基、アミノ基、保護アミノ基、アニリン基、保護アニリン基、ヒドロキシ基、保護ヒドロキシ基、フェノール基、保護フェノール基、チオール基、保護チオール基、チオフェノール基、保護チオフェノール基、アルデヒド基、カルボキシ基、マレイミド基、N-ヒドロキシスクシンイミドエステル基、結合基が挿入されていてもよい炭素数5~18の芳香族炭化水素基、結合基が挿入されていてもよい炭素数5~18の芳香族複素環基、桂皮酸基、桂皮酸芳香族エステル基、桂皮酸アルキルエステル基、シンナミル基、フェニルベンゾエート基、アゾベンゼン基、N-ベンジリデンアニリン基、スチルベン基、及びトラン基からなる群から選択される官能基を表す。Jは単結合又は炭素数1~6の脂肪族炭化水素基を表す。Kは、芳香族炭化水素基と結合する場合、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、及びチオエーテル結合から選ばれる連結基を示し、それ以外の場合は、単結合を示す。*は結合部位を表す。mは1~3の整数である。mが2又は3の場合、複数のK及びLは同一であってもよいし、異なっていてもよい。ただし、Jが単結合の場合、mは1である。)
 [6] 前記重合体(β)における前記枝ポリマーが、下記式(7)で表されるマクロモノマーに由来する、[5]に記載の弱アンカリング液晶配向剤。
Figure JPOXMLDOC01-appb-C000022
(式(7)中、Pは重合可能な不飽和炭化水素基を有する重合性基を表し、Qは前記式(2)~(5)で表される化合物の少なくとも1種を含むモノマーを重合することによって得られる構造であり、nは1~2の整数である。nが2の場合、2つのQは同一であってもよいし、異なっていてもよい。)
 [7] 前記式(2)中のMが、下記で表されるいずれかの構造であり、
 前記式(3)中のMが、下記で表されるいずれかの構造であり、
 前記式(4)中のMが、下記で表されるいずれかの構造であり、
 前記式(5)中のMが、下記で表されるいずれかの構造であり、
 前記式(6)中のMが、下記で表されるいずれかの構造である、
[5]に記載の弱アンカリング液晶配向剤。
Figure JPOXMLDOC01-appb-C000023
(式中、R、及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、X、Y、及びZはそれぞれ独立して酸素原子又は硫黄原子を表す。*、*及び*は結合部位を表し、*及び*のどちらか一方は水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基で置き換えられていてもよい。)
 [8] 前記重合体(α)、及び前記重合体(β)が、下記式(B-1)~(B-17)で表される化合物からなる群から選択される少なくとも1種を構成成分として含む、[4]~[7]のいずれかに記載の弱アンカリング液晶配向剤。
Figure JPOXMLDOC01-appb-C000024
 (式(B-1)~(B-17)中、Meは、メチル基を表し、Etは、エチル基を表す。)
 [9] [1]~[8]のいずれかに記載の弱アンカリング液晶配向剤を用いて得られた液晶表示素子。
 [10] 横電界液晶表示素子である[9]に記載の液晶表示素子。
 [11] [1]~[8]のいずれかに記載の弱アンカリング液晶配向剤を塗布、焼成することを含む、液晶表示素子の製造方法。
 [12] 前記液晶表示素子が横電界液晶表示素子である[11]に記載の液晶表示素子の製造方法。
That is, the present invention includes the following.
[1] Used for forming the liquid crystal alignment film of a liquid crystal cell having a liquid crystal and a liquid crystal alignment film,
A weakly anchoring liquid crystal aligning agent containing a polymer (P) obtained from a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group, and a compound represented by the following formula (1) as a solvent.
Figure JPOXMLDOC01-appb-C000013
(In formula (S1), Q 1 and Q 2 each independently represent an alkyl group having 1 to 4 carbon atoms, and Q 3 represents a linear, branched, or cyclic alkyl group having 1 to 8 carbon atoms; represents an alkoxyalkyl group having 2 to 8 carbon atoms, an alkylcarbonylalkyl group having 4 to 8 carbon atoms, or a hydrogen atom, and the total number of carbon atoms of Q 1 , Q 2 and Q 3 is 4 or more.)
[2] The compound represented by the formula (1) is N,N-diethylacetamide, N,N-diethylformamide, N,N-dibutylformamide, N,N-dipropylacetamide, N,N-dimethylpropion Amide, N,N-diethylpropionamide, 3-methoxy-N,N-dimethylpropanamide, 2-methoxy-N,N-diethylacetamide, 3-methoxy-N,N-diethylpropanamide, 4-oxo-N , N-diethylpentanamide, and N,N-diethylcyclohexanecarboxamide, the weakly anchoring liquid crystal aligning agent according to [1].
[3] The content of the compound represented by the formula (1) is 10 to 90% by mass with respect to the total amount of the solvent component contained in the weakly anchoring liquid crystal aligning agent [1] to [2] ] The weak anchoring liquid crystal aligning agent according to any one of the above.
[4] The weak polymer according to any one of [1] to [3], wherein the polymer (P) is at least one selected from the group consisting of the following polymers (α) and polymers (β). Anchoring liquid crystal alignment agent.
Polymer (α): A block copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is not compatible with the liquid crystal or becomes insolubilized in the liquid crystal upon firing.
Polymer (β): A graft copolymer having a trunk polymer and a branch polymer bonded to the trunk polymer as a side chain of the trunk polymer, and the branch polymer is compatible with the liquid crystal and the trunk polymer is not compatible with the liquid crystal or becomes insoluble in the liquid crystal upon firing.
[5] The block segment (A) in the polymer (α) and the branch polymer in the polymer (β) are a compound represented by the following formula (2), a compound represented by the following formula (3), Containing as a constituent component at least one selected from the group consisting of a compound represented by the following formula (4) and a compound represented by the following formula (5),
The block segment (B) in the polymer (α) and the backbone polymer in the polymer (β) contain a compound represented by the following formula (6) as a constituent component,
Weak anchoring liquid crystal aligning agent according to [4].
Figure JPOXMLDOC01-appb-C000014
(In formula (2), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond. , R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same. (It may be different or it may be different.)
Figure JPOXMLDOC01-appb-C000015
(In formula (3), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein. , T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.)
Figure JPOXMLDOC01-appb-C000016
(In formula (3-T), * indicates a bonding site. X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
Figure JPOXMLDOC01-appb-C000017
(In formula (4), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms, and 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).)
Figure JPOXMLDOC01-appb-C000018
(In formula (4-X), Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site. R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent. )
Figure JPOXMLDOC01-appb-C000019
(In formula (5), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted. represents an alkylene group of 1 to 6, Ar represents an aromatic hydrocarbon group that may have a substituent, and X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together. The total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.)
Figure JPOXMLDOC01-appb-C000020
(In formula (6), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and n is an integer of 1 to 2. Z represents a group represented by the following formula (6-Z). (If n is 2, the two Zs may be the same or different.)
Figure JPOXMLDOC01-appb-C000021
(In formula (6-Z), L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinnamic acid aromatic ester group , a cinnamic acid alkyl ester group, a cinnamyl group, a phenylbenzoate group, an azobenzene group, an N-benzylideneaniline group, a stilbene group, and a tolan group. J is a single bond or has 1 to 1 carbon atoms. 6 represents an aliphatic hydrocarbon group.When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, an ether bond, an ester bond, an amide bond, a urea bond, a urethane bond, and a thioether bond. In other cases, it indicates a single bond. * represents a binding site. m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same. (However, if J is a single bond, m is 1.)
[6] The weakly anchoring liquid crystal aligning agent according to [5], wherein the branch polymer in the polymer (β) is derived from a macromonomer represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000022
(In formula (7), P represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and Q represents a polymerizable monomer containing at least one of the compounds represented by formulas (2) to (5) above. (n is an integer of 1 to 2. When n is 2, the two Qs may be the same or different.)
[7] M in the formula (2) is any of the structures represented below,
M in the formula (3) is any of the structures represented below,
M in the formula (4) is any of the structures represented below,
M in the formula (5) is any of the structures represented below,
M in the formula (6) is any of the structures represented below,
Weak anchoring liquid crystal aligning agent according to [5].
Figure JPOXMLDOC01-appb-C000023
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and X, Y, and Z each independently represent an oxygen atom or a sulfur atom. *, * 1 and * 2 represent bonding sites, and either one of * 1 and * 2 may be replaced with a hydrogen atom or a straight chain or branched alkyl group having 1 to 12 carbon atoms.)
[8] The polymer (α) and the polymer (β) contain at least one constituent selected from the group consisting of compounds represented by the following formulas (B-1) to (B-17). The weakly anchoring liquid crystal aligning agent according to any one of [4] to [7], comprising:
Figure JPOXMLDOC01-appb-C000024
(In formulas (B-1) to (B-17), Me represents a methyl group, and Et represents an ethyl group.)
[9] A liquid crystal display element obtained using the weakly anchoring liquid crystal aligning agent according to any one of [1] to [8].
[10] The liquid crystal display element according to [9], which is a lateral electric field liquid crystal display element.
[11] A method for manufacturing a liquid crystal display element, comprising applying and baking the weakly anchoring liquid crystal aligning agent according to any one of [1] to [8].
[12] The method for manufacturing a liquid crystal display element according to [11], wherein the liquid crystal display element is a horizontal field liquid crystal display element.
 本発明によれば、従来技術に比べて極めて単純な手法で安定した弱アンカリング配向膜を製造できるため、実際の工業化において弱アンカリング横電界液晶表示素子の製造に掛かる工程負荷の低減や歩留まりの改善が可能となる。本発明の材料および手法を用いることで、従来技術に比べて組成物溶液の安定性にすぐれ、フレキソ印刷による塗布性が大きく向上し、優れた弱アンカリングIPS特性を安定して発現できる材料および横電界液晶表示素子を提供することができる。 According to the present invention, a stable weak anchoring alignment film can be produced using an extremely simple method compared to the conventional technology, thereby reducing the process load and yield rate required for producing weak anchoring horizontal electric field liquid crystal display elements in actual industrialization. It is possible to improve the By using the material and method of the present invention, the stability of the composition solution is superior to that of the conventional technology, the applicability by flexographic printing is greatly improved, and the material can stably exhibit excellent weak anchoring IPS properties. A transverse electric field liquid crystal display element can be provided.
本発明の横電界液晶表示素子の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a horizontal electric field liquid crystal display element of the present invention. 本発明の横電界液晶表示素子の他の例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing another example of the horizontal electric field liquid crystal display element of the present invention.
(弱アンカリング)
 本発明において「弱アンカリング」とは、液晶分子を基板に対して方位角方向または極角方向へ配向規制する力は有しているが、アンカリング強度(すなわち液晶分子の位置を保持する、あるいは液晶分子の配向が変化しても元の状態に戻す、界面弾性エネルギー)が全く無いか、あったとしても液晶同士の分子間力よりも弱いことを意味し、本発明の弱アンカリングにおいては方位角アンカリング強度(A)が10-5[J/m]よりも小さい場合を指す。特開2013-231757号公報に記載の通り、基材界面に液晶と完全濡れ状態を形成可能な重合体を設け、これと液晶が接することで高分子-液晶混合層が形成し、弱アンカリング状態が発現することが知られている。
(weak anchoring)
In the present invention, "weak anchoring" refers to having a force that regulates the alignment of liquid crystal molecules in the azimuthal or polar direction with respect to the substrate, but with anchoring strength (i.e., maintaining the position of the liquid crystal molecules). Alternatively, even if the orientation of liquid crystal molecules changes, there is no interfacial elastic energy to restore the original state, or even if there is, it is weaker than the intermolecular force between liquid crystals, and in the weak anchoring of the present invention. refers to the case where the azimuthal anchoring strength (A 2 ) is smaller than 10 −5 [J/m 2 ]. As described in JP-A No. 2013-231757, a polymer capable of forming a completely wet state with the liquid crystal is provided at the interface of the base material, and when the liquid crystal comes into contact with the polymer, a polymer-liquid crystal mixed layer is formed and weak anchoring is achieved. The condition is known to occur.
(弱アンカリング配向膜)
 本発明において「弱アンカリング配向膜」とは、液晶と接触することで弱アンカリング状態を形成する膜のことを意味し、固体膜に限定されず固体表面を被覆する液体膜も含まれる。
(Weak anchoring alignment film)
In the present invention, the term "weak anchoring alignment film" refers to a film that forms a weak anchoring state upon contact with liquid crystal, and is not limited to solid films, but also includes liquid films that cover solid surfaces.
(強アンカリング、強アンカリング配向膜)
 本発明において「強アンカリング」とは、液晶分子を一軸配向に配向規制し、外部からエネルギーが与えられても液晶の配向を保持することができる、あるいは液晶分子の配向が変化しても元の位置に戻すことができるアンカリング強度を有することを意味し、本発明の強アンカリングにおいては方位角アンカリング強度(A)が10-4[J/m]よりも大きい場合を指す。また、「強アンカリング配向膜」とは、液晶と接触することで強アンカリング状態を形成する膜のことを意味し、固体膜に限定されず固体表面を被覆する液体膜も含まれる。
(Strong anchoring, strong anchoring alignment film)
In the present invention, "strong anchoring" refers to the ability to regulate the alignment of liquid crystal molecules in a uniaxial alignment and maintain the alignment of the liquid crystal even when energy is applied from the outside, or the ability to maintain the alignment of the liquid crystal even if the alignment of the liquid crystal molecules changes. In the strong anchoring of the present invention, it refers to the case where the azimuthal anchoring strength (A 2 ) is greater than 10 −4 [J/m 2 ]. . Furthermore, the term "strongly anchoring alignment film" refers to a film that forms a strong anchoring state when it comes into contact with liquid crystal, and is not limited to solid films, but also includes liquid films that cover solid surfaces.
(弱アンカリング液晶表示素子)
 上記で定義された弱アンカリング配向膜と強アンカリング配向膜をそれぞれ電極付き基板に塗布し、対になるように張り合わせることで弱アンカリング液晶表示素子が作製できる。弱アンカリング液晶表示素子は、一方の液晶配向膜の方位角アンカリング強度が限りなく小さいため、弱い電界や外場エネルギーで液晶の配向変化を誘起でき、通常は動かない領域の液晶分子も配向変化させることが可能になることから、特にIPSやFFSのような櫛歯電極を用いたような表示素子においては、電界強度の弱い電極上の液晶分子も駆動可能となるため、対となる配向膜の両方が強アンカリング配向膜で構成された液晶表示素子と比べて高透過率化及び駆動電圧を低電圧化させることができる。
(Weak anchoring liquid crystal display element)
A weak anchoring liquid crystal display element can be produced by applying the weak anchoring alignment film and the strong anchoring alignment film defined above to a substrate with electrodes, respectively, and pasting them together in a pair. In weak anchoring liquid crystal display elements, the azimuthal anchoring strength of one liquid crystal alignment film is extremely small, so a weak electric field or external field energy can induce alignment changes in the liquid crystal, and liquid crystal molecules in areas that normally do not move can also be aligned. This makes it possible to drive liquid crystal molecules on electrodes with weak electric field strength, especially in display elements using comb-shaped electrodes such as IPS and FFS. Compared to a liquid crystal display element in which both of the films are composed of strong anchoring alignment films, higher transmittance and lower driving voltage can be achieved.
 方位角アンカリング強度とは、方位角方向に対する液晶分子と液晶配向膜間の界面弾性エネルギーの強度を表す指標である。方位角アンカリング強度を算出する方法としてトルクバランス法や強電場法、Geometry法(外場印加法)やフレデリクス転移法等が用いられる。 The azimuthal anchoring strength is an index representing the strength of interfacial elastic energy between liquid crystal molecules and a liquid crystal alignment film in the azimuthal direction. As a method for calculating the azimuthal anchoring strength, a torque balance method, a strong electric field method, a geometry method (external field application method), a Frederiks transfer method, etc. are used.
(弱アンカリング液晶配向剤)
 本発明の弱アンカリング液晶配向剤は、液晶と、液晶配向膜とを有する液晶セルの液晶配向膜の形成に用いられる。
 弱アンカリング液晶配向剤は、重合可能な不飽和炭化水素基を有する重合性基を有する化合物から得られる重合体(P)と、溶媒として下記式(1)で表される化合物(以下、「特定溶媒」と称することがある)とを含有する。
Figure JPOXMLDOC01-appb-C000025
(式(1)中、Q及びQはそれぞれ独立に炭素数1~4のアルキル基を表し、Qは炭素数1~8の直鎖状、分岐状、あるいは環状のアルキル基、炭素数2~8のアルコキシアルキル基、炭素数4~8のアルキルカルボニルアルキル基、または水素原子を表し、Q、Q及びQの炭素数の合計は4以上である。)
(Weak anchoring liquid crystal alignment agent)
The weakly anchoring liquid crystal aligning agent of the present invention is used for forming a liquid crystal aligning film of a liquid crystal cell having a liquid crystal and a liquid crystal aligning film.
The weak anchoring liquid crystal aligning agent comprises a polymer (P) obtained from a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group, and a compound represented by the following formula (1) as a solvent (hereinafter referred to as " (sometimes referred to as "specific solvents").
Figure JPOXMLDOC01-appb-C000025
(In formula (1), Q 1 and Q 2 each independently represent an alkyl group having 1 to 4 carbon atoms, and Q 3 represents a linear, branched, or cyclic alkyl group having 1 to 8 carbon atoms, represents an alkoxyalkyl group having 2 to 8 carbon atoms, an alkylcarbonylalkyl group having 4 to 8 carbon atoms, or a hydrogen atom, and the total number of carbon atoms in Q 1 , Q 2 and Q 3 is 4 or more.)
 重合体(P)は、好適には、重合体(α)、及び重合体(β)からなる群から選択される少なくとも1種である。 The polymer (P) is preferably at least one selected from the group consisting of polymers (α) and polymers (β).
 本発明の液晶配向剤は、重合体(P)として、以下で述べるブロック共重合体[重合体(α)]及び/又はグラフト共重合体[重合体(β)]からなる固形成分と、それらを溶解するための溶媒として、特定溶媒を含有することを好適な実施形態としている。
 ブロック共重合体とグラフト共重合体は弱アンカリング膜の材料であり、溶媒として使用する特定溶媒は前記のブロック共重合体やグラフト共重合体に対し非常に良好な溶解性を示すとともに、スピンコートやフレキソ印刷においても良好な塗布性を示すため、結果として非常に高品位な弱アンカリング液晶配向膜を得ることができる。
The liquid crystal aligning agent of the present invention includes a solid component consisting of a block copolymer [polymer (α)] and/or a graft copolymer [polymer (β)] described below as the polymer (P), and A preferred embodiment includes a specific solvent as a solvent for dissolving.
Block copolymers and graft copolymers are materials for weak anchoring films, and the specific solvent used as a solvent has very good solubility for the block copolymers and graft copolymers, and Since it shows good applicability in coating and flexographic printing, it is possible to obtain a weakly anchored liquid crystal alignment film of very high quality as a result.
 本発明で使用されるブロック共重合体及びグラフト共重合体は、従来使用する溶媒としてのNMPやGBLに対し溶解性が乏しく、溶解性は示すが保存時に析出したりゲル化することが課題であり、これらの溶媒を用いて塗布するとピンホールやムラの発生等が起こりやすくなる。さらに、ブロック共重合体及びグラフト共重合体が有する液晶に相溶するブロックセグメントは、その構造故、低極性で、粘度が低い。そのため液晶配向剤を塗布して得られる液晶配向膜の塗膜均一性、特に端部の塗膜性が低下しやすく、液晶配向膜の端部が直線ではない、あるいはその端部が盛り上がっている状態が起こりやすくなる。
 特定溶媒はアミド結合に由来する水素結合によって溶媒自体の粘度が高いことも特徴である。
 本発明の弱アンカリング液晶配向剤に特定溶媒を用いることでこれらの課題を解決できることが分かり、粘度を増大させ、液晶配向剤の保存安定性や塗布性・印刷性を向上させることができることが分かった。更にはフレキソ印刷に使用されるAPR印刷版へのダメージも少ないことも特徴として挙げられる。
The block copolymers and graft copolymers used in the present invention have poor solubility in conventionally used solvents such as NMP and GBL, and although they exhibit solubility, they precipitate or gel during storage. However, when these solvents are used for coating, pinholes and unevenness are likely to occur. Further, block copolymers and graft copolymers have block segments that are compatible with liquid crystals and have low polarity and low viscosity due to their structures. Therefore, the coating uniformity of the liquid crystal alignment film obtained by applying the liquid crystal alignment agent, especially the coating properties at the edges, tends to deteriorate, and the edges of the liquid crystal alignment film are not straight or are raised. condition becomes more likely.
The specific solvent is also characterized by its high viscosity due to hydrogen bonds derived from amide bonds.
It has been found that these problems can be solved by using a specific solvent in the weakly anchoring liquid crystal aligning agent of the present invention, and that it is possible to increase the viscosity and improve the storage stability, coatability, and printability of the liquid crystal aligning agent. Do you get it. Another feature is that it causes less damage to APR printing plates used in flexo printing.
 式(1)中のQ及びQにおける炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、tert-ブチル基などが挙げられる。これらの中でも、メチル基、エチル基が好ましい。
 式(1)中のQにおける炭素数1~8の直鎖状、分岐状、あるいは環状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、tert-ブチル基、シクロヘキシル基などが挙げられる。これらの中でも、メチル基、エチル基が好ましい。
 式(1)中のQにおける炭素数2~8のアルコキシアルキル基としては、例えば、C1~C4アルコキシC2~C4アルキル基が挙げられる。炭素数3~8のアルコキシアルキル基としては、例えば、2-メトキシエチル基、2-ブトキシエチル基、1-メトキシメチル基、2-メトキシエチル基、3-メトキシプロピル基などが挙げられる。
 式(1)中のQにおける炭素数4~8のアルキルカルボニルアルキル基としては、例えば、4-オキソペンチル基、3-オキソペンチル基、5-オキソヘキシル基などが挙げられる。
Examples of the alkyl group having 1 to 4 carbon atoms in Q 1 and Q 2 in formula (1) include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, and tert-butyl group. Examples include. Among these, methyl group and ethyl group are preferred.
Examples of the linear, branched, or cyclic alkyl group having 1 to 8 carbon atoms in Q 3 in formula (1) include methyl group, ethyl group, n-propyl group, i-propyl group, n- Examples include butyl group, tert-butyl group, and cyclohexyl group. Among these, methyl group and ethyl group are preferred.
Examples of the alkoxyalkyl group having 2 to 8 carbon atoms in Q 3 in formula (1) include C1 to C4 alkoxyC2 to C4 alkyl groups. Examples of the alkoxyalkyl group having 3 to 8 carbon atoms include 2-methoxyethyl group, 2-butoxyethyl group, 1-methoxymethyl group, 2-methoxyethyl group, and 3-methoxypropyl group.
Examples of the alkylcarbonylalkyl group having 4 to 8 carbon atoms in Q 3 in formula (1) include 4-oxopentyl group, 3-oxopentyl group, and 5-oxohexyl group.
 特定溶媒の好ましい例としては、N,N-ジエチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジブチルホルムアミド、N,N-ジプロピルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジエチルプロピオンアミド、3-メトキシ-N,N-ジメチルプロパンアミド等が挙げられる。
 特に好ましい特定溶媒としてはN,N-ジエチルアセトアミド、N,N-ジエチルホルムアミド、3-メトキシ-N,N-ジメチルプロパンアミド、2-メトキシ-N,N-ジエチルアセトアミド、3-メトキシ-N,N-ジエチルプロパンアミド、4-オキソ-N,N-ジエチルペンタンアミド、N,N-ジエチルシクロヘキサンカルボアミド等が挙げられる。
Preferred examples of the specific solvent include N,N-diethylacetamide, N,N-diethylformamide, N,N-dibutylformamide, N,N-dipropylacetamide, N,N-dimethylpropionamide, N,N-diethyl Examples include propionamide, 3-methoxy-N,N-dimethylpropanamide, and the like.
Particularly preferred specific solvents include N,N-diethylacetamide, N,N-diethylformamide, 3-methoxy-N,N-dimethylpropanamide, 2-methoxy-N,N-diethylacetamide, 3-methoxy-N,N -diethylpropanamide, 4-oxo-N,N-diethylpentanamide, N,N-diethylcyclohexanecarboxamide and the like.
 液晶配向剤に含まれる溶媒成分の全体量に対して、特定溶媒の導入比率は特に限定しないが、好ましくは10~90質量%であり、より好ましくは30~80質量%である。 Although the introduction ratio of the specific solvent is not particularly limited with respect to the total amount of solvent components contained in the liquid crystal aligning agent, it is preferably 10 to 90% by mass, more preferably 30 to 80% by mass.
 前記好ましい特定溶媒の中でも、N,N-ジエチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジメチルプロピオンアミド、N,N-ジエチルプロピオンアミドを主溶媒として用いる場合は、従来溶媒と比べるとやや低沸点となり、塗布から乾燥までの待機時間が発生する印刷塗布などでは塗布性が悪化する恐れがある。そこで、前記(S)で表される特定溶媒の中でも比較的高沸点な特定高沸点溶媒を併用することが好ましい。 Among the above-mentioned preferred specific solvents, when N,N-diethylacetamide, N,N-diethylformamide, N,N-dimethylpropionamide, and N,N-diethylpropionamide are used as the main solvent, they are slightly less expensive than conventional solvents. It has a low boiling point, and there is a risk that coating properties will deteriorate during printing and other applications where there is a waiting time between coating and drying. Therefore, it is preferable to use a specific high-boiling point solvent with a relatively high boiling point among the specific solvents represented by (S) above.
 特定高沸点溶媒は、式(S1)で表される特定溶媒の中でも比較的高沸点な溶媒であり、沸点が200℃を超える溶媒のことをいう。特定高沸点溶媒の好ましい例としては、N,N-ジブチルホルムアミド、4-オキソ-N,N-ジエチルペンタンアミド、N,N-ジエチルシクロヘキサンカルボアミド等が挙げられる。
 ここでの沸点は、1気圧での沸点をいう。
The specific high-boiling point solvent is a solvent with a relatively high boiling point among the specific solvents represented by formula (S1), and refers to a solvent with a boiling point exceeding 200°C. Preferred examples of the specific high boiling point solvent include N,N-dibutylformamide, 4-oxo-N,N-diethylpentanamide, N,N-diethylcyclohexanecarboxamide, and the like.
The boiling point here refers to the boiling point at 1 atmosphere.
 液晶配向剤に含まれる溶媒成分の全体量に対して、特定高沸点溶媒の導入比率は特に限定しないが、好ましくは5~50質量%であり、より好ましくは10~30質量%である。 The ratio of the specific high boiling point solvent to the total amount of solvent components contained in the liquid crystal aligning agent is not particularly limited, but is preferably 5 to 50% by mass, more preferably 10 to 30% by mass.
(重合体(P))
 重合体(P)は、重合可能な不飽和炭化水素基を有する重合性基を有する化合物から得られる重合体である。言い換えれば、重合体(P)は、重合可能な不飽和炭化水素基を有する重合性基を有する化合物の重合性基を重合して得られる重合体である。
(Polymer (P))
The polymer (P) is a polymer obtained from a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group. In other words, the polymer (P) is a polymer obtained by polymerizing the polymerizable group of a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group.
 重合体(P)は、好適には、下記重合体(α)及び重合体(β)からなる群から選択される少なくとも1種である。
 重合体(α):液晶に相溶するブロックセグメント(A)と、液晶に相溶しない又は焼成により液晶に不溶化するブロックセグメント(B)とを有するブロック共重合体。
 重合体(β):幹ポリマーと、幹ポリマーの側鎖として幹ポリマーに結合した枝ポリマーとを有するグラフト共重合体であり、枝ポリマーが、液晶と相溶し、幹ポリマーが、液晶に相溶しない又は焼成により液晶に不溶化する、グラフト共重合体。
The polymer (P) is preferably at least one selected from the group consisting of the following polymers (α) and polymers (β).
Polymer (α): A block copolymer having a block segment (A) that is compatible with liquid crystal and a block segment (B) that is not compatible with liquid crystal or becomes insolubilized in liquid crystal upon firing.
Polymer (β): A graft copolymer having a trunk polymer and a branch polymer bonded to the trunk polymer as a side chain of the trunk polymer.The branch polymer is compatible with the liquid crystal, and the trunk polymer is compatible with the liquid crystal. A graft copolymer that does not dissolve or becomes insoluble in liquid crystals upon firing.
(ブロック共重合体[重合体(α)])
 本発明における「共重合体」の一実施形態は、弱アンカリング液晶配向剤に含有される共重合体である。
(Block copolymer [polymer (α)])
One embodiment of the "copolymer" in the present invention is a copolymer contained in a weakly anchoring liquid crystal aligning agent.
 ブロック共重合体[重合体(α)]は、液晶に相溶するブロックセグメント(A)と、液晶に相溶しない又は焼成により液晶に不溶化するブロックセグメント(B)とを有する。ブロックセグメント(A)は共重合体が焼成されても液晶に相溶するポリマーから成る。 The block copolymer [polymer (α)] has a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is not compatible with the liquid crystal or becomes insolubilized in the liquid crystal upon firing. The block segment (A) consists of a polymer that is compatible with the liquid crystal even when the copolymer is fired.
 ブロックセグメント(A)は、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、及び下記式(5)で表される化合物からなる群から選択される少なくとも1種を、構成成分として含むことが好ましい。 Block segment (A) is a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), and a compound represented by the following formula (5). It is preferable that at least one kind selected from the group consisting of compounds is included as a constituent component.
 ブロックセグメント(B)は、下記式(6)で表される化合物を、構成成分として含むことが好ましい。 It is preferable that the block segment (B) contains a compound represented by the following formula (6) as a constituent component.
 ブロック共重合体が有するブロックセグメントは、3種以上であってもよい。 The block copolymer may have three or more types of block segments.
 ブロック共重合体は、好ましくは、主鎖が分岐せずに直鎖状に伸びた共重合体である。
本発明では、液晶配向剤の一実施形態において含有されるブロック共重合体のブロックセグメントとして、液晶に相溶するブロックセグメントを用いることにより、従来の手法に比べより簡便に弱アンカリング膜を製造可能としている。
The block copolymer is preferably a copolymer in which the main chain extends linearly without branching.
In the present invention, by using block segments compatible with liquid crystal as block segments of the block copolymer contained in one embodiment of the liquid crystal aligning agent, a weak anchoring film can be produced more easily than conventional methods. It is possible.
 本出願人は、プレチルト角が発生せず安定的に弱アンカリング横電界液晶表示素子が作製できる液晶組成物に含有されるラジカル重合性化合物であって、弱アンカリングの発生に寄与するラジカル重合性化合物として、下記式(2)で表される化合物、式(3)で表される化合物、式(4)で表される化合物、及び式(5)で表される化合物を見出し、出願している(特願2020-134149、特願2020-163212、特願2021-041196、WO2022/030602、PCT/JP2021/35557(WO2022/071286)、、WO2019/004433。ここに引用されたことによって、これらの出願及び公開公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。)。 The present applicant has proposed a radically polymerizable compound contained in a liquid crystal composition that can stably produce a weakly anchoring horizontal electric field liquid crystal display element without generating a pretilt angle, and which is a radical polymerizable compound that contributes to the occurrence of weak anchoring. We have discovered and applied for a compound represented by the following formula (2), a compound represented by the formula (3), a compound represented by the formula (4), and a compound represented by the formula (5) as chemical compounds. (Patent application 2020-134149, Patent application 2020-163212, Patent application 2021-041196, WO2022/030602, PCT/JP2021/35557 (WO2022/071286), WO2019/004433. The contents of the applications and published publications of , are incorporated herein to the same extent as if expressly set forth in their entirety.)
 また本出願人は、重合体(α)を含む弱アンカリング液晶配向剤が、従来の手法に比べより簡便かつ安定的に弱アンカリング膜を製造可能であること、及び狭セルギャップ化においてもプレチルト角の発生なく安定的に低電圧駆動と電圧OFF時の高速応答化が同時に実現でき、加えて焼き付きを低減でき、低温環境で高いバックライト透過率と低電圧駆動の両立を実現できる横電界液晶表示素子を提供することを、見出し、出願している(特願2021-96448、及びPCT/JP2022/22993(WO2022/260048)。ここに引用されたことによって、この出願の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。)。 In addition, the applicant has discovered that the weak anchoring liquid crystal aligning agent containing the polymer (α) can produce a weak anchoring film more easily and stably than conventional methods, and that it is also effective in narrowing the cell gap. A transverse electric field that can simultaneously achieve stable low-voltage driving and high-speed response when the voltage is OFF without generating a pre-tilt angle, reduce burn-in, and achieve both high backlight transmittance and low-voltage driving in low-temperature environments. We have found and filed an application to provide a liquid crystal display element (Japanese Patent Application No. 2021-96448 and PCT/JP2022/22993 (WO2022/260048). By being cited here, the entire content of this application is (incorporated herein to the same extent as if expressly set forth).
Figure JPOXMLDOC01-appb-C000026
(式(2)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、又はチオエーテル結合を表し、Rは結合基が挿入されていてもよい炭素数1~20のアルキル基を表し、nは1~2の整数である。nが2の場合、2つのX及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
 結合基が挿入されていてもよい炭素数1~20のアルキル基における結合基としては、例えば、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R11)(R12)-(R11及びR12はそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R13)(R14)-O-(R13及びR14はそれぞれ独立してSiに結合するアルキル基を表す。)、-N(R15)-(R15はNに結合する、水素原子又はアルキル基を表す。)が挙げられる。R11~R15におけるアルキル基としては、例えば、炭素数1~6のアルキル基が挙げられる。
Figure JPOXMLDOC01-appb-C000026
(In formula (2), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, X represents a single bond, an ether bond, an ester bond, an amide bond, a urethane bond, a urea bond, or a thioether bond, R1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2. When n is 2, the two X's and R1 's may be the same or different.)
Examples of the linking group in the alkyl group having 1 to 20 carbon atoms into which a linking group may be inserted include an ether bond, an ester bond, an amide bond, a urethane bond, a urea bond, a thioether bond, -Si(R 11 )(R 12 )- (R 11 and R 12 each independently represent an alkyl group bonded to Si), -Si(R 13 )(R 14 )-O- (R 13 and R 14 each independently represent an alkyl group bonded to Si), and -N(R 15 )- (R 15 represents a hydrogen atom or an alkyl group bonded to N). Examples of the alkyl group in R 11 to R 15 include alkyl groups having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000027
(式(3)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Sは単結合、又は結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表し、Tは下記式(3-T)で表される有機基を表し、nは1~2の整数である。nが2の場合、2つのTは同一であってもよいし、異なっていてもよい。ただし、nが2の場合、Sは結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000027
(In formula (3), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein. , T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted.)
Figure JPOXMLDOC01-appb-C000028
(式(3-T)中、*は結合部位を示す。Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又はアルキル基を表す。)から選ばれる結合基であり、Cyは6~20員環の非芳香族の環状基を表す。)
Figure JPOXMLDOC01-appb-C000028
(In formula (3-T), * indicates a bonding site. X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
 式(3)中のSにおける飽和炭化水素基とは、飽和炭化水素からn+1個の水素原子が取り除かれてできるn+1価の基を指す(nは、式(3)中のnと同じ整数である)。nが1の場合、飽和炭化水素基は、アルキレン基である。
 式(3)中のSにおいて、結合基が挿入されている炭素数1~6の飽和炭化水素基とは、炭素数2~6の飽和炭化水素基内の炭素-炭素間に結合基が挿入されているn+1価の基、又は炭素数1~6の飽和炭化水素基とそれに結合する原子(例えば、炭素原子)との間に結合基が挿入されているn+1価の基を意味する。
 式(3)中のSにおける結合基としては、例えば、炭素-炭素不飽和結合、エーテル結合(-O-)、エステル結合(-COO-又は-OCO-)、アミド結合(-CONH-又は-NHCO-)などが挙げられる。炭素-炭素不飽和結合としては、例えば、炭素-炭素二重結合などが挙げられるが、炭素-炭素二重結合が挿入されている炭素数1~6の飽和炭化水素基は、その末端にではなく、内部に炭素-炭素二重結合を有する方が好ましい。
 nが1の場合、結合基が挿入されていてもよい炭素数1~6のアルキレン基としては、例えば、炭素数1~6のアルキレン基、炭素数1~6のオキシアルキレン基などが挙げられる。
 炭素数1~6のアルキレン基は、直鎖アルキレン基であってもよいし、分岐アルキレン基であってもよいし、環状アルキレン基であってもよい。
The saturated hydrocarbon group in S in formula (3) refers to an n+1 valent group formed by removing n+1 hydrogen atoms from a saturated hydrocarbon (n is the same integer as n in formula (3)). be). When n is 1, the saturated hydrocarbon group is an alkylene group.
In S in formula (3), a saturated hydrocarbon group having 1 to 6 carbon atoms into which a bonding group is inserted is a saturated hydrocarbon group having a bonding group inserted between carbon atoms in a saturated hydrocarbon group having 2 to 6 carbon atoms. or an n+1-valent group in which a bonding group is inserted between a saturated hydrocarbon group having 1 to 6 carbon atoms and an atom bonded thereto (for example, a carbon atom).
Examples of the bonding group for S in formula (3) include a carbon-carbon unsaturated bond, an ether bond (-O-), an ester bond (-COO- or -OCO-), an amide bond (-CONH- or - Examples include NHCO-). Examples of carbon-carbon unsaturated bonds include carbon-carbon double bonds, but a saturated hydrocarbon group having 1 to 6 carbon atoms into which a carbon-carbon double bond is inserted has no It is preferable to have a carbon-carbon double bond inside.
When n is 1, examples of the alkylene group having 1 to 6 carbon atoms into which a bonding group may be inserted include alkylene groups having 1 to 6 carbon atoms, oxyalkylene groups having 1 to 6 carbon atoms, etc. .
The alkylene group having 1 to 6 carbon atoms may be a straight chain alkylene group, a branched alkylene group, or a cyclic alkylene group.
 式(3-T)のXにおける-Si(R)(R)-のR及びRは、それぞれ独立してSiに結合するアルキル基であり、例えば、炭素数1~6のアルキル基である。
 式(3-T)のXにおける-Si(R)(R)-O-のR及びRは、それぞれ独立してSiに結合するアルキル基であり、例えば、炭素数1~6のアルキル基である。
 式(3-T)のXにおける-N(R)-のRは、Nに結合する、水素原子又はアルキル基である。アルキル基は、例えば、炭素数1~6のアルキル基である。
R 1 and R 2 of -Si(R 1 )(R 2 )- in X of formula (3-T) are each independently an alkyl group bonded to Si, for example, an alkyl group having 1 to 6 carbon atoms. It is the basis.
R 3 and R 4 of -Si(R 3 )(R 4 )-O- in X of formula (3-T) are each independently an alkyl group bonded to Si, for example, a carbon number of 1 to 6. is an alkyl group.
R 5 of -N(R 5 )- in X of formula (3-T) is a hydrogen atom or an alkyl group bonded to N. The alkyl group is, for example, an alkyl group having 1 to 6 carbon atoms.
 式(3-T)中、Cyは、6~20員環の非芳香族の環状基であり、8~18員環の非芳香族の環状基が好ましい。なお、Cyは、12~20員環の非芳香族の環状基であってもよい。式(3-T)においてXは、Cyにおいて環を構成する原子に結合している。
 非芳香族の環状基における環を構成する原子としては、例えば、炭素原子、酸素原子、窒素原子、ケイ素原子などが挙げられる。
 環を構成する原子-原子間の結合は、単結合であってもよいし、二重結合であってもよいし、三重結合であってもよいが、単結合が好ましい。
 非芳香族の環状基における環としては、例えば、環状アルカン、環状エーテル、環状シロキサンなどが挙げられる。環状エーテルとしては、例えば、クラウンエーテルが挙げられる。例えば、12-クラウン-4において、環を構成する原子は、炭素原子及び酸素原子であり、員数は、12である。
 環は、単環であってもよいし、多環であってもよい。多環における環の数としては、例えば、2~4が挙げられる。
 多環において各環同士の結合の仕方には、例えば、以下の3通りが含まれる。
 ・1原子の共有:例えば、スピロ環化合物
 ・2原子の共有:デカリンのように2つの環が2つの原子を共有している場合
 ・橋かけ構造:ノルボルナンのように、2つの環が3つの原子以上を共有しているとみなせる場合
 なお、多環の場合、環を構成する原子の数をもってその員環数とする。例えば、ノルボルナンは7員環である。
 環を構成する原子には、水素原子の代わりにハロゲン原子、又は炭素数1~6のアルキル基が結合していてもよい。ハロゲン原子としては、例えば、フッ素原子、塩素原子などが挙げられる。
In formula (3-T), Cy is a 6- to 20-membered non-aromatic cyclic group, preferably an 8- to 18-membered non-aromatic cyclic group. Note that Cy may be a 12- to 20-membered non-aromatic cyclic group. In formula (3-T), X is bonded to an atom constituting a ring in Cy.
Examples of atoms constituting the ring in the non-aromatic cyclic group include carbon atoms, oxygen atoms, nitrogen atoms, and silicon atoms.
The bond between the atoms constituting the ring may be a single bond, a double bond, or a triple bond, but a single bond is preferable.
Examples of the ring in the non-aromatic cyclic group include cyclic alkanes, cyclic ethers, and cyclic siloxanes. Examples of the cyclic ether include crown ether. For example, in 12-crown-4, the atoms constituting the ring are carbon atoms and oxygen atoms, and the number of members is 12.
The ring may be monocyclic or polycyclic. Examples of the number of rings in the polycycle include 2 to 4.
In a polycyclic ring, the following three ways are included, for example, in how the rings are bonded to each other.
・One-atom sharing: For example, spirocyclic compounds ・Two-atom sharing: When two rings share two atoms, such as in decalin. ・Bridging structure: When two rings share three atoms, such as in norbornane. Cases in which more than one atom is considered to be in common In the case of a polycyclic ring, the number of ring members is the number of atoms that make up the ring. For example, norbornane is a 7-membered ring.
A halogen atom or an alkyl group having 1 to 6 carbon atoms may be bonded to the atoms constituting the ring instead of a hydrogen atom. Examples of the halogen atom include a fluorine atom and a chlorine atom.
Figure JPOXMLDOC01-appb-C000029
(式(4)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子又は下記式(4-X)を表す。ただし、3つのXの少なくとも一つは式(4-X)を表す。)
Figure JPOXMLDOC01-appb-C000029
(In formula (4), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms, and 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).)
Figure JPOXMLDOC01-appb-C000030
(式(4-X)中、Yは単結合、-O-、-S-又は-N(R)-(RはNに結合する、水素原子又は炭素数1~4のアルキル基を表す。)を表し、*は結合部位を示す。R、R、及びRは、それぞれ独立して、炭素数1~6のアルキル基又は置換基を有していてもよい芳香族炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000030
(In formula (4-X), Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site. R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent. )
 式(4)中のRにおける脂肪族炭化水素基の炭素数は1~10であり、炭素数1~8であってもよいし、炭素数1~6であってもよいし、炭素数1~4であってもよい。 The aliphatic hydrocarbon group in R 1 in formula (4) has 1 to 10 carbon atoms, may have 1 to 8 carbon atoms, may have 1 to 6 carbon atoms, or may have 1 to 6 carbon atoms. It may be 1 to 4.
 式(4-X)中のR、R、及びRにおける炭素数1~6のアルキル基としては、例えば、炭素数1~5のアルキル基であってもよいし、炭素数1~4のアルキル基であってもよい。これらアルキル基は、直鎖構造であってもよいし、分岐構造であってもよい。 The alkyl group having 1 to 6 carbon atoms in R 2 , R 3 , and R 4 in formula (4-X) may be, for example, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. 4 may be an alkyl group. These alkyl groups may have a linear structure or a branched structure.
 式(4-X)中のR、R、及びRにおける芳香族炭化水素基は、無置換であってもよいし、水素原子が置換基により置換されていてもよい。
 置換基を有していてもよい芳香族炭化水素基の置換基としては、例えば、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロゲン化アルキル基、炭素数1~4のハロゲン化アルコキシ基などが挙げられる。ハロゲン化アルキル基、およびハロゲン化アルコキシ基におけるハロゲン化は、全ハロゲン化であってもよいし、一部のハロゲン化であってもよい。ハロゲン原子としては、例えば、フッ素原子、塩素原子などが挙げられる。
 置換基を有していてもよい芳香族炭化水素基の芳香族炭化水素基としては、例えば、フェニル基、ナフチル基が挙げられる。
 芳香族炭化水素基における置換基の数としては、特に限定されない。
The aromatic hydrocarbon groups represented by R 2 , R 3 , and R 4 in formula (4-X) may be unsubstituted, or the hydrogen atoms may be substituted with a substituent.
Examples of the substituent of the aromatic hydrocarbon group which may have a substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen having 1 to 4 carbon atoms. Examples include alkyl groups, halogenated alkoxy groups having 1 to 4 carbon atoms, and the like. The halogenation in the halogenated alkyl group and the halogenated alkoxy group may be complete halogenation or partial halogenation. Examples of the halogen atom include a fluorine atom and a chlorine atom.
Examples of the aromatic hydrocarbon group which may have a substituent include a phenyl group and a naphthyl group.
The number of substituents in the aromatic hydrocarbon group is not particularly limited.
 式(4)において、式(4-X)は1つ以上であり、1つであってもよいし、2つであってもよいし、3つであってもよい。
 式(4)において、3つのXはそれぞれ独立している。そのため、式(4)において、式(4-X)が2つ以上の場合、2つ以上の式(4-X)は、同じ構造であってもよいし、異なる構造であってもよい。
In formula (4), formula (4-X) is one or more, and may be one, two, or three.
In formula (4), the three X's are each independent. Therefore, in formula (4), when there are two or more formulas (4-X), the two or more formulas (4-X) may have the same structure or different structures.
 式(4-X)において、R、R、およびRの少なくとも一つは、置換基を有していてもよい芳香族炭化水素基であってもよい。そのため、式(4-X)において、R、R、およびRの一つが置換基を有していてもよい芳香族炭化水素基であってもよいし、R、R、およびRの二つが置換基を有していてもよい芳香族炭化水素基であってもよし、R、R、およびRの三つが置換基を有していてもよい芳香族炭化水素基であってもよい。 In formula (4-X), at least one of R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. Therefore, in formula (4-X), one of R 2 , R 3 , and R 4 may be an aromatic hydrocarbon group that may have a substituent, and R 2 , R 3 , and Two of R 4 may be an aromatic hydrocarbon group which may have a substituent, or three of R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. It may be a base.
Figure JPOXMLDOC01-appb-C000031
(式(5)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、R~Rはそれぞれ独立して単結合、又は結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、X及びXはそれぞれ独立して水素原子、又は置換基を有していてもよい芳香族炭化水素基を表し、RとRとR及びRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、R及びRの合計炭素数は1以上である。)
Figure JPOXMLDOC01-appb-C000031
(In formula (5), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted. represents an alkylene group of 1 to 6, Ar represents an aromatic hydrocarbon group that may have a substituent, and X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together. The total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.)
 式(5)中のR~Rにおいて、結合基が挿入されている炭素数1~6のアルキレン基とは、炭素数1~6のアルキレン基内の炭素-炭素間に結合基が挿入されている2価基、又は炭素数1~6のアルキレン基とそれに結合する炭素原子との間に結合基が挿入されている2価基を意味する。
 結合基としては、例えば、炭素-炭素不飽和結合、エーテル結合(-O-)、エステル結合(-COO-又は-OCO-)、アミド結合(-CONH-又は-NHCO-)などが挙げられる。不飽和結合としては、例えば、炭素-炭素二重結合などが挙げられるが、結合基が挿入されている炭素数1~6のアルキレン基は、その末端にではなく、内部に炭素-炭素二重結合を有する方が好ましい。
 結合基が挿入されていてもよい炭素数1~6のアルキレン基としては、例えば、炭素数1~6のアルキレン基、炭素数1~6のオキシアルキレン基などが挙げられる。炭素数1~6のオキシアルキレン基における酸素原子は、例えば、式(5)中のM、R、R、及びRに結合する炭素原子と結合する。
 炭素数1~6のアルキレン基は、直鎖アルキレン基であってもよいし、分岐アルキレン基であってもよいし、環状アルキレン基であってもよい。
In R 1 to R 3 in formula (5), an alkylene group having 1 to 6 carbon atoms into which a bonding group is inserted is an alkylene group having a bonding group inserted between carbon atoms in the alkylene group having 1 to 6 carbon atoms. or a divalent group in which a bonding group is inserted between an alkylene group having 1 to 6 carbon atoms and a carbon atom bonded thereto.
Examples of the bonding group include a carbon-carbon unsaturated bond, an ether bond (-O-), an ester bond (-COO- or -OCO-), and an amide bond (-CONH- or -NHCO-). Examples of unsaturated bonds include carbon-carbon double bonds, but alkylene groups with 1 to 6 carbon atoms into which a bonding group is inserted have a carbon-carbon double bond inside, not at the end. It is preferable to have a bond.
Examples of the alkylene group having 1 to 6 carbon atoms into which a bonding group may be inserted include alkylene groups having 1 to 6 carbon atoms, oxyalkylene groups having 1 to 6 carbon atoms, and the like. The oxygen atom in the oxyalkylene group having 1 to 6 carbon atoms is bonded to, for example, the carbon atom bonded to M, R 1 , R 2 , and R 3 in formula (5).
The alkylene group having 1 to 6 carbon atoms may be a straight chain alkylene group, a branched alkylene group, or a cyclic alkylene group.
 式(5)のX及びXにおける置換基を有していてもよい芳香族炭化水素基としては、例えば、置換基を有していてもよいフェニル基、ナフチル基などが挙げられる。
 置換基としては、例えば、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロゲン化アルキル基、炭素数1~4のハロゲン化アルコキシ基などが挙げられる。ハロゲン化アルキル基、およびハロゲン化アルコキシ基におけるハロゲン化は、全ハロゲン化であってもよいし、一部のハロゲン化であってもよい。ハロゲン原子としては、例えば、フッ素原子、塩素原子などが挙げられる。
Examples of the aromatic hydrocarbon group which may have a substituent in X 1 and X 2 of formula (5) include a phenyl group, a naphthyl group, and the like which may have a substituent.
Examples of the substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogenated alkyl group having 1 to 4 carbon atoms, a halogenated alkoxy group having 1 to 4 carbon atoms, etc. can be mentioned. The halogenation in the halogenated alkyl group and the halogenated alkoxy group may be complete halogenation or partial halogenation. Examples of the halogen atom include a fluorine atom and a chlorine atom.
 式(5)中のRとしては、例えば、単結合、炭素数1~6のアルキレン基などが挙げられる。炭素数1~6のアルキレン基としては、より具体的には炭素数1~6の直鎖アルキレン基が挙げられる。
 式(5)中のRとしては、例えば、単結合、炭素数1~6のアルキレン基などが挙げられる。炭素数1~6のアルキレン基としては、より具体的には炭素数1~6の直鎖アルキレン基が挙げられる。
 式(5)中のRとしては、例えば、単結合、炭素数1~6のアルキレン基などが挙げられる。炭素数1~6のアルキレン基としては、より具体的には炭素数1~6の直鎖アルキレン基が挙げられる。
 式(5)中のXとしては、例えば、水素原子、フェニル基などが挙げられる。
 式(5)中のXとしては、例えば、水素原子、フェニル基などが挙げられる。
 式(5)中のArは、例えば、フェニル基などが挙げられる。
Examples of R 1 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
Examples of R 2 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
Examples of R 3 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
Examples of X 1 in formula (5) include a hydrogen atom and a phenyl group.
Examples of X 2 in formula (5) include a hydrogen atom and a phenyl group.
Ar in formula (5) includes, for example, a phenyl group.
 式(5)中のR、RおよびRの合計炭素数は1以上であれば、特に限定されないが、2以上であってもよい。
 また、式(5)中のR、R、およびRの合計炭素数は、例えば、18以下であってもよいし、15以下であってもよいし、10以下であってもよい。
 また、式(5)中のX及びXが水素原子の場合、R、R、およびRの合計炭素数は1以上であれば、特に限定されないが、2以上であってもよい。
 なお、式(5)中のX及びXの少なくともいずれかが置換基を有していてもよい芳香族炭化水素基の場合、R、R、およびRの合計炭素数は0であってもよい。
The total carbon number of R 1 X 1 , R 2 X 2 and R 3 in formula (5) is not particularly limited as long as it is 1 or more, but may be 2 or more.
Further, the total carbon number of R 1 , R 2 , and R 3 in formula (5) may be, for example, 18 or less, 15 or less, or 10 or less. .
Furthermore, when X 1 and X 2 in formula (5) are hydrogen atoms, the total number of carbon atoms in R 1 , R 2 , and R 3 is not particularly limited as long as it is 1 or more, but even if it is 2 or more, good.
In addition, when at least one of X 1 and X 2 in formula (5) is an aromatic hydrocarbon group which may have a substituent, the total carbon number of R 1 , R 2 , and R 3 is 0. It may be.
 式(5)において、RとRとRおよびRに結合する炭素原子とが一緒になって形成する環としては、例えば、結合基が挿入されていてもよい炭素数3~13の炭化水素環が挙げられる。結合基は、前述のとおりである。 In formula (5), the ring formed by R 1 X 1 , R 2 X 2 , and the carbon atoms bonded to R 1 X 1 and R 2 Examples include hydrocarbon rings having 3 to 13 carbon atoms, which may be optional. The binding group is as described above.
 上記化合物の構造を用いることで電圧OFF時の高速応答化、焼き付きの低減、低温環境における高いバックライト透過率と低電圧駆動が実現しやすい。 By using the structure of the above compound, it is easy to achieve high-speed response when the voltage is turned off, reduced burn-in, high backlight transmittance in a low-temperature environment, and low-voltage driving.
 ブロックセグメント(A)は主に薄膜状態で液晶に膨潤され、弱アンカリング膜を形成する役割を担う。ブロックセグメント(A)の分子量に応じて弱アンカリング膜の物性が大きく異なるため、分子量の最適化が必要ではないが重要となる。良好な弱アンカリング膜を形成する観点で好ましいブロックセグメント(A)の分子量は1,000~100,000であり、より好ましくは3,000~50,000である。なお、この分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の数平均分子量(Mn)である。また、GPCにより測定したポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布PDI(Mw/Mn)は、好ましくは3.0以下であり、より好ましくは2.0以下である。 The block segment (A) is mainly swollen by the liquid crystal in a thin film state and plays the role of forming a weak anchoring film. Since the physical properties of the weak anchoring film vary greatly depending on the molecular weight of the block segment (A), optimization of the molecular weight is not necessary but is important. From the viewpoint of forming a good weak anchoring film, the molecular weight of the block segment (A) is preferably 1,000 to 100,000, more preferably 3,000 to 50,000. Note that this molecular weight is a number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC). Further, the molecular weight distribution PDI (Mw/Mn), which is expressed as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in terms of polystyrene measured by GPC, is preferably 3.0 or less, and more preferably is 2.0 or less.
 ブロックセグメント(A)は上記化合物の単独ポリマーでも良く、複数の化合物を組み合わせて使用することができる。組み合わせる場合、ランダム共重合でも良く、ブロック共重合でも良い。液晶に相溶する化合物種と組み合わせる場合は、組み合わせ方法に依らずその比率は特に限定されない。以下で説明する液晶に不溶化する化合物種と組み合わせる場合は、特性維持の観点で液晶に不溶化する化合物種の好ましい組み合わせ比率は30モル%以下であり、より好ましくは20モル%以下であるが限定はしない。これら組み合わせ方法や組み合わせる化合物種、組み合わせ比率は目的とする物性や表示特性、電気特性等が得られる範囲で使用するのが好ましい。 The block segment (A) may be a single polymer of the above compounds, or a combination of multiple compounds may be used. When used in combination, random copolymerization or block copolymerization may be used. When combining with a compound species that is compatible with liquid crystal, the ratio is not particularly limited regardless of the combination method. When combined with a compound species that becomes insolubilized in liquid crystal as described below, from the viewpoint of maintaining properties, the preferred combination ratio of compound species that becomes insolubilized in liquid crystal is 30 mol% or less, more preferably 20 mol% or less, but there are no limitations. do not. It is preferable to use these combination methods, the types of compounds to be combined, and the combination ratio within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
 ブロックセグメント(B)は薄膜状態において弱アンカリング液晶配向膜の安定性に寄与する。 The block segment (B) contributes to the stability of the weakly anchoring liquid crystal alignment film in a thin film state.
 ブロックセグメント(B)は、好ましくは、トリアルコキシシリル基、イソシアネート基、ブロックイソシアネート基、エポキシ基、オキセタン基、ビニル基、アリル基、オキサゾリン基、アミノ基、保護アミノ基、アニリン基、保護アニリン基、ヒドロキシ基、保護ヒドロキシ基、フェノール基、保護フェノール基、チオール基、保護チオール基、チオフェノール基、保護チオフェノール基、アルデヒド基、カルボキシ基、マレイミド基、N-ヒドロキシスクシンイミドエステル基、結合基が挿入されていてもよい炭素数5~18の芳香族炭化水素基、結合基が挿入されていてもよい炭素数5~18の芳香族複素環基、桂皮酸基、桂皮酸芳香族エステル基、桂皮酸アルキルエステル基、シンナミル基、フェニルベンゾエート基、アゾベンゼン基、N-ベンジリデンアニリン基、スチルベン基、及びトラン基からなる群から選択される少なくとも一種の官能基を有する側鎖構造を有する。結合基の具体例としては、式(2)の説明において挙げた結合基の具体例などが挙げられる。
 その場合、ブロックセグメント(B)は、例えば、上記官能基と、重合可能な不飽和炭化水素基を有する重合性基とを有する重合性化合物を、構成成分として含む。
Block segment (B) is preferably a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group. , hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may be inserted, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted, cinnamic acid group, cinnamic acid aromatic ester group, It has a side chain structure having at least one functional group selected from the group consisting of a cinnamic acid alkyl ester group, a cinnamyl group, a phenylbenzoate group, an azobenzene group, an N-benzylideneaniline group, a stilbene group, and a tolan group. Specific examples of the bonding group include the specific examples of the bonding group listed in the explanation of formula (2).
In that case, the block segment (B) contains, for example, a polymerizable compound having the above functional group and a polymerizable group having a polymerizable unsaturated hydrocarbon group as a constituent component.
 ブロックセグメント(B)の形成に使用される重合性化合物の一例は下記式(6)で表される。 An example of the polymerizable compound used to form the block segment (B) is represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000032
(式(6)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、nは1~2の整数である。Zは下記式(6-Z)で表される基を表す。nが2の場合、2つのZは同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000032
(In formula (6), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and n is an integer of 1 to 2. Z represents a group represented by the following formula (6-Z). (If n is 2, the two Zs may be the same or different.)
Figure JPOXMLDOC01-appb-C000033
(式(6-Z)中、Lはトリアルコキシシリル基、イソシアネート基、ブロックイソシアネート基、エポキシ基、オキセタン基、ビニル基、アリル基、オキサゾリン基、アミノ基、保護アミノ基、アニリン基、保護アニリン基、ヒドロキシ基、保護ヒドロキシ基、フェノール基、保護フェノール基、チオール基、保護チオール基、チオフェノール基、保護チオフェノール基、アルデヒド基、カルボキシ基、マレイミド基、N-ヒドロキシスクシンイミドエステル基、結合基が挿入されていてもよい炭素数5~18の芳香族炭化水素基、結合基が挿入されていてもよい炭素数5~18の芳香族複素環基、桂皮酸基、桂皮酸芳香族エステル基、桂皮酸アルキルエステル基、シンナミル基、フェニルベンゾエート基、アゾベンゼン基、N-ベンジリデンアニリン基、スチルベン基、及びトラン基からなる群から選択される官能基を表す。Jは単結合又は炭素数1~6の脂肪族炭化水素基を表す。Kは、芳香族炭化水素基と結合する場合、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、及びチオエーテル結合から選ばれる連結基を示し、それ以外の場合は、単結合を示す。*は結合部位を表す。mは1~3の整数である。mが2又は3の場合、複数のK及びLは同一であってもよいし、異なっていてもよい。ただし、Jが単結合の場合、mは1である。)
Figure JPOXMLDOC01-appb-C000033
(In formula (6-Z), L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinnamic acid aromatic ester group , a cinnamic acid alkyl ester group, a cinnamyl group, a phenylbenzoate group, an azobenzene group, an N-benzylideneaniline group, a stilbene group, and a tolan group. J is a single bond or has 1 to 1 carbon atoms. 6 represents an aliphatic hydrocarbon group.When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, ether bond, ester bond, amide bond, urea bond, urethane bond, and thioether bond. In other cases, it indicates a single bond. * represents a binding site. m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same. (However, if J is a single bond, m is 1.)
 ブロックセグメント(B)は液晶に相溶しない若しくは焼成することで液晶に相溶しなくなる側鎖構造を有する。ブロックセグメント(B)の形成に用いる液晶に相溶しない化合物種としては、高極性な化合物種や剛直な構造を有する化合物種が挙げられ、ブロックセグメント(B)の形成に用いる焼成することで液晶に相溶しなくなる化合物種としては、熱硬化性の化合物種が挙げられる。 The block segment (B) has a side chain structure that is not compatible with the liquid crystal or becomes incompatible with the liquid crystal upon firing. Compounds that are incompatible with the liquid crystal used to form the block segment (B) include highly polar compounds and compounds with a rigid structure. Examples of the compound species that are no longer compatible with the thermosetting compound species include thermosetting compound species.
 ブロックセグメント(B)の形成に使用される重合性化合物の一例は、重合可能な不飽和炭化水素基を有する重合性基と、高極性な構造とを有する化合物である。
 上記の高極性な構造は以下の構造が好ましい。ただし、これらに限定されるものではない。
An example of the polymerizable compound used to form the block segment (B) is a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a highly polar structure.
The above highly polar structure preferably has the following structure. However, it is not limited to these.
Figure JPOXMLDOC01-appb-C000034
(X、及びYはそれぞれ独立して酸素原子又は硫黄原子を表す。R及びRはそれぞれ独立に単結合又は炭素数1~18のアルキレン基を表す。Rは炭素数1~18のアルキル基を表す。A、A及びAのうち1つはNを表し、残り2つはCHを表す。A及びAのうち1つはNを表し、残り1つはCHを表す。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000034
(X and Y each independently represent an oxygen atom or a sulfur atom. R 1 and R 2 each independently represent a single bond or an alkylene group having 1 to 18 carbon atoms. R 3 represents an alkylene group having 1 to 18 carbon atoms. Represents an alkyl group. One of A 1 , A 2 and A 3 represents N, and the remaining two represent CH. One of A 4 and A 5 represents N, and the remaining one represents CH. (* represents the binding site.)
 ブロックセグメント(B)の形成に使用される重合性化合物の一例は、重合可能な不飽和炭化水素基を有する重合性基と、剛直な構造とを有する化合物である。
 上記の剛直な構造は以下の構造が好ましい。ただし、これらに限定されるものではない。
An example of the polymerizable compound used to form the block segment (B) is a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a rigid structure.
The above rigid structure preferably has the following structure. However, it is not limited to these.
Figure JPOXMLDOC01-appb-C000035
(X、Y、及びZはそれぞれ独立して酸素原子又は硫黄原子を表す。R及びRはそれぞれ独立して単結合又は炭素数1~18のアルキレン基を表す。Rは炭素数1~18のアルキル基を表す。*は結合部位を表し、nは1~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000035
(X, Y, and Z each independently represent an oxygen atom or a sulfur atom. R 1 and R 2 each independently represent a single bond or an alkylene group having 1 to 18 carbon atoms. R 3 represents a carbon number 1 ~18 represents an alkyl group. * represents a bonding site, n represents an integer from 1 to 5.)
 ブロックセグメント(B)の形成に使用される重合性化合物の一例は、重合可能な不飽和炭化水素基を有する重合性基と、熱硬化性の構造とを有する化合物である。
 上記の熱硬化性の構造は以下の構造が好ましい。ただし、これらに限定されるものではない。
An example of the polymerizable compound used to form the block segment (B) is a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a thermosetting structure.
The above thermosetting structure preferably has the following structure. However, it is not limited to these.
Figure JPOXMLDOC01-appb-C000036
(X、Y及びZはそれぞれ独立して酸素原子又は硫黄原子を表す。R、R及びRはそれぞれ独立して、炭素数1~18のアルキル基を表す。R及びRはそれぞれ独立して単結合又は炭素数1~18のアルキレン基を表す。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000036
(X, Y and Z each independently represent an oxygen atom or a sulfur atom. R 1 , R 2 and R 3 each independently represent an alkyl group having 1 to 18 carbon atoms. R 4 and R 5 are Each independently represents a single bond or an alkylene group having 1 to 18 carbon atoms. * represents a bonding site.)
 本発明において、重合可能な不飽和炭化水素基を有する重合性基としては、以下の構造が好ましい。 In the present invention, the following structures are preferred as the polymerizable group having a polymerizable unsaturated hydrocarbon group.
Figure JPOXMLDOC01-appb-C000037
(式中、R、及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、X、Y、及びZはそれぞれ独立して酸素原子又は硫黄原子を表す。*、*及び*は結合部位を表し、*及び*のどちらか一方は水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基で置き換えられていてもよい。)
Figure JPOXMLDOC01-appb-C000037
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and X, Y, and Z each independently represent an oxygen atom or a sulfur atom. *, * 1 and * 2 represent bonding sites, and either one of * 1 and * 2 may be replaced with a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms.)
 ブロックセグメント(B)は主に薄膜状態における安定化を担い、弱アンカリング膜の物性に大きく関与しない。ブロックセグメント(B)によって膜の安定性が補完されていれば良く、膜の安定性が補完できる最適な分子量は用いる化合物種に応じて異なるため特に限定されない。また、用いる化合物種によっては溶媒選択性や塗布性にメリットを出せるため、用途や目的に合わせて、ブロックセグメント(B)を構成する化合物種とその分子量を制御するのが良い。 The block segment (B) is mainly responsible for stabilizing the thin film state and does not significantly affect the physical properties of the weak anchoring film. It is sufficient that the block segment (B) complements the stability of the membrane, and the optimal molecular weight that can complement the stability of the membrane is not particularly limited because it varies depending on the type of compound used. Further, depending on the type of compound used, advantages can be obtained in solvent selectivity and coating properties, so it is preferable to control the type of compound constituting the block segment (B) and its molecular weight depending on the use and purpose.
 ブロックセグメント(B)は上記の重合性化合物を単独で使用してもよく、複数の化合物を組み合わせて使用してもよい。前記の通りブロックセグメント(B)はあくまで膜の安定性に寄与するブロックセグメントであって、弱アンカリング特性に大きく関与しないため、膜の安定化が補完されていれば組み合わせる化合物種や組み合わせる方法は特に限定されない。 For the block segment (B), the above polymerizable compounds may be used alone, or a plurality of compounds may be used in combination. As mentioned above, the block segment (B) is a block segment that only contributes to the stability of the membrane, and does not significantly contribute to the weak anchoring properties. Therefore, as long as the stabilization of the membrane is complemented, the type of compound to be combined and the method of combination are Not particularly limited.
 重合体(α)の一実施形態は液晶に相溶するブロックセグメント(A)と液晶に不溶あるいは焼成により液晶に不溶化するブロックセグメント(B)を有する共重合体であることを特徴とするが、ブロックの数は限定せず、例えば(A)-(B)-(A)のように複数のブロックセグメントを有する構成でも良く、このブロックセグメントの数や組み合わせは特に限定はしない。また電気特性を付与するブロックセグメントの導入なども行うことができる。一方で合成のしやすさなどの観点から、ブロックセグメントの数は2~4程度が好ましく、膜の安定性の観点から重合体の終端のブロックセグメントはブロックセグメント(B)となるのが好ましい。 One embodiment of the polymer (α) is characterized in that it is a copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is insoluble in the liquid crystal or becomes insolubilized in the liquid crystal by firing, The number of blocks is not limited, and a configuration having a plurality of block segments, such as (A)-(B)-(A), for example, may be used, and the number and combination of block segments are not particularly limited. It is also possible to introduce block segments that impart electrical properties. On the other hand, from the viewpoint of ease of synthesis, the number of block segments is preferably about 2 to 4, and from the viewpoint of membrane stability, the terminal block segment of the polymer is preferably block segment (B).
 上記の通り、液晶に相溶するブロックセグメント(A)が弱アンカリング特性を司り、ブロックセグメント(A)の分子量が特性に大きく影響するため、ブロックセグメント(A)とブロックセグメント(B)との分子量比率は限定されない。 As mentioned above, the block segment (A) that is compatible with the liquid crystal controls weak anchoring properties, and the molecular weight of the block segment (A) greatly affects the properties. The molecular weight ratio is not limited.
 重合体(α)は、例えば、リビング重合によって得ることができる。リビング重合とは重合反応中に連鎖移動反応や停止反応などの副反応が伴わない重合反応であり、分子量分布が狭く、構造が高度に制御されたポリマーを得ることができる。例えば重合活性部位にドーマント種と呼ばれる安定な共有結合種を導入することで活性部位の失活を抑え、連鎖移動反応や停止反応などの副反応を発生させないようにする方法が挙げられる。リビング重合には活性種にラジカルを用いたもの、カチオンを用いたもの、アニオンを用いたものが挙げられ、用いる重合性化合物の構造や性質によって使い分けることが重要である。
 重合体(α)であるブロックポリマーを得る際、重合法は特に限定する必要は無いが、カチオン重合やアニオン重合は活性種を発生させる際にアルカリ金属や金属錯体、ハロゲン化合物を使用することが多く、液晶ディスプレイにおいては金属等の残渣やハロゲン化合物等の混入は焼き付きや表示不良の要因と成りえるため、極力金属やハロゲン化合物を使用しないラジカル重合の使用が好ましい。リビングラジカル重合としてはニトロキシドをドーマント種として使用するリビングラジカル重合(NMP)や、金属錯体を用いる原子移動ラジカル重合(ATRP)、硫黄化合物をドーマントとして使用する可逆的付加・脱離連鎖移動重合(RAFT重合)、有機テルル化合物等を用いるリビングラジカル重合(TERP)、ドーマント種にヨウ化アルキル化合物を使用し、リン化合物やアルコール等を触媒として使用する可逆移動触媒重合(RTCP)等があげられ、好ましい重合法としてはNMPやRTCP、RAFT重合等のリビングラジカル重合が挙げられ、特に好ましくはNMP若しくはRAFT重合である。
The polymer (α) can be obtained, for example, by living polymerization. Living polymerization is a polymerization reaction in which side reactions such as chain transfer reactions and termination reactions are not involved during the polymerization reaction, and it is possible to obtain a polymer with a narrow molecular weight distribution and a highly controlled structure. For example, one method is to suppress the deactivation of the active site by introducing a stable covalent species called a dormant species into the polymerization active site, thereby preventing the occurrence of side reactions such as chain transfer reactions and termination reactions. Living polymerizations include those using radicals, cations, and anions as active species, and it is important to select one depending on the structure and properties of the polymerizable compound used.
When obtaining the block polymer that is the polymer (α), there is no need to particularly limit the polymerization method, but cationic polymerization and anionic polymerization may use alkali metals, metal complexes, or halogen compounds to generate active species. In most liquid crystal displays, the contamination of metal residues and halogen compounds can cause burn-in and display defects, so it is preferable to use radical polymerization that does not use metals or halogen compounds as much as possible. Examples of living radical polymerization include living radical polymerization (NMP) using nitroxide as a dormant species, atom transfer radical polymerization (ATRP) using a metal complex, and reversible addition/elimination chain transfer polymerization (RAFT) using a sulfur compound as a dormant. Polymerization), living radical polymerization (TERP) using an organic tellurium compound, etc., and reversible transfer catalytic polymerization (RTCP) using an alkyl iodide compound as a dormant species and using a phosphorus compound, alcohol, etc. as a catalyst, etc. are preferred. Examples of the polymerization method include living radical polymerization such as NMP, RTCP, and RAFT polymerization, and NMP or RAFT polymerization is particularly preferred.
 NMPを用いる場合、使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、1,1’-ビス(tert-ブチルペルオキシ)シクロヘキサン、過酸化水素等が挙げられる。重合開始剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。ニトロキシドとしては、例えば下記式(N-1)~(N-12)で表される化合物が挙げられる。ニトロキシドの使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。上記重合における反応温度は、好ましくは20~200℃、より好ましくは40~150℃であり、反応時間は、好ましくは1~168時間、より好ましくは8~72時間である。 When using NMP, examples of the polymerization initiator include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1,1 Examples include '-bis(tert-butylperoxy)cyclohexane and hydrogen peroxide. The proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. Examples of the nitroxide include compounds represented by the following formulas (N-1) to (N-12). The proportion of nitroxide used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. The reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 RTCPを用いる場合、リビング性の発現に寄与する低分子休眠種(ドーマント種)に加え、反応促進の目的でヨウ化物触媒又は、水素化物触媒、及び重合開始剤を用いる必要がある。
 使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、1,1’-ビス(tert-ブチルペルオキシ)シクロヘキサン、過酸化水素等が挙げられる。重合開始剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。
 低分子休眠種(ドーマンント種)としては、例えば下記式(Q-1)~(Q-3)で表される化合物が挙げられる。低分子休眠種の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。
 ヨウ化物触媒としては、例えば下記式(P-1)~(P-4)で表される化合物が挙げられる。ヨウ化物触媒の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。
 水素化物触媒としては、例えば下記式(O-1)~(O-6)で表される化合物が挙げられる。水素化物触媒の使用割合は、使用するモノマー1モル部に対して、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。
 通常、上記重合における反応温度は、好ましくは20~200℃、より好ましくは40~150℃であり、反応時間は、好ましくは1~168時間、より好ましくは8~72時間である。
When using RTCP, in addition to low-molecular dormant species (dormant species) that contribute to the expression of living properties, it is necessary to use an iodide catalyst or a hydride catalyst and a polymerization initiator for the purpose of promoting the reaction.
Examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, and 1,1'-bis(tert). -butylperoxy)cyclohexane, hydrogen peroxide, etc. The proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
Examples of low-molecular dormant species include compounds represented by the following formulas (Q-1) to (Q-3). The proportion of the low molecular weight dormant species used is usually 0.000001 to 0.1 mol part, preferably 0.00001 to 0.01 mol part, per 1 mol part of the monomer used.
Examples of the iodide catalyst include compounds represented by the following formulas (P-1) to (P-4). The proportion of the iodide catalyst used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
Examples of the hydride catalyst include compounds represented by the following formulas (O-1) to (O-6). The proportion of the hydride catalyst used is 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
Generally, the reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 RAFT重合を用いる場合、使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、1,1’-ビス(tert-ブチルペルオキシ)シクロヘキサン、過酸化水素等が挙げられる。重合開始剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。連鎖移動剤(RAFT剤)としては、トリチオカーボナート、ジチオベンゾアート、ジチオカルバマート、キサンタートが好ましく、具体例としては、下記式(R-1)~(R-24)で表される化合物が挙げられる。連鎖移動剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。上記重合における反応温度は、好ましくは20~200℃、より好ましくは40~150℃であり、反応時間は、好ましくは1~168時間、より好ましくは8~72時間である。 When using RAFT polymerization, examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1, Examples include 1'-bis(tert-butylperoxy)cyclohexane and hydrogen peroxide. The proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. As the chain transfer agent (RAFT agent), trithiocarbonate, dithiobenzoate, dithiocarbamate, and xanthate are preferable, and specific examples include compounds represented by the following formulas (R-1) to (R-24). can be mentioned. The proportion of the chain transfer agent used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. The reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 RAFT重合においてリビングラジカル性が発現するのは、リビング鎖の大部分がドーマント型(休止型)であるように、成長するラジカル種を可逆的に不活性化できる化合物が存在し、活性鎖とドーマント鎖との間に速い平衡が存在するためである。 Living radical properties are expressed in RAFT polymerization because most of the living chains are in the dormant type (dormant type), and there are compounds that can reversibly inactivate the growing radical species. This is because a fast equilibrium exists between the chains.
 RAFT重合を用いることで、高分子末端制御、高度な分子量制御や分子量分布制御が可能となる。 By using RAFT polymerization, it is possible to control polymer terminals, advanced molecular weight control, and molecular weight distribution control.
 RAFT重合を用いて、機能性高分子を精密に合成するためには、モノマーの反応性を考慮して適切な連鎖移動剤を選択する必要がある。 In order to precisely synthesize a functional polymer using RAFT polymerization, it is necessary to select an appropriate chain transfer agent in consideration of the reactivity of the monomer.
 RAFT重合において、成長末端に存在するRAFT末端を熱的、化学的に改質することで高分子末端を制御できる。熱的に改質する場合、使用したRAFT剤が熱分解する温度以上で加熱することで末端を不飽和炭化水素基に改質できる。また、化学的に改質する場合、第一級アミン、第二級アミンなどに接触させることでアミノリシスを伴い、末端をチオール結合に改質できる。さらに、新たなモノマーおよびラジカル発生剤と接触させることで末端に新たなブロックセグメントを設けることが可能である。 In RAFT polymerization, polymer terminals can be controlled by thermally and chemically modifying the RAFT terminals present at the growing terminals. In the case of thermal modification, the terminal can be modified into an unsaturated hydrocarbon group by heating at a temperature higher than the temperature at which the RAFT agent used is thermally decomposed. In addition, in the case of chemical modification, the terminal can be modified into a thiol bond by bringing it into contact with a primary amine, secondary amine, etc., accompanied by aminolysis. Furthermore, it is possible to provide a new block segment at the end by bringing it into contact with a new monomer and a radical generator.
 RAFT重合において、下記式(eq1)を用いることで分子量制御が可能である。具体的には、数平均分子量(Mn)はモノマーのモル濃度と連鎖移動剤のモル濃度の比に伴い線形的に変化するため分子量制御が可能となる。
Figure JPOXMLDOC01-appb-M000043
(上記式(eq1)中、Mn(theor)は重合体の分子量を表し、[Monomer]はモノマーのモル濃度を表し、[CTA]は連鎖移動剤のモル濃度を表し、Mmonomerはモノマーの分子量を表し、conv.は重合転化率を表し、MCTAは連鎖移動剤の分子量を表す。)
In RAFT polymerization, molecular weight can be controlled by using the following formula (eq1). Specifically, the number average molecular weight (Mn) changes linearly with the ratio of the molar concentration of the monomer to the molar concentration of the chain transfer agent, making it possible to control the molecular weight.
Figure JPOXMLDOC01-appb-M000043
(In the above formula (eq1), Mn (theor) represents the molecular weight of the polymer, [Monomer] 0 represents the molar concentration of the monomer, [CTA] 0 represents the molar concentration of the chain transfer agent, and M monomer represents the molar concentration of the monomer. represents the molecular weight of the chain transfer agent, conv. represents the polymerization conversion rate, and MCTA represents the molecular weight of the chain transfer agent.)
 なお、上記重合により得られる共重合体が反応溶液中に溶解されている場合、該反応溶液をそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれる共重合体を単離したうえで液晶配向剤の調製に供してもよい。 In addition, when the copolymer obtained by the above polymerization is dissolved in the reaction solution, the reaction solution may be used as it is for preparing the liquid crystal aligning agent, or the copolymer contained in the reaction solution may be isolated. Then, it may be used for preparing a liquid crystal aligning agent.
 共重合体(重合体(α))の合成に使用される有機溶媒としては、共重合体を構成する化合物種と化学反応しないものでかつラジカル捕捉しないものであれば良い。例えば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジブチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジプロピルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジエチルプロピオンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチル-ε-カプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、シクロヘキサン、2-エチル-1-ヘキサノール、ベンゼン、キシレン、トルエン、エチルベンゼン、イソプロピルベンゼン、tert-ブチルベンゼン、テトラヒドロフラン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、ピルビン酸プロピル、ピルビン酸ブチル、ピルビン酸ペンチル、ピルビン酸ヘキシル、ピルビン酸-2-エチルヘキシル、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸ブチル、アセト酢酸ペンチル、アセト酢酸ヘキシル、アセト酢酸-2-エチルヘキシル、レブリン酸メチル、レブリン酸エチル、レブリン酸プロピル、レブリン酸ブチル、レブリン酸ペンチル、レブリン酸ヘキシル、レブリン酸-2-エチルヘキシル、マロン酸ジメチル、コハク酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチル、フタル酸ジメチル、マレイン酸ジメチル、マロン酸ジエチル、コハク酸ジエチル、グルタル酸ジエチル、アジピン酸ジエチル、フタル酸ジエチル、マレイン酸ジエチル、マロン酸ジプロピル、コハク酸ジプロピル、グルタル酸ジプロピル、アジピン酸ジプロピル、フタル酸ジプロピル、マレイン酸ジプロピル、マロン酸ジブチル、コハク酸ジブチル、グルタル酸ジブチル、アジピン酸ジブチル、フタル酸ジブチル、マレイン酸ジブチル、マロン酸ジペンチル、コハク酸ジペンチル、グルタル酸ジペンチル、アジピン酸ジペンチル、フタル酸ジペンチル、マレイン酸ジペンチル、マロン酸ジヘキシル、コハク酸ジヘキシル、グルタル酸ジヘキシル、アジピン酸ジヘキシル、フタル酸ジヘキシル、マレイン酸ジヘキシル、マロン酸ジ-2-エチルヘキシル、コハク酸-2-エチルヘキシル、グルタル酸-2-エチルヘキシル、アジピン酸-2-エチルヘキシル、フタル酸-2-エチルヘキシル、マレイン酸-2-エチルヘキシル(以下、「特定の有機溶媒」ともいう。なお、本明細書において「特定溶媒」と「特定の有機溶媒」とは別の溶媒を指す。)等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。 The organic solvent used in the synthesis of the copolymer (polymer (α)) may be any solvent as long as it does not chemically react with the compound species constituting the copolymer and does not scavenge radicals. For example, N,N-dimethylformamide, N,N-diethylformamide, N,N-dibutylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dipropylacetamide, N,N-dimethyl Propionamide, N,N-diethylpropionamide, 3-methoxy-N,N-dimethylpropanamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2-pyrrolidone, 1, 3-dimethyl-2-imidazolidinone, N-methyl-ε-caprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoramide, γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, Ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate , ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether Acetate, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol mono Acetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl Ketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane, n-hexane, n-pentane, n-octane, cyclohexane, 2-ethyl-1-hexanol, benzene, xylene, toluene, ethylbenzene, isopropyl Benzene, tert-butylbenzene, tetrahydrofuran, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, pyruvic acid Ethyl, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, 3 -Butyl methoxypropionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, propyl pyruvate, pyruvic acid Butyl, pentyl pyruvate, hexyl pyruvate, 2-ethylhexyl pyruvate, methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, butyl acetoacetate, pentyl acetoacetate, hexyl acetoacetate, 2-ethylhexyl acetoacetate, levulinic acid Methyl, ethyl levulinate, propyl levulinate, butyl levulinate, pentyl levulinate, hexyl levulinate, 2-ethylhexyl levulinate, dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, dimethyl phthalate, maleic acid. Dimethyl acid, diethyl malonate, diethyl succinate, diethyl glutarate, diethyl adipate, diethyl phthalate, diethyl maleate, dipropyl malonate, dipropyl succinate, dipropyl glutarate, dipropyl adipate, dipropyl phthalate, dipropyl maleate , dibutyl malonate, dibutyl succinate, dibutyl glutarate, dibutyl adipate, dibutyl phthalate, dibutyl maleate, dipentyl malonate, dipentyl succinate, dipentyl glutarate, dipentyl adipate, dipentyl phthalate, dipentyl maleate, malon Dihexyl acid, dihexyl succinate, dihexyl glutarate, dihexyl adipate, dihexyl phthalate, dihexyl maleate, di-2-ethylhexyl malonate, 2-ethylhexyl succinate, 2-ethylhexyl glutarate, 2-adipate Ethylhexyl, 2-ethylhexyl phthalate, 2-ethylhexyl maleate (hereinafter also referred to as "specific organic solvent"). Note that in this specification, "specific solvent" and "specific organic solvent" refer to different solvents. ) etc. These organic solvents may be used alone or in combination.
(グラフト共重合体[重合体(β)])
 本発明における「グラフト共重合体」の一実施形態は、弱アンカリング液晶配向剤に含有されるグラフト共重合体である。弱アンカリング液晶配向剤は、液晶表示素子に使用される液晶を配向させる膜、すなわち液晶配向膜の形成に用いられる。また、弱アンカリング液晶配向剤は、液晶と、液晶配向膜とを有する液晶セルの液晶配向膜の形成に用いられる。
 グラフト共重合体[重合体(β)]は、幹ポリマーと、幹ポリマーの側鎖として幹ポリマーに結合した枝ポリマーとを有する。
 枝ポリマーは、液晶と相溶する。
 幹ポリマーは、液晶に相溶しない又は焼成により液晶に不溶化する。
(Graft copolymer [polymer (β)])
One embodiment of the "graft copolymer" in the present invention is a graft copolymer contained in a weakly anchoring liquid crystal aligning agent. Weak anchoring liquid crystal alignment agents are used to form a film for aligning liquid crystals used in liquid crystal display elements, that is, a liquid crystal alignment film. Moreover, the weak anchoring liquid crystal alignment agent is used for forming a liquid crystal alignment film of a liquid crystal cell having a liquid crystal and a liquid crystal alignment film.
The graft copolymer [polymer (β)] has a trunk polymer and a branch polymer bonded to the trunk polymer as a side chain of the trunk polymer.
The branch polymer is compatible with the liquid crystal.
The backbone polymer is not compatible with the liquid crystal or becomes insoluble in the liquid crystal upon firing.
 グラフト共重合体は、枝分かれ構造を有するポリマーの総称であり、「幹」に対応するポリマーと幹の側鎖として幹に結合した「枝」に対応するポリマーとを同時に有するポリマーを指す。本発明の液晶配向剤の一実施形態にはグラフト共重合体が使用されるが、本発明のグラフト共重合体は、液晶に相溶する枝ポリマーを有しつつ、グラフト共重合体としては液晶に相溶しない又は焼成により液晶に不溶化することを特徴としている。すなわち、液晶に相溶する枝ポリマーが液晶と相溶し膨潤することにより弱アンカリング状態形成に寄与しつつ、グラフト共重合体としては液晶に相溶しない又は焼成により液晶に不溶化することで、液晶へのグラフト共重合体の溶出を防ぎ、かつ基板への固着やポリマー同士の架橋、シール成分と架橋することにより、膜硬度やシール密着強度に優れた弱アンカリング液晶表示素子を得ることができる。 Graft copolymer is a general term for polymers with a branched structure, and refers to a polymer that simultaneously has a polymer corresponding to a "trunk" and a polymer corresponding to a "branch" bonded to the trunk as a side chain of the trunk. A graft copolymer is used in one embodiment of the liquid crystal aligning agent of the present invention. It is characterized by being insoluble in liquid crystals or becoming insoluble in liquid crystals by firing. That is, a branch polymer that is compatible with the liquid crystal dissolves in the liquid crystal and swells, thereby contributing to the formation of a weak anchoring state, while as a graft copolymer, it is not compatible with the liquid crystal, or it becomes insolubilized in the liquid crystal by baking. By preventing the elution of the graft copolymer to the liquid crystal, fixing it to the substrate, crosslinking the polymers with each other, and crosslinking with the sealing component, it is possible to obtain a weakly anchored liquid crystal display element with excellent film hardness and seal adhesion strength. can.
 本出願人は、重合体(β)を含む弱アンカリング液晶配向剤が、簡便に製造可能であり、塗布性が良好な弱アンカリング液晶配向剤であって、シールとの密着性が良好であり、プレチルト角の発生がなく、低電圧駆動と電圧OFF時の高速応答化が同時に実現できる弱アンカリング液晶配向膜が得られる弱アンカリング液晶配向剤であることを見出し、出願している(特願2021-156886、及びWO2023/048278。ここに引用されたことによって、この出願の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。)。 The present applicant has proposed that a weakly anchoring liquid crystal aligning agent containing a polymer (β) is a weakly anchoring liquid crystal aligning agent that can be easily produced, has good coating properties, and has good adhesion to a seal. We have discovered that this is a weakly anchoring liquid crystal aligning agent that does not generate a pretilt angle and can provide a weakly anchoring liquid crystal aligning film that simultaneously achieves low voltage drive and high-speed response when the voltage is turned off, and has filed an application. Japanese Patent Application No. 2021-156886 and WO2023/048278. By being cited herein, the content of this application is incorporated herein to the same extent as if it were expressly set forth in its entirety.)
 本発明のグラフト共重合体は、液晶に相溶する枝ポリマーを有しつつ、液晶に相溶しない又は焼成により液晶に不溶化することを特徴としている。なお、グラフト共重合体を液晶に相溶しないように、又は焼成によりグラフト共重合体を液晶に不溶化するようにするために、幹ポリマーは液晶に相溶しない又は焼成により液晶に不溶化する構造となっている。
 本発明のグラフト共重合体は、液晶に相溶する枝ポリマーと液晶に相溶しない又は熱等により不溶化する幹ポ
リマーを有するが、これらはフリーラジカル重合によりランダム配列で連結していることが好ましい。これにより、高いシール密着性や溶媒選択性、塗布性が得られる。
The graft copolymer of the present invention is characterized in that it has branch polymers that are compatible with liquid crystals, but are not compatible with liquid crystals or become insolubilized in liquid crystals upon firing. In addition, in order to prevent the graft copolymer from being compatible with the liquid crystal, or to make the graft copolymer insoluble in the liquid crystal by baking, the backbone polymer has a structure that is not compatible with the liquid crystal or becomes insoluble in the liquid crystal by baking. It has become.
The graft copolymer of the present invention has a branch polymer that is compatible with liquid crystals and a trunk polymer that is not compatible with liquid crystals or becomes insolubilized by heat etc., and these are preferably connected in a random arrangement by free radical polymerization. . This provides high seal adhesion, solvent selectivity, and coating properties.
 液晶に相溶する枝ポリマーの構造は、液晶に相溶するものであれば特に限定はしないが、例えば、枝ポリマーは、下記式(7)で表されるマクロモノマーを用いることで得ることができる。また液晶に相溶しないまたは焼成により不溶化する幹ポリマーの構造もそれらの性質も満たすものであれば特に限定しないが、例えば幹ポリマーは前記式(6)で表される化合物を用いることで得ることができる。幹ポリマーを得るにあたり、例えば、前記式(6)で表される化合物一種のみを用いても良く、または、前記式(6)で表される化合物を用いていればこれ以外の1種の化合物若しくは複数の化合物を組み合わせても良い。
 言い換えれば、重合体(β)における枝ポリマーは、例えば、下記式(7)で表されるマクロモノマーに由来する。
 また、重合体(β)における幹ポリマーは、例えば、前記式(6)で表される化合物を、構成成分として含む。
 以下に具体的な化合物の式を示す。
The structure of the branch polymer that is compatible with the liquid crystal is not particularly limited as long as it is compatible with the liquid crystal, but for example, the branch polymer can be obtained by using a macromonomer represented by the following formula (7). can. Furthermore, the structure of the backbone polymer that is incompatible with the liquid crystal or becomes insolubilized by firing is not particularly limited as long as it satisfies these properties, but for example, the backbone polymer may be obtained by using a compound represented by the above formula (6). Can be done. In obtaining the backbone polymer, for example, only one type of compound represented by the above formula (6) may be used, or if the compound represented by the above formula (6) is used, one type of compound other than this may be used. Alternatively, a plurality of compounds may be combined.
In other words, the branched polymer in the polymer (β) is derived from, for example, a macromonomer represented by the following formula (7).
Further, the backbone polymer in the polymer (β) contains, for example, a compound represented by the above formula (6) as a constituent component.
The formula of a specific compound is shown below.
Figure JPOXMLDOC01-appb-C000044
(式(7)中、Pは重合可能な不飽和炭化水素基を有する重合性基を表し、Qは前記式(2)~(5)で表される化合物の少なくとも1種以上を含むモノマーを重合することによって得られる構造であり、nは1~2の整数である。nが2の場合、2つのQは同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000044
(In formula (7), P represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and Q represents a monomer containing at least one of the compounds represented by formulas (2) to (5) above. It is a structure obtained by polymerization, and n is an integer of 1 to 2. When n is 2, the two Qs may be the same or different.)
 枝ポリマーの合成に使用される前記モノマーは単一成分でも良く、複数のモノマーを組み合わせて使用してもよい。また、以下でも述べる他のラジカル重合反応可能なモノマーを併用してもよい。 The monomer used in the synthesis of the branched polymer may be a single component, or a combination of multiple monomers may be used. Further, other monomers capable of radical polymerization reaction, which will be described below, may be used in combination.
 重合体(β)において、枝ポリマーが弱アンカリング特性発現に大きく関与している。枝ポリマーの分子量に応じて弱アンカリング膜の物性が変化するため、分子量の最適化が重要となる。良好な弱アンカリング膜を形成する観点で好ましい枝ポリマーの数平均分子量は1,000~100,000であり、より好ましくは3,000~50,000であり、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(PDI)は、好ましくは3.0以下であり、より好ましくは2.0以下である。なお、グラフト共重合体が、マクロモノマーを使用したgrafting through法により合成される場合、ここでいう分子量は、マクロモノマーの分子量に相当する。 In the polymer (β), the branched polymers are largely involved in the expression of weak anchoring properties. Optimization of the molecular weight is important because the physical properties of the weak anchoring film change depending on the molecular weight of the branch polymer. From the viewpoint of forming a good weak anchoring film, the preferred number average molecular weight of the branched polymer is 1,000 to 100,000, more preferably 3,000 to 50,000, and the weight average molecular weight (Mw) and number The molecular weight distribution (PDI) expressed as a ratio to the average molecular weight (Mn) is preferably 3.0 or less, more preferably 2.0 or less. Note that when the graft copolymer is synthesized by a grafting through method using a macromonomer, the molecular weight here corresponds to the molecular weight of the macromonomer.
 枝ポリマーにおいて末端を除いた構造(例えば、式(7)のQの構造)は例えば上記式(2)~(5)で表されるモノマーを1種のみ用いた単独ポリマー構造でも良く、複数のモノマーを組み合わせた共重合体構造でも良い。複数のモノマー同士を組み合わせる場合、ランダム共重合でも良く、ブロック共重合でも良い。上記式(2)~(5)で表されるモノマー同士を組み合わせる場合は、組み合わせ方法に依らずその比率は特に限定されない。以下で説明する液晶に不溶化する化合物種と組み合わせる場合は、特性維持の観点で液晶に不溶化するモノマーの好ましい組み合わせ比率は30モル%以下であり、より好ましくは20モル%以下であるが限定はしない。これら合成方法や、組み合わせるモノマー、組み合わせ比率は目的とする物性や表示特性、電気特性等が得られる範囲で使用するのが好ましい。 The structure in which the terminal end of the branched polymer is removed (for example, the structure of Q in formula (7)) may be a single polymer structure using only one type of monomer represented by the above formulas (2) to (5), or a structure in which multiple monomers are used. A copolymer structure consisting of a combination of monomers may also be used. When a plurality of monomers are combined, random copolymerization or block copolymerization may be used. When the monomers represented by the above formulas (2) to (5) are combined, the ratio is not particularly limited regardless of the method of combination. When combined with a compound species that insolubilizes liquid crystals as described below, the preferred combination ratio of monomers that insolubilize liquid crystals is 30 mol% or less, more preferably 20 mol% or less, from the viewpoint of maintaining properties, but there is no limitation. . These synthesis methods, monomers to be combined, and combination ratios are preferably used within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
 重合体(β)であるグラフト共重合体の枝ポリマーを形成する原料である式(7)で表されるマクロモノマーは、例えば、リビング重合、連鎖移動重合やポリマー末端修飾反応の組み合わせによって得ることができる。また、200℃以上の高温での連続塊状重合によって、末端基にラジカル重合性のある不飽和結合を有するポリマーを得ることができることが報告されている(東亞合成研究年報 TREND 2002 第5号)。
 グラフト共重合体の原料となるマクロモノマーを得る際、重合法は特に限定する必要は無いが、カチオン重合やアニオン重合は活性種を発生させる際にアルカリ金属や金属錯体、ハロゲン化合物を使用することが多く、液晶ディスプレイにおいては金属等の残渣やハロゲン化合物等の混入は焼き付きや表示不良の要因と成りえるため、極力金属やハロゲン化合物を使用しないラジカル重合の使用が好ましい。リビングラジカル重合としては、ニトロキシドをドーマント種として使用するニトロキシド媒介ラジカル重合(NMP)や、金属錯体を用いる原子移動ラジカル重合(ATRP)、硫黄化合物をドーマントとして使用する可逆的付加・開裂連鎖移動(RAFT)重合、有機テルル化合物等を用いるリビングラジカル重合(TERP)、ドーマント種にヨウ化アルキル化合物を使用し、リン化合物やアルコール等を触媒として使用する可逆移動触媒重合(RTCP)等があげられ、好ましい重合法としてはNMPやRTCP、RAFT重合等のリビングラジカル重合が挙げられ、特に好ましくはNMP若しくはRAFT重合である。また、連鎖移動重合を用いるのも好ましい。
The macromonomer represented by formula (7), which is the raw material for forming the branch polymer of the graft copolymer that is the polymer (β), can be obtained, for example, by a combination of living polymerization, chain transfer polymerization, or polymer terminal modification reaction. Can be done. Furthermore, it has been reported that a polymer having a radically polymerizable unsaturated bond in the terminal group can be obtained by continuous bulk polymerization at a high temperature of 200° C. or higher (Toagosei Research Annual Report TREND 2002 No. 5).
When obtaining a macromonomer that is a raw material for a graft copolymer, there is no need to particularly limit the polymerization method, but cationic polymerization and anionic polymerization may use alkali metals, metal complexes, or halogen compounds to generate active species. In liquid crystal displays, the contamination of metal residues and halogen compounds can cause burn-in and display defects, so it is preferable to use radical polymerization that uses as few metals and halogen compounds as possible. Examples of living radical polymerization include nitroxide-mediated radical polymerization (NMP) using nitroxide as a dormant species, atom transfer radical polymerization (ATRP) using a metal complex, and reversible addition/fragmentation chain transfer (RAFT) using a sulfur compound as a dormant. ) polymerization, living radical polymerization (TERP) using an organic tellurium compound, etc., reversible transfer catalytic polymerization (RTCP) using an alkyl iodide compound as a dormant species, and using a phosphorus compound, alcohol, etc. as a catalyst, etc. are preferred. Examples of the polymerization method include living radical polymerization such as NMP, RTCP, and RAFT polymerization, and NMP or RAFT polymerization is particularly preferred. It is also preferable to use chain transfer polymerization.
 連鎖移動重合を用いる場合、使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、1,1’-ビス(tert-ブチルペルオキシ)シクロヘキサン、過酸化水素等が挙げられる。重合開始剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。連鎖移動剤としては、チオール類を用いることが好ましく、具体例としては、下記式(S-1)~(S-16)で表される化合物が挙げられる。連鎖移動剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。上記重合における反応温度は、好ましくは20~200℃、より好ましくは40~150℃であり、反応時間は、好ましくは1~168時間、より好ましくは8~72時間である。 When chain transfer polymerization is used, examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1 , 1'-bis(tert-butylperoxy)cyclohexane, hydrogen peroxide, and the like. The proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. As the chain transfer agent, it is preferable to use thiols, and specific examples include compounds represented by the following formulas (S-1) to (S-16). The proportion of the chain transfer agent used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. The reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
Figure JPOXMLDOC01-appb-C000045
 (式(S-1)~(S-16)中、Meは、メチル基を表し、Etは、エチル基を表す。)
Figure JPOXMLDOC01-appb-C000045
(In formulas (S-1) to (S-16), Me represents a methyl group, and Et represents an ethyl group.)
 連鎖移動重合反応に用いる有機溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、上記特定の有機溶媒が挙げられ、1種単独で使用してもよく、2種以上を混合して使用してもよい。
 さらに、生成するポリマーを溶解させない溶媒であっても、生成したポリマーが析出しない範囲で、上述した有機溶媒に混合して使用してもよい。
 なお、連鎖移動重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
The organic solvent used in the chain transfer polymerization reaction is not particularly limited as long as it dissolves the produced polymer. Specific examples include the above-mentioned specific organic solvents, which may be used alone or in combination of two or more.
Furthermore, even a solvent that does not dissolve the produced polymer may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate.
Note that in chain transfer polymerization, oxygen in an organic solvent becomes a cause of inhibiting the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
 連鎖移動重合を用いることで、高分子末端制御、分子量制御や分子量分布制御が可能となる。 By using chain transfer polymerization, it is possible to control polymer terminals, molecular weight, and molecular weight distribution.
 連鎖移動重合において、重合体は連鎖移動と成長反応の競争反応によって得られる。連鎖移動重合で得られる重合体の分子量や分子量分布は、連鎖移動速度定数(kc)と成長速度定数(kp)の商で表される連鎖移動定数(Cs)によって決定される。一般に連鎖移動重合はCsが1~60の範囲となる構成が良く、用いるモノマー種や連鎖移動剤種、及び、これらを正しく組み合わせることが重要である。 In chain transfer polymerization, polymers are obtained by competitive reactions between chain transfer and growth reactions. The molecular weight and molecular weight distribution of a polymer obtained by chain transfer polymerization are determined by the chain transfer constant (Cs), which is expressed as the quotient of the chain transfer rate constant (kc) and the growth rate constant (kp). Generally, in chain transfer polymerization, a structure in which Cs is in the range of 1 to 60 is preferable, and it is important to use the monomer species and chain transfer agent species and the correct combination of these.
 連鎖移動定数(Cs)は用いるモノマーの種類や連鎖移動剤種によって大きく異なるため、正しく選択する必要がある。 The chain transfer constant (Cs) varies greatly depending on the type of monomer used and the type of chain transfer agent, so it is necessary to select it correctly.
 グラフト共重合体の主な合成方法として、幹ポリマーに直接枝ポリマーを導入するGrafting-to法、マクロ開始剤(重合活性点を有する幹ポリマー)からモノマーを重合し枝ポリマーを延長するGrafting-from法、マクロモノマー(片末端に重合性官能基を有するポリマー)を重合するGrafting-through法、などが挙げられるが、いずれの方法も利用可能であるため、その合成方法は限定しない。 The main synthesis methods for graft copolymers include the Grafting-to method, in which a branch polymer is directly introduced into a trunk polymer, and the Grafting-from method, in which a monomer is polymerized from a macroinitiator (a trunk polymer having a polymerization active site) to extend a branch polymer. The synthesis method is not limited, as any method can be used.
 グラフト共重合体の製造方法は、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には前記のモノマーを用いて、ラジカル重合、カチオン重合またはアニオン重合により製造することができる。これらの中では、反応制御のしやすさ等の観点からラジカル重合が特に好ましい。 The method for producing the graft copolymer is not particularly limited, and any commonly used industrial method can be used. Specifically, it can be produced by radical polymerization, cationic polymerization, or anionic polymerization using the above-mentioned monomers. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤(ラジカル熱重合開始剤、ラジカル光重合開始剤)や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As the polymerization initiator for radical polymerization, known compounds such as radical polymerization initiators (radical thermal polymerization initiators, radical photopolymerization initiators) and reversible addition-fragmentation chain transfer (RAFT) polymerization reagents may be used. Can be done.
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーオキシエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、2,2’-ビス(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)等が挙げられる。ラジカル熱重合開始剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 A radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature. Such radical thermal polymerization initiators include, for example, ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxide Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxycyclohexane) etc.), alkyl peroxy esters (peroxyneodecanoic acid tert-butyl ester, peroxypivalic acid tert-butyl ester, peroxy 2-ethylcyclohexanoic acid tert-amyl ester, etc.), persulfates (potassium persulfate, , sodium persulfate, ammonium persulfate, etc.), azo compounds (azobisisobutyronitrile, 2,2'-bis(2-hydroxyethyl)azobisisobutyronitrile, etc.), and the like. The radical thermal polymerization initiators may be used alone or in combination of two or more.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンゾオキサゾール、2-(p-ジメチルアミノスチリル)ベンゾチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラキス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラキス(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ビス(メトキシカルボニル)-4,4’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ビス(メトキシカルボニル)-4,3’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ビス(メトキシカルボニル)-3,3’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等が挙げられる。ラジカル光重合開始剤は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-Methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-( 4-morpholinophenyl)-1-butanone, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-bis(tert-butylperoxycarbonyl)benzophenone, 3,4,4'-tris( tert-butylperoxycarbonyl)benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-(4'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(3' , 4'-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(2',4'-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2 -(2'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-pentyloxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 4- [p-N,N-di(ethoxycarbonylmethyl)]-2,6-di(trichloromethyl)-s-triazine, 1,3-bis(trichloromethyl)-5-(2'-chlorophenyl)-s- Triazine, 1,3-bis(trichloromethyl)-5-(4'-methoxyphenyl)-s-triazine, 2-(p-dimethylaminostyryl)benzoxazole, 2-(p-dimethylaminostyryl)benzothiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis(7-diethylaminocoumarin), 2-(o-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2 , 2'-bis(2-chlorophenyl)-4,4',5,5'-tetrakis(4-ethoxycarbonylphenyl)-1,2'-biimidazole, 2,2'-bis(2,4-dichlorophenyl) )-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis(2,4-dibromophenyl)-4,4',5,5'-tetraphenyl -1,2'-biimidazole, 2,2'-bis(2,4,6-trichlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 3-( 2-Methyl-2-dimethylaminopropionyl)carbazole, 3,6-bis(2-methyl-2-morpholinopropionyl)-9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenylketone, bis(η5-2,4- cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium, 3,3',4,4'-tetrakis(tert-butylperoxycarbonyl) Benzophenone, 3,3',4,4'-tetrakis(tert-hexylperoxycarbonyl)benzophenone, 3,3'-bis(methoxycarbonyl)-4,4'-bis(tert-butylperoxycarbonyl)benzophenone, 3, 4'-bis(methoxycarbonyl)-4,3'-bis(tert-butylperoxycarbonyl)benzophenone, 4,4'-bis(methoxycarbonyl)-3,3'-bis(tert-butylperoxycarbonyl)benzophenone, 2-(3-Methyl-3H-benzothiazol-2-ylidene)-1-naphthalen-2-yl-ethanone, 2-(3-methyl-1,3-benzothiazol-2(3H)-ylidene)-1 -(2-benzoyl)ethanone and the like. The radical photopolymerization initiators may be used alone or in combination of two or more.
 ラジカル重合法としては、特に限定されるものではなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。
 ラジカル重合反応に用いる有機溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、上記特定の有機溶媒が挙げられる。これらの有機溶媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
The radical polymerization method is not particularly limited, and emulsion polymerization, suspension polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, solution polymerization, and the like can be used.
The organic solvent used in the radical polymerization reaction is not particularly limited as long as it dissolves the produced polymer. Specific examples include the above-mentioned specific organic solvents. These organic solvents may be used alone or in combination of two or more.
 さらに、生成するポリマーを溶解させない溶媒であっても、生成したポリマーが析出しない範囲で、上述した有機溶媒に混合して使用してもよい。
 なお、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
 なお、上記重合により得られるグラフト共重合体が反応溶液中に溶解されている場合、該反応溶液をそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるグラフト共重合体を単離したうえで液晶配向剤の調製に供してもよい。
 ラジカル重合の際の重合温度は、30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度は、好ましくは1~50質量%、より好ましくは5~40質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
Furthermore, even a solvent that does not dissolve the produced polymer may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate.
In addition, since oxygen in an organic solvent becomes a cause of inhibiting the polymerization reaction in radical polymerization, it is preferable to use an organic solvent that has been degassed to the extent possible.
In addition, when the graft copolymer obtained by the above polymerization is dissolved in the reaction solution, the reaction solution may be used as it is for preparing the liquid crystal aligning agent, or the graft copolymer contained in the reaction solution may be dissolved in the reaction solution. After separation, the liquid crystal aligning agent may be prepared.
The polymerization temperature during radical polymerization can be any temperature in the range of 30 to 150°C, but is preferably in the range of 50 to 100°C. In addition, the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high, making it difficult to stir uniformly. Therefore, the monomer concentration is preferably 1 to 50% by weight, more preferably 5 to 40% by weight. The initial stage of the reaction can be carried out at a high concentration, and then an organic solvent can be added.
 上述したラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~10モル%が好ましい。また重合時には各種モノマー成分や溶媒、開始剤等を追加することもできる。 In the radical polymerization reaction described above, if the ratio of the radical polymerization initiator to the monomer is large, the molecular weight of the obtained polymer will be small, and if it is small, the molecular weight of the obtained polymer will be large. The amount is preferably 0.1 to 10 mol% based on the monomer to be polymerized. Furthermore, various monomer components, solvents, initiators, etc. can be added during polymerization.
 上記反応により得られた反応溶液から生成したポリマーは、反応溶液を貧溶媒に投入して沈殿させて回収することができるが、この再沈殿処理は必須ではない。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等が挙げられる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥させることができる。また、回収した重合体を有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種以上の貧溶媒を用いると、より一層精製の効率が上がるため好ましい。 The polymer produced from the reaction solution obtained by the above reaction can be recovered by pouring the reaction solution into a poor solvent to precipitate it, but this reprecipitation treatment is not essential. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water, and the like. The polymer precipitated in a poor solvent can be collected by filtration and then dried under normal pressure or reduced pressure, at room temperature or by heating. Further, by repeating the operation of redissolving the recovered polymer in an organic solvent and reprecipitation recovery 2 to 10 times, the amount of impurities in the polymer can be reduced. Examples of the poor solvent in this case include alcohols, ketones, hydrocarbons, etc. It is preferable to use three or more kinds of poor solvents selected from these, since the efficiency of purification will further increase.
 グラフト共重合体は、得られる塗膜の強度、塗膜形成時の作業性および塗膜の均一性を考慮すると、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量は、2,000~5,000,000が好ましく、5,000~2,000,000がより好ましい。 Considering the strength of the resulting coating film, workability during coating film formation, and uniformity of the coating film, the weight average molecular weight of the graft copolymer measured by GPC (Gel Permeation Chromatography) method is 2,000 to 5. ,000,000 is preferred, and 5,000 to 2,000,000 is more preferred.
 グラフト共重合体は、液晶に相溶する枝ポリマーと液晶に相溶しない又は熱等により不溶化する幹ポリマーを有するが、これらはフリーラジカル重合によりランダム配列で連結していることを特徴している。これにより、高いシール密着性や溶媒選択性、塗布性が得られる。 Graft copolymers have branch polymers that are compatible with liquid crystals and trunk polymers that are incompatible with liquid crystals or become insolubilized by heat, etc., and are characterized by being linked in a random arrangement by free radical polymerization. . This provides high seal adhesion, solvent selectivity, and coating properties.
 弱アンカリング配向膜の塗布性、シール密着性や膜強度、良好な弱アンカリング特性をそれぞれ両立するには、枝ポリマーと幹ポリマーの導入比率なども重要な要素である。例えば弱アンカリング特性には枝ポリマーが重要な役割を担っており、それらの導入割合が多くなると膜の強度が損なわれたり熱硬化等が阻害されたりするため、適切な導入量を考える必要がある。一方で幹ポリマーの導入量や分子量は弱アンカリング特性に影響しない(小さい)ため、前述の特性をそれぞれ両立するには、幹ポリマーの合成に使用される式(6)で表されるモノマーの分子数に対して、枝ポリマーの合成に使用される式(7)で表されるマクロモノマーの分子数比(導入比率)は小さくすることが好ましい。好ましい導入比率(式(7)で表されるマクロモノマー/式(6)で表されるモノマー)としては、0.1/99.9~50/50(モル/モル)であり、より好ましくは0.2/99.8~30/70(モル/モル)である。 In order to achieve both the coating properties, seal adhesion, film strength, and good weak anchoring properties of the weak anchoring alignment film, the introduction ratio of the branch polymer and the trunk polymer is also an important factor. For example, branch polymers play an important role in weak anchoring properties, and if their introduction ratio increases, the strength of the film will be impaired and heat curing will be inhibited, so it is necessary to consider the appropriate amount of introduction. be. On the other hand, the introduction amount and molecular weight of the backbone polymer do not affect the weak anchoring properties (they are small), so in order to achieve both of the above-mentioned properties, the monomer expressed by formula (6) used to synthesize the backbone polymer must be It is preferable that the ratio of the number of molecules (introduction ratio) of the macromonomer represented by formula (7) used in the synthesis of the branched polymer to the number of molecules is small. The preferred introduction ratio (macromonomer represented by formula (7)/monomer represented by formula (6)) is 0.1/99.9 to 50/50 (mol/mol), more preferably It is 0.2/99.8 to 30/70 (mol/mol).
 重合体(α)におけるブロックセグメント(B)や重合体(β)における幹ポリマーを構成するモノマーとして、特に好ましい式(6)で表される化合物の構造は以下の化合物であるがこれに限定はしない。 As a monomer constituting the block segment (B) in the polymer (α) or the backbone polymer in the polymer (β), the structure of the compound represented by the formula (6) is particularly preferable, but it is not limited to the following compounds. do not.
Figure JPOXMLDOC01-appb-C000046
 (式(B-1)~(B-17)中、Meは、メチル基を表し、Etは、エチル基を表す。)
Figure JPOXMLDOC01-appb-C000046
(In formulas (B-1) to (B-17), Me represents a methyl group, and Et represents an ethyl group.)
 本発明の液晶配向剤は、溶媒成分として特定溶媒を少なくとも1種以上含有する。液晶配向剤に使用される有機溶媒としては、上記特定溶媒以外のその他の溶媒を使用しても良い。当該その他の溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、2-エチル-1,3-ヘキサンジオール、エチレングリコール、プロピレングリコール(1,2-プロパンジオール)、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,2-ペンタンジオール、1,3-ペンタンジオール、1,4-ペンタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、1,2-ヘキサンジオール、1,3-ヘキサンジオール、1,4-ヘキサンジオール、1,5-ヘキサンジオール、1,6-ヘキサンジオール、2,3-ヘキサンジオール、2,4-ヘキサンジオール、2,5-ヘキサンジオール、3,5-ヘキサンジオール、1,2-ヘプタングリコール、1,3-ヘプタンジオール、1,4-ヘプタンジオール、1,5-ヘプタンジオール、1,6-ヘプタンジオール、1,7-ヘプタンジオール、1,2-オクタンジオール、1,4-オクタンジオール、1,8-オクタンジオール、1,2-ノナンジオール、1,3-ノナンジオール、1,5-ノナンジオール、1,6-ノナンジオール、1,9-ノナンジオール、1,2-デカンジオール、1,5-デカンジオール、1,8-デカンジオール、1,10-デカンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、ジブチレングリコール、グリセロール、2-エチル-1-ヘキサノール、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、ピルビン酸ブチル、ピルビン酸ペンチル、ピルビン酸ヘキシル、ピルビン酸-2-エチルヘキシル、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸ブチル、アセト酢酸ペンチル、アセト酢酸ヘキシル、アセト酢酸-2-エチルヘキシル、レブリン酸メチル、レブリン酸エチル、レブリン酸プロピル、レブリン酸ブチル、レブリン酸ペンチル、レブリン酸ヘキシル、レブリン酸-2-エチルヘキシル、マロン酸ジメチル、コハク酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチル、フタル酸ジメチル、マレイン酸ジメチル、マロン酸ジエチル、コハク酸ジエチル、グルタル酸ジエチル、アジピン酸ジエチル、フタル酸ジエチル、マレイン酸ジエチル、マロン酸ジプロピル、コハク酸ジプロピル、グルタル酸ジプロピル、アジピン酸ジプロピル、フタル酸ジプロピル、マレイン酸ジプロピル、マロン酸ジブチル、コハク酸ジブチル、グルタル酸ジブチル、アジピン酸ジブチル、フタル酸ジブチル、マレイン酸ジブチル、マロン酸ジペンチル、コハク酸ジペンチル、グルタル酸ジペンチル、アジピン酸ジペンチル、フタル酸ジペンチル、マレイン酸ジペンチル、マロン酸ジヘキシル、コハク酸ジヘキシル、グルタル酸ジヘキシル、アジピン酸ジヘキシル、フタル酸ジヘキシル、マレイン酸ジヘキシル、マロン酸ジ-2-エチルヘキシル、コハク酸-2-エチルヘキシル、グルタル酸-2-エチルヘキシル、アジピン酸-2-エチルヘキシル、フタル酸-2-エチルヘキシル、マレイン酸-2-エチルヘキシル等が挙げられるが、溶媒として使用できるものであればこれ以外のもの等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。
 液晶配向剤における特定溶媒以外の有機溶媒の含有量としては、特に制限されないが、液晶配向剤に含まれる溶媒全体の10~90質量%であることが好ましく、より好ましくは20~70質量%である。
The liquid crystal aligning agent of the present invention contains at least one specific solvent as a solvent component. As the organic solvent used for the liquid crystal aligning agent, other solvents than the above-mentioned specific solvents may be used. Examples of the other solvents include N,N-dimethylformamide, N,N-dimethylacetamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2-pyrrolidone, 1, 3-dimethyl-2-imidazolidinone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoramide, γ-butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone , methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol Monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, propylene glycol monomethyl ether acetate, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol Diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3 -Methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, Propyl ether, dihexyl ether, dioxane, n-hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, acetic acid Propylene glycol monoethyl ether, methyl 3-methoxypropionate, methylethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, 3-methoxy Butyl propionate, diglyme, 4-hydroxy-4-methyl-2-pentanone, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, Propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2-(2-ethoxypropoxy)propanol, 2-ethyl-1, 3-hexanediol, ethylene glycol, propylene glycol (1,2-propanediol), 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,4 -butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 1,2-hexanediol, 1,3-hexanediol, 1,4-hexanediol, 1,5-hexanediol, 1,6-hexanediol, 2,3-hexanediol, 2,4-hexanediol, 2,5-hexanediol, 3 , 5-hexanediol, 1,2-heptane glycol, 1,3-heptanediol, 1,4-heptanediol, 1,5-heptanediol, 1,6-heptanediol, 1,7-heptanediol, 1, 2-octanediol, 1,4-octanediol, 1,8-octanediol, 1,2-nonanediol, 1,3-nonanediol, 1,5-nonanediol, 1,6-nonanediol, 1,9 -nonanediol, 1,2-decanediol, 1,5-decanediol, 1,8-decanediol, 1,10-decanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4- Cyclohexanediol, diethylene glycol, dipropylene glycol, dibutylene glycol, glycerol, 2-ethyl-1-hexanol, methyl pyruvate, ethyl pyruvate, propyl pyruvate, butyl pyruvate, pentyl pyruvate, hexyl pyruvate, pyruvate- 2-ethylhexyl, methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, butyl acetoacetate, pentyl acetoacetate, hexyl acetoacetate, 2-ethylhexyl acetoacetate, methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate , pentyl levulinate, hexyl levulinate, 2-ethylhexyl levulinate, dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, dimethyl phthalate, dimethyl maleate, diethyl malonate, diethyl succinate, glutaric acid Diethyl, diethyl adipate, diethyl phthalate, diethyl maleate, dipropyl malonate, dipropyl succinate, dipropyl glutarate, dipropyl adipate, dipropyl phthalate, dipropyl maleate, dibutyl malonate, dibutyl succinate, dibutyl glutarate, Dibutyl adipate, dibutyl phthalate, dibutyl maleate, dipentyl malonate, dipentyl succinate, dipentyl glutarate, dipentyl adipate, dipentyl phthalate, dipentyl maleate, dihexyl malonate, dihexyl succinate, dihexyl glutarate, adipic acid Dihexyl, dihexyl phthalate, dihexyl maleate, di-2-ethylhexyl malonate, 2-ethylhexyl succinate, 2-ethylhexyl glutarate, 2-ethylhexyl adipate, 2-ethylhexyl phthalate, 2-maleate -Ethylhexyl and the like, but other solvents may also be used as long as they can be used as solvents. These organic solvents may be used alone or in combination.
The content of the organic solvent other than the specific solvent in the liquid crystal aligning agent is not particularly limited, but is preferably 10 to 90% by mass, more preferably 20 to 70% by mass of the total solvent contained in the liquid crystal aligning agent. be.
 また、塗膜の均一性や平滑性を向上させる溶媒を、溶解性が高い有機溶媒に混合して使用すると好ましい。 Furthermore, it is preferable to use a solvent that improves the uniformity and smoothness of the coating film by mixing it with an organic solvent that has high solubility.
 塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、2-エチル-1-ヘキサノール、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、ピルビン酸ブチル、ピルビン酸ペンチル、ピルビン酸ヘキシル、ピルビン酸-2-エチルヘキシル、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸ブチル、アセト酢酸ペンチル、アセト酢酸ヘキシル、アセト酢酸-2-エチルヘキシル、レブリン酸メチル、レブリン酸エチル、レブリン酸プロピル、レブリン酸ブチル、レブリン酸ペンチル、レブリン酸ヘキシル、レブリン酸-2-エチルヘキシル、マロン酸ジメチル、コハク酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチル、フタル酸ジメチル、マレイン酸ジメチル、マロン酸ジエチル、コハク酸ジエチル、グルタル酸ジエチル、アジピン酸ジエチル、フタル酸ジエチル、マレイン酸ジエチル、マロン酸ジプロピル、コハク酸ジプロピル、グルタル酸ジプロピル、アジピン酸ジプロピル、フタル酸ジプロピル、マレイン酸ジプロピル、マロン酸ジブチル、コハク酸ジブチル、グルタル酸ジブチル、アジピン酸ジブチル、フタル酸ジブチル、マレイン酸ジブチル、マロン酸ジペンチル、コハク酸ジペンチル、グルタル酸ジペンチル、アジピン酸ジペンチル、フタル酸ジペンチル、マレイン酸ジペンチル、マロン酸ジヘキシル、コハク酸ジヘキシル、グルタル酸ジヘキシル、アジピン酸ジヘキシル、フタル酸ジヘキシル、マレイン酸ジヘキシル、マロン酸ジ-2-エチルヘキシル、コハク酸-2-エチルヘキシル、グルタル酸-2-エチルヘキシル、アジピン酸-2-エチルヘキシル、フタル酸-2-エチルヘキシル、マレイン酸-2-エチルヘキシルなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5~60質量%であることが好ましく、より好ましくは10~40質量%である。 Examples of solvents that improve the uniformity and smoothness of the coating film include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, Ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol -tert- Butyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether , dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, Isobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, n-propyl lactate , n-butyl lactate, isoamyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl acetate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3 -Ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1 -Phenoxy-2-propanol, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2-(2-ethoxypropoxy)propanol , 2-ethyl-1-hexanol, methyl pyruvate, ethyl pyruvate, propyl pyruvate, butyl pyruvate, pentyl pyruvate, hexyl pyruvate, 2-ethylhexyl pyruvate, methyl acetoacetate, ethyl acetoacetate, acetoacetic acid Propyl, butyl acetoacetate, pentyl acetoacetate, hexyl acetoacetate, 2-ethylhexyl acetoacetate, methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, pentyl levulinate, hexyl levulinate, 2-levulinate Ethylhexyl, dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, dimethyl phthalate, dimethyl maleate, diethyl malonate, diethyl succinate, diethyl glutarate, diethyl adipate, diethyl phthalate, diethyl maleate, Dipropyl malonate, dipropyl succinate, dipropyl glutarate, dipropyl adipate, dipropyl phthalate, dipropyl maleate, dibutyl malonate, dibutyl succinate, dibutyl glutarate, dibutyl adipate, dibutyl phthalate, dibutyl maleate, malonic acid Dipentyl, Dipentyl succinate, Dipentyl glutarate, Dipentyl adipate, Dipentyl phthalate, Dipentyl maleate, Dihexyl malonate, Dihexyl succinate, Dihexyl glutarate, Dihexyl adipate, Dihexyl phthalate, Dihexyl maleate, Dipentyl malonate. Examples include 2-ethylhexyl, 2-ethylhexyl succinate, 2-ethylhexyl glutarate, 2-ethylhexyl adipate, 2-ethylhexyl phthalate, and 2-ethylhexyl maleate. A plurality of types of these solvents may be mixed. When using these solvents, it is preferably 5 to 60% by mass, more preferably 10 to 40% by mass of the total solvent contained in the liquid crystal aligning agent.
 本発明の弱アンカリング液晶配向剤には上記以外の成分を含有させてもよい。その例としては、弱アンカリング液晶配向剤に含有する組成物を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、弱アンカリング液晶配向剤に含有する組成物と基板との密着性を向上させる化合物、弱アンカリング液晶配向剤に含有する組成物の膜強度をさらに向上させる化合物などが挙げられる。 The weakly anchoring liquid crystal aligning agent of the present invention may contain components other than those mentioned above. Examples include compounds that improve film thickness uniformity and surface smoothness when the composition contained in the weakly anchoring liquid crystal aligning agent is applied, and compounds that improve the adhesion between the composition contained in the weakly anchoring liquid crystal aligning agent and the substrate. Examples include compounds that further improve the film strength of the composition contained in the weak anchoring liquid crystal aligning agent.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(三菱マテリアル電子化成社製)、メガファックF171、F173、R-30(DIC社製)、フロラードFC430、FC431(スリーエム社製)、アサヒガードAG710(AGC社製)、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)などが挙げられる。
 これらの界面活性剤を使用する場合、その使用割合は、弱アンカリング液晶配向剤に含有する組成物に含有される重合体の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
Examples of compounds that improve film thickness uniformity and surface smoothness include fluorosurfactants, silicone surfactants, and nonionic surfactants. More specifically, for example, FTOP EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronic Chemicals), Megafac F171, F173, R-30 (manufactured by DIC), Florado FC430, FC431 (manufactured by 3M), Asahi Examples include Guard AG710 (manufactured by AGC), Surflon S-382, SC101, SC102, SC103, SC104, SC105, and SC106 (manufactured by AGC Seimi Chemical).
When using these surfactants, the usage ratio is preferably 0.01 to 2 parts by mass based on 100 parts by mass of the total amount of polymers contained in the composition contained in the weakly anchoring liquid crystal aligning agent. , more preferably 0.01 to 1 part by mass.
 弱アンカリング液晶配向剤に含有する組成物と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-(3-トリエトキシシリル)プロピルトリエチレンテトラミン、N-(3-トリメトキシシリル)プロピルトリエチレンテトラミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、3-(N-アリル-N-グリシジル)アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。 Specific examples of compounds that improve the adhesion between the composition contained in the weak anchoring liquid crystal aligning agent and the substrate include functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane , N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-(3-triethoxysilyl)propyltriethylenetetramine, N-(3-trimethoxysilyl)propyltriethylenetetramine, 10-trimethoxysilyl-1,4,7- Triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl- 3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, Polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2 -dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N,N,N',N'-tetraglycidyl-m-xylylenediamine, 1,3- Bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, 3-(N-allyl-N-glycidyl)aminopropyltrimethoxysilane , 3-(N,N-diglycidyl)aminopropyltrimethoxysilane and the like.
 また、弱アンカリング液晶配向膜の膜強度をさらに上げるためには、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、弱アンカリング液晶配向剤に含有される重合体の総量100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。
 さらに、弱アンカリング液晶配向剤に含有する組成物には、上記の他、本発明の効果が損なわれない範囲であれば、弱アンカリング液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
In addition, in order to further increase the film strength of the weak anchoring liquid crystal alignment film, phenolic compounds such as 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane and tetra(methoxymethyl)bisphenol are added. You may. When using these compounds, it is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the total amount of polymers contained in the weak anchoring liquid crystal aligning agent. It is.
Furthermore, in addition to the above, the composition contained in the weak anchoring liquid crystal alignment agent may have electrical properties such as dielectric constant and conductivity of the weak anchoring liquid crystal alignment film, as long as the effects of the present invention are not impaired. A dielectric or conductive substance for the purpose of changing may be added.
 また、弱アンカリング液晶配向膜の粘度を上げるために、増粘剤を添加しても良い。増粘剤の例としては下記式(8)で表される構造単位を有する重合体(以下、「重合体RSM」と称することがある)が挙げられる。
 本出願人は、下記式(8)で表される構造単位を有する重合体を含む弱アンカリング液晶配向剤が、簡便に製造可能で、溶媒選択性が高く、ワニスを高粘度から低粘度領域まで制御でき、塗布方式に依らず塗布性が良好な弱アンカリング液晶配向剤であることを見出し、出願している(特願2022-22853及びWO2023157879。ここに引用されたことによって、この出願の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。)。
Furthermore, a thickener may be added to increase the viscosity of the weakly anchored liquid crystal alignment film. Examples of the thickener include a polymer having a structural unit represented by the following formula (8) (hereinafter sometimes referred to as "polymer RSM").
The present applicant has proposed that a weakly anchoring liquid crystal aligning agent containing a polymer having a structural unit represented by the following formula (8) can be easily produced, has high solvent selectivity, and can be used for varnishes in the high to low viscosity range. We have discovered that it is a weakly anchoring liquid crystal aligning agent that can be controlled up to The contents are incorporated herein to the same extent as if set forth in their entirety.)
(重合体RSM)
 「重合体RSM」の少量の添加によって簡便に塗布ワニス(例えば、液晶配向剤)の粘度を増加させることが可能になる。そのため、重合体RSMの添加量を調節することでワニスの粘度制御が可能となる。加えて、重合体RSMは溶媒選択性が良好であり、かつ重合体RSMを含むことで塗布ワニスには良好な塗布性が付与されるため、塗布性の悪い材料と混合することで材料全体の塗布性を良化することが可能である。
(Polymer RSM)
By adding a small amount of "polymer RSM", it becomes possible to easily increase the viscosity of a coating varnish (for example, a liquid crystal aligning agent). Therefore, the viscosity of the varnish can be controlled by adjusting the amount of polymer RSM added. In addition, polymer RSM has good solvent selectivity, and the inclusion of polymer RSM imparts good coating properties to the coating varnish, so mixing it with materials with poor coating properties improves the overall quality of the material. It is possible to improve the coating properties.
 重合体RSMは下記式(8)で表される構造単位を有する重合体である。 The polymer RSM is a polymer having a structural unit represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000047
(式(8)中、R及びRは、それぞれ独立して、水素原子、フッ素原子、又は炭素数1~3のアルキル基を表し、Xは、-O-R、-N(R)(R)、又は-S-R(Rは1価の有機基を表し、Rは1価の基を表す。)を表す。)
Figure JPOXMLDOC01-appb-C000047
(In formula (8), R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms, and X represents -O-R a , -N(R a ) (R b ), or -S-R a (R a represents a monovalent organic group, and R b represents a monovalent group).
 前記式(8)中のXは以下の構造から選ばれる基であることが好ましい。 It is preferable that X in the formula (8) is a group selected from the following structures.
Figure JPOXMLDOC01-appb-C000048
(式中、R及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、Rは炭素数1~12の直鎖若しくは分岐アルキレン基を表し、m及びnはそれぞれ独立して1~5の整数を表す。R、R又はRが複数存在する場合、それぞれ同じであっても異なっていても良い。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000048
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or a straight chain or branched alkyl group having 1 to 12 carbon atoms, and R 3 represents a straight chain or branched alkylene group having 1 to 12 carbon atoms, m and n each independently represent an integer from 1 to 5. When multiple R 1 , R 2 or R 3 exist, they may be the same or different. * represents a binding site.)
 前記重合体(RSM)は、例えば、無水マレイン酸骨格を含有する構造単位を有する重合体(無水マレイン酸系重合体)に、求核剤を1種以上反応させて得ることができる。この反応では、無水マレイン酸骨格のカルボニル基に、求核剤が付加し、開環反応が進行することによって、前記式(8)で表される構造単位が得られる。 The polymer (RSM) can be obtained, for example, by reacting a polymer having a structural unit containing a maleic anhydride skeleton (maleic anhydride polymer) with one or more nucleophiles. In this reaction, a nucleophile is added to the carbonyl group of the maleic anhydride skeleton, and a ring-opening reaction proceeds to obtain the structural unit represented by the formula (8).
 前記無水マレイン酸骨格を含有する構造単位を有する重合体は、好ましくは、下記式(8’)で表される構造単位(以下、構造単位(8’)とも言う。)を含む無水マレイン酸重合体(単独重合体又は共重合体)であり、より好ましくは、構造単位(8’)と、下記式(9)で表される構造単位(以下、構造単位(9)とも言う。)とを含む無水マレイン酸共重合体(以下、共重合体(mRSM)とも言う。)である。 The polymer having a structural unit containing a maleic anhydride skeleton is preferably a maleic anhydride polymer (homopolymer or copolymer) containing a structural unit represented by the following formula (8') (hereinafter also referred to as structural unit (8')), and more preferably a maleic anhydride copolymer (hereinafter also referred to as copolymer (mRSM)) containing the structural unit (8') and a structural unit represented by the following formula (9) (hereinafter also referred to as structural unit (9)).
Figure JPOXMLDOC01-appb-C000049
(式(8’)中、R及びRは、それぞれ独立して、水素原子、フッ素原子、又は炭素数1~3のアルキル基を表す。
 式(9)中、R、R、R5、及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、-OC(=O)-R(Rは炭素数1~6のアルキル基を表す。)、-C(=O)-OR(Rは炭素数1~6のアルキル基を表す。)、-OR(Rは炭素数1~6のアルキル基を表す。)、又はフェニル基を表す。)
Figure JPOXMLDOC01-appb-C000049
(In formula (8'), R 1 and R 2 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 3 carbon atoms.
In formula (9), R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, -OC(=O)-R (R is a carbon number ), -C(=O)-OR (R represents an alkyl group having 1 to 6 carbon atoms), -OR (R represents an alkyl group having 1 to 6 carbon atoms) ), or represents a phenyl group. )
 即ち、重合体(RSM)は、好ましくは、式(8)で表される構造単位と式(9)で表される構造単位とを有する。 That is, the polymer (RSM) preferably has a structural unit represented by formula (8) and a structural unit represented by formula (9).
 前記構造単位(9)は、例えば、エチレン、プロピレン、n-ブテン、イソブチレン、n-ペンテン、n-ヘキセン、炭素数1~20のアルキルアクリレート類及びメタクリレート類、酢酸ビニル、メチルビニルエーテル、並びに下記式(10)で表されるスチレン性化合物から選択されるモノマーに由来する構造単位である。 The structural unit (9) is, for example, ethylene, propylene, n-butene, isobutylene, n-pentene, n-hexene, alkyl acrylates and methacrylates having 1 to 20 carbon atoms, vinyl acetate, methyl vinyl ether, and the following formula: It is a structural unit derived from a monomer selected from styrenic compounds represented by (10).
Figure JPOXMLDOC01-appb-C000050
(式(10)中、Rは、水素原子または炭素数1~6のアルキル基であり、ベンゼン環は、任意に、炭素数1~4のアルキル基または水酸基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000050
(In formula (10), R is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and the benzene ring may be optionally substituted with an alkyl group having 1 to 4 carbon atoms or a hydroxyl group.)
 炭素数1~20のアルキルアクリレート類及びメタクリレート類としては、炭素数1~4のアルキルアクリレート類及びメタクリレート類が好ましい。なお、炭素数1~20のアルキルアクリレート類とは、アクリル酸の炭素数1~20アルキルエステルと同義である。
 上記炭素数1~4のアルキルアクリレート類の好ましい例としては、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、およびそれらの混合物が挙げられる。
 炭素数1~4のアルキルメタクリレート類の好ましい例としては、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、n-プロピルメタクリレート、n-ブチルメタクリレート、およびそれらの混合物が挙げられる。炭素数1~4のアルキルメタクリレート類と炭素数1~4のアルキルアクリレート類との混合物を使用してもよい。
 スチレン性化合物の好ましい例としては、スチレン、α-メチルスチレン、p-メチルスチレン、tert-ブチルスチレン、およびそれらの混合物が挙げられる。
 スチレン性化合物、炭素数1~20のアルキルアクリレート類及び/又はメタクリレート類との混合物を使用してもよい。
 この中でも特に、イソブチレンが好ましく使用されるか、又はイソブチレンと、1-ブテンと2-ブテンとの混合物が好ましく使用される。
As the alkyl acrylates and methacrylates having 1 to 20 carbon atoms, alkyl acrylates and methacrylates having 1 to 4 carbon atoms are preferred. Note that the term "alkyl acrylates having 1 to 20 carbon atoms" has the same meaning as alkyl esters having 1 to 20 carbon atoms of acrylic acid.
Preferred examples of the alkyl acrylates having 1 to 4 carbon atoms include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-propyl acrylate, n-butyl acrylate, and mixtures thereof.
Preferred examples of alkyl methacrylates having 1 to 4 carbon atoms include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-propyl methacrylate, n-butyl methacrylate, and mixtures thereof. A mixture of alkyl methacrylates having 1 to 4 carbon atoms and alkyl acrylates having 1 to 4 carbon atoms may be used.
Preferred examples of styrenic compounds include styrene, α-methylstyrene, p-methylstyrene, tert-butylstyrene, and mixtures thereof.
Mixtures with styrenic compounds, alkyl acrylates having 1 to 20 carbon atoms and/or methacrylates may be used.
Among these, isobutylene is particularly preferably used, or a mixture of isobutylene, 1-butene, and 2-butene is preferably used.
 前記構造単位(8’)は、共重合体(mRSM)を構成する全構造単位において、10~50mol%が好ましく、さらには30~50mol%が特に好ましい。 The structural unit (8') is preferably 10 to 50 mol%, particularly preferably 30 to 50 mol% of all structural units constituting the copolymer (mRSM).
 前記共重合体(mRSM)の分子量は、重量平均分子量が10,000~1000,000であることが好ましく、より好ましくは50,000~500,000である。 The weight average molecular weight of the copolymer (mRSM) is preferably 10,000 to 1,000,000, more preferably 50,000 to 500,000.
 前記共重合体(mRSM)としては、市販品を用いることができ、例えばISOBAM-6、ISOBAM-10、及びISOBAM-18(いずれもクラレ社製)が挙げられる。 As the copolymer (mRSM), commercially available products can be used, such as ISOBAM-6, ISOBAM-10, and ISOBAM-18 (all manufactured by Kuraray Co., Ltd.).
 上記求核剤としては、下記に示す化合物が挙げられる。 Examples of the above-mentioned nucleophile include the compounds shown below.
Figure JPOXMLDOC01-appb-C000051
(式中、R及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、Rは炭素数1~12の直鎖若しくは分岐アルキレン基を表し、m及びnはそれぞれ独立して1~5の整数を表す。R、R又はRが複数存在する場合、それぞれ同じであっても異なっていても良い。)
Figure JPOXMLDOC01-appb-C000051
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or a straight chain or branched alkyl group having 1 to 12 carbon atoms, and R 3 represents a straight chain or branched alkylene group having 1 to 12 carbon atoms, (m and n each independently represent an integer of 1 to 5. If multiple R 1 , R 2 or R 3 exist, they may be the same or different.)
 前記無水マレイン酸骨格を含有する構造単位を有する重合体と、求核剤との反応は、好ましくは有機溶媒中で行われる。使用する有機溶媒としては、例えばアルコール、エーテル、ケトン、アミド、エステル、炭化水素化合物等が挙げられる。上記反応において、反応温度は20~200℃とすることが好ましく、より好ましくは40~150℃である。また、反応時間は1~168時間が好ましく、より好ましくは8~72時間である。
 重合体を溶解してなる反応溶液は、そのまま用いてもよいし、あるいは、反応溶液を大量の貧溶媒中に注いで得られる析出物を減圧下乾燥する方法、反応溶液をエバポレーターで減圧留去する方法等の公知の単離方法を用いて、反応溶液中に含まれる重合体を単離したうえで重合体組成物(例えば、液晶配向剤)の調製に供してもよい。
The reaction between the polymer having a structural unit containing a maleic anhydride skeleton and the nucleophile is preferably carried out in an organic solvent. Examples of the organic solvent used include alcohols, ethers, ketones, amides, esters, and hydrocarbon compounds. In the above reaction, the reaction temperature is preferably 20 to 200°C, more preferably 40 to 150°C. Further, the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
The reaction solution obtained by dissolving the polymer can be used as it is, or the reaction solution can be poured into a large amount of poor solvent and the resulting precipitate can be dried under reduced pressure, or the reaction solution can be distilled off under reduced pressure using an evaporator. After isolating the polymer contained in the reaction solution using a known isolation method such as a method such as the method of
 前記求核剤の反応量としては、前記構造単位(8’)の有する無水物基に対して、0.5~10当量が好ましく、1~5当量であることがより好ましい。 The reaction amount of the nucleophile is preferably 0.5 to 10 equivalents, more preferably 1 to 5 equivalents, relative to the anhydride group possessed by the structural unit (8').
 環状酸無水物基を開環反応する際には反応を促進させるための触媒を少量用いることが好ましい。触媒としては、例えばトリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、ピリジン、4-ジメチルアミノピリジン、イミダゾール、2-メチルイミダゾール、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,4-ジアザビシクロ[2.2.2]オクタン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,8-ビス(ジメチルアミノ)ナフタレンが挙げられ、使用する触媒は環状酸無水物基1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。 When carrying out a ring-opening reaction of a cyclic acid anhydride group, it is preferable to use a small amount of a catalyst to promote the reaction. Examples of the catalyst include triethylamine, N,N,N',N'-tetramethylethylenediamine, pyridine, 4-dimethylaminopyridine, imidazole, 2-methylimidazole, 1,8-diazabicyclo[5.4.0]-7 -Undecene, 1,5-diazabicyclo[4.3.0]-5-nonene, 1,4-diazabicyclo[2.2.2]octane, 1,5,7-triazabicyclo[4.4.0] Examples include deca-5-ene and 1,8-bis(dimethylamino)naphthalene, and the catalyst used is usually 0.000001 to 0.1 mole part, preferably 0.000001 to 0.1 mole part, per mole part of the cyclic acid anhydride group. It is 0.00001 to 0.01 mole part.
 本発明の重合体(RSM)は、前記式(8)及び式(9)で表される構造単位以外の構造単位をさらに有してもよい。式(8)及び式(9)で表される構造単位以外の構造単位としては、アクリル酸、メタクリル酸、α-エチルアクリル酸、2-ヒドロキシエチル(メタ)アクリル酸、4-ビニル安息香酸、マレイン酸等のカルボキシ基含有化合物;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド等の水酸基含有化合物;イソオクチルアクリレート、イソデシルアクリレート、ラウリルアクリレート、デシルメタクリレート、ステアリルアクリレート等の長鎖アルキル基含有化合物;シクロヘキシル(メタ)アクリレートなどの脂環式基含有化合物;2-フェノキシエチルアクリレート、エトキシ化ノニルフェニルアクリレート等のベンゼン環含有化合物;グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、4-(グリシジルオキシ)ブチル(メタ)アクリレートなどのオキシラニル基含有化合物、2-メタクリロイルオキシエチルイソシアネート(昭和電工社製 カレンズMOI)、2-[(3,5-ジメチルピラゾイル)カルボニルアミノ]エチルメタクリレート(昭和電工社製 カレンズMOI-BP)等のイソシアネート基又は保護イソシアネート基を有する化合物;テトラヒドロフルフリルメタクリレートなどのテトラヒドロピラニル基を有する化合物等に由来する構造単位が挙げられる。 The polymer (RSM) of the present invention may further have structural units other than the structural units represented by formulas (8) and (9) above. Structural units other than those represented by formulas (8) and (9) include acrylic acid, methacrylic acid, α-ethyl acrylic acid, 2-hydroxyethyl (meth)acrylic acid, 4-vinylbenzoic acid, Carboxy group-containing compounds such as maleic acid; hydroxyl group-containing compounds such as 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, N-methylol (meth)acrylamide; Compounds containing long-chain alkyl groups such as octyl acrylate, isodecyl acrylate, lauryl acrylate, decyl methacrylate, and stearyl acrylate; compounds containing alicyclic groups such as cyclohexyl (meth)acrylate; 2-phenoxyethyl acrylate, ethoxylated nonyl phenyl acrylate, etc. Benzene ring-containing compounds; oxiranyl group-containing compounds such as glycidyl (meth)acrylate, methylglycidyl (meth)acrylate, 4-(glycidyloxy)butyl (meth)acrylate, 2-methacryloyloxyethyl isocyanate (Karens MOI, manufactured by Showa Denko) ), 2-[(3,5-dimethylpyrazoyl)carbonylamino]ethyl methacrylate (Karens MOI-BP, manufactured by Showa Denko), and other compounds having an isocyanate group or a protected isocyanate group; tetrahydropyranyl, such as tetrahydrofurfuryl methacrylate Examples include structural units derived from compounds having groups.
 重合体(RSM)は、式(9)で表される構造単位を1種単独で含んでもよいし、2種以上含んでもよい。式(9)で表される構造単位の含有量は、重合体(RSM)の全構造単位に対して、50~90モル%が好ましく、50~70モル%がより好ましい。 The polymer (RSM) may contain one type of structural unit represented by formula (9) alone, or may contain two or more types of structural units. The content of the structural unit represented by formula (9) is preferably 50 to 90 mol%, more preferably 50 to 70 mol%, based on the total structural units of the polymer (RSM).
 本発明に用いられる重合体(RSM)の含有量は、弱アンカリング液晶配向剤に含まれる重合体成分の合計に対し、1~99質量%が好ましく、5~70質量%がより好ましく、10~50質量%がさらに好ましい。重合体(RSM)は、1種を単独で又は2種以上を組み合わせて使用できる。 The content of the polymer (RSM) used in the present invention is preferably 1 to 99% by mass, more preferably 5 to 70% by mass, and 10 to 99% by mass, based on the total amount of polymer components contained in the weakly anchoring liquid crystal aligning agent. More preferably 50% by mass. The polymer (RSM) can be used alone or in combination of two or more.
(強アンカリング配向膜)
 弱アンカリング配向膜が具備された基板の対向側の基板には強アンカリング水平配向膜を設ける必要がある。ここで述べる強アンカリング水平配向膜とは、液晶を水平方向に均一に並べることができ、並んだ液晶を維持する力、すなわち界面アンカリングエネルギーが十分強い液晶配向膜である。
(Strong anchoring alignment film)
It is necessary to provide a strong anchoring horizontal alignment film on a substrate opposite to the substrate provided with the weak anchoring alignment film. The strong anchoring horizontal alignment film described here is a liquid crystal alignment film that can uniformly align liquid crystals in the horizontal direction and has a sufficiently strong force to maintain the aligned liquid crystals, that is, interfacial anchoring energy.
 強アンカリング水平配向膜は、例えば、公知の液晶配向剤に用いられているポリアミック酸やポリイミド、ポリアミック酸エステル、ポリアミド、ポリエステル、ポリアクリレート等をラビング処理や光配向処理等により一軸方向に配向処理を行うことで得られる。 The strong anchoring horizontal alignment film is made by aligning polyamic acid, polyimide, polyamic acid ester, polyamide, polyester, polyacrylate, etc. used in known liquid crystal alignment agents in a uniaxial direction by rubbing or photo alignment. It can be obtained by doing.
 強アンカリング水平配向膜は、例えば、公知の液晶配向剤に用いられているモノマーの組み合わせにより得ることができる。 A strong anchoring horizontal alignment film can be obtained, for example, by a combination of monomers used in known liquid crystal alignment agents.
(弱アンカリング配向膜と強アンカリング配向膜)
 本発明の弱アンカリング配向膜は、上記の弱アンカリング液晶配向剤を用いることで得られる。例えば、本発明に用いる弱アンカリング液晶配向剤を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのまま弱アンカリング配向膜として用いることもできる。また、この硬化膜をラビングや偏光又は特定の波長の光等を照射、イオンビーム等の処理にて配向処理を行うことができ、液晶充填後の液晶表示素子にUVを照射することも可能である。
(Weak anchoring alignment film and strong anchoring alignment film)
The weakly anchoring alignment film of the present invention can be obtained by using the weakly anchoring liquid crystal alignment agent described above. For example, a cured film obtained by applying the weakly anchoring liquid crystal aligning agent used in the present invention to a substrate, followed by drying and baking, can also be used as it is as the weakly anchoring alignment film. In addition, this cured film can be aligned by rubbing, irradiating with polarized light or light of a specific wavelength, or ion beam treatment, and it is also possible to irradiate UV to the liquid crystal display element after filling the liquid crystal. be.
 強アンカリング配向膜も同様に、強アンカリング液晶配向剤を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を配向処理することで得ることができる。 Similarly, a strong anchoring alignment film can be obtained by applying a strong anchoring liquid crystal aligning agent to a substrate, followed by drying and baking, and then subjecting a cured film to alignment treatment.
 本発明においては、弱アンカリング膜を形成する基板を第一基板とし、強アンカリング膜を形成する基板を第二基板とした場合、第一基板が櫛歯電極を有する基板であり、第二基板が対向基板であってもよい。また、本発明においては、第二基板が櫛歯電極を有する基板であり、第一基板が対向基板であってもよい。 In the present invention, when a substrate on which a weak anchoring film is formed is a first substrate and a substrate on which a strong anchoring film is formed is a second substrate, the first substrate is a substrate having a comb-teeth electrode, and the second substrate is a substrate on which a weak anchoring film is formed. The substrate may be a counter substrate. Further, in the present invention, the second substrate may be a substrate having comb-teeth electrodes, and the first substrate may be a counter substrate.
 各液晶配向膜を塗布する基板としては、透明性の高い基板であれば特に限定されないが、基板上に液晶を駆動するための透明電極が形成された基板が好ましい。 The substrate on which each liquid crystal alignment film is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate on which a transparent electrode for driving liquid crystal is formed is preferable.
 具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。 Specific examples include glass plates, polycarbonates, poly(meth)acrylates, polyethersulfones, polyarylates, polyurethanes, polysulfones, polyethers, polyetherketones, trimethylpentene, polyolefins, polyethylene terephthalate, (meth)acrylonitrile, and Examples include substrates in which transparent electrodes are formed on plastic plates such as cellulose acetate, cellulose diacetate, and cellulose acetate butyrate.
 IPS方式の液晶表示素子に使用できる基板には、標準的なIPS櫛歯電極やPSA(Polymer-Stabilized Alignment)フィッシュボーン電極といった電極パターンやMVA(Multi-domain Vertical Alignment)のような突起パターンでも使用できる。 Substrates that can be used for IPS type liquid crystal display elements include electrode patterns such as standard IPS comb electrodes and PSA (Polymer-Stabilized Alignment) fishbone electrodes, as well as protrusion patterns such as MVA (Multi-domain Vertical Alignment). can.
 また、TFT(Thin-Film-Transistor)型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。 Furthermore, in a high-performance element such as a TFT (Thin-Film-Transistor) type element, an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate.
 透過型の液晶表示素子を意図している場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子を意図している場合では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。 When a transmissive type liquid crystal display element is intended, it is common to use a substrate like the one described above, but when a reflective type liquid crystal display element is intended, silicon is used for only one side of the substrate. Opaque substrates such as wafers can also be used. In this case, a material such as aluminum that reflects light can also be used for the electrodes formed on the substrate.
 液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。 Methods for applying liquid crystal aligning agents include spin coating, printing, inkjet, spraying, and roll coating, but transfer printing is widely used industrially due to its productivity. It is also suitably used in the present invention.
 液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。乾燥工程の好ましい条件は、温度40~150℃、より好ましくは60~100℃のホットプレート上で、0.5~30分、より好ましくは1~5分乾燥させる方法が挙げられる。
 焼成工程の好ましい条件は、温度80~250℃、より好ましくは100~230℃のホットプレート又は熱循環オーブンで、1~120分、より好ましくは5~30分焼成する方法が挙げられる。
The drying process after applying the liquid crystal alignment agent is not necessarily required, but if the time from application to firing is not constant for each substrate, or if the board is not fired immediately after application, a drying process is included. is preferable. The drying method is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed due to transportation of the substrate or the like. Preferred conditions for the drying step include drying on a hot plate at a temperature of 40 to 150°C, more preferably 60 to 100°C, for 0.5 to 30 minutes, more preferably 1 to 5 minutes.
Preferred conditions for the firing step include a method of firing on a hot plate or thermal circulation oven at a temperature of 80 to 250°C, more preferably 100 to 230°C, for 1 to 120 minutes, more preferably 5 to 30 minutes.
 この硬化膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が向上するので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。 The thickness of this cured film can be selected as required, but it is preferably 5 nm or more, more preferably 10 nm or more, since this improves the reliability of the liquid crystal display element. Further, it is preferable that the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, since the power consumption of the liquid crystal display element does not become extremely large.
 以上のようにして弱アンカリング配向膜を有する第一基板又は第二基板、および強アンカリング配向膜を有する第二基板または第一基板を得ることができる。一軸配向処理を行う方法としては、光配向法、斜方蒸着法、ラビング、磁場による一軸配向処理等が挙げられる。 As described above, a first substrate or a second substrate having a weak anchoring alignment film and a second substrate or first substrate having a strong anchoring alignment film can be obtained. Examples of methods for performing the uniaxial alignment treatment include a photoalignment method, an oblique evaporation method, rubbing, and a uniaxial alignment treatment using a magnetic field.
 一方向にラビング処理することによる配向処理を行う場合には、例えば、ラビング布が巻きつけられたラビングローラーを回転させながら、ラビング布と膜とが接触するように基板を移動させる。光配向法を用いる場合には、特定波長の偏光UVを膜全面に照射し、必要に応じて加熱することにより配向処理ができる。 When performing orientation treatment by rubbing in one direction, for example, while rotating a rubbing roller around which a rubbing cloth is wound, the substrate is moved so that the rubbing cloth and the film come into contact with each other. When using a photo-alignment method, the alignment process can be performed by irradiating the entire surface of the film with polarized UV light of a specific wavelength and heating if necessary.
 櫛歯電極が形成されている基板の場合、液晶の電気的物性によって方向が選択されるが、正の誘電異方性を有する液晶を用いる場合において、ラビング方向は櫛歯電極の延びている方向とほぼ同一の方向とすることが好ましい。 In the case of a substrate on which comb-teeth electrodes are formed, the direction is selected depending on the electrical properties of the liquid crystal, but when using a liquid crystal with positive dielectric anisotropy, the rubbing direction is the direction in which the comb-teeth electrodes extend. It is preferable that the direction is approximately the same as that of .
[液晶セル]
 本発明の液晶セルは、上記の方法により、本発明の液晶配向剤を用いて得られた弱アンカリング配向膜を有する基板(例えば第一基板)と、公知の強アンカリング液晶配向膜を有する基板(例えば第二基板)とを、弱アンカリング配向膜と強アンカリング配向膜とが向かい合うように配置し、スペーサーを挟んで、シール剤で固定し、液晶を注入して封止することにより得られる。その際、用いるスペーサーの大きさは通常1~30μmであるが、好ましくは2~10μmである。また、第一基板のラビング方向と、第二基板のラビング方向とを平行にすることにより、IPS方式やFFS方式に使用することができ、ラビング方向が直交するように配置すれば、TN方式に使用することができる。
 なお、IPS方式において使用される櫛歯電極基板であるIPS基板は、基材と、基材上に形成され、櫛歯状に配置された複数の線状電極と、基材上に線状電極を覆うように形成された液晶配向膜とを有する。
 なお、FFS方式において使用される櫛歯電極基板であるFFS基板は、基材と、基材上に形成された面電極と、面電極上に形成された絶縁膜と、絶縁膜上に形成され、櫛歯状に配置された複数の線状電極と、絶縁膜上に線状電極を覆うように形成された液晶配向膜とを有する。
[Liquid crystal cell]
The liquid crystal cell of the present invention has a substrate (for example, a first substrate) having a weakly anchoring alignment film obtained by using the liquid crystal aligning agent of the present invention by the above method, and a known strong anchoring liquid crystal aligning film. By arranging a substrate (for example, a second substrate) so that a weak anchoring alignment film and a strong anchoring alignment film face each other, sandwiching a spacer, fixing with a sealant, and sealing by injecting liquid crystal. can get. At this time, the size of the spacer used is usually 1 to 30 μm, preferably 2 to 10 μm. In addition, by making the rubbing direction of the first substrate parallel to the rubbing direction of the second substrate, it can be used for the IPS method or FFS method, and if the rubbing directions are arranged orthogonally, it can be used for the TN method. can be used.
Note that an IPS substrate, which is a comb-teeth electrode substrate used in the IPS method, includes a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-teeth shape, and a plurality of linear electrodes formed on the base material. It has a liquid crystal alignment film formed so as to cover the liquid crystal alignment film.
The FFS substrate, which is a comb-teeth electrode substrate used in the FFS method, consists of a base material, a surface electrode formed on the base material, an insulating film formed on the surface electrode, and an insulating film formed on the insulating film. , has a plurality of linear electrodes arranged in a comb-teeth shape, and a liquid crystal alignment film formed on an insulating film so as to cover the linear electrodes.
(液晶表示素子)
 液晶表示素子は、例えば、第一基板、第一基板に対向して配置された第二基板、および第一基板と第二基板との間に充填された液晶を有する。そして、液晶表示素子は本発明の弱アンカリング液晶配向剤を塗布成膜し弱アンカリング配向膜を具備した第一基板又は第二基板と、強アンカリング水平配向膜を具備した第二基板又は第一基板を使用して作製される。
 液晶表示素子は、例えば、液晶セルに必要に応じて反射電極、透明電極、λ/4板、偏光膜、カラーフィルター層等を常法に従って設けることにより反射型液晶表示素子とすることができる。また、液晶セルに必要に応じてバックライト、偏光板、λ/4板、透明電極、偏光膜、カラーフィルター層等を常法に従って設けることにより透過型液晶表示素子とすることができる。
(Liquid crystal display element)
A liquid crystal display element includes, for example, a first substrate, a second substrate disposed opposite to the first substrate, and liquid crystal filled between the first substrate and the second substrate. The liquid crystal display element comprises a first substrate or a second substrate coated with a weak anchoring liquid crystal alignment agent of the present invention and provided with a weak anchoring alignment film, and a second substrate or a second substrate provided with a strong anchoring horizontal alignment film. Fabricated using a first substrate.
The liquid crystal display element can be made into a reflective liquid crystal display element by, for example, providing a reflective electrode, a transparent electrode, a λ/4 plate, a polarizing film, a color filter layer, etc. in a liquid crystal cell according to a conventional method as required. Furthermore, a transmissive liquid crystal display element can be obtained by providing a backlight, a polarizing plate, a λ/4 plate, a transparent electrode, a polarizing film, a color filter layer, etc. in a conventional manner to the liquid crystal cell as necessary.
 図1は、本発明の横電界液晶表示素子の一例を示す概略断面図であり、IPS方式液晶表示素子の例である。
 図1に例示する横電界液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された弱アンカリング液晶配向膜または強アンカリング水平配向膜(液晶配向膜4a)とを有している。液晶配向膜2cは、例えば、本発明の弱アンカリング配向膜または強アンカリング水平配向膜である。対向する基板に具備した液晶配向膜は互いが強アンカリング配向膜と弱アンカリング液晶配向膜の組み合わせで作製される。
 この横電界液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
FIG. 1 is a schematic cross-sectional view showing an example of a horizontal electric field liquid crystal display element of the present invention, and is an example of an IPS type liquid crystal display element.
In the horizontal electric field liquid crystal display element 1 illustrated in FIG. 1, a liquid crystal 3 is sandwiched between a comb-teeth electrode substrate 2 having a liquid crystal alignment film 2c and a counter substrate 4 having a liquid crystal alignment film 4a. The comb-teeth electrode substrate 2 includes a base material 2a, a plurality of linear electrodes 2b formed on the base material 2a and arranged in a comb-teeth shape, and a plurality of linear electrodes 2b formed on the base material 2a so as to cover the linear electrodes 2b. It has a liquid crystal alignment film 2c. The counter substrate 4 has a base material 4b and a weak anchoring liquid crystal alignment film or a strong anchoring horizontal alignment film (liquid crystal alignment film 4a) formed on the base material 4b. The liquid crystal alignment film 2c is, for example, a weak anchoring alignment film or a strong anchoring horizontal alignment film of the present invention. The liquid crystal alignment films provided on the opposing substrates are each made of a combination of a strong anchoring alignment film and a weak anchoring liquid crystal alignment film.
In this horizontal electric field liquid crystal display element 1, when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by lines of electric force L.
 図2は、本発明の横電界液晶表示素子の他の例を示す概略断面図であり、FFS方式液晶表示素子の例である。
 図2に例示する横電界液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜4aは前記で説明した図1における液晶配向膜4aと同様である。液晶配向膜2hは前記で説明した図1における液晶配向膜2cと同様である。
 この横電界液晶表示素子1においては、面電極2eおよび線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2eおよび線状電極2g間で電界が発生する。
FIG. 2 is a schematic cross-sectional view showing another example of the horizontal field liquid crystal display element of the present invention, and is an example of an FFS type liquid crystal display element.
In the horizontal electric field liquid crystal display element 1 illustrated in FIG. 2, a liquid crystal 3 is sandwiched between a comb-teeth electrode substrate 2 having a liquid crystal alignment film 2h and a counter substrate 4 having a liquid crystal alignment film 4a. The comb-teeth electrode substrate 2 is formed on a base material 2d, a surface electrode 2e formed on the base material 2d, an insulating film 2f formed on the surface electrode 2e, and an insulating film 2f, and has a comb-like shape. It has a plurality of arranged linear electrodes 2g and a liquid crystal alignment film 2h formed on an insulating film 2f so as to cover the linear electrodes 2g. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 4a is similar to the liquid crystal alignment film 4a in FIG. 1 described above. The liquid crystal alignment film 2h is similar to the liquid crystal alignment film 2c in FIG. 1 described above.
In this horizontal electric field liquid crystal display element 1, when a voltage is applied to the plane electrode 2e and the linear electrode 2g, an electric field is generated between the plane electrode 2e and the linear electrode 2g as shown by lines of electric force L.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明は、これらの実施例に限定して解釈されるものではない。化合物の略号、及び各特性の測定方法は以下の通りである。 The present invention will be specifically explained below with reference to Examples, but the present invention should not be construed as being limited to these Examples. The abbreviations of the compounds and the measurement methods for each property are as follows.
((A成分)液晶と相溶する成分)
Figure JPOXMLDOC01-appb-C000052
((Component A) Component compatible with liquid crystal)
Figure JPOXMLDOC01-appb-C000052
((B成分)液晶に不溶、もしくは焼成することで不溶となる成分)
Figure JPOXMLDOC01-appb-C000053
 Meはメチル基を表し、Etはエチル基を表す。
((Component B) A component that is insoluble in liquid crystal or becomes insoluble upon firing)
Figure JPOXMLDOC01-appb-C000053
Me represents a methyl group, and Et represents an ethyl group.
(RAFT剤(制御剤))
Figure JPOXMLDOC01-appb-C000054
(RAFT agent (control agent))
Figure JPOXMLDOC01-appb-C000054
(連鎖移動剤)
Figure JPOXMLDOC01-appb-C000055
(Chain transfer agent)
Figure JPOXMLDOC01-appb-C000055
(重合開始剤)
Figure JPOXMLDOC01-appb-C000056
 VA-086は富士フイルム和光純薬社製のものを使用した。
(Polymerization initiator)
Figure JPOXMLDOC01-appb-C000056
VA-086 manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. was used.
(重合体(増粘剤)の原料)
 ISOBAM-06:ポリ(イソブチレン-o-マレイン酸無水物) (重量平均分子量80,000~90,000、クラレ社製)
 ISOBAM-10:ポリ(イソブチレン-o-マレイン酸無水物) (重量平均分子量160,000~170,000、クラレ社製)
 ISOBAM-18:ポリ(イソブチレン-o-マレイン酸無水物) (重量平均分子量300,000~350,000、クラレ社製)
(Raw material for polymer (thickener))
ISOBAM-06: Poly(isobutylene-o-maleic anhydride) (weight average molecular weight 80,000-90,000, manufactured by Kuraray)
ISOBAM-10: Poly(isobutylene-o-maleic anhydride) (weight average molecular weight 160,000-170,000, manufactured by Kuraray)
ISOBAM-18: Poly(isobutylene-o-maleic anhydride) (weight average molecular weight 300,000-350,000, manufactured by Kuraray)
(求核剤)
Figure JPOXMLDOC01-appb-C000057
(nucleophile)
Figure JPOXMLDOC01-appb-C000057
(触媒)
 DMAP:4-ジメチルアミノピリジン
(catalyst)
DMAP: 4-dimethylaminopyridine
(溶媒)
 THF:テトラヒドロフラン
 NMP:N-メチル-2-ピロリドン
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 DEAc:N,N-ジエチルアセトアミド
 DPAc:N,N-ジプロピルアセトアミド
 3MMP:3-メトキシ-N,N-ジメチルプロパンアミド
 DEPA:N,N-ジエチルプロピオンアミド
 DEF:ジエチルホルムアミド
 2MEA:2-メトキシ-N,N-ジエチルアセトアミド
 3MEP:3-メトキシ-N,N-ジエチルプロパンアミド
 4OEP:4-オキソ-N,N-ジエチルペンタンアミド
 ECHC:N,N-ジエチルシクロヘキサンカルボアミド
 DBF:N,N-ジブチルホルムアミド
 DMAc:ジメチルアセトアミド
 DMF:ジメチルホルムアミド
 PB:プロピレングリコールモノブチルエーテル
 BCS:エチレングリコールモノブチルエーテル
 BCAc:エチレングリコールモノブチルエーテルアセテート
 上記の溶媒のうち、DEAc、DPAc、3MMP、DEPA、DEF、2MEA、3MEP、4OEP、及びECHC、及びDBFは特定溶媒に該当する。
(solvent)
THF: Tetrahydrofuran NMP: N-methyl-2-pyrrolidone PGMEA: Propylene glycol monomethyl ether acetate DEAc: N,N-diethylacetamide DPAc: N,N-dipropylacetamide 3MMP: 3-methoxy-N,N-dimethylpropanamide DEPA : N,N-diethylpropionamide DEF: diethylformamide 2MEA: 2-methoxy-N,N-diethylacetamide 3MEP: 3-methoxy-N,N-diethylpropanamide 4OEP: 4-oxo-N,N-diethylpentanamide ECHC: N,N-diethylcyclohexanecarboxamide DBF: N,N-dibutylformamide DMAc: Dimethylacetamide DMF: Dimethylformamide PB: Propylene glycol monobutyl ether BCS: Ethylene glycol monobutyl ether BCAc: Ethylene glycol monobutyl ether acetate Among the above solvents , DEAc, DPAc, 3MMP, DEPA, DEF, 2MEA, 3MEP, 4OEP, ECHC, and DBF correspond to specific solvents.
(粘度測定)
 ポリアミック酸溶液などの粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃において測定した。
(Viscosity measurement)
The viscosity of polyamic acid solutions, etc. was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) using a sample volume of 1.1 mL (milliliter), a cone rotor TE-1 (1° 34', R24), and a temperature of 25 mm. Measured at °C.
(分子量の測定)
 重合体の分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(CBM-20A)(島津製作所製)、カラム(Shodex(登録商標)KF-804L及びKF-803Lの直列)(昭和電工社製)用いて、以下のようにして測定した。
 カラム温度:40℃
 溶離液:テトラヒドロフラン
 流速:1.0mL/分
 検量線作成用標準サンプル:標準ポリスチレン(分子量;197000、55100、12800、3950、1260)(東ソー社製)
(Measurement of molecular weight)
The molecular weight of the polymer was determined using a room temperature gel permeation chromatography (GPC) device (CBM-20A) (manufactured by Shimadzu Corporation) and a column (Shodex (registered trademark) KF-804L and KF-803L in series) (manufactured by Showa Denko). It was measured as follows.
Column temperature: 40℃
Eluent: Tetrahydrofuran Flow rate: 1.0 mL/min Standard sample for creating a calibration curve: Standard polystyrene (molecular weight: 197000, 55100, 12800, 3950, 1260) (manufactured by Tosoh Corporation)
<一つのブロックセグメントから構成される重合体の合成>
(合成例1-1)
 撹拌子及び窒素導入管を備え付けた100mlナスフラスコに、A-1(10.0g,70.3mmol)、R-3(482mg,1.19mmol)、及びAIBN(97.9mg,0.597mmol)を量り取り、THF(10.6g)を加え、室温で撹拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで12時間加熱撹拌した。加熱撹拌後、メタノール(50g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(50g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、重合体(p(A-1))を得た。数平均分子量(Mn):7,500、重量平均分子量(Mw):8,200であった。
<Synthesis of polymer composed of one block segment>
(Synthesis example 1-1)
A-1 (10.0 g, 70.3 mmol), R-3 (482 mg, 1.19 mmol), and AIBN (97.9 mg, 0.597 mmol) were placed in a 100 ml eggplant flask equipped with a stirrer and a nitrogen introduction tube. After weighing and adding THF (10.6 g), stirring at room temperature to dissolve, the system was purged with nitrogen, and heated and stirred in an oil bath set at 60° C. for 12 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was separated by filtration, slurry washing was performed twice with methanol (50 g) for 30 minutes, and the solid was vacuum-dried at 50°C to obtain a polymer (p(A-1)). . Number average molecular weight (Mn): 7,500, weight average molecular weight (Mw): 8,200.
(合成例1-2~1-22)
 使用する原料(モノマー)の種類、開始剤の種類、制御剤の種類、原料と制御剤の使用モル比率〔(制御剤/原料)×100〕及び量を下記表1-1又は表1-2に示したものに置き換えた以外は合成例1-1と同様に実施することで、下記表1-1及び表1-2に示す重合体(p(A-2))~(p(A-9/A-10)’)を得た。
(Synthesis examples 1-2 to 1-22)
The type of raw material (monomer) used, the type of initiator, the type of control agent, the molar ratio of raw material and control agent used [(control agent/raw material) x 100] and the amount are shown in Table 1-1 or Table 1-2 below. Polymers (p(A-2)) to (p(A-2)) shown in Tables 1-1 and 1-2 below were prepared in the same manner as Synthesis Example 1-1 except for replacing them with those shown in Tables 1-1 and 1-2 below. 9/A-10)') was obtained.
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
<ジブロック重合体の合成>
(合成例2-1)
 撹拌子及び窒素導入管を備え付けた100mlのナスフラスコに合成例1-1で得たp(A-1)(3.15g,0.443mmol)、B-3(6.90g,27.5mmol)、及びAIBN(36.4mg,0.222mmol)を図り取り、THF(10.1g)を加え、室温で撹拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで12時間加熱撹拌した。加熱撹拌後、メタノール(50g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(50g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、共重合体(BC-1)を得た。数平均分子量:20,500、重量平均分子量:22,600であった。
<Synthesis of diblock polymer>
(Synthesis example 2-1)
p(A-1) (3.15 g, 0.443 mmol) obtained in Synthesis Example 1-1, B-3 (6.90 g, 27.5 mmol) in a 100 ml eggplant flask equipped with a stirrer and a nitrogen introduction tube. , and AIBN (36.4 mg, 0.222 mmol), added THF (10.1 g), stirred at room temperature to dissolve, then purged the system with nitrogen and heated in an oil bath set at 60°C for 12 hours. The mixture was heated and stirred. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice with methanol (50 g) for 30 minutes, and the solid was vacuum-dried at 50° C. to obtain a copolymer (BC-1). Number average molecular weight: 20,500, weight average molecular weight: 22,600.
(合成例2-2~2-38)
 使用する原料(モノマー)の種類を下記表2-1又は表2-2に示したものに置き換えた以外は合成例2-1と同様に実施することで、下記表2-1及び表2-2に示す重合体(BC-2)~(BC-38)を得た。
(Synthesis examples 2-2 to 2-38)
By carrying out the same procedure as Synthesis Example 2-1 except for replacing the types of raw materials (monomers) used with those shown in Table 2-1 or Table 2-2 below, Table 2-1 and Table 2- Polymers (BC-2) to (BC-38) shown in 2 were obtained.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
<トリブロック重合体の合成>
(合成例3-1)
 撹拌子及び窒素導入管を備え付けた100mlのナスフラスコに、合成例2-27で得たBC-27(5.23g,0.312mmol)、B-3(4.90g,19.5mmol)及びAIBN(25.6mg,0.156mmol)を量り取り、THF(10.2g)を加え、室温で撹拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで12時間加熱撹拌した。加熱撹拌後、メタノール(50g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(50g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、共重合体(BC-39)を得た。数平均分子量(Mn):30,800、重量平均分子量(Mw):40,100であった。
<Synthesis of triblock polymer>
(Synthesis example 3-1)
BC-27 (5.23 g, 0.312 mmol) obtained in Synthesis Example 2-27, B-3 (4.90 g, 19.5 mmol) and AIBN were placed in a 100 ml eggplant flask equipped with a stirrer and a nitrogen inlet tube. (25.6 mg, 0.156 mmol) was added, THF (10.2 g) was added, and after stirring and dissolving at room temperature, the system was purged with nitrogen, and the mixture was heated and stirred in an oil bath set at 60°C for 12 hours. . After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice with methanol (50 g) for 30 minutes, and the solid was vacuum-dried at 50° C. to obtain a copolymer (BC-39). Number average molecular weight (Mn): 30,800, weight average molecular weight (Mw): 40,100.
(合成例3-2~3-6)
 使用する原料(モノマー)の種類、開始剤の種類を下記表3に示したものに置き換えた以外は合成例3-1と同様に実施することで、下記表3に示す重合体(BC-40)~(BC-44)を得た。
(Synthesis examples 3-2 to 3-6)
The polymer shown in Table 3 below (BC-40 ) to (BC-44) were obtained.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
<マクロモノマーの合成>
(合成例4-1)
 撹拌子及び窒素導入管を備え付けた100mlのナスフラスコに、A-9(10.00g、78.0mmol)、S-4(0.216g、2.34mmol)及びAIBN(0.128g、0.780mmol)を量り取り、THF(10.3g)を加え、室温で撹拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで12時間加熱撹拌した。加熱撹拌後、冷メタノール(30.0g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再び冷メタノール(30.0g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、プレポリマーを得た。Mn:6,000、Mw:9,900であった。
 撹拌子及び窒素導入管を備え付けた100mlのナスフラスコに、上記の方法で合成したプレポリマー(10.0g、1.67mmol)、B-6(0.829g、5.83mmol)、Hydroquinone(8.1mg)、N,N-dimethyllaurylamine(2.0mg)及びXylene(20.0g)を加え、室温で撹拌し溶解させた後、140℃設定のオイルバスで6時間加熱撹拌した。加熱撹拌後、メタノール(50.0g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(50.0g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、マクロモノマーp(A-9)’’を得た。Mn:6,100、Mw:9,900であった。
<Synthesis of macromonomer>
(Synthesis example 4-1)
A-9 (10.00 g, 78.0 mmol), S-4 (0.216 g, 2.34 mmol) and AIBN (0.128 g, 0.780 mmol) were placed in a 100 ml eggplant flask equipped with a stirrer and a nitrogen inlet tube. ) was added, THF (10.3 g) was added, and the mixture was stirred and dissolved at room temperature. The system was purged with nitrogen, and the mixture was heated and stirred in an oil bath set at 60° C. for 12 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring cold methanol (30.0 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice for 30 minutes with cold methanol (30.0 g), and the solid was vacuum-dried at 50° C. to obtain a prepolymer. Mn: 6,000, Mw: 9,900.
In a 100 ml eggplant flask equipped with a stirrer and a nitrogen inlet tube, the prepolymer (10.0 g, 1.67 mmol) synthesized by the above method, B-6 (0.829 g, 5.83 mmol), and Hydroquinone (8. N,N-dimethyllaurylamine (2.0 mg) and Xylene (20.0 g) were added, stirred at room temperature to dissolve, and then heated and stirred in an oil bath set at 140° C. for 6 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50.0 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was separated by filtration, slurry washing was performed twice with methanol (50.0 g) for 30 minutes, and the solid was vacuum-dried at 50°C to obtain macromonomer p(A-9)''. Obtained. Mn: 6,100, Mw: 9,900.
(合成例4-2~4-3)
 使用する原料(A成分)の種類、及び原料と連鎖移動剤(S-4)の使用モル比率〔(原料/S-4)〕を表4に記載のとおりに変更したこと以外は合成例4-1と同様に実施することで、下記表4に示すマクロモノマーp(A-2)’、p(A-8)’を得た。
(Synthesis examples 4-2 to 4-3)
Synthesis Example 4 except that the type of raw material (component A) used and the molar ratio of raw material and chain transfer agent (S-4) used [(raw material/S-4)] were changed as shown in Table 4. By carrying out the same procedure as in -1, macromonomers p(A-2)' and p(A-8)' shown in Table 4 below were obtained.
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000063
<グラフト共重合体の合成>
(合成例5-1)
 撹拌子及び窒素導入管を備え付けた100mlナスフラスコに、p(A-9)’’(1.00g,0.167mmol)、B-1(4.10g,16.5mmol)、及びAIBN(82.1mg,0.500mmol)を量り取り、THF(7.77g)を加え、室温で撹拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで12時間加熱撹拌した。加熱撹拌後、メタノール(40g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(40g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、グラフト共重合体(GP-1)を得た。数平均分子量(Mn):88,700、重量平均分子量(Mw):172,900であった。
<Synthesis of graft copolymer>
(Synthesis example 5-1)
In a 100 ml eggplant flask equipped with a stirrer and a nitrogen inlet tube, p(A-9)'' (1.00 g, 0.167 mmol), B-1 (4.10 g, 16.5 mmol), and AIBN (82. After adding THF (7.77 g) and stirring at room temperature to dissolve it, the system was purged with nitrogen and heated and stirred in an oil bath set at 60° C. for 12 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (40 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washed again with methanol (40 g) for 30 minutes twice in total, and the solid was vacuum-dried at 50° C. to obtain a graft copolymer (GP-1). Number average molecular weight (Mn): 88,700, weight average molecular weight (Mw): 172,900.
(合成例5-2~5-16)
 使用する原料(モノマー)の種類、仕込み量及び重合濃度を下記表5に示したものに置き換えた以外は合成例5-1と同様に実施することで、下記表5に示すグラフト共重合体(GP-2)~(GP-16)を得た。
(Synthesis examples 5-2 to 5-16)
The graft copolymer ( GP-2) to (GP-16) were obtained.
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
<重合体(増粘剤)の合成>
(合成例6-1)
 撹拌子及び窒素導入管を備え付けた100mLのナスフラスコに、ISOBAM-06(10.0g)、および触媒DMAP(0.100g)を量り取り、求核剤C-1(40.0g)、および溶媒DEAc(40.0g)を加え、80℃設定のオイルバスで24時間加熱撹拌した。加熱撹拌後、求核剤を減圧留去することにより、粘度が32.8mPa・sの重合体(RSM-1)(DEAc溶液)を得た。
<Synthesis of polymer (thickener)>
(Synthesis example 6-1)
Weigh out ISOBAM-06 (10.0 g) and catalyst DMAP (0.100 g) into a 100 mL eggplant flask equipped with a stir bar and nitrogen inlet tube, and add nucleophile C-1 (40.0 g) and solvent. DEAc (40.0 g) was added, and the mixture was heated and stirred in an oil bath set at 80° C. for 24 hours. After heating and stirring, the nucleophile was distilled off under reduced pressure to obtain a polymer (RSM-1) (DEAc solution) with a viscosity of 32.8 mPa·s.
(合成例6-2~6-5)
 使用する原料の種類、求核剤の種類を下記表6に示したものに置き換えた以外は合成例6-1と同様に実施することで、下記表6に示す重合体(RSM-2)~(RSM-5)を得た。
(Synthesis Examples 6-2 to 6-5)
By carrying out the same procedure as Synthesis Example 6-1 except that the types of raw materials and nucleophiles used were replaced with those shown in Table 6 below, the polymers (RSM-2) shown in Table 6 below were produced. (RSM-5) was obtained.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
<ボトルブラシポリマーの合成>
(合成例7)
 撹拌子及び窒素導入管を備え付けた100mlのナスフラスコに、2-((2-bromo-2-methylpropanoyl)oxy)ethyl methacrylate(5.00g、17.91mmol)、B-7(0.078g、0.60mmol)、R-3(0.72g、1.80mmol)及びAIBN(0.09g、0.54mmol)を量り取り、THF(10.2g)を加え、室温で攪拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで12時間加熱撹拌した。加熱撹拌後、メタノール(50.0g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(50.0g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、プレポリマーを得た。Mn:45,300、Mw:68,000であった。
<Synthesis of bottle brush polymer>
(Synthesis example 7)
In a 100 ml eggplant flask equipped with a stirrer and a nitrogen inlet tube, add 2-((2-bromo-2-methylpropanoyl)oxy)ethyl methacrylate (5.00 g, 17.91 mmol), B-7 (0.078 g, 0 .60 mmol), R-3 (0.72 g, 1.80 mmol), and AIBN (0.09 g, 0.54 mmol) were added, THF (10.2 g) was added, and after stirring and dissolving at room temperature, the system The atmosphere inside the reactor was replaced with nitrogen, and the reactor was heated and stirred in an oil bath set at 60° C. for 12 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50.0 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice for 30 minutes with methanol (50.0 g), and the solid was vacuum-dried at 50° C. to obtain a prepolymer. Mn: 45,300, Mw: 68,000.
 撹拌子及び窒素導入管を備え付けた50mlのナスフラスコに、上記の方法で合成したプレポリマー(2.00g、0.03mmol)、B-1(0.43g、1.76mmol)、A-2(3.00g、17.62mmol)、ethyl 2-bromoisobutyrate(0.012g、0.06mmol)、CuBr(0.03g、0.19mmol)、N,N,N’,N’’,N’’-Pentamethyldiethylenetriamine(0.043g、0.25mmol)、及びAnisole(7.5g)を加え、室温で撹拌し溶解させた後、凍結脱気を3回行い、90℃設定のオイルバスで6時間加熱撹拌した。加熱撹拌後、メタノール(50.0g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(50.0g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、ボトルブラシポリマー(BBP-1)を得た。Mn:203,000、Mw:384,000であった。 In a 50 ml eggplant flask equipped with a stirrer and a nitrogen inlet tube, prepolymer (2.00 g, 0.03 mmol) synthesized by the above method, B-1 (0.43 g, 1.76 mmol), A-2 ( 3.00g, 17.62mmol), ethyl 2-bromoisobutyrate (0.012g, 0.06mmol), CuBr (0.03g, 0.19mmol), N,N,N',N'',N''-Pentamethyldiethylenetriamine e (0.043 g, 0.25 mmol) and Anisole (7.5 g) were added and dissolved by stirring at room temperature, followed by freezing and degassing three times, followed by heating and stirring in an oil bath set at 90° C. for 6 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50.0 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice with methanol (50.0 g) for 30 minutes, and the solid was vacuum dried at 50°C to obtain bottle brush polymer (BBP-1). . Mn: 203,000, Mw: 384,000.
<弱アンカリング液晶配向剤の調製>
(実施例1)
 撹拌子を備えた10mLのバイアル瓶に、合成例2-1で得られたBC-1を0.6g量り取り、DEAcを6.4g、及びPBを3.0g加え、室温で1時間撹拌することで、弱アンカリング液晶配向剤(WAS-1)を得た。
<Preparation of weak anchoring liquid crystal alignment agent>
(Example 1)
Weigh 0.6 g of BC-1 obtained in Synthesis Example 2-1 into a 10 mL vial equipped with a stirring bar, add 6.4 g of DEAc, and 3.0 g of PB, and stir at room temperature for 1 hour. In this way, a weakly anchoring liquid crystal aligning agent (WAS-1) was obtained.
(実施例2~81、比較例1~3)
 使用する重合体の種類、溶媒を表7-1~表7-3に示したものに置き換えた以外は実施例1と同様に実施することで、下記表7-1~表7~3に示す弱アンカリング液晶配向剤(WAS-2)~(WAS-84)を得た。また、調製した液晶配向剤において、析出・濁り等が無ければ「良好」、析出・濁りいずれかが発生した場合を「不良」とした。その結果を表7-1、表7-2及び表7-3に示す。
(Examples 2 to 81, Comparative Examples 1 to 3)
By carrying out the same procedure as in Example 1 except that the type of polymer used and the solvent were replaced with those shown in Tables 7-1 to 7-3, the results shown in Tables 7-1 to 7-3 below were carried out. Weak anchoring liquid crystal alignment agents (WAS-2) to (WAS-84) were obtained. In addition, in the prepared liquid crystal aligning agent, if there was no precipitation or turbidity, it was rated as "good", and if either precipitation or turbidity occurred, it was rated as "poor". The results are shown in Table 7-1, Table 7-2 and Table 7-3.
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
 表中の「質量%」は、液晶配向剤における各成分の質量割合(%)を表す。
Figure JPOXMLDOC01-appb-T000068
"% by mass" in the table represents the mass ratio (%) of each component in the liquid crystal aligning agent.
<液晶配向剤の塗布性及び膜状態の評価>
 上記で得られた液晶配向剤について、フレキソ印刷(コムラテック社製フレキソ印刷機、基板:100mm×100mm Cr蒸着基板、印刷速度:20m/min、印圧:0.12mm、印刷タクト:50sec、アニロックスロール:#350-28μm、印刷判:#600メッシュ、25%、52°、80mm×80mm、レベリングタイム:40sec、乾燥条件:80℃・120sec、本焼成条件:230℃・1200sec)を行った際の塗布性の評価を行った。欠陥等無く均等に成膜できている場合は「良好」とし、軽微な塗布不良は見られるが比較的均等に成膜できている場合は「やや良好」とし、塗布不良が多い場合は「不良」とした。また、膜状態の観察もおこない、ヘイズや膜厚ムラが無いものを「良好」とした。結果を表8-1、表8-2及び表8-3に示す。
<Evaluation of coating properties and film condition of liquid crystal aligning agent>
Regarding the liquid crystal alignment agent obtained above, flexographic printing (flexographic printing machine manufactured by Comratec, substrate: 100 mm x 100 mm Cr vapor-deposited substrate, printing speed: 20 m/min, printing pressure: 0.12 mm, printing tact: 50 sec, anilox Roll: #350-28μm, printing size: #600 mesh, 25%, 52°, 80mm x 80mm, leveling time: 40sec, drying conditions: 80℃・120sec, main firing conditions: 230℃・1200sec) The applicability of the material was evaluated. If the film is formed evenly without any defects, it is marked as "good." If there are minor coating defects, but the film is formed relatively evenly, it is marked as "slightly good." If there are many coating defects, it is marked as "poor." ”. The state of the film was also observed, and those with no haze or uneven film thickness were rated as "good." The results are shown in Table 8-1, Table 8-2 and Table 8-3.
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000070
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000071
 本発明に使用する溶媒として、特定溶媒を用いたものは溶液の安定性も良好であり、フレキソ印刷試験においても非常に良好な塗膜が得られることが分かる。一方で、特定溶媒を用いず、ポリアミック酸や可溶性ポリイミド、ポリアミック酸エステルを溶解させるためによく用いられるNMPやDMAc、DMFを使用するとヘイズ(膜の白濁)や膜厚ムラが発生する。これは、溶媒と弱アンカリング性を発現するアクリルポリマーとの極性差が大きいためと考えられる。 It can be seen that when a specific solvent is used as the solvent used in the present invention, the stability of the solution is good, and a very good coating film can be obtained in the flexographic printing test. On the other hand, if NMP, DMAc, or DMF, which is commonly used to dissolve polyamic acid, soluble polyimide, or polyamic acid ester, is used without using a specific solvent, haze (white turbidity of the film) and uneven film thickness will occur. This is thought to be due to the large polarity difference between the solvent and the acrylic polymer that exhibits weak anchoring properties.
<弱アンカリング液晶配向剤の塗布性及び膜状態の過酷評価>
 上記で得られた液晶配向剤について、フレキソ印刷(コムラテック社製フレキソ印刷機、基板:100mm×100mm Cr蒸着基板、印刷速度:20m/min、印圧:0.12mm、アニロックスロール:#350-28μm、印刷判:#600メッシュ、25%、52°、80mm×80mm、レベリングタイム:40sec、本焼成条件:230℃・1200sec)を行った際の塗布性の評価を行った。なお、印刷タクト及び乾燥条件は表10に記載の条件で行い、乾燥時間は120secとした。欠陥等無く均等に成膜できている場合は「良好」とし、軽微な塗布不良は見られるが比較的均等に成膜できている場合は「やや良好」とし、塗布不良が多い場合は「不良」とした。また、膜状態の観察もおこない、ヘイズや膜厚ムラが無いものを「良好」とした。結果を表9に示す。
<Severe evaluation of coating properties and film condition of weak anchoring liquid crystal alignment agent>
Regarding the liquid crystal aligning agent obtained above, flexographic printing (flexographic printing machine manufactured by Comratec, substrate: 100 mm x 100 mm Cr vapor-deposited substrate, printing speed: 20 m/min, printing pressure: 0.12 mm, anilox roll: #350- 28 μm, printing size: #600 mesh, 25%, 52°, 80 mm x 80 mm, leveling time: 40 sec, main firing conditions: 230° C., 1200 sec), and the applicability was evaluated. The printing tact and drying conditions were as shown in Table 10, and the drying time was 120 seconds. If the film is formed evenly without any defects, it is marked as "good." If there are minor coating defects, but the film is formed relatively evenly, it is marked as "slightly good." If there are many coating defects, it is marked as "poor." ”. The state of the film was also observed, and those with no haze or uneven film thickness were rated as "good." The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000072
 本発明に使用する溶媒として、特定溶媒を用いたものはフレキソ印刷試験にて良好な塗布性を示すが、引き置き時間が長い条件や極端に乾燥を早める条件においては僅かな不良が生じる(実施例163、167)。これは、特定溶媒の沸点が低沸点であることに起因する。その一方で、特定高沸点溶媒を使用すると上記過酷評価においても良好な塗布性と良好な膜の状態を示す(実施例164~166、168~170)。 The solvent used in the present invention shows good coating properties in flexographic printing tests using specific solvents, but slight defects may occur under conditions where the standing time is long or drying is extremely accelerated. Examples 163, 167). This is due to the fact that the specific solvent has a low boiling point. On the other hand, when a specific high boiling point solvent is used, good coating properties and good film conditions are exhibited even in the above-mentioned severe evaluation (Examples 164 to 166, 168 to 170).
<液晶表示素子の作成>
 以下に、液晶配向性および電気光学応答を評価するための液晶セルの作製方法を示す。初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmの無アルカリガラス基板を用いた。基板上には電極幅が3μm、電極と電極の間隔が6μm、基板の長辺に対して10°の角度となるような櫛歯型パターンを備えたITO(INDIUM-TIN-OXIDE)電極が形成され、画素を形成していた。各画素のサイズは、縦10mmで横約5mmであった。以後IPS基板と呼ぶ。
 次に、上記の方法で得られた液晶配向剤(WAS-1~WAS-84)、水平配向用の液晶配向剤(NRB-U973(日産化学社製))をそれぞれ孔径1.0mmのフィルターで濾過した後、準備された上記IPS基板と、対向基板として、裏面にITO膜が成膜されており、かつ高さ3.0μmの柱状のスペーサーを有するガラス基板(以後対向基板と呼ぶ)とにスピンコート法にて塗布・成膜を行った。次いで、80℃のホットプレート上で2分乾燥後、230℃で30分焼成し、膜厚100nmの塗膜を得た。IPS基板上の塗膜においては、櫛歯の方向に沿う方向で配向処理を行い、対向基板上の塗膜においては櫛歯電極と直交する方向に配向処理を行った。尚、NRB-U973の配向処理においては光配向法を用い、WAS-1~WAS-84においては配向処理を行わず、焼成後の基板をそのまま用いた。光配向法では、ウシオ電機社製のUV露光装置を用い、消光比が約26:1の直線偏光UVを、254nmの波長を基準として照射量300mJ/cmになるように偏光UVを照射した後、230℃にて30分加熱することで行い配向処理を行った。
 その後、上記2種類の基板を用いて、以下表10-1~表10-3に示す組み合わせにて、それぞれの配向方向が平行になるように組み合わせ、液晶注入口を残して周囲をシールし(シール剤:XN-1500T(三井化学社製))、150℃で60分間の加熱処理を行い、シール剤を硬化させてセルギャップが約3.0μmの空セルを作製した。この空セルに、液晶(MLC-3019(Merck社製))を常温で真空注入した後、注入口を封止して、アンチパラレル配向の液晶セルとした。
 得られた液晶セルは、IPS方式液晶表示素子を構成する。その後、得られた液晶セルを120℃で10分加熱処理することで液晶表示素子を得た。
<Creation of liquid crystal display element>
Below, a method for producing a liquid crystal cell for evaluating liquid crystal alignment and electro-optic response will be shown. First, a substrate with electrodes was prepared. The substrate used was an alkali-free glass substrate measuring 30 mm x 35 mm and having a thickness of 0.7 mm. An ITO (INDIUM-TIN-OXIDE) electrode is formed on the substrate with a comb-shaped pattern with an electrode width of 3 μm, an electrode spacing of 6 μm, and an angle of 10° with respect to the long side of the substrate. and formed pixels. The size of each pixel was 10 mm in length and about 5 mm in width. Hereinafter, it will be referred to as an IPS board.
Next, the liquid crystal aligning agents (WAS-1 to WAS-84) obtained by the above method and the liquid crystal aligning agent for horizontal alignment (NRB-U973 (manufactured by Nissan Chemical Co., Ltd.)) were each passed through a filter with a pore size of 1.0 mm. After filtering, the prepared IPS substrate and a glass substrate (hereinafter referred to as the counter substrate) having an ITO film formed on the back surface and having columnar spacers with a height of 3.0 μm were used as the counter substrate. Application and film formation were performed using a spin coating method. Next, it was dried on a hot plate at 80° C. for 2 minutes and then baked at 230° C. for 30 minutes to obtain a coating film with a thickness of 100 nm. The coating film on the IPS substrate was oriented in the direction along the comb-toothed direction, and the coating film on the counter substrate was oriented in the direction perpendicular to the comb-teeth electrodes. Note that a photo-alignment method was used for the alignment treatment of NRB-U973, and for WAS-1 to WAS-84, the substrates after firing were used as they were without any alignment treatment. In the photo-alignment method, a UV exposure device manufactured by Ushio Inc. was used to irradiate linearly polarized UV with an extinction ratio of about 26:1 so that the irradiation amount was 300 mJ/cm 2 based on a wavelength of 254 nm. Thereafter, orientation treatment was performed by heating at 230° C. for 30 minutes.
After that, using the above two types of substrates, combine them in the combinations shown in Tables 10-1 to 10-3 below so that their orientation directions are parallel, and seal the periphery leaving the liquid crystal injection port ( Sealing agent: XN-1500T (manufactured by Mitsui Chemicals, Inc.)), heat treatment was performed at 150° C. for 60 minutes to harden the sealing agent, and empty cells with a cell gap of approximately 3.0 μm were prepared. After injecting liquid crystal (MLC-3019 (manufactured by Merck)) into this empty cell under vacuum at room temperature, the injection port was sealed to obtain an antiparallel-aligned liquid crystal cell.
The obtained liquid crystal cell constitutes an IPS type liquid crystal display element. Thereafter, the obtained liquid crystal cell was heat-treated at 120° C. for 10 minutes to obtain a liquid crystal display element.
<初期配向性の評価>
 偏光顕微鏡を用い、偏光板をクロスニコルに設定し、液晶セルの輝度が最も小さくなる状態で固定し、そこから1°液晶セルを回転させ、液晶の配向状態の観察を行った。ムラやドメイン等の配向不良が観察されない場合あるいは非常に軽微な場合は「良好」とし、明確に観察された場合は「不良」と定義して評価を行った。
<Evaluation of initial orientation>
Using a polarizing microscope, the polarizing plate was set to crossed nicols, the brightness of the liquid crystal cell was fixed at its lowest, and the liquid crystal cell was then rotated by 1° to observe the alignment state of the liquid crystal. Evaluation was performed by defining "good" when no or very slight orientation defects such as unevenness or domains were observed, and "poor" when clearly observed.
<V-Tカーブの測定と駆動閾値電圧、最大輝度電圧、透過率評価>
 光軸が合うように白色LEDバックライトと輝度計をセットし、その間に、輝度が最も小さくなるように偏光板を取り付けた液晶セル(液晶表示素子)をセットし、1V間隔で8Vまで電圧を印加し、電圧における輝度を測定することでV-Tカーブの測定を行った。電圧無印加の状態から電圧を印加し、最大透過輝度の10%の時の電圧値(Vth)の値を見積もった。得られたV-Tカーブから輝度が最大になる電圧(Vmax)の値を見積もった。また、電圧無印加の液晶セルを介して、パラレルニコル時の透過輝度を100%とし、V-Tカーブでの最大透過輝度を比較することにより最大透過率(Tmax)として見積もった。
<Measurement of VT curve and evaluation of drive threshold voltage, maximum brightness voltage, and transmittance>
Set the white LED backlight and brightness meter so that the optical axes are aligned, set the liquid crystal cell (liquid crystal display element) with a polarizing plate attached so that the brightness is the lowest, and apply a voltage up to 8V at 1V intervals. The VT curve was measured by applying the voltage and measuring the brightness at the voltage. A voltage was applied from a state where no voltage was applied, and the voltage value (Vth) at 10% of the maximum transmitted brightness was estimated. The value of the voltage (Vmax) at which the brightness becomes maximum was estimated from the obtained VT curve. In addition, the maximum transmittance (Tmax) was estimated by setting the parallel Nicol transmission brightness as 100% through a liquid crystal cell with no voltage applied, and comparing the maximum transmission brightness on the VT curve.
<応答時間(Ton、Toff)の測定>
 上記V-Tカーブの測定で使用した装置を用い、輝度計をオシロスコープに接続し、最大輝度になる電圧を印加した際の応答速度(Ton)及び電圧を0Vに戻した際の応答速度(Toff)を測定した。
<Measurement of response time (Ton, Toff)>
Using the device used to measure the VT curve above, connect the luminance meter to the oscilloscope, and measure the response speed (Ton) when applying the voltage that produces the maximum luminance and the response speed (Toff) when the voltage is returned to 0V. ) was measured.
<光配向を用いたセル特性評価>
(弱アンカリングIPS特性の評価結果)
 実施例内容及び評価結果を表10-1、表10-2及び表10-3に示す。
<Evaluation of cell characteristics using photo-alignment>
(Evaluation results of weak anchoring IPS characteristics)
The details of the examples and the evaluation results are shown in Tables 10-1, 10-2, and 10-3.
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000074
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
 本発明の弱アンカリング液晶配向剤を用いて作製したIPS液晶表示素子において、いずれの液晶表示素子も閾値電圧(Vth)や最大輝度電圧(Vmax)の低下が確認され、最大透過率(Tmax)の向上が確認された。一方で弱アンカリング起因の応答速度の遅延も確認された。以上のことから、特定溶媒を溶媒に用いても特性に影響なく良好な弱アンカリング特性が得られることが分かる。 In all of the IPS liquid crystal display devices produced using the weakly anchoring liquid crystal aligning agent of the present invention, a decrease in threshold voltage (Vth) and maximum brightness voltage (Vmax) was confirmed, and a decrease in maximum transmittance (Tmax) was confirmed. improvement was confirmed. On the other hand, a delay in response speed due to weak anchoring was also confirmed. From the above, it can be seen that even if a specific solvent is used as a solvent, good weak anchoring properties can be obtained without affecting the properties.
 本発明によれば、従来技術に比べて極めて単純な手法で安定した弱アンカリング膜を製造できるため、実際の工業化において弱アンカリングIPS製造に掛かる工程負荷の低減や歩留まりの改善が可能となる。また、本発明の材料および手法を用いることで、狭セルギャップ化に伴うプレチルト角の発生を抑制しつつ、従来技術に比べて電圧OFF時の高速応答化、焼き付きの低減、低温環境における高いバックライト透過率と低電圧駆動が実現できるため、優れた特性を安定して発現できる材料および横電界液晶表示素子を提供することができる。 According to the present invention, it is possible to produce a stable weak anchoring film using an extremely simple method compared to conventional technology, so it is possible to reduce the process load and improve the yield in the production of weak anchoring IPS in actual industrialization. . In addition, by using the materials and methods of the present invention, while suppressing the occurrence of pre-tilt angles due to narrowing of the cell gap, we have achieved faster response when the voltage is turned off, reduced burn-in, and higher backlash in low-temperature environments compared to conventional technology. Since light transmittance and low voltage driving can be realized, it is possible to provide a material and a horizontal electric field liquid crystal display element that can stably exhibit excellent characteristics.
 1  横電界液晶表示素子
 2  櫛歯電極基板
 2a 基材
 2b 線状電極
 2c 液晶配向膜
 2d 基材
 2e 面電極
 2f 絶縁膜
 2g 線状電極
 2h 液晶配向膜
 3  液晶
 4  対向基板
 4a 液晶配向膜
 4b 基材
 L  電気力線

 
1 Horizontal electric field liquid crystal display element 2 Comb tooth electrode substrate 2a Base material 2b Linear electrode 2c Liquid crystal alignment film 2d Base material 2e Plane electrode 2f Insulating film 2g Linear electrode 2h Liquid crystal alignment film 3 Liquid crystal 4 Counter substrate 4a Liquid crystal alignment film 4b Base Material L Electric lines of force

Claims (12)

  1.  液晶と、液晶配向膜とを有する液晶セルの前記液晶配向膜の形成に用いられ、
     重合可能な不飽和炭化水素基を有する重合性基を有する化合物から得られる重合体(P)、及び溶媒として下記式(1)で表される化合物を含有する弱アンカリング液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(S1)中、Q及びQはそれぞれ独立に炭素数1~4のアルキル基を表し、Qは炭素数1~8の直鎖状、分岐状、あるいは環状のアルキル基、炭素数2~8のアルコキシアルキル基、炭素数4~8のアルキルカルボニルアルキル基または水素原子を表し、Q、Q及びQの炭素数の合計は4以上である。)
    Used for forming the liquid crystal alignment film of a liquid crystal cell having a liquid crystal and a liquid crystal alignment film,
    A weakly anchoring liquid crystal aligning agent containing a polymer (P) obtained from a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group, and a compound represented by the following formula (1) as a solvent.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (S1), Q 1 and Q 2 each independently represent an alkyl group having 1 to 4 carbon atoms, and Q 3 represents a linear, branched, or cyclic alkyl group having 1 to 8 carbon atoms; represents an alkoxyalkyl group having 2 to 8 carbon atoms, an alkylcarbonylalkyl group having 4 to 8 carbon atoms, or a hydrogen atom, and the total number of carbon atoms of Q 1 , Q 2 and Q 3 is 4 or more.)
  2.  前記式(1)で表される化合物が、N,N-ジエチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジブチルホルムアミド、N,N-ジプロピルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジエチルプロピオンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、2-メトキシ-N,N-ジエチルアセトアミド、3-メトキシ-N,N-ジエチルプロパンアミド、4-オキソ-N,N-ジエチルペンタンアミド、及びN,N-ジエチルシクロヘキサンカルボアミドから選ばれる少なくとも1種である請求項1に記載の弱アンカリング液晶配向剤。 The compound represented by the formula (1) is N,N-diethylacetamide, N,N-diethylformamide, N,N-dibutylformamide, N,N-dipropylacetamide, N,N-dimethylpropionamide, N , N-diethylpropionamide, 3-methoxy-N,N-dimethylpropanamide, 2-methoxy-N,N-diethylacetamide, 3-methoxy-N,N-diethylpropanamide, 4-oxo-N,N- The weakly anchoring liquid crystal aligning agent according to claim 1, which is at least one selected from diethylpentanamide and N,N-diethylcyclohexanecarboxamide.
  3.  前記式(1)で表される化合物の含有量が、前記弱アンカリング液晶配向剤に含まれる溶媒成分の全体量に対して、10~90質量%である請求項1に記載の弱アンカリング液晶配向剤。 Weak anchoring according to claim 1, wherein the content of the compound represented by formula (1) is 10 to 90% by mass based on the total amount of solvent components contained in the weak anchoring liquid crystal aligning agent. Liquid crystal alignment agent.
  4.  前記重合体(P)が、下記重合体(α)及び重合体(β)からなる群から選択される少なくとも1種である、請求項1に記載の弱アンカリング液晶配向剤。
     重合体(α):前記液晶に相溶するブロックセグメント(A)と、前記液晶に相溶しない又は焼成により前記液晶に不溶化するブロックセグメント(B)とを有するブロック共重合体。
     重合体(β):幹ポリマーと、前記幹ポリマーの側鎖として前記幹ポリマーに結合した枝ポリマーとを有するグラフト共重合体であり、前記枝ポリマーが、前記液晶と相溶し、前記幹ポリマーが、前記液晶に相溶しない又は焼成により前記液晶に不溶化する、グラフト共重合体。
    The weakly anchoring liquid crystal aligning agent according to claim 1, wherein the polymer (P) is at least one selected from the group consisting of the following polymers (α) and polymers (β).
    Polymer (α): A block copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is not compatible with the liquid crystal or becomes insolubilized in the liquid crystal upon firing.
    Polymer (β): A graft copolymer having a trunk polymer and a branch polymer bonded to the trunk polymer as a side chain of the trunk polymer, and the branch polymer is compatible with the liquid crystal and the trunk polymer is not compatible with the liquid crystal or becomes insoluble in the liquid crystal upon firing.
  5.  前記重合体(α)における前記ブロックセグメント(A)及び前記重合体(β)における枝ポリマーが、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、及び下記式(5)で表される化合物からなる群から選択される少なくとも1種を、構成成分として含み、
     前記重合体(α)における前記ブロックセグメント(B)及び前記重合体(β)における幹ポリマーが、下記式(6)で表される化合物を、構成成分として含む、
    請求項4に記載の弱アンカリング液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、又はチオエーテル結合を表し、Rは結合基が挿入されていてもよい炭素数1~20のアルキル基を表し、nは1~2の整数である。nが2の場合、2つのX及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Sは単結合、又は結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表し、Tは下記式(3-T)で表される有機基を表し、nは1~2の整数である。nが2の場合、2つのTは同一であってもよいし、異なっていてもよい。ただし、nが2の場合、Sは結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(3-T)中、*は結合部位を示す。Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又はアルキル基を表す。)から選ばれる結合基であり、Cyは6~20員環の非芳香族の環状基を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(4)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子又は下記式(4-X)を表す。ただし、3つのXの少なくとも一つは式(4-X)を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(4-X)中、Yは単結合、-O-、-S-又は-N(R)-(RはNに結合する、水素原子又は炭素数1~4のアルキル基を表す。)を表し、*は結合部位を示す。R、R、及びRは、それぞれ独立して、炭素数1~6のアルキル基又は置換基を有していてもよい芳香族炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000007
    (式(5)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、R~Rはそれぞれ独立して単結合、又は結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、X及びXはそれぞれ独立して水素原子、又は置換基を有していてもよい芳香族炭化水素基を表し、RとRとR及びRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、R及びRの合計炭素数は1以上である。)
    Figure JPOXMLDOC01-appb-C000008
    (式(6)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、nは1~2の整数である。Zは下記式(6-Z)で表される基を表す。nが2の場合、2つのZは同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000009
    (式(6-Z)中、Lはトリアルコキシシリル基、イソシアネート基、ブロックイソシアネート基、エポキシ基、オキセタン基、ビニル基、アリル基、オキサゾリン基、アミノ基、保護アミノ基、アニリン基、保護アニリン基、ヒドロキシ基、保護ヒドロキシ基、フェノール基、保護フェノール基、チオール基、保護チオール基、チオフェノール基、保護チオフェノール基、アルデヒド基、カルボキシ基、マレイミド基、N-ヒドロキシスクシンイミドエステル基、結合基が挿入されていてもよい炭素数5~18の芳香族炭化水素基、結合基が挿入されていてもよい炭素数5~18の芳香族複素環基、桂皮酸基、桂皮酸芳香族エステル基、桂皮酸アルキルエステル基、シンナミル基、フェニルベンゾエート基、アゾベンゼン基、N-ベンジリデンアニリン基、スチルベン基、及びトラン基からなる群から選択される官能基を表す。Jは単結合又は炭素数1~6の脂肪族炭化水素基を表す。Kは、芳香族炭化水素基と結合する場合、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、及びチオエーテル結合から選ばれる連結基を示し、それ以外の場合は、単結合を示す。*は結合部位を表す。mは1~3の整数である。mが2又は3の場合、複数のK及びLは同一であってもよいし、異なっていてもよい。ただし、Jが単結合の場合、mは1である。)
    The block segment (A) in the polymer (α) and the branch polymer in the polymer (β) are a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula ( 4) and at least one selected from the group consisting of the compound represented by the following formula (5) as a constituent component,
    The block segment (B) in the polymer (α) and the backbone polymer in the polymer (β) contain a compound represented by the following formula (6) as a constituent component,
    The weak anchoring liquid crystal aligning agent according to claim 4.
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond. , R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same. (It may be different or it may be different.)
    Figure JPOXMLDOC01-appb-C000003
    (In formula (3), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein. , T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.)
    Figure JPOXMLDOC01-appb-C000004
    (In formula (3-T), * indicates a bonding site. X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
    Figure JPOXMLDOC01-appb-C000005
    (In formula (4), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms, and 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).)
    Figure JPOXMLDOC01-appb-C000006
    (In formula (4-X), Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site. R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent. )
    Figure JPOXMLDOC01-appb-C000007
    (In formula (5), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted. represents an alkylene group of 1 to 6, Ar represents an aromatic hydrocarbon group that may have a substituent, and X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together. The total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.)
    Figure JPOXMLDOC01-appb-C000008
    (In formula (6), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and n is an integer of 1 to 2. Z represents a group represented by the following formula (6-Z). (If n is 2, the two Zs may be the same or different.)
    Figure JPOXMLDOC01-appb-C000009
    (In formula (6-Z), L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinnamic acid aromatic ester group , a cinnamic acid alkyl ester group, a cinnamyl group, a phenylbenzoate group, an azobenzene group, an N-benzylideneaniline group, a stilbene group, and a tolan group. J is a single bond or has 1 to 1 carbon atoms. 6 represents an aliphatic hydrocarbon group.When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, ether bond, ester bond, amide bond, urea bond, urethane bond, and thioether bond. In other cases, it indicates a single bond. * represents a binding site. m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same. (However, if J is a single bond, m is 1.)
  6.  前記重合体(β)における前記枝ポリマーが、下記式(7)で表されるマクロモノマーに由来する、請求項5に記載の弱アンカリング液晶配向剤。
    Figure JPOXMLDOC01-appb-C000010
    (式(7)中、Pは重合可能な不飽和炭化水素基を有する重合性基を表し、Qは前記式(2)~(5)で表される化合物の少なくとも1種を含むモノマーを重合することによって得られる構造であり、nは1~2の整数である。nが2の場合、2つのQは同一であってもよいし、異なっていてもよい。)
    The weakly anchoring liquid crystal aligning agent according to claim 5, wherein the branch polymer in the polymer (β) is derived from a macromonomer represented by the following formula (7).
    Figure JPOXMLDOC01-appb-C000010
    (In formula (7), P represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and Q represents a polymerizable monomer containing at least one of the compounds represented by formulas (2) to (5) above. (n is an integer of 1 to 2. When n is 2, the two Qs may be the same or different.)
  7.  前記式(2)中のMが、下記で表されるいずれかの構造であり、
     前記式(3)中のMが、下記で表されるいずれかの構造であり、
     前記式(4)中のMが、下記で表されるいずれかの構造であり、
     前記式(5)中のMが、下記で表されるいずれかの構造であり、
     前記式(6)中のMが、下記で表されるいずれかの構造である、
    請求項5に記載の弱アンカリング液晶配向剤。
    Figure JPOXMLDOC01-appb-C000011
    (式中、R、及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、X、Y、及びZはそれぞれ独立して酸素原子又は硫黄原子を表す。*、*及び*は結合部位を表し、*及び*のどちらか一方は水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基で置き換えられていてもよい。)
    M in the formula (2) is any of the structures represented below,
    M in the formula (3) is any of the structures represented below,
    M in the formula (4) is any of the structures represented below,
    M in the formula (5) is any of the structures represented below,
    M in the formula (6) is any of the structures represented below,
    The weak anchoring liquid crystal aligning agent according to claim 5.
    Figure JPOXMLDOC01-appb-C000011
    (In the formula, R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and X, Y, and Z each independently represent an oxygen atom or a sulfur atom. *, * 1 and * 2 represent bonding sites, and either one of * 1 and * 2 may be replaced with a hydrogen atom or a straight chain or branched alkyl group having 1 to 12 carbon atoms.)
  8.  前記重合体(α)、及び前記重合体(β)が、下記式(B-1)~(B-17)で表される化合物からなる群から選択される少なくとも1種を構成成分として含む、請求項4に記載の弱アンカリング液晶配向剤。
    Figure JPOXMLDOC01-appb-C000012
    (式(B-1)~(B-17)中、Meは、メチル基を表し、Etは、エチル基を表す。)
    The polymer (α) and the polymer (β) contain as a constituent component at least one selected from the group consisting of compounds represented by the following formulas (B-1) to (B-17), The weak anchoring liquid crystal aligning agent according to claim 4.
    Figure JPOXMLDOC01-appb-C000012
    (In formulas (B-1) to (B-17), Me represents a methyl group, and Et represents an ethyl group.)
  9.  請求項1~8のいずれか一項に記載の弱アンカリング液晶配向剤を用いて得られた液晶表示素子。 A liquid crystal display element obtained using the weakly anchoring liquid crystal aligning agent according to any one of claims 1 to 8.
  10.  横電界液晶表示素子である請求項9に記載の液晶表示素子。 The liquid crystal display element according to claim 9, which is a horizontal electric field liquid crystal display element.
  11.  請求項1~8のいずれか一項に記載の弱アンカリング液晶配向剤を塗布、焼成することを含む、液晶表示素子の製造方法。 A method for manufacturing a liquid crystal display element, comprising applying and baking the weakly anchoring liquid crystal aligning agent according to any one of claims 1 to 8.
  12.  前記液晶表示素子が横電界液晶表示素子である請求項11に記載の液晶表示素子の製造方法。

     
    12. The method for manufacturing a liquid crystal display element according to claim 11, wherein the liquid crystal display element is a horizontal field liquid crystal display element.

PCT/JP2023/033185 2022-09-13 2023-09-12 Weak-anchoring liquid crystal aligning agent and liquid crystal display element WO2024058169A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-145457 2022-09-13
JP2022145457 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024058169A1 true WO2024058169A1 (en) 2024-03-21

Family

ID=90275085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033185 WO2024058169A1 (en) 2022-09-13 2023-09-12 Weak-anchoring liquid crystal aligning agent and liquid crystal display element

Country Status (1)

Country Link
WO (1) WO2024058169A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206645A (en) * 2015-04-16 2016-12-08 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method of the same, and liquid crystal element
WO2019131810A1 (en) * 2017-12-27 2019-07-04 日産化学株式会社 Zero-azimuthal surface anchoring film manufacturing method and liquid crystal display element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016206645A (en) * 2015-04-16 2016-12-08 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and manufacturing method of the same, and liquid crystal element
WO2019131810A1 (en) * 2017-12-27 2019-07-04 日産化学株式会社 Zero-azimuthal surface anchoring film manufacturing method and liquid crystal display element

Similar Documents

Publication Publication Date Title
JP7140336B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TWI763035B (en) Polymer composition, substrate with liquid crystal alignment film, manufacturing method thereof, liquid crystal display element, and side chain type polymer
KR102427361B1 (en) Liquid crystal alignment agent using non-photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
TWI841588B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR102435082B1 (en) Liquid crystal alignment agent using photoreactive hydrogen-bonding polymer liquid crystal, and liquid crystal alignment film
KR102277348B1 (en) Polymer composition, and liquid crystal alignment film for horizontal electric field drive-mode liquid crystal display element
CN113167957B (en) Liquid crystal aligning agent, liquid crystal alignment film, and phase difference material
WO2023048278A1 (en) Weakly anchoring liquid-crystal alignment agent, liquid-crystal display element, and polymer
JP6956948B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2024058169A1 (en) Weak-anchoring liquid crystal aligning agent and liquid crystal display element
WO2017069133A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2016021570A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2023106365A1 (en) Liquid-crystal alignment agent and liquid-crystal display element
WO2024058164A1 (en) Liquid crystal aligning agent and liquid crystal display element
WO2023157879A1 (en) Weak-anchoring liquid crystal aligning agent, and liquid crystal display element
WO2023171690A1 (en) Weak-anchoring liquid crystal aligning agent and liquid crystal display element
WO2019181907A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2023219075A1 (en) Method for manufacturing substrate equipped with weak anchoring alignment film, and method for manufacturing liquid crystal display element
WO2023140322A1 (en) Weak-anchoring liquid crystal alignment agent, and liquid cyrstal display element
JP7472792B2 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
CN118829938A (en) Weak anchoring liquid crystal aligning agent and liquid crystal display element
JP6864251B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865521

Country of ref document: EP

Kind code of ref document: A1