WO2023219075A1 - Method for manufacturing substrate equipped with weak anchoring alignment film, and method for manufacturing liquid crystal display element - Google Patents

Method for manufacturing substrate equipped with weak anchoring alignment film, and method for manufacturing liquid crystal display element Download PDF

Info

Publication number
WO2023219075A1
WO2023219075A1 PCT/JP2023/017398 JP2023017398W WO2023219075A1 WO 2023219075 A1 WO2023219075 A1 WO 2023219075A1 JP 2023017398 W JP2023017398 W JP 2023017398W WO 2023219075 A1 WO2023219075 A1 WO 2023219075A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
bond
carbon atoms
formula
Prior art date
Application number
PCT/JP2023/017398
Other languages
French (fr)
Japanese (ja)
Inventor
一世 三宅
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2023219075A1 publication Critical patent/WO2023219075A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention provides a method for manufacturing a substrate with a weak anchoring alignment film, which allows manufacturing an organic film exhibiting weak anchoring properties (weak anchoring film) using a method that is inexpensive and does not involve complicated steps, and
  • the present invention relates to a liquid crystal display element that achieves higher brightness and lower voltage driving.
  • liquid crystal display elements have been widely used in displays for mobile phones, computers, televisions, and the like.
  • Liquid crystal display elements have characteristics such as being thin, lightweight, and low power consumption, and are expected to be applied to further content such as VR (Virtual Reality) and ultra-high-definition displays in the future.
  • Various display methods have been proposed for liquid crystal displays, including the TN (Twisted Nematic) method, the IPS (In-Plane Switching) method, and the VA (Vertical Alignment) method.
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • VA Very Alignment
  • the IPS method is preferred because the display is less distorted even when touched, and in recent years FFS (Fringe Field Switching ) liquid crystal display elements using the method and liquid crystal alignment technology using the optical alignment method are used.
  • FFS Ringe Field Switching
  • the FFS method has problems in that the manufacturing cost of the substrate is higher than that in the IPS method, and a unique display defect called Vcom shift occurs.
  • the photo-alignment method has the advantage of being easier to adapt to device enlargement and greatly improving display characteristics, but there are some theoretical issues (when using photodegradable materials, Display defects, and if the photoisomerization type is used, there may be burn-in due to insufficient alignment power, etc.).
  • liquid crystal display element manufacturers and liquid crystal alignment film manufacturers are currently making various efforts.
  • a weak anchoring IPS method that applies weak anchoring technology has been proposed. This can improve the contrast ratio and realize significantly lower voltage driving than the conventional IPS method (see Patent Document 2).
  • the weak anchoring IPS method uses a liquid crystal alignment film that has strong anchoring energy on one substrate, and a process that does not have anchoring energy on the other substrate (which is equipped with an electrode that generates a transverse electric field). It is made using organic thin films.
  • a weak anchoring IPS method has been proposed in which a liquid crystal alignment film capable of generating photoradicals and a compound capable of radical polymerization are used to generate weak anchoring by irradiating UV in the liquid crystal and causing a radical reaction (Patent Document (see 4).
  • Patent Document 3 The method of directly providing a dense polymer brush on a substrate (Patent Document 3) requires a surface treatment step to provide reaction points on the substrate and a step of growing polymer from the reaction points on the substrate surface, which complicates the process, and requires advanced technology. Since it requires deoxidizing conditions and the environment must be strictly controlled, it is technically difficult and impractical from the perspective of mass production. Therefore, a method has been proposed in which a weakly anchored IPS display element is obtained by applying a bottlebrush polymer having an anchoring site onto a substrate.However, when manufacturing a bottlebrush polymer, a macromonomer having a polymerization initiation site is used.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • Patent Document 4 In the method of weakly anchoring using a photoradical polymerization reaction and a radically polymerizable compound (Patent Document 4), the polymerizable additive is volatilized under high vacuum conditions during liquid crystal injection, and ultraviolet rays are removed after the liquid crystal element is fabricated. It is thought that there are problems such as an adverse effect on the liquid crystal composition during the irradiation process.
  • the response speed when the voltage is turned off becomes slow. This is a problem specific to weak anchoring IPS systems. If the response speed becomes slow, it is conceivable that the display quality of video images will deteriorate and the applications to which it can be applied will be greatly limited, so increasing the response speed can be said to be the biggest challenge from the perspective of putting weak anchoring IPS into practical use.
  • an object of the present invention is to provide a substrate with a weak anchoring alignment film that does not generate a pretilt angle and can simultaneously realize low-voltage driving and high-speed response when the voltage is turned off, and a liquid crystal display device using the same. There is.
  • the present inventors conducted intensive studies and found that the above-mentioned problems could be solved, and completed the present invention having the following gist. That is, the present invention includes the following.
  • a method for manufacturing a substrate with a weak anchoring alignment film used for manufacturing a liquid crystal cell having a liquid crystal and a weak anchoring alignment film comprising: A weakly anchoring liquid crystal aligning agent containing a polymer ⁇ , which is a component that exhibits weak anchoring properties, and a polymer ⁇ , which is a component that does not exhibit weak anchoring properties and exhibits a uniaxial alignment regulating force through alignment treatment.
  • a method for manufacturing a substrate with a weak anchoring alignment film comprising: [2] The method for producing a substrate with a weak anchoring alignment film according to [1], wherein the polymer ⁇ is a polymer that has a horizontal alignment regulating force when subjected to an alignment treatment. [3] The method for manufacturing a substrate with a weak anchoring alignment film according to [1] or [2], wherein the weak anchoring alignment film is a liquid crystal alignment film subjected to a uniaxial alignment treatment.
  • the weak anchor according to any one of [1] to [3], wherein the polymer ⁇ contains at least one selected from the group consisting of polymer A, polymer B, and polymer C below.
  • Polymer A A block copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is not compatible with the liquid crystal or becomes insolubilized in the liquid crystal upon firing.
  • Polymer B a graft copolymer having a backbone polymer and a branch polymer bonded to the backbone polymer as a side chain of the backbone polymer, wherein the branch polymer is compatible with the liquid crystal and the backbone polymer is not compatible with the liquid crystal or becomes incompatible with the liquid crystal upon firing.
  • Polymer C A polymer that has a polymer unit that is compatible with the liquid crystal and reacts with the polymer ⁇ when heated.
  • the block segment (A) in the polymer A is a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), and Containing as a constituent component at least one selected from the group consisting of compounds represented by the following formula (5),
  • the block segment (B) in the polymer A contains a compound represented by the following formula (6) as a constituent component,
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond.
  • R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein.
  • T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different.
  • X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms
  • 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).
  • Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N.
  • R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted.
  • R 1 X 1 , R 2 X 2 and R 3 are independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together.
  • the total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • n is an integer of 1 to 2.
  • Z represents a group represented by the following formula (6-Z).
  • L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinn
  • J is a single bond or has 1 to 1 carbon atoms.
  • 6 represents an aliphatic hydrocarbon group.
  • K When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, an ether bond, an ester bond, an amide bond, a urea bond, a urethane bond, and a thioether bond. In other cases, it indicates a single bond.
  • * represents a binding site.
  • m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond
  • R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein
  • n is an integer of 1 to 2.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein.
  • T represents an organic group represented by the following formula (3-T)
  • n is an integer of 1 to 2.
  • the two Ts may be the same or different.
  • S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.
  • * indicates a bonding site.
  • X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms
  • 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).
  • Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N.
  • * indicates a bonding site.
  • R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted.
  • Ar represents an aromatic hydrocarbon group that may have a substituent
  • X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together.
  • L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinn
  • J is a single bond or has 1 to 1 carbon atoms.
  • 6 represents an aliphatic hydrocarbon group.
  • K When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, an ether bond, an ester bond, an amide bond, a urea bond, a urethane bond, and a thioether bond. In other cases, it indicates a single bond.
  • * represents a binding site.
  • m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same.
  • R is a monovalent organic group selected from the following formulas (8-R-1) to (8-R-11) and having a molecular weight of 500 or less that does not react with the polymer ⁇ upon heating.
  • n is an integer from 1 to 2. When n is 2, the two Q's and R's may be the same or different.
  • R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms
  • R 3 and R 4 each independently represents a single bond or a linear or branched alkylene group having 1 to 12 carbon atoms
  • X represents an oxygen atom or a sulfur atom.
  • R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms
  • R 3 and Each R 4 independently represents a single bond or a linear or branched alkylene group having 1 to 12 carbon atoms.
  • * represents a bonding site.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond.
  • R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein.
  • T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different.
  • X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms
  • 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).
  • Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N.
  • R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted.
  • X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together.
  • M in the formula (2) is any of the structures represented below
  • M in the formula (3) is any of the structures represented below
  • M in the formula (4) is any of the structures represented below
  • M in the formula (5) is any of the structures represented below
  • R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms
  • X, Y, and Z each independently represent an oxygen atom or a sulfur atom.
  • n is Represents an integer from 1 to 5.
  • the polymer ⁇ is at least one kind of polymer selected from the group consisting of polyimide, polyamic acid, polyamic acid ester, polyamide, polyurea, and poly(meth)acrylate.
  • the tetracarboxylic acid derivative component includes a tetracarboxylic dianhydride represented by the following formula (9).
  • X represents a structure selected from the group consisting of the following formulas (X-1) to (X-17) and (XR-1) to (XR-2).)
  • R 1 to R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, Alkynyl group having 2 to 6 carbon atoms, monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, alkoxy group having 1 to 6 carbon atoms, alkoxyalkyl group having 2 to 6 carbon atoms, 2 to 6 carbon atoms represents an alkyloxycarbonyl group or a phenyl group.
  • R 5 and R 6 each independently represent a hydrogen atom or a methyl group.
  • j and k are integers of 0 or 1
  • a 1 and A 2 each independently represent a single bond, -O-, -CO-, -COO-, represents a phenylene group, a sulfonyl group, or an amide group.
  • the plurality of A2 's may be the same or different. *1 is a bond bonded to one acid anhydride group, and *2 is a bond bonded to the other acid anhydride group.
  • Ar 1 and Ar 1' each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more of the benzene ring, the biphenyl structure, or the naphthalene ring may be substituted with a monovalent group.
  • the present invention it is possible to solve the trade-off between weak anchoring property and high-speed response when the voltage is turned off, which has been a trade-off in weak anchoring IPS. Furthermore, by using the materials and methods of the present invention, we provide a weak anchoring alignment film that does not generate a pretilt angle and can simultaneously achieve low voltage drive and high-speed response when the voltage is turned off, and a liquid crystal display element using the same. can do.
  • FIG. 1 is a schematic cross-sectional view showing an example of a horizontal electric field liquid crystal display element of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing another example of the horizontal electric field liquid crystal display element of the present invention.
  • weak anchoring refers to having a force that regulates the alignment of liquid crystal molecules in the azimuthal or polar direction with respect to the substrate, but with anchoring strength (i.e., maintaining the position of the liquid crystal molecules).
  • anchoring strength i.e., maintaining the position of the liquid crystal molecules.
  • the azimuthal anchoring strength (A 2 ) is smaller than 10 ⁇ 5 [J/m 2 ].
  • a polymer capable of forming a completely wet state with the liquid crystal is provided at the base material interface, and when the liquid crystal comes into contact with the polymer, a polymer-liquid crystal mixed layer is formed, resulting in weak anchoring.
  • the condition is known to occur.
  • the term “weak anchoring alignment film” refers to a film that forms a weakly anchored state upon contact with liquid crystal, and is not limited to solid films, but also includes liquid films that cover solid surfaces. Note that the "weak anchoring alignment film” is also referred to as “weak anchoring liquid crystal alignment film”.
  • strong anchoring refers to the ability to regulate the alignment of liquid crystal molecules in a uniaxial alignment and maintain the alignment of the liquid crystal even when energy is applied from the outside, or the ability to maintain the alignment of the liquid crystal even if the alignment of the liquid crystal molecules changes. In the strong anchoring of the present invention, it refers to the case where the azimuthal anchoring strength (A 2 ) is greater than 10 ⁇ 4 [J/m 2 ]. .
  • strongly anchoring alignment film refers to a film that forms a strong anchoring state when it comes into contact with liquid crystal, and is not limited to solid films, but also includes liquid films that cover solid surfaces. Note that the "strong anchoring alignment film” is also referred to as “strong anchoring liquid crystal alignment film.”
  • a weak anchoring liquid crystal display element can be produced by applying the above-defined weak anchoring alignment film and strong anchoring alignment film to a substrate with electrodes, respectively, and pasting them together in a pair.
  • the azimuthal anchoring strength of one liquid crystal alignment film is extremely small, so a weak electric field or external field energy can induce alignment changes in the liquid crystal, and liquid crystal molecules in areas that normally do not move can also be aligned. This makes it possible to drive liquid crystal molecules on electrodes with weak electric field strength, especially in display elements using comb-shaped electrodes such as IPS and FFS.
  • a liquid crystal display element in which both films are composed of strong anchoring alignment films higher transmittance and lower driving voltage can be achieved.
  • the azimuthal anchoring strength is an index representing the strength of interfacial elastic energy between liquid crystal molecules and a liquid crystal alignment film in the azimuthal direction.
  • a torque balance method As a method for calculating the azimuthal anchoring strength, a torque balance method, a strong electric field method, a geometry method (external field application method), a Frederiks transfer method, etc. are used.
  • polymer alloy One embodiment of the "polymer alloy” in the present invention is a polymer (hereinafter sometimes referred to as "polymer ⁇ ") that is a component that exhibits weak anchoring properties and is contained in a weakly anchoring liquid crystal aligning agent. It is a polymer alloy made of a polymer (hereinafter sometimes referred to as "polymer ⁇ ") which is a component that does not exhibit weak anchoring properties and exhibits uniaxial alignment regulating force through alignment treatment.
  • Weak anchoring liquid crystal alignment agents are used to form a film for aligning liquid crystals used in liquid crystal display elements, that is, a liquid crystal alignment film.
  • the polymer alloy of the present invention is characterized in that it is obtained by mixing at least one of each of polymer ⁇ and polymer ⁇ .
  • the polymer ⁇ exhibits excellent weak anchoring properties (also referred to as a “weak anchoring component”), while the polymer ⁇ does not exhibit weak anchoring properties and can be easily stabilized by orientation treatment. Expresses uniaxial alignment regulating force.
  • weak anchoring component also referred to as a “weak anchoring component”
  • we can provide the weak anchoring alignment film with excellent film hardness and excellent seal adhesion strength by adhering to the substrate, cross-linking between polymers, and cross-linking with the sealing component.
  • a weakly anchoring liquid crystal aligning agent having excellent solvent selectivity and coating properties can be obtained.
  • a weakly anchored liquid crystal display element that uses a graft copolymer (called a polymer brush) with a high density of branch polymers using living polymerization.
  • the polymer brush is synthesized using a method of extending branch polymers (grafting from method), and needs to be synthesized using living polymerization.
  • attempts have been made to improve the adhesion between the substrate and the polymer by introducing groups into the branch polymer that contribute to improved adhesion to the substrate, but if the amount introduced is large, the weak anchoring property may be impaired.
  • the method for manufacturing a substrate with a weak anchoring alignment film of the present invention is used for manufacturing a liquid crystal cell having a liquid crystal and a weak anchoring alignment film.
  • the method for manufacturing a substrate with a weak anchoring alignment film of the present invention includes the following steps. ⁇ Process of applying a weak anchoring liquid crystal alignment agent containing polymer ⁇ and polymer ⁇ onto a substrate to form a thin film on the substrate ⁇ Process of applying alignment treatment to the thin film
  • the substrate to which the weak anchoring liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate on which a transparent electrode for driving the liquid crystal is formed is preferable. A specific example will be described later.
  • the method of applying the weak anchoring liquid crystal aligning agent onto the substrate is not particularly limited, and examples thereof include spin coating, printing, inkjet, spraying, and roll coating, but from the viewpoint of productivity, Industrially, transfer printing is preferred.
  • drying and/or baking may be performed. Drying and firing conditions are not particularly limited, and include, for example, the conditions described below.
  • the thickness of the thin film can be selected as necessary, it is preferably 5 nm or more, more preferably 10 nm or more, since this improves the reliability of the liquid crystal display element. Further, it is preferable that the thickness of the thin film is preferably 300 nm or less, more preferably 150 nm or less, since the power consumption of the liquid crystal display element does not become extremely large.
  • the orientation treatment applied to the thin film is preferably uniaxial orientation treatment.
  • methods for performing the uniaxial alignment treatment include a photoalignment method, an oblique evaporation method, rubbing, and a uniaxial alignment treatment using a magnetic field.
  • the alignment treatment can be performed by irradiating the entire surface of the film with polarized UV of a specific wavelength and heating if necessary.
  • the direction is selected depending on the electrical properties of the liquid crystal, but when using a liquid crystal with positive dielectric anisotropy, the rubbing direction is the direction in which the comb-teeth electrodes extend. It is preferable that the direction is approximately the same as that of .
  • an organic film made of a polymer alloy obtained by mixing polymer ⁇ and polymer ⁇ is formed on a substrate, and then an alignment treatment is performed on the organic film. (preferably uniaxial alignment treatment).
  • the polymer ⁇ preferably contains at least one selected from the group consisting of polymer A, polymer B, and polymer C.
  • the polymer ⁇ is preferably at least one type of polymer selected from the group consisting of polyimide, polyamic acid, polyamic acid ester, polyamide, polyurea, and poly(meth)acrylate.
  • polymer ⁇ is a polymer that exhibits excellent uniaxial alignment regulating force through rubbing alignment treatment and photo alignment treatment, and is a polymer that exhibits excellent uniaxial alignment regulating force through rubbing alignment treatment and photo alignment treatment, and is a polymer that exhibits an excellent uniaxial alignment regulating force through rubbing alignment treatment and photo alignment treatment.
  • alignment treatment preferably uniaxial alignment treatment
  • the weak anchoring alignment film can be given excellent film hardness and excellent seal adhesion strength by adhering to the substrate, cross-linking between polymers, and cross-linking with the sealing component. Moreover, a weakly anchoring liquid crystal aligning agent having excellent solvent selectivity and coating properties can be obtained.
  • polymer A One embodiment of the polymer A is a copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is not compatible with the liquid crystal or becomes insolubilized in the liquid crystal upon firing.
  • Polymer A is, for example, a linear copolymer consisting of two or more types of block segments obtained by living polymerization, at least one block segment consisting of a block segment (A) soluble in liquid crystal, and at least one block segment consists of a block segment (B) that does not dissolve in the liquid crystal or becomes insoluble in the liquid crystal upon firing.
  • the block segment (A) in polymer A is a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), and the following formula (5). It is preferable that at least one kind selected from the group consisting of the compounds represented by: is included as a constituent component. It is preferable that the block segment (B) in the polymer A contains a compound represented by the following formula (6) as a constituent component.
  • the polymer A is a polymer in which the block segment (A) of the polymer A is synthesized from at least one selected from the group consisting of compounds represented by the following formulas (2) to (5), and It is preferable that the block segment (B) is a polymer synthesized from a compound represented by the following formula (6).
  • the present applicant has proposed a radically polymerizable compound contained in a liquid crystal composition that can stably produce a weakly anchoring horizontal electric field liquid crystal display element without generating a pretilt angle, and which is a radical polymerizable compound that contributes to the occurrence of weak anchoring.
  • a compound represented by the following formula (2), a compound represented by the formula (3), a compound represented by the formula (4), and a compound represented by the formula (5) as chemical compounds.
  • the weakly anchoring liquid crystal aligning agent containing Polymer A can produce weakly anchoring films more easily and stably than conventional methods, and that the weakly anchoring liquid crystal aligning agent containing Polymer A can be used to produce weakly anchored films more easily and stably than conventional methods.
  • Horizontal electric field liquid crystal that can simultaneously achieve stable low-voltage drive without the occurrence of corners and high-speed response when voltage is OFF, reduce burn-in, and achieve both high backlight transmittance and low-voltage drive in low-temperature environments.
  • the company has filed an application to provide a display element (Japanese Patent Application No. 2021-96448 and WO202/2260048. By being cited here, the contents of this application and publication are to the same extent as if they were fully disclosed. (incorporated herein).
  • the copolymer may have three or more types of block segments.
  • the copolymer is preferably a copolymer in which the main chain extends linearly without branching.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond
  • R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein
  • n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same.
  • Examples of the bonding group in the alkyl group having 1 to 20 carbon atoms into which a bonding group may be inserted include ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 11 )( R 12 )-(R 11 and R 12 each independently represent an alkyl group bonded to Si.), -Si(R 13 )(R 14 )-O-(R 13 and R 14 each independently represent an alkyl group bonded to Si. (represents an alkyl group bonded to Si), -N(R 15 )-(R 15 represents a hydrogen atom or an alkyl group bonded to N). Examples of the alkyl group for R 11 to R 15 include alkyl groups having 1 to 6 carbon atoms.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein.
  • T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.)
  • X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
  • the saturated hydrocarbon group in S in formula (3) refers to an n+1-valent group formed by removing n+1 hydrogen atoms from a saturated hydrocarbon (n is the same integer as n in formula (3)). be).
  • n 1, the saturated hydrocarbon group is an alkylene group.
  • a saturated hydrocarbon group having 1 to 6 carbon atoms into which a bonding group is inserted is a saturated hydrocarbon group having a bonding group inserted between carbon atoms in a saturated hydrocarbon group having 2 to 6 carbon atoms. or an n+1-valent group in which a bonding group is inserted between a saturated hydrocarbon group having 1 to 6 carbon atoms and an atom bonded thereto (for example, a carbon atom).
  • Examples of the bonding group for S in formula (3) include a carbon-carbon unsaturated bond, an ether bond (-O-), an ester bond (-COO- or -OCO-), an amide bond (-CONH- or - Examples include NHCO-).
  • Examples of carbon-carbon unsaturated bonds include carbon-carbon double bonds, but a saturated hydrocarbon group having 1 to 6 carbon atoms into which a carbon-carbon double bond is inserted has no It is preferable to have a carbon-carbon double bond inside.
  • examples of the alkylene group having 1 to 6 carbon atoms into which a bonding group may be inserted include alkylene groups having 1 to 6 carbon atoms, oxyalkylene groups having 1 to 6 carbon atoms, etc. .
  • the alkylene group having 1 to 6 carbon atoms may be a straight chain alkylene group, a branched alkylene group, or a cyclic alkylene group.
  • R 1 and R 2 of -Si(R 1 )(R 2 )- in X of formula (3-T) are each independently an alkyl group bonded to Si, for example, an alkyl group having 1 to 6 carbon atoms. It is the basis.
  • R 3 and R 4 of -Si(R 3 )(R 4 )-O- in X of formula (3-T) are each independently an alkyl group bonded to Si, for example, a carbon number of 1 to 6. is an alkyl group.
  • R 5 of -N(R 5 )- in X of formula (3-T) is a hydrogen atom or an alkyl group bonded to N.
  • the alkyl group is, for example, an alkyl group having 1 to 6 carbon atoms.
  • Cy is a 6- to 20-membered non-aromatic cyclic group, preferably an 8- to 18-membered non-aromatic cyclic group. Note that Cy may be a 12- to 20-membered non-aromatic cyclic group.
  • X is bonded to an atom constituting a ring in Cy. Examples of the atoms constituting the ring in the non-aromatic cyclic group include carbon atoms, oxygen atoms, nitrogen atoms, and silicon atoms. The bond between the atoms constituting the ring may be a single bond, a double bond, or a triple bond, but a single bond is preferable.
  • Examples of the ring in the non-aromatic cyclic group include cyclic alkanes, cyclic ethers, and cyclic siloxanes.
  • Examples of the cyclic ether include crown ether.
  • the atoms constituting the ring are carbon atoms and oxygen atoms, and the number of members is 12.
  • the ring may be monocyclic or polycyclic.
  • Examples of the number of rings in the polycycle include 2 to 4. For example, the following three ways are included in how the rings are bonded to each other in a polycyclic ring.
  • ⁇ One-atom sharing For example, spiro ring compounds ⁇ Two-atom sharing: When two rings share two atoms, such as in decalin ⁇ Bridging structure: When two rings share three atoms, such as in norbornane Cases in which more than one atom is considered to be in common In the case of a polycyclic ring, the number of ring members is determined by the number of atoms that make up the ring.
  • norbornane is a 7-membered ring.
  • a halogen atom or an alkyl group having 1 to 6 carbon atoms may be bonded to the atoms constituting the ring instead of a hydrogen atom. Examples of the halogen atom include a fluorine atom and a chlorine atom.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms
  • 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).
  • Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site.
  • R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent.
  • the aliphatic hydrocarbon group in R 1 in formula (4) has 1 to 10 carbon atoms, may have 1 to 8 carbon atoms, may have 1 to 6 carbon atoms, or may have 1 to 6 carbon atoms. It may be 1 to 4.
  • the alkyl group having 1 to 6 carbon atoms in R 2 , R 3 , and R 4 in formula (4-X) may be, for example, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. 4 may be an alkyl group. These alkyl groups may have a linear structure or a branched structure.
  • the aromatic hydrocarbon groups represented by R 2 , R 3 , and R 4 in formula (4-X) may be unsubstituted, or the hydrogen atoms may be substituted with a substituent.
  • substituent of the aromatic hydrocarbon group which may have a substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen having 1 to 4 carbon atoms. Examples include alkyl groups, halogenated alkoxy groups having 1 to 4 carbon atoms, and the like.
  • the halogenation in the halogenated alkyl group and the halogenated alkoxy group may be complete halogenation or partial halogenation.
  • halogen atom examples include a fluorine atom and a chlorine atom.
  • aromatic hydrocarbon group which may have a substituent include a phenyl group and a naphthyl group. The number of substituents in the aromatic hydrocarbon group is not particularly limited.
  • formula (4-X) is one or more, and may be one, two, or three. In formula (4), the three X's are each independent. Therefore, in formula (4), when there are two or more formulas (4-X), the two or more formulas (4-X) may have the same structure or different structures.
  • R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. Therefore, in formula (4-X), one of R 2 , R 3 , and R 4 may be an aromatic hydrocarbon group that may have a substituent, and R 2 , R 3 , and Two of R 4 may be an aromatic hydrocarbon group which may have a substituent, or three of R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. It may be a base.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted.
  • R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted.
  • Ar represents an aromatic hydrocarbon group that may have a substituent
  • X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together.
  • the total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.
  • an alkylene group having 1 to 6 carbon atoms into which a bonding group is inserted is an alkylene group having a bonding group inserted between carbon atoms in the alkylene group having 1 to 6 carbon atoms. or a divalent group in which a bonding group is inserted between an alkylene group having 1 to 6 carbon atoms and a carbon atom bonded thereto.
  • the bonding group include a carbon-carbon unsaturated bond, an ether bond (-O-), an ester bond (-COO- or -OCO-), and an amide bond (-CONH- or -NHCO-).
  • Examples of unsaturated bonds include carbon-carbon double bonds, but alkylene groups with 1 to 6 carbon atoms into which a bonding group is inserted have a carbon-carbon double bond inside, not at the end. It is preferable to have a bond.
  • Examples of the alkylene group having 1 to 6 carbon atoms into which a bonding group may be inserted include alkylene groups having 1 to 6 carbon atoms, oxyalkylene groups having 1 to 6 carbon atoms, and the like.
  • the oxygen atom in the oxyalkylene group having 1 to 6 carbon atoms is bonded to, for example, the carbon atom bonded to M, R 1 , R 2 , and R 3 in formula (5).
  • the alkylene group having 1 to 6 carbon atoms may be a straight chain alkylene group, a branched alkylene group, or a cyclic alkylene group.
  • Examples of the aromatic hydrocarbon group which may have a substituent in X 1 and X 2 of formula (5) include a phenyl group, a naphthyl group, and the like which may have a substituent.
  • Examples of the substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogenated alkyl group having 1 to 4 carbon atoms, a halogenated alkoxy group having 1 to 4 carbon atoms, etc. can be mentioned.
  • the halogenation in the halogenated alkyl group and the halogenated alkoxy group may be complete halogenation or partial halogenation.
  • Examples of the halogen atom include a fluorine atom and a chlorine atom.
  • Examples of R 1 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
  • Examples of R 2 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
  • Examples of R 3 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
  • Examples of X 1 in formula (5) include a hydrogen atom and a phenyl group.
  • Examples of X 2 in formula (5) include a hydrogen atom and a phenyl group.
  • Ar in formula (5) includes, for example, a phenyl group.
  • the total carbon number of R 1 X 1 , R 2 X 2 and R 3 in formula (5) is not particularly limited as long as it is 1 or more, but may be 2 or more. Further, the total carbon number of R 1 , R 2 , and R 3 in formula (5) may be, for example, 18 or less, 15 or less, or 10 or less. . Further, when X 1 and X 2 in formula (5) are hydrogen atoms, the total number of carbon atoms in R 1 , R 2 , and R 3 is not particularly limited as long as it is 1 or more, but even if it is 2 or more, good. In addition, when at least one of X 1 and X 2 in formula (5) is an aromatic hydrocarbon group which may have a substituent, the total carbon number of R 1 , R 2 , and R 3 is 0. It may be.
  • the ring formed by R 1 X 1 , R 2 X 2 , and the carbon atoms bonded to R 1 X 1 and R 2 examples include hydrocarbon rings having 3 to 13 carbon atoms, which may be optional.
  • the binding group is as described above.
  • the block segment (A) is mainly swollen by the liquid crystal in a thin film state and plays the role of forming a weak anchoring film. Since the physical properties of the weak anchoring film vary greatly depending on the molecular weight of the block segment (A), optimization of the molecular weight is not necessary but is important. From the viewpoint of forming a good weak anchoring film, the molecular weight of the block segment (A) is preferably 1,000 to 100,000, more preferably 3,000 to 50,000. Note that this molecular weight is a number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC).
  • Mn number average molecular weight
  • the molecular weight distribution PDI (Mw/Mn), which is expressed as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in terms of polystyrene measured by GPC, is preferably 3.0 or less, and more preferably is 2.0 or less.
  • the block segment (A) may be a single polymer of the above compounds, or a combination of multiple compounds may be used. When used in combination, random copolymerization or block copolymerization may be used.
  • the ratio is not particularly limited regardless of the combination method.
  • the preferred combination ratio of compound species that becomes insolubilized in liquid crystal is 30 mol% or less, more preferably 20 mol% or less, but there are no limitations. do not. It is preferable to use these combination methods, the types of compounds to be combined, and the combination ratio within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
  • the block segment (B) contributes to the stability of the film in a thin film state.
  • Block segment (B) is preferably a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group.
  • the bonding group includes the specific examples of the bonding group listed in the explanation of formula (2).
  • the block segment (B) contains, for example, a polymerizable compound having the above functional group and a polymerizable group having a polymerizable unsaturated hydrocarbon group as a constituent component.
  • M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • n is an integer of 1 to 2.
  • Z represents a group represented by the following formula (6-Z). (If n is 2, the two Zs may be the same or different.)
  • L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinnamic acid aromatic ester group , a cinnamic acid
  • J is a single bond or has 1 to 1 carbon atoms.
  • 6 represents an aliphatic hydrocarbon group.
  • K When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, an ether bond, an ester bond, an amide bond, a urea bond, a urethane bond, and a thioether bond. In other cases, it indicates a single bond.
  • * represents a binding site.
  • m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same. (However, if J is a single bond, m is 1.)
  • the block segment (B) has a side chain structure that is not compatible with the liquid crystal or becomes incompatible with the liquid crystal upon firing.
  • Compounds that are incompatible with the liquid crystal used to form the block segment (B) include highly polar compounds and compounds with a rigid structure. Examples of the compound species that are no longer compatible with the thermosetting compound species include thermosetting compound species.
  • polymerizable compound used to form the block segment (B) is a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a highly polar structure.
  • the above highly polar structure preferably has the following structure. However, it is not limited to these.
  • X and Y each independently represent an oxygen atom or a sulfur atom.
  • R 1 and R 2 each independently represent a single bond or an alkylene group having 1 to 18 carbon atoms.
  • R 3 represents an alkylene group having 1 to 18 carbon atoms. Represents an alkyl group.
  • One of A 1 , A 2 and A 3 represents N, and the remaining two represent CH.
  • One of A 4 and A 5 represents N, and the remaining one represents CH.
  • * represents the binding site, and n represents an integer from 0 to 4.
  • polymerizable compound used to form the block segment (B) is a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a rigid structure.
  • the above rigid structure preferably has the following structure. However, it is not limited to these.
  • X, Y, and Z each independently represent an oxygen atom or a sulfur atom.
  • R 1 and R 2 each independently represent a single bond or an alkylene group having 1 to 18 carbon atoms.
  • R 3 represents a carbon number 1 ⁇ 18 represents an alkyl group. * represents a bonding site, n represents an integer from 1 to 5.
  • thermosetting structure preferably has the following structure. However, it is not limited to these.
  • X, Y and Z each independently represent an oxygen atom or a sulfur atom.
  • R 1 , R 2 and R 3 each independently represent an alkyl group having 1 to 18 carbon atoms.
  • R 4 and R 5 are Each independently represents a single bond or an alkylene group having 1 to 18 carbon atoms. * represents a bonding site, and n represents an integer from 0 to 5.
  • the following structures are preferred as the polymerizable group having a polymerizable unsaturated hydrocarbon group.
  • R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms
  • X, Y, and Z each independently represent an oxygen atom or a sulfur atom.
  • *, * 1 and * 2 represent bonding sites, and either one of * 1 and * 2 may be replaced with a hydrogen atom or a straight chain or branched alkyl group having 1 to 12 carbon atoms.
  • n is Represents an integer from 1 to 5.
  • the block segment (B) is mainly responsible for stabilizing the thin film state and does not significantly affect the physical properties of the weak anchoring film. It is sufficient that the block segment (B) complements the stability of the membrane, and the optimal molecular weight that can complement the stability of the membrane is not particularly limited because it varies depending on the type of compound used. Further, depending on the type of compound used, advantages can be obtained in solvent selectivity and coating properties, so it is preferable to control the type of compound constituting the block segment (B) and its molecular weight depending on the use and purpose.
  • the above polymerizable compounds may be used alone, or a plurality of compounds may be used in combination.
  • the block segment (B) is a block segment that only contributes to the stability of the membrane, and does not significantly contribute to the weak anchoring properties. Therefore, as long as the stabilization of the membrane is complemented, the type of compound to be combined and the method of combination are Not particularly limited.
  • One embodiment of the polymer A is characterized in that it is a copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is insoluble or insoluble in the liquid crystal, but the number of blocks is not limited.
  • a configuration having a plurality of block segments, such as (A)-(B)-(A), for example, may be used, and the number and combination of block segments are not particularly limited. It is also possible to introduce block segments that impart electrical properties.
  • the number of block segments is preferably about 2 to 4
  • the terminal block segment of the polymer is preferably block segment (B).
  • the block segment (A) that is compatible with the liquid crystal controls weak anchoring properties, and the molecular weight of the block segment (A) greatly affects the properties.
  • the molecular weight ratio is not limited.
  • Polymer A can be obtained, for example, by living polymerization.
  • Living polymerization is a polymerization reaction in which side reactions such as chain transfer reactions and termination reactions are not accompanied during the polymerization reaction, and it is possible to obtain a polymer with a narrow molecular weight distribution and a highly controlled structure.
  • one method is to suppress the deactivation of the active site by introducing a stable covalent species called a dormant species into the polymerization active site, thereby preventing the occurrence of side reactions such as chain transfer reactions and termination reactions.
  • Living polymerizations include those using radicals, cations, and anions as active species, and it is important to select one depending on the structure and properties of the polymerizable compound used.
  • the polymerization method does not need to be particularly limited, but cationic polymerization and anionic polymerization often use alkali metals, metal complexes, and halogen compounds to generate active species.
  • cationic polymerization and anionic polymerization often use alkali metals, metal complexes, and halogen compounds to generate active species.
  • the incorporation of metal residues and halogen compounds can cause burn-in and display defects, so it is preferable to use radical polymerization that uses as few metals and halogen compounds as possible.
  • living radical polymerization examples include living radical polymerization (NMP) using nitroxide as a dormant species, atom transfer radical polymerization (ATRP) using a metal complex, and reversible addition/elimination chain transfer polymerization (RAFT) using a sulfur compound as a dormant.
  • Polymerization living radical polymerization
  • TRP atom transfer radical polymerization
  • RAFT reversible addition/elimination chain transfer polymerization
  • SERP living radical polymerization
  • RTCP reversible transfer catalytic polymerization
  • Examples of the polymerization method include living radical polymerization such as NMP, RTCP, and RAFT polymerization, and NMP or RAFT polymerization is particularly preferred.
  • examples of the polymerization initiator include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1,1 Examples include '-bis(tert-butylperoxy)cyclohexane and hydrogen peroxide.
  • the proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • examples of the nitroxide include compounds represented by the following formulas (N-1) to (N-12).
  • the proportion of nitroxide used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
  • examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1,1 Examples include '-bis(tert-butylperoxy)cyclohexane and hydrogen peroxide.
  • the proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • examples of the iodide catalyst include compounds represented by the following formulas (P-1) to (P-7).
  • the proportion of the iodide catalyst used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • examples of the hydride catalyst include compounds represented by the following formulas (O-1) to (O-6).
  • the proportion of the hydride catalyst used is 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
  • examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1, Examples include 1'-bis(tert-butylperoxy)cyclohexane and hydrogen peroxide.
  • the proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • chain transfer agent trithiocarbonate, dithiobenzoate, dithiocarbamate, and xanthate are preferable, and specific examples include compounds represented by the following formulas (R-1) to (R-24). can be mentioned.
  • the proportion of the chain transfer agent used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
  • Me represents a methyl group.
  • Living radical properties are expressed in RAFT polymerization because most of the living chains are in the dormant type (dormant type), and there are compounds that can reversibly inactivate the growing radical species. This is because a fast equilibrium exists between the chains.
  • RAFT polymerization By using RAFT polymerization, it is possible to control polymer terminals, advanced molecular weight control, and molecular weight distribution control.
  • polymer terminals can be controlled by thermally and chemically modifying the RAFT terminals present at the growing terminals.
  • thermal modification the terminal can be modified into an unsaturated hydrocarbon group by heating at a temperature higher than the temperature at which the RAFT agent used is thermally decomposed.
  • chemical modification the terminal can be modified into a thiol bond by bringing it into contact with a primary amine, secondary amine, etc., accompanied by aminolysis.
  • Mn the number average molecular weight (Mn) changes linearly with the ratio of the molar concentration of the monomer to the molar concentration of the chain transfer agent, making it possible to control the molecular weight.
  • Mn theor
  • [Monomer] 0 the molar concentration of the monomer
  • [CTA] 0 the molar concentration of the chain transfer agent
  • M monomer the molar concentration of the monomer.
  • conv. represents the polymerization conversion rate
  • MCTA represents the molecular weight of the chain transfer agent.
  • the reaction solution when the copolymer obtained by the above polymerization is dissolved in the reaction solution, the reaction solution may be used as it is for preparing the liquid crystal aligning agent, or the copolymer contained in the reaction solution may be isolated. Then, it may be used for preparing a liquid crystal aligning agent.
  • the organic solvent used in the synthesis of the copolymer (polymer A) may be any solvent as long as it does not chemically react with the compound species constituting the copolymer and does not scavenge radicals.
  • Polymer B is a graft copolymer having branch polymers that are compatible with liquid crystals and trunk polymers that are incompatible with liquid crystals or that become incompatible with liquid crystals upon firing. Note that the graft copolymer does not dissolve in the liquid crystal depending on the backbone polymer, or becomes insoluble in the liquid crystal upon baking.
  • the branch polymer is attached to the trunk polymer as a side chain of the trunk polymer.
  • a weak anchoring liquid crystal aligning agent containing polymer B is a weak anchoring liquid crystal aligning agent that can be easily manufactured, has good coating properties, and has good adhesion to a seal
  • this is a weakly anchoring liquid crystal aligning agent that does not generate a pretilt angle and can provide a weakly anchoring liquid crystal aligning film that simultaneously achieves low voltage drive and high-speed response when voltage is turned off, and has filed a patent application. 2021-156886, WO2023/048278.
  • the contents of this application and publication are incorporated herein to the same extent as if expressly set forth in their entirety.
  • Graft copolymer is a general term for polymers with a branched structure, and refers to a polymer that simultaneously has a polymer corresponding to a "trunk” and a polymer corresponding to a "branch” bonded to the trunk as a side chain of the trunk.
  • a graft copolymer is used as the polymer B, but the graft copolymer is composed of a branch polymer that is compatible with the liquid crystal, and a branch polymer that is not compatible with the liquid crystal, or a liquid crystal that is formed by baking. and a backbone polymer that becomes incompatible with the polymer.
  • the branch polymer that is compatible with the liquid crystal dissolves in the liquid crystal and swells, contributing to the formation of a weak anchoring state, while the graft copolymer does not dissolve in the liquid crystal due to the trunk polymer, or becomes insolubilized in the liquid crystal by baking.
  • a weakly anchored liquid crystal display element with excellent film hardness and seal adhesion strength by preventing elution of the graft copolymer into the liquid crystal, fixing it to the substrate, crosslinking the polymers with each other, and crosslinking with the sealing component. I can do it.
  • the structure of the branch polymer that is compatible with the liquid crystal is not particularly limited as long as it is soluble in the liquid crystal, but for example, the branch polymer can be derived from a macromonomer represented by the following formula (7).
  • P represents a polymerizable group having a polymerizable unsaturated hydrocarbon group
  • Q represents a monomer containing at least one of the compounds represented by formulas (2) to (5) above. It is a structure obtained by polymerization, and n is an integer of 1 to 2. When n is 2, the two Qs may be the same or different.
  • the monomer used in the synthesis of the branched polymer may be a single component, or a combination of multiple monomers may be used. Further, other monomers capable of radical polymerization reaction, which will be described below, may be used in combination.
  • the branched polymers are largely involved in the expression of weak anchoring properties. Optimization of the molecular weight is important because the physical properties of the weak anchoring film change depending on the molecular weight of the branch polymer.
  • the preferred number average molecular weight of the branched polymer is 1,000 to 100,000, more preferably 3,000 to 50,000, and the weight average molecular weight (Mw) and number The molecular weight distribution (PDI) expressed as a ratio to the average molecular weight (Mn) is preferably 3.0 or less, more preferably 2.0 or less. Note that when the graft copolymer is synthesized by a grafting through method using a macromonomer, the molecular weight here corresponds to the molecular weight of the macromonomer.
  • the structure in which the terminal end of the branched polymer is removed may be a single polymer structure using only one type of monomer represented by the above formulas (2) to (5), or a structure in which multiple monomers are used.
  • a copolymer structure consisting of a combination of monomers may also be used. When a plurality of monomers are combined, random copolymerization or block copolymerization may be used.
  • the monomers represented by the above formulas (2) to (5) are combined, the ratio is not particularly limited regardless of the method of combination.
  • the preferred combination ratio of monomers that insolubilize liquid crystals is 30 mol% or less, more preferably 20 mol% or less, from the viewpoint of maintaining properties, but there is no limitation. .
  • These synthesis methods, monomers to be combined, and combination ratios are preferably used within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
  • the backbone polymer may contain, for example, a compound represented by the above formula (6) as a constituent component.
  • the macromonomer represented by formula (7) which is the raw material for forming the branch polymer of the graft copolymer that is polymer B, can be obtained, for example, by a combination of living polymerization, chain transfer polymerization, and polymer terminal modification reaction. . Furthermore, it has been reported that a polymer having a radically polymerizable unsaturated bond in the terminal group can be obtained by continuous bulk polymerization at a high temperature of 200° C. or higher (Toagosei Research Annual Report TREND 2002 No. 5).
  • cationic polymerization and anionic polymerization may use alkali metals, metal complexes, or halogen compounds to generate active species.
  • the contamination of metal residues and halogen compounds can cause burn-in and display defects, so it is preferable to use radical polymerization that uses as few metals and halogen compounds as possible.
  • living radical polymerization examples include nitroxide-mediated radical polymerization (NMP) using nitroxide as a dormant species, atom transfer radical polymerization (ATRP) using a metal complex, and reversible addition/fragmentation chain transfer (RAFT) using a sulfur compound as a dormant. ) polymerization, living radical polymerization (TERP) using an organic tellurium compound, etc., reversible transfer catalytic polymerization (RTCP) using an alkyl iodide compound as a dormant species, and using a phosphorus compound, alcohol, etc. as a catalyst, etc. are preferred.
  • the polymerization method examples include living radical polymerization such as NMP, RTCP, and RAFT polymerization, and NMP or RAFT polymerization is particularly preferred.
  • the main synthesis methods for graft copolymers include the Grafting-to method, in which a branch polymer is directly introduced into a trunk polymer, and the Grafting-from method, in which a monomer is polymerized from a macroinitiator (a trunk polymer having a polymerization active site) to extend a branch polymer.
  • the synthesis method is not limited, as any method can be used.
  • the method for producing the graft copolymer is not particularly limited, and any commonly used industrial method can be used. Specifically, it can be produced by radical polymerization, cationic polymerization, or anionic polymerization using the above-mentioned monomers. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
  • radical polymerization initiators Radical thermal polymerization initiators, radical photopolymerization initiators
  • RAFT reversible addition-fragmentation chain transfer
  • a radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature.
  • radical thermal polymerization initiators include, for example, ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxide Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxycyclohexane) etc.), alkyl peroxy esters (peroxyneodecanoic acid tert-butyl ester, peroxypivalic acid tert-butyl ester, peroxy 2-ethylcyclo
  • the radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • Such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-Methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(
  • the radical polymerization method is not particularly limited, and emulsion polymerization, suspension polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, solution polymerization, and the like can be used.
  • the organic solvent used in the radical polymerization reaction is not particularly limited as long as it dissolves the produced polymer. Specific examples include the above-mentioned specific organic solvents, which may be used alone or in combination of two or more.
  • the reaction solution may be used as it is for preparing the liquid crystal aligning agent, or the graft copolymer contained in the reaction solution may be dissolved in the reaction solution. After separation, the liquid crystal aligning agent may be prepared.
  • the polymerization temperature during radical polymerization can be any temperature in the range of 30 to 150°C, but is preferably in the range of 50 to 100°C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high, making it difficult to stir uniformly. Therefore, the monomer concentration is preferably 1 to 50% by weight, more preferably 5 to 40% by weight.
  • the initial stage of the reaction can be carried out at a high concentration, and then an organic solvent can be added.
  • the molecular weight of the obtained polymer will be small, and if it is small, the molecular weight of the obtained polymer will be large.
  • the amount is preferably 0.1 to 10 mol% based on the monomer to be polymerized.
  • various monomer components, solvents, initiators, etc. can be added during polymerization.
  • the polymer produced from the reaction solution obtained by the above reaction can be recovered by pouring the reaction solution into a poor solvent to precipitate it, but this reprecipitation treatment is not essential.
  • the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water, and the like.
  • the polymer precipitated in a poor solvent can be collected by filtration and then dried under normal pressure or reduced pressure, at room temperature or by heating.
  • the amount of impurities in the polymer can be reduced.
  • the poor solvent in this case include alcohols, ketones, hydrocarbons, etc. It is preferable to use three or more kinds of poor solvents selected from these, since the efficiency of purification will further increase.
  • the weight average molecular weight of the graft copolymer measured by GPC (Gel Permeation Chromatography) method is 2,000 to 5. ,000,000 is preferred, and 5,000 to 2,000,000 is more preferred.
  • Graft copolymers have branch polymers that are compatible with liquid crystals and trunk polymers that are not compatible with liquid crystals or become incompatible with heat, etc., and are characterized by being linked in a random arrangement by free radical polymerization. ing. This provides high seal adhesion, solvent selectivity, and coating properties.
  • the introduction ratio of the branch polymer and the trunk polymer is also an important factor.
  • branch polymers play an important role in weak anchoring properties, and if their introduction ratio increases, the strength of the film will be impaired and heat curing will be inhibited, so it is necessary to consider the appropriate amount of introduction. be.
  • the introduction amount and molecular weight of the backbone polymer do not affect the weak anchoring properties (they are small), so in order to achieve both of the above-mentioned properties, the monomer expressed by formula (6) used to synthesize the backbone polymer must be It is preferable that the ratio of the number of molecules (introduction ratio) of the macromonomer represented by formula (7) used in the synthesis of the branched polymer to the number of molecules is small.
  • the preferred introduction ratio (macromonomer represented by formula (7)/monomer represented by formula (6)) is 0.1/99.9 to 50/50 (mol/mol), more preferably It is 0.2/99.8 to 30/70 (mol/mol).
  • the polymer C is a polymer that has a polymer unit that is compatible with the liquid crystal and reacts with the polymer ⁇ when heated.
  • Polymer C is a polymer obtained by polymerizing one or more monomers that have a group that reacts with polymer ⁇ when heated and is compatible with liquid crystal, and when it comes into contact with liquid crystal in a thin film state, it becomes liquid crystal. It is characterized by contributing to the formation of a weak anchoring state by being compatible with each other.
  • a weakly anchoring liquid crystal aligning agent containing a polymer such as Polymer C (a polymer that has a polymer unit that is compatible with the liquid crystal and reacts with other polymers that are used in combination) is easy to use. It is a weak anchoring liquid crystal aligning agent that can be manufactured in a number of steps, has good coating properties, has good adhesion to the seal, does not generate pre-tilt angles, and has low voltage drive and high-speed response when the voltage is turned off.
  • One embodiment of the polymer C is a polymer represented by the following formula (8).
  • A is an n-valent organic compound having a molecular weight of 500 or less and having a group that reacts with the polymer ⁇ upon heating, selected from the following formulas (8-A-1) to (8-A-16). represents a group.
  • Q is a divalent polymer unit which is compatible with the liquid crystal and contains as a constituent at least one kind selected from the group consisting of compounds represented by the above formulas (2) to (5).
  • R is a monovalent organic group selected from the following formulas (8-R-1) to (8-R-11) and having a molecular weight of 500 or less that does not react with the polymer ⁇ upon heating.
  • n is an integer from 1 to 2. When n is 2, the two Q's and R's may be the same or different.
  • R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms
  • R 3 and R 4 each independently represents a single bond or a linear or branched alkylene group having 1 to 12 carbon atoms
  • X represents an oxygen atom or a sulfur atom. * represents a bonding site.
  • R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms
  • R 3 and Each R 4 independently represents a single bond or a linear or branched alkylene group having 1 to 12 carbon atoms. * represents a bonding site.
  • the preferable range of the carbon number of the straight chain or branched alkyl group having 1 to 12 carbon atoms varies depending on each group, and may be, for example, 1 to 6 or 6 to 12.
  • the straight chain or branched alkylene group having 1 to 12 carbon atoms may have, for example, 1 to 6 carbon atoms or 1 to 3 carbon atoms.
  • the molecular weight of A in formula (8) is 500 or less.
  • the molecular weight of R in formula (8) is 500 or less.
  • a in formula (8) is a group selected from formulas (8-A-1) to (8-A-16) above. These are, for example, partial structures of a RAFT agent in RAFT polymerization and a chain transfer agent in chain transfer polymerization, which will be described later.
  • the straight chain or branched alkyl group having 1 to 12 carbon atoms may have, for example, 1 to 6 carbon atoms or 1 to 3 carbon atoms.
  • the straight chain or branched alkylene group having 1 to 12 carbon atoms may have, for example, 1 to 6 carbon atoms or 1 to 3 carbon atoms.
  • R in formula (8) is a group selected from formulas (8-R-1) to (8-R-11) above. These are, for example, partial structures of RAFT agents in RAFT polymerization described below.
  • Q in formula (8) is a divalent polymer unit that is compatible with the liquid crystal and contains as a constituent component at least one selected from the group consisting of compounds represented by formulas (2) to (5) above. It is.
  • the monomer used in the synthesis of Polymer C may be a single component, or a combination of multiple monomers may be used. Further, other radically polymerizable monomers described below may be used in combination.
  • the polymer C When the polymer C comes into contact with liquid crystal in a thin film state, it forms a polymer-liquid crystal mixed layer and exhibits weak anchoring properties. Optimization of the molecular weight is important because the thickness of the formed polymer-liquid crystal mixed layer changes depending on the molecular weight of the polymer C, and the weak anchoring property changes.
  • the number average molecular weight of the polymer C is preferably 1,000 to 100,000, more preferably 3,000 to 50,000, and the weight average molecular weight (Mw)
  • the molecular weight distribution (PDI) expressed as a ratio to the number average molecular weight (Mn) is preferably 3.0 or less, more preferably 2.0 or less.
  • the structure of Q in the polymer represented by formula (8) which is an example of polymer C, may be a single polymer structure using only one compound (monomer) represented by formulas (2) to (5) above.
  • a copolymer structure consisting of a combination of a plurality of monomers may be used.
  • random copolymerization or block copolymerization may be used.
  • the ratio is not particularly limited regardless of the method of combination.
  • the preferred combination ratio of compound species that becomes insolubilized in liquid crystal is 30 mol% or less, more preferably 20 mol% or less, but there are no limitations. do not.
  • These synthesis methods, monomers to be combined, and combination ratios are preferably used within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
  • Examples of the compound species to be insolubilized in the liquid crystal include the compound represented by the above formula (6), the above-mentioned compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a highly polar structure, and the above-mentioned polymerizable compound.
  • Examples include compounds having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a rigid structure, and compounds having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a thermosetting structure.
  • Polymer C is preferably obtained by living polymerization or chain transfer polymerization.
  • radical polymerization that uses no metals or halogen compounds as much as possible.
  • living radical polymerization include living radical polymerization (NMP) using nitroxide as a dormant species, atom transfer radical polymerization (ATRP) using a metal complex, and reversible addition/elimination chain transfer polymerization (RAFT) using a sulfur compound as a dormant.
  • polymerization living radical polymerization (TERP) using an organic tellurium compound, etc.
  • RTCP reversible transfer catalytic polymerization
  • alkyl iodide compound as a dormant species and using a phosphorus compound, alcohol, etc. as a catalyst, etc.
  • examples of the polymerization method include living radical polymerization such as NMP, RTCP, and RAFT polymerization, and NMP or RAFT polymerization is particularly preferred. It is also preferable to use chain transfer polymerization.
  • examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1 , 1'-bis(tert-butylperoxy)cyclohexane, hydrogen peroxide, and the like.
  • the proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the chain transfer agent it is preferable to use thiols, and specific examples include compounds represented by the following formulas (S-1) to (S-15).
  • the proportion of the chain transfer agent used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
  • the reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
  • the organic solvent used in the chain transfer polymerization reaction is not particularly limited as long as it can dissolve the produced polymer. Specific examples include the above-mentioned specific organic solvents, which may be used alone or in combination of two or more. Furthermore, even a solvent that does not dissolve the produced polymer may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate. Note that in chain transfer polymerization, oxygen in the organic solvent becomes a cause of inhibiting the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
  • chain transfer polymerization polymers are obtained by competitive reactions between chain transfer and growth reactions.
  • the molecular weight and molecular weight distribution of a polymer obtained by chain transfer polymerization are determined by the chain transfer constant (Cs), which is expressed as the quotient of the chain transfer rate constant (kc) and the growth rate constant (kp).
  • Cs chain transfer constant
  • kc chain transfer rate constant
  • kp growth rate constant
  • a structure in which Cs is in the range of 1 to 60 is preferable, and it is important to use the monomer species and chain transfer agent species and the correct combination of these.
  • the chain transfer constant (Cs) varies greatly depending on the type of monomer used and the type of chain transfer agent, so it is necessary to select it correctly.
  • the polymer C is preferably composed of one or more compound species that are compatible with the liquid crystal from the viewpoint of maintaining properties, but a small amount of compound species that are not compatible with the liquid crystal or become insolubilized in the liquid crystal upon firing may also be introduced. be able to.
  • a preferred combination ratio of monomers that are insolubilized in liquid crystal is 30 mol% or less, more preferably 20 mol% or less, but is not limited. These synthesis methods, monomers to be combined, and combination ratios are preferably used within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
  • One embodiment of the polymer alloy of the present invention includes a polymer C that is obtained by polymerizing one or more monomers that have a group that reacts with the polymer ⁇ when heated and is compatible with the liquid crystal; It is characterized by containing a polymer ⁇ that suppresses the elution of the polymer C into the liquid crystal by reacting with the polymer C by heating. This provides high seal adhesion, solvent selectivity, and coating properties.
  • the temperature at which the group in polymer C that reacts with polymer ⁇ when heated and the site in polymer ⁇ that reacts with polymer C when heated is not particularly limited, but for example, even if it is 150°C or higher. Alternatively, the temperature may be 200°C or higher.
  • the polymer alloy of the present invention consists of a polymer ⁇ , which is a component that exhibits weak anchoring properties, and a component that does not exhibit weak anchoring properties, but which develops a uniaxial orientation regulating force through orientation treatment (preferably uniaxial orientation treatment). It is characterized by containing a certain polymer ⁇ , and the weak anchoring alignment film obtained using this is subjected to alignment treatment (preferably uniaxial alignment treatment) to improve weak anchoring properties and high-speed response when voltage is turned off. It is possible to achieve both. Furthermore, by selecting an appropriate polymer for the polymer ⁇ , good applicability and good seal adhesion can be obtained.
  • the heating temperature of the polymer alloy of the present invention is not particularly limited, but may be, for example, 150°C or higher, or 200°C or higher.
  • polymer ⁇ which is a component that exhibits weak anchoring properties, plays an important role, and if the proportion of polymer ⁇ that is introduced increases, the strength of the film may be impaired or heat curing may be inhibited. Therefore, it is necessary to consider the appropriate amount to introduce.
  • the mass ratio of polymer ⁇ to polymer ⁇ must be made small.
  • the mass ratio (polymer ⁇ /polymer ⁇ ) is preferably 10/90 to 99.9/0.1 (mass ratio), more preferably 30/70 to 99.5/0.5 (mass ratio). , 50/50 to 99.0/1.0 (mass ratio) is particularly preferred.
  • the polymer ⁇ does not exhibit weak anchoring properties, but exhibits a uniaxial alignment regulating force when subjected to alignment treatment (preferably uniaxial alignment treatment).
  • the polymer ⁇ is preferably a polymer that functions as a strong anchoring alignment film by itself.
  • Suitable uniaxial alignment treatment methods include photo alignment treatment, rubbing alignment treatment, and the like.
  • polymer ⁇ By selecting an appropriate polymer ⁇ , it can be fixed to the substrate, cross-linked between polymers, and cross-linked with the sealing component, resulting in excellent film hardness and seal adhesion strength, excellent solvent selectivity, and excellent coating properties.
  • An anchoring liquid crystal aligning agent and a display element using the same can be obtained.
  • polymer C when polymer C is used as polymer ⁇ , polymer ⁇ reacts with polymer C by heating, thereby suppressing elution of polymer C into the liquid crystal.
  • polymer ⁇ and polymer ⁇ undergo phase separation in a sea-island pattern on the surface of the weakly anchored alignment film to create a segmented surface state.
  • physical properties thermal expansion coefficient and polarity
  • polymer ⁇ is hydrophobic, flexible, and has a low Tg.
  • the polymer ⁇ is preferably a highly polar and rigid polymer.
  • the polymer ⁇ is preferably at least one kind of polymer selected from the group consisting of polyimide, polyamic acid, polyamic acid ester, polyamide, polyurea, and poly(meth)acrylate, and particularly preferably polyimide, polyamic acid, and polyamic acid ester. It is an acid ester and poly(meth)acrylate.
  • the polymer ⁇ is a polymer (hereinafter referred to as (sometimes referred to as "polyimide polymer”) is preferable.
  • the tetracarboxylic acid derivative component includes at least one compound selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof.
  • the polyimide precursor include polyamic acid and polyamic acid ester.
  • polyamic acid As the polymer ⁇ , it can be obtained, for example, by subjecting a tetracarboxylic acid derivative component to a diamine component to a polymerization (polycondensation) reaction.
  • polyimide is selected as the polymer ⁇ , it can be obtained by imidizing the above-mentioned polyamic acid.
  • a polyamic acid ester is selected as the polymer ⁇ , it can be obtained by the method described below. Note that polyimide can also be obtained by imidizing the polyamic acid ester.
  • tetracarboxylic acid derivative component examples include aromatic tetracarboxylic dianhydride, acyclic aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, or derivatives thereof.
  • aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring.
  • Acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure.
  • an alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups is bonded to an aromatic ring. Further, it is not necessary to be composed only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
  • aromatic tetracarboxylic dianhydride acyclic aliphatic tetracarboxylic dianhydride or alicyclic tetracarboxylic dianhydride is, among others, a tetracarboxylic dianhydride represented by the following formula (9). is preferred.
  • (X represents a structure selected from the group consisting of the following formulas (X-1) to (X-17) and (XR-1) to (XR-2).)
  • R 1 to R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, Alkynyl group having 2 to 6 carbon atoms, monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, alkoxy group having 1 to 6 carbon atoms, alkoxyalkyl group having 2 to 6 carbon atoms, 2 to 6 carbon atoms represents an alkyloxycarbonyl group or a phenyl group.
  • R 5 and R 6 each independently represent a hydrogen atom or a methyl group.
  • j and k are integers of 0 or 1
  • a 1 and A 2 each independently represent a single bond, -O-, -CO-, -COO-, represents a phenylene group, a sulfonyl group, or an amide group.
  • the plurality of A2 's may be the same or different. *1 is a bond bonded to one acid anhydride group, and *2 is a bond bonded to the other acid anhydride group.
  • X is represented by the above formulas (X-1) to (X-8), (X-10) to (X-11). , and those selected from (XR-1) to (XR-2).
  • the above formula (X-1) is preferably selected from the group consisting of the following formulas (X1-1) to (X1-6).
  • Preferred specific examples of the above formulas (XR-1) and (XR-2) include the following formulas (XR-3) to (XR-18).
  • the amount of the tetracarboxylic dianhydride or its derivative represented by the above formula (9) to be used is as follows:
  • the content is preferably 5 mol% or more, more preferably 10 mol% or more, and even more preferably 20 mol% or more.
  • the diamine component used in the production of the polyimide polymer is not particularly limited, but a diamine component containing a diamine represented by the following formula (10) is preferred.
  • Ar 1 and Ar 1' each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more of the benzene ring, the biphenyl structure, or the naphthalene ring
  • the hydrogen atom of may be substituted with a monovalent group.
  • Ar 1 and Ar 1' in the above formula (10) each represent a benzene ring, a biphenyl structure, or a naphthalene ring.
  • One or more hydrogen atoms on the benzene ring, biphenyl structure, or naphthalene ring may be substituted with a monovalent group, and the monovalent group includes a halogen atom, an alkyl group having 1 to 3 carbon atoms, a carbon Alkenyl group having 2 to 3 carbon atoms, alkoxy group having 1 to 3 carbon atoms, fluoroalkyl group having 1 to 3 carbon atoms, fluoroalkenyl group having 2 to 3 carbon atoms, fluoroalkoxy group having 1 to 3 carbon atoms, 2 carbon atoms -3 alkyloxycarbonyl groups, cyano groups, nitro groups, etc.
  • the bonding position of the amino group and L 1 or L 1' to the benzene ring is preferably the 1,4-position or the 1,3-position. , 1,4-position is more preferred.
  • the binding position of the amino group and L 1 or L 1' to the biphenyl structure is more preferably the 4,4'-position or the 3,3'-position, and even more preferably the 4,4'-position.
  • the bonding position of the amino group and L 1 or L 1' to the naphthalene ring is preferably the 1,5-position or the 2,6-position, and even more preferably the 2,6-position.
  • the alkylene group having 2 to 12 carbon atoms may be linear or branched, but is preferably linear.
  • n is an integer of 1 to 12, more preferably an integer of 2 to 12, even more preferably an integer of 2 to 6.
  • the sum of m1, m2 and n' is an integer of 3 to 12, more preferably an integer of 6 to 12.
  • m1 and m2 are each more preferably an integer of 1 to 4, even more preferably an integer of 2 to 4.
  • n' is more preferably an integer of 2 to 6, even more preferably an integer of 2 to 4.
  • the proportion of the diamine represented by formula (10) is preferably 1 mol% or more, more preferably 10 mol% or more, and even more preferably 20 mol% or more, based on 1 mol of the diamine component. preferable.
  • the diamine component constituting the polyimide polymer may contain other diamines than the diamines described above. Examples of other diamines are listed below, but the present invention is not limited thereto.
  • the amount of the diamine represented by the formula (10) relative to the diamine component is preferably 90 mol% or less, and 80 mol% The following are more preferred. Examples of other diamines are listed below, but the other diamines in the present invention are not limited to these.
  • the other diamines mentioned above may be used alone or in combination of two or more.
  • p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1, 4-Diamino-2,5-dimethoxybenzene, 2,5-diaminotoluene, 2,6-diaminotoluene, 4-aminobenzylamine, 2-(4-aminophenyl)ethylamine, 4-(2-(methylamino) ethyl)aniline, 4-(2-aminoethyl)aniline, 2-(6-amino-2-naphthyl)ethylamine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4 , 4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diamin
  • 2,4-diaminophenol 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxy biphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 1,2-bis(4-aminophenyl)ethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl-4,4'-dicarboxylic acid
  • m and n are each independently an integer of 1 to 3 (provided that 1 ⁇ m+n ⁇ 4 is satisfied), j is an integer of 0 or 1, and X 1 is -(CH 2 ) a - (a is an integer from 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, or a fluorine atom-containing group having 1 to 10 carbon atoms.
  • X 2 represents -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-
  • R 2 is alkyl having 3 to 30 carbon atoms. group, or a fluorine atom-containing alkyl group having 3 to 20 carbon atoms.
  • D in -N(D)- of the other diamines mentioned above is representative of benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, Boc (tert-butoxycarbonyl group), etc.
  • Preferred are carbamate-based organic groups. Boc is particularly preferred from the viewpoint that it has good thermal desorption efficiency, desorbs at a relatively low temperature, and is discharged as a harmless gas upon desorption.
  • diamines having a thermally releasable group include diamines selected from the following formulas (d-1) to (d-7).
  • R represents a hydrogen atom or Boc.
  • a diamine having a heat-eliminating group as described above is preferably 5 to 40% per mole of the diamine component. It is preferably mol%, more preferably 5 to 35 mol%, even more preferably 5 to 30 mol%.
  • the above polymer ⁇ is a polyimide precursor obtained using a diamine component containing a diamine having a nitrogen atom-containing structure, and a polyimide precursor obtained from the viewpoint of reducing afterimages derived from residual DC or improving electrical properties. It may contain at least one kind of polymer selected from the group consisting of imidides (hereinafter also referred to as polyimide polymer (Q)).
  • polyimide polymer (Q) examples include the above-mentioned tetracarboxylic acid derivative component.
  • the tetracarboxylic dianhydride represented by the above formula (9) or a derivative thereof is preferred.
  • the amount of the tetracarboxylic dianhydride or its derivative represented by the above formula (9) to be used is preferably 10 mol% or more, and 20 mol% based on 1 mol of the total tetracarboxylic acid derivative component to be reacted with the diamine component.
  • the above is more preferable.
  • the diamine component for obtaining the polyimide polymer (Q) the amount of the diamine having the nitrogen atom-containing structure used is 5 to 50% based on the total amount of the diamine component for obtaining the polyimide polymer (Q). It is preferably 100 mol%, more preferably 10 to 95 mol%, even more preferably 20 to 80 mol%.
  • the diamine component for obtaining the polyimide polymer (Q) may further contain a diamine other than the diamine having the nitrogen atom-containing structure.
  • a diamine hereinafter also referred to as diamine (c)
  • the amount of diamine (c) used is preferably 1 to 95 mol%, more preferably 5 to 90 mol%, and 20 to 80 mol% based on the total amount of diamine components to obtain the polyimide polymer (Q). is even more preferable.
  • the polymer ⁇ is selected from the group consisting of a polyimide precursor obtained using the above polyimide polymer (Q) and a diamine component not containing a diamine having a nitrogen atom-containing structure, and an imidized product of the polyimide precursor. It may be a mixture with at least one kind of polymer (hereinafter also referred to as polyimide polymer (H)).
  • the content ratio of polyimide polymer (Q) and polyimide polymer (H) is 10/90 to 90/mass ratio of [polyimide polymer (Q)]/[polyimide polymer (H)].
  • the ratio is preferably 10, more preferably 20/80 to 80/20, even more preferably 30/70 to 70/30.
  • the polymer ⁇ has an amino group, a protected amino group, a hydroxy group, a protected hydroxy group, a thiol group, a protected thiol group, a carboxy group, a protected carboxy group, an isocyanate group, a protected isocyanate group, A polymer containing at least one selected from the group consisting of a maleimide group, a carboxylic anhydride group, a vinyl group, an allyl group, a styryl group, a (meth)acrylic group, and a (meth)acrylamide group as a site that reacts with polymer C.
  • the protecting group for the protected amino group, the protecting group for the protected hydroxy group, the protecting group for the protected thiol group, the protecting group for the protected carboxy group, and the protecting group for the protected isocyanate group are removed by heating, and the amino group, Represents a group that produces a hydroxy group, thiol group, carboxy group, or isocyanate group.
  • Examples of the protecting group for the protected amino group include tert-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, phthaloyl group, nitrobenzenesulfonyl group, (2-trimethylsilyl)- Examples include ethanesulfonyl group, 2,2,2-trichloroethoxycarbonyl group, and azide group.
  • Examples of the protecting group for the protected hydroxy group include a tetrahydropyranyl group, a methoxymethyl ether group, a trityl group, a tert-butyl group, a trialkylsilyl group, a tert-butoxycarbonyl group, a benzyl group, and an acetyl group.
  • Examples of the protecting group for the protected thiol group include tert-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, phthaloyl group, nitrobenzenesulfonyl group, (2-trimethylsilyl)- Examples include ethanesulfonyl group, 2,2,2-trichloroethoxycarbonyl group, and azide group.
  • Examples of the protecting group for the protected carboxy group include a methyl ester group, a benzyl ester group, and a tert-butyl ester group.
  • Examples of the protecting group for the protected isocyanate group include a tert-butyl group, a dimethylpyrazole group, a methyl ethyl ketone oxime group, and a lactam group.
  • polyamic acid, polyimide, or polyamic acid ester is used as the polymer ⁇
  • a carboxy group generated from the reaction of a tetracarboxylic dianhydride and a diamine component is present, and the terminal group of the polymer chain is a carboxylic acid (anhydride) or an amino acid. Because of the presence of the group, all polyamic acids and polyimides fall under the polymer ⁇ unless the imidization rate is 100%.
  • Polyamic acid which is one of the polyimide precursors, can be produced by the following method. Specifically, a tetracarboxylic acid derivative component and a diamine component are reacted in the presence of an organic solvent at -20 to 150°C, preferably 0 to 50°C, for 30 minutes to 24 hours, preferably 1 to 12 hours. It can be synthesized by a condensation reaction).
  • organic solvent used in the above reaction examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, Examples include 1,3-dimethyl-2-imidazolidinone.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used. These may be used in combination of two or more types.
  • the reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. It is also possible to carry out the reaction at a high concentration in the initial stage and then add a solvent.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid derivative component is preferably 0.8 to 1.2. As in normal polycondensation reactions, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
  • the polyamic acid obtained in the above reaction can be recovered by precipitating the polyamic acid by injecting the reaction solution into a poor solvent while thoroughly stirring the reaction solution. Further, purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating.
  • the poor solvent include, but are not limited to, water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene, and the like.
  • a polyamic acid ester which is one of the polyimide precursors, can be produced by (1) a method of esterifying the above-mentioned polyamic acid, (2) a method of reacting a tetracarboxylic acid derivative component containing a tetracarboxylic acid diester dichloride with a diamine component, ( 3) It can be produced by a known method such as a method of polycondensing a tetracarboxylic acid derivative component containing a tetracarboxylic diester with a diamine.
  • the above-mentioned polyamic acid and polyamic acid ester may be terminal-modified polymers obtained by using an appropriate end-capping agent together with the above-mentioned tetracarboxylic acid derivative component and diamine component.
  • the terminal capping agent include acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, and trimellitic anhydride.
  • Acid monoanhydrides such as anhydrides; dicarbonate diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride, and nicotinic acid chloride; aniline, 2-aminophenol, 3 -Aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n - Monoamine compounds such as hexylamine
  • Polyimide can be produced by imidizing the above polyimide precursor by a known method.
  • the ring closure rate (also referred to as imidization rate) of functional groups possessed by polyamic acid or polyamic acid ester does not necessarily have to be 100%, and can be arbitrarily adjusted depending on the use and purpose.
  • the method for obtaining polyimide by imidizing the polyamic acid or polyamic acid ester includes thermal imidization in which the solution of the polyamic acid or polyamic acid ester is directly heated, or a catalyst (e.g. Examples include catalytic imidization in which a basic catalyst such as pyridine or an acid anhydride such as acetic anhydride is added.
  • a catalyst e.g. Examples include catalytic imidization in which a basic catalyst such as pyridine or an acid anhydride such as acetic anhydride is added.
  • the polyamic acid, polyamic acid ester, and polyimide used in the present invention preferably have a solution viscosity of, for example, 10 to 1000 mPa ⁇ s when made into a solution with a concentration of 10 to 15% by mass, from the viewpoint of workability. , not particularly limited.
  • the solution viscosity (mPa ⁇ s) of the above polymer is a polymer with a concentration of 10 to 15% by mass prepared using a good solvent for the polymer (for example, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.). This is the value measured for the solution at 25°C using an E-type rotational viscometer.
  • the weight average molecular weight (Mw) of the polyamic acid, polyamic acid ester, and polyimide measured by gel permeation chromatography (GPC) in terms of polystyrene is preferably 1,000 to 500,000, more preferably 2,000. ⁇ 500,000. Further, the molecular weight distribution (Mw/Mn) expressed as the ratio of Mw to the number average molecular weight (Mn) in terms of polystyrene measured by GPC is preferably 15 or less, more preferably 10 or less. By having a molecular weight within such a range, good liquid crystal alignment of the liquid crystal display element can be ensured.
  • the diisocyanate to be reacted with the above-mentioned diamine component is not particularly limited and can be used depending on availability and the like.
  • the specific structure of the diisocyanate is shown below.
  • R 2 and R 3 represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • formulas (K-1) to (K-5) are inferior in reactivity, they have the advantage of improving solvent solubility; Aromatic diisocyanates are highly reactive and have the effect of improving heat resistance, but they have the disadvantage of decreasing solvent solubility.
  • formulas (K-1), (K-7), (K-8), (K-9), and (K-10) are preferable, and in terms of electrical characteristics, formula (K-12) is preferable.
  • formula (K-13) is preferred from the viewpoint of liquid crystal orientation.
  • Two or more diisocyanates can be used in combination, and it is preferable to use various diisocyanates depending on the desired properties.
  • diisocyanates can be replaced with the above-mentioned tetracarboxylic dianhydride, and they can also be used in the form of a copolymer of polyamic acid and polyurea, and chemical imidization can be used to create a copolymer of polyimide and polyurea. It may also be used in the form of a copolymer.
  • the structure of the dicarboxylic acid to be reacted is not particularly limited, but specific examples are as follows.
  • aliphatic dicarboxylic acids include malonic acid, oxalic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, and 2,2-dimethylglutaric acid. Mention may be made of acids, dicarboxylic acids such as 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid.
  • alicyclic dicarboxylic acids examples include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid.
  • Aromatic dicarboxylic acids include o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butyl isophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, 2,5-dimethylterephthalic acid.
  • dicarboxylic acids containing heterocycles include 1,5-(9-oxofluorene)dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazoledicarboxylic acid, 2-phenyl-4,5-thiazoledicarboxylic acid, 1,2,5-thiadiazole-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
  • the various dicarboxylic acids mentioned above may have an acid dihalide or anhydride structure. These dicarboxylic acids are particularly preferably dicarboxylic acids that can provide a polyamide with a linear structure in order to maintain the orientation of liquid crystal molecules.
  • dicarboxylic acids are particularly preferably dicarboxylic acids that can provide a polyamide with a linear structure in order to maintain the orientation of liquid crystal molecules.
  • terephthalic acid isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-diphenylmethanedicarboxylic acid, 4,4'-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis(phenyl)propanedicarboxylic acid, 4,4''-
  • raw material diamine also described as “diamine component”
  • raw material tetracarboxylic dianhydride also described as “tetracarboxylic dianhydride component”
  • tetracarboxylic acid diester Selected from raw material diamine (also described as “diamine component”)
  • raw material tetracarboxylic dianhydride also described as “tetracarboxylic dianhydride component”
  • tetracarboxylic acid diester also described as “tetracarboxylic dianhydride component”
  • diisocyanate diisocyanate
  • poly(meth)acrylate is selected as the polymer ⁇
  • one preferred embodiment of the poly(meth)acrylate is a polyacrylate other than the polymer ⁇ described above.
  • it is a polymer obtained by polymerizing industrially available monomers capable of radical polymerization using a common radical generator.
  • Specific examples of industrially available monomers capable of radical polymerization include unsaturated carboxylic acids, acrylic ester compounds, methacrylic ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, and vinyl compounds. It will be done.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid.
  • acrylic ester compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-butyl acrylate.
  • Acrylate compounds having cyclic ether groups such as glycidyl acrylate, (3-methyl-3-oxetanyl) methyl acrylate, and (3-ethyl-3-oxetanyl) methyl acrylate can also be used.
  • methacrylic acid ester compounds include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, and tert-butyl.
  • Methacrylate compounds having a cyclic ether group such as glycidyl methacrylate, (3-methyl-3-oxetanyl) methyl methacrylate, and (3-ethyl-3-oxetanyl) methyl methacrylate can also be used.
  • vinyl compound examples include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
  • styrene compounds include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
  • maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
  • liquid crystal side chain monomers monomers with a liquid crystal side chain structure
  • photosensitive monomers photosensitive monomers
  • a liquid crystalline side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and can form a mesogenic group at the side chain site. More specific examples of liquid crystalline side chain monomers include hydrocarbons, radically polymerizable groups such as (meth)acrylate, itaconate, fumarate, maleate, ⁇ -methylene- ⁇ -butyrolactone, styrene, vinyl, maleimide, and norbornene. It is preferable that the structure has a polymerizable group composed of at least one kind selected from the group consisting of a side chain having at least one kind of mesogenic group included in a liquid crystal side chain.
  • the liquid crystal side chain monomer is preferably a monomer in which a liquid crystal side chain selected from the following formulas (LS-1) to (LS-13) is bonded to a polymerizable group capable of radical polymerization.
  • a liquid crystal side chain selected from the following formulas (LS-1) to (LS-13) is bonded to a polymerizable group capable of radical polymerization.
  • the radically polymerizable polymerizable group include the polymerizable group having a polymerizable unsaturated hydrocarbon group as exemplified in the explanation of the polymer ⁇ .
  • R 12 represents an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms
  • R 12 is a phenyl group, a naphthyl group, a biphenylyl group, a furan-2,5-diyl group, or a monovalent nitrogen-containing heterocycle.
  • a photosensitive side chain is bonded to the main chain, and photoreactive side chain monomers can undergo cross-linking reactions, isomerization reactions, or photo-Fries rearrangement in response to light. It is a monomer with side chains.
  • the structure of the photosensitive side chain is not particularly limited, but a structure that causes a crosslinking reaction or a photo-Fries rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time.
  • the structure of the photosensitive side chain type acrylic polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but preferably has a rigid mesogenic component in the side chain structure.
  • the structure of the photosensitive side chain type acrylic polymer has, for example, a main chain and a side chain bonded to the main chain, and the side chain is a biphenyl group, terphenyl group, phenylcyclohexyl group, phenylbenzoate group, or azobenzene group. It has a structure that has a mesogenic component such as and a photosensitive group that is bonded to the tip of the side chain and undergoes a crosslinking reaction or isomerization reaction in response to light, or a main chain and a side chain that is bonded to it. It can have a structure having a phenylbenzoate group whose side chain also serves as a mesogen component and undergoes a photo-Fries rearrangement reaction.
  • More specific examples of structures of photosensitive side chain type acrylic polymers that can exhibit liquid crystallinity in a predetermined temperature range include hydrocarbons, (meth)acrylates, itaconates, fumarates, maleates, ⁇ -methylene- ⁇ -
  • a structure having a chain is preferable.
  • Ar 1 and Ar 2 each independently represent a divalent organic group obtained by removing two hydrogen atoms from a benzene ring, a naphthalene ring, a pyrrole ring, a furan ring, a thiophene ring, or a pyridine ring,
  • S 1 and S 2 each independently represent a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group having 5 to 8 carbon atoms, a phenylene group or a biphenylylene group, or a single bond,
  • R is a hydrogen atom, a hydroxy group, a mercapto group, an amino group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylamino group having 1 to 8 carbon atoms, or a dialkylamino group having 2 to 16 carbon atoms.
  • the benzene ring and/or naphthalene ring in Ar 1 , Ar 2 , S 1 and S 2 are the same or different one or more selected from a halogen atom, a cyano group, a nitro group, a carboxy group, and an alkoxycarbonyl group having 2 to 11 carbon atoms. may be substituted with a substituent.
  • the alkyl group having 1 to 10 carbon atoms in the alkoxycarbonyl group having 2 to 11 carbon atoms may be linear, branched, cyclic, or a combination thereof;
  • the hydrogen atom may be substituted with a halogen atom.
  • the method for producing the polyacrylate is not particularly limited, and any industrially-used general-purpose method can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystal side chain monomer or a photoreactive side chain monomer. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
  • a known radical polymerization initiator such as AIBN (azobisisobutyronitrile) or a known compound such as a reversible addition-fragmentation chain transfer (RAFT) polymerization reagent may be used. I can do it.
  • AIBN azobisisobutyronitrile
  • RAFT reversible addition-fragmentation chain transfer
  • the radical polymerization method is not particularly limited, and emulsion polymerization, suspension polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, solution polymerization, etc. can be used.
  • the organic solvent used in the polymerization reaction of the photosensitive side chain type acrylic polymer capable of exhibiting liquid crystallinity in a predetermined temperature range is not particularly limited as long as it dissolves the produced polymer. Specific examples are listed below. N,N-dimethylformamide, N,N-diethylformamide, N,N-dibutylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dipropylacetamide, N,N-dimethylpropionamide , N,N-diethylpropionamide, 3-methoxy-N,N-dimethylpropanamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2-pyrrolidone, 1,3- Dimethyl-2-imidazolidinone, N-methyl- ⁇ -caprolactam, N,N-diethylacetamide, N,N-dipropylacetamide, 3-methoxy
  • organic solvents may be used alone or in combination. Furthermore, even a solvent that does not dissolve the produced polymer may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate. Further, in radical polymerization, oxygen in an organic solvent becomes a cause of inhibiting the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
  • the polymerization temperature during radical polymerization can be any temperature from 30 to 150°C, preferably from 50 to 100°C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high, making it difficult to stir uniformly. Therefore, the monomer concentration is preferably 1 to 50% by weight, more preferably 5 to 30% by weight.
  • the initial stage of the reaction can be carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the radical polymerization initiator to the monomer is large, the molecular weight of the obtained polymer will be small, and if it is small, the molecular weight of the obtained polymer will be large, so the ratio of the radical initiator is The amount is preferably 0.1 to 10 mol % based on the monomer to be polymerized. Furthermore, various monomer components, solvents, initiators, etc. can be added during polymerization.
  • the reaction solution When recovering the produced polymer from the reaction solution of the photosensitive side-chain polymer capable of exhibiting liquid crystallinity obtained by the above reaction, the reaction solution is poured into a poor solvent and the polymers are removed. All you have to do is precipitate the coalescence.
  • the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water, and the like.
  • the polymer precipitated in a poor solvent can be collected by filtration and then dried under normal pressure or reduced pressure, at room temperature or by heating. Further, by repeating the operation of redissolving the precipitated and recovered polymer in an organic solvent and reprecipitating and recovering it 2 to 10 times, the amount of impurities in the polymer can be reduced.
  • the poor solvent in this case include alcohols, ketones, hydrocarbons, etc. It is preferable to use three or more types of poor solvents selected from these, since the efficiency of purification will further increase.
  • the molecular weight of the photosensitive side chain type acrylic polymer that can exhibit liquid crystallinity in a predetermined temperature range is determined by considering the strength of the resulting coating film, the workability during coating film formation, and the uniformity of the coating film.
  • the weight average molecular weight measured by GPC method is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
  • the weak anchoring liquid crystal aligning agent is used for forming the weak anchoring alignment film of a liquid crystal cell having liquid crystal and the weak anchoring alignment film.
  • the composite components other than the polymer ⁇ and the polymer ⁇ , which constitute the alignment film may be monomers or polymers.
  • a polymer as a composite component a mixture of a plurality of polymers can be used.
  • polysiloxane polysiloxane, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene derivative, poly(styrene-maleic anhydride) copolymer, poly(isobutylene-maleic anhydride) ) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, and poly(meth)acrylates.
  • poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Cerac Manufacturing Co., Ltd.), and poly(isobutylene-maleic anhydride) copolymers include Specific examples of poly(vinyl ether-maleic anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin (manufactured by Ashland).
  • the other polymers may be used alone or in combination of two or more.
  • the content ratio of other polymers is more preferably 0.1 to 90 parts by weight, and even more preferably 1 to 90 parts by weight, based on 100 parts by weight of the total of polymer ⁇ and polymer ⁇ . Even when monomers are selected as a composite component, a plurality of monomers can be used in combination.
  • the monomers to be composited are thermally curable such as polyfunctional (meth)acrylates, polyfunctional epoxides, and polyfunctional ethylene, and at the same time thermal acid generators, thermal base generators, thermal radical generators, etc. may be used together.
  • the composite ratio of monomers to be composited with the polymer alloy is not particularly limited, but from the viewpoint of optical properties and processability, a preferred composite ratio is 99% by mass or less, more preferably 70% by mass or less.
  • organic solvent used in the liquid crystal aligning agent examples include the above-mentioned specific organic solvents. These organic solvents may be used alone or in combination.
  • a solvent that improves the uniformity and smoothness of the coating film by mixing it with an organic solvent that has high solubility.
  • Examples include 2-ethylhexyl, 2-ethylhexyl succinate, 2-ethylhexyl glutarate, 2-ethylhexyl adipate, 2-ethylhexyl phthalate, and 2-ethylhexyl maleate.
  • a plurality of types of these solvents may be mixed. When using these solvents, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass of the total solvent contained in the liquid crystal aligning agent.
  • the weakly anchoring liquid crystal aligning agent of the present invention may additionally contain components other than the polymer component and the solvent (hereinafter also referred to as additive components).
  • additive components include compounds for increasing the strength of the liquid crystal alignment film (hereinafter also referred to as crosslinking compounds), the adhesion between the liquid crystal alignment film and the substrate, and the adhesion between the liquid crystal alignment film and the sealant. Examples include adhesion aids for increasing the liquid crystal alignment film, dielectrics and conductive substances for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
  • crosslinkable compound examples include a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an oxetanyl group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group, and an alkoxy group.
  • a crosslinkable compound (c-1) and (c-2) include the following compounds.
  • Compounds with epoxy groups include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexane Bisphenol A type epoxy such as diol diglycidyl ether, glycerin diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicote 828 (manufactured by Mitsubishi Chemical Corporation) resins, bisphenol F type epoxy resins such as Epicote 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), biphenyl skeleton-containing epoxy resins such
  • 10-338880 compounds described in WO2017/170483, etc.
  • Examples of compounds having an oxetanyl group include 1,4-bis ⁇ [(3-ethyl-3-oxetanyl)methoxy]methyl ⁇ benzene (alonoxetane OXT-121 (XDO)), bis[2-(3-oxetanyl)butyl] Ether (alonoxetane OXT-221 (DOX)), 1,4-bis[(3-ethyloxetan-3-yl)methoxy]benzene (HQOX), 1,3-bis[(3-ethyloxetan-3-yl) ) methoxy]benzene (RSOX), 1,2-bis[(3-ethyloxetan-3-yl)methoxy]benzene (CTOX), two described in paragraphs [0170] to [0175] of WO2011/132751.
  • Examples of compounds having the above oxetanyl group include 2,2'-bis(2-oxazoline), 2,2'-bis(4-methyl-2-oxazoline), and Epocross (trade name, manufactured by Nippon Shokubai Co., Ltd.). Polymers and oligomers having an oxazoline group such as, compounds described in paragraph [0115] of Japanese Patent Application Publication No.
  • Examples of compounds having a cyclocarbonate group include N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane, N,N' ,-di[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine and described in paragraphs [0025] to [0030] and [0032] of WO2011/155577.
  • Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (all manufactured by Mitsui Chemicals), two described in paragraphs [0046] to [0047] of Japanese Patent Application Publication No.
  • glycerin mono(meth)acrylate As a crosslinkable compound having a polymerizable unsaturated group, glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-body mixture), glycerin tris(meth)acrylate, glycerol 1,3 - diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate ) acrylate, hexaethylene glycol mono(meth)acrylate, etc.
  • crosslinkable compounds are examples of crosslinkable compounds, and are not limited thereto.
  • components other than the above disclosed on page 53 [0105] to page 55 [0116] of WO2015/060357 can be mentioned.
  • two or more types of crosslinkable compounds may be used in combination.
  • the content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.5 to 20 parts by mass based on 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. , more preferably 1 to 15 parts by mass.
  • adhesion aids include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N -(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N -Ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-3-triethoxysilylpropyltriethylenetetramine, N-3-trimethoxysilylpropylprop
  • the content of the adhesion aid in the liquid crystal aligning agent is preferably 0.1 to 30 parts by mass based on 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, and more preferably Preferably it is 0.1 to 20 parts by mass.
  • the strong anchoring horizontal alignment film described here is a liquid crystal alignment film that can uniformly align liquid crystals in the horizontal direction and has a sufficiently strong force to maintain the aligned liquid crystals, that is, interfacial anchoring energy.
  • a strong anchoring horizontal alignment film can be obtained by aligning the polyamic acid, polyimide, polyamic acid ester, polyamide, polyester, polyacrylate, etc. described above in a uniaxial direction by rubbing, photo alignment, or the like.
  • a strong anchoring horizontal alignment film can be obtained by combining the monomers mentioned above.
  • the weakly anchoring alignment film of the present invention can be obtained by using the weakly anchoring liquid crystal alignment agent described above.
  • the cured film obtained by drying and baking is rubbed, irradiated with polarized light or light of a specific wavelength, etc., or irradiated with an ion beam, etc. It can be obtained by performing orientation treatment during processing.
  • a strong anchoring horizontal alignment film can be obtained by applying a strong anchoring liquid crystal aligning agent to a substrate, and then subjecting the cured film obtained by drying and baking to an alignment treatment.
  • the first substrate may be a substrate having comb-teeth electrodes
  • the second substrate may be a counter substrate.
  • the second substrate may be a substrate having comb-teeth electrodes
  • the first substrate may be a counter substrate.
  • the substrate on which each liquid crystal alignment film is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate on which a transparent electrode for driving liquid crystal is formed is preferable.
  • Specific examples include glass plates, polycarbonates, poly(meth)acrylates, polyethersulfones, polyarylates, polyurethanes, polysulfones, polyethers, polyetherketones, trimethylpentene, polyolefins, polyethylene terephthalate, (meth)acrylonitrile, and Examples include substrates in which transparent electrodes are formed on plastic plates such as cellulose acetate, cellulose diacetate, and cellulose acetate butyrate.
  • Substrates that can be used for IPS type liquid crystal display elements include electrode patterns such as standard IPS comb electrodes and PSA (Polymer-Stabilized Alignment) fishbone electrodes, as well as protrusion patterns such as MVA (Multi-domain Vertical Alignment). can.
  • electrode patterns such as standard IPS comb electrodes and PSA (Polymer-Stabilized Alignment) fishbone electrodes, as well as protrusion patterns such as MVA (Multi-domain Vertical Alignment). can.
  • an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate.
  • transmissive type liquid crystal display element When a transmissive type liquid crystal display element is intended, it is common to use a substrate like the one described above, but when a reflective type liquid crystal display element is intended, silicon is used for only one side of the substrate. Opaque substrates such as wafers can also be used. In this case, a material such as aluminum that reflects light can also be used for the electrodes formed on the substrate.
  • Application methods for weakly anchoring liquid crystal alignment agents include spin coating, printing, inkjet, spraying, and roll coating, but transfer printing is widely used industrially from the viewpoint of productivity. Therefore, it is suitably used in the present invention.
  • the drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to firing is not constant for each substrate, or if the board is not fired immediately after application, a drying process is included. is preferable. This drying may be performed as long as the solvent is removed to such an extent that the shape of the coating film is not deformed due to transportation of the substrate, etc., and the drying means is not particularly limited.
  • Preferred conditions for the drying step include drying on a hot plate at a temperature of 40 to 150°C, more preferably 60 to 100°C, for 0.5 to 30 minutes, more preferably 1 to 5 minutes.
  • Preferred conditions for the baking step include baking on a hot plate or hot air circulation oven at a temperature of 80 to 250°C, more preferably 100 to 230°C, for 1 to 120 minutes, more preferably 5 to 30 minutes.
  • the thickness of this cured film can be selected as required, but it is preferably 5 nm or more, more preferably 10 nm or more, since this improves the reliability of the liquid crystal display element. Further, it is preferable that the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, since the power consumption of the liquid crystal display element does not become extremely large.
  • a first substrate or a second substrate having a weak anchoring alignment film and a second substrate or first substrate having a strong anchoring horizontal alignment film can be obtained.
  • methods for performing the uniaxial alignment treatment include a photoalignment method, an oblique evaporation method, rubbing, and a uniaxial alignment treatment using a magnetic field.
  • the alignment process can be performed by irradiating the entire surface of the film with polarized UV light of a specific wavelength and heating if necessary.
  • the direction is selected depending on the electrical properties of the liquid crystal, but when using a liquid crystal with positive dielectric anisotropy, the rubbing direction is the direction in which the comb-teeth electrodes extend. It is preferable that the direction is approximately the same as that of .
  • the liquid crystal cell of the present invention has a substrate (for example, a first substrate) having a weakly anchoring alignment film obtained by using the liquid crystal aligning agent of the present invention by the above method, and a known strong anchoring liquid crystal aligning film.
  • a substrate for example, a second substrate
  • Arranging a substrate so that a weak anchoring alignment film and a strong anchoring horizontal alignment film face each other, sandwiching a spacer, fixing with a sealant, and sealing by injecting liquid crystal. It is obtained by At this time, the size of the spacer used is usually 1 to 30 ⁇ m, preferably 2 to 10 ⁇ m.
  • the rubbing direction of the first substrate can be used for the IPS method or FFS method, and if the rubbing directions are arranged orthogonally, it can be used for the TN method. can be used.
  • an IPS substrate which is a comb-teeth electrode substrate used in the IPS method, includes a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-teeth shape, and a plurality of linear electrodes formed on the base material. It has a liquid crystal alignment film formed so as to cover the liquid crystal alignment film.
  • the FFS substrate which is a comb-teeth electrode substrate used in the FFS method, consists of a base material, a surface electrode formed on the base material, an insulating film formed on the surface electrode, and an insulating film formed on the insulating film. , has a plurality of linear electrodes arranged in a comb-teeth shape, and a liquid crystal alignment film formed on an insulating film so as to cover the linear electrodes.
  • the method of manufacturing a liquid crystal display element of the present invention includes the step of manufacturing a substrate with a weak anchoring alignment film by the method of manufacturing a substrate with a weak anchoring alignment film of the present invention.
  • a liquid crystal display element includes, for example, a first substrate, a second substrate disposed opposite to the first substrate, and liquid crystal filled between the first substrate and the second substrate.
  • the liquid crystal display element comprises a first substrate or a second substrate coated with a weak anchoring liquid crystal alignment agent of the present invention and provided with a weak anchoring alignment film, and a second substrate or a second substrate provided with a strong anchoring horizontal alignment film. Fabricated using a first substrate.
  • the liquid crystal display element can be made into a reflective liquid crystal display element by, for example, providing a reflective electrode, a transparent electrode, a ⁇ /4 plate, a polarizing film, a color filter layer, etc. in a liquid crystal cell according to a conventional method as necessary. Furthermore, a transmissive liquid crystal display element can be obtained by providing a backlight, a polarizing plate, a ⁇ /4 plate, a transparent electrode, a polarizing film, a color filter layer, etc. in a conventional manner to the liquid crystal cell as required.
  • FIG. 1 is a schematic cross-sectional view showing an example of a horizontal electric field liquid crystal display element of the present invention, and is an example of an IPS type liquid crystal display element.
  • a liquid crystal 3 is sandwiched between a comb-teeth electrode substrate 2 having a liquid crystal alignment film 2c and a counter substrate 4 having a liquid crystal alignment film 4a.
  • the comb-teeth electrode substrate 2 includes a base material 2a, a plurality of linear electrodes 2b formed on the base material 2a and arranged in a comb-teeth shape, and a plurality of linear electrodes 2b formed on the base material 2a so as to cover the linear electrodes 2b. It has a liquid crystal alignment film 2c.
  • the counter substrate 4 has a base material 4b and a weak anchoring liquid crystal alignment film or a strong anchoring horizontal alignment film (liquid crystal alignment film 4a) formed on the base material 4b.
  • the liquid crystal alignment film 2c is, for example, a weak anchoring alignment film or a strong anchoring horizontal alignment film of the present invention.
  • the liquid crystal alignment films provided on the opposing substrates are each made of a combination of a strong anchoring horizontal alignment film and a weak anchoring liquid crystal alignment film. In this horizontal electric field liquid crystal display element 1, when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by lines of electric force L.
  • FIG. 2 is a schematic cross-sectional view showing another example of the horizontal electric field liquid crystal display element of the present invention, and is an example of an FFS type liquid crystal display element.
  • a liquid crystal 3 is sandwiched between a comb-teeth electrode substrate 2 having a liquid crystal alignment film 2h and a counter substrate 4 having a liquid crystal alignment film 4a.
  • the comb-teeth electrode substrate 2 is formed on a base material 2d, a surface electrode 2e formed on the base material 2d, an insulating film 2f formed on the surface electrode 2e, and an insulating film 2f, and has a comb-like shape. It has a plurality of arranged linear electrodes 2g and a liquid crystal alignment film 2h formed on an insulating film 2f so as to cover the linear electrodes 2g.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 4a is similar to the liquid crystal alignment film 4a in FIG. 1 described above.
  • the liquid crystal alignment film 2h is similar to the liquid crystal alignment film 2c in FIG. 1 described above.
  • this horizontal electric field liquid crystal display element 1 when a voltage is applied to the plane electrode 2e and the linear electrode 2g, an electric field is generated between the plane electrode 2e and the linear electrode 2g as shown by lines of electric force L.
  • Me represents a methyl group.
  • Viscosity measurement The viscosity of polyamic acid solutions, etc., was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), sample volume 1.1 mL (milliliter), cone rotor TE-1 (1° 34', R24), temperature 25 Measured at °C.
  • the molecular weight of the polyimide precursor and the synthesized polymers other than polyimide was measured using a cold gel permeation chromatography (GPC) device (CBM-20A) (manufactured by Shimadzu Corporation) and a series column (Shodex (registered trademark) KF-804L and KF-803L). ) (manufactured by Showa Denko) as follows.
  • GPC cold gel permeation chromatography
  • the molecular weight of the polyimide precursor and polyimide was determined using a room-temperature gel permeation chromatography (GPC) device (GPC-101) (manufactured by Showa Denko) and a column (GPC KD-803 and GPC KD-805 in series) (manufactured by Showa Denko). The measurement was performed using the following method.
  • GPC room-temperature gel permeation chromatography
  • N,N-dimethylformamide (as additives, lithium bromide monohydrate (LiBr.H 2 O) is 30 mmol/L (liter), phosphoric acid/anhydrous crystal (o-phosphoric acid) is 30 mmol/ L, tetrahydrofuran (THF) 10 mL/L)
  • Flow rate 1.0 mL/min Standard sample for creating a calibration curve: TSK standard polyethylene oxide (molecular weight: approx. 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight: approx. 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
  • the imidization rate is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and by calculating the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears around 9.5 to 10.0 ppm. It was calculated using the following formula using the integrated value.
  • X is the integrated value of the proton peak derived from the NH group of the amic acid
  • Y is the integrated value of the reference proton peak
  • A is the integrated value of the proton peak derived from the NH group of the amic acid
  • A is the integrated value of the amic acid in the case of polyamic acid (imidization rate is 0%). This is the ratio of the number of standard protons to one proton of the NH group.
  • Imidization rate (%) (1-A ⁇ X/Y) ⁇ 100
  • N,N-dimethyllaurylamine (2.0 mg) and Xylene (20.0 g) were added, stirred at room temperature to dissolve, and then heated and stirred in an oil bath set at 140° C. for 6 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice with methanol (50 g) for 30 minutes, and the solid was vacuum-dried at 50° C. to obtain macromonomer (MA-1). Mn: 6,100, Mw: 9,900.
  • Macromonomer synthesized by the above method (MA-2: 2.00 g, 0.03 mmol), B-2 (0.43 g, 1.76 mmol), A-1 (3.00g, 17.62mmol), ethyl 2-bromoisobutyrate (0.012g, 0.06mmol), CuBr (0.03g, 0.19mmol), N, N, N', N'', N ''-Pentamethyldiethylenetriamine (0.043 g, 0.25 mmol) and Anisole (7.5 g) were added, stirred at room temperature to dissolve, then frozen and degassed three times, and left in an oil bath set at 90°C for 6 hours. The mixture was heated and stirred.
  • polyamic acid (PAA-1) By adding TC-1 (5.63 g, 25.1 mmol) and reacting at room temperature under nitrogen atmosphere for 18 hours, polyamic acid (PAA-1) with a viscosity of about 200 mPa ⁇ s and a solid content concentration of 12% by mass was obtained. ) was obtained.
  • the molecular weights of this polyamic acid were Mn: 12,600 and Mw: 35,200.
  • Table 3 shows the contents of the polyamic acid and polyimide synthesized above.
  • WAS-1 weakly anchoring liquid crystal aligning agent
  • BCP-1 to BCP-6 are components of Polymer A that exhibit weak anchoring properties.
  • GP-1 is a component of Polymer B that exhibits weak anchoring properties.
  • mCTA-7 to mCTA-10, mTT-1, and mTr-1 to mTr-3 are components of polymer C that exhibit weak anchoring properties.
  • BBP-1 is a polymer other than polymers A, B, and C, and is a component that exhibits weak anchoring properties.
  • PAA-1 to PAA-3 and SPI-1 correspond to polymer ⁇ .
  • a substrate with electrodes was prepared.
  • the substrate used was an alkali-free glass substrate measuring 30 mm x 35 mm and having a thickness of 0.7 mm.
  • An ITO (INDIUM-TIN-OXIDE) electrode is formed on the substrate with a comb-shaped pattern with an electrode width of 3 ⁇ m, an electrode spacing of 6 ⁇ m, and an angle of 10° with respect to the long side of the substrate. and formed pixels.
  • the size of each pixel was 10 mm in length and about 5 mm in width.
  • the weak anchoring liquid crystal alignment agents WAS-1 to WAS-263 obtained by the above method and the liquid crystal alignment agents for horizontal alignment (SE-6414, NRB-U973 (manufactured by Nissan Chemical Co., Ltd.) were respectively applied.
  • the prepared IPS substrate and a glass substrate hereinafter referred to as Coating and film formation was performed on the opposite substrate (referred to as the counter substrate) using a spin coating method.
  • Coating and film formation was performed on the opposite substrate (referred to as the counter substrate) using a spin coating method.
  • the coating film on the IPS substrate was oriented in the direction along the comb-toothed direction, and the coating film on the counter substrate was oriented in the direction perpendicular to the comb-teeth electrodes.
  • a rubbing method was used in SE-6414, and a photo alignment method was used in NRB-U973.
  • WAS-1 to WAS-23 the liquid crystal cells shown in Examples were subjected to alignment treatment, while the liquid crystal cells shown in Comparative Examples (Comparative Examples 1 to 5, 7 to 11) were not subjected to alignment treatment.
  • a rubbing device manufactured by Iinuma Gauge Co., Ltd., a rubbing cloth (YA-20R) manufactured by Yoshikawa Kako Co., Ltd., a rubbing roller (diameter 10.0 cm), a stage feed rate of 30 mm/s, a roller rotation speed of 700 rpm, and a pushing pressure of 0.3 mm were used.
  • a UV exposure device manufactured by Ushio Inc. was used to irradiate linearly polarized UV with an extinction ratio of about 26:1 so that the irradiation amount was 300 mJ/cm 2 based on a wavelength of 254 nm.
  • orientation treatment was performed by heating at 230° C. for 30 minutes. Then, using the above two types of substrates, combine them in the combinations shown in Tables 6 and 7 below so that their orientation directions are parallel, and seal the periphery leaving the liquid crystal injection port (sealant: XN -1500T (manufactured by Mitsui Chemicals, Inc.)) at 150° C. for 60 minutes to harden the sealant and produce empty cells with a cell gap of about 3.0 ⁇ m. After liquid crystal (MLC-3019 (manufactured by Merck)) was injected into this empty cell under vacuum at room temperature, the injection port was sealed to obtain an antiparallel-aligned liquid crystal cell. The obtained liquid crystal cell constitutes an IPS liquid crystal display element. Thereafter, the obtained liquid crystal cell was heat-treated at 120° C. for 10 minutes to obtain a liquid crystal display element.
  • VT curve (Measurement of VT curve and evaluation of drive threshold voltage, maximum brightness voltage, and transmittance) Set the white LED backlight and brightness meter so that the optical axes are aligned, set the liquid crystal cell (liquid crystal display element) with a polarizing plate attached so that the brightness is the lowest, and apply a voltage up to 8V at 1V intervals.
  • the VT curve was measured by applying the voltage and measuring the brightness at the voltage. A voltage was applied from a state where no voltage was applied, and the voltage value (Vth) at 10% of the maximum transmitted brightness was estimated. The value of the voltage (Vmax) at which the brightness becomes maximum was estimated from the obtained VT curve.
  • the maximum transmittance (Tmax) was estimated by setting the parallel Nicol transmission brightness as 100% through a liquid crystal cell with no voltage applied, and comparing the maximum transmission brightness in the VT curve.
  • V th,SA represents the drive threshold voltage of the strong anchoring liquid crystal cell
  • V th,WA represents the drive threshold voltage of the weak anchoring liquid crystal cell
  • l is the distance between the comb-teeth electrodes
  • d is the cell gap
  • K 2 is the twist elastic constant of the liquid crystal
  • ⁇ 0 is the dielectric constant of the liquid crystal in vacuum
  • is the dielectric constant anisotropy of the liquid crystal.
  • Table 5 shows the details of the examples and the evaluation results. Table 5 also shows the measurement results of the azimuthal anchoring strength (A 2 ) of the liquid crystal alignment film on the IPS substrate side.
  • a 2 azimuthal anchoring strength
  • Example 1 a liquid crystal alignment agent containing the polymer alloy of the present invention was formed on an IPS substrate, a photo-alignment film was formed on an opposing substrate, and both substrates were subjected to photo-alignment treatment.
  • Example 23 a liquid crystal aligning agent containing the polymer alloy of the present invention was formed on an opposing substrate, a photo-alignment film was formed on an IPS substrate, and both substrates were subjected to photo-alignment treatment, and Comparative Examples 1 to 23 In No. 5, a liquid crystal aligning agent containing a polymer alloy was formed on an IPS substrate, a photo-alignment film was formed on a counter substrate, and only the counter substrate was subjected to photo-alignment treatment.
  • the response speed at voltage OFF has become faster by about 20 to 30 ms. This is considered to be because both a weak anchoring region and a strong anchoring region can be formed on the weak anchoring alignment film due to the following two phenomena.
  • the azimuthal anchoring strengths of Examples 1 to 22 are larger than those of Comparative Examples 1 to 5, indicating that strong anchoring regions and weak anchoring regions are segmented on the weak anchoring alignment film. It is suggested that there is.
  • the polymer ⁇ contained in the polymer alloy may be polymer A (Examples 1 to 8), polymer B (Example 17), or polymer C (Examples 9 to 16). Also, even with weak anchoring components other than Polymers A to C (Example 18), the response speed (T off ) when the voltage was turned off was increased by the photoalignment treatment. Due to its molecular design, any weak anchoring component is hydrophobic, flexible, and has a low Tg, so it phase separates well from the rigid and highly polar polymer ⁇ , making it an ideal weak anchoring agent. It is thought that a strong anchoring region and a strong anchoring region can be formed.
  • the polymer ⁇ contained in the polymer alloy of the present invention exhibits weak anchoring properties by forming a phase solution layer with the liquid crystal in the liquid crystal element.
  • the components are not limited to the structure of polymerizable groups or polymerizable monomers as long as they are polymers that are compatible with the liquid crystal.
  • the present applicant has proposed a radically polymerizable monomer that is contained in a liquid crystal composition that can stably produce a weakly anchoring horizontal electric field liquid crystal display element without generating a pretilt angle, and that contributes to the occurrence of weak anchoring.
  • polyamic acids, polyamic acid esters, polyimides, poly(meth)acrylic esters, etc., which have photoalignment properties are preferable as the polymer ⁇ , but polymers ⁇ and the like which have photoalignment properties are preferable.
  • the material is not particularly limited as long as it can induce phase separation.
  • a new polymer may be contained as a third component other than the polymer ⁇ and the polymer ⁇ , and the third component may or may not have photoalignment property. . It is predicted that by containing the third component, the film resistance, seal adhesion, and mechanical strength of the weakly anchored alignment film can be controlled.
  • Table 6 shows the details of the examples and the evaluation results. Table 6 also shows the measurement results of the azimuthal anchoring strength (A 2 ) of the liquid crystal alignment film on the IPS substrate side.
  • a 2 azimuthal anchoring strength
  • a liquid crystal aligning agent containing the polymer alloy of the present invention was formed on an IPS substrate, a rubbing alignment film was formed on a counter substrate, and both substrates were subjected to rubbing alignment treatment.
  • a liquid crystal aligning agent containing the polymer alloy of the present invention was formed on a counter substrate, a rubbing alignment film was formed on an IPS substrate, and both substrates were subjected to rubbing alignment treatment.
  • No. 11 a liquid crystal aligning agent containing a polymer alloy was formed on an IPS substrate, a rubbing alignment film was formed on a counter substrate, and the rubbing alignment treatment was performed only on the counter substrate.
  • the azimuthal anchoring strengths of Examples 24 to 45 are larger than those of Comparative Examples 7 to 10, indicating that strong anchoring regions and weak anchoring regions are segmented on the weak anchoring alignment film. It is suggested that there is.
  • polyamic acid, polyamic acid ester, polyimide, poly(meth)acrylic acid ester, etc. which have rubbing orientation as the polymer ⁇ , are preferable, but have uniaxial orientation due to rubbing orientation treatment,
  • the material is not particularly limited as long as it can induce phase separation with the polymer ⁇ .
  • a new polymer may be contained as a third component other than polymer ⁇ and polymer ⁇ , and the third component may or may not have uniaxial orientation. good.
  • the two obtained substrates were each prepared, and after scattering bead spacers with a diameter of 4 ⁇ m on the liquid crystal alignment film surface of one substrate, a sealing agent (XN-1500T manufactured by Mitsui Chemicals, Inc.) was dropped. At that time, the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was about 3 mm.
  • the substrates were bonded with their film surfaces facing each other so that the overlapping width of the substrates was 1 cm. After fixing the bonded substrates together with clips, they were thermally cured at 120° C. for 1 hour to prepare samples for adhesive evaluation.
  • Table 7 lists the presence or absence of alignment treatment and the type of alignment treatment for the substrate coated with the liquid crystal alignment agent produced in the preparation example. Note that the substrate on which NRB-U973 was formed was not subjected to alignment treatment (photoalignment treatment).
  • a stable weak anchoring film can be manufactured using an extremely simple method, the response speed when the voltage is turned off can be increased, and the adhesion with the seal can be improved, so that weak anchoring IPS can be used in a wide range of applications.
  • by using the material and method of the present invention while suppressing the occurrence of pre-tilt angles associated with narrowing cell gaps, compared to conventional technology, faster response when voltage is turned off, less burn-in, and higher backlash in low-temperature environments. Since light transmittance and low voltage driving can be realized, it is possible to provide a material and a horizontal electric field liquid crystal display element that can stably exhibit excellent characteristics.

Abstract

Provided is a method for manufacturing a substrate equipped with a weak anchoring alignment film, used to manufacture a liquid crystal cell having liquid crystal and a weak anchoring alignment film, wherein the method for manufacturing a substrate equipped with a weak anchoring alignment film includes: a step for coating a substrate with a weak anchoring liquid crystal alignment agent including a polymer α which is a component that exhibits weak anchoring properties, and a polymer β which is a component that does not exhibit weak anchoring properties and exhibits uniaxial alignment regulating force by an alignment treatment, and providing a thin film on the substrate; and a step for performing an alignment treatment on the thin film.

Description

弱アンカリング配向膜付き基板の製造方法、及び液晶表示素子の製造方法Method for manufacturing a substrate with weak anchoring alignment film and method for manufacturing a liquid crystal display element
 本発明は、安価で複雑な工程を含まない手法にて、弱アンカリング特性を発現する有機膜(弱アンカリング膜)を製造することが可能な弱アンカリング配向膜付き基板の製造方法、及び更なる高輝度化、低電圧駆動化を実現するための液晶表示素子に関するものである。 The present invention provides a method for manufacturing a substrate with a weak anchoring alignment film, which allows manufacturing an organic film exhibiting weak anchoring properties (weak anchoring film) using a method that is inexpensive and does not involve complicated steps, and The present invention relates to a liquid crystal display element that achieves higher brightness and lower voltage driving.
 近年、携帯電話、コンピュータ及びテレビのディスプレイなどには液晶表示素子が広く用いられている。液晶表示素子は薄型、軽量、低消費電力などの特性を有しており、今後はVR(Virtual Reality)や超高精細のディスプレイ等、更なるコンテンツへの応用が期待されている。液晶ディスプレイの表示方式には、TN(Twisted Nematic)方式、IPS(In-Plane Switching)方式、VA(Vertical Alignment)方式など様々な表示方式が提案されているが、すべての表示方式には液晶を所望の配向状態に誘導する膜(液晶配向膜)が使用されている。 In recent years, liquid crystal display elements have been widely used in displays for mobile phones, computers, televisions, and the like. Liquid crystal display elements have characteristics such as being thin, lightweight, and low power consumption, and are expected to be applied to further content such as VR (Virtual Reality) and ultra-high-definition displays in the future. Various display methods have been proposed for liquid crystal displays, including the TN (Twisted Nematic) method, the IPS (In-Plane Switching) method, and the VA (Vertical Alignment) method. A film (liquid crystal alignment film) that induces a desired alignment state is used.
 特にタブレットPCやスマートフォン、スマートTV等のタッチパネルを具備した製品には、タッチしても表示が乱れにくいIPS方式が好まれており、近年ではコントラストや視野角特性を改善するためFFS(Frindge Field Switching)方式を用いた液晶表示素子や光配向法を用いた液晶配向技術が用いられる。 In particular, for products equipped with touch panels such as tablet PCs, smartphones, and smart TVs, the IPS method is preferred because the display is less distorted even when touched, and in recent years FFS (Fringe Field Switching ) liquid crystal display elements using the method and liquid crystal alignment technology using the optical alignment method are used.
 しかしながら、FFS方式はIPS方式に比べて基板の製造コストが高いこと、Vcomシフトと呼ばれる特有の表示不良が発生することが課題である。また光配向法は、ラビング配向法に比べ、素子の拡大に適応しやすい点や表示特性を大きく向上できる点にメリットがある一方、原理上の課題(光分解型材料を用いると分解物由来の表示不良、光異性化型であれば配向力不足による焼き付きなど)が挙げられる。これらの課題を解決するために液晶表示素子メーカーや液晶配向膜メーカーは種々工夫を行っているのが現状である。 However, the FFS method has problems in that the manufacturing cost of the substrate is higher than that in the IPS method, and a unique display defect called Vcom shift occurs. Furthermore, compared to the rubbing alignment method, the photo-alignment method has the advantage of being easier to adapt to device enlargement and greatly improving display characteristics, but there are some theoretical issues (when using photodegradable materials, Display defects, and if the photoisomerization type is used, there may be burn-in due to insufficient alignment power, etc.). In order to solve these problems, liquid crystal display element manufacturers and liquid crystal alignment film manufacturers are currently making various efforts.
 近年、液晶セルにおける液晶と基材の接触界面において、高分子と液晶との相溶界面(完全濡れ状態の液体-液晶界面)を形成することで、面内方向に配向規制力を持たない「ゼロ面アンカリング」状態を作り出せることが見出され、スイッチング閾値がなく、配向メモリ性のある液晶スイッチングデバイスが報告されている(特許文献1参照)。 In recent years, at the contact interface between the liquid crystal and the base material in a liquid crystal cell, a compatible interface (completely wet liquid-liquid crystal interface) is formed between the polymer and the liquid crystal, which has no alignment regulating force in the in-plane direction. It has been discovered that it is possible to create a "zero-plane anchoring" state, and a liquid crystal switching device that has no switching threshold and has orientation memory has been reported (see Patent Document 1).
 弱アンカリング技術を応用した弱アンカリングIPS方式が提案されている。これは従来のIPS方式に比べてコントラスト比の向上や大幅な低電圧駆動が実現できる(特許文献2参照)。 A weak anchoring IPS method that applies weak anchoring technology has been proposed. This can improve the contrast ratio and realize significantly lower voltage driving than the conventional IPS method (see Patent Document 2).
 弱アンカリングIPS方式は、片側の基板に強いアンカリングエネルギーを有する液晶配向膜を、もう一方の基板側(横電界を発生する電極を具備する)にアンカリングエネルギーを有さない処理を施した有機薄膜を用いることで作られる。 The weak anchoring IPS method uses a liquid crystal alignment film that has strong anchoring energy on one substrate, and a process that does not have anchoring energy on the other substrate (which is equipped with an electrode that generates a transverse electric field). It is made using organic thin films.
 近年では、濃厚ポリマーブラシを基板に直接設ける方法を用いた弱アンカリングIPS方式が提案されている(特許文献3参照)。 In recent years, a weak anchoring IPS method using a method of directly providing a thick polymer brush on a substrate has been proposed (see Patent Document 3).
 光ラジカル発生可能な液晶配向膜とラジカル重合可能な化合物を用いて、液晶中でUVを照射しラジカル反応をさせることにより弱アンカリング化させ、弱アンカリングIPS方式が提案されている(特許文献4参照)。この技術により、量産可能な手法によりコントラスト比の向上や大幅な低電圧駆動に加え、高速応答化や焼き付きの低減が実現された。 A weak anchoring IPS method has been proposed in which a liquid crystal alignment film capable of generating photoradicals and a compound capable of radical polymerization are used to generate weak anchoring by irradiating UV in the liquid crystal and causing a radical reaction (Patent Document (see 4). With this technology, in addition to improving contrast ratio and significantly lower voltage drive using a method that can be mass-produced, we have achieved faster response and reduced burn-in.
特開2006-84536号公報Japanese Patent Application Publication No. 2006-84536 特許第4053530号公報Patent No. 4053530 特開2013-231757号公報Japanese Patent Application Publication No. 2013-231757 国際公開第2019/004433号パンフレットInternational Publication No. 2019/004433 pamphlet
 濃厚ポリマーブラシを基板に直接設ける方法(特許文献3)は、基板に反応点を設ける表面処理工程、及び基板表面の反応点からポリマー成長させる工程を要するため工程が複雑化する点、並びに高度な脱酸素条件を要するため環境を厳密に制御する必要がある点から技術的な難易度が高く、量産化の観点で現実的でない。そこで固着部位を有するボトルブラシポリマーを基板上に塗布することで弱アンカリングIPS表示素子を得る方法も提案されているが、ボトルブラシポリマーを製造する際に、重合開始部位を有するマクロモノマーを使用し、加えていずれもリビングラジカル重合を用いて製造するため大量供給が難しいという問題がある。加えてボトルブラシポリマーは溶媒選択性が乏しく、従来頻繁に使用されるN-メチル-2-ピロリドン(NMP)やγ-ブチロラクトン(GBL)などへの溶解性が低いなど、通常使用される塗布工程において大きな課題を有することが考えられ、その構造故、シールや基板上への密着性も乏しいため、それらを解決できるような手法を考える必要がある。 The method of directly providing a dense polymer brush on a substrate (Patent Document 3) requires a surface treatment step to provide reaction points on the substrate and a step of growing polymer from the reaction points on the substrate surface, which complicates the process, and requires advanced technology. Since it requires deoxidizing conditions and the environment must be strictly controlled, it is technically difficult and impractical from the perspective of mass production. Therefore, a method has been proposed in which a weakly anchored IPS display element is obtained by applying a bottlebrush polymer having an anchoring site onto a substrate.However, when manufacturing a bottlebrush polymer, a macromonomer having a polymerization initiation site is used. However, in addition, since both are produced using living radical polymerization, there is a problem in that it is difficult to supply them in large quantities. In addition, bottle brush polymers have poor solvent selectivity and low solubility in commonly used N-methyl-2-pyrrolidone (NMP) and γ-butyrolactone (GBL), making them difficult to use in commonly used coating processes. Because of its structure, it has poor sealing and adhesion to substrates, so it is necessary to consider a method that can solve these problems.
 光ラジカル重合反応とラジカル重合可能な化合物を用いて弱アンカリング化させる手法(特許文献4)においては、液晶注入時の高真空状態下における重合性添加剤の揮発や、液晶素子作製後の紫外線照射工程における液晶組成物への悪影響等の課題があると考えられる。 In the method of weakly anchoring using a photoradical polymerization reaction and a radically polymerizable compound (Patent Document 4), the polymerizable additive is volatilized under high vacuum conditions during liquid crystal injection, and ultraviolet rays are removed after the liquid crystal element is fabricated. It is thought that there are problems such as an adverse effect on the liquid crystal composition during the irradiation process.
 弱アンカリングIPS方式は液晶セルを構成する二枚の基材のうち片方に弱アンカリング配向膜を形成する必要があるため、電圧off時の応答速度が遅くなる。これは、弱アンカリングIPS方式特有の課題である。応答速度が遅くなることで、動画の画像表示品位の悪化や適応可能なアプリケーションが大きく限定されることが考えられるため、弱アンカリングIPS実用化の観点で高速応答化は最大の課題と言える。 In the weak anchoring IPS method, it is necessary to form a weak anchoring alignment film on one of the two base materials constituting the liquid crystal cell, so the response speed when the voltage is turned off becomes slow. This is a problem specific to weak anchoring IPS systems. If the response speed becomes slow, it is conceivable that the display quality of video images will deteriorate and the applications to which it can be applied will be greatly limited, so increasing the response speed can be said to be the biggest challenge from the perspective of putting weak anchoring IPS into practical use.
 このような技術的課題を解決できれば、パネルメーカーとしてもバッテリーの省電力化や画質の向上等にメリットのある弱アンカリングIPS液晶表示素子を簡便且つ歩留まり良く生産することが可能となる。 If such technical issues can be solved, it will be possible for panel manufacturers to easily produce weakly anchored IPS liquid crystal display elements with high yields, which have advantages such as battery power savings and improved image quality.
 本発明は、上記のような課題を解決するためになされたものであり、弱アンカリングIPSにおいてトレードオフとされてきた弱アンカリング性と電圧off時の高速応答化とを解決することができる。即ち、本発明は、プレチルト角の発生がなく、低電圧駆動と電圧OFF時の高速応答化が同時に実現できる弱アンカリング配向膜が付いた基板とそれを用いた液晶表示素子の提供を目的としている。 The present invention was made to solve the above-mentioned problems, and can solve the trade-off between weak anchoring property and high-speed response when voltage is turned off, which has been a trade-off in weak anchoring IPS. . That is, an object of the present invention is to provide a substrate with a weak anchoring alignment film that does not generate a pretilt angle and can simultaneously realize low-voltage driving and high-speed response when the voltage is turned off, and a liquid crystal display device using the same. There is.
 本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。
 すなわち、本発明は以下を包含する。
In order to solve the above-mentioned problems, the present inventors conducted intensive studies and found that the above-mentioned problems could be solved, and completed the present invention having the following gist.
That is, the present invention includes the following.
 [1] 液晶と、弱アンカリング配向膜とを有する液晶セルの製造に用いられる、弱アンカリング配向膜付き基板の製造方法であって、
 弱アンカリング性を発現する成分である重合体αと、弱アンカリング性を発現せず、配向処理によって一軸配向規制力を発現する成分である重合体βとを含む弱アンカリング液晶配向剤を基板上に塗布し、前記基板上に薄膜を設ける工程と、
 前記薄膜に配向処理を施す工程と、
を含む、弱アンカリング配向膜付き基板の製造方法。
 [2] 前記重合体βが、配向処理をすることで水平配向規制力を有する重合体である、[1]に記載の弱アンカリング配向膜付き基板の製造方法。
 [3] 前記弱アンカリング配向膜が、一軸配向処理された液晶配向膜である、[1]又は[2]に記載の弱アンカリング配向膜付き基板の製造方法。
 [4] 前記重合体αが、下記重合体A、重合体B及び重合体Cからなる群から選択される少なくとも1種を含有する、[1]から[3]のいずれかに記載の弱アンカリング配向膜付き基板の製造方法。
 重合体A:前記液晶に相溶するブロックセグメント(A)と、前記液晶に相溶しない又は焼成により前記液晶に不溶化するブロックセグメント(B)とを有するブロック共重合体。
 重合体B:幹ポリマーと、前記幹ポリマーの側鎖として前記幹ポリマーに結合した枝ポリマーとを有するグラフト共重合体であって、前記枝ポリマーが、前記液晶と相溶し、かつ前記幹ポリマーが、前記液晶に相溶しない又は焼成により前記液晶に不相溶化する、グラフト共重合体。
 重合体C:前記液晶に相溶する重合体ユニットを有し、かつ加熱により前記重合体βと反応する重合体。
 [5] 前記重合体Aにおける前記ブロックセグメント(A)が、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、及び下記式(5)で表される化合物からなる群から選択される少なくとも1種を、構成成分として含み、
 前記重合体Aにおける前記ブロックセグメント(B)が、下記式(6)で表される化合物を、構成成分として含む、
[4]に記載の弱アンカリング配向膜付き基板の製造方法。
Figure JPOXMLDOC01-appb-C000033
(式(2)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、又はチオエーテル結合を表し、Rは結合基が挿入されていてもよい炭素数1~20のアルキル基を表し、nは1~2の整数である。nが2の場合、2つのX及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000034
(式(3)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Sは単結合、又は結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表し、Tは下記式(3-T)で表される有機基を表し、nは1~2の整数である。nが2の場合、2つのTは同一であってもよいし、異なっていてもよい。ただし、nが2の場合、Sは結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000035
(式(3-T)中、*は結合部位を示す。Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又はアルキル基を表す。)から選ばれる結合基であり、Cyは6~20員環の非芳香族の環状基を表す。)
Figure JPOXMLDOC01-appb-C000036
(式(4)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子又は下記式(4-X)を表す。ただし、3つのXの少なくとも一つは式(4-X)を表す。)
Figure JPOXMLDOC01-appb-C000037
(式(4-X)中、Yは単結合、-O-、-S-又は-N(R)-(RはNに結合する、水素原子又は炭素数1~4のアルキル基を表す。)を表し、*は結合部位を示す。R、R、及びRは、それぞれ独立して、炭素数1~6のアルキル基又は置換基を有していてもよい芳香族炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000038
(式(5)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、R~Rはそれぞれ独立して単結合、又は結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、X及びXはそれぞれ独立して水素原子、又は置換基を有していてもよい芳香族炭化水素基を表し、RとRとR及びRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、R及びRの合計炭素数は1以上である。)
Figure JPOXMLDOC01-appb-C000039
(式(6)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、nは1~2の整数である。Zは下記式(6-Z)で表される基を表す。nが2の場合、2つのZは同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000040
(式(6-Z)中、Lはトリアルコキシシリル基、イソシアネート基、ブロックイソシアネート基、エポキシ基、オキセタン基、ビニル基、アリル基、オキサゾリン基、アミノ基、保護アミノ基、アニリン基、保護アニリン基、ヒドロキシ基、保護ヒドロキシ基、フェノール基、保護フェノール基、チオール基、保護チオール基、チオフェノール基、保護チオフェノール基、アルデヒド基、カルボキシ基、マレイミド基、N-ヒドロキシスクシンイミドエステル基、結合基が挿入されていてもよい炭素数5~18の芳香族炭化水素基、結合基が挿入されていてもよい炭素数5~18の芳香族複素環基、桂皮酸基、桂皮酸芳香族エステル基、桂皮酸アルキルエステル基、シンナミル基、フェニルベンゾエート基、アゾベンゼン基、N-ベンジリデンアニリン基、スチルベン基、及びトラン基からなる群から選択される官能基を表す。Jは単結合又は炭素数1~6の脂肪族炭化水素基を表す。Kは、芳香族炭化水素基と結合する場合、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、及びチオエーテル結合から選ばれる連結基を示し、それ以外の場合は、単結合を示す。*は結合部位を表す。mは1~3の整数である。mが2又は3の場合、複数のK及びLは同一であってもよいし、異なっていてもよい。ただし、Jが単結合の場合、mは1である。)
 [6] 前記重合体Bにおける前記枝ポリマーが、下記式(7)で表されるマクロモノマーに由来する、[4]又は[5]に記載の弱アンカリング配向膜付き基板の製造方法。
Figure JPOXMLDOC01-appb-C000041
(式(7)中、Pは重合可能な不飽和炭化水素基を有する重合性基を表し、Qは下記式(2)~(5)で表される化合物の少なくとも1種を含むモノマーを重合することによって得られる構造であり、nは1~2の整数である。nが2の場合、2つのQは同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000042
(式(2)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、又はチオエーテル結合を表し、Rは結合基が挿入されていてもよい炭素数1~20のアルキル基を表し、nは1~2の整数である。nが2の場合、2つのX及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000043
(式(3)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Sは単結合、又は結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表し、Tは下記式(3-T)で表される有機基を表し、nは1~2の整数である。nが2の場合、2つのTは同一であってもよいし、異なっていてもよい。ただし、nが2の場合、Sは結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000044
(式(3-T)中、*は結合部位を示す。Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又はアルキル基を表す。)から選ばれる結合基であり、Cyは6~20員環の非芳香族の環状基を表す。)
Figure JPOXMLDOC01-appb-C000045
(式(4)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子又は下記式(4-X)を表す。ただし、3つのXの少なくとも一つは式(4-X)を表す。)
Figure JPOXMLDOC01-appb-C000046
(式(4-X)中、Yは単結合、-O-、-S-又は-N(R)-(RはNに結合する、水素原子又は炭素数1~4のアルキル基を表す。)を表し、*は結合部位を示す。R、R、及びRは、それぞれ独立して、炭素数1~6のアルキル基又は置換基を有していてもよい芳香族炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000047
(式(5)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、R~Rはそれぞれ独立して単結合、又は結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、X及びXはそれぞれ独立して水素原子、又は置換基を有していてもよい芳香族炭化水素基を表し、RとRとR及びRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、R及びRの合計炭素数は1以上である。)
 [7] 前記重合体Bにおける前記幹ポリマーが、下記式(6)で表される化合物を構成成分として含む、[4]から[6]のいずれかに記載の弱アンカリング配向膜付き基板の製造方法。
Figure JPOXMLDOC01-appb-C000048
(式(6)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、nは1~2の整数である。Zは下記式(6-Z)で表される基を表す。nが2の場合、2つのZは同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000049
(式(6-Z)中、Lはトリアルコキシシリル基、イソシアネート基、ブロックイソシアネート基、エポキシ基、オキセタン基、ビニル基、アリル基、オキサゾリン基、アミノ基、保護アミノ基、アニリン基、保護アニリン基、ヒドロキシ基、保護ヒドロキシ基、フェノール基、保護フェノール基、チオール基、保護チオール基、チオフェノール基、保護チオフェノール基、アルデヒド基、カルボキシ基、マレイミド基、N-ヒドロキシスクシンイミドエステル基、結合基が挿入されていてもよい炭素数5~18の芳香族炭化水素基、結合基が挿入されていてもよい炭素数5~18の芳香族複素環基、桂皮酸基、桂皮酸芳香族エステル基、桂皮酸アルキルエステル基、シンナミル基、フェニルベンゾエート基、アゾベンゼン基、N-ベンジリデンアニリン基、スチルベン基、及びトラン基からなる群から選択される官能基を表す。Jは単結合又は炭素数1~6の脂肪族炭化水素基を表す。Kは、芳香族炭化水素基と結合する場合、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、及びチオエーテル結合から選ばれる連結基を示し、それ以外の場合は、単結合を示す。*は結合部位を表す。mは1~3の整数である。mが2又は3の場合、複数のK及びLは同一であってもよいし、異なっていてもよい。ただし、Jが単結合の場合、mは1である。)
 [8] 前記重合体Cが、下記式(8)で表される重合体である、[4]から[7]のいずれかに記載の弱アンカリング配向膜付き基板の製造方法。
Figure JPOXMLDOC01-appb-C000050
(式(8)中、Aは下記式(8-A-1)~(8-A-16)から選ばれる、加熱によって前記重合体βと反応する基を有する分子量500以下のn価の有機基を表す。
 Qは下記式(2)~(5)で表される化合物からなる群から選択される少なくとも1種を構成成分として含む、前記液晶と相溶する2価の重合体ユニットである。
 Rは下記式(8-R-1)~(8-R-11)から選ばれる、加熱によって前記重合体βと反応しない分子量500以下の1価の有機基である。
 nは1~2の整数である。nが2の場合、2つのQ及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000051
(式(8-A-1)~(8-A-16)中、R及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、R及びRはそれぞれ独立して単結合又は炭素数1~12の直鎖若しくは分岐アルキレン基を表し、Xは酸素原子又は硫黄原子を表す。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000052
(式(8-R-1)~(8-R-11)中、R及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、R及びRはそれぞれ独立して単結合又は炭素数1~12の直鎖若しくは分岐アルキレン基を表す。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000053
(式(2)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、又はチオエーテル結合を表し、Rは結合基が挿入されていてもよい炭素数1~20のアルキル基を表し、nは1~2の整数である。nが2の場合、2つのX及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000054
(式(3)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Sは単結合、又は結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表し、Tは下記式(3-T)で表される有機基を表し、nは1~2の整数である。nが2の場合、2つのTは同一であってもよいし、異なっていてもよい。ただし、nが2の場合、Sは結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000055
(式(3-T)中、*は結合部位を示す。Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又はアルキル基を表す。)から選ばれる結合基であり、Cyは6~20員環の非芳香族の環状基を表す。)
Figure JPOXMLDOC01-appb-C000056
(式(4)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子又は下記式(4-X)を表す。ただし、3つのXの少なくとも一つは式(4-X)を表す。)
Figure JPOXMLDOC01-appb-C000057
(式(4-X)中、Yは単結合、-O-、-S-又は-N(R)-(RはNに結合する、水素原子又は炭素数1~4のアルキル基を表す。)を表し、*は結合部位を示す。R、R、及びRは、それぞれ独立して、炭素数1~6のアルキル基又は置換基を有していてもよい芳香族炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000058
(式(5)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、R~Rはそれぞれ独立して単結合、又は結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、X及びXはそれぞれ独立して水素原子、又は置換基を有していてもよい芳香族炭化水素基を表し、RとRとR及びRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、R及びRの合計炭素数は1以上である。)
 [9] 前記式(2)中のMが、下記で表されるいずれかの構造であり、
 前記式(3)中のMが、下記で表されるいずれかの構造であり、
 前記式(4)中のMが、下記で表されるいずれかの構造であり、
 前記式(5)中のMが、下記で表されるいずれかの構造である、
[5]、[6]、及び[8]のいずれかに記載の弱アンカリング配向膜付き基板の製造方法。
Figure JPOXMLDOC01-appb-C000059
(式中、R、及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、X、Y、及びZはそれぞれ独立して酸素原子又は硫黄原子を表す。*、*及び*は結合部位を表し、*及び*のどちらか一方は水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基で置き換えられていてもよい。nは1~5の整数を表す。)
 [10] 前記重合体βが、ポリイミド、ポリアミック酸、ポリアミック酸エステル、ポリアミド、ポリウレア、及びポリ(メタ)アクリレートからなる群から選ばれる少なくとも一種の重合体である[1]から[9]のいずれかに記載の弱アンカリング配向膜付き基板の製造方法。
 [11] 前記重合体βが、テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物を含むテトラカルボン酸誘導体成分とジアミン成分とを重合反応させることにより得られる、ポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる重合体である、[1]から[10]のいずれかに記載の弱アンカリング配向膜付き基板の製造方法。
 [12] 前記テトラカルボン酸誘導体成分が、下記式(9)で表されるテトラカルボン酸二無水物を含む、[11]に記載の弱アンカリング配向膜付き基板の製造方法。
Figure JPOXMLDOC01-appb-C000060
(式(9)中、Xは、下記式(X-1)~(X-17)、及び(XR-1)~(XR-2)からなる群から選ばれる構造を表す。)
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
(式(X-1)~(X-17)中、R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、炭素数1~6のアルコキシ基、炭素数2~6のアルコキシアルキル基、炭素数2~6のアルキルオキシカルボニル基、又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。
 式(XR-1)~(XR-2)中、j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン基、スルホニル基、又はアミド基を表す。複数のAは、それぞれ同一でも異なっていてもよい。
 *1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
 [13] 前記式(X-1)が、下記式(X1-1)~(X1-6)からなる群から選ばれる[12]に記載の弱アンカリング配向膜付き基板の製造方法。
Figure JPOXMLDOC01-appb-C000063
(式(X1-1)~(X1-6)中、*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
 [14] 前記ジアミン成分が、下記式(10)で表されるジアミンを含む、[11]から[13]のいずれかに記載の弱アンカリング配向膜付き基板の製造方法。
Figure JPOXMLDOC01-appb-C000064
(式(10)中、Ar、及びAr1’は、それぞれ独立して、ベンゼン環、ビフェニル構造、又はナフタレン環を表し、該ベンゼン環、該ビフェニル構造、又は該ナフタレン環上の1つ以上の水素原子は1価の基で置換されてもよい。L及びL1’は、それぞれ独立して、単結合、-O-、-C(=O)-、又は-O-C(=O)-を表す。Aは、-CH-、炭素数2~12のアルキレン基、又は該アルキレン基の炭素-炭素結合の間に、-O-、-C(=O)-O-、及び-O-C(=O)-の少なくともいずれかの基が挿入されてなる2価の有機基を表す。Aが有する任意の水素原子は、ハロゲン原子で置換されていてもよい。)
 [15] 前記重合体Cが、リビング重合若しくは連鎖移動重合によって得られた重合体である[4]から[14]のいずれかに記載の弱アンカリング配向膜付き基板の製造方法。
 [16] [1]から[15]のいずれかに記載の弱アンカリング配向膜付き基板の製造方法によって弱アンカリング配向膜付き基板を製造する工程を含む、液晶表示素子の製造方法。
[1] A method for manufacturing a substrate with a weak anchoring alignment film used for manufacturing a liquid crystal cell having a liquid crystal and a weak anchoring alignment film, the method comprising:
A weakly anchoring liquid crystal aligning agent containing a polymer α, which is a component that exhibits weak anchoring properties, and a polymer β, which is a component that does not exhibit weak anchoring properties and exhibits a uniaxial alignment regulating force through alignment treatment. coating on a substrate and providing a thin film on the substrate;
a step of subjecting the thin film to an orientation treatment;
A method for manufacturing a substrate with a weak anchoring alignment film, comprising:
[2] The method for producing a substrate with a weak anchoring alignment film according to [1], wherein the polymer β is a polymer that has a horizontal alignment regulating force when subjected to an alignment treatment.
[3] The method for manufacturing a substrate with a weak anchoring alignment film according to [1] or [2], wherein the weak anchoring alignment film is a liquid crystal alignment film subjected to a uniaxial alignment treatment.
[4] The weak anchor according to any one of [1] to [3], wherein the polymer α contains at least one selected from the group consisting of polymer A, polymer B, and polymer C below. A method for manufacturing a substrate with a ring alignment film.
Polymer A: A block copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is not compatible with the liquid crystal or becomes insolubilized in the liquid crystal upon firing.
Polymer B: a graft copolymer having a backbone polymer and a branch polymer bonded to the backbone polymer as a side chain of the backbone polymer, wherein the branch polymer is compatible with the liquid crystal and the backbone polymer is not compatible with the liquid crystal or becomes incompatible with the liquid crystal upon firing.
Polymer C: A polymer that has a polymer unit that is compatible with the liquid crystal and reacts with the polymer β when heated.
[5] The block segment (A) in the polymer A is a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), and Containing as a constituent component at least one selected from the group consisting of compounds represented by the following formula (5),
The block segment (B) in the polymer A contains a compound represented by the following formula (6) as a constituent component,
The method for manufacturing a substrate with a weak anchoring alignment film according to [4].
Figure JPOXMLDOC01-appb-C000033
(In formula (2), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond. , R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same. (It may be different or it may be different.)
Figure JPOXMLDOC01-appb-C000034
(In formula (3), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein. , T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.)
Figure JPOXMLDOC01-appb-C000035
(In formula (3-T), * indicates a bonding site. X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
Figure JPOXMLDOC01-appb-C000036
(In formula (4), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms, and 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).)
Figure JPOXMLDOC01-appb-C000037
(In formula (4-X), Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site. R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent. )
Figure JPOXMLDOC01-appb-C000038
(In formula (5), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted. represents an alkylene group of 1 to 6, Ar represents an aromatic hydrocarbon group that may have a substituent, and X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together. The total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.)
Figure JPOXMLDOC01-appb-C000039
(In formula (6), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and n is an integer of 1 to 2. Z represents a group represented by the following formula (6-Z). (If n is 2, the two Zs may be the same or different.)
Figure JPOXMLDOC01-appb-C000040
(In formula (6-Z), L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinnamic acid aromatic ester group , a cinnamic acid alkyl ester group, a cinnamyl group, a phenylbenzoate group, an azobenzene group, an N-benzylideneaniline group, a stilbene group, and a tolan group. J is a single bond or has 1 to 1 carbon atoms. 6 represents an aliphatic hydrocarbon group.When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, an ether bond, an ester bond, an amide bond, a urea bond, a urethane bond, and a thioether bond. In other cases, it indicates a single bond. * represents a binding site. m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same. (However, if J is a single bond, m is 1.)
[6] The method for producing a substrate with a weak anchoring alignment film according to [4] or [5], wherein the branch polymer in the polymer B is derived from a macromonomer represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000041
(In formula (7), P represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and Q represents a polymerizable monomer containing at least one of the compounds represented by the following formulas (2) to (5). (n is an integer of 1 to 2. When n is 2, the two Qs may be the same or different.)
Figure JPOXMLDOC01-appb-C000042
(In formula (2), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond. , R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same. (It may be different or it may be different.)
Figure JPOXMLDOC01-appb-C000043
(In formula (3), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein. , T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.)
Figure JPOXMLDOC01-appb-C000044
(In formula (3-T), * indicates a bonding site. X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
Figure JPOXMLDOC01-appb-C000045
(In formula (4), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms, and 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).)
Figure JPOXMLDOC01-appb-C000046
(In formula (4-X), Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site. R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent. )
Figure JPOXMLDOC01-appb-C000047
(In formula (5), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted. represents an alkylene group of 1 to 6, Ar represents an aromatic hydrocarbon group that may have a substituent, and X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together. The total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.)
[7] The substrate with a weak anchoring alignment film according to any one of [4] to [6], wherein the backbone polymer in the polymer B contains a compound represented by the following formula (6) as a constituent component. Production method.
Figure JPOXMLDOC01-appb-C000048
(In formula (6), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and n is an integer of 1 to 2. Z represents a group represented by the following formula (6-Z). (If n is 2, the two Zs may be the same or different.)
Figure JPOXMLDOC01-appb-C000049
(In formula (6-Z), L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinnamic acid aromatic ester group , a cinnamic acid alkyl ester group, a cinnamyl group, a phenylbenzoate group, an azobenzene group, an N-benzylideneaniline group, a stilbene group, and a tolan group. J is a single bond or has 1 to 1 carbon atoms. 6 represents an aliphatic hydrocarbon group.When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, an ether bond, an ester bond, an amide bond, a urea bond, a urethane bond, and a thioether bond. In other cases, it indicates a single bond. * represents a binding site. m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same. (However, if J is a single bond, m is 1.)
[8] The method for producing a substrate with a weak anchoring alignment film according to any one of [4] to [7], wherein the polymer C is a polymer represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000050
(In formula (8), A is an n-valent organic compound having a molecular weight of 500 or less and having a group that reacts with the polymer β upon heating, selected from the following formulas (8-A-1) to (8-A-16). represents a group.
Q is a divalent polymer unit that is compatible with the liquid crystal and contains as a constituent at least one kind selected from the group consisting of compounds represented by the following formulas (2) to (5).
R is a monovalent organic group selected from the following formulas (8-R-1) to (8-R-11) and having a molecular weight of 500 or less that does not react with the polymer β upon heating.
n is an integer from 1 to 2. When n is 2, the two Q's and R's may be the same or different. )
Figure JPOXMLDOC01-appb-C000051
(In formulas (8-A-1) to (8-A-16), R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and R 3 and R 4 each independently represents a single bond or a linear or branched alkylene group having 1 to 12 carbon atoms, and X represents an oxygen atom or a sulfur atom. * represents a bonding site.)
Figure JPOXMLDOC01-appb-C000052
(In formulas (8-R-1) to (8-R-11), R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and R 3 and Each R 4 independently represents a single bond or a linear or branched alkylene group having 1 to 12 carbon atoms. * represents a bonding site.)
Figure JPOXMLDOC01-appb-C000053
(In formula (2), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond. , R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same. (It may be different or it may be different.)
Figure JPOXMLDOC01-appb-C000054
(In formula (3), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein. , T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.)
Figure JPOXMLDOC01-appb-C000055
(In formula (3-T), * indicates a bonding site. X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
Figure JPOXMLDOC01-appb-C000056
(In formula (4), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms, and 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).)
Figure JPOXMLDOC01-appb-C000057
(In formula (4-X), Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site. R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent. )
Figure JPOXMLDOC01-appb-C000058
(In formula (5), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted. represents an alkylene group of 1 to 6, Ar represents an aromatic hydrocarbon group that may have a substituent, and X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together. The total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.)
[9] M in the formula (2) is any of the structures represented below,
M in the formula (3) is any of the structures represented below,
M in the formula (4) is any of the structures represented below,
M in the formula (5) is any of the structures represented below,
The method for manufacturing a substrate with a weak anchoring alignment film according to any one of [5], [6], and [8].
Figure JPOXMLDOC01-appb-C000059
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and X, Y, and Z each independently represent an oxygen atom or a sulfur atom. *, * 1 and * 2 represent bonding sites, and either one of * 1 and * 2 may be replaced with a hydrogen atom or a straight chain or branched alkyl group having 1 to 12 carbon atoms. n is Represents an integer from 1 to 5.)
[10] Any of [1] to [9], wherein the polymer β is at least one kind of polymer selected from the group consisting of polyimide, polyamic acid, polyamic acid ester, polyamide, polyurea, and poly(meth)acrylate. A method for manufacturing a substrate with a weakly anchoring alignment film as described in .
[11] A polyimide precursor in which the polymer β is obtained by polymerizing a diamine component and a tetracarboxylic acid derivative component containing at least one compound selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof. The method for producing a substrate with a weak anchoring alignment film according to any one of [1] to [10], wherein the substrate is a polymer selected from the group consisting of polyimide, which is an imidized product of the polyimide precursor.
[12] The method for producing a substrate with a weak anchoring alignment film according to [11], wherein the tetracarboxylic acid derivative component includes a tetracarboxylic dianhydride represented by the following formula (9).
Figure JPOXMLDOC01-appb-C000060
(In formula (9), X represents a structure selected from the group consisting of the following formulas (X-1) to (X-17) and (XR-1) to (XR-2).)
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
(In formulas (X-1) to (X-17), R 1 to R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, Alkynyl group having 2 to 6 carbon atoms, monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, alkoxy group having 1 to 6 carbon atoms, alkoxyalkyl group having 2 to 6 carbon atoms, 2 to 6 carbon atoms represents an alkyloxycarbonyl group or a phenyl group. R 5 and R 6 each independently represent a hydrogen atom or a methyl group.
In formulas (XR-1) to (XR-2), j and k are integers of 0 or 1, and A 1 and A 2 each independently represent a single bond, -O-, -CO-, -COO-, represents a phenylene group, a sulfonyl group, or an amide group. The plurality of A2 's may be the same or different.
*1 is a bond bonded to one acid anhydride group, and *2 is a bond bonded to the other acid anhydride group. )
[13] The method for producing a substrate with a weak anchoring alignment film according to [12], wherein the formula (X-1) is selected from the group consisting of the following formulas (X1-1) to (X1-6).
Figure JPOXMLDOC01-appb-C000063
(In formulas (X1-1) to (X1-6), *1 is a bond that is bonded to one acid anhydride group, and *2 is a bond that is bonded to the other acid anhydride group.)
[14] The method for producing a substrate with a weak anchoring alignment film according to any one of [11] to [13], wherein the diamine component includes a diamine represented by the following formula (10).
Figure JPOXMLDOC01-appb-C000064
(In formula (10), Ar 1 and Ar 1' each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more of the benzene ring, the biphenyl structure, or the naphthalene ring may be substituted with a monovalent group. L 1 and L 1' each independently represent a single bond, -O-, -C(=O)-, or -O-C(= O)-.A represents -CH 2 -, an alkylene group having 2 to 12 carbon atoms, or between the carbon-carbon bond of the alkylene group, -O-, -C(=O)-O-, Represents a divalent organic group in which at least one of the following groups is inserted:
[15] The method for producing a substrate with a weakly anchoring alignment film according to any one of [4] to [14], wherein the polymer C is a polymer obtained by living polymerization or chain transfer polymerization.
[16] A method for manufacturing a liquid crystal display element, comprising the step of manufacturing a substrate with a weak anchoring alignment film by the method for manufacturing a substrate with a weak anchoring alignment film according to any one of [1] to [15].
 本発明によれば、弱アンカリングIPSにおいてトレードオフとされてきた弱アンカリング性と電圧off時の高速応答化とを解決することができる。また、本発明の材料および手法を用いることで、プレチルト角の発生がなく、低電圧駆動と電圧OFF時の高速応答化が同時に実現できる弱アンカリング配向膜とそれを用いた液晶表示素子を提供することができる。 According to the present invention, it is possible to solve the trade-off between weak anchoring property and high-speed response when the voltage is turned off, which has been a trade-off in weak anchoring IPS. Furthermore, by using the materials and methods of the present invention, we provide a weak anchoring alignment film that does not generate a pretilt angle and can simultaneously achieve low voltage drive and high-speed response when the voltage is turned off, and a liquid crystal display element using the same. can do.
本発明の横電界液晶表示素子の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a horizontal electric field liquid crystal display element of the present invention. 本発明の横電界液晶表示素子の他の例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing another example of the horizontal electric field liquid crystal display element of the present invention.
(弱アンカリング)
 本発明において「弱アンカリング」とは、液晶分子を基板に対して方位角方向または極角方向へ配向規制する力は有しているが、アンカリング強度(すなわち液晶分子の位置を保持する、あるいは液晶分子の配向が変化しても元の状態に戻す、界面弾性エネルギー)が全く無いか、あったとしても液晶同士の分子間力よりも弱いことを意味し、本発明の弱アンカリングにおいては方位角アンカリング強度(A)が10-5[J/m]よりも小さい場合を指す。特開2013-231757号公報に記載の通り、基材界面に液晶と完全濡れ状態を形成可能な重合体を設け、これと液晶が接することで高分子-液晶混合層が形成し、弱アンカリング状態が発現することが知られている。
(weak anchoring)
In the present invention, "weak anchoring" refers to having a force that regulates the alignment of liquid crystal molecules in the azimuthal or polar direction with respect to the substrate, but with anchoring strength (i.e., maintaining the position of the liquid crystal molecules). Alternatively, even if the orientation of liquid crystal molecules changes, there is no interfacial elastic energy to restore the original state, or even if there is, it is weaker than the intermolecular force between liquid crystals, and in the weak anchoring of the present invention. refers to the case where the azimuthal anchoring strength (A 2 ) is smaller than 10 −5 [J/m 2 ]. As described in JP-A No. 2013-231757, a polymer capable of forming a completely wet state with the liquid crystal is provided at the base material interface, and when the liquid crystal comes into contact with the polymer, a polymer-liquid crystal mixed layer is formed, resulting in weak anchoring. The condition is known to occur.
(弱アンカリング配向膜)
 本発明において「弱アンカリング配向膜」とは、液晶と接触することで弱アンカリング状態を形成する膜のことを意味し、固体膜に限定されず固体表面を被覆する液体膜も含まれる。
 なお、「弱アンカリング配向膜」は、「弱アンカリング液晶配向膜」ともいう。
(Weak anchoring alignment film)
In the present invention, the term "weakly anchoring alignment film" refers to a film that forms a weakly anchored state upon contact with liquid crystal, and is not limited to solid films, but also includes liquid films that cover solid surfaces.
Note that the "weak anchoring alignment film" is also referred to as "weak anchoring liquid crystal alignment film".
(強アンカリング、強アンカリング配向膜)
 本発明において「強アンカリング」とは、液晶分子を一軸配向に配向規制し、外部からエネルギーが与えられても液晶の配向を保持することができる、あるいは液晶分子の配向が変化しても元の位置に戻すことができるアンカリング強度を有することを意味し、本発明の強アンカリングにおいては方位角アンカリング強度(A)が10-4[J/m]よりも大きい場合を指す。また、「強アンカリング配向膜」とは、液晶と接触することで強アンカリング状態を形成する膜のことを意味し、固体膜に限定されず固体表面を被覆する液体膜も含まれる。
 なお、「強アンカリング配向膜」は、「強アンカリング液晶配向膜」ともいう。
(Strong anchoring, strong anchoring alignment film)
In the present invention, "strong anchoring" refers to the ability to regulate the alignment of liquid crystal molecules in a uniaxial alignment and maintain the alignment of the liquid crystal even when energy is applied from the outside, or the ability to maintain the alignment of the liquid crystal even if the alignment of the liquid crystal molecules changes. In the strong anchoring of the present invention, it refers to the case where the azimuthal anchoring strength (A 2 ) is greater than 10 −4 [J/m 2 ]. . Furthermore, the term "strongly anchoring alignment film" refers to a film that forms a strong anchoring state when it comes into contact with liquid crystal, and is not limited to solid films, but also includes liquid films that cover solid surfaces.
Note that the "strong anchoring alignment film" is also referred to as "strong anchoring liquid crystal alignment film."
(弱アンカリング液晶表示素子)
 上記で定義された弱アンカリング配向膜と強アンカリング配向膜をそれぞれ電極付き基板に塗布し、対になるように張り合わせることで弱アンカリング液晶表示素子が作製できる。弱アンカリング液晶表示素子は、一方の液晶配向膜の方位角アンカリング強度が限りなく小さいため、弱い電界や外場エネルギーで液晶の配向変化を誘起でき、通常は動かない領域の液晶分子も配向変化させることが可能になることから、特にIPSやFFSのような櫛歯電極を用いたような表示素子においては、電界強度の弱い電極上の液晶分子も駆動可能となるため、対となる配向膜の両方が強アンカリング配向膜で構成された液晶表示素子と比べて高透過率化及び駆動電圧を低電圧化させることができる。
(Weak anchoring liquid crystal display element)
A weak anchoring liquid crystal display element can be produced by applying the above-defined weak anchoring alignment film and strong anchoring alignment film to a substrate with electrodes, respectively, and pasting them together in a pair. In weak anchoring liquid crystal display elements, the azimuthal anchoring strength of one liquid crystal alignment film is extremely small, so a weak electric field or external field energy can induce alignment changes in the liquid crystal, and liquid crystal molecules in areas that normally do not move can also be aligned. This makes it possible to drive liquid crystal molecules on electrodes with weak electric field strength, especially in display elements using comb-shaped electrodes such as IPS and FFS. Compared to a liquid crystal display element in which both films are composed of strong anchoring alignment films, higher transmittance and lower driving voltage can be achieved.
 方位角アンカリング強度とは、方位角方向に対する液晶分子と液晶配向膜間の界面弾性エネルギーの強度を表す指標である。方位角アンカリング強度を算出する方法としてトルクバランス法や強電場法、Geometry法(外場印加法)やフレデリクス転移法等が用いられる。 The azimuthal anchoring strength is an index representing the strength of interfacial elastic energy between liquid crystal molecules and a liquid crystal alignment film in the azimuthal direction. As a method for calculating the azimuthal anchoring strength, a torque balance method, a strong electric field method, a geometry method (external field application method), a Frederiks transfer method, etc. are used.
(ポリマーアロイ)
 本発明における「ポリマーアロイ」の一実施形態は、弱アンカリング液晶配向剤に含有される弱アンカリング性を発現する成分である重合体(以下、「重合体α」と称することがある)と弱アンカリング性を発現せず、配向処理によって一軸配向規制力を発現する成分である重合体(以下、「重合体β」と称することがある)からなるポリマーアロイである。弱アンカリング液晶配向剤は、液晶表示素子に使用される液晶を配向させる膜、すなわち液晶配向膜の形成に用いられる。
(polymer alloy)
One embodiment of the "polymer alloy" in the present invention is a polymer (hereinafter sometimes referred to as "polymer α") that is a component that exhibits weak anchoring properties and is contained in a weakly anchoring liquid crystal aligning agent. It is a polymer alloy made of a polymer (hereinafter sometimes referred to as "polymer β") which is a component that does not exhibit weak anchoring properties and exhibits uniaxial alignment regulating force through alignment treatment. Weak anchoring liquid crystal alignment agents are used to form a film for aligning liquid crystals used in liquid crystal display elements, that is, a liquid crystal alignment film.
 本発明のポリマーアロイは、重合体αと重合体βをそれぞれ少なくとも1種以上混合して得られることを特徴とする。好適な実施形態では、重合体αは優れた弱アンカリング性を発現する(「弱アンカリング成分」ともいう)一方で、重合体βは、弱アンカリング性を示さず、配向処理することで一軸配向規制力を発現する。また、適切な重合体βを選択することで、基板への固着やポリマー同士の架橋、シール成分との架橋により、弱アンカリング配向膜に、優れた膜硬度や優れたシール密着強度を与え、また、溶剤選択性や塗布性に優れた弱アンカリング液晶配向剤を得ることができる。 The polymer alloy of the present invention is characterized in that it is obtained by mixing at least one of each of polymer α and polymer β. In a preferred embodiment, the polymer α exhibits excellent weak anchoring properties (also referred to as a “weak anchoring component”), while the polymer β does not exhibit weak anchoring properties and can be easily stabilized by orientation treatment. Expresses uniaxial alignment regulating force. In addition, by selecting an appropriate polymer β, we can provide the weak anchoring alignment film with excellent film hardness and excellent seal adhesion strength by adhering to the substrate, cross-linking between polymers, and cross-linking with the sealing component. Moreover, a weakly anchoring liquid crystal aligning agent having excellent solvent selectivity and coating properties can be obtained.
 国際公開第2019/004433号パンフレットでは、リビング重合を用いて枝ポリマーの密度が高いグラフト共重合体(ポリマーブラシと呼ばれる)を応用した弱アンカリング液晶表示素子を提案している。該ポリマーブラシは、枝ポリマーを延長していく手法(grafting from法)を使用して合成しており、リビング重合を使用して合成する必要がある。また枝ポリマーに基板との密着向上に寄与する基を導入することで基板とポリマーとの密着性を改善する試みを行っているが、導入量が多くなると弱アンカリング性が損なわれる可能性があり、また枝ポリマーの密度が非常に高いため、溶媒との溶媒和が起こりにくくなることが考えられ、特にNMPやγ-ブチロラクトンなどの高沸点かつ極性の比較的高い溶媒への親和性が損なわれることが考えられる。 International Publication No. 2019/004433 pamphlet proposes a weakly anchored liquid crystal display element that uses a graft copolymer (called a polymer brush) with a high density of branch polymers using living polymerization. The polymer brush is synthesized using a method of extending branch polymers (grafting from method), and needs to be synthesized using living polymerization. In addition, attempts have been made to improve the adhesion between the substrate and the polymer by introducing groups into the branch polymer that contribute to improved adhesion to the substrate, but if the amount introduced is large, the weak anchoring property may be impaired. Also, since the density of the branched polymer is very high, it is thought that solvation with the solvent will be difficult to occur, and the affinity for relatively high boiling point and relatively polar solvents such as NMP and γ-butyrolactone will be impaired. It is possible that
 出願人の検証において、ポリマーブラシではないリビング重合によるブロック共重合体を用いた弱アンカリング液晶配向剤の検討も実施し、出願している(特願2021-96448、WO202/2260048)が、いずれもポリマーの溶媒選択性と密着強度が低くなる結果が得られており、ポリマーブラシと同様に、精密に合成されたポリマーに共通した課題と考えられる。本結果は実施例に記載する。 In the applicant's verification, a weakly anchoring liquid crystal aligning agent using a block copolymer produced by living polymerization rather than a polymer brush was also investigated, and an application has been filed (Patent Application No. 2021-96448, WO202/2260048). However, the solvent selectivity and adhesion strength of the polymer were found to be low, which is thought to be a common problem with precisely synthesized polymers, similar to polymer brushes. The results are described in the Examples.
 本発明の弱アンカリング配向膜付き基板の製造方法は、液晶と、弱アンカリング配向膜とを有する液晶セルの製造に用いられる。
 本発明の弱アンカリング配向膜付き基板の製造方法は、以下の工程を含む。
 ・重合体αと、重合体βとを含む弱アンカリング液晶配向剤を基板上に塗布し、基板上に薄膜を設ける工程
 ・薄膜に配向処理を施す工程
The method for manufacturing a substrate with a weak anchoring alignment film of the present invention is used for manufacturing a liquid crystal cell having a liquid crystal and a weak anchoring alignment film.
The method for manufacturing a substrate with a weak anchoring alignment film of the present invention includes the following steps.
・Process of applying a weak anchoring liquid crystal alignment agent containing polymer α and polymer β onto a substrate to form a thin film on the substrate ・Process of applying alignment treatment to the thin film
 弱アンカリング液晶配向剤が塗布される基板としては、透明性の高い基板であれば特に制限されないが、基板上に液晶を駆動するための透明電極が形成された基板が好ましい。具体例は後述する。 The substrate to which the weak anchoring liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate on which a transparent electrode for driving the liquid crystal is formed is preferable. A specific example will be described later.
 弱アンカリング液晶配向剤を基板上に塗布する方法としては、特に制限されないが、例えば、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が好ましい。
 弱アンカリング液晶配向剤を基板上に塗布した後には、乾燥及び/又は焼成を行ってもよい。乾燥及び焼成の条件としては、特に制限されないが、例えば、後述する条件が挙げられる。
The method of applying the weak anchoring liquid crystal aligning agent onto the substrate is not particularly limited, and examples thereof include spin coating, printing, inkjet, spraying, and roll coating, but from the viewpoint of productivity, Industrially, transfer printing is preferred.
After applying the weak anchoring liquid crystal aligning agent onto the substrate, drying and/or baking may be performed. Drying and firing conditions are not particularly limited, and include, for example, the conditions described below.
 薄膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が向上するので好適である。また、薄膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。 Although the thickness of the thin film can be selected as necessary, it is preferably 5 nm or more, more preferably 10 nm or more, since this improves the reliability of the liquid crystal display element. Further, it is preferable that the thickness of the thin film is preferably 300 nm or less, more preferably 150 nm or less, since the power consumption of the liquid crystal display element does not become extremely large.
 薄膜に施す配向処理としては、好ましくは一軸配向処理である。
 一軸配向処理を行う方法としては、光配向法、斜方蒸着法、ラビング、磁場による一軸配向処理等が挙げられる。
 一方向にラビング処理することによる配向処理を行う場合には、例えば、ラビング布が巻きつけられたラビングローラーを回転させながら、ラビング布と膜とが接触するように基板を移動させる。光配向法を用いる場合には、特定波長の偏光UVを膜全面に照射し、必要に応じて加熱することにより配向処理ができる。
 櫛歯電極が形成されている基板の場合、液晶の電気的物性によって方向が選択されるが、正の誘電異方性を有する液晶を用いる場合において、ラビング方向は櫛歯電極の延びている方向とほぼ同一の方向とすることが好ましい。
The orientation treatment applied to the thin film is preferably uniaxial orientation treatment.
Examples of methods for performing the uniaxial alignment treatment include a photoalignment method, an oblique evaporation method, rubbing, and a uniaxial alignment treatment using a magnetic field.
When performing alignment treatment by rubbing in one direction, for example, while rotating a rubbing roller around which a rubbing cloth is wound, the substrate is moved so that the rubbing cloth and the film come into contact with each other. When using a photo-alignment method, the alignment treatment can be performed by irradiating the entire surface of the film with polarized UV of a specific wavelength and heating if necessary.
In the case of a substrate on which comb-teeth electrodes are formed, the direction is selected depending on the electrical properties of the liquid crystal, but when using a liquid crystal with positive dielectric anisotropy, the rubbing direction is the direction in which the comb-teeth electrodes extend. It is preferable that the direction is approximately the same as that of .
 本発明の弱アンカリング配向膜付き基板の製造方法の一実施形態では、重合体αと重合体βとを混合して得られるポリマーアロイからなる有機膜を基板上に形成し、これに配向処理(好ましくは一軸配向処理)を施す。重合体αは、好適には、重合体A、重合体B及び重合体Cからなる群から選択される少なくとも1種を含有する。重合体βは、好適には、ポリイミド、ポリアミック酸、ポリアミック酸エステル、ポリアミド、ポリウレア、及びポリ(メタ)アクリレートからなる群から選ばれる少なくとも一種の重合体である。後記する実施例において具体的に例証するように、重合体βはラビング配向処理や光配向処理によって優れた一軸配向規制力を発現する重合体であり、重合体αと重合体βからなる弱アンカリング配向膜に配向処理(好ましくは一軸配向処理)を施すことで、十分な弱アンカリング性を維持したまま電圧off時の応答速度を高速化できる。さらに、適切な重合体βを選択することで、基板への固着やポリマー同士の架橋、シール成分との架橋により、弱アンカリング配向膜に、優れた膜硬度や優れたシール密着強度を与え、また、溶剤選択性や塗布性に優れた弱アンカリング液晶配向剤を得ることができる。 In one embodiment of the method for manufacturing a substrate with a weakly anchoring alignment film of the present invention, an organic film made of a polymer alloy obtained by mixing polymer α and polymer β is formed on a substrate, and then an alignment treatment is performed on the organic film. (preferably uniaxial alignment treatment). The polymer α preferably contains at least one selected from the group consisting of polymer A, polymer B, and polymer C. The polymer β is preferably at least one type of polymer selected from the group consisting of polyimide, polyamic acid, polyamic acid ester, polyamide, polyurea, and poly(meth)acrylate. As will be specifically exemplified in the examples below, polymer β is a polymer that exhibits excellent uniaxial alignment regulating force through rubbing alignment treatment and photo alignment treatment, and is a polymer that exhibits excellent uniaxial alignment regulating force through rubbing alignment treatment and photo alignment treatment, and is a polymer that exhibits an excellent uniaxial alignment regulating force through rubbing alignment treatment and photo alignment treatment. By subjecting the ring alignment film to alignment treatment (preferably uniaxial alignment treatment), the response speed when the voltage is turned off can be increased while maintaining sufficient weak anchoring properties. Furthermore, by selecting an appropriate polymer β, the weak anchoring alignment film can be given excellent film hardness and excellent seal adhesion strength by adhering to the substrate, cross-linking between polymers, and cross-linking with the sealing component. Moreover, a weakly anchoring liquid crystal aligning agent having excellent solvent selectivity and coating properties can be obtained.
(重合体A)
 重合体Aの一実施形態は、液晶に相溶するブロックセグメント(A)と、液晶に相溶しない又は焼成により前記液晶に不溶化するブロックセグメント(B)とを有する共重合体である。
 重合体Aは、例えば、リビング重合によって得られる2種以上のブロックセグメントから成る線形共重合体であり、少なくとも1つのブロックセグメントは液晶に溶解するブロックセグメント(A)から成り、少なくとも1つのブロックセグメントは液晶に溶解しない又は焼成により液晶に不溶化するブロックセグメント(B)から成る。
(Polymer A)
One embodiment of the polymer A is a copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is not compatible with the liquid crystal or becomes insolubilized in the liquid crystal upon firing.
Polymer A is, for example, a linear copolymer consisting of two or more types of block segments obtained by living polymerization, at least one block segment consisting of a block segment (A) soluble in liquid crystal, and at least one block segment consists of a block segment (B) that does not dissolve in the liquid crystal or becomes insoluble in the liquid crystal upon firing.
 重合体Aにおけるブロックセグメント(A)は、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、及び下記式(5)で表される化合物からなる群から選択される少なくとも1種を、構成成分として含むことが好ましい。
 重合体Aにおけるブロックセグメント(B)は、下記式(6)で表される化合物を、構成成分として含むことが好ましい。
 重合体Aは、重合体Aのうちブロックセグメント(A)が下記式(2)~(5)で表される化合物からなる群から選択される少なくとも1種から合成される重合体でありかつ、ブロックセグメント(B)が下記式(6)で表される化合物から合成される重合体であることが好ましい。
The block segment (A) in polymer A is a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), and the following formula (5). It is preferable that at least one kind selected from the group consisting of the compounds represented by: is included as a constituent component.
It is preferable that the block segment (B) in the polymer A contains a compound represented by the following formula (6) as a constituent component.
The polymer A is a polymer in which the block segment (A) of the polymer A is synthesized from at least one selected from the group consisting of compounds represented by the following formulas (2) to (5), and It is preferable that the block segment (B) is a polymer synthesized from a compound represented by the following formula (6).
 本出願人は、プレチルト角が発生せず安定的に弱アンカリング横電界液晶表示素子が作製できる液晶組成物に含有されるラジカル重合性化合物であって、弱アンカリングの発生に寄与するラジカル重合性化合物として、下記式(2)で表される化合物、式(3)で表される化合物、式(4)で表される化合物、及び式(5)で表される化合物を見出し、出願している(特願2020-134149、特願2020-163212、特願2021-041196、WO2022/030602、WO2022/071286、WO2022/196565、WO2019/004433。ここに引用されたことによって、これらの出願及び公開公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。)。 The present applicant has proposed a radically polymerizable compound contained in a liquid crystal composition that can stably produce a weakly anchoring horizontal electric field liquid crystal display element without generating a pretilt angle, and which is a radical polymerizable compound that contributes to the occurrence of weak anchoring. We have discovered and applied for a compound represented by the following formula (2), a compound represented by the formula (3), a compound represented by the formula (4), and a compound represented by the formula (5) as chemical compounds. (Japanese Patent Application No. 2020-134149, Japanese Patent Application No. 2020-163212, Japanese Patent Application No. 2021-041196, WO2022/030602, WO2022/071286, WO2022/196565, WO2019/004433. These applications and publications are hereby incorporated by reference. The contents of the publications are incorporated herein to the same extent as if expressly set forth in their entirety.)
 また、本出願人は、重合体Aを含む弱アンカリング液晶配向剤が、従来の手法に比べより簡便かつ安定的に弱アンカリング膜を製造可能であること、及び狭セルギャップ化においてもプレチルト角の発生なく安定的に低電圧駆動と電圧OFF時の高速応答化が同時に実現でき、加えて焼き付きを低減でき、低温環境で高いバックライト透過率と低電圧駆動の両立を実現できる横電界液晶表示素子を提供することを、見出し、出願している(特願2021-96448、及びWO202/2260048。ここに引用されたことによって、この出願及び公開公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。)。 In addition, the applicant has discovered that the weakly anchoring liquid crystal aligning agent containing Polymer A can produce weakly anchoring films more easily and stably than conventional methods, and that the weakly anchoring liquid crystal aligning agent containing Polymer A can be used to produce weakly anchored films more easily and stably than conventional methods. Horizontal electric field liquid crystal that can simultaneously achieve stable low-voltage drive without the occurrence of corners and high-speed response when voltage is OFF, reduce burn-in, and achieve both high backlight transmittance and low-voltage drive in low-temperature environments. The company has filed an application to provide a display element (Japanese Patent Application No. 2021-96448 and WO202/2260048. By being cited here, the contents of this application and publication are to the same extent as if they were fully disclosed. (incorporated herein).
 共重合体が有するブロックセグメントは、3種以上であってもよい。
 共重合体は、好ましくは、主鎖が分岐せずに直鎖状に伸びた共重合体である。
The copolymer may have three or more types of block segments.
The copolymer is preferably a copolymer in which the main chain extends linearly without branching.
Figure JPOXMLDOC01-appb-C000065
(式(2)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、又はチオエーテル結合を表し、Rは結合基が挿入されていてもよい炭素数1~20のアルキル基を表し、nは1~2の整数である。nが2の場合、2つのX及びR1はそれぞれ同一であってもよいし、異なっていてもよい。)
 結合基が挿入されていてもよい炭素数1~20のアルキル基における結合基としては、例えば、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R11)(R12)-(R11及びR12はそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R13)(R14)-O-(R13及びR14はそれぞれ独立してSiに結合するアルキル基を表す。)、-N(R15)-(R15はNに結合する、水素原子又はアルキル基を表す。)が挙げられる。R11~R15におけるアルキル基としては、例えば、炭素数1~6のアルキル基が挙げられる。
Figure JPOXMLDOC01-appb-C000065
(In formula (2), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond. , R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same. (It may be different, or it may be different.)
Examples of the bonding group in the alkyl group having 1 to 20 carbon atoms into which a bonding group may be inserted include ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 11 )( R 12 )-(R 11 and R 12 each independently represent an alkyl group bonded to Si.), -Si(R 13 )(R 14 )-O-(R 13 and R 14 each independently represent an alkyl group bonded to Si. (represents an alkyl group bonded to Si), -N(R 15 )-(R 15 represents a hydrogen atom or an alkyl group bonded to N). Examples of the alkyl group for R 11 to R 15 include alkyl groups having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000066
(式(3)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Sは単結合、又は結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表し、Tは下記式(3-T)で表される有機基を表し、nは1~2の整数である。nが2の場合、2つのTは同一であってもよいし、異なっていてもよい。ただし、nが2の場合、Sは結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000066
(In formula (3), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein. , T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.)
Figure JPOXMLDOC01-appb-C000067
(式(3-T)中、*は結合部位を示す。Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又はアルキル基を表す。)から選ばれる結合基であり、Cyは6~20員環の非芳香族の環状基を表す。)
Figure JPOXMLDOC01-appb-C000067
(In formula (3-T), * indicates a bonding site. X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
 式(3)中のSにおける飽和炭化水素基とは、飽和炭化水素からn+1個の水素原子が取り除かれてできるn+1価の基を指す(nは、式(3)中のnと同じ整数である)。nが1の場合、飽和炭化水素基は、アルキレン基である。
 式(3)中のSにおいて、結合基が挿入されている炭素数1~6の飽和炭化水素基とは、炭素数2~6の飽和炭化水素基内の炭素-炭素間に結合基が挿入されているn+1価の基、又は炭素数1~6の飽和炭化水素基とそれに結合する原子(例えば、炭素原子)との間に結合基が挿入されているn+1価の基を意味する。
 式(3)中のSにおける結合基としては、例えば、炭素-炭素不飽和結合、エーテル結合(-O-)、エステル結合(-COO-又は-OCO-)、アミド結合(-CONH-又は-NHCO-)などが挙げられる。炭素-炭素不飽和結合としては、例えば、炭素-炭素二重結合などが挙げられるが、炭素-炭素二重結合が挿入されている炭素数1~6の飽和炭化水素基は、その末端にではなく、内部に炭素-炭素二重結合を有する方が好ましい。
 nが1の場合、結合基が挿入されていてもよい炭素数1~6のアルキレン基としては、例えば、炭素数1~6のアルキレン基、炭素数1~6のオキシアルキレン基などが挙げられる。
 炭素数1~6のアルキレン基は、直鎖アルキレン基であってもよいし、分岐アルキレン基であってもよいし、環状アルキレン基であってもよい。
The saturated hydrocarbon group in S in formula (3) refers to an n+1-valent group formed by removing n+1 hydrogen atoms from a saturated hydrocarbon (n is the same integer as n in formula (3)). be). When n is 1, the saturated hydrocarbon group is an alkylene group.
In S in formula (3), a saturated hydrocarbon group having 1 to 6 carbon atoms into which a bonding group is inserted is a saturated hydrocarbon group having a bonding group inserted between carbon atoms in a saturated hydrocarbon group having 2 to 6 carbon atoms. or an n+1-valent group in which a bonding group is inserted between a saturated hydrocarbon group having 1 to 6 carbon atoms and an atom bonded thereto (for example, a carbon atom).
Examples of the bonding group for S in formula (3) include a carbon-carbon unsaturated bond, an ether bond (-O-), an ester bond (-COO- or -OCO-), an amide bond (-CONH- or - Examples include NHCO-). Examples of carbon-carbon unsaturated bonds include carbon-carbon double bonds, but a saturated hydrocarbon group having 1 to 6 carbon atoms into which a carbon-carbon double bond is inserted has no It is preferable to have a carbon-carbon double bond inside.
When n is 1, examples of the alkylene group having 1 to 6 carbon atoms into which a bonding group may be inserted include alkylene groups having 1 to 6 carbon atoms, oxyalkylene groups having 1 to 6 carbon atoms, etc. .
The alkylene group having 1 to 6 carbon atoms may be a straight chain alkylene group, a branched alkylene group, or a cyclic alkylene group.
 式(3-T)のXにおける-Si(R)(R)-のR及びRは、それぞれ独立してSiに結合するアルキル基であり、例えば、炭素数1~6のアルキル基である。
 式(3-T)のXにおける-Si(R)(R)-O-のR及びRは、それぞれ独立してSiに結合するアルキル基であり、例えば、炭素数1~6のアルキル基である。
 式(3-T)のXにおける-N(R)-のRは、Nに結合する、水素原子又はアルキル基である。アルキル基は、例えば、炭素数1~6のアルキル基である。
R 1 and R 2 of -Si(R 1 )(R 2 )- in X of formula (3-T) are each independently an alkyl group bonded to Si, for example, an alkyl group having 1 to 6 carbon atoms. It is the basis.
R 3 and R 4 of -Si(R 3 )(R 4 )-O- in X of formula (3-T) are each independently an alkyl group bonded to Si, for example, a carbon number of 1 to 6. is an alkyl group.
R 5 of -N(R 5 )- in X of formula (3-T) is a hydrogen atom or an alkyl group bonded to N. The alkyl group is, for example, an alkyl group having 1 to 6 carbon atoms.
 式(3-T)中、Cyは、6~20員環の非芳香族の環状基であり、8~18員環の非芳香族の環状基が好ましい。なお、Cyは、12~20員環の非芳香族の環状基であってもよい。式(3-T)においてXは、Cyにおいて環を構成する原子に結合している。
 非芳香族の環状基における環を構成する原子としては、例えば、炭素原子、酸素原子、窒素原子、ケイ素原子などが挙げられる。
 環を構成する原子-原子間の結合は、単結合であってもよいし、二重結合であってもよいし、三重結合であってもよいが、単結合が好ましい。
 非芳香族の環状基における環としては、例えば、環状アルカン、環状エーテル、環状シロキサンなどが挙げられる。環状エーテルとしては、例えば、クラウンエーテルが挙げられる。例えば、12-クラウン-4において、環を構成する原子は、炭素原子及び酸素原子であり、員数は、12である。
 環は、単環であってもよいし、多環であってもよい。多環における環の数としては、例えば、2~4が挙げられる。
 多環において各環同士の結合の仕方には、例えば、以下の3通りが含まれる。
 ・1原子の共有:例えば、スピロ環化合物
 ・2原子の共有:デカリンのように2つの環が2つの原子を共有している場合
 ・橋かけ構造:ノルボルナンのように、2つの環が3つの原子以上を共有しているとみなせる場合
 なお、多環の場合、環を構成する原子の数をもってその員環数とする。例えば、ノルボルナンは7員環である。
 環を構成する原子には、水素原子の代わりにハロゲン原子、又は炭素数1~6のアルキル基が結合していてもよい。ハロゲン原子としては、例えば、フッ素原子、塩素原子などが挙げられる。
In formula (3-T), Cy is a 6- to 20-membered non-aromatic cyclic group, preferably an 8- to 18-membered non-aromatic cyclic group. Note that Cy may be a 12- to 20-membered non-aromatic cyclic group. In formula (3-T), X is bonded to an atom constituting a ring in Cy.
Examples of the atoms constituting the ring in the non-aromatic cyclic group include carbon atoms, oxygen atoms, nitrogen atoms, and silicon atoms.
The bond between the atoms constituting the ring may be a single bond, a double bond, or a triple bond, but a single bond is preferable.
Examples of the ring in the non-aromatic cyclic group include cyclic alkanes, cyclic ethers, and cyclic siloxanes. Examples of the cyclic ether include crown ether. For example, in 12-crown-4, the atoms constituting the ring are carbon atoms and oxygen atoms, and the number of members is 12.
The ring may be monocyclic or polycyclic. Examples of the number of rings in the polycycle include 2 to 4.
For example, the following three ways are included in how the rings are bonded to each other in a polycyclic ring.
・One-atom sharing: For example, spiro ring compounds ・Two-atom sharing: When two rings share two atoms, such as in decalin ・Bridging structure: When two rings share three atoms, such as in norbornane Cases in which more than one atom is considered to be in common In the case of a polycyclic ring, the number of ring members is determined by the number of atoms that make up the ring. For example, norbornane is a 7-membered ring.
A halogen atom or an alkyl group having 1 to 6 carbon atoms may be bonded to the atoms constituting the ring instead of a hydrogen atom. Examples of the halogen atom include a fluorine atom and a chlorine atom.
Figure JPOXMLDOC01-appb-C000068
(式(4)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子又は下記式(4-X)を表す。ただし、3つのXの少なくとも一つは式(4-X)を表す。)
Figure JPOXMLDOC01-appb-C000068
(In formula (4), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms, and 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).)
Figure JPOXMLDOC01-appb-C000069
(式(4-X)中、Yは単結合、-O-、-S-又は-N(R)-(RはNに結合する、水素原子又は炭素数1~4のアルキル基を表す。)を表し、*は結合部位を示す。R、R、及びRは、それぞれ独立して、炭素数1~6のアルキル基又は置換基を有していてもよい芳香族炭化水素基を表す。)
Figure JPOXMLDOC01-appb-C000069
(In formula (4-X), Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site. R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent. )
 式(4)中のRにおける脂肪族炭化水素基の炭素数は1~10であり、炭素数1~8であってもよいし、炭素数1~6であってもよいし、炭素数1~4であってもよい。 The aliphatic hydrocarbon group in R 1 in formula (4) has 1 to 10 carbon atoms, may have 1 to 8 carbon atoms, may have 1 to 6 carbon atoms, or may have 1 to 6 carbon atoms. It may be 1 to 4.
 式(4-X)中のR、R、及びRにおける炭素数1~6のアルキル基としては、例えば、炭素数1~5のアルキル基であってもよいし、炭素数1~4のアルキル基であってもよい。これらアルキル基は、直鎖構造であってもよいし、分岐構造であってもよい。 The alkyl group having 1 to 6 carbon atoms in R 2 , R 3 , and R 4 in formula (4-X) may be, for example, an alkyl group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. 4 may be an alkyl group. These alkyl groups may have a linear structure or a branched structure.
 式(4-X)中のR、R、及びRにおける芳香族炭化水素基は、無置換であってもよいし、水素原子が置換基により置換されていてもよい。
 置換基を有していてもよい芳香族炭化水素基の置換基としては、例えば、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロゲン化アルキル基、炭素数1~4のハロゲン化アルコキシ基などが挙げられる。ハロゲン化アルキル基、およびハロゲン化アルコキシ基におけるハロゲン化は、全ハロゲン化であってもよいし、一部のハロゲン化であってもよい。ハロゲン原子としては、例えば、フッ素原子、塩素原子などが挙げられる。
 置換基を有していてもよい芳香族炭化水素基の芳香族炭化水素基としては、例えば、フェニル基、ナフチル基が挙げられる。
 芳香族炭化水素基における置換基の数としては、特に限定されない。
The aromatic hydrocarbon groups represented by R 2 , R 3 , and R 4 in formula (4-X) may be unsubstituted, or the hydrogen atoms may be substituted with a substituent.
Examples of the substituent of the aromatic hydrocarbon group which may have a substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen having 1 to 4 carbon atoms. Examples include alkyl groups, halogenated alkoxy groups having 1 to 4 carbon atoms, and the like. The halogenation in the halogenated alkyl group and the halogenated alkoxy group may be complete halogenation or partial halogenation. Examples of the halogen atom include a fluorine atom and a chlorine atom.
Examples of the aromatic hydrocarbon group which may have a substituent include a phenyl group and a naphthyl group.
The number of substituents in the aromatic hydrocarbon group is not particularly limited.
 式(4)において、式(4-X)は1つ以上であり、1つであってもよいし、2つであってもよいし、3つであってもよい。
 式(4)において、3つのXはそれぞれ独立している。そのため、式(4)において、式(4-X)が2つ以上の場合、2つ以上の式(4-X)は、同じ構造であってもよいし、異なる構造であってもよい。
In formula (4), formula (4-X) is one or more, and may be one, two, or three.
In formula (4), the three X's are each independent. Therefore, in formula (4), when there are two or more formulas (4-X), the two or more formulas (4-X) may have the same structure or different structures.
 式(4-X)において、R、R、およびRの少なくとも一つは、置換基を有していてもよい芳香族炭化水素基であってもよい。そのため、式(4-X)において、R、R、およびRの一つが置換基を有していてもよい芳香族炭化水素基であってもよいし、R、R、およびRの二つが置換基を有していてもよい芳香族炭化水素基であってもよし、R、R、およびRの三つが置換基を有していてもよい芳香族炭化水素基であってもよい。 In formula (4-X), at least one of R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. Therefore, in formula (4-X), one of R 2 , R 3 , and R 4 may be an aromatic hydrocarbon group that may have a substituent, and R 2 , R 3 , and Two of R 4 may be an aromatic hydrocarbon group which may have a substituent, or three of R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. It may be a base.
Figure JPOXMLDOC01-appb-C000070
(式(5)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、R~Rはそれぞれ独立して単結合、又は結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、X及びXはそれぞれ独立して水素原子、又は置換基を有していてもよい芳香族炭化水素基を表し、RとRとR及びRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、R及びRの合計炭素数は1以上である。)
Figure JPOXMLDOC01-appb-C000070
(In formula (5), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted. represents an alkylene group of 1 to 6, Ar represents an aromatic hydrocarbon group that may have a substituent, and X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together. The total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.)
 式(5)中のR~Rにおいて、結合基が挿入されている炭素数1~6のアルキレン基とは、炭素数1~6のアルキレン基内の炭素-炭素間に結合基が挿入されている2価基、又は炭素数1~6のアルキレン基とそれに結合する炭素原子との間に結合基が挿入されている2価の基を意味する。
 結合基としては、例えば、炭素-炭素不飽和結合、エーテル結合(-O-)、エステル結合(-COO-又は-OCO-)、アミド結合(-CONH-又は-NHCO-)などが挙げられる。不飽和結合としては、例えば、炭素-炭素二重結合などが挙げられるが、結合基が挿入されている炭素数1~6のアルキレン基は、その末端にではなく、内部に炭素-炭素二重結合を有する方が好ましい。
 結合基が挿入されていてもよい炭素数1~6のアルキレン基としては、例えば、炭素数1~6のアルキレン基、炭素数1~6のオキシアルキレン基などが挙げられる。炭素数1~6のオキシアルキレン基における酸素原子は、例えば、式(5)中のM、R、R、及びRに結合する炭素原子と結合する。
 炭素数1~6のアルキレン基は、直鎖アルキレン基であってもよいし、分岐アルキレン基であってもよいし、環状アルキレン基であってもよい。
In R 1 to R 3 in formula (5), an alkylene group having 1 to 6 carbon atoms into which a bonding group is inserted is an alkylene group having a bonding group inserted between carbon atoms in the alkylene group having 1 to 6 carbon atoms. or a divalent group in which a bonding group is inserted between an alkylene group having 1 to 6 carbon atoms and a carbon atom bonded thereto.
Examples of the bonding group include a carbon-carbon unsaturated bond, an ether bond (-O-), an ester bond (-COO- or -OCO-), and an amide bond (-CONH- or -NHCO-). Examples of unsaturated bonds include carbon-carbon double bonds, but alkylene groups with 1 to 6 carbon atoms into which a bonding group is inserted have a carbon-carbon double bond inside, not at the end. It is preferable to have a bond.
Examples of the alkylene group having 1 to 6 carbon atoms into which a bonding group may be inserted include alkylene groups having 1 to 6 carbon atoms, oxyalkylene groups having 1 to 6 carbon atoms, and the like. The oxygen atom in the oxyalkylene group having 1 to 6 carbon atoms is bonded to, for example, the carbon atom bonded to M, R 1 , R 2 , and R 3 in formula (5).
The alkylene group having 1 to 6 carbon atoms may be a straight chain alkylene group, a branched alkylene group, or a cyclic alkylene group.
 式(5)のX及びXにおける置換基を有していてもよい芳香族炭化水素基としては、例えば、置換基を有していてもよいフェニル基、ナフチル基などが挙げられる。
 置換基としては、例えば、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロゲン化アルキル基、炭素数1~4のハロゲン化アルコキシ基などが挙げられる。ハロゲン化アルキル基、およびハロゲン化アルコキシ基におけるハロゲン化は、全ハロゲン化であってもよいし、一部のハロゲン化であってもよい。ハロゲン原子としては、例えば、フッ素原子、塩素原子などが挙げられる。
Examples of the aromatic hydrocarbon group which may have a substituent in X 1 and X 2 of formula (5) include a phenyl group, a naphthyl group, and the like which may have a substituent.
Examples of the substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogenated alkyl group having 1 to 4 carbon atoms, a halogenated alkoxy group having 1 to 4 carbon atoms, etc. can be mentioned. The halogenation in the halogenated alkyl group and the halogenated alkoxy group may be complete halogenation or partial halogenation. Examples of the halogen atom include a fluorine atom and a chlorine atom.
 式(5)中のRとしては、例えば、単結合、炭素数1~6のアルキレン基などが挙げられる。炭素数1~6のアルキレン基としては、より具体的には炭素数1~6の直鎖アルキレン基が挙げられる。
 式(5)中のRとしては、例えば、単結合、炭素数1~6のアルキレン基などが挙げられる。炭素数1~6のアルキレン基としては、より具体的には炭素数1~6の直鎖アルキレン基が挙げられる。
 式(5)中のRとしては、例えば、単結合、炭素数1~6のアルキレン基などが挙げられる。炭素数1~6のアルキレン基としては、より具体的には炭素数1~6の直鎖アルキレン基が挙げられる。
 式(5)中のXとしては、例えば、水素原子、フェニル基などが挙げられる。
 式(5)中のXとしては、例えば、水素原子、フェニル基などが挙げられる。
 式(5)中のArは、例えば、フェニル基などが挙げられる。
Examples of R 1 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
Examples of R 2 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
Examples of R 3 in formula (5) include a single bond and an alkylene group having 1 to 6 carbon atoms. More specifically, the alkylene group having 1 to 6 carbon atoms includes a straight chain alkylene group having 1 to 6 carbon atoms.
Examples of X 1 in formula (5) include a hydrogen atom and a phenyl group.
Examples of X 2 in formula (5) include a hydrogen atom and a phenyl group.
Ar in formula (5) includes, for example, a phenyl group.
 式(5)中のR、RおよびRの合計炭素数は1以上であれば、特に限定されないが、2以上であってもよい。
 また、式(5)中のR、R、およびRの合計炭素数は、例えば、18以下であってもよいし、15以下であってもよいし、10以下であってもよい。
 また、式(5)中のX及びXが水素原子の場合、R、R、およびRの合計炭素数は1以上であれば、特に限定されないが、2以上であってもよい。
 なお、式(5)中のX及びXの少なくともいずれかが置換基を有していてもよい芳香族炭化水素基の場合、R、R、およびRの合計炭素数は0であってもよい。
The total carbon number of R 1 X 1 , R 2 X 2 and R 3 in formula (5) is not particularly limited as long as it is 1 or more, but may be 2 or more.
Further, the total carbon number of R 1 , R 2 , and R 3 in formula (5) may be, for example, 18 or less, 15 or less, or 10 or less. .
Further, when X 1 and X 2 in formula (5) are hydrogen atoms, the total number of carbon atoms in R 1 , R 2 , and R 3 is not particularly limited as long as it is 1 or more, but even if it is 2 or more, good.
In addition, when at least one of X 1 and X 2 in formula (5) is an aromatic hydrocarbon group which may have a substituent, the total carbon number of R 1 , R 2 , and R 3 is 0. It may be.
 式(5)において、RとRとRおよびRに結合する炭素原子とが一緒になって形成する環としては、例えば、結合基が挿入されていてもよい炭素数3~13の炭化水素環が挙げられる。結合基は、前述のとおりである。 In formula (5), the ring formed by R 1 X 1 , R 2 X 2 , and the carbon atoms bonded to R 1 X 1 and R 2 Examples include hydrocarbon rings having 3 to 13 carbon atoms, which may be optional. The binding group is as described above.
 上記化合物の構造を用いることで電圧OFF時の高速応答化、焼き付きの低減、低温環境における高いバックライト透過率と低電圧駆動が実現しやすい。 By using the structure of the above compound, it is easy to achieve high-speed response when the voltage is turned off, reduced burn-in, high backlight transmittance in a low-temperature environment, and low-voltage driving.
 ブロックセグメント(A)は主に薄膜状態で液晶に膨潤され、弱アンカリング膜を形成する役割を担う。ブロックセグメント(A)の分子量に応じて弱アンカリング膜の物性が大きく異なるため、分子量の最適化が必要ではないが重要となる。良好な弱アンカリング膜を形成する観点で好ましいブロックセグメント(A)の分子量は1,000~100,000であり、より好ましくは3,000~50,000である。なお、この分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の数平均分子量(Mn)である。また、GPCにより測定したポリスチレン換算の重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布PDI(Mw/Mn)は、好ましくは3.0以下であり、より好ましくは2.0以下である。 The block segment (A) is mainly swollen by the liquid crystal in a thin film state and plays the role of forming a weak anchoring film. Since the physical properties of the weak anchoring film vary greatly depending on the molecular weight of the block segment (A), optimization of the molecular weight is not necessary but is important. From the viewpoint of forming a good weak anchoring film, the molecular weight of the block segment (A) is preferably 1,000 to 100,000, more preferably 3,000 to 50,000. Note that this molecular weight is a number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC). Further, the molecular weight distribution PDI (Mw/Mn), which is expressed as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) in terms of polystyrene measured by GPC, is preferably 3.0 or less, and more preferably is 2.0 or less.
 ブロックセグメント(A)は上記化合物の単独ポリマーでも良く、複数の化合物を組み合わせて使用することができる。組み合わせる場合、ランダム共重合でも良く、ブロック共重合でも良い。液晶に相溶する化合物種と組み合わせる場合は、組み合わせ方法に依らずその比率は特に限定されない。以下で説明する液晶に不溶化する化合物種と組み合わせる場合は、特性維持の観点で液晶に不溶化する化合物種の好ましい組み合わせ比率は30モル%以下であり、より好ましくは20モル%以下であるが限定はしない。これら組み合わせ方法や組み合わせる化合物種、組み合わせ比率は目的とする物性や表示特性、電気特性等が得られる範囲で使用するのが好ましい。 The block segment (A) may be a single polymer of the above compounds, or a combination of multiple compounds may be used. When used in combination, random copolymerization or block copolymerization may be used. When combining with a compound species that is compatible with liquid crystal, the ratio is not particularly limited regardless of the combination method. When combined with a compound species that becomes insolubilized in liquid crystal as described below, from the viewpoint of maintaining properties, the preferred combination ratio of compound species that becomes insolubilized in liquid crystal is 30 mol% or less, more preferably 20 mol% or less, but there are no limitations. do not. It is preferable to use these combination methods, the types of compounds to be combined, and the combination ratio within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
 ブロックセグメント(B)は薄膜状態において膜の安定性に寄与する。 The block segment (B) contributes to the stability of the film in a thin film state.
 ブロックセグメント(B)は、好ましくは、トリアルコキシシリル基、イソシアネート基、ブロックイソシアネート基、エポキシ基、オキセタン基、ビニル基、アリル基、オキサゾリン基、アミノ基、保護アミノ基、アニリン基、保護アニリン基、ヒドロキシ基、保護ヒドロキシ基、フェノール基、保護フェノール基、チオール基、保護チオール基、チオフェノール基、保護チオフェノール基、アルデヒド基、カルボキシ基、マレイミド基、N-ヒドロキシスクシンイミドエステル基、結合基が挿入されていてもよい炭素数5~18の芳香族炭化水素基、結合基が挿入されていてもよい炭素数5~18の芳香族複素環基、桂皮酸基、桂皮酸芳香族エステル基、桂皮酸アルキルエステル基、シンナミル基、フェニルベンゾエート基、アゾベンゼン基、N-ベンジリデンアニリン基、スチルベン基、及びトラン基からなる群から選択される少なくとも一種の官能基を有する側鎖構造を有する。結合基の具体例としては、式(2)の説明において挙げた結合基の具体例などが挙げられる。
 その場合、ブロックセグメント(B)は、例えば、上記官能基と、重合可能な不飽和炭化水素基を有する重合性基とを有する重合性化合物を、構成成分として含む。
Block segment (B) is preferably a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group. , hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may be inserted, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted, cinnamic acid group, cinnamic acid aromatic ester group, It has a side chain structure having at least one functional group selected from the group consisting of a cinnamic acid alkyl ester group, a cinnamyl group, a phenylbenzoate group, an azobenzene group, an N-benzylideneaniline group, a stilbene group, and a tolan group. Specific examples of the bonding group include the specific examples of the bonding group listed in the explanation of formula (2).
In that case, the block segment (B) contains, for example, a polymerizable compound having the above functional group and a polymerizable group having a polymerizable unsaturated hydrocarbon group as a constituent component.
 ブロックセグメント(B)の形成に使用される重合性化合物の一例は下記式(6)で表される。 An example of the polymerizable compound used to form the block segment (B) is represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000071
(式(6)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、nは1~2の整数である。Zは下記式(6-Z)で表される基を表す。nが2の場合、2つのZは同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000071
(In formula (6), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and n is an integer of 1 to 2. Z represents a group represented by the following formula (6-Z). (If n is 2, the two Zs may be the same or different.)
Figure JPOXMLDOC01-appb-C000072
(式(6-Z)中、Lはトリアルコキシシリル基、イソシアネート基、ブロックイソシアネート基、エポキシ基、オキセタン基、ビニル基、アリル基、オキサゾリン基、アミノ基、保護アミノ基、アニリン基、保護アニリン基、ヒドロキシ基、保護ヒドロキシ基、フェノール基、保護フェノール基、チオール基、保護チオール基、チオフェノール基、保護チオフェノール基、アルデヒド基、カルボキシ基、マレイミド基、N-ヒドロキシスクシンイミドエステル基、結合基が挿入されていてもよい炭素数5~18の芳香族炭化水素基、結合基が挿入されていてもよい炭素数5~18の芳香族複素環基、桂皮酸基、桂皮酸芳香族エステル基、桂皮酸アルキルエステル基、シンナミル基、フェニルベンゾエート基、アゾベンゼン基、N-ベンジリデンアニリン基、スチルベン基、及びトラン基からなる群から選択される官能基を表す。Jは単結合又は炭素数1~6の脂肪族炭化水素基を表す。Kは、芳香族炭化水素基と結合する場合、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、及びチオエーテル結合から選ばれる連結基を示し、それ以外の場合は、単結合を示す。*は結合部位を表す。mは1~3の整数である。mが2又は3の場合、複数のK及びLは同一であってもよいし、異なっていてもよい。ただし、Jが単結合の場合、mは1である。)
Figure JPOXMLDOC01-appb-C000072
(In formula (6-Z), L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinnamic acid aromatic ester group , a cinnamic acid alkyl ester group, a cinnamyl group, a phenylbenzoate group, an azobenzene group, an N-benzylideneaniline group, a stilbene group, and a tolan group. J is a single bond or has 1 to 1 carbon atoms. 6 represents an aliphatic hydrocarbon group.When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, an ether bond, an ester bond, an amide bond, a urea bond, a urethane bond, and a thioether bond. In other cases, it indicates a single bond. * represents a binding site. m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same. (However, if J is a single bond, m is 1.)
 ブロックセグメント(B)は液晶に相溶しない若しくは焼成することで液晶に相溶しなくなる側鎖構造を有する。ブロックセグメント(B)の形成に用いる液晶に相溶しない化合物種としては、高極性な化合物種や剛直な構造を有する化合物種が挙げられ、ブロックセグメント(B)の形成に用いる焼成することで液晶に相溶しなくなる化合物種としては、熱硬化性の化合物種が挙げられる。 The block segment (B) has a side chain structure that is not compatible with the liquid crystal or becomes incompatible with the liquid crystal upon firing. Compounds that are incompatible with the liquid crystal used to form the block segment (B) include highly polar compounds and compounds with a rigid structure. Examples of the compound species that are no longer compatible with the thermosetting compound species include thermosetting compound species.
 ブロックセグメント(B)の形成に使用される重合性化合物の一例は、重合可能な不飽和炭化水素基を有する重合性基と、高極性な構造とを有する化合物である。
 上記の高極性な構造は以下の構造が好ましい。ただし、これらに限定されるものではない。
An example of the polymerizable compound used to form the block segment (B) is a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a highly polar structure.
The above highly polar structure preferably has the following structure. However, it is not limited to these.
Figure JPOXMLDOC01-appb-C000073
(X、及びYはそれぞれ独立して酸素原子又は硫黄原子を表す。R及びRはそれぞれ独立に単結合又は炭素数1~18のアルキレン基を表す。Rは炭素数1~18のアルキル基を表す。A、A及びAのうち1つはNを表し、残り2つはCHを表す。A及びAのうち1つはNを表し、残り1つはCHを表す。*は結合部位を表し、nは0~4の整数を表す。)
Figure JPOXMLDOC01-appb-C000073
(X and Y each independently represent an oxygen atom or a sulfur atom. R 1 and R 2 each independently represent a single bond or an alkylene group having 1 to 18 carbon atoms. R 3 represents an alkylene group having 1 to 18 carbon atoms. Represents an alkyl group. One of A 1 , A 2 and A 3 represents N, and the remaining two represent CH. One of A 4 and A 5 represents N, and the remaining one represents CH. (* represents the binding site, and n represents an integer from 0 to 4.)
 ブロックセグメント(B)の形成に使用される重合性化合物の一例は、重合可能な不飽和炭化水素基を有する重合性基と、剛直な構造とを有する化合物である。
 上記の剛直な構造は以下の構造が好ましい。ただし、これらに限定されるものではない。
An example of the polymerizable compound used to form the block segment (B) is a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a rigid structure.
The above rigid structure preferably has the following structure. However, it is not limited to these.
Figure JPOXMLDOC01-appb-C000074
(X、Y、及びZはそれぞれ独立して酸素原子又は硫黄原子を表す。R及びRはそれぞれ独立して単結合又は炭素数1~18のアルキレン基を表す。Rは炭素数1~18のアルキル基を表す。*は結合部位を表し、nは1~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000074
(X, Y, and Z each independently represent an oxygen atom or a sulfur atom. R 1 and R 2 each independently represent a single bond or an alkylene group having 1 to 18 carbon atoms. R 3 represents a carbon number 1 ~18 represents an alkyl group. * represents a bonding site, n represents an integer from 1 to 5.)
 ブロックセグメント(B)の形成に使用される重合性化合物の一例は、重合可能な不飽和炭化水素基を有する重合性基と、熱硬化性の構造とを有する化合物である。
 上記の熱硬化性の構造は以下の構造が好ましい。ただし、これらに限定されるものではない。
An example of the polymerizable compound used to form the block segment (B) is a compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a thermosetting structure.
The above thermosetting structure preferably has the following structure. However, it is not limited to these.
Figure JPOXMLDOC01-appb-C000075
(X、Y及びZはそれぞれ独立して酸素原子又は硫黄原子を表す。R、R及びRはそれぞれ独立して、炭素数1~18のアルキル基を表す。R及びRはそれぞれ独立して単結合又は炭素数1~18のアルキレン基を表す。*は結合部位を表し、nは0~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000075
(X, Y and Z each independently represent an oxygen atom or a sulfur atom. R 1 , R 2 and R 3 each independently represent an alkyl group having 1 to 18 carbon atoms. R 4 and R 5 are Each independently represents a single bond or an alkylene group having 1 to 18 carbon atoms. * represents a bonding site, and n represents an integer from 0 to 5.)
 本発明において、重合可能な不飽和炭化水素基を有する重合性基としては、以下の構造が好ましい。 In the present invention, the following structures are preferred as the polymerizable group having a polymerizable unsaturated hydrocarbon group.
Figure JPOXMLDOC01-appb-C000076
(式中、R、及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、X、Y、及びZはそれぞれ独立して酸素原子又は硫黄原子を表す。*、*及び*は結合部位を表し、*及び*のどちらか一方は水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基で置き換えられていてもよい。nは1~5の整数を表す。)
Figure JPOXMLDOC01-appb-C000076
(In the formula, R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and X, Y, and Z each independently represent an oxygen atom or a sulfur atom. *, * 1 and * 2 represent bonding sites, and either one of * 1 and * 2 may be replaced with a hydrogen atom or a straight chain or branched alkyl group having 1 to 12 carbon atoms. n is Represents an integer from 1 to 5.)
 ブロックセグメント(B)は主に薄膜状態における安定化を担い、弱アンカリング膜の物性に大きく関与しない。ブロックセグメント(B)によって膜の安定性が補完されていれば良く、膜の安定性が補完できる最適な分子量は用いる化合物種に応じて異なるため特に限定されない。また、用いる化合物種によっては溶媒選択性や塗布性にメリットを出せるため、用途や目的に合わせて、ブロックセグメント(B)を構成する化合物種とその分子量を制御するのが良い。 The block segment (B) is mainly responsible for stabilizing the thin film state and does not significantly affect the physical properties of the weak anchoring film. It is sufficient that the block segment (B) complements the stability of the membrane, and the optimal molecular weight that can complement the stability of the membrane is not particularly limited because it varies depending on the type of compound used. Further, depending on the type of compound used, advantages can be obtained in solvent selectivity and coating properties, so it is preferable to control the type of compound constituting the block segment (B) and its molecular weight depending on the use and purpose.
 ブロックセグメント(B)は上記の重合性化合物を単独で使用してもよく、複数の化合物を組み合わせて使用してもよい。前記の通りブロックセグメント(B)はあくまで膜の安定性に寄与するブロックセグメントであって、弱アンカリング特性に大きく関与しないため、膜の安定化が補完されていれば組み合わせる化合物種や組み合わせる方法は特に限定されない。 For the block segment (B), the above polymerizable compounds may be used alone, or a plurality of compounds may be used in combination. As mentioned above, the block segment (B) is a block segment that only contributes to the stability of the membrane, and does not significantly contribute to the weak anchoring properties. Therefore, as long as the stabilization of the membrane is complemented, the type of compound to be combined and the method of combination are Not particularly limited.
 重合体Aの一実施形態は液晶に相溶するブロックセグメント(A)と液晶に不溶あるいは不溶化するブロックセグメント(B)を有する共重合体であることを特徴とするが、ブロックの数は限定せず、例えば(A)-(B)-(A)のように複数のブロックセグメントを有する構成でも良く、このブロックセグメントの数や組み合わせは特に限定はしない。また電気特性を付与するブロックセグメントの導入なども行うことができる。一方で合成のしやすさなどの観点から、ブロックセグメントの数は2~4程度が好ましく、膜の安定性の観点から重合体の終端のブロックセグメントはブロックセグメント(B)となるのが好ましい。 One embodiment of the polymer A is characterized in that it is a copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is insoluble or insoluble in the liquid crystal, but the number of blocks is not limited. First, a configuration having a plurality of block segments, such as (A)-(B)-(A), for example, may be used, and the number and combination of block segments are not particularly limited. It is also possible to introduce block segments that impart electrical properties. On the other hand, from the viewpoint of ease of synthesis, the number of block segments is preferably about 2 to 4, and from the viewpoint of membrane stability, the terminal block segment of the polymer is preferably block segment (B).
 上記の通り、液晶に相溶するブロックセグメント(A)が弱アンカリング特性を司り、ブロックセグメント(A)の分子量が特性に大きく影響するため、ブロックセグメント(A)とブロックセグメント(B)との分子量比率は限定されない。 As mentioned above, the block segment (A) that is compatible with the liquid crystal controls weak anchoring properties, and the molecular weight of the block segment (A) greatly affects the properties. The molecular weight ratio is not limited.
 重合体Aは、例えば、リビング重合によって得ることができる。リビング重合とは重合反応中に連鎖移動反応や停止反応などの副反応が伴わない重合反応であり、分子量分布が狭く、構造が高度に制御されたポリマーを得ることができる。例えば重合活性部位にドーマント種と呼ばれる安定な共有結合種を導入することで活性部位の失活を抑え、連鎖移動反応や停止反応などの副反応を発生させないようにする方法が挙げられる。リビング重合には活性種にラジカルを用いたもの、カチオンを用いたもの、アニオンを用いたものが挙げられ、用いる重合性化合物の構造や性質によって使い分けることが重要である。
 重合体Aであるブロックポリマーを得る際、重合法は特に限定する必要は無いが、カチオン重合やアニオン重合は活性種を発生させる際にアルカリ金属や金属錯体、ハロゲン化合物を使用することが多く、液晶ディスプレイにおいては金属等の残渣やハロゲン化合物等の混入は焼き付きや表示不良の要因と成りえるため、極力金属やハロゲン化合物を使用しないラジカル重合の使用が好ましい。リビングラジカル重合としてはニトロキシドをドーマント種として使用するリビングラジカル重合(NMP)や、金属錯体を用いる原子移動ラジカル重合(ATRP)、硫黄化合物をドーマントとして使用する可逆的付加・脱離連鎖移動重合(RAFT重合)、有機テルル化合物等を用いるリビングラジカル重合(TERP)、ドーマント種にヨウ化アルキル化合物を使用し、リン化合物やアルコール等を触媒として使用する可逆移動触媒重合(RTCP)等があげられ、好ましい重合法としてはNMPやRTCP、RAFT重合等のリビングラジカル重合が挙げられ、特に好ましくはNMP若しくはRAFT重合である。
Polymer A can be obtained, for example, by living polymerization. Living polymerization is a polymerization reaction in which side reactions such as chain transfer reactions and termination reactions are not accompanied during the polymerization reaction, and it is possible to obtain a polymer with a narrow molecular weight distribution and a highly controlled structure. For example, one method is to suppress the deactivation of the active site by introducing a stable covalent species called a dormant species into the polymerization active site, thereby preventing the occurrence of side reactions such as chain transfer reactions and termination reactions. Living polymerizations include those using radicals, cations, and anions as active species, and it is important to select one depending on the structure and properties of the polymerizable compound used.
When obtaining the block polymer that is Polymer A, the polymerization method does not need to be particularly limited, but cationic polymerization and anionic polymerization often use alkali metals, metal complexes, and halogen compounds to generate active species. In liquid crystal displays, the incorporation of metal residues and halogen compounds can cause burn-in and display defects, so it is preferable to use radical polymerization that uses as few metals and halogen compounds as possible. Examples of living radical polymerization include living radical polymerization (NMP) using nitroxide as a dormant species, atom transfer radical polymerization (ATRP) using a metal complex, and reversible addition/elimination chain transfer polymerization (RAFT) using a sulfur compound as a dormant. Polymerization), living radical polymerization (TERP) using an organic tellurium compound, etc., and reversible transfer catalytic polymerization (RTCP) using an alkyl iodide compound as a dormant species and using a phosphorus compound, alcohol, etc. as a catalyst, etc. are preferred. Examples of the polymerization method include living radical polymerization such as NMP, RTCP, and RAFT polymerization, and NMP or RAFT polymerization is particularly preferred.
 NMPを用いる場合、使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、1,1’-ビス(tert-ブチルペルオキシ)シクロヘキサン、過酸化水素等が挙げられる。重合開始剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。ニトロキシドとしては、例えば下記式(N-1)~(N-12)で表される化合物が挙げられる。ニトロキシドの使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。上記重合における反応温度は、好ましくは20~200℃、より好ましくは40~150℃であり、反応時間は、好ましくは1~168時間、より好ましくは8~72時間である。 When using NMP, examples of the polymerization initiator include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1,1 Examples include '-bis(tert-butylperoxy)cyclohexane and hydrogen peroxide. The proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. Examples of the nitroxide include compounds represented by the following formulas (N-1) to (N-12). The proportion of nitroxide used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. The reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
 RTCPを用いる場合、使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、1,1’-ビス(tert-ブチルペルオキシ)シクロヘキサン、過酸化水素等が挙げられる。重合開始剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。
 ヨウ化物触媒としては、例えば下記式(P-1)~(P-7)で表される化合物が挙げられる。ヨウ化物触媒の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。また、水素化物触媒としては、例えば下記式(O-1)~(O-6)で表される化合物が挙げられる。水素化物触媒の使用割合は、使用するモノマー1モル部に対して、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。通常、上記重合における反応温度は、好ましくは20~200℃、より好ましくは40~150℃であり、反応時間は、好ましくは1~168時間、より好ましくは8~72時間である。
When using RTCP, examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1,1 Examples include '-bis(tert-butylperoxy)cyclohexane and hydrogen peroxide. The proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used.
Examples of the iodide catalyst include compounds represented by the following formulas (P-1) to (P-7). The proportion of the iodide catalyst used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. Furthermore, examples of the hydride catalyst include compounds represented by the following formulas (O-1) to (O-6). The proportion of the hydride catalyst used is 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. Usually, the reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
 RAFT重合を用いる場合、使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、1,1’-ビス(tert-ブチルペルオキシ)シクロヘキサン、過酸化水素等が挙げられる。重合開始剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。連鎖移動剤(RAFT剤)としては、トリチオカーボナート、ジチオベンゾアート、ジチオカルバマート、キサンタートが好ましく、具体例としては、下記式(R-1)~(R-24)で表される化合物が挙げられる。連鎖移動剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。上記重合における反応温度は、好ましくは20~200℃、より好ましくは40~150℃であり、反応時間は、好ましくは1~168時間、より好ましくは8~72時間である。 When using RAFT polymerization, examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1, Examples include 1'-bis(tert-butylperoxy)cyclohexane and hydrogen peroxide. The proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. As the chain transfer agent (RAFT agent), trithiocarbonate, dithiobenzoate, dithiocarbamate, and xanthate are preferable, and specific examples include compounds represented by the following formulas (R-1) to (R-24). can be mentioned. The proportion of the chain transfer agent used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. The reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
Figure JPOXMLDOC01-appb-C000080
 式中、Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000080
In the formula, Me represents a methyl group.
 RAFT重合においてリビングラジカル性が発現するのは、リビング鎖の大部分がドーマント型(休止型)であるように、成長するラジカル種を可逆的に不活性化できる化合物が存在し、活性鎖とドーマント鎖との間に速い平衡が存在するためである。 Living radical properties are expressed in RAFT polymerization because most of the living chains are in the dormant type (dormant type), and there are compounds that can reversibly inactivate the growing radical species. This is because a fast equilibrium exists between the chains.
 RAFT重合を用いることで、高分子末端制御、高度な分子量制御や分子量分布制御が可能となる。 By using RAFT polymerization, it is possible to control polymer terminals, advanced molecular weight control, and molecular weight distribution control.
 RAFT重合を用いて、機能性高分子を精密に合成するためには、モノマーの反応性を考慮して適切な連鎖移動剤を選択する必要がある。 In order to precisely synthesize a functional polymer using RAFT polymerization, it is necessary to select an appropriate chain transfer agent in consideration of the reactivity of the monomer.
 RAFT重合において、成長末端に存在するRAFT末端を熱的、化学的に改質することで高分子末端を制御できる。熱的に改質する場合、使用したRAFT剤が熱分解する温度以上で加熱することで末端を不飽和炭化水素基に改質できる。また、化学的に改質する場合、第一級アミン、第二級アミンなどに接触させることでアミノリシスを伴い、末端をチオール結合に改質できる。さらに、新たなモノマーおよびラジカル発生剤と接触させることで末端に新たなブロックセグメントを設けることが可能である。 In RAFT polymerization, polymer terminals can be controlled by thermally and chemically modifying the RAFT terminals present at the growing terminals. In the case of thermal modification, the terminal can be modified into an unsaturated hydrocarbon group by heating at a temperature higher than the temperature at which the RAFT agent used is thermally decomposed. In addition, in the case of chemical modification, the terminal can be modified into a thiol bond by bringing it into contact with a primary amine, secondary amine, etc., accompanied by aminolysis. Furthermore, it is possible to provide a new block segment at the end by bringing it into contact with a new monomer and a radical generator.
 RAFT重合において、下記式(eq1)を用いることで分子量制御が可能である。具体的には、数平均分子量(Mn)はモノマーのモル濃度と連鎖移動剤のモル濃度の比に伴い線形的に変化するため分子量制御が可能となる。
Figure JPOXMLDOC01-appb-M000081
(上記式(eq1)中、Mn(theor)は重合体の分子量を表し、[Monomer]はモノマーのモル濃度を表し、[CTA]は連鎖移動剤のモル濃度を表し、Mmonomerはモノマーの分子量を表し、conv.は重合転化率を表し、MCTAは連鎖移動剤の分子量を表す。)
In RAFT polymerization, molecular weight control is possible by using the following formula (eq1). Specifically, the number average molecular weight (Mn) changes linearly with the ratio of the molar concentration of the monomer to the molar concentration of the chain transfer agent, making it possible to control the molecular weight.
Figure JPOXMLDOC01-appb-M000081
(In the above formula (eq1), Mn (theor) represents the molecular weight of the polymer, [Monomer] 0 represents the molar concentration of the monomer, [CTA] 0 represents the molar concentration of the chain transfer agent, and M monomer represents the molar concentration of the monomer. represents the molecular weight of the chain transfer agent, conv. represents the polymerization conversion rate, and MCTA represents the molecular weight of the chain transfer agent.)
 なお、上記重合により得られる共重合体が反応溶液中に溶解されている場合、該反応溶液をそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれる共重合体を単離したうえで液晶配向剤の調製に供してもよい。 In addition, when the copolymer obtained by the above polymerization is dissolved in the reaction solution, the reaction solution may be used as it is for preparing the liquid crystal aligning agent, or the copolymer contained in the reaction solution may be isolated. Then, it may be used for preparing a liquid crystal aligning agent.
 共重合体(重合体A)の合成に使用される有機溶媒としては、共重合体を構成する化合物種と化学反応しないものでかつラジカル捕捉しないものであれば良い。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチル-ε-カプロラクタム、N,N-ジエチルアセトアミド、N,N-ジプロピルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、N,N-ジエチルプロピオンアミド、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、シクロヘキサン、2-エチル-1-ヘキサノール、ベンゼン、キシレン、トルエン、エチルベンゼン、イソプロピルベンゼン、tert-ブチルベンゼン、テトラヒドロフラン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、ピルビン酸プロピル、ピルビン酸ブチル、ピルビン酸ペンチル、ピルビン酸ヘキシル、ピルビン酸-2-エチルヘキシル、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸ブチル、アセト酢酸ペンチル、アセト酢酸ヘキシル、アセト酢酸-2-エチルヘキシル、レブリン酸メチル、レブリン酸エチル、レブリン酸プロピル、レブリン酸ブチル、レブリン酸ペンチル、レブリン酸ヘキシル、レブリン酸-2-エチルヘキシル、マロン酸ジメチル、コハク酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチル、フタル酸ジメチル、マレイン酸ジメチル、マロン酸ジエチル、コハク酸ジエチル、グルタル酸ジエチル、アジピン酸ジエチル、フタル酸ジエチル、マレイン酸ジエチル、マロン酸ジプロピル、コハク酸ジプロピル、グルタル酸ジプロピル、アジピン酸ジプロピル、フタル酸ジプロピル、マレイン酸ジプロピル、マロン酸ジブチル、コハク酸ジブチル、グルタル酸ジブチル、アジピン酸ジブチル、フタル酸ジブチル、マレイン酸ジブチル、マロン酸ジペンチル、コハク酸ジペンチル、グルタル酸ジペンチル、アジピン酸ジペンチル、フタル酸ジペンチル、マレイン酸ジペンチル、マロン酸ジヘキシル、コハク酸ジヘキシル、グルタル酸ジヘキシル、アジピン酸ジヘキシル、フタル酸ジヘキシル、マレイン酸ジヘキシル、マロン酸ジ-2-エチルヘキシル、コハク酸-2-エチルヘキシル、グルタル酸-2-エチルヘキシル、アジピン酸-2-エチルヘキシル、フタル酸-2-エチルヘキシル、マレイン酸-2-エチルヘキシル(以下、「特定の有機溶媒」ともいう)等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。 The organic solvent used in the synthesis of the copolymer (polymer A) may be any solvent as long as it does not chemically react with the compound species constituting the copolymer and does not scavenge radicals. For example, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2-pyrrolidone, 1, 3-dimethyl-2-imidazolidinone, N-methyl-ε-caprolactam, N,N-diethylacetamide, N,N-dipropylacetamide, 3-methoxy-N,N-dimethylpropanamide, N,N-diethyl Propionamide, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl phosphoramide, γ-butyrolactone, isopropyl alcohol, methoxymethyl pentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl Isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), Propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, Dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, Tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4 -Dioxane, n-hexane, n-pentane, n-octane, cyclohexane, 2-ethyl-1-hexanol, benzene, xylene, toluene, ethylbenzene, isopropylbenzene, tert-butylbenzene, tetrahydrofuran, diethyl ether, cyclohexanone, ethylene Carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate , methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl -2-pentanone, 3-methoxy-N,N-dimethylpropanamide, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, propyl pyruvate, butyl pyruvate, pyruvin Pentyl acetoacetate, hexyl pyruvate, 2-ethylhexyl pyruvate, methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, butyl acetoacetate, pentyl acetoacetate, hexyl acetoacetate, 2-ethylhexyl acetoacetate, methyl levulinate, levulin Ethyl acid, propyl levulinate, butyl levulinate, pentyl levulinate, hexyl levulinate, 2-ethylhexyl levulinate, dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, dimethyl phthalate, dimethyl maleate, Diethyl malonate, diethyl succinate, diethyl glutarate, diethyl adipate, diethyl phthalate, diethyl maleate, dipropyl malonate, dipropyl succinate, dipropyl glutarate, dipropyl adipate, dipropyl phthalate, dipropyl maleate, malonic acid Dibutyl, dibutyl succinate, dibutyl glutarate, dibutyl adipate, dibutyl phthalate, dibutyl maleate, dipentyl malonate, dipentyl succinate, dipentyl glutarate, dipentyl adipate, dipentyl phthalate, dipentyl maleate, dihexyl malonate, Dihexyl succinate, dihexyl glutarate, dihexyl adipate, dihexyl phthalate, dihexyl maleate, di-2-ethylhexyl malonate, 2-ethylhexyl succinate, 2-ethylhexyl glutarate, 2-ethylhexyl adipate, phthalate Examples include 2-ethylhexyl acid and 2-ethylhexyl maleate (hereinafter also referred to as "specific organic solvent"). These organic solvents may be used alone or in combination.
(重合体B)
 重合体Bは、液晶に相溶する枝ポリマーと、液晶に相溶しない又は焼成により液晶に不相溶化する幹ポリマーとを有するグラフト共重合体である。なお、グラフト共重合体は、幹ポリマーによって、液晶に溶解しない又は焼成により液晶に不溶化する。
 枝ポリマーは、幹ポリマーの側鎖として幹ポリマーに結合している。
(Polymer B)
Polymer B is a graft copolymer having branch polymers that are compatible with liquid crystals and trunk polymers that are incompatible with liquid crystals or that become incompatible with liquid crystals upon firing. Note that the graft copolymer does not dissolve in the liquid crystal depending on the backbone polymer, or becomes insoluble in the liquid crystal upon baking.
The branch polymer is attached to the trunk polymer as a side chain of the trunk polymer.
 本出願人は、重合体Bを含む弱アンカリング液晶配向剤が、簡便に製造可能であり、塗布性が良好な弱アンカリング液晶配向剤であって、シールとの密着性が良好であり、プレチルト角の発生がなく、低電圧駆動と電圧OFF時の高速応答化が同時に実現できる弱アンカリング液晶配向膜が得られる弱アンカリング液晶配向剤であることを見出し、出願している(特願2021-156886、WO2023/048278。ここに引用されたことによって、この出願及び公開公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。)。 The present applicant has proposed that a weak anchoring liquid crystal aligning agent containing polymer B is a weak anchoring liquid crystal aligning agent that can be easily manufactured, has good coating properties, and has good adhesion to a seal, We have discovered that this is a weakly anchoring liquid crystal aligning agent that does not generate a pretilt angle and can provide a weakly anchoring liquid crystal aligning film that simultaneously achieves low voltage drive and high-speed response when voltage is turned off, and has filed a patent application. 2021-156886, WO2023/048278. By reference herein, the contents of this application and publication are incorporated herein to the same extent as if expressly set forth in their entirety.)
 グラフト共重合体は、枝分かれ構造を有するポリマーの総称であり、「幹」に対応するポリマーと幹の側鎖として幹に結合した「枝」に対応するポリマーとを同時に有するポリマーを指す。本発明の液晶配向剤の一実施形態には重合体Bとしてグラフト共重合体が使用されるが、グラフト共重合体は、液晶に相溶する枝ポリマーと、液晶に相溶しない又は焼成により液晶に不相溶化する幹ポリマーとを有する。すなわち、液晶に相溶する枝ポリマーが液晶と相溶し膨潤することにより弱アンカリング状態形成に寄与しつつ、幹ポリマーによってグラフト共重合体が液晶に溶解しない又は焼成により液晶に不溶化することで、液晶へのグラフト共重合体の溶出を防ぎ、かつ基板への固着やポリマー同士の架橋、シール成分と架橋することにより、膜硬度やシール密着強度に優れた弱アンカリング液晶表示素子を得ることができる。 Graft copolymer is a general term for polymers with a branched structure, and refers to a polymer that simultaneously has a polymer corresponding to a "trunk" and a polymer corresponding to a "branch" bonded to the trunk as a side chain of the trunk. In one embodiment of the liquid crystal aligning agent of the present invention, a graft copolymer is used as the polymer B, but the graft copolymer is composed of a branch polymer that is compatible with the liquid crystal, and a branch polymer that is not compatible with the liquid crystal, or a liquid crystal that is formed by baking. and a backbone polymer that becomes incompatible with the polymer. In other words, the branch polymer that is compatible with the liquid crystal dissolves in the liquid crystal and swells, contributing to the formation of a weak anchoring state, while the graft copolymer does not dissolve in the liquid crystal due to the trunk polymer, or becomes insolubilized in the liquid crystal by baking. To obtain a weakly anchored liquid crystal display element with excellent film hardness and seal adhesion strength by preventing elution of the graft copolymer into the liquid crystal, fixing it to the substrate, crosslinking the polymers with each other, and crosslinking with the sealing component. I can do it.
 液晶に相溶する枝ポリマーの構造は、液晶に溶解するものであれば特に限定はしないが、例えば、枝ポリマーは、下記式(7)で表されるマクロモノマーに由来することができる。 The structure of the branch polymer that is compatible with the liquid crystal is not particularly limited as long as it is soluble in the liquid crystal, but for example, the branch polymer can be derived from a macromonomer represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000082
(式(7)中、Pは重合可能な不飽和炭化水素基を有する重合性基を表し、Qは前記式(2)~(5)で表される化合物の少なくとも1種以上を含むモノマーを重合することによって得られる構造であり、nは1~2の整数である。nが2の場合、2つのQは同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000082
(In formula (7), P represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and Q represents a monomer containing at least one of the compounds represented by formulas (2) to (5) above. It is a structure obtained by polymerization, and n is an integer of 1 to 2. When n is 2, the two Qs may be the same or different.)
 枝ポリマーの合成に使用される前記モノマーは単一成分でも良く、複数のモノマーを組み合わせて使用してもよい。また、以下でも述べる他のラジカル重合反応可能なモノマーを併用してもよい。 The monomer used in the synthesis of the branched polymer may be a single component, or a combination of multiple monomers may be used. Further, other monomers capable of radical polymerization reaction, which will be described below, may be used in combination.
 重合体Bにおいて、枝ポリマーが弱アンカリング特性発現に大きく関与している。枝ポリマーの分子量に応じて弱アンカリング膜の物性が変化するため、分子量の最適化が重要となる。良好な弱アンカリング膜を形成する観点で好ましい枝ポリマーの数平均分子量は1,000~100,000であり、より好ましくは3,000~50,000であり、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(PDI)は、好ましくは3.0以下であり、より好ましくは2.0以下である。なお、グラフト共重合体が、マクロモノマーを使用したgrafting throuth法により合成される場合、ここでいう分子量は、マクロモノマーの分子量に相当する。 In Polymer B, the branched polymers are largely involved in the expression of weak anchoring properties. Optimization of the molecular weight is important because the physical properties of the weak anchoring film change depending on the molecular weight of the branch polymer. From the viewpoint of forming a good weak anchoring film, the preferred number average molecular weight of the branched polymer is 1,000 to 100,000, more preferably 3,000 to 50,000, and the weight average molecular weight (Mw) and number The molecular weight distribution (PDI) expressed as a ratio to the average molecular weight (Mn) is preferably 3.0 or less, more preferably 2.0 or less. Note that when the graft copolymer is synthesized by a grafting through method using a macromonomer, the molecular weight here corresponds to the molecular weight of the macromonomer.
 枝ポリマーにおいて末端を除いた構造(例えば、式(7)のQの構造)は例えば上記式(2)~(5)で表されるモノマーを1種のみ用いた単独ポリマー構造でも良く、複数のモノマーを組み合わせた共重合体構造でも良い。複数のモノマー同士を組み合わせる場合、ランダム共重合でも良く、ブロック共重合でも良い。上記式(2)~(5)で表されるモノマー同士を組み合わせる場合は、組み合わせ方法に依らずその比率は特に限定されない。以下で説明する液晶に不溶化する化合物種と組み合わせる場合は、特性維持の観点で液晶に不溶化するモノマーの好ましい組み合わせ比率は30モル%以下であり、より好ましくは20モル%以下であるが限定はしない。これら合成方法や、組み合わせるモノマー、組み合わせ比率は目的とする物性や表示特性、電気特性等が得られる範囲で使用するのが好ましい。 The structure in which the terminal end of the branched polymer is removed (for example, the structure of Q in formula (7)) may be a single polymer structure using only one type of monomer represented by the above formulas (2) to (5), or a structure in which multiple monomers are used. A copolymer structure consisting of a combination of monomers may also be used. When a plurality of monomers are combined, random copolymerization or block copolymerization may be used. When the monomers represented by the above formulas (2) to (5) are combined, the ratio is not particularly limited regardless of the method of combination. When combined with a compound species that insolubilizes liquid crystals as described below, the preferred combination ratio of monomers that insolubilize liquid crystals is 30 mol% or less, more preferably 20 mol% or less, from the viewpoint of maintaining properties, but there is no limitation. . These synthesis methods, monomers to be combined, and combination ratios are preferably used within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
 幹ポリマーは、例えば、前記式(6)で表される化合物を構成成分として含んでいてもよい。 The backbone polymer may contain, for example, a compound represented by the above formula (6) as a constituent component.
 重合体Bであるグラフト共重合体の枝ポリマーを形成する原料である式(7)で表されるマクロモノマーは、例えば、リビング重合、連鎖移動重合やポリマー末端修飾反応の組み合わせによって得ることができる。また、200℃以上の高温での連続塊状重合によって、末端基にラジカル重合性のある不飽和結合を有するポリマーを得ることができることが報告されている(東亞合成研究年報 TREND 2002 第5号)。
 グラフト共重合体の原料となるマクロモノマーを得る際、重合法は特に限定する必要は無いが、カチオン重合やアニオン重合は活性種を発生させる際にアルカリ金属や金属錯体、ハロゲン化合物を使用することが多く、液晶ディスプレイにおいては金属等の残渣やハロゲン化合物等の混入は焼き付きや表示不良の要因と成りえるため、極力金属やハロゲン化合物を使用しないラジカル重合の使用が好ましい。リビングラジカル重合としては、ニトロキシドをドーマント種として使用するニトロキシド媒介ラジカル重合(NMP)や、金属錯体を用いる原子移動ラジカル重合(ATRP)、硫黄化合物をドーマントとして使用する可逆的付加・開裂連鎖移動(RAFT)重合、有機テルル化合物等を用いるリビングラジカル重合(TERP)、ドーマント種にヨウ化アルキル化合物を使用し、リン化合物やアルコール等を触媒として使用する可逆移動触媒重合(RTCP)等があげられ、好ましい重合法としてはNMPやRTCP、RAFT重合等のリビングラジカル重合が挙げられ、特に好ましくはNMP若しくはRAFT重合である。
The macromonomer represented by formula (7), which is the raw material for forming the branch polymer of the graft copolymer that is polymer B, can be obtained, for example, by a combination of living polymerization, chain transfer polymerization, and polymer terminal modification reaction. . Furthermore, it has been reported that a polymer having a radically polymerizable unsaturated bond in the terminal group can be obtained by continuous bulk polymerization at a high temperature of 200° C. or higher (Toagosei Research Annual Report TREND 2002 No. 5).
When obtaining a macromonomer that is a raw material for a graft copolymer, there is no need to particularly limit the polymerization method, but cationic polymerization and anionic polymerization may use alkali metals, metal complexes, or halogen compounds to generate active species. In liquid crystal displays, the contamination of metal residues and halogen compounds can cause burn-in and display defects, so it is preferable to use radical polymerization that uses as few metals and halogen compounds as possible. Examples of living radical polymerization include nitroxide-mediated radical polymerization (NMP) using nitroxide as a dormant species, atom transfer radical polymerization (ATRP) using a metal complex, and reversible addition/fragmentation chain transfer (RAFT) using a sulfur compound as a dormant. ) polymerization, living radical polymerization (TERP) using an organic tellurium compound, etc., reversible transfer catalytic polymerization (RTCP) using an alkyl iodide compound as a dormant species, and using a phosphorus compound, alcohol, etc. as a catalyst, etc. are preferred. Examples of the polymerization method include living radical polymerization such as NMP, RTCP, and RAFT polymerization, and NMP or RAFT polymerization is particularly preferred.
 グラフト共重合体の主な合成方法として、幹ポリマーに直接枝ポリマーを導入するGrafting-to法、マクロ開始剤(重合活性点を有する幹ポリマー)からモノマーを重合し枝ポリマーを延長するGrafting-from法、マクロモノマー(片末端に重合性官能基を有するポリマー)を重合するGrafting-through法、などが挙げられるが、いずれの方法も利用可能であるため、その合成方法は限定しない。 The main synthesis methods for graft copolymers include the Grafting-to method, in which a branch polymer is directly introduced into a trunk polymer, and the Grafting-from method, in which a monomer is polymerized from a macroinitiator (a trunk polymer having a polymerization active site) to extend a branch polymer. The synthesis method is not limited, as any method can be used.
 グラフト共重合体の製造方法は、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には前記のモノマーを用いて、ラジカル重合、カチオン重合またはアニオン重合により製造することができる。これらの中では、反応制御のしやすさ等の観点からラジカル重合が特に好ましい。 The method for producing the graft copolymer is not particularly limited, and any commonly used industrial method can be used. Specifically, it can be produced by radical polymerization, cationic polymerization, or anionic polymerization using the above-mentioned monomers. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
 ラジカル重合の重合開始剤としては、ラジカル重合開始剤(ラジカル熱重合開始剤、ラジカル光重合開始剤)や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As the polymerization initiator for radical polymerization, known compounds such as radical polymerization initiators (radical thermal polymerization initiators, radical photopolymerization initiators) and reversible addition-fragmentation chain transfer (RAFT) polymerization reagents may be used. I can do it.
 ラジカル熱重合開始剤は、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーオキシエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、2,2’-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)等が挙げられる。ラジカル熱重合開始剤は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。 A radical thermal polymerization initiator is a compound that generates radicals when heated above the decomposition temperature. Such radical thermal polymerization initiators include, for example, ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), hydroperoxides (peroxide Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides (di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutyl peroxycyclohexane) etc.), alkyl peroxy esters (peroxyneodecanoic acid tert-butyl ester, peroxypivalic acid tert-butyl ester, peroxy 2-ethylcyclohexanoic acid tert-amyl ester, etc.), persulfates (potassium persulfate, , sodium persulfate, ammonium persulfate, etc.), azo compounds (azobisisobutyronitrile, 2,2'-di(2-hydroxyethyl)azobisisobutyronitrile, etc.), and the like. The radical thermal polymerization initiators may be used alone or in combination of two or more.
 ラジカル光重合開始剤は、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンゾオキサゾール、2-(p-ジメチルアミノスチリル)ベンゾチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラキス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラキス(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ビス(メトキシカルボニル)-4,4’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ビス(メトキシカルボニル)-4,3’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ビス(メトキシカルボニル)-3,3’-ビス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等が挙げられる。ラジカル光重合開始剤は、1種単独で使用してもよく、2種以上を混合して使用してもよい。 The radical photopolymerization initiator is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis(diethylamino)benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-Methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-( 4-morpholinophenyl)-1-butanone, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-di(tert-butylperoxycarbonyl)benzophenone, 3,4,4'-tri( tert-butylperoxycarbonyl)benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-(4'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(3' , 4'-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(2',4'-dimethoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2 -(2'-methoxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4'-pentyloxystyryl)-4,6-bis(trichloromethyl)-s-triazine, 4- [p-N,N-di(ethoxycarbonylmethyl)]-2,6-di(trichloromethyl)-s-triazine, 1,3-bis(trichloromethyl)-5-(2'-chlorophenyl)-s- Triazine, 1,3-bis(trichloromethyl)-5-(4'-methoxyphenyl)-s-triazine, 2-(p-dimethylaminostyryl)benzoxazole, 2-(p-dimethylaminostyryl)benzothiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis(7-diethylaminocoumarin), 2-(o-chlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2 , 2'-bis(2-chlorophenyl)-4,4',5,5'-tetrakis(4-ethoxycarbonylphenyl)-1,2'-biimidazole, 2,2'-bis(2,4-dichlorophenyl) )-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis(2,4-dibromophenyl)-4,4',5,5'-tetraphenyl -1,2'-biimidazole, 2,2'-bis(2,4,6-trichlorophenyl)-4,4',5,5'-tetraphenyl-1,2'-biimidazole, 3-( 2-Methyl-2-dimethylaminopropionyl)carbazole, 3,6-bis(2-methyl-2-morpholinopropionyl)-9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenylketone, bis(η5-2,4- cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl)titanium, 3,3',4,4'-tetrakis(tert-butylperoxycarbonyl) Benzophenone, 3,3',4,4'-tetrakis(tert-hexylperoxycarbonyl)benzophenone, 3,3'-bis(methoxycarbonyl)-4,4'-bis(tert-butylperoxycarbonyl)benzophenone, 3, 4'-bis(methoxycarbonyl)-4,3'-bis(tert-butylperoxycarbonyl)benzophenone, 4,4'-bis(methoxycarbonyl)-3,3'-bis(tert-butylperoxycarbonyl)benzophenone, 2-(3-Methyl-3H-benzothiazol-2-ylidene)-1-naphthalen-2-yl-ethanone, 2-(3-methyl-1,3-benzothiazol-2(3H)-ylidene)-1 -(2-benzoyl)ethanone and the like. The radical photopolymerization initiators may be used alone or in combination of two or more.
 ラジカル重合法としては、特に限定されるものではなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。
 ラジカル重合反応に用いる有機溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、上記特定の有機溶媒挙げられ、1種単独で使用してもよく、2種以上を混合して使用してもよい。
The radical polymerization method is not particularly limited, and emulsion polymerization, suspension polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, solution polymerization, and the like can be used.
The organic solvent used in the radical polymerization reaction is not particularly limited as long as it dissolves the produced polymer. Specific examples include the above-mentioned specific organic solvents, which may be used alone or in combination of two or more.
 さらに、生成するポリマーを溶解させない溶媒であっても、生成したポリマーが析出しない範囲で、上述した有機溶媒に混合して使用してもよい。
 なお、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
 なお、上記重合により得られるグラフト共重合体が反応溶液中に溶解されている場合、該反応溶液をそのまま液晶配向剤の調製に供してもよく、反応溶液中に含まれるグラフト共重合体を単離したうえで液晶配向剤の調製に供してもよい。
 ラジカル重合の際の重合温度は、30~150℃の任意の温度を選択することができるが、好ましくは50~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度は、好ましくは1~50質量%、より好ましくは5~40質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
Furthermore, even a solvent that does not dissolve the produced polymer may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate.
In addition, since oxygen in an organic solvent becomes a cause of inhibiting the polymerization reaction in radical polymerization, it is preferable to use an organic solvent that has been degassed to the extent possible.
In addition, when the graft copolymer obtained by the above polymerization is dissolved in the reaction solution, the reaction solution may be used as it is for preparing the liquid crystal aligning agent, or the graft copolymer contained in the reaction solution may be dissolved in the reaction solution. After separation, the liquid crystal aligning agent may be prepared.
The polymerization temperature during radical polymerization can be any temperature in the range of 30 to 150°C, but is preferably in the range of 50 to 100°C. In addition, the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high, making it difficult to stir uniformly. Therefore, the monomer concentration is preferably 1 to 50% by weight, more preferably 5 to 40% by weight. The initial stage of the reaction can be carried out at a high concentration, and then an organic solvent can be added.
 上述したラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~10モル%が好ましい。また重合時には各種モノマー成分や溶媒、開始剤等を追加することもできる。 In the radical polymerization reaction described above, if the ratio of the radical polymerization initiator to the monomer is large, the molecular weight of the obtained polymer will be small, and if it is small, the molecular weight of the obtained polymer will be large. The amount is preferably 0.1 to 10 mol% based on the monomer to be polymerized. Furthermore, various monomer components, solvents, initiators, etc. can be added during polymerization.
 上記反応により得られた反応溶液から生成したポリマーは、反応溶液を貧溶媒に投入して沈殿させて回収することができるが、この再沈殿処理は必須ではない。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等が挙げられる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥させることができる。また、回収した重合体を有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種以上の貧溶媒を用いると、より一層精製の効率が上がるため好ましい。 The polymer produced from the reaction solution obtained by the above reaction can be recovered by pouring the reaction solution into a poor solvent to precipitate it, but this reprecipitation treatment is not essential. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water, and the like. The polymer precipitated in a poor solvent can be collected by filtration and then dried under normal pressure or reduced pressure, at room temperature or by heating. Further, by repeating the operation of redissolving the recovered polymer in an organic solvent and reprecipitation recovery 2 to 10 times, the amount of impurities in the polymer can be reduced. Examples of the poor solvent in this case include alcohols, ketones, hydrocarbons, etc. It is preferable to use three or more kinds of poor solvents selected from these, since the efficiency of purification will further increase.
 グラフト共重合体は、得られる塗膜の強度、塗膜形成時の作業性および塗膜の均一性を考慮すると、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量は、2,000~5,000,000が好ましく、5,000~2,000,000がより好ましい。 Considering the strength of the resulting coating film, workability during coating film formation, and uniformity of the coating film, the weight average molecular weight of the graft copolymer measured by GPC (Gel Permeation Chromatography) method is 2,000 to 5. ,000,000 is preferred, and 5,000 to 2,000,000 is more preferred.
 グラフト共重合体は、液晶に相溶する枝ポリマーと液晶に相溶しない又は熱等により不相溶化する幹ポリマーを有するが、これらはフリーラジカル重合によりランダム配列で連結していることを特徴している。これにより、高いシール密着性や溶剤選択性、塗布性が得られる。 Graft copolymers have branch polymers that are compatible with liquid crystals and trunk polymers that are not compatible with liquid crystals or become incompatible with heat, etc., and are characterized by being linked in a random arrangement by free radical polymerization. ing. This provides high seal adhesion, solvent selectivity, and coating properties.
 弱アンカリング配向膜の塗布性、シール密着性や膜強度、良好な弱アンカリング特性をそれぞれ両立するには、枝ポリマーと幹ポリマーの導入比率なども重要な要素である。例えば弱アンカリング特性には枝ポリマーが重要な役割を担っており、それらの導入割合が多くなると膜の強度が損なわれたり熱硬化等が阻害されたりするため、適切な導入量を考える必要がある。一方で幹ポリマーの導入量や分子量は弱アンカリング特性に影響しない(小さい)ため、前述の特性をそれぞれ両立するには、幹ポリマーの合成に使用される式(6)で表されるモノマーの分子数に対して、枝ポリマーの合成に使用される式(7)で表されるマクロモノマーの分子数比(導入比率)は小さくすることが好ましい。好ましい導入比率(式(7)で表されるマクロモノマー/式(6)で表されるモノマー)としては、0.1/99.9~50/50(モル/モル)であり、より好ましくは0.2/99.8~30/70(モル/モル)である。 In order to achieve both the coating properties, seal adhesion, film strength, and good weak anchoring properties of the weak anchoring alignment film, the introduction ratio of the branch polymer and the trunk polymer is also an important factor. For example, branch polymers play an important role in weak anchoring properties, and if their introduction ratio increases, the strength of the film will be impaired and heat curing will be inhibited, so it is necessary to consider the appropriate amount of introduction. be. On the other hand, the introduction amount and molecular weight of the backbone polymer do not affect the weak anchoring properties (they are small), so in order to achieve both of the above-mentioned properties, the monomer expressed by formula (6) used to synthesize the backbone polymer must be It is preferable that the ratio of the number of molecules (introduction ratio) of the macromonomer represented by formula (7) used in the synthesis of the branched polymer to the number of molecules is small. The preferred introduction ratio (macromonomer represented by formula (7)/monomer represented by formula (6)) is 0.1/99.9 to 50/50 (mol/mol), more preferably It is 0.2/99.8 to 30/70 (mol/mol).
(重合体C)
 重合体Cは、液晶に相溶する重合体ユニットを有し、かつ加熱により重合体βと反応する重合体である。
 重合体Cは、加熱により重合体βと反応する基を有し、かつ液晶に相溶するモノマーを1種以上を重合して得られる重合体であり、薄膜状態にて液晶と接すると液晶と相溶することで弱アンカリング状態の形成に寄与することを特徴としている。
(Polymer C)
The polymer C is a polymer that has a polymer unit that is compatible with the liquid crystal and reacts with the polymer β when heated.
Polymer C is a polymer obtained by polymerizing one or more monomers that have a group that reacts with polymer β when heated and is compatible with liquid crystal, and when it comes into contact with liquid crystal in a thin film state, it becomes liquid crystal. It is characterized by contributing to the formation of a weak anchoring state by being compatible with each other.
 本出願人は、重合体Cのような重合体(液晶に相溶する重合体ユニットを有しつつ、併用する他の重合体と反応する重合体)を含む弱アンカリング液晶配向剤が、簡便に製造可能であり、塗布性が良好な弱アンカリング液晶配向剤であって、かつシールとの密着性が良好であり、プレチルト角の発生がなく、低電圧駆動と電圧OFF時の高速応答化が同時に実現できる弱アンカリング液晶配向膜を提供できることを見出し、出願している(特願2022-6921及び特願2022-6921を優先権主張するPCT/JP2023/1515。ここに引用されたことによって、この出願の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。)。 The present applicant has discovered that a weakly anchoring liquid crystal aligning agent containing a polymer such as Polymer C (a polymer that has a polymer unit that is compatible with the liquid crystal and reacts with other polymers that are used in combination) is easy to use. It is a weak anchoring liquid crystal aligning agent that can be manufactured in a number of steps, has good coating properties, has good adhesion to the seal, does not generate pre-tilt angles, and has low voltage drive and high-speed response when the voltage is turned off. We have found that it is possible to provide a weakly anchoring liquid crystal alignment film that can be realized at the same time, and have filed an application (Japanese Patent Application No. 2022-6921 and PCT/JP2023/1515, which claims priority to Patent Application No. 2022-6921. , the contents of this application are incorporated herein to the same extent as if expressly set forth in their entirety.)
 重合体Cの一実施形態は、下記式(8)で表される重合体である。 One embodiment of the polymer C is a polymer represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000083
(式(8)中、Aは下記式(8-A-1)~(8-A-16)から選ばれる、加熱によって前記重合体βと反応する基を有する分子量500以下のn価の有機基を表す。
 Qは前記式(2)~(5)で表される化合物からなる群から選択される少なくとも1種を構成成分として含む、液晶と相溶する2価の重合体ユニットである。
 Rは下記式(8-R-1)~(8-R-11)から選ばれる、加熱によって前記重合体βと反応しない分子量500以下の1価の有機基である。
 nは1~2の整数である。nが2の場合、2つのQ及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000083
(In formula (8), A is an n-valent organic compound having a molecular weight of 500 or less and having a group that reacts with the polymer β upon heating, selected from the following formulas (8-A-1) to (8-A-16). represents a group.
Q is a divalent polymer unit which is compatible with the liquid crystal and contains as a constituent at least one kind selected from the group consisting of compounds represented by the above formulas (2) to (5).
R is a monovalent organic group selected from the following formulas (8-R-1) to (8-R-11) and having a molecular weight of 500 or less that does not react with the polymer β upon heating.
n is an integer from 1 to 2. When n is 2, the two Q's and R's may be the same or different. )
Figure JPOXMLDOC01-appb-C000084
(式(8-A-1)~(8-A-16)中、R及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、R及びRはそれぞれ独立して単結合又は炭素数1~12の直鎖若しくは分岐アルキレン基を表し、Xは酸素原子又は硫黄原子を表す。*は結合部位を表す。)
Figure JPOXMLDOC01-appb-C000084
(In formulas (8-A-1) to (8-A-16), R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and R 3 and R 4 each independently represents a single bond or a linear or branched alkylene group having 1 to 12 carbon atoms, and X represents an oxygen atom or a sulfur atom. * represents a bonding site.)
Figure JPOXMLDOC01-appb-C000085
(式(8-R-1)~(8-R-11)中、R及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、R及びRはそれぞれ独立して単結合又は炭素数1~12の直鎖若しくは分岐アルキレン基を表す。*は結合部位を表す。)
 炭素数1~12の直鎖若しくは分岐アルキル基の炭素数は、例えば、各基によって好適な範囲は異なり、例えば、1~6であってもよいし、6~12であってもよい。
 炭素数1~12の直鎖若しくは分岐アルキレン基の炭素数は、例えば、1~6であってもよいし、1~3であってもよい。
Figure JPOXMLDOC01-appb-C000085
(In formulas (8-R-1) to (8-R-11), R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and R 3 and Each R 4 independently represents a single bond or a linear or branched alkylene group having 1 to 12 carbon atoms. * represents a bonding site.)
The preferable range of the carbon number of the straight chain or branched alkyl group having 1 to 12 carbon atoms varies depending on each group, and may be, for example, 1 to 6 or 6 to 12.
The straight chain or branched alkylene group having 1 to 12 carbon atoms may have, for example, 1 to 6 carbon atoms or 1 to 3 carbon atoms.
 式(8)中のAの分子量は、500以下である。
 式(8)中のRの分子量は、500以下である。
The molecular weight of A in formula (8) is 500 or less.
The molecular weight of R in formula (8) is 500 or less.
 式(8)中のAは、上記式(8-A-1)~(8-A-16)から選ばれる基である。これらは、例えば、後述するRAFT重合におけるRAFT剤や連鎖移動重合における連鎖移動剤の部分構造である。
 例えば、-S-C(=S)-基は、アミノ基、保護アミノ基、ヒドロキシ基、保護ヒドロキシ基、チオール基、保護チオール基、カルボキシ基、保護カルボキシ基、イソシアネート基、保護イソシアネート基、マレイミド基、無水カルボン酸基、ビニル基、アリル基、スチリル基、(メタ)アクリル基、及び(メタ)アクリルアミド基などと反応する。
 炭素数1~12の直鎖若しくは分岐アルキル基の炭素数は、例えば、1~6であってもよいし、1~3であってもよい。
 炭素数1~12の直鎖若しくは分岐アルキレン基の炭素数は、例えば、1~6であってもよいし、1~3であってもよい。
A in formula (8) is a group selected from formulas (8-A-1) to (8-A-16) above. These are, for example, partial structures of a RAFT agent in RAFT polymerization and a chain transfer agent in chain transfer polymerization, which will be described later.
For example, the -S-C(=S)- group is an amino group, a protected amino group, a hydroxy group, a protected hydroxy group, a thiol group, a protected thiol group, a carboxy group, a protected carboxy group, an isocyanate group, a protected isocyanate group, a maleimide It reacts with groups such as carboxylic acid anhydride groups, vinyl groups, allyl groups, styryl groups, (meth)acrylic groups, and (meth)acrylamide groups.
The straight chain or branched alkyl group having 1 to 12 carbon atoms may have, for example, 1 to 6 carbon atoms or 1 to 3 carbon atoms.
The straight chain or branched alkylene group having 1 to 12 carbon atoms may have, for example, 1 to 6 carbon atoms or 1 to 3 carbon atoms.
 式(8)中のRは、上記式(8-R-1)~(8-R-11)から選ばれる基である。これらは、例えば、後述するRAFT重合におけるRAFT剤の部分構造である。 R in formula (8) is a group selected from formulas (8-R-1) to (8-R-11) above. These are, for example, partial structures of RAFT agents in RAFT polymerization described below.
 式(8)中のQは、前記式(2)~(5)で表される化合物からなる群から選択される少なくとも1種を、構成成分として含む液晶と相溶する2価の重合体ユニットである。 Q in formula (8) is a divalent polymer unit that is compatible with the liquid crystal and contains as a constituent component at least one selected from the group consisting of compounds represented by formulas (2) to (5) above. It is.
 重合体Cの合成に使用されるモノマーは単一成分でも良く、複数のモノマーを組み合わせて使用してもよい。また、以下でも述べる他のラジカル重合モノマーを併用してもよい。 The monomer used in the synthesis of Polymer C may be a single component, or a combination of multiple monomers may be used. Further, other radically polymerizable monomers described below may be used in combination.
 重合体Cは、薄膜状態にて液晶と接すると高分子-液晶混合層を形成し、弱アンカリング性が発現する。重合体Cの分子量に応じて形成される高分子-液晶混合層の厚みが変化し、弱アンカリング性が変化するため、分子量の最適化が重要となる。良好な弱アンカリング膜を形成する観点で好ましい重合体Cの数平均分子量は1,000~100,000であり、より好ましくは3,000~50,000であり、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(PDI)は、好ましくは3.0以下であり、より好ましくは2.0以下である。 When the polymer C comes into contact with liquid crystal in a thin film state, it forms a polymer-liquid crystal mixed layer and exhibits weak anchoring properties. Optimization of the molecular weight is important because the thickness of the formed polymer-liquid crystal mixed layer changes depending on the molecular weight of the polymer C, and the weak anchoring property changes. From the viewpoint of forming a good weak anchoring film, the number average molecular weight of the polymer C is preferably 1,000 to 100,000, more preferably 3,000 to 50,000, and the weight average molecular weight (Mw) The molecular weight distribution (PDI) expressed as a ratio to the number average molecular weight (Mn) is preferably 3.0 or less, more preferably 2.0 or less.
 重合体Cの一例である式(8)で表される重合体中のQの構造は上記式(2)~(5)で表される化合物(モノマー)を1種のみ用いた単独ポリマー構造でも良く、複数のモノマーを組み合わせた共重合体構造でも良い。複数のモノマー同士を組み合わせる場合、ランダム共重合でも良く、ブロック共重合でも良い。上記式(2)~(5)で表されるモノマー同士を組み合わせる場合は、組み合わせ方法に依らずその比率は特に限定されない。以下で説明する液晶に不溶化する化合物種と組み合わせる場合は、特性維持の観点で液晶に不溶化する化合物種の好ましい組み合わせ比率は30モル%以下であり、より好ましくは20モル%以下であるが限定はしない。これら合成方法や、組み合わせるモノマー、組み合わせ比率は目的とする物性や表示特性、電気特性等が得られる範囲で使用するのが好ましい。 The structure of Q in the polymer represented by formula (8), which is an example of polymer C, may be a single polymer structure using only one compound (monomer) represented by formulas (2) to (5) above. Alternatively, a copolymer structure consisting of a combination of a plurality of monomers may be used. When a plurality of monomers are combined, random copolymerization or block copolymerization may be used. When the monomers represented by the above formulas (2) to (5) are combined, the ratio is not particularly limited regardless of the method of combination. When combined with a compound species that becomes insolubilized in liquid crystal as described below, from the viewpoint of maintaining properties, the preferred combination ratio of compound species that becomes insolubilized in liquid crystal is 30 mol% or less, more preferably 20 mol% or less, but there are no limitations. do not. These synthesis methods, monomers to be combined, and combination ratios are preferably used within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
 液晶に不溶化する化合物種としては、例えば、前記式(6)で表される化合物、前述の重合可能な不飽和炭化水素基を有する重合性基と高極性な構造とを有する化合物、前述の重合可能な不飽和炭化水素基を有する重合性基と剛直な構造とを有する化合物、前述の重合可能な不飽和炭化水素基を有する重合性基と熱硬化性の構造とを有する化合物が挙げられる。 Examples of the compound species to be insolubilized in the liquid crystal include the compound represented by the above formula (6), the above-mentioned compound having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a highly polar structure, and the above-mentioned polymerizable compound. Examples include compounds having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a rigid structure, and compounds having a polymerizable group having a polymerizable unsaturated hydrocarbon group and a thermosetting structure.
 重合体Cは、好ましくは、リビング重合若しくは連鎖移動重合によって得られる。 Polymer C is preferably obtained by living polymerization or chain transfer polymerization.
 重合体Cを得る際、重合法は特に限定する必要は無いが、カチオン重合やアニオン重合は活性種を発生させる際にアルカリ金属や金属錯体、ハロゲン化合物を使用することが多く、液晶ディスプレイにおいては金属等の残渣やハロゲン化合物等の混入は焼き付きや表示不良の要因と成りえるため、極力金属やハロゲン化合物を使用しないラジカル重合の使用が好ましい。リビングラジカル重合としてはニトロキシドをドーマント種として使用するリビングラジカル重合(NMP)や、金属錯体を用いる原子移動ラジカル重合(ATRP)、硫黄化合物をドーマントとして使用する可逆的付加・脱離連鎖移動重合(RAFT重合)、有機テルル化合物等を用いるリビングラジカル重合(TERP)、ドーマント種にヨウ化アルキル化合物を使用し、リン化合物やアルコール等を触媒として使用する可逆移動触媒重合(RTCP)等があげられ、好ましい重合法としてはNMPやRTCP、RAFT重合等のリビングラジカル重合が挙げられ、特に好ましくはNMP若しくはRAFT重合である。また、連鎖移動重合を用いるのも好ましい。 When obtaining Polymer C, there is no need to particularly limit the polymerization method, but cationic polymerization and anionic polymerization often use alkali metals, metal complexes, and halogen compounds to generate active species, and in liquid crystal displays, Since the contamination of metal residues and halogen compounds can cause burn-in and display defects, it is preferable to use radical polymerization that uses no metals or halogen compounds as much as possible. Examples of living radical polymerization include living radical polymerization (NMP) using nitroxide as a dormant species, atom transfer radical polymerization (ATRP) using a metal complex, and reversible addition/elimination chain transfer polymerization (RAFT) using a sulfur compound as a dormant. Polymerization), living radical polymerization (TERP) using an organic tellurium compound, etc., and reversible transfer catalytic polymerization (RTCP) using an alkyl iodide compound as a dormant species and using a phosphorus compound, alcohol, etc. as a catalyst, etc. are preferred. Examples of the polymerization method include living radical polymerization such as NMP, RTCP, and RAFT polymerization, and NMP or RAFT polymerization is particularly preferred. It is also preferable to use chain transfer polymerization.
 連鎖移動重合を用いる場合、使用する重合開始剤としては、例えば2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、1,1’-ビス(tert-ブチルペルオキシ)シクロヘキサン、過酸化水素等が挙げられる。重合開始剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。連鎖移動剤としては、チオール類を用いることが好ましく、具体例としては、下記式(S-1)~(S-15)で表される化合物が挙げられる。連鎖移動剤の使用割合は、使用するモノマー1モル部に対して、通常、0.000001~0.1モル部、好ましくは0.00001~0.01モル部である。上記重合における反応温度は、好ましくは20~200℃、より好ましくは40~150℃であり、反応時間は、好ましくは1~168時間、より好ましくは8~72時間である。 When chain transfer polymerization is used, examples of the polymerization initiator used include 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), benzoyl peroxide, 1 , 1'-bis(tert-butylperoxy)cyclohexane, hydrogen peroxide, and the like. The proportion of the polymerization initiator used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. As the chain transfer agent, it is preferable to use thiols, and specific examples include compounds represented by the following formulas (S-1) to (S-15). The proportion of the chain transfer agent used is usually 0.000001 to 0.1 part by mole, preferably 0.00001 to 0.01 part by mole, per 1 part by mole of the monomer used. The reaction temperature in the above polymerization is preferably 20 to 200°C, more preferably 40 to 150°C, and the reaction time is preferably 1 to 168 hours, more preferably 8 to 72 hours.
Figure JPOXMLDOC01-appb-C000086
 (式(S-1)~(S-15)中、Meは、メチル基を表し、Etは、エチル基を表す。)
Figure JPOXMLDOC01-appb-C000086
(In formulas (S-1) to (S-15), Me represents a methyl group, and Et represents an ethyl group.)
 連鎖移動重合反応に用いる有機溶媒としては、生成したポリマーが溶解するものであれば特に限定されない。その具体例としては、上記特定の有機溶媒が挙げられ、1種単独で使用してもよく、2種以上を混合して使用してもよい。
 さらに、生成するポリマーを溶解させない溶媒であっても、生成したポリマーが析出しない範囲で、上述した有機溶媒に混合して使用してもよい。
 なお、連鎖移動重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
The organic solvent used in the chain transfer polymerization reaction is not particularly limited as long as it can dissolve the produced polymer. Specific examples include the above-mentioned specific organic solvents, which may be used alone or in combination of two or more.
Furthermore, even a solvent that does not dissolve the produced polymer may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate.
Note that in chain transfer polymerization, oxygen in the organic solvent becomes a cause of inhibiting the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
 連鎖移動重合を用いることで、高分子末端制御、分子量制御や分子量分布制御が可能となる。 By using chain transfer polymerization, it is possible to control polymer terminals, molecular weight, and molecular weight distribution.
 連鎖移動重合において、重合体は連鎖移動と成長反応の競争反応によって得られる。連鎖移動重合で得られる重合体の分子量や分子量分布は、連鎖移動速度定数(kc)と成長速度定数(kp)の商で表される連鎖移動定数(Cs)によって決定される。一般に連鎖移動重合はCsが1~60の範囲となる構成が良く、用いるモノマー種や連鎖移動剤種、及び、これらを正しく組み合わせることが重要である。 In chain transfer polymerization, polymers are obtained by competitive reactions between chain transfer and growth reactions. The molecular weight and molecular weight distribution of a polymer obtained by chain transfer polymerization are determined by the chain transfer constant (Cs), which is expressed as the quotient of the chain transfer rate constant (kc) and the growth rate constant (kp). Generally, in chain transfer polymerization, a structure in which Cs is in the range of 1 to 60 is preferable, and it is important to use the monomer species and chain transfer agent species and the correct combination of these.
 連鎖移動定数(Cs)は用いるモノマーの種類や連鎖移動剤種によって大きく異なるため、正しく選択する必要がある。 The chain transfer constant (Cs) varies greatly depending on the type of monomer used and the type of chain transfer agent, so it is necessary to select it correctly.
 重合体Cは、特性維持の観点で液晶に相溶する一種以上の化合物種で構成されることが好ましいが、液晶に相溶しない又は焼成により液晶に不溶化する化合物種も少量であれば導入することができる。液晶に不溶化するモノマーの好ましい組み合わせ比率は30モル%以下であり、より好ましくは20モル%以下であるが限定はしない。これら合成方法や、組み合わせるモノマー、組み合わせ比率は目的とする物性や表示特性、電気特性等が得られる範囲で使用するのが好ましい。 The polymer C is preferably composed of one or more compound species that are compatible with the liquid crystal from the viewpoint of maintaining properties, but a small amount of compound species that are not compatible with the liquid crystal or become insolubilized in the liquid crystal upon firing may also be introduced. be able to. A preferred combination ratio of monomers that are insolubilized in liquid crystal is 30 mol% or less, more preferably 20 mol% or less, but is not limited. These synthesis methods, monomers to be combined, and combination ratios are preferably used within a range that allows desired physical properties, display characteristics, electrical characteristics, etc. to be obtained.
 本発明のポリマーアロイの一実施形態は、加熱により重合体βと反応する基を有し、かつ液晶に相溶するモノマーを1種以上を重合して得られる重合体からなる重合体Cと、加熱により重合体Cと反応することで重合体Cの液晶への溶出を抑制する重合体βとを含むことを特徴としている。これにより、高いシール密着性や溶剤選択性、塗布性が得られる。 One embodiment of the polymer alloy of the present invention includes a polymer C that is obtained by polymerizing one or more monomers that have a group that reacts with the polymer β when heated and is compatible with the liquid crystal; It is characterized by containing a polymer β that suppresses the elution of the polymer C into the liquid crystal by reacting with the polymer C by heating. This provides high seal adhesion, solvent selectivity, and coating properties.
 重合体Cにおける加熱によって重合体βと反応する基と、重合体βにおける加熱によって重合体Cと反応する部位とが反応する温度としては、特に制限されないが、例えば、150℃以上であってもよいし、200℃以上であってもよい。 The temperature at which the group in polymer C that reacts with polymer β when heated and the site in polymer β that reacts with polymer C when heated is not particularly limited, but for example, even if it is 150°C or higher. Alternatively, the temperature may be 200°C or higher.
 本発明のポリマーアロイは、弱アンカリング性を発現する成分である重合体αと、弱アンカリング性を発現せず、配向処理(好ましくは一軸配向処理)によって一軸配向規制力を発現する成分である重合体βを含むことを特徴としており、これを使用して得られた弱アンカリング配向膜を配向処理(好ましくは一軸配向処理)することで弱アンカリング性と電圧off時の高速応答化とを両立できる。さらに、重合体βに適切な重合体を選択することで、良好な塗布性、良好なシール密着性が得られる。 The polymer alloy of the present invention consists of a polymer α, which is a component that exhibits weak anchoring properties, and a component that does not exhibit weak anchoring properties, but which develops a uniaxial orientation regulating force through orientation treatment (preferably uniaxial orientation treatment). It is characterized by containing a certain polymer β, and the weak anchoring alignment film obtained using this is subjected to alignment treatment (preferably uniaxial alignment treatment) to improve weak anchoring properties and high-speed response when voltage is turned off. It is possible to achieve both. Furthermore, by selecting an appropriate polymer for the polymer β, good applicability and good seal adhesion can be obtained.
 本発明のポリマーアロイの加熱温度については特に制限されないが、例えば、150℃以上であってもよいし、200℃以上であってもよい。 The heating temperature of the polymer alloy of the present invention is not particularly limited, but may be, for example, 150°C or higher, or 200°C or higher.
 弱アンカリング配向膜の塗布性、シール密着性や膜強度、良好な弱アンカリング特性をそれぞれ両立するには、重合体αと重合体βとを併用することが必須の要素である。加えて、重合体αと重合体βの混合比率が重要な要素となる。
 例えば弱アンカリング特性には弱アンカリング性を発現する成分である重合体αが重要な役割を担っており、それらの導入割合が多くなると膜の強度が損なわれたり熱硬化等が阻害されたりするため、適切な導入量を考える必要がある。一方で重合体βの導入量や分子量は弱アンカリング特性に影響しない(小さい)ため、前述の特性をそれぞれ好適に両立するには、重合体αに対する重合体βの質量比は小さくすることが好ましい。
 質量比率(重合体α/重合体β)としては、10/90~99.9/0.1(質量比)が好ましく、30/70~99.5/0.5(質量比)がより好ましく、50/50~99.0/1.0(質量比)が特に好ましい。
In order to achieve both the coating properties, seal adhesion, film strength, and good weak anchoring properties of the weak anchoring alignment film, it is essential to use the polymer α and the polymer β together. In addition, the mixing ratio of polymer α and polymer β is an important factor.
For example, polymer α, which is a component that exhibits weak anchoring properties, plays an important role, and if the proportion of polymer α that is introduced increases, the strength of the film may be impaired or heat curing may be inhibited. Therefore, it is necessary to consider the appropriate amount to introduce. On the other hand, the amount and molecular weight of polymer β introduced do not affect the weak anchoring properties (they are small), so in order to suitably achieve both of the above-mentioned properties, the mass ratio of polymer β to polymer α must be made small. preferable.
The mass ratio (polymer α/polymer β) is preferably 10/90 to 99.9/0.1 (mass ratio), more preferably 30/70 to 99.5/0.5 (mass ratio). , 50/50 to 99.0/1.0 (mass ratio) is particularly preferred.
(重合体β)
 重合体βは、弱アンカリング性を発現せず、配向処理(好ましくは一軸配向処理)することで一軸配向規制力を発現する。重合体βは、好ましくは、それ単独では強アンカリング配向膜として機能する重合体である。好適な一軸配向処理方法としては、光配向処理やラビング配向処理などが挙げられる。重合体αと重合体βから構成される弱アンカリング配向膜上に光配向処理やラビング配向処理など一軸配向処理を施すことで重合体βのみが一軸配向し、弱アンカリング配向膜上に弱アンカリング領域と強アンカリング領域の両方を形成でき、これによって高速応答化が実現できる。
 また、適切な重合体βを選択することで基板への固着やポリマー同士の架橋、シール成分との架橋により、膜硬度やシール密着強度に優れ、溶剤選択性に優れ、塗布性に優れた弱アンカリング液晶配向剤、及びそれを用いた表示素子を得ることができる。
 また、重合体αとして重合体Cを用いる場合、重合体βは重合体Cと加熱によって反応し、重合体Cが液晶へ溶出することを抑制する。
(Polymer β)
The polymer β does not exhibit weak anchoring properties, but exhibits a uniaxial alignment regulating force when subjected to alignment treatment (preferably uniaxial alignment treatment). The polymer β is preferably a polymer that functions as a strong anchoring alignment film by itself. Suitable uniaxial alignment treatment methods include photo alignment treatment, rubbing alignment treatment, and the like. By performing uniaxial alignment treatment such as photo alignment treatment or rubbing alignment treatment on the weak anchoring alignment film composed of polymer α and polymer β, only the polymer β is uniaxially aligned, and the weak anchoring alignment film is formed on the weak anchoring alignment film. Both an anchoring region and a strong anchoring region can be formed, thereby achieving high-speed response.
In addition, by selecting an appropriate polymer β, it can be fixed to the substrate, cross-linked between polymers, and cross-linked with the sealing component, resulting in excellent film hardness and seal adhesion strength, excellent solvent selectivity, and excellent coating properties. An anchoring liquid crystal aligning agent and a display element using the same can be obtained.
Furthermore, when polymer C is used as polymer α, polymer β reacts with polymer C by heating, thereby suppressing elution of polymer C into the liquid crystal.
 期待する効果を得るためには、弱アンカリング配向膜表面で重合体αと重合体βが海島状に相分離し、セグメント化された表面状態を作り出すことが重要である。海島状の相分離を誘起するためには、重合体αと重合体βの物性(熱膨張率や極性)が大きく異なる必要があり、重合体αが疎水的かつ柔軟で、低Tgであり、重合体βは高極性でかつ、剛直な重合体が好ましい。 In order to obtain the desired effect, it is important that polymer α and polymer β undergo phase separation in a sea-island pattern on the surface of the weakly anchored alignment film to create a segmented surface state. In order to induce sea-island phase separation, it is necessary that the physical properties (thermal expansion coefficient and polarity) of polymer α and polymer β are significantly different, and that polymer α is hydrophobic, flexible, and has a low Tg. The polymer β is preferably a highly polar and rigid polymer.
 重合体βは、ポリイミド、ポリアミック酸、ポリアミック酸エステル、ポリアミド、ポリウレア、及びポリ(メタ)アクリレートからなる群から選ばれる少なくとも一種の重合体であることが好ましく、特に好ましくはポリイミド、ポリアミック酸、ポリアミック酸エステル、ポリ(メタ)アクリレートである。 The polymer β is preferably at least one kind of polymer selected from the group consisting of polyimide, polyamic acid, polyamic acid ester, polyamide, polyurea, and poly(meth)acrylate, and particularly preferably polyimide, polyamic acid, and polyamic acid ester. It is an acid ester and poly(meth)acrylate.
 重合体βとしては、テトラカルボン酸誘導体成分とジアミン成分とを重合反応させることにより得られる、ポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる重合体(以下、「ポリイミド系重合体」と称することがある)であることが好ましい。
 テトラカルボン酸誘導体成分は、テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物を含む。
 ポリイミド前駆体としては、例えば、ポリアミック酸、ポリアミック酸エステルが挙げられる。
 重合体βとして、ポリアミック酸を選択する場合、例えば、テトラカルボン酸誘導体成分と、ジアミン成分とを重合(重縮合)反応させることにより得られる。また、重合体βとしてポリイミドを選択する場合、上記ポリアミック酸をイミド化することにより得られる。さらに、重合体βとしてポリアミック酸エステルを選択する場合、後述する方法により得ることができる。なお、該ポリアミック酸エステルをイミド化することでもポリイミドが得られる。
The polymer β is a polymer (hereinafter referred to as (sometimes referred to as "polyimide polymer") is preferable.
The tetracarboxylic acid derivative component includes at least one compound selected from the group consisting of tetracarboxylic dianhydride and derivatives thereof.
Examples of the polyimide precursor include polyamic acid and polyamic acid ester.
When selecting polyamic acid as the polymer β, it can be obtained, for example, by subjecting a tetracarboxylic acid derivative component to a diamine component to a polymerization (polycondensation) reaction. Furthermore, when polyimide is selected as the polymer β, it can be obtained by imidizing the above-mentioned polyamic acid. Furthermore, when a polyamic acid ester is selected as the polymer β, it can be obtained by the method described below. Note that polyimide can also be obtained by imidizing the polyamic acid ester.
 上記テトラカルボン酸誘導体成分は、例えば、芳香族テトラカルボン酸二無水物、非環式脂肪族テトラカルボン酸二無水物若しくは脂環式テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。ここで、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。 Examples of the above-mentioned tetracarboxylic acid derivative component include aromatic tetracarboxylic dianhydride, acyclic aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, or derivatives thereof. Here, the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an aromatic ring. Acyclic aliphatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure. However, it is not necessary to consist only of a chain hydrocarbon structure, and a part thereof may have an alicyclic structure or an aromatic ring structure.
 また、脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。
 また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
Moreover, an alicyclic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups is bonded to an aromatic ring.
Further, it is not necessary to be composed only of an alicyclic structure, and a part thereof may have a chain hydrocarbon structure or an aromatic ring structure.
 上記芳香族テトラカルボン酸二無水物、非環式脂肪族テトラカルボン酸二無水物若しくは脂環式テトラカルボン酸二無水物は、中でも、下記式(9)で表されるテトラカルボン酸二無水物が好ましい。 The aromatic tetracarboxylic dianhydride, acyclic aliphatic tetracarboxylic dianhydride or alicyclic tetracarboxylic dianhydride is, among others, a tetracarboxylic dianhydride represented by the following formula (9). is preferred.
Figure JPOXMLDOC01-appb-C000087
(Xは、下記式(X-1)~(X-17)、及び(XR-1)~(XR-2)からなる群から選ばれる構造を表す。)
Figure JPOXMLDOC01-appb-C000087
(X represents a structure selected from the group consisting of the following formulas (X-1) to (X-17) and (XR-1) to (XR-2).)
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
(式(X-1)~(X-17)中、R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、炭素数1~6のアルコキシ基、炭素数2~6のアルコキシアルキル基、炭素数2~6のアルキルオキシカルボニル基、又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。
 式(XR-1)~(XR-2)中、j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン基、スルホニル基、又はアミド基を表す。複数のAは、それぞれ同一でも異なっていてもよい。
 *1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
(In formulas (X-1) to (X-17), R 1 to R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, Alkynyl group having 2 to 6 carbon atoms, monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, alkoxy group having 1 to 6 carbon atoms, alkoxyalkyl group having 2 to 6 carbon atoms, 2 to 6 carbon atoms represents an alkyloxycarbonyl group or a phenyl group. R 5 and R 6 each independently represent a hydrogen atom or a methyl group.
In formulas (XR-1) to (XR-2), j and k are integers of 0 or 1, and A 1 and A 2 each independently represent a single bond, -O-, -CO-, -COO-, represents a phenylene group, a sulfonyl group, or an amide group. The plurality of A2 's may be the same or different.
*1 is a bond bonded to one acid anhydride group, and *2 is a bond bonded to the other acid anhydride group. )
 上記式(9)で表されるテトラカルボン酸二無水物の好ましい具体例としては、Xが、上記式(X-1)~(X-8)、(X-10)~(X-11)、及び(XR-1)~(XR-2)から選ばれるものが挙げられる。 As a preferable specific example of the tetracarboxylic dianhydride represented by the above formula (9), X is represented by the above formulas (X-1) to (X-8), (X-10) to (X-11). , and those selected from (XR-1) to (XR-2).
 上記式(X-1)は、なかでも、下記式(X1-1)~(X1-6)からなる群から選ばれるものが好ましい。 The above formula (X-1) is preferably selected from the group consisting of the following formulas (X1-1) to (X1-6).
Figure JPOXMLDOC01-appb-C000090
(式(X1-1)~(X1-6)中、*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
Figure JPOXMLDOC01-appb-C000090
(In formulas (X1-1) to (X1-6), *1 is a bond that is bonded to one acid anhydride group, and *2 is a bond that is bonded to the other acid anhydride group.)
 上記式(XR-1)、(XR-2)の好ましい具体例としては、下記式(XR-3)~(XR-18)が挙げられる。 Preferred specific examples of the above formulas (XR-1) and (XR-2) include the following formulas (XR-3) to (XR-18).
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
(*は、結合手を表す。)
Figure JPOXMLDOC01-appb-C000092
(* represents a bond.)
 ポリイミド系重合体を製造する際の、上記式(9)で表されるテトラカルボン酸二無水物若しくはその誘導体の使用量は、ジアミン成分と反応させる全テトラカルボン酸誘導体成分1モルに対して、5モル%以上が好ましく、10モル%以上がより好ましく、20モル%以上が更に好ましい。 When producing a polyimide polymer, the amount of the tetracarboxylic dianhydride or its derivative represented by the above formula (9) to be used is as follows: The content is preferably 5 mol% or more, more preferably 10 mol% or more, and even more preferably 20 mol% or more.
 ポリイミド系重合体の製造に用いられるジアミン成分は特に限定されないが、下記式(10)で表されるジアミンを含むジアミン成分が好ましい。
Figure JPOXMLDOC01-appb-C000093
(式(10)中、Ar、及びAr1’は、それぞれ独立して、ベンゼン環、ビフェニル構造、又はナフタレン環を表し、該ベンゼン環、該ビフェニル構造、又は該ナフタレン環上の1つ以上の水素原子は1価の基で置換されてもよい。L及びL1’は、それぞれ独立して、単結合、-O-、-C(=O)-、又は-O-C(=O)-を表す。Aは、-CH-、炭素数2~12のアルキレン基、又は該アルキレン基の炭素-炭素結合の間に、-O-、-C(=O)-O-、及び-O-C(=O)-の少なくともいずれかの基が挿入されてなる2価の有機基を表す。Aが有する任意の水素原子は、ハロゲン原子で置換されていてもよい。)
The diamine component used in the production of the polyimide polymer is not particularly limited, but a diamine component containing a diamine represented by the following formula (10) is preferred.
Figure JPOXMLDOC01-appb-C000093
(In formula (10), Ar 1 and Ar 1' each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more of the benzene ring, the biphenyl structure, or the naphthalene ring The hydrogen atom of may be substituted with a monovalent group. L 1 and L 1' each independently represent a single bond, -O-, -C(=O)-, or -O-C(= O)-.A represents -CH 2 -, an alkylene group having 2 to 12 carbon atoms, or between the carbon-carbon bond of the alkylene group, -O-, -C(=O)-O-, Represents a divalent organic group in which at least one of the following groups is inserted:
 上記式(10)におけるAr、及びAr1’は、それぞれ、ベンゼン環、ビフェニル構造、又はナフタレン環を表す。ベンゼン環、ビフェニル構造、又はナフタレン環上の1つ以上の水素原子は1価の基で置換されてもよく、該1価の基としては、ハロゲン原子、炭素数1~3のアルキル基、炭素数2~3のアルケニル基、炭素数1~3のアルコキシ基、炭素数1~3のフルオロアルキル基、炭素数2~3のフルオロアルケニル基、炭素数1~3のフルオロアルコキシ基、炭素数2~3のアルキルオキシカルボニル基、シアノ基、ニトロ基等が挙げられる。 Ar 1 and Ar 1' in the above formula (10) each represent a benzene ring, a biphenyl structure, or a naphthalene ring. One or more hydrogen atoms on the benzene ring, biphenyl structure, or naphthalene ring may be substituted with a monovalent group, and the monovalent group includes a halogen atom, an alkyl group having 1 to 3 carbon atoms, a carbon Alkenyl group having 2 to 3 carbon atoms, alkoxy group having 1 to 3 carbon atoms, fluoroalkyl group having 1 to 3 carbon atoms, fluoroalkenyl group having 2 to 3 carbon atoms, fluoroalkoxy group having 1 to 3 carbon atoms, 2 carbon atoms -3 alkyloxycarbonyl groups, cyano groups, nitro groups, etc.
 上記式(10)のAr、及びAr1’において、ベンゼン環に対するアミノ基とL又はL1’との結合位置は、1,4-位又は1,3-位であることがより好ましく、1,4-位がさらに好ましい。ビフェニル構造に対するアミノ基とL又はL1’との結合位置は、4,4’-位又は3,3’-位がより好ましく、4,4’-位がさらに好ましい。ナフタレン環に対するアミノ基とL又はL1’との結合位置は、1,5-位又は2,6-位がより好ましく、2,6-位がさらに好ましい。 In Ar 1 and Ar 1' of the above formula (10), the bonding position of the amino group and L 1 or L 1' to the benzene ring is preferably the 1,4-position or the 1,3-position. , 1,4-position is more preferred. The binding position of the amino group and L 1 or L 1' to the biphenyl structure is more preferably the 4,4'-position or the 3,3'-position, and even more preferably the 4,4'-position. The bonding position of the amino group and L 1 or L 1' to the naphthalene ring is preferably the 1,5-position or the 2,6-position, and even more preferably the 2,6-position.
 上記式(10)のAは、-CH-を表すか、又は炭素数2~12のアルキレン基を表すか、又は該アルキレン基の炭素-炭素結合の間に、-O-、-C(=O)-O-、及び-O-C(=O)-の少なくともいずれかの基が挿入されてなる2価の有機基を表す。Aが有する任意の水素原子は、ハロゲン原子で置換されていてもよい。
 炭素数2~12のアルキレン基は、直鎖状であってもよいし、分岐状であってもよいが、直鎖状であることが好ましい。
 2価の有機基に挿入される-O-、-C(=O)-O-、及び-O-C(=O)-は、それぞれ1つであってもよいし、複数であってもよい。
A in the above formula (10) represents -CH 2 -, an alkylene group having 2 to 12 carbon atoms, or -O-, -C( Represents a divalent organic group into which at least one of =O)-O- and -OC(=O)- is inserted. Any hydrogen atom that A has may be substituted with a halogen atom.
The alkylene group having 2 to 12 carbon atoms may be linear or branched, but is preferably linear.
-O-, -C(=O)-O-, and -OC(=O)- inserted into the divalent organic group may be one or more. good.
 上記式(10)における基-L-A-L1’-の好ましい具体例を以下に挙げる。
 -(CH-、
 -O-(CH-、
 -O-(CH-O-、
 -C(=O)-(CH-C(=O)-、
 -O-C(=O)-(CH-O-、
 -O-C(=O)-(CH-O-C(=O)-、
 -O-C(=O)-(CH-C(=O)-O-、
 -C(=O)-O-(CH-O-C(=O)-、
 -(CHm1-O-(CHn’-O-(CHm2-、
 -(CHm1-O-C(=O)-(CHn’-C(=O)-O-(CHm2-、
 -(CHm1-C(=O)-O-(CHn’-O-C(=O)-(CHm2
Preferred specific examples of the group -L 1 -AL 1' - in the above formula (10) are listed below.
-(CH 2 ) n -,
-O-(CH 2 ) n -,
-O-(CH 2 ) n -O-,
-C(=O)-(CH 2 ) n -C(=O)-,
-O-C(=O)-(CH 2 ) n -O-,
-OC(=O)-(CH 2 ) n -OC(=O)-,
-O-C(=O)-(CH 2 ) n -C(=O)-O-,
-C(=O)-O-(CH 2 ) n -O-C(=O)-,
-(CH 2 ) m1 -O-(CH 2 ) n' -O-(CH 2 ) m2 -,
-(CH 2 ) m1 -O-C(=O)-(CH 2 ) n' -C(=O)-O-(CH 2 ) m2 -,
-(CH 2 ) m1 -C(=O)-O-(CH 2 ) n' -O-C(=O)-(CH 2 ) m2 -
 上記基-L-A-L1’-の好ましい具体例において、nは、1~12の整数、より好ましくは2~12の整数、更に好ましくは2~6の整数である。
 m1、m2及びn’は、それらの合計が、3~12の整数、より好ましくは6~12の整数である。m1、及びm2は、それぞれ、1~4の整数がより好ましく、2~4の整数がより一層好ましい。n’は、2~6の整数がより好ましく、2~4の整数がより一層好ましい。
In preferred specific examples of the group -L 1 -AL 1' -, n is an integer of 1 to 12, more preferably an integer of 2 to 12, even more preferably an integer of 2 to 6.
The sum of m1, m2 and n' is an integer of 3 to 12, more preferably an integer of 6 to 12. m1 and m2 are each more preferably an integer of 1 to 4, even more preferably an integer of 2 to 4. n' is more preferably an integer of 2 to 6, even more preferably an integer of 2 to 4.
 式(10)で表されるジアミンの割合は、ジアミン成分1モルに対して1モル%以上であることが好ましく、10モル%以上であることがより好ましく、20モル%以上であることがさらに好ましい。 The proportion of the diamine represented by formula (10) is preferably 1 mol% or more, more preferably 10 mol% or more, and even more preferably 20 mol% or more, based on 1 mol of the diamine component. preferable.
 ポリイミド系重合体を構成するジアミン成分は、上記に記載のジアミン以外のその他のジアミンを含んでいてもよい。以下にその他のジアミンの例を挙げるが、本発明はこれらに限定されるものではない。上記式(10)で表されるジアミンに加えて、その他のジアミンを併用する場合は、ジアミン成分に対する式(10)で表されるジアミンの使用量は、90モル%以下が好ましく、80モル%以下がより好ましい。以下にその他のジアミンの例を挙げるが、本発明におけるその他のジアミンはこれらに限定されるものではない。上記その他のジアミンは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The diamine component constituting the polyimide polymer may contain other diamines than the diamines described above. Examples of other diamines are listed below, but the present invention is not limited thereto. In addition to the diamine represented by the above formula (10), when other diamines are used together, the amount of the diamine represented by the formula (10) relative to the diamine component is preferably 90 mol% or less, and 80 mol% The following are more preferred. Examples of other diamines are listed below, but the other diamines in the present invention are not limited to these. The other diamines mentioned above may be used alone or in combination of two or more.
 p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、1,4-ジアミノ-2,5-ジメトキシベンゼン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、4-アミノベンジルアミン、2-(4-アミノフェニル)エチルアミン、4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、2-(6-アミノ-2-ナフチル)エチルアミン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3-トリフルオロメチル-4,4’-ジアミノビフェニル、2-トリフルオロメチル-4,4’-ジアミノビフェニル、3-フルオロ-4,4’-ジアミノビフェニル、2-フルオロ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン;
 N,N’-ビス(4-アミノフェニル)-シクロブタン-(1,2,3,4)-テトラカルボン酸ジイミド、N,N’-ビス(4-アミノフェニル)-1,3-ジメチルシクロブタン-(1,2,3,4)-テトラカルボン酸ジイミド、N,N’-ビス(2,2’-ビス(トリフルオロメチル)-4’-アミノ-1,1’-ビフェニル-4-イル)-シクロブタン-(1,2,3,4)-テトラカルボン酸ジイミドなどのテトラカルボン酸ジイミド構造を有するジアミン;
p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1, 4-Diamino-2,5-dimethoxybenzene, 2,5-diaminotoluene, 2,6-diaminotoluene, 4-aminobenzylamine, 2-(4-aminophenyl)ethylamine, 4-(2-(methylamino) ethyl)aniline, 4-(2-aminoethyl)aniline, 2-(6-amino-2-naphthyl)ethylamine, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4 , 4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3-trifluoromethyl-4,4'-diaminobiphenyl , 2-trifluoromethyl-4,4'-diaminobiphenyl, 3-fluoro-4,4'-diaminobiphenyl, 2-fluoro-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4' -diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl) -4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 1 , 5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene;
N,N'-bis(4-aminophenyl)-cyclobutane-(1,2,3,4)-tetracarboxylic acid diimide, N,N'-bis(4-aminophenyl)-1,3-dimethylcyclobutane- (1,2,3,4)-Tetracarboxylic acid diimide, N,N'-bis(2,2'-bis(trifluoromethyl)-4'-amino-1,1'-biphenyl-4-yl) -Diamine having a tetracarboxylic acid diimide structure such as -cyclobutane-(1,2,3,4)-tetracarboxylic acid diimide;
 1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート;
 4,4’-ジアミノアゾベンゼン、ジアミノトラン、4,4’-ジアミノカルコン、又は[4-[(E)-3-[2-(2,4-ジアミノフェニル)エトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエート、若しくは[4-[(E)-3-[[5-アミノ-2-[4-アミノ-2-[[(E)-3-[4-[4-(4,4,4-トリフルオロブトキシ)ベンゾイル]オキシフェニル]プロパ-2-エノイル]オキシメチル]フェニル]フェニル]メトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエートに代表されるシンナメート構造を有する芳香族ジアミンなどの光配向性基を有するジアミン;
 メタクリル酸2-(2,4-ジアミノフェノキシ)エチル又は2,4-ジアミノ-N,N-ジアリルアニリンなどの光重合性基を末端に有するジアミン;
 1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル 3,5-ジアミノベンゾエートなどのラジカル重合開始剤機能を有するジアミン;
 4,4’-ジアミノベンズアニリドなどのアミド結合を有するジアミン;
 1,3-ビス(4-アミノフェニル)ウレアなどのウレア結合を有するジアミン;
 HN-Y-NH(Yは、分子内に、-N(D)-(Dは、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。)などの熱脱離性基を有するジアミン;
1,4-phenylene bis(4-aminobenzoate), 1,4-phenylene bis(3-aminobenzoate), 1,3-phenylene bis(4-aminobenzoate), 1,3-phenylene bis(3-aminobenzoate) ), bis(4-aminophenyl) terephthalate, bis(3-aminophenyl) terephthalate, bis(4-aminophenyl) isophthalate, bis(3-aminophenyl) isophthalate;
4,4'-diaminoazobenzene, diaminotolane, 4,4'-diaminochalcone, or [4-[(E)-3-[2-(2,4-diaminophenyl)ethoxy]-3-oxo-proper- 1-enyl]phenyl]4-(4,4,4-trifluorobutoxy)benzoate, or [4-[(E)-3-[[5-amino-2-[4-amino-2-[[( E) -3-[4-[4-(4,4,4-trifluorobutoxy)benzoyl]oxyphenyl]prop-2-enoyl]oxymethyl]phenyl]phenyl]methoxy]-3-oxo-prop-1 -enyl]phenyl]4-(4,4,4-trifluorobutoxy) diamine having a photo-alignable group such as an aromatic diamine having a cinnamate structure typified by benzoate;
A diamine having a terminal photopolymerizable group such as 2-(2,4-diaminophenoxy)ethyl methacrylate or 2,4-diamino-N,N-diallylaniline;
1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl)-2-hydroxy-2-methylpropanone, 2-(4-(2-hydroxy-2-methylpropanoyl)phenoxy)ethyl Diamine having a radical polymerization initiator function such as 3,5-diaminobenzoate;
Diamines having an amide bond such as 4,4'-diaminobenzanilide;
Diamines having a urea bond such as 1,3-bis(4-aminophenyl)urea;
H 2 N-Y D -NH 2 (Y D is a divalent organic group having -N(D)- (D represents a protective group that is removed by heating and replaced with a hydrogen atom) in the molecule. diamine having a thermally releasable group such as );
 3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン;
 2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-[3-(1H-イミダゾール-1-イル)プロピル] 3,5-ジアミノベンズアミド、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-2-オキサゾリル]-ベンゼンアミン、1,4-ビス(p-アミノベンジル)ピペラジン、4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)ジアニリン、4-(4-アミノフェノキシカルボニル)-1-(4-アミノフェニル)ピペリジン、2,5-ビス(4-アミノフェニル)ピロール、4,4’-(1-メチル-1H-ピロール-2,5-ジイル)ビス[ベンゼンアミン]、1,4-ビス-(4-アミノフェニル)-ピペラジン、2-N-(4-アミノフェニル)ピリジン-2,5-ジアミン、2-N-(5-アミノピリジン-2-イル)ピリジン-2,5-ジアミン、2-(4-アミノフェニル)-5-アミノベンズイミダゾール、2-(4-アミノフェニル)-6-アミノベンズイミダゾール、5-(1H-ベンズイミダゾール-2-イル)ベンゼン-1,3-ジアミン、若しくは下記式(Z-1)~式(Z-5)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子を含む複素環、第二級又は第三級のアミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(但し、-N(D)-(Dは加熱によって脱離し水素原子に置き換わる保護基を表す。)に由来するアミノ基を除く。)を有するジアミン;
3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis(4-aminophenyl)silane , bis(3-aminophenyl)silane, dimethyl-bis(4-aminophenyl)silane, dimethyl-bis(3-aminophenyl)silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4' -diaminobenzophenone, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 1,4-bis(4-aminobenzyl)benzene;
2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl )-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, N-[3-(1H-imidazol-1-yl)propyl] 3 , 5-diaminobenzamide, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl-2-oxazolyl]-benzenamine, 4-[4-[(4-aminophenoxy) ) methyl]-4,5-dihydro-2-oxazolyl]-benzenamine, 1,4-bis(p-aminobenzyl)piperazine, 4,4'-propane-1,3-diylbis(piperidine-1,4- diyl)dianiline, 4-(4-aminophenoxycarbonyl)-1-(4-aminophenyl)piperidine, 2,5-bis(4-aminophenyl)pyrrole, 4,4'-(1-methyl-1H-pyrrole) -2,5-diyl)bis[benzenamine], 1,4-bis-(4-aminophenyl)-piperazine, 2-N-(4-aminophenyl)pyridine-2,5-diamine, 2-N- (5-Aminopyridin-2-yl)pyridine-2,5-diamine, 2-(4-aminophenyl)-5-aminobenzimidazole, 2-(4-aminophenyl)-6-aminobenzimidazole, 5- Heterocycle-containing diamines such as (1H-benzimidazol-2-yl)benzene-1,3-diamine or diamines represented by the following formulas (Z-1) to (Z-5), or 4,4 '-Diaminodiphenylamine, 4,4'-diaminodiphenyl-N-methylamine, N,N'-bis(4-aminophenyl)-benzidine, N,N'-bis(4-aminophenyl)-N,N' -Heterocycle containing a nitrogen atom, typified by diamine having a diphenylamine structure such as dimethylbenzidine or N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzenediamine , at least one nitrogen atom-containing structure selected from the group consisting of secondary or tertiary amino groups (wherein -N(D)- (D represents a protective group that is removed by heating and replaced with a hydrogen atom). (excluding amino groups derived from );
 2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;
 2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、1,2-ビス(4-アミノフェニル)エタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、1,2-ビス(4-アミノフェニル)エタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;
 1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;
 コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタンなどのステロイド骨格を有するジアミン;
 下記式(V-1)~(V-2)で表されるジアミン;
 1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどのシロキサン結合を有するジアミン;
 メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどの非環式脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)などの脂環式ジアミン、WO2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミンなど。
2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxy biphenyl;
2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 1,2-bis(4-aminophenyl)ethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dicarboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl-4,4'-dicarboxylic acid, 3,3'-diaminobiphenyl-2,4'-dicarboxylic acid, 4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid, 1, Diamines having a carboxy group such as 2-bis(4-aminophenyl)ethane-3,3'-dicarboxylic acid and 4,4'-diaminodiphenyl ether-3,3'-dicarboxylic acid;
1-(4-aminophenyl)-1,3,3-trimethyl-1H-indan-5-amine, 1-(4-aminophenyl)-2,3-dihydro-1,3,3-trimethyl-1H- inden-6-amine;
Cholestanyloxy-3,5-diaminobenzene, Cholestanyloxy-3,5-diaminobenzene, Cholestanyloxy-2,4-diaminobenzene, Cholestanyl 3,5-diaminobenzoate, Cholestenyl 3,5-diaminobenzoate , diamines having a steroid skeleton such as lanostanil 3,5-diaminobenzoate and 3,6-bis(4-aminobenzoyloxy)cholestane;
Diamines represented by the following formulas (V-1) to (V-2);
Diamines having a siloxane bond such as 1,3-bis(3-aminopropyl)-tetramethyldisiloxane;
Acyclic aliphatic diamines such as metaxylylene diamine, 1,3-propanediamine, tetramethylene diamine, pentamethylene diamine, hexamethylene diamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, Alicyclic diamine such as 4,4'-methylenebis(cyclohexylamine), two amino groups in the group represented by any of the formulas (Y-1) to (Y-167) described in WO2018/117239 conjugated diamines, etc.
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
(式(V-1)中、m、及びnはそれぞれ独立して1~3の整数(但し、1≦m+n≦4を満たす。)であり、jは0又は1の整数であり、Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。
 式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表し、Rは、炭素数3~30のアルキル基、又は炭素数3~20のフッ素原子含有アルキル基を表す。
 m、n、X、及びRが2つ存在する場合、それぞれ独立して、上記定義を有する。)
Figure JPOXMLDOC01-appb-C000095
(In formula (V-1), m and n are each independently an integer of 1 to 3 (provided that 1≦m+n≦4 is satisfied), j is an integer of 0 or 1, and X 1 is -(CH 2 ) a - (a is an integer from 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-. R 1 is a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, or a fluorine atom-containing group having 1 to 10 carbon atoms. Represents an alkoxy group, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms.
In formula (V-2), X 2 represents -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-, and R 2 is alkyl having 3 to 30 carbon atoms. group, or a fluorine atom-containing alkyl group having 3 to 20 carbon atoms.
When two of m, n, X 1 and R 1 are present, each independently has the above definition. )
 なお、前記したその他のジアミンが有する-N(D)-におけるDは、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、Boc(tert-ブトキシカルボニル基)などに代表されるカルバメート系の有機基が好ましい。熱による脱離の効率が良く、比較的低い温度で脱離し、脱離した際に無害な気体として排出されるという観点では、Bocが特に好ましい。 In addition, D in -N(D)- of the other diamines mentioned above is representative of benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, Boc (tert-butoxycarbonyl group), etc. Preferred are carbamate-based organic groups. Boc is particularly preferred from the viewpoint that it has good thermal desorption efficiency, desorbs at a relatively low temperature, and is discharged as a harmless gas upon desorption.
 上記その他のジアミンとして例示した熱脱離性基を有するジアミンの好ましい例として、下記式(d-1)~(d-7)から選ばれるジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000096
(式(d-2)、(d-6)、及び(d-7)中、Rは水素原子又はBocを表す。)
Preferred examples of diamines having a thermally releasable group exemplified as other diamines include diamines selected from the following formulas (d-1) to (d-7).
Figure JPOXMLDOC01-appb-C000096
(In formulas (d-2), (d-6), and (d-7), R represents a hydrogen atom or Boc.)
 ポリイミド系重合体の製造に用いられるジアミン成分として、前記熱脱離性基を有するジアミンを用いる場合、本発明の効果を好適に得る観点から、好ましくは、ジアミン成分1モルに対して5~40モル%であることが好ましく、5~35モル%であることがより好ましく、5~30モル%であることがさらに好ましい。 When using a diamine having a heat-eliminating group as described above as a diamine component used in the production of a polyimide polymer, from the viewpoint of suitably obtaining the effects of the present invention, it is preferably 5 to 40% per mole of the diamine component. It is preferably mol%, more preferably 5 to 35 mol%, even more preferably 5 to 30 mol%.
 上記重合体βは、残留DC由来の残像を低減する、又は電気特性を高める観点から、前記窒素原子含有構造を有するジアミンを含有するジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物からなる群から選ばれる少なくとも1種の重合体(以下、ポリイミド系重合体(Q)ともいう。)を含有してもよい。
 前記ポリイミド系重合体(Q)を得るためのテトラカルボン酸誘導体成分として、例えば、上記したテトラカルボン酸誘導体成分が挙げられる。中でも上記式(9)で表されるテトラカルボン酸二無水物若しくはその誘導体が好ましい。上記式(9)で表されるテトラカルボン酸二無水物若しくはその誘導体の使用量は、ジアミン成分と反応させる全テトラカルボン酸誘導体成分1モルに対して、10モル%以上が好ましく、20モル%以上がより好ましい。
 上記ポリイミド系重合体(Q)を得るためのジアミン成分として、上記窒素原子含有構造を有するジアミンの使用量は、ポリイミド系重合体(Q)を得るためのジアミン成分の全量に対して、5~100モル%が好ましく、10~95モル%がより好ましく、20~80モル%が更に好ましい。
 上記ポリイミド系重合体(Q)を得るためのジアミン成分として、上記窒素原子含有構造を有するジアミン以外のジアミンをさらに含有してもよい。より好ましい具体例として、ウレア結合、アミド結合、カルボキシ基及びヒドロキシ基からなる群から選ばれる少なくとも1種の基を分子内に有するジアミン(以下、ジアミン(c)ともいう。)が挙げられる。ジアミン(c)の使用量は、ポリイミド系重合体(Q)を得るためのジアミン成分の全量に対して、1~95モル%が好ましく、5~90モル%がより好ましく、20~80モル%が更に好ましい。
The above polymer β is a polyimide precursor obtained using a diamine component containing a diamine having a nitrogen atom-containing structure, and a polyimide precursor obtained from the viewpoint of reducing afterimages derived from residual DC or improving electrical properties. It may contain at least one kind of polymer selected from the group consisting of imidides (hereinafter also referred to as polyimide polymer (Q)).
Examples of the tetracarboxylic acid derivative component for obtaining the polyimide polymer (Q) include the above-mentioned tetracarboxylic acid derivative component. Among these, the tetracarboxylic dianhydride represented by the above formula (9) or a derivative thereof is preferred. The amount of the tetracarboxylic dianhydride or its derivative represented by the above formula (9) to be used is preferably 10 mol% or more, and 20 mol% based on 1 mol of the total tetracarboxylic acid derivative component to be reacted with the diamine component. The above is more preferable.
As the diamine component for obtaining the polyimide polymer (Q), the amount of the diamine having the nitrogen atom-containing structure used is 5 to 50% based on the total amount of the diamine component for obtaining the polyimide polymer (Q). It is preferably 100 mol%, more preferably 10 to 95 mol%, even more preferably 20 to 80 mol%.
The diamine component for obtaining the polyimide polymer (Q) may further contain a diamine other than the diamine having the nitrogen atom-containing structure. A more preferable example is a diamine (hereinafter also referred to as diamine (c)) having in its molecule at least one group selected from the group consisting of a urea bond, an amide bond, a carboxy group, and a hydroxy group. The amount of diamine (c) used is preferably 1 to 95 mol%, more preferably 5 to 90 mol%, and 20 to 80 mol% based on the total amount of diamine components to obtain the polyimide polymer (Q). is even more preferable.
 重合体βは、上記ポリイミド系重合体(Q)と、上記窒素原子含有構造を有するジアミンを含有しないジアミン成分を用いて得られるポリイミド前駆体及び該ポリイミド前駆体のイミド化物からなる群から選ばれる少なくとも1種の重合体(以下、ポリイミド系重合体(H)ともいう。)との混合物であってもよい。ポリイミド系重合体(Q)とポリイミド系重合体(H)の含有割合は、[ポリイミド系重合体(Q)]/[ポリイミド系重合体(H)]の質量比で、10/90~90/10であることが好ましく、20/80~80/20であることがより好ましく、30/70~70/30であることがさらに好ましい。 The polymer β is selected from the group consisting of a polyimide precursor obtained using the above polyimide polymer (Q) and a diamine component not containing a diamine having a nitrogen atom-containing structure, and an imidized product of the polyimide precursor. It may be a mixture with at least one kind of polymer (hereinafter also referred to as polyimide polymer (H)). The content ratio of polyimide polymer (Q) and polyimide polymer (H) is 10/90 to 90/mass ratio of [polyimide polymer (Q)]/[polyimide polymer (H)]. The ratio is preferably 10, more preferably 20/80 to 80/20, even more preferably 30/70 to 70/30.
 加熱により重合体Cと反応するために、重合体βはアミノ基、保護アミノ基、ヒドロキシ基、保護ヒドロキシ基、チオール基、保護チオール基、カルボキシ基、保護カルボキシ基、イソシアネート基、保護イソシアネート基、マレイミド基、無水カルボン酸基、ビニル基、アリル基、スチリル基、(メタ)アクリル基、及び(メタ)アクリルアミド基からなる群から選ばれる少なくとも一つを重合体Cと反応する部位として含む重合体であることが好ましい。
 ここで、保護アミノ基における保護基、保護ヒドロキシ基における保護基、保護チオール基における保護基、保護カルボキシ基における保護基、保護イソシアネート基における保護基とは、加熱により脱離し、それぞれ、アミノ基、ヒドロキシ基、チオール基、カルボキシ基、イソシアネート基を生成する基を表す。
 保護アミノ基における保護基としては、例えば、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、フタロイル基、ニトロベンゼンスルホニル基、(2-トリメチルシリル)-エタンスルホニル基、2,2,2-トリクロロエトキシカルボニル基、アジド基などが挙げられる。
 保護ヒドロキシ基における保護基としては、例えば、テトラヒドロピラニル基、メトキシメチルエーテル基、トリチル基、tert-ブチル基、トリアルキルシリル基、tert-ブトキシカルボニル基、ベンジル基、アセチル基などが挙げられる。
 保護チオール基における保護基としては、例えば、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、フタロイル基、ニトロベンゼンスルホニル基、(2-トリメチルシリル)-エタンスルホニル基、2,2,2-トリクロロエトキシカルボニル基、アジド基などが挙げられる。
 保護カルボキシ基における保護基としては、例えば、メチルエステル基、ベンジルエステル基、tert-ブチルエステル基などが挙げられる。
 保護イソシアネート基における保護基としては、例えば、tert-ブチル基、ジメチルピラゾール基、メチルエチルケトンオキシム基、ラクタム基などが挙げられる。
In order to react with the polymer C by heating, the polymer β has an amino group, a protected amino group, a hydroxy group, a protected hydroxy group, a thiol group, a protected thiol group, a carboxy group, a protected carboxy group, an isocyanate group, a protected isocyanate group, A polymer containing at least one selected from the group consisting of a maleimide group, a carboxylic anhydride group, a vinyl group, an allyl group, a styryl group, a (meth)acrylic group, and a (meth)acrylamide group as a site that reacts with polymer C. It is preferable that
Here, the protecting group for the protected amino group, the protecting group for the protected hydroxy group, the protecting group for the protected thiol group, the protecting group for the protected carboxy group, and the protecting group for the protected isocyanate group are removed by heating, and the amino group, Represents a group that produces a hydroxy group, thiol group, carboxy group, or isocyanate group.
Examples of the protecting group for the protected amino group include tert-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, phthaloyl group, nitrobenzenesulfonyl group, (2-trimethylsilyl)- Examples include ethanesulfonyl group, 2,2,2-trichloroethoxycarbonyl group, and azide group.
Examples of the protecting group for the protected hydroxy group include a tetrahydropyranyl group, a methoxymethyl ether group, a trityl group, a tert-butyl group, a trialkylsilyl group, a tert-butoxycarbonyl group, a benzyl group, and an acetyl group.
Examples of the protecting group for the protected thiol group include tert-butoxycarbonyl group, benzyloxycarbonyl group, 9-fluorenylmethyloxycarbonyl group, allyloxycarbonyl group, phthaloyl group, nitrobenzenesulfonyl group, (2-trimethylsilyl)- Examples include ethanesulfonyl group, 2,2,2-trichloroethoxycarbonyl group, and azide group.
Examples of the protecting group for the protected carboxy group include a methyl ester group, a benzyl ester group, and a tert-butyl ester group.
Examples of the protecting group for the protected isocyanate group include a tert-butyl group, a dimethylpyrazole group, a methyl ethyl ketone oxime group, and a lactam group.
 重合体βとしてポリアミック酸やポリイミド、ポリアミック酸エステルを使用する場合、テトラカルボン酸二無水物とジアミン成分の反応から生成したカルボキシ基が存在し、かつポリマー鎖末端基に(無水)カルボン酸若しくはアミノ基が存在するため、イミド化率100%でない限り、全てのポリアミック酸やポリイミドが重合体βに該当する。 When polyamic acid, polyimide, or polyamic acid ester is used as the polymer β, a carboxy group generated from the reaction of a tetracarboxylic dianhydride and a diamine component is present, and the terminal group of the polymer chain is a carboxylic acid (anhydride) or an amino acid. Because of the presence of the group, all polyamic acids and polyimides fall under the polymer β unless the imidization rate is 100%.
<ポリイミド前駆体の製造方法>
 ポリイミド前駆体の一つであるポリアミック酸は、以下の方法により製造できる。具体的には、テトラカルボン酸誘導体成分とジアミン成分とを有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応(重縮合反応)させることによって合成できる。
 上記の反応に用いる有機溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルを用いることができる。これらは2種以上を混合して用いてもよい。
<Method for manufacturing polyimide precursor>
Polyamic acid, which is one of the polyimide precursors, can be produced by the following method. Specifically, a tetracarboxylic acid derivative component and a diamine component are reacted in the presence of an organic solvent at -20 to 150°C, preferably 0 to 50°C, for 30 minutes to 24 hours, preferably 1 to 12 hours. It can be synthesized by a condensation reaction).
Specific examples of the organic solvent used in the above reaction include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, Examples include 1,3-dimethyl-2-imidazolidinone. In addition, if the polymer has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene Glycol monopropyl ether, diethylene glycol monomethyl ether, or diethylene glycol monoethyl ether can be used. These may be used in combination of two or more types.
 反応は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。反応においては、ジアミン成分の合計モル数とテトラカルボン酸誘導体成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。 The reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. It is also possible to carry out the reaction at a high concentration in the initial stage and then add a solvent. In the reaction, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid derivative component is preferably 0.8 to 1.2. As in normal polycondensation reactions, the closer this molar ratio is to 1.0, the greater the molecular weight of the polyamic acid produced.
 上記反応で得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリアミック酸を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained in the above reaction can be recovered by precipitating the polyamic acid by injecting the reaction solution into a poor solvent while thoroughly stirring the reaction solution. Further, purified polyamic acid powder can be obtained by performing precipitation several times, washing with a poor solvent, and drying at room temperature or by heating. Examples of the poor solvent include, but are not limited to, water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene, and the like.
 ポリイミド前駆体の一つであるポリアミック酸エステルは、(1)上記ポリアミック酸をエステル化する方法、(2)テトラカルボン酸ジエステルジクロリドを含むテトラカルボン酸誘導体成分とジアミン成分との反応による方法、(3)テトラカルボン酸ジエステルを含むテトラカルボン酸誘導体成分とジアミンとを重縮合させる方法、等の既知の方法による製造できる。 A polyamic acid ester, which is one of the polyimide precursors, can be produced by (1) a method of esterifying the above-mentioned polyamic acid, (2) a method of reacting a tetracarboxylic acid derivative component containing a tetracarboxylic acid diester dichloride with a diamine component, ( 3) It can be produced by a known method such as a method of polycondensing a tetracarboxylic acid derivative component containing a tetracarboxylic diester with a diamine.
 上記ポリアミック酸、ポリアミック酸エステルは、それを製造するに際して、上記の如きテトラカルボン酸誘導体成分及びジアミン成分とともに、適当な末端封止剤を用いて得られる末端修飾型の重合体であってもよい。
 末端封止剤としては、例えば無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、1,2-シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸一無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネート、2-アクリロイルオキシエチルイソシアネ-ト及び2-メタクリロイルオキシエチルイソシアネ-トなどの不飽和結合を有するイソシアネートなどのモノイソシアネート化合物;エチルイソチオシアネート、アリルイソチオシアネートなどのイソチオシアネート化合物等が挙げられる。
 末端封止剤の使用割合は、使用するジアミン成分の計100モル部に対して、40モル部以下とすることが好ましく、30モル部以下とすることがより好ましい。
The above-mentioned polyamic acid and polyamic acid ester may be terminal-modified polymers obtained by using an appropriate end-capping agent together with the above-mentioned tetracarboxylic acid derivative component and diamine component. .
Examples of the terminal capping agent include acetic anhydride, maleic anhydride, nadic anhydride, phthalic anhydride, itaconic anhydride, 1,2-cyclohexanedicarboxylic anhydride, 3-hydroxyphthalic anhydride, and trimellitic anhydride. , 3-(3-trimethoxysilyl)propyl)-3,4-dihydrofuran-2,5-dione, 4,5,6,7-tetrafluoroisobenzofuran-1,3-dione, 4-ethynyl phthalic acid Acid monoanhydrides such as anhydrides; dicarbonate diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride, and nicotinic acid chloride; aniline, 2-aminophenol, 3 -Aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n - Monoamine compounds such as hexylamine, n-heptylamine, n-octylamine; unsaturated compounds such as ethyl isocyanate, phenyl isocyanate, naphthyl isocyanate, 2-acryloyloxyethyl isocyanate and 2-methacryloyloxyethyl isocyanate Monoisocyanate compounds such as isocyanate having a bond; isothiocyanate compounds such as ethyl isothiocyanate and allyl isothiocyanate; and the like.
The proportion of the terminal capping agent used is preferably 40 parts by mole or less, more preferably 30 parts by mole or less, based on a total of 100 parts by mole of the diamine component used.
 ポリイミドは、上記のポリイミド前駆体を既知の方法によりイミド化することにより製造できる。
 ポリイミドにおいては、ポリアミック酸又はポリアミック酸エステルが有する官能基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
Polyimide can be produced by imidizing the above polyimide precursor by a known method.
In polyimide, the ring closure rate (also referred to as imidization rate) of functional groups possessed by polyamic acid or polyamic acid ester does not necessarily have to be 100%, and can be arbitrarily adjusted depending on the use and purpose.
 上記ポリアミック酸又はポリアミック酸エステルをイミド化してポリイミドを得る方法としては、上記ポリアミック酸又はポリアミック酸エステルの溶液をそのまま加熱する熱イミド化、又は上記ポリアミック酸又はポリアミック酸エステルの溶液に触媒(例:ピリジンなどの塩基性触媒、無水酢酸などの酸無水物)を添加する触媒イミド化が挙げられる。 The method for obtaining polyimide by imidizing the polyamic acid or polyamic acid ester includes thermal imidization in which the solution of the polyamic acid or polyamic acid ester is directly heated, or a catalyst (e.g. Examples include catalytic imidization in which a basic catalyst such as pyridine or an acid anhydride such as acetic anhydride is added.
 本発明に用いられるポリアミック酸、ポリアミック酸エステル及びポリイミドは、これを濃度10~15質量%の溶液としたときに、例えば10~1000mPa・sの溶液粘度を持つものが作業性の観点から好ましいが、特に限定されない。なお、上記重合体の溶液粘度(mPa・s)は、当該重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10~15質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。 The polyamic acid, polyamic acid ester, and polyimide used in the present invention preferably have a solution viscosity of, for example, 10 to 1000 mPa·s when made into a solution with a concentration of 10 to 15% by mass, from the viewpoint of workability. , not particularly limited. Note that the solution viscosity (mPa・s) of the above polymer is a polymer with a concentration of 10 to 15% by mass prepared using a good solvent for the polymer (for example, γ-butyrolactone, N-methyl-2-pyrrolidone, etc.). This is the value measured for the solution at 25°C using an E-type rotational viscometer.
 上記ポリアミック酸、ポリアミック酸エステル及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~500,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶表示素子の良好な液晶配向性を確保することができる。 The weight average molecular weight (Mw) of the polyamic acid, polyamic acid ester, and polyimide measured by gel permeation chromatography (GPC) in terms of polystyrene is preferably 1,000 to 500,000, more preferably 2,000. ~500,000. Further, the molecular weight distribution (Mw/Mn) expressed as the ratio of Mw to the number average molecular weight (Mn) in terms of polystyrene measured by GPC is preferably 15 or less, more preferably 10 or less. By having a molecular weight within such a range, good liquid crystal alignment of the liquid crystal display element can be ensured.
 重合体βとしてポリウレアを選択する場合、上記のジアミン成分と反応させるジイソシアネートに関しては、特に限定はせず、入手性等に応じて使用することができる。ジイソシアネートの具体的構造を以下に示す。
Figure JPOXMLDOC01-appb-C000097
 式中R、およびRは炭素数1~10の脂肪族炭化水素基を表す。
When polyurea is selected as the polymer β, the diisocyanate to be reacted with the above-mentioned diamine component is not particularly limited and can be used depending on availability and the like. The specific structure of the diisocyanate is shown below.
Figure JPOXMLDOC01-appb-C000097
In the formula, R 2 and R 3 represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
 式(K-1)~(K-5)に示す脂肪族ジイソシアネートは、反応性は劣るが溶媒溶解性を向上させるメリットがあり、式(K-6)~(K-13)に示すような芳香族ジイソシアネートは反応性に富み耐熱性を向上させる効果があるが、溶媒溶解性を低下させる欠点が挙げられる。汎用性や特性面においては式(K-1)、(K-7)、(K-8)、(K-9)、(K-10)が好ましく、電気特性の観点では式(K-12)、液晶配向性の観点では式(K-13)が好ましい。ジイソシアネートは2種以上を併用して使用することもでき、得たい特性に応じて種々適用するのが好ましい。 Although the aliphatic diisocyanates shown in formulas (K-1) to (K-5) are inferior in reactivity, they have the advantage of improving solvent solubility; Aromatic diisocyanates are highly reactive and have the effect of improving heat resistance, but they have the disadvantage of decreasing solvent solubility. In terms of versatility and characteristics, formulas (K-1), (K-7), (K-8), (K-9), and (K-10) are preferable, and in terms of electrical characteristics, formula (K-12) is preferable. ), formula (K-13) is preferred from the viewpoint of liquid crystal orientation. Two or more diisocyanates can be used in combination, and it is preferable to use various diisocyanates depending on the desired properties.
 また、一部のジイソシアネートを上記で説明したテトラカルボン酸二無水物に置き換えることもでき、ポリアミック酸とポリウレアの共重合体のような形で使用しても良く、化学イミド化によってポリイミドとポリウレアの共重合体のような形で使用しても良い。 In addition, some diisocyanates can be replaced with the above-mentioned tetracarboxylic dianhydride, and they can also be used in the form of a copolymer of polyamic acid and polyurea, and chemical imidization can be used to create a copolymer of polyimide and polyurea. It may also be used in the form of a copolymer.
 重合体βとしてポリアミドを選択する場合、反応させるジカルボン酸の構造は特に限定されないが、あえて具体例を以下に挙げれば以下のとおりである。 When polyamide is selected as the polymer β, the structure of the dicarboxylic acid to be reacted is not particularly limited, but specific examples are as follows.
 脂肪族ジカルボン酸としては、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライン酸、セバシン酸およびスベリン酸等のジカルボン酸を挙げることができる。
 脂環式系のジカルボン酸としては、1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、3,4-ジフェニル-1,2-シクロブタンジカルボン酸、2,4-ジフェニル-1,3-シクロブタンジカルボン酸、1-シクロブテン-1,2-ジカルボン酸、1-シクロブテン-3,4-ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-(2-ノルボルネン)ジカルボン酸、ノルボルネン-2,3-ジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸、2,5-ジオキソ-1,4-ビシクロ[2.2.2]オクタンジカルボン酸、1,3-アダマンタンジカルボン酸、4,8-ジオキソ-1,3-アダマンタンジカルボン酸、2,6-スピロ[3.3]ヘプタンジカルボン酸、1,3-アダマンタン二酢酸、カンファー酸等を挙げることができる。
 芳香族ジカルボン酸としては、o-フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、5-tert-ブチルイソフタル酸、5-アミノイソフタル酸、5-ヒドロキシイソフタル酸、2,5-ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、1,4-アントラキノンジカルボン酸、2,5-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、1,5-ビフェニレンジカルボン酸、4,4”-ターフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ビベンジルジカルボン酸、4,4’-スチルベンジカルボン酸、4,4’-トランジカルボン酸、4,4’-カルボニル二安息香酸、4,4’-スルホニル二安息香酸、4,4’-ジチオ二安息香酸、p-フェニレン二酢酸、3,3’-p-フェニレンジプロピオン酸、4-カルボキシ桂皮酸、p-フェニレンジアクリル酸、3,3’-[4,4’-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]二酪酸、(イソプロピリデンジ-p-フェニレンジオキシ)二酪酸、ビス(p-カルボキシフェニル)ジメチルシラン等のジカルボン酸を挙げることができる。
 複素環を含むジカルボン酸としては、1,5-(9-オキソフルオレン)ジカルボン酸、3,4-フランジカルボン酸、4,5-チアゾールジカルボン酸、2-フェニル-4,5-チアゾールジカルボン酸、1,2,5-チアジアゾール-3,4-ジカルボン酸、1,2,5-オキサジアゾール-3,4-ジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸等を挙げることができる。
Examples of aliphatic dicarboxylic acids include malonic acid, oxalic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, and 2,2-dimethylglutaric acid. Mention may be made of acids, dicarboxylic acids such as 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid.
Examples of alicyclic dicarboxylic acids include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid. acid, 3,4-diphenyl-1,2-cyclobutanedicarboxylic acid, 2,4-diphenyl-1,3-cyclobutanedicarboxylic acid, 1-cyclobutene-1,2-dicarboxylic acid, 1-cyclobutene-3,4-dicarboxylic acid Acid, 1,1-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,1-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexane Dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,4-(2-norbornene)dicarboxylic acid, norbornene-2,3-dicarboxylic acid, bicyclo[2.2.2]octane-1,4-dicarboxylic acid, bicyclo [2.2.2] Octane-2,3-dicarboxylic acid, 2,5-dioxo-1,4-bicyclo[2.2.2]octanedicarboxylic acid, 1,3-adamantanedicarboxylic acid, 4,8- Examples include dioxo-1,3-adamantane dicarboxylic acid, 2,6-spiro[3.3]heptane dicarboxylic acid, 1,3-adamantane diacetic acid, and camphoric acid.
Aromatic dicarboxylic acids include o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butyl isophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, 2,5-dimethylterephthalic acid. Acid, tetramethyl terephthalic acid, 1,4-naphthalene dicarboxylic acid, 2,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, 1,4-anthracene dicarboxylic acid, 1,4 -Anthraquinonedicarboxylic acid, 2,5-biphenyldicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 1,5-biphenylenedicarboxylic acid, 4,4''-terphenyldicarboxylic acid, 4,4'-diphenylmethanedicarboxylic acid, 4 , 4'-diphenyletherdicarboxylic acid, 4,4'-diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-bibenzyldicarboxylic acid, 4,4'-Stilbendicarboxylic acid, 4,4'-trandicarboxylic acid, 4,4'-carbonyl dibenzoic acid, 4,4'-sulfonyl dibenzoic acid, 4,4'-dithiodibenzoic acid, p- Phenylene diacetic acid, 3,3'-p-phenylene dipropionic acid, 4-carboxycinnamic acid, p-phenylene diacrylic acid, 3,3'-[4,4'-(methylenedi-p-phenylene)]dipropion acid, 4,4'-[4,4'-(oxydi-p-phenylene)]dipropionic acid, 4,4'-[4,4'-(oxydi-p-phenylene)]dibutyric acid, (isopropylene) Examples include dicarboxylic acids such as di-p-phenylenedioxy) dibutyric acid and bis(p-carboxyphenyl)dimethylsilane.
Examples of dicarboxylic acids containing heterocycles include 1,5-(9-oxofluorene)dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazoledicarboxylic acid, 2-phenyl-4,5-thiazoledicarboxylic acid, 1,2,5-thiadiazole-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
 上記の各種ジカルボン酸は酸ジハライドあるいは無水物の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、2,2-ビス(フェニル)プロパンジカルボン酸、4、4”-ターフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-ピリジンジカルボン酸またはこれらの酸ジハライド等が好ましく用いられる。これらの化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。なお、本発明に使用するジカルボン酸類は、上記の例示化合物に限定されるものではない。 The various dicarboxylic acids mentioned above may have an acid dihalide or anhydride structure. These dicarboxylic acids are particularly preferably dicarboxylic acids that can provide a polyamide with a linear structure in order to maintain the orientation of liquid crystal molecules. Among these, terephthalic acid, isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-diphenylmethanedicarboxylic acid, 4,4'-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis(phenyl)propanedicarboxylic acid, 4,4''-terphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2 , 5-pyridinedicarboxylic acid or these acid dihalides are preferably used. Some of these compounds have isomers, but a mixture containing them may also be used. They may be used in combination.The dicarboxylic acids used in the present invention are not limited to the above-mentioned exemplified compounds.
 原料であるジアミン(「ジアミン成分」とも記載する)と原料であるテトラカルボン酸二無水物(「テトラカルボン酸二無水物成分」とも記載する)、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる成分との反応により、ポリアミック酸、ポリアミック酸エステル、ポリウレア、ポリアミドを得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる一種以上の成分とを、有機溶媒中で反応させる方法である。 Selected from raw material diamine (also described as "diamine component"), raw material tetracarboxylic dianhydride (also described as "tetracarboxylic dianhydride component"), tetracarboxylic acid diester, diisocyanate, and dicarboxylic acid. In order to obtain polyamic acid, polyamic acid ester, polyurea, and polyamide by reaction with the components, known synthesis techniques can be used. Generally, it is a method in which a diamine component and one or more components selected from a tetracarboxylic dianhydride component, a tetracarboxylic diester, a diisocyanate, and a dicarboxylic acid are reacted in an organic solvent.
 重合体βとしてポリ(メタ)アクリレートを選択する場合ポリ(メタ)アクリレートの好ましい態様の一つは、上記で説明した重合体αではないポリアクリレートである。例えば工業的に入手できるラジカル重合反応可能なモノマーを一般的なラジカル発生剤を用いて重合することで得られる重合体である。 When poly(meth)acrylate is selected as the polymer β, one preferred embodiment of the poly(meth)acrylate is a polyacrylate other than the polymer α described above. For example, it is a polymer obtained by polymerizing industrially available monomers capable of radical polymerization using a common radical generator.
 工業的に入手できるラジカル重合反応可能なモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。 Specific examples of industrially available monomers capable of radical polymerization include unsaturated carboxylic acids, acrylic ester compounds, methacrylic ester compounds, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds, and vinyl compounds. It will be done.
 不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。 Specific examples of unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid.
 アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、及び、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。グリシジルアクリレート、(3-メチル-3-オキセタニル)メチルアクリレート、および(3-エチル-3-オキセタニル)メチルアクリレートなどの環状エーテル基を有するアクリレート化合物も用いることができる。 Examples of acrylic ester compounds include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-butyl acrylate. Acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2- Examples include propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, and 8-ethyl-8-tricyclodecyl acrylate. Acrylate compounds having cyclic ether groups such as glycidyl acrylate, (3-methyl-3-oxetanyl) methyl acrylate, and (3-ethyl-3-oxetanyl) methyl acrylate can also be used.
 メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、及び、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。グリシジルメタクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、および(3-エチル-3-オキセタニル)メチルメタクリレートなどの環状エーテル基を有するメタクリレート化合物も用いることができる。 Examples of methacrylic acid ester compounds include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate, and tert-butyl. Methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, 2- Examples include propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, and 8-ethyl-8-tricyclodecyl methacrylate. Methacrylate compounds having a cyclic ether group such as glycidyl methacrylate, (3-methyl-3-oxetanyl) methyl methacrylate, and (3-ethyl-3-oxetanyl) methyl methacrylate can also be used.
 ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及び、プロピルビニルエーテル等が挙げられる。 Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, and propyl vinyl ether.
 スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン等が挙げられる。 Examples of styrene compounds include styrene, methylstyrene, chlorostyrene, bromostyrene, and the like.
 マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。 Examples of maleimide compounds include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
 上記の工業的に入手できるラジカル重合反応可能なモノマー以外にも、液晶性側鎖構造を有するモノマー(以下、液晶性側鎖モノマーと呼ぶ)を用いた側鎖型高分子や、感光性基を有する感光性モノマー(以下光反応性側鎖モノマーと呼ぶ)なども使用することができる。 In addition to the industrially available monomers that can undergo radical polymerization reactions, there are also side chain polymers using monomers with a liquid crystal side chain structure (hereinafter referred to as liquid crystal side chain monomers) and photosensitive groups. It is also possible to use photosensitive monomers (hereinafter referred to as photoreactive side chain monomers).
 液晶性側鎖モノマーとは、該モノマー由来の高分子が液晶性を発現し、該高分子が側鎖部位にメソゲン基を形成することができるモノマーのことである。
 液晶性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基からなる群から選択される少なくとも1種から構成された重合性基と、液晶性側鎖の有するメソゲン基の少なくとも1種を有する側鎖とを有する構造であることが好ましい。
A liquid crystalline side chain monomer is a monomer in which a polymer derived from the monomer exhibits liquid crystallinity and can form a mesogenic group at the side chain site.
More specific examples of liquid crystalline side chain monomers include hydrocarbons, radically polymerizable groups such as (meth)acrylate, itaconate, fumarate, maleate, α-methylene-γ-butyrolactone, styrene, vinyl, maleimide, and norbornene. It is preferable that the structure has a polymerizable group composed of at least one kind selected from the group consisting of a side chain having at least one kind of mesogenic group included in a liquid crystal side chain.
 液晶性側鎖モノマーとしては、下式(LS-1)~(LS-13)より選ばれる液晶性側鎖が、ラジカル重合可能な重合性基に結合したモノマーが好ましい。ラジカル重合可能な重合性基としては、重合体αの説明で例示した重合可能な不飽和炭化水素基を有する重合性基が挙げられる。
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
(式(LS-1)~(LS-13)中、AおよびAは、それぞれ独立して、単結合、-O-、-CH-、-C(=O)-O-、-OC(=O)-、-C(=O)NH-、-NHC(=O)-、-CH=CH-C(=O)O-、または-OC(=O)-CH=CH-を表し、R11は、-NO、-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラニル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、または炭素数1~12のアルコキシ基を表し、R12は、フェニル基、ナフチル基、ビフェニリル基、フラン-2,5-ジイル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、およびこれらを組み合わせて得られる基からなる群から選ばれる基を表し、R11及びR12においてはこれらに結合する水素原子が、-NO、-CN、ハロゲン原子、炭素数1~5のアルキル基、または炭素数1~5のアルコキシ基で置換されてもよく、R13は、水素原子、-NO、-CN、-CH=C(CN)、-CH=CH-CN、ハロゲン原子、フェニル基、ナフチル基、ビフェニリル基、フラン-2,5-ジイル基、1価窒素含有複素環基、炭素数5~8の1価脂環式炭化水素基、炭素数1~12のアルキル基、または炭素数1~12のアルコキシ基を表し、Eは、-C(=O)O-、または-OC(=O)-を表し、dは、1~12の整数を表し、k1~k5は、それぞれ独立して、0~2の整数であるが、各式におけるk1~k5の合計は2以上であり、k6およびk7は、それぞれ独立して、0~2の整数であるが、各式においてk6およびk7の合計は1以上であり、m1、m2およびm3は、それぞれ独立して、1~3の整数であり、nは、0または1であり、ZおよびZは、それぞれ独立して、単結合、-C(=O)-、-CHO-、-CH=N-または-CF-を表す。破線は結合手を表す。)
The liquid crystal side chain monomer is preferably a monomer in which a liquid crystal side chain selected from the following formulas (LS-1) to (LS-13) is bonded to a polymerizable group capable of radical polymerization. Examples of the radically polymerizable polymerizable group include the polymerizable group having a polymerizable unsaturated hydrocarbon group as exemplified in the explanation of the polymer α.
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
(In formulas (LS-1) to (LS-13), A 1 and A 2 each independently represent a single bond, -O-, -CH 2 -, -C(=O)-O-, - OC(=O)-, -C(=O)NH-, -NHC(=O)-, -CH=CH-C(=O)O-, or -OC(=O)-CH=CH- and R 11 is -NO 2 , -CN, a halogen atom, a phenyl group, a naphthyl group, a biphenylyl group, a furanyl group, a monovalent nitrogen-containing heterocyclic group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms. , represents an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, and R 12 is a phenyl group, a naphthyl group, a biphenylyl group, a furan-2,5-diyl group, or a monovalent nitrogen-containing heterocycle. represents a group selected from the group consisting of a group, a monovalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and a group obtained by combining these, and in R 11 and R 12 , the hydrogen atoms bonded to these are It may be substituted with -NO 2 , -CN, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms, and R 13 is a hydrogen atom, -NO 2 , -CN, - CH=C(CN) 2 , -CH=CH-CN, halogen atom, phenyl group, naphthyl group, biphenylyl group, furan-2,5-diyl group, monovalent nitrogen-containing heterocyclic group, carbon number 5-8 Represents a monovalent alicyclic hydrocarbon group, an alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms, and E is -C(=O)O- or -OC(=O)- , d represents an integer from 1 to 12, and k1 to k5 are each independently an integer from 0 to 2, but the sum of k1 to k5 in each formula is 2 or more, and k6 and k7 are each independently an integer of 0 to 2, but in each formula, the sum of k6 and k7 is 1 or more, m1, m2 and m3 are each independently an integer of 1 to 3, n is 0 or 1, Z 1 and Z 2 each independently represent a single bond, -C(=O)-, -CH 2 O-, -CH=N- or -CF 2 - (The dashed line represents the bond.)
 光反応性側鎖モノマーでは感光性を有する側鎖が主鎖に結合しており、光反応性側鎖モノマーは光に感応して架橋反応、異性化反応、または光フリース転位を起こすことができる側鎖を有するモノマーである。感光性を有する側鎖の構造は特に限定されないが、光に感応して架橋反応、または光フリース転位を起こす構造が望ましく、架橋反応を起こすものがより望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。液晶性を発現し得る感光性の側鎖型アクリル重合体の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。 In photoreactive side chain monomers, a photosensitive side chain is bonded to the main chain, and photoreactive side chain monomers can undergo cross-linking reactions, isomerization reactions, or photo-Fries rearrangement in response to light. It is a monomer with side chains. The structure of the photosensitive side chain is not particularly limited, but a structure that causes a crosslinking reaction or a photo-Fries rearrangement in response to light is desirable, and a structure that causes a crosslinking reaction is more desirable. In this case, even if exposed to external stress such as heat, the achieved orientation control ability can be stably maintained for a long period of time. The structure of the photosensitive side chain type acrylic polymer capable of exhibiting liquid crystallinity is not particularly limited as long as it satisfies such characteristics, but preferably has a rigid mesogenic component in the side chain structure.
 該感光性の側鎖型アクリル重合体の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、側鎖の先端部に結合された、光に感応して架橋反応や異性化反応をする感光性基とを有する構造や、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。 The structure of the photosensitive side chain type acrylic polymer has, for example, a main chain and a side chain bonded to the main chain, and the side chain is a biphenyl group, terphenyl group, phenylcyclohexyl group, phenylbenzoate group, or azobenzene group. It has a structure that has a mesogenic component such as and a photosensitive group that is bonded to the tip of the side chain and undergoes a crosslinking reaction or isomerization reaction in response to light, or a main chain and a side chain that is bonded to it. It can have a structure having a phenylbenzoate group whose side chain also serves as a mesogen component and undergoes a photo-Fries rearrangement reaction.
 所定の温度範囲で液晶性を発現し得る感光性の側鎖型アクリル重合体の構造のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基からなる群から選択される少なくとも1種から構成された主鎖と、下記式(31)~(35)の少なくとも1種からなる側鎖を有する構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000100
 式中、Ar及びArはそれぞれ独立して、ベンゼン環、ナフタレン環、ピロール環、フラン環、チオフェン環、又はピリジン環から2個の水素原子を取り去った2価の有機基を表し、
 q1とq2は一方が1でもう一方が0であり、
 Y-YはCH=CH、CH=N、N=CHまたはC-C(ただし、炭素-炭素間の結合は3重結合)を表し、
 S及びSはそれぞれ独立に単結合、炭素数1~18の直鎖状又は分岐状のアルキレン基、炭素数5~8のシクロアルキレン基、フェニレン基またはビフェニリレン基を表すか、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、-NR-(Rは水素原子又は炭素数1~18のアルキル基を表す。)、及びカルボニル基又はそれらの組み合わせから選ばれる1種又は2種以上の結合を表すか、或いは該1種又は2種以上の結合を介して、炭素数1~18の直鎖状又は分岐状のアルキレン基、炭素数5~8のシクロアルキレン基、フェニレン基、ビフェニリレン基又はそれらの組み合わせから選ばれる2~10の部位が結合してなる構造であって、前記Ar及びArは前記結合を介してそれぞれ複数個が連結してなる構造であってもよく、
 Rは水素原子、ヒドロキシ基、メルカプト基、アミノ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~8のアルキルアミノ基または炭素数2~16のジアルキルアミノ基を表し、
 Ar、Ar、S及びSにおけるベンゼン環および/またはナフタレン環はハロゲン原子、シアノ基、ニトロ基、カルボキシ基および炭素数2~11のアルコキシカルボニル基から選ばれる同一または相異なる1以上の置換基によって置換されていてもよい。その際、炭素数2~11のアルコキシカルボニル基における炭素数1~10のアルキル基は直鎖状でも分岐状でも環状でも、それらを組み合わせた構造でもよく、該炭素数1~10のアルキル基中の水素原子はハロゲン原子で置換されていてもよい。
More specific examples of structures of photosensitive side chain type acrylic polymers that can exhibit liquid crystallinity in a predetermined temperature range include hydrocarbons, (meth)acrylates, itaconates, fumarates, maleates, α-methylene-γ - A main chain consisting of at least one kind selected from the group consisting of radically polymerizable groups such as butyrolactone, styrene, vinyl, maleimide, norbornene, and a side consisting of at least one kind of the following formulas (31) to (35). A structure having a chain is preferable.
Figure JPOXMLDOC01-appb-C000100
In the formula, Ar 1 and Ar 2 each independently represent a divalent organic group obtained by removing two hydrogen atoms from a benzene ring, a naphthalene ring, a pyrrole ring, a furan ring, a thiophene ring, or a pyridine ring,
One of q1 and q2 is 1 and the other is 0,
Y 1 -Y 2 represents CH=CH, CH=N, N=CH or CC (however, the bond between carbon and carbon is a triple bond),
S 1 and S 2 each independently represent a single bond, a linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group having 5 to 8 carbon atoms, a phenylene group or a biphenylylene group, or a single bond, One or more selected from ether bond, ester bond, amide bond, urea bond, urethane bond, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms), carbonyl group, or a combination thereof A linear or branched alkylene group having 1 to 18 carbon atoms, a cycloalkylene group having 5 to 8 carbon atoms, or phenylene, representing two or more types of bonds, or through one or more types of bonds. A structure in which 2 to 10 moieties selected from groups, biphenylylene groups, or a combination thereof are bonded, and each of Ar 1 and Ar 2 is a structure in which a plurality of each are connected via the bond. Good too,
R is a hydrogen atom, a hydroxy group, a mercapto group, an amino group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkylamino group having 1 to 8 carbon atoms, or a dialkylamino group having 2 to 16 carbon atoms. represents the group,
The benzene ring and/or naphthalene ring in Ar 1 , Ar 2 , S 1 and S 2 are the same or different one or more selected from a halogen atom, a cyano group, a nitro group, a carboxy group, and an alkoxycarbonyl group having 2 to 11 carbon atoms. may be substituted with a substituent. In this case, the alkyl group having 1 to 10 carbon atoms in the alkoxycarbonyl group having 2 to 11 carbon atoms may be linear, branched, cyclic, or a combination thereof; The hydrogen atom may be substituted with a halogen atom.
 前記ポリアクリレートの製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、液晶性側鎖モノマーや光反応性側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。 The method for producing the polyacrylate is not particularly limited, and any industrially-used general-purpose method can be used. Specifically, it can be produced by cationic polymerization, radical polymerization, or anionic polymerization using a vinyl group of a liquid crystal side chain monomer or a photoreactive side chain monomer. Among these, radical polymerization is particularly preferred from the viewpoint of ease of reaction control.
 ラジカル重合の重合開始剤としては、AIBN(アゾビスイソブチロニトリル)等の公知のラジカル重合開始剤や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。 As a polymerization initiator for radical polymerization, a known radical polymerization initiator such as AIBN (azobisisobutyronitrile) or a known compound such as a reversible addition-fragmentation chain transfer (RAFT) polymerization reagent may be used. I can do it.
 ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。 The radical polymerization method is not particularly limited, and emulsion polymerization, suspension polymerization, dispersion polymerization, precipitation polymerization, bulk polymerization, solution polymerization, etc. can be used.
 所定の温度範囲で液晶性を発現し得る感光性の側鎖型アクリル重合体の重合反応に用いる有機溶媒としては、生成した重合体が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジブチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジプロピルアセトアミド、N,N-ジメチルプロピオンアミド、N,N-ジエチルプロピオンアミド、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチル-ε-カプロラクタム、N,N-ジエチルアセトアミド、N,N-ジプロピルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、N,N-ジエチルプロピオンアミド、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1,4-ジオキサン、n-へキサン、n-ペンタン、n-オクタン、シクロヘキサン、2-エチル-1-ヘキサノール、ベンゼン、キシレン、トルエン、エチルベンゼン、イソプロピルベンゼン、tert-ブチルベンゼン、テトラヒドロフラン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、ピルビン酸プロピル、ピルビン酸ブチル、ピルビン酸ペンチル、ピルビン酸ヘキシル、ピルビン酸-2-エチルヘキシル、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸ブチル、アセト酢酸ペンチル、アセト酢酸ヘキシル、アセト酢酸-2-エチルヘキシル、レブリン酸メチル、レブリン酸エチル、レブリン酸プロピル、レブリン酸ブチル、レブリン酸ペンチル、レブリン酸ヘキシル、レブリン酸-2-エチルヘキシル、マロン酸ジメチル、コハク酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチル、フタル酸ジメチル、マレイン酸ジメチル、マロン酸ジエチル、コハク酸ジエチル、グルタル酸ジエチル、アジピン酸ジエチル、フタル酸ジエチル、マレイン酸ジエチル、マロン酸ジプロピル、コハク酸ジプロピル、グルタル酸ジプロピル、アジピン酸ジプロピル、フタル酸ジプロピル、マレイン酸ジプロピル、マロン酸ジブチル、コハク酸ジブチル、グルタル酸ジブチル、アジピン酸ジブチル、フタル酸ジブチル、マレイン酸ジブチル、マロン酸ジペンチル、コハク酸ジペンチル、グルタル酸ジペンチル、アジピン酸ジペンチル、フタル酸ジペンチル、マレイン酸ジペンチル、マロン酸ジヘキシル、コハク酸ジヘキシル、グルタル酸ジヘキシル、アジピン酸ジヘキシル、フタル酸ジヘキシル、マレイン酸ジヘキシル、マロン酸ジ-2-エチルヘキシル、コハク酸-2-エチルヘキシル、グルタル酸-2-エチルヘキシル、アジピン酸-2-エチルヘキシル、フタル酸-2-エチルヘキシル、マレイン酸-2-エチルヘキシル等が挙げられる。
 これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
 また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
The organic solvent used in the polymerization reaction of the photosensitive side chain type acrylic polymer capable of exhibiting liquid crystallinity in a predetermined temperature range is not particularly limited as long as it dissolves the produced polymer. Specific examples are listed below.
N,N-dimethylformamide, N,N-diethylformamide, N,N-dibutylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dipropylacetamide, N,N-dimethylpropionamide , N,N-diethylpropionamide, 3-methoxy-N,N-dimethylpropanamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2-pyrrolidone, 1,3- Dimethyl-2-imidazolidinone, N-methyl-ε-caprolactam, N,N-diethylacetamide, N,N-dipropylacetamide, 3-methoxy-N,N-dimethylpropanamide, N,N-diethylpropionamide , dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl phosphoramide, γ-butyrolactone, isopropyl alcohol, methoxymethyl pentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone , methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), propylene glycol , propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene Glycol monoacetate monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene Glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, 1,4-dioxane , n-hexane, n-pentane, n-octane, cyclohexane, 2-ethyl-1-hexanol, benzene, xylene, toluene, ethylbenzene, isopropylbenzene, tert-butylbenzene, tetrahydrofuran, diethyl ether, cyclohexanone, ethylene carbonate, Propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, 3 - Methyl ethoxypropionate, ethyl 3-ethoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl-2 -Pentanone, 3-ethoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, propyl pyruvate, butyl pyruvate, pentyl pyruvate, hexyl pyruvate, 2-ethylhexyl pyruvate, Methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate, butyl acetoacetate, pentyl acetoacetate, hexyl acetoacetate, 2-ethylhexyl acetoacetate, methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, pentyl levulinate , hexyl levulinate, 2-ethylhexyl levulinate, dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, dimethyl phthalate, dimethyl maleate, diethyl malonate, diethyl succinate, diethyl glutarate, adipic acid Diethyl, diethyl phthalate, diethyl maleate, dipropyl malonate, dipropyl succinate, dipropyl glutarate, dipropyl adipate, dipropyl phthalate, dipropyl maleate, dibutyl malonate, dibutyl succinate, dibutyl glutarate, dibutyl adipate, Dibutyl phthalate, dibutyl maleate, dipentyl malonate, dipentyl succinate, dipentyl glutarate, dipentyl adipate, dipentyl phthalate, dipentyl maleate, dihexyl malonate, dihexyl succinate, dihexyl glutarate, dihexyl adipate, phthalic acid Dihexyl, dihexyl maleate, di-2-ethylhexyl malonate, 2-ethylhexyl succinate, 2-ethylhexyl glutarate, 2-ethylhexyl adipate, 2-ethylhexyl phthalate, 2-ethylhexyl maleate, etc. Can be mentioned.
These organic solvents may be used alone or in combination. Furthermore, even a solvent that does not dissolve the produced polymer may be mixed with the above-mentioned organic solvent and used as long as the produced polymer does not precipitate.
Further, in radical polymerization, oxygen in an organic solvent becomes a cause of inhibiting the polymerization reaction, so it is preferable to use an organic solvent that has been degassed to the extent possible.
 ラジカル重合の際の重合温度は30~150℃の任意の温度を選択することができるが、好ましくは50~100℃である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。
The polymerization temperature during radical polymerization can be any temperature from 30 to 150°C, preferably from 50 to 100°C. In addition, the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution will become too high, making it difficult to stir uniformly. Therefore, the monomer concentration is preferably 1 to 50% by weight, more preferably 5 to 30% by weight. The initial stage of the reaction can be carried out at a high concentration, and then an organic solvent can be added.
In the above-mentioned radical polymerization reaction, if the ratio of the radical polymerization initiator to the monomer is large, the molecular weight of the obtained polymer will be small, and if it is small, the molecular weight of the obtained polymer will be large, so the ratio of the radical initiator is The amount is preferably 0.1 to 10 mol % based on the monomer to be polymerized. Furthermore, various monomer components, solvents, initiators, etc. can be added during polymerization.
 上述の反応により得られた、液晶性を発現し得る感光性の側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 When recovering the produced polymer from the reaction solution of the photosensitive side-chain polymer capable of exhibiting liquid crystallinity obtained by the above reaction, the reaction solution is poured into a poor solvent and the polymers are removed. All you have to do is precipitate the coalescence. Examples of the poor solvent used for precipitation include methanol, acetone, hexane, heptane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, diethyl ether, methyl ethyl ether, water, and the like. The polymer precipitated in a poor solvent can be collected by filtration and then dried under normal pressure or reduced pressure, at room temperature or by heating. Further, by repeating the operation of redissolving the precipitated and recovered polymer in an organic solvent and reprecipitating and recovering it 2 to 10 times, the amount of impurities in the polymer can be reduced. Examples of the poor solvent in this case include alcohols, ketones, hydrocarbons, etc. It is preferable to use three or more types of poor solvents selected from these, since the efficiency of purification will further increase.
 所定の温度範囲で液晶性を発現し得る感光性の側鎖型アクリル重合体の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC法で測定した重量平均分子量が、2,000~1,000,000が好ましく、より好ましくは、5,000~100,000である。 The molecular weight of the photosensitive side chain type acrylic polymer that can exhibit liquid crystallinity in a predetermined temperature range is determined by considering the strength of the resulting coating film, the workability during coating film formation, and the uniformity of the coating film. The weight average molecular weight measured by GPC method is preferably 2,000 to 1,000,000, more preferably 5,000 to 100,000.
(弱アンカリング液晶配向剤)
 弱アンカリング液晶配向剤は、液晶と、弱アンカリング配向膜とを有する液晶セルの前記弱アンカリング配向膜の形成に用いられる。
 液晶配向剤においては、配向膜を構成する、重合体α、及び重合体β以外の複合成分は、単量体でも良く、重合体であっても良い。複合成分として重合体を選択する場合、複数の重合体を混合して使用することができる。また、複合する重合体として、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、及びポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、SMA2000、SMA3000(Cray Valley社製)、GSM301(岐阜セラツク製造所社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ社製)が挙げられ、ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、Gantrez AN-139(メチルビニルエーテル無水マレイン酸樹脂、アシュランド社製)が挙げられる。
 その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、重合体α及び重合体βの合計100質量部に対して、0.1~90質量部がより好ましく、1~90質量部が更に好ましい。
 複合成分として単量体を選択する場合についても、複数の単量体を混合して使用することができる。また、複合する単量体として多官能(メタ)アクリレート、多官能エポキシド、多官能エチレンなど熱的に硬化性を示すものが好ましく、同時に熱酸発生剤や熱塩基発生剤、熱ラジカル発生剤等を併用しても良い。ポリマーアロイと複合する単量体の複合比率は特に限定しないが、光学特性や工程性の観点で好ましい複合比率は99質量%以下であり、より好ましくは70質量%以下である。
(Weak anchoring liquid crystal alignment agent)
The weak anchoring liquid crystal aligning agent is used for forming the weak anchoring alignment film of a liquid crystal cell having liquid crystal and the weak anchoring alignment film.
In the liquid crystal aligning agent, the composite components other than the polymer α and the polymer β, which constitute the alignment film, may be monomers or polymers. When selecting a polymer as a composite component, a mixture of a plurality of polymers can be used. In addition, as composite polymers, polysiloxane, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene derivative, poly(styrene-maleic anhydride) copolymer, poly(isobutylene-maleic anhydride) ) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, and poly(meth)acrylates. Specific examples of poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley), GSM301 (manufactured by Gifu Cerac Manufacturing Co., Ltd.), and poly(isobutylene-maleic anhydride) copolymers include Specific examples of poly(vinyl ether-maleic anhydride) copolymers include Isoban-600 (manufactured by Kuraray Co., Ltd.), and specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether anhydride). maleic acid resin (manufactured by Ashland).
The other polymers may be used alone or in combination of two or more. The content ratio of other polymers is more preferably 0.1 to 90 parts by weight, and even more preferably 1 to 90 parts by weight, based on 100 parts by weight of the total of polymer α and polymer β.
Even when monomers are selected as a composite component, a plurality of monomers can be used in combination. In addition, it is preferable that the monomers to be composited are thermally curable such as polyfunctional (meth)acrylates, polyfunctional epoxides, and polyfunctional ethylene, and at the same time thermal acid generators, thermal base generators, thermal radical generators, etc. may be used together. The composite ratio of monomers to be composited with the polymer alloy is not particularly limited, but from the viewpoint of optical properties and processability, a preferred composite ratio is 99% by mass or less, more preferably 70% by mass or less.
 液晶配向剤に使用される有機溶媒としては、上記特定の有機溶媒が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。 Examples of the organic solvent used in the liquid crystal aligning agent include the above-mentioned specific organic solvents. These organic solvents may be used alone or in combination.
 また、塗膜の均一性や平滑性を向上させる溶媒を、溶解性が高い有機溶媒に混合して使用すると好ましい。 Furthermore, it is preferable to use a solvent that improves the uniformity and smoothness of the coating film by mixing it with an organic solvent that has high solubility.
 塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、2-エチル-1-ヘキサノール、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、ピルビン酸ブチル、ピルビン酸ペンチル、ピルビン酸ヘキシル、ピルビン酸-2-エチルヘキシル、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸ブチル、アセト酢酸ペンチル、アセト酢酸ヘキシル、アセト酢酸-2-エチルヘキシル、レブリン酸メチル、レブリン酸エチル、レブリン酸プロピル、レブリン酸ブチル、レブリン酸ペンチル、レブリン酸ヘキシル、レブリン酸-2-エチルヘキシル、マロン酸ジメチル、コハク酸ジメチル、グルタル酸ジメチル、アジピン酸ジメチル、フタル酸ジメチル、マレイン酸ジメチル、マロン酸ジエチル、コハク酸ジエチル、グルタル酸ジエチル、アジピン酸ジエチル、フタル酸ジエチル、マレイン酸ジエチル、マロン酸ジプロピル、コハク酸ジプロピル、グルタル酸ジプロピル、アジピン酸ジプロピル、フタル酸ジプロピル、マレイン酸ジプロピル、マロン酸ジブチル、コハク酸ジブチル、グルタル酸ジブチル、アジピン酸ジブチル、フタル酸ジブチル、マレイン酸ジブチル、マロン酸ジペンチル、コハク酸ジペンチル、グルタル酸ジペンチル、アジピン酸ジペンチル、フタル酸ジペンチル、マレイン酸ジペンチル、マロン酸ジヘキシル、コハク酸ジヘキシル、グルタル酸ジヘキシル、アジピン酸ジヘキシル、フタル酸ジヘキシル、マレイン酸ジヘキシル、マロン酸ジ-2-エチルヘキシル、コハク酸-2-エチルヘキシル、グルタル酸-2-エチルヘキシル、アジピン酸-2-エチルヘキシル、フタル酸-2-エチルヘキシル、マレイン酸-2-エチルヘキシルなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。 Examples of solvents that improve the uniformity and smoothness of the coating film include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, Ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether (butyl cellosolve), propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol -tert- Butyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether , dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, Isobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, n-propyl lactate , n-butyl lactate, isoamyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl acetate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3 -Ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1 -Phenoxy-2-propanol, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2-(2-ethoxypropoxy)propanol , 2-ethyl-1-hexanol, methyl pyruvate, ethyl pyruvate, propyl pyruvate, butyl pyruvate, pentyl pyruvate, hexyl pyruvate, 2-ethylhexyl pyruvate, methyl acetoacetate, ethyl acetoacetate, acetoacetic acid Propyl, butyl acetoacetate, pentyl acetoacetate, hexyl acetoacetate, 2-ethylhexyl acetoacetate, methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, pentyl levulinate, hexyl levulinate, 2-levulinate Ethylhexyl, dimethyl malonate, dimethyl succinate, dimethyl glutarate, dimethyl adipate, dimethyl phthalate, dimethyl maleate, diethyl malonate, diethyl succinate, diethyl glutarate, diethyl adipate, diethyl phthalate, diethyl maleate, Dipropyl malonate, dipropyl succinate, dipropyl glutarate, dipropyl adipate, dipropyl phthalate, dipropyl maleate, dibutyl malonate, dibutyl succinate, dibutyl glutarate, dibutyl adipate, dibutyl phthalate, dibutyl maleate, malonic acid Dipentyl, Dipentyl succinate, Dipentyl glutarate, Dipentyl adipate, Dipentyl phthalate, Dipentyl maleate, Dihexyl malonate, Dihexyl succinate, Dihexyl glutarate, Dihexyl adipate, Dihexyl phthalate, Dihexyl maleate, Dipentyl malonate. Examples include 2-ethylhexyl, 2-ethylhexyl succinate, 2-ethylhexyl glutarate, 2-ethylhexyl adipate, 2-ethylhexyl phthalate, and 2-ethylhexyl maleate. A plurality of types of these solvents may be mixed. When using these solvents, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass of the total solvent contained in the liquid crystal aligning agent.
 本発明の弱アンカリング液晶配向剤は、重合体成分及び溶媒以外の成分(以下、添加剤成分ともいう。)を追加的に含有してもよい。このような添加剤成分としては、液晶配向膜の強度を高めるための化合物(以下、架橋性化合物ともいう。)、液晶配向膜と基板との密着性や液晶配向膜とシール剤との密着性を高めるための密着助剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。 The weakly anchoring liquid crystal aligning agent of the present invention may additionally contain components other than the polymer component and the solvent (hereinafter also referred to as additive components). Such additive components include compounds for increasing the strength of the liquid crystal alignment film (hereinafter also referred to as crosslinking compounds), the adhesion between the liquid crystal alignment film and the substrate, and the adhesion between the liquid crystal alignment film and the sealant. Examples include adhesion aids for increasing the liquid crystal alignment film, dielectrics and conductive substances for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film.
 上記架橋性化合物としては、例えば、エポキシ基、オキセタニル基、オキサゾリン構造、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物(c-1)、並びに重合性不飽和基を有する架橋性化合物(c-2)からなる群から選ばれる少なくとも1種の架橋性化合物、が挙げられる。
 上記架橋性化合物(c-1)、(c-2)の好ましい具体例としては、以下の化合物が挙げられる。
 エポキシ基を有する化合物として、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、テトラキス(グリシジルオキシメチル)メタン、N,N,N’,N’-テトラグリシジル-1,4-フェニレンジアミン、N,N,N’,N’-テトラグリシジル-2,2’-ジメチル-4.4’-ジアミノビフェニル、2,2-ビス[4-(N,N-ジグリシジル-4-アミノフェノキシ)フェニル]プロパン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどの第三級窒素原子が芳香族炭素原子と結合する化合物;N,N,N’,N’-テトラグリシジル-1,2-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,3-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,4-ジアミノシクロヘキサン、ビス(N,N-ジグリシジル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-2-メチル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-3-メチル-4-アミノシクロヘキシル)メタン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,4-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,4-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)ベンゼンなどの第三級窒素原子が脂肪族炭素原子と結合する化合物、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレートなどのイソシアヌレート化合物、日本特開平10-338880号公報の段落[0037]に記載の化合物や、WO2017/170483号公報に記載の化合物等;
 オキセタニル基を有する化合物として、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(アロンオキセタンOXT-121(XDO))、ビス[2-(3-オキセタニル)ブチル]エーテル(アロンオキセタンOXT-221(DOX))、1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(HQOX)、1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(RSOX)、1,2-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(CTOX)、WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等;
 オキサゾリン構造を有する化合物として、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)等の化合物、エポクロス(商品名、株式会社日本触媒製)のようなオキサゾリン基を有するポリマーやオリゴマー、日本特開2007-286597号公報の段落[0115]に記載の化合物等;
 シクロカーボネート基を有する化合物として、N,N,N’,N’-テトラ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-4,4’-ジアミノジフェニルメタン、N,N’,-ジ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-1,3-フェニレンジアミンや、WO2011/155577号公報の段落[0025]~[0030]、[0032]に記載の化合物等;
 ブロックイソシアネート基を有する化合物として、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)、日本特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、WO2015/141598号の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等;
 ヒドロキシ基及び/又はアルコキシ基を有する化合物として、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、WO2015/072554号や、日本特開2016-118753号公報の段落[0058]に記載の化合物、日本特開2016-200798号公報に記載の化合物、WO2010/074269号公報に記載の化合物等;
 重合性不飽和基を有する架橋性化合物として、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール1,3-ジグリセロラートジ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート等。
Examples of the crosslinkable compound include a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an oxetanyl group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group, and an alkoxy group. , and at least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-2) having a polymerizable unsaturated group.
Preferred specific examples of the crosslinkable compounds (c-1) and (c-2) include the following compounds.
Compounds with epoxy groups include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexane Bisphenol A type epoxy such as diol diglycidyl ether, glycerin diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, Epicote 828 (manufactured by Mitsubishi Chemical Corporation) resins, bisphenol F type epoxy resins such as Epicote 807 (manufactured by Mitsubishi Chemical Corporation), hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), biphenyl skeleton-containing epoxy resins such as YX6954BH30 (manufactured by Mitsubishi Chemical Corporation) resin, phenol novolac type epoxy resin such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-) cresol novolak type epoxy resin such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), tetrakis (glycidyloxy) Methyl)methane, N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4,4'-diamino biphenyl, 2,2-bis[4-(N,N-diglycidyl-4-aminophenoxy)phenyl]propane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane, etc. Compounds in which a class nitrogen atom is bonded to an aromatic carbon atom; N,N,N',N'-tetraglycidyl-1,2-diaminocyclohexane, N,N,N',N'-tetraglycidyl-1,3- Diaminocyclohexane, N,N,N',N'-tetraglycidyl-1,4-diaminocyclohexane, bis(N,N-diglycidyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl-2-methyl- 4-aminocyclohexyl)methane, bis(N,N-diglycidyl-3-methyl-4-aminocyclohexyl)methane, 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, 1,4-bis(N , N-diglycidylaminomethyl)cyclohexane, 1,3-bis(N,N-diglycidylaminomethyl)benzene, 1,4-bis(N,N-diglycidylaminomethyl)benzene, 1,3,5- TEPIC ( Isocyanurate compounds such as triglycidyl isocyanurate (manufactured by Nissan Chemical Co., Ltd.), compounds described in paragraph [0037] of Japanese Patent Application Publication No. 10-338880, compounds described in WO2017/170483, etc.;
Examples of compounds having an oxetanyl group include 1,4-bis{[(3-ethyl-3-oxetanyl)methoxy]methyl}benzene (alonoxetane OXT-121 (XDO)), bis[2-(3-oxetanyl)butyl] Ether (alonoxetane OXT-221 (DOX)), 1,4-bis[(3-ethyloxetan-3-yl)methoxy]benzene (HQOX), 1,3-bis[(3-ethyloxetan-3-yl) ) methoxy]benzene (RSOX), 1,2-bis[(3-ethyloxetan-3-yl)methoxy]benzene (CTOX), two described in paragraphs [0170] to [0175] of WO2011/132751. Compounds having the above oxetanyl group;
Examples of compounds having an oxazoline structure include 2,2'-bis(2-oxazoline), 2,2'-bis(4-methyl-2-oxazoline), and Epocross (trade name, manufactured by Nippon Shokubai Co., Ltd.). Polymers and oligomers having an oxazoline group such as, compounds described in paragraph [0115] of Japanese Patent Application Publication No. 2007-286597;
Examples of compounds having a cyclocarbonate group include N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane, N,N' ,-di[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine and described in paragraphs [0025] to [0030] and [0032] of WO2011/155577. compounds, etc.;
Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, Millionate MS-50 (manufactured by Tosoh Corporation), Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, B-882N (all manufactured by Mitsui Chemicals), two described in paragraphs [0046] to [0047] of Japanese Patent Application Publication No. 2014-224978 Compounds having the above protected isocyanate groups, compounds having three or more protected isocyanate groups described in paragraphs [0119] to [0120] of WO2015/141598, etc.;
As a compound having a hydroxy group and/or an alkoxy group, N,N,N',N'-tetrakis(2-hydroxyethyl)adipoamide, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane , 2,2-bis(4-hydroxy-3,5-dimethoxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3,3 -Hexafluoropropane, WO2015/072554, the compound described in paragraph [0058] of Japanese Patent Application Publication No. 2016-118753, the compound described in Japanese Patent Application Publication No. 2016-200798, the compound described in WO2010/074269 Compounds, etc.;
As a crosslinkable compound having a polymerizable unsaturated group, glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-body mixture), glycerin tris(meth)acrylate, glycerol 1,3 - diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate ) acrylate, hexaethylene glycol mono(meth)acrylate, etc.
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。例えば、WO2015/060357号公報の53頁[0105]~55頁[0116]に開示されている上記以外の成分などが挙げられる。また、架橋性化合物は、2種類以上組み合わせてもよい。 The above compounds are examples of crosslinkable compounds, and are not limited thereto. For example, components other than the above disclosed on page 53 [0105] to page 55 [0116] of WO2015/060357 can be mentioned. Moreover, two or more types of crosslinkable compounds may be used in combination.
 架橋性化合物を使用する場合は、液晶配向剤における、架橋性化合物の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部であることが好ましく、より好ましくは1~15質量部である。 When using a crosslinkable compound, the content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.5 to 20 parts by mass based on 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. , more preferably 1 to 15 parts by mass.
 上記密着助剤としては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-3-トリエトキシシリルプロピルトリエチレンテトラミン、N-3-トリメトキシシリルプロピルトリエチレンテトラミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤が挙げられる。
 密着助剤を使用する場合は、液晶配向剤における密着助剤の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
Examples of the adhesion aids include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N -(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N -Ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-3-triethoxysilylpropyltriethylenetetramine, N-3-trimethoxysilylpropyltriethylenetetramine, 10 -trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3, 6-Diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-amino Propyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxy Propylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris(3-trimethoxysilylpropyl)isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxy Examples include silane coupling agents such as silane and 3-isocyanatepropyltriethoxysilane.
When using an adhesion aid, the content of the adhesion aid in the liquid crystal aligning agent is preferably 0.1 to 30 parts by mass based on 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, and more preferably Preferably it is 0.1 to 20 parts by mass.
(強アンカリング水平配向膜)
 弱アンカリング配向膜が具備された基板の対向側の基板には強アンカリング水平配向膜を設ける必要がある。ここで述べる強アンカリング水平配向膜とは、液晶を水平方向に均一に並べることができ、並んだ液晶を維持する力、すなわち界面アンカリングエネルギーが十分強い液晶配向膜である。
(Strong anchoring horizontal alignment film)
It is necessary to provide a strong anchoring horizontal alignment film on a substrate opposite to the substrate provided with the weak anchoring alignment film. The strong anchoring horizontal alignment film described here is a liquid crystal alignment film that can uniformly align liquid crystals in the horizontal direction and has a sufficiently strong force to maintain the aligned liquid crystals, that is, interfacial anchoring energy.
 強アンカリング水平配向膜は上記で説明したポリアミック酸やポリイミド、ポリアミック酸エステル、ポリアミド、ポリエステル、ポリアクリレート等をラビング処理や光配向処理等により一軸方向に配向処理を行うことで得られる。 A strong anchoring horizontal alignment film can be obtained by aligning the polyamic acid, polyimide, polyamic acid ester, polyamide, polyester, polyacrylate, etc. described above in a uniaxial direction by rubbing, photo alignment, or the like.
 強アンカリング水平配向膜は前記で述べたモノマーの組み合わせにより得ることができる。 A strong anchoring horizontal alignment film can be obtained by combining the monomers mentioned above.
(弱アンカリング配向膜と強アンカリング水平配向膜)
 本発明の弱アンカリング配向膜は、上記の弱アンカリング液晶配向剤を用いることで得られる。例えば、本発明に用いる弱アンカリング液晶配向剤を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、ラビングや偏光又は特定の波長の光等を照射、イオンビーム等の処理にて配向処理を行うことで得られる。
(Weak anchoring alignment film and strong anchoring horizontal alignment film)
The weakly anchoring alignment film of the present invention can be obtained by using the weakly anchoring liquid crystal alignment agent described above. For example, after applying the weakly anchoring liquid crystal aligning agent used in the present invention to a substrate, the cured film obtained by drying and baking is rubbed, irradiated with polarized light or light of a specific wavelength, etc., or irradiated with an ion beam, etc. It can be obtained by performing orientation treatment during processing.
 強アンカリング水平配向膜も同様に、強アンカリング液晶配向剤を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を配向処理することで得ることができる。 Similarly, a strong anchoring horizontal alignment film can be obtained by applying a strong anchoring liquid crystal aligning agent to a substrate, and then subjecting the cured film obtained by drying and baking to an alignment treatment.
 本発明においては、第一基板が櫛歯電極を有する基板であり、第二基板が対向基板であってもよい。また、本発明においては、第二基板が櫛歯電極を有する基板であり、第一基板が対向基板であってもよい。 In the present invention, the first substrate may be a substrate having comb-teeth electrodes, and the second substrate may be a counter substrate. Further, in the present invention, the second substrate may be a substrate having comb-teeth electrodes, and the first substrate may be a counter substrate.
 各液晶配向膜を塗布する基板としては、透明性の高い基板であれば特に限定されないが、基板上に液晶を駆動するための透明電極が形成された基板が好ましい。 The substrate on which each liquid crystal alignment film is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate on which a transparent electrode for driving liquid crystal is formed is preferable.
 具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。 Specific examples include glass plates, polycarbonates, poly(meth)acrylates, polyethersulfones, polyarylates, polyurethanes, polysulfones, polyethers, polyetherketones, trimethylpentene, polyolefins, polyethylene terephthalate, (meth)acrylonitrile, and Examples include substrates in which transparent electrodes are formed on plastic plates such as cellulose acetate, cellulose diacetate, and cellulose acetate butyrate.
 IPS方式の液晶表示素子に使用できる基板には、標準的なIPS櫛歯電極やPSA(Polymer-Stabilized Alignment)フィッシュボーン電極といった電極パターンやMVA(Multi-domain Vertical Alignment)のような突起パターンでも使用できる。 Substrates that can be used for IPS type liquid crystal display elements include electrode patterns such as standard IPS comb electrodes and PSA (Polymer-Stabilized Alignment) fishbone electrodes, as well as protrusion patterns such as MVA (Multi-domain Vertical Alignment). can.
 また、TFT(Thin-Film-Transistor)型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。 Furthermore, in a high-performance element such as a TFT (Thin-Film-Transistor) type element, an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate.
 透過型の液晶表示素子を意図している場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子を意図している場合では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。 When a transmissive type liquid crystal display element is intended, it is common to use a substrate like the one described above, but when a reflective type liquid crystal display element is intended, silicon is used for only one side of the substrate. Opaque substrates such as wafers can also be used. In this case, a material such as aluminum that reflects light can also be used for the electrodes formed on the substrate.
 弱アンカリング液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。 Application methods for weakly anchoring liquid crystal alignment agents include spin coating, printing, inkjet, spraying, and roll coating, but transfer printing is widely used industrially from the viewpoint of productivity. Therefore, it is suitably used in the present invention.
 液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。乾燥工程の好ましい条件は、温度40~150℃、より好ましくは60~100℃のホットプレート上で、0.5~30分、より好ましくは1~5分乾燥させる方法が挙げられる。焼成工程の好ましい条件は、温度80~250℃、より好ましくは100~230℃のホットプレート又は熱風循環式オーブンで、1~120分、より好ましくは5~30分焼成する方法が挙げられる。 The drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to firing is not constant for each substrate, or if the board is not fired immediately after application, a drying process is included. is preferable. This drying may be performed as long as the solvent is removed to such an extent that the shape of the coating film is not deformed due to transportation of the substrate, etc., and the drying means is not particularly limited. Preferred conditions for the drying step include drying on a hot plate at a temperature of 40 to 150°C, more preferably 60 to 100°C, for 0.5 to 30 minutes, more preferably 1 to 5 minutes. Preferred conditions for the baking step include baking on a hot plate or hot air circulation oven at a temperature of 80 to 250°C, more preferably 100 to 230°C, for 1 to 120 minutes, more preferably 5 to 30 minutes.
 この硬化膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が向上するので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。 The thickness of this cured film can be selected as required, but it is preferably 5 nm or more, more preferably 10 nm or more, since this improves the reliability of the liquid crystal display element. Further, it is preferable that the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, since the power consumption of the liquid crystal display element does not become extremely large.
 以上のようにして弱アンカリング配向膜を有する第一基板又は第二基板、および強アンカリング水平配向膜を有する第二基板または第一基板を得ることができる。一軸配向処理を行う方法としては、光配向法、斜方蒸着法、ラビング、磁場による一軸配向処理等が挙げられる。 As described above, a first substrate or a second substrate having a weak anchoring alignment film and a second substrate or first substrate having a strong anchoring horizontal alignment film can be obtained. Examples of methods for performing the uniaxial alignment treatment include a photoalignment method, an oblique evaporation method, rubbing, and a uniaxial alignment treatment using a magnetic field.
 一方向にラビング処理することによる配向処理を行う場合には、例えば、ラビング布が巻きつけられたラビングローラーを回転させながら、ラビング布と膜とが接触するように基板を移動させる。光配向法を用いる場合には、特定波長の偏光UVを膜全面に照射し、必要に応じて加熱することにより配向処理ができる。 When performing orientation treatment by rubbing in one direction, for example, while rotating a rubbing roller around which a rubbing cloth is wound, the substrate is moved so that the rubbing cloth and the film come into contact with each other. When using a photo-alignment method, the alignment process can be performed by irradiating the entire surface of the film with polarized UV light of a specific wavelength and heating if necessary.
 櫛歯電極が形成されている基板の場合、液晶の電気的物性によって方向が選択されるが、正の誘電異方性を有する液晶を用いる場合において、ラビング方向は櫛歯電極の延びている方向とほぼ同一の方向とすることが好ましい。 In the case of a substrate on which comb-teeth electrodes are formed, the direction is selected depending on the electrical properties of the liquid crystal, but when using a liquid crystal with positive dielectric anisotropy, the rubbing direction is the direction in which the comb-teeth electrodes extend. It is preferable that the direction is approximately the same as that of .
[液晶セル]
 本発明の液晶セルは、上記の方法により、本発明の液晶配向剤を用いて得られた弱アンカリング配向膜を有する基板(例えば第一基板)と、公知の強アンカリング液晶配向膜を有する基板(例えば第二基板)とを、弱アンカリング配向膜と強アンカリング水平配向膜とが向かい合うように配置し、スペーサーを挟んで、シール剤で固定し、液晶を注入して封止することにより得られる。その際、用いるスペーサーの大きさは通常1~30μmであるが、好ましくは2~10μmである。また、第一基板のラビング方向と、第二基板のラビング方向とを平行にすることにより、IPS方式やFFS方式に使用することができ、ラビング方向が直交するように配置すれば、TN方式に使用することができる。
[Liquid crystal cell]
The liquid crystal cell of the present invention has a substrate (for example, a first substrate) having a weakly anchoring alignment film obtained by using the liquid crystal aligning agent of the present invention by the above method, and a known strong anchoring liquid crystal aligning film. Arranging a substrate (for example, a second substrate) so that a weak anchoring alignment film and a strong anchoring horizontal alignment film face each other, sandwiching a spacer, fixing with a sealant, and sealing by injecting liquid crystal. It is obtained by At this time, the size of the spacer used is usually 1 to 30 μm, preferably 2 to 10 μm. In addition, by making the rubbing direction of the first substrate parallel to the rubbing direction of the second substrate, it can be used for the IPS method or FFS method, and if the rubbing directions are arranged orthogonally, it can be used for the TN method. can be used.
 なお、IPS方式において使用される櫛歯電極基板であるIPS基板は、基材と、基材上に形成され、櫛歯状に配置された複数の線状電極と、基材上に線状電極を覆うように形成された液晶配向膜とを有する。 Note that an IPS substrate, which is a comb-teeth electrode substrate used in the IPS method, includes a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-teeth shape, and a plurality of linear electrodes formed on the base material. It has a liquid crystal alignment film formed so as to cover the liquid crystal alignment film.
 なお、FFS方式において使用される櫛歯電極基板であるFFS基板は、基材と、基材上に形成された面電極と、面電極上に形成された絶縁膜と、絶縁膜上に形成され、櫛歯状に配置された複数の線状電極と、絶縁膜上に線状電極を覆うように形成された液晶配向膜とを有する。 The FFS substrate, which is a comb-teeth electrode substrate used in the FFS method, consists of a base material, a surface electrode formed on the base material, an insulating film formed on the surface electrode, and an insulating film formed on the insulating film. , has a plurality of linear electrodes arranged in a comb-teeth shape, and a liquid crystal alignment film formed on an insulating film so as to cover the linear electrodes.
(液晶表示素子の製造方法)
 本発明の液晶表素子の製造方法は、本発明の弱アンカリング配向膜付き基板の製造方法によって弱アンカリング配向膜付き基板を製造する工程を含む。
(Method for manufacturing liquid crystal display element)
The method of manufacturing a liquid crystal display element of the present invention includes the step of manufacturing a substrate with a weak anchoring alignment film by the method of manufacturing a substrate with a weak anchoring alignment film of the present invention.
(液晶表示素子)
 液晶表示素子は、例えば、第一基板、第一基板に対向して配置された第二基板、および第一基板と第二基板との間に充填された液晶を有する。そして、液晶表示素子は本発明の弱アンカリング液晶配向剤を塗布成膜し弱アンカリング配向膜を具備した第一基板又は第二基板と、強アンカリング水平配向膜を具備した第二基板又は第一基板を使用して作製される。
(Liquid crystal display element)
A liquid crystal display element includes, for example, a first substrate, a second substrate disposed opposite to the first substrate, and liquid crystal filled between the first substrate and the second substrate. The liquid crystal display element comprises a first substrate or a second substrate coated with a weak anchoring liquid crystal alignment agent of the present invention and provided with a weak anchoring alignment film, and a second substrate or a second substrate provided with a strong anchoring horizontal alignment film. Fabricated using a first substrate.
 液晶表示素子は、例えば、液晶セルに必要に応じて反射電極、透明電極、λ/4板、偏光膜、カラーフィルター層等を常法に従って設けることにより反射型液晶表示素子とすることができる。また、液晶セルに必要に応じてバックライト、偏光板、λ/4板、透明電極、偏光膜、カラーフィルター層等を常法に従って設けることにより透過型液晶表示素子とすることができる。 The liquid crystal display element can be made into a reflective liquid crystal display element by, for example, providing a reflective electrode, a transparent electrode, a λ/4 plate, a polarizing film, a color filter layer, etc. in a liquid crystal cell according to a conventional method as necessary. Furthermore, a transmissive liquid crystal display element can be obtained by providing a backlight, a polarizing plate, a λ/4 plate, a transparent electrode, a polarizing film, a color filter layer, etc. in a conventional manner to the liquid crystal cell as required.
 図1は、本発明の横電界液晶表示素子の一例を示す概略断面図であり、IPS方式液晶表示素子の例である。 FIG. 1 is a schematic cross-sectional view showing an example of a horizontal electric field liquid crystal display element of the present invention, and is an example of an IPS type liquid crystal display element.
 図1に例示する横電界液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された弱アンカリング液晶配向膜または強アンカリング水平配向膜(液晶配向膜4a)とを有している。液晶配向膜2cは、例えば、本発明の弱アンカリング配向膜または強アンカリング水平配向膜である。対向する基板に具備した液晶配向膜は互いが強アンカリング水平配向膜と弱アンカリング液晶配向膜の組み合わせで作製される。
 この横電界液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
In the horizontal electric field liquid crystal display element 1 illustrated in FIG. 1, a liquid crystal 3 is sandwiched between a comb-teeth electrode substrate 2 having a liquid crystal alignment film 2c and a counter substrate 4 having a liquid crystal alignment film 4a. The comb-teeth electrode substrate 2 includes a base material 2a, a plurality of linear electrodes 2b formed on the base material 2a and arranged in a comb-teeth shape, and a plurality of linear electrodes 2b formed on the base material 2a so as to cover the linear electrodes 2b. It has a liquid crystal alignment film 2c. The counter substrate 4 has a base material 4b and a weak anchoring liquid crystal alignment film or a strong anchoring horizontal alignment film (liquid crystal alignment film 4a) formed on the base material 4b. The liquid crystal alignment film 2c is, for example, a weak anchoring alignment film or a strong anchoring horizontal alignment film of the present invention. The liquid crystal alignment films provided on the opposing substrates are each made of a combination of a strong anchoring horizontal alignment film and a weak anchoring liquid crystal alignment film.
In this horizontal electric field liquid crystal display element 1, when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by lines of electric force L.
 図2は、本発明の横電界液晶表示素子の他の例を示す概略断面図であり、FFS方式液晶表示素子の例である。 FIG. 2 is a schematic cross-sectional view showing another example of the horizontal electric field liquid crystal display element of the present invention, and is an example of an FFS type liquid crystal display element.
 図2に例示する横電界液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜4aは前記で説明した図1における液晶配向膜4aと同様である。液晶配向膜2hは前記で説明した図1における液晶配向膜2cと同様である。
 この横電界液晶表示素子1においては、面電極2eおよび線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2eおよび線状電極2g間で電界が発生する。
In the horizontal electric field liquid crystal display element 1 illustrated in FIG. 2, a liquid crystal 3 is sandwiched between a comb-teeth electrode substrate 2 having a liquid crystal alignment film 2h and a counter substrate 4 having a liquid crystal alignment film 4a. The comb-teeth electrode substrate 2 is formed on a base material 2d, a surface electrode 2e formed on the base material 2d, an insulating film 2f formed on the surface electrode 2e, and an insulating film 2f, and has a comb-like shape. It has a plurality of arranged linear electrodes 2g and a liquid crystal alignment film 2h formed on an insulating film 2f so as to cover the linear electrodes 2g. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 4a is similar to the liquid crystal alignment film 4a in FIG. 1 described above. The liquid crystal alignment film 2h is similar to the liquid crystal alignment film 2c in FIG. 1 described above.
In this horizontal electric field liquid crystal display element 1, when a voltage is applied to the plane electrode 2e and the linear electrode 2g, an electric field is generated between the plane electrode 2e and the linear electrode 2g as shown by lines of electric force L.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明は、これらの実施例に限定して解釈されるものではない。化合物の略号、及び各特性の測定方法は以下の通りである。 The present invention will be specifically explained below with reference to Examples, but the present invention should not be construed as being limited to these Examples. The abbreviations of the compounds and the measurement methods for each property are as follows.
(液晶に相溶するラジカル重合性モノマー)
Figure JPOXMLDOC01-appb-C000101
(Radical polymerizable monomer compatible with liquid crystal)
Figure JPOXMLDOC01-appb-C000101
(加熱等で液晶に不溶化するラジカル重合性モノマー)
Figure JPOXMLDOC01-appb-C000102
 Meは、メチル基を表す。
(Radical polymerizable monomer that becomes insolubilized in liquid crystal by heating etc.)
Figure JPOXMLDOC01-appb-C000102
Me represents a methyl group.
(光配向性ラジカル重合モノマー)
Figure JPOXMLDOC01-appb-C000103
(Photo-alignable radical polymerization monomer)
Figure JPOXMLDOC01-appb-C000103
(RAFT剤)
Figure JPOXMLDOC01-appb-C000104
(RAFT agent)
Figure JPOXMLDOC01-appb-C000104
(脱RAFT剤)
Figure JPOXMLDOC01-appb-C000105
(RAFT removal agent)
Figure JPOXMLDOC01-appb-C000105
(連鎖移動剤)
Figure JPOXMLDOC01-appb-C000106
 Meは、メチル基を表す。
(Chain transfer agent)
Figure JPOXMLDOC01-appb-C000106
Me represents a methyl group.
(熱重合開始剤)
Figure JPOXMLDOC01-appb-C000107
(Thermal polymerization initiator)
Figure JPOXMLDOC01-appb-C000107
(ジアミン)
Figure JPOXMLDOC01-appb-C000108
(Diamine)
Figure JPOXMLDOC01-appb-C000108
(テトラカルボン酸二無水物)
Figure JPOXMLDOC01-appb-C000109
(Tetracarboxylic dianhydride)
Figure JPOXMLDOC01-appb-C000109
(添加剤)
Figure JPOXMLDOC01-appb-C000110
(Additive)
Figure JPOXMLDOC01-appb-C000110
(溶媒)
 THF:テトラヒドロフラン
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
 BCA:エチレングリコールモノブチルエーテルアセテート
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
(solvent)
THF: Tetrahydrofuran NMP: N-methyl-2-pyrrolidone BCS: Ethylene glycol monobutyl ether BCA: Ethylene glycol monobutyl ether acetate PGMEA: Propylene glycol monomethyl ether acetate
(粘度測定)
 ポリアミック酸溶液などの粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃において測定した。
(Viscosity measurement)
The viscosity of polyamic acid solutions, etc., was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), sample volume 1.1 mL (milliliter), cone rotor TE-1 (1° 34', R24), temperature 25 Measured at ℃.
(分子量の測定)
 ポリイミド前駆体及びポリイミド以外の合成したポリマーの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(CBM-20A)(島津製作所製)、カラム(Shodex(登録商標)KF-804L及びKF-803Lの直列)(昭和電工社製)用いて、以下のようにして測定した。
 カラム温度:40℃
 溶離液:テトラヒドロフラン
 流速:1.0mL/分
 検量線作成用標準サンプル:標準ポリスチレン(分子量;197,000、55,100、12,800、3,950、1,260)(東ソー社製)
(Measurement of molecular weight)
The molecular weight of the polyimide precursor and the synthesized polymers other than polyimide was measured using a cold gel permeation chromatography (GPC) device (CBM-20A) (manufactured by Shimadzu Corporation) and a series column (Shodex (registered trademark) KF-804L and KF-803L). ) (manufactured by Showa Denko) as follows.
Column temperature: 40℃
Eluent: Tetrahydrofuran Flow rate: 1.0 mL/min Standard sample for creating a calibration curve: Standard polystyrene (molecular weight: 197,000, 55,100, 12,800, 3,950, 1,260) (manufactured by Tosoh Corporation)
 ポリイミド前駆体及びポリイミドの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(GPC KD-803,GPC KD-805の直列)(昭和電工社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)
 流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
The molecular weight of the polyimide precursor and polyimide was determined using a room-temperature gel permeation chromatography (GPC) device (GPC-101) (manufactured by Showa Denko) and a column (GPC KD-803 and GPC KD-805 in series) (manufactured by Showa Denko). The measurement was performed using the following method.
Column temperature: 50℃
Eluent: N,N-dimethylformamide (as additives, lithium bromide monohydrate (LiBr.H 2 O) is 30 mmol/L (liter), phosphoric acid/anhydrous crystal (o-phosphoric acid) is 30 mmol/ L, tetrahydrofuran (THF) 10 mL/L)
Flow rate: 1.0 mL/min Standard sample for creating a calibration curve: TSK standard polyethylene oxide (molecular weight: approx. 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight: approx. 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
(イミド化率の測定)
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード Φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05質量%テトラメチルシラン(TMS)混合品)1.0mLを添加し、超音波をかけて完全に溶解させた。この溶液をフーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER製)にて500MHzのプロトンNMRを測定した。
 イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。なお、式中、Xはアミック酸のNH基由来のプロトンピーク積算値であり、Yは基準プロトンのピーク積算値であり、Αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合である。
   イミド化率(%)=(1-Α・X/Y)×100
(Measurement of imidization rate)
Put 20 mg of polyimide powder into an NMR sample tube (Kusano Scientific Co., Ltd. NMR sampling tube standard Φ5), and add 1.0 mL of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05 mass% tetramethylsilane (TMS) mixture). It was added and completely dissolved using ultrasound. This solution was subjected to proton NMR measurement at 500 MHz using a Fourier transform superconducting nuclear magnetic resonance apparatus (FT-NMR) "AVANCE III" (manufactured by BRUKER).
The imidization rate is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and by calculating the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears around 9.5 to 10.0 ppm. It was calculated using the following formula using the integrated value. In the formula, X is the integrated value of the proton peak derived from the NH group of the amic acid, Y is the integrated value of the reference proton peak, and A is the integrated value of the proton peak derived from the NH group of the amic acid, and A is the integrated value of the amic acid in the case of polyamic acid (imidization rate is 0%). This is the ratio of the number of standard protons to one proton of the NH group.
Imidization rate (%) = (1-A・X/Y)×100
<単独重合体の合成>
(合成例1-1)
 撹拌子及び窒素導入管を備え付けた50mlナスフラスコに、A-1(10.0g,58.7mmol)、R-3(294mg,0.729mmol)、及びAIBN(59.9mg,0.365mmol)を量り取り、THF(10.4g)を加え、室温で撹拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで24時間加熱撹拌した。加熱撹拌後、メタノール(30g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(30g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、単独重合体mCTA―1を得た。数平均分子量(Mn):11,400、重量平均分子量(Mw):13,000であった。
<Synthesis of homopolymer>
(Synthesis example 1-1)
A-1 (10.0 g, 58.7 mmol), R-3 (294 mg, 0.729 mmol), and AIBN (59.9 mg, 0.365 mmol) were placed in a 50 ml eggplant flask equipped with a stirrer and a nitrogen introduction tube. After weighing and adding THF (10.4 g), stirring at room temperature to dissolve, the system was purged with nitrogen, and heated and stirred in an oil bath set at 60° C. for 24 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (30 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice with methanol (30 g) for 30 minutes, and the solid was vacuum-dried at 50° C. to obtain homopolymer mCTA-1. Number average molecular weight (Mn): 11,400, weight average molecular weight (Mw): 13,000.
(合成例1-2~1-14)
 使用する原料(モノマー)の種類、触媒の種類及び仕込み量を下記表1に示したものに置き換えた以外は合成例1-1と同様に実施することで、下記表1に示す単独重合体を得た。
(Synthesis examples 1-2 to 1-14)
By carrying out the same procedure as Synthesis Example 1-1 except that the type of raw material (monomer) used, the type of catalyst, and the amount charged were replaced with those shown in Table 1 below, the homopolymer shown in Table 1 below was prepared. Obtained.
Figure JPOXMLDOC01-appb-T000111
Figure JPOXMLDOC01-appb-T000111
<末端基変換を用いた単独重合体の合成>
(合成例1-15)
 撹拌子及び窒素導入管を備え付けた50mlナスフラスコに、合成例1-1で得られたmCTA-1(6.00g,0.526mmol)を量り取り、THF(6.32g)を加え、室温で撹拌し溶解させた。系内を窒素置換し、AM-1(316mg,5.26mmol)を加え、室温で6時間攪拌した。反応溶液が透明になったことを確認し、メタノール(40g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(40g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、単独重合体mTT-1を得た。Mn:11,500、Mw:12,900であった。
<Synthesis of homopolymer using terminal group conversion>
(Synthesis example 1-15)
The mCTA-1 (6.00 g, 0.526 mmol) obtained in Synthesis Example 1-1 was weighed into a 50 ml eggplant flask equipped with a stirring bar and a nitrogen inlet tube, THF (6.32 g) was added, and the mixture was stirred at room temperature. Stir to dissolve. The atmosphere in the system was purged with nitrogen, AM-1 (316 mg, 5.26 mmol) was added, and the mixture was stirred at room temperature for 6 hours. After confirming that the reaction solution became transparent, methanol (40 g) was gently poured into the reaction solution while stirring to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice with methanol (40 g) for 30 minutes, and the solid was vacuum-dried at 50° C. to obtain homopolymer mTT-1. Mn: 11,500, Mw: 12,900.
<RAFT重合を用いたブロック共重合体の合成>
(合成例2-1)
 撹拌子及び窒素導入管を備え付けた50mlナスフラスコに、mCTA-1(3.81g,0.334mmol)、B-1(6.00g,23.9mmol)、及びAIBN(27.4mg,0.167mmol)を量り取り、THF(9.84g)を加え、室温で撹拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで24時間加熱撹拌した。加熱撹拌後、メタノール(40g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(40g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、ブロック共重合体BCP-1を得た。Mn:24,200、Mw:30,000であった。
<Synthesis of block copolymer using RAFT polymerization>
(Synthesis example 2-1)
mCTA-1 (3.81 g, 0.334 mmol), B-1 (6.00 g, 23.9 mmol), and AIBN (27.4 mg, 0.167 mmol) were placed in a 50 ml eggplant flask equipped with a stirrer and a nitrogen inlet tube. ) was added, THF (9.84 g) was added, and the mixture was stirred and dissolved at room temperature. The system was purged with nitrogen, and the mixture was heated and stirred in an oil bath set at 60° C. for 24 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (40 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washed again with methanol (40 g) for 30 minutes twice in total, and the solid was vacuum-dried at 50° C. to obtain block copolymer BCP-1. Mn: 24,200, Mw: 30,000.
(合成例2-2~2-6)
 使用する原料(モノマー)の種類、仕込み量を下記表2に示したものに置き換えた以外は合成例2-1と同様に実施することで、下記表2に示すブロック共重合体(BCP-2~BCP-6)を得た。
(Synthesis examples 2-2 to 2-6)
The block copolymer (BCP-2 ~BCP-6) was obtained.
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000112
<マクロモノマーの合成>
(合成例3-1)
 撹拌子及び窒素導入管を備え付けた50mLのナスフラスコに、A-7(10.0g、78.0mmol)、S-4(0.216g、2.34mmol)及びAIBN(0.128g、0.780mmol)を量り取り、THF(10.3g)を加え、室温で撹拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで12時間加熱撹拌した。加熱撹拌後、冷メタノール(30.0g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再び冷メタノール(30g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、プレポリマーを得た。Mn:6,000、Mw:9,900であった。
 撹拌子及び窒素導入管を備え付けた100mLのナスフラスコに、前記の方法で合成したプレポリマー(10.0g、1.67mmol)、B-4(0.830g、5.83mmol)、Hydroquinone(8.1mg)、N,N-dimethyllaurylamine(2.0mg)及びXylene(20.0g)を加え、室温で撹拌し溶解させた後、140℃設定のオイルバスで6時間加熱撹拌した。加熱撹拌後、メタノール(50g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(50g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、マクロモノマー(MA-1)を得た。Mn:6,100、Mw:9,900であった。
<Synthesis of macromonomer>
(Synthesis example 3-1)
A-7 (10.0 g, 78.0 mmol), S-4 (0.216 g, 2.34 mmol) and AIBN (0.128 g, 0.780 mmol) were placed in a 50 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube. ) was added, THF (10.3 g) was added, and the mixture was stirred and dissolved at room temperature. The system was purged with nitrogen, and the mixture was heated and stirred in an oil bath set at 60° C. for 12 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring cold methanol (30.0 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice for 30 minutes with cold methanol (30 g), and the solid was vacuum-dried at 50° C. to obtain a prepolymer. Mn: 6,000, Mw: 9,900.
In a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, the prepolymer (10.0 g, 1.67 mmol) synthesized by the above method, B-4 (0.830 g, 5.83 mmol), and Hydroquinone (8. N,N-dimethyllaurylamine (2.0 mg) and Xylene (20.0 g) were added, stirred at room temperature to dissolve, and then heated and stirred in an oil bath set at 140° C. for 6 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice with methanol (50 g) for 30 minutes, and the solid was vacuum-dried at 50° C. to obtain macromonomer (MA-1). Mn: 6,100, Mw: 9,900.
<グラフト共重合体の合成>
(合成例3-2)
 撹拌子及び窒素導入管を備え付けた100mLナスフラスコに、MA-1(1.00g,0.167mmol)、B-2(4.10g,16.5mmol)、及びAIBN(82.1mg,0.500mmol)を量り取り、THF(7.77g)を加え、室温で撹拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで12時間加熱撹拌した。加熱撹拌後、メタノール(40g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(40g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、グラフト共重合体(GP-1)を得た。Mn:92,200、Mw:196,600であった。
<Synthesis of graft copolymer>
(Synthesis example 3-2)
MA-1 (1.00 g, 0.167 mmol), B-2 (4.10 g, 16.5 mmol), and AIBN (82.1 mg, 0.500 mmol) were placed in a 100 mL eggplant flask equipped with a stirrer and a nitrogen introduction tube. ) was added, THF (7.77 g) was added, and the mixture was stirred and dissolved at room temperature.The system was purged with nitrogen, and the mixture was heated and stirred in an oil bath set at 60°C for 12 hours. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (40 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was separated by filtration, slurry washing was performed twice with methanol (40 g) for 30 minutes, and the solid was vacuum-dried at 50° C. to obtain a graft copolymer (GP-1). Mn: 92,200, Mw: 196,600.
<ボトルブラシポリマーの合成>
(合成例4-1)
 撹拌子及び窒素導入管を備え付けた100mlのナスフラスコに、2-((2-bromo-2-methylpropanoyl)oxy)ethyl methacrylate(5.00g、17.91mmol)、B-7(0.078g、0.60mmol)、R-3(0.72g,1.80mmol)及びAIBN(0.09g、0.54mmol)を量り取り、THF(10.2g)を加え、室温で撹拌し溶解させた後、系内を窒素置換し、60℃設定のオイルバスで12時間加熱撹拌した。加熱撹拌後、メタノール(50.0g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(50.0g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、マクロモノマー(MA-2)を得た。Mn:45,300、Mw:68,000であった。
 撹拌子及び窒素導入管を備え付けた50mlのナスフラスコに、前記の方法で合成したマクロモノマー(MA-2:2.00g、0.03mmol)、B-2(0.43g、1.76mmol)、A-1(3.00g、17.62mmol)、ethyl 2-bromoisobutyrate(0.012g、0.06mmol)、CuBr(0.03g、0.19mmol)、N,N,N’,N’’,N’’-Pentamethyldiethylenetriamine(0.043g、0.25mmol)、及びAnisole(7.5g)を加え、室温で撹拌し溶解させた後、凍結脱気を3回行い、90℃設定のオイルバスで6時間加熱撹拌した。加熱撹拌後、メタノール(50.0g)を撹拌しながら反応溶液を静かに注ぎ固体を析出させ、30分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(50.0g)で30分間スラリー洗浄を計2回行い、固体を50℃で真空乾燥させることにより、ボトルブラシポリマー(BBP-1)を得た。Mn:203,000、Mw:384,000であった。
<Synthesis of bottle brush polymer>
(Synthesis example 4-1)
In a 100 ml eggplant flask equipped with a stirrer and a nitrogen inlet tube, add 2-((2-bromo-2-methylpropanoyl)oxy)ethyl methacrylate (5.00 g, 17.91 mmol), B-7 (0.078 g, 0 .60 mmol), R-3 (0.72 g, 1.80 mmol), and AIBN (0.09 g, 0.54 mmol) were added, THF (10.2 g) was added, and after stirring and dissolving at room temperature, the system The atmosphere inside the reactor was replaced with nitrogen, and the reactor was heated and stirred for 12 hours in an oil bath set at 60°C. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50.0 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice with methanol (50.0 g) for 30 minutes, and the solid was vacuum-dried at 50° C. to obtain macromonomer (MA-2). Mn: 45,300, Mw: 68,000.
Macromonomer synthesized by the above method (MA-2: 2.00 g, 0.03 mmol), B-2 (0.43 g, 1.76 mmol), A-1 (3.00g, 17.62mmol), ethyl 2-bromoisobutyrate (0.012g, 0.06mmol), CuBr (0.03g, 0.19mmol), N, N, N', N'', N ''-Pentamethyldiethylenetriamine (0.043 g, 0.25 mmol) and Anisole (7.5 g) were added, stirred at room temperature to dissolve, then frozen and degassed three times, and left in an oil bath set at 90°C for 6 hours. The mixture was heated and stirred. After heating and stirring, the reaction solution was gently poured into the mixture while stirring methanol (50.0 g) to precipitate a solid, and the mixture was stirred for 30 minutes. This precipitate was collected by filtration, slurry washing was performed twice with methanol (50.0 g) for 30 minutes, and the solid was vacuum-dried at 50°C to obtain bottle brush polymer (BBP-1). . Mn: 203,000, Mw: 384,000.
<ポリアミック酸・ポリイミドの合成>
(合成例5-1)
 メカニカルスターラー及び窒素導入管を備え付けた100mLの四つ口フラスコに、DA-1(0.584g,5.40mmol)、DA-2(1.98g,8.10mmol)、DA-3(2.60g,8.10mmol)及びDA-4(1.84g,5.40mmol)を量り取り、NMP(93.73g)を加え、窒素雰囲気下で撹拌し溶解させた後、氷浴にて10℃以下を保ちながらTC-1(5.63g,25.1mmol)を加え、窒素雰囲気下室温で18時間反応させることにより、粘度が約200mPa・s、固形分濃度が12質量%のポリアミック酸(PAA-1)の溶液を得た。このポリアミック酸の分子量は、Mn:12,600、Mw:35,200であった。
<Synthesis of polyamic acid/polyimide>
(Synthesis example 5-1)
Add DA-1 (0.584 g, 5.40 mmol), DA-2 (1.98 g, 8.10 mmol), and DA-3 (2.60 g) to a 100 mL four-necked flask equipped with a mechanical stirrer and nitrogen introduction tube. , 8.10 mmol) and DA-4 (1.84 g, 5.40 mmol), added NMP (93.73 g), stirred under nitrogen atmosphere to dissolve, and then heated to below 10°C in an ice bath. By adding TC-1 (5.63 g, 25.1 mmol) and reacting at room temperature under nitrogen atmosphere for 18 hours, polyamic acid (PAA-1) with a viscosity of about 200 mPa・s and a solid content concentration of 12% by mass was obtained. ) was obtained. The molecular weights of this polyamic acid were Mn: 12,600 and Mw: 35,200.
(合成例5-2)
 撹拌子と窒素導入管を備え付けた300mLのナスフラスコに、上記で得られたポリアミック酸(PAA-1)の溶液(40.0g)を量り取り、NMP(74.3g)を加え室温でしばらく撹拌した後、無水酢酸(5.61g:55.0mmol)及びピリジン(2.90g、36.7mmol)を加え、窒素雰囲気下室温で30分撹拌した後、窒素雰囲気下50℃で3時間反応させた。反応終了後、10℃以下に冷やしたメタノール(500mL)中に撹拌しながら反応溶液をゆっくり注ぎ固体を析出させ、10分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(200mL)で30分間スラリー洗浄を計2回行い、固体を80℃で真空乾燥させることにより目的とするポリイミド粉末(SPI-1)(7.04g、収率88%)を得た。このポリイミドのイミド化率は66%、分子量はMn:12,200、Mw:36,600であった。
(Synthesis example 5-2)
Weigh the solution (40.0 g) of polyamic acid (PAA-1) obtained above into a 300 mL eggplant flask equipped with a stir bar and nitrogen inlet tube, add NMP (74.3 g), and stir for a while at room temperature. After that, acetic anhydride (5.61 g: 55.0 mmol) and pyridine (2.90 g, 36.7 mmol) were added, stirred at room temperature under nitrogen atmosphere for 30 minutes, and then reacted at 50°C under nitrogen atmosphere for 3 hours. . After the reaction was completed, the reaction solution was slowly poured into methanol (500 mL) cooled to below 10° C. with stirring to precipitate a solid, and the mixture was stirred for 10 minutes. This precipitate was separated by filtration, slurry washed twice with methanol (200 mL) for 30 minutes, and the solid was vacuum-dried at 80°C to obtain the desired polyimide powder (SPI-1) (7.04 g). , yield 88%). The imidization rate of this polyimide was 66%, the molecular weight was Mn: 12,200, and Mw: 36,600.
(合成例5-3)
 メカニカルスターラー及び窒素導入管を備え付けた100mLの四つ口フラスコに、DA-5(4.83g,16.2mmol)及びDA-6(1.62g,10.8mmol)を量り取り、NMP(89.1g)を加え、窒素雰囲気下で撹拌し溶解させた後、氷浴にて10℃以下を保ちながらTC-2(5.69g:25.4mmol)を加え、室温で18時間反応させることにより、粘度が約600mPa・s、固形分濃度が12質量%のポリアミック酸(PAA-2)の溶液を得た。このポリアミック酸の分子量は、Mn:17,200、Mw:48,200であった。
(Synthesis example 5-3)
DA-5 (4.83 g, 16.2 mmol) and DA-6 (1.62 g, 10.8 mmol) were weighed into a 100 mL four-necked flask equipped with a mechanical stirrer and a nitrogen introduction tube, and NMP (89 mmol) was weighed out. 1g) was added and dissolved by stirring under a nitrogen atmosphere, then TC-2 (5.69g: 25.4mmol) was added while keeping the temperature below 10°C in an ice bath, and the reaction was carried out at room temperature for 18 hours. A solution of polyamic acid (PAA-2) with a viscosity of about 600 mPa·s and a solid content concentration of 12% by mass was obtained. The molecular weights of this polyamic acid were Mn: 17,200 and Mw: 48,200.
(合成例5-4)
 メカニカルスターラー及び窒素導入管を備え付けた100mLの四つ口フラスコに、DA-7(4.30g,21.6mmol)及びDA-8(1.07g,5.40mmol)を量り取り、NMP(81.1g)を加え、窒素雰囲気下で撹拌し溶解させた後、氷浴にて10℃以下を保ちながらTC-2(5.69g,25.4mmol)を加え、室温で18時間反応させることにより、粘度が約720mPa・s、固形分濃度が12質量%のポリアミック酸(PAA-3)の溶液を得た。このポリアミック酸の分子量は、Mn:14,000、Mw:38,600であった。
(Synthesis example 5-4)
DA-7 (4.30 g, 21.6 mmol) and DA-8 (1.07 g, 5.40 mmol) were weighed into a 100 mL four-necked flask equipped with a mechanical stirrer and a nitrogen introduction tube, and NMP (81.6 mmol) was weighed out. 1g) was added and dissolved by stirring under a nitrogen atmosphere, then TC-2 (5.69g, 25.4mmol) was added while keeping the temperature below 10°C in an ice bath, and the reaction was carried out at room temperature for 18 hours. A solution of polyamic acid (PAA-3) having a viscosity of about 720 mPa·s and a solid content concentration of 12% by mass was obtained. The molecular weights of this polyamic acid were Mn: 14,000 and Mw: 38,600.
 上記で合成したポリアミック酸及びポリイミドの内容を表3に示す。 Table 3 shows the contents of the polyamic acid and polyimide synthesized above.
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000113
<弱アンカリング液晶配向剤の調製>
(調製例1)
 撹拌子を備えた30mLのバイアル瓶に、合成例2-1で得られたBCP-1を0.0120g、及び合成例5-1で得られたPAA-1の溶液を9.90g量り取り、NMPを2.09g、及びBCAを8.0g加え、室温で1時間撹拌することで、BCP-1:PAA-1:NMP:BCA=0.06:5.94:54:40(質量比)となる弱アンカリング液晶配向剤(WAS-1)を得た。
<Preparation of weak anchoring liquid crystal alignment agent>
(Preparation example 1)
Weigh out 0.0120 g of BCP-1 obtained in Synthesis Example 2-1 and 9.90 g of the PAA-1 solution obtained in Synthesis Example 5-1 into a 30 mL vial equipped with a stirrer, By adding 2.09 g of NMP and 8.0 g of BCA and stirring at room temperature for 1 hour, BCP-1:PAA-1:NMP:BCA=0.06:5.94:54:40 (mass ratio) A weakly anchoring liquid crystal aligning agent (WAS-1) was obtained.
(調製例2~25)
 使用する重合体の種類及び配合量を下記表4に示したものに置き換えたこと以外は調製例1と同様に実施することで、下記表4に示す弱アンカリング液晶配向剤(WAS-2)~(WAS-25)を得た。
(Preparation Examples 2 to 25)
The weak anchoring liquid crystal aligning agent (WAS-2) shown in Table 4 below was prepared in the same manner as Preparation Example 1 except that the type and amount of the polymer used were replaced with those shown in Table 4 below. ~(WAS-25) was obtained.
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000114
 なお、BCP-1~BCP-6は、重合体Aであって、かつ弱アンカリング性を発現する成分である。
 GP-1は、重合体Bであって、かつ弱アンカリング性を発現する成分である。
 mCTA-7~mCTA-10、mTT-1、及びmTr-1~mTr-3は、重合体Cであって、かつ弱アンカリング性を発現する成分である。
 BBP-1は、重合体A、B及びC以外の重合体であって、かつ弱アンカリング性を発現する成分である。
 PAA-1~PAA-3、及びSPI-1は、重合体βに該当する。
Note that BCP-1 to BCP-6 are components of Polymer A that exhibit weak anchoring properties.
GP-1 is a component of Polymer B that exhibits weak anchoring properties.
mCTA-7 to mCTA-10, mTT-1, and mTr-1 to mTr-3 are components of polymer C that exhibit weak anchoring properties.
BBP-1 is a polymer other than polymers A, B, and C, and is a component that exhibits weak anchoring properties.
PAA-1 to PAA-3 and SPI-1 correspond to polymer β.
(液晶表示素子の作製)
 以下に、液晶配向性および電気光学応答を評価するための液晶セルの作製方法を示す。初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmの無アルカリガラス基板を用いた。基板上には電極幅が3μm、電極と電極の間隔が6μm、基板の長辺に対して10°の角度となるような櫛歯型パターンを備えたITO(INDIUM-TIN-OXIDE)電極が形成され、画素を形成していた。各画素のサイズは、縦10mmで横約5mmであった。以後IPS基板と呼ぶ。
 次に、上記の方法で得られた弱アンカリング液晶配向剤(WAS-1~WAS-23)、水平配向用の液晶配向剤(SE-6414、NRB-U973(日産化学社製))をそれぞれ孔径1.0mmのフィルターで濾過した後、準備された上記IPS基板と、対向基板として、裏面にITO膜が成膜されており、かつ高さ4.0μmの柱状のスペーサーを有するガラス基板(以後対向基板と呼ぶ)とにスピンコート法にて塗布・成膜を行った。次いで、80℃のホットプレート上で2分乾燥後、230℃で30分焼成し、膜厚100nmの塗膜を得た。IPS基板上の塗膜においては、櫛歯の方向に沿う方向で配向処理を行い、対向基板上の塗膜においては櫛歯電極と直交する方向に配向処理を行った。尚、配向処理においては、SE-6414においてはラビング法を用い、NRB-U973においては光配向法を用いた。また、WAS-1~WAS-23においては、実施例で示す液晶セルには配向処理し、比較例(比較例1~5、7~11)で示す液晶セルには配向処理をしなかった。ラビング法では、飯沼ゲージ社製ラビング装置、吉川化工社製ラビング布(YA-20R)、ラビングローラー(径10.0cm)、ステージ送り速度30mm/s、ローラー回転数700rpm、押し込み圧0.3mmにて行った。光配向法では、ウシオ電機社製のUV露光装置を用い、消光比が約26:1の直線偏光UVを、254nmの波長を基準として照射量300mJ/cmになるように偏光UVを照射した後、230℃にて30分加熱することで行い配向処理を行った。
 その後、上記2種類の基板を用いて、以下表6及び表7に示す組み合わせにて、それぞれの配向方向が平行になるように組み合わせ、液晶注入口を残して周囲をシールし(シール剤:XN-1500T(三井化学社製))、150℃で60分間の加熱処理を行い、シール剤を硬化させてセルギャップが約3.0μmの空セルを作製した。この空セルに、液晶(MLC-3019(Merck社製))を常温で真空注入した後、注入口を封止して、アンチパラレル配向の液晶セルとした。
 得られた液晶セルは、IPS方式液晶表示素子を構成する。その後、得られた液晶セルを120℃で10分加熱処理することで液晶表示素子を得た。
(Production of liquid crystal display element)
Below, a method for producing a liquid crystal cell for evaluating liquid crystal alignment and electro-optic response will be shown. First, a substrate with electrodes was prepared. The substrate used was an alkali-free glass substrate measuring 30 mm x 35 mm and having a thickness of 0.7 mm. An ITO (INDIUM-TIN-OXIDE) electrode is formed on the substrate with a comb-shaped pattern with an electrode width of 3 μm, an electrode spacing of 6 μm, and an angle of 10° with respect to the long side of the substrate. and formed pixels. The size of each pixel was 10 mm in length and about 5 mm in width. Hereinafter, it will be referred to as an IPS board.
Next, the weak anchoring liquid crystal alignment agents (WAS-1 to WAS-23) obtained by the above method and the liquid crystal alignment agents for horizontal alignment (SE-6414, NRB-U973 (manufactured by Nissan Chemical Co., Ltd.)) were respectively applied. After filtering with a filter with a pore size of 1.0 mm, the prepared IPS substrate and a glass substrate (hereinafter referred to as Coating and film formation was performed on the opposite substrate (referred to as the counter substrate) using a spin coating method. Next, it was dried on a hot plate at 80° C. for 2 minutes and then baked at 230° C. for 30 minutes to obtain a coating film with a thickness of 100 nm. The coating film on the IPS substrate was oriented in the direction along the comb-toothed direction, and the coating film on the counter substrate was oriented in the direction perpendicular to the comb-teeth electrodes. In the alignment treatment, a rubbing method was used in SE-6414, and a photo alignment method was used in NRB-U973. Furthermore, in WAS-1 to WAS-23, the liquid crystal cells shown in Examples were subjected to alignment treatment, while the liquid crystal cells shown in Comparative Examples (Comparative Examples 1 to 5, 7 to 11) were not subjected to alignment treatment. In the rubbing method, a rubbing device manufactured by Iinuma Gauge Co., Ltd., a rubbing cloth (YA-20R) manufactured by Yoshikawa Kako Co., Ltd., a rubbing roller (diameter 10.0 cm), a stage feed rate of 30 mm/s, a roller rotation speed of 700 rpm, and a pushing pressure of 0.3 mm were used. I went. In the photo-alignment method, a UV exposure device manufactured by Ushio Inc. was used to irradiate linearly polarized UV with an extinction ratio of about 26:1 so that the irradiation amount was 300 mJ/cm 2 based on a wavelength of 254 nm. Thereafter, orientation treatment was performed by heating at 230° C. for 30 minutes.
Then, using the above two types of substrates, combine them in the combinations shown in Tables 6 and 7 below so that their orientation directions are parallel, and seal the periphery leaving the liquid crystal injection port (sealant: XN -1500T (manufactured by Mitsui Chemicals, Inc.)) at 150° C. for 60 minutes to harden the sealant and produce empty cells with a cell gap of about 3.0 μm. After liquid crystal (MLC-3019 (manufactured by Merck)) was injected into this empty cell under vacuum at room temperature, the injection port was sealed to obtain an antiparallel-aligned liquid crystal cell.
The obtained liquid crystal cell constitutes an IPS liquid crystal display element. Thereafter, the obtained liquid crystal cell was heat-treated at 120° C. for 10 minutes to obtain a liquid crystal display element.
(初期配向性の評価)
 偏光顕微鏡を用い、偏光板をクロスニコルに設定し、液晶セルの輝度が最も小さくなる状態で固定し、そこから1°液晶セルを回転させ、液晶の配向状態の観察を行った。ムラやドメイン等の配向不良が観察されない場合あるいは非常に軽微な場合は「良好」と定義し、ムラやドメイン等の配向不良が明確に観察された場合は「不良」と定義して評価を行った。
(Evaluation of initial orientation)
Using a polarizing microscope, the polarizing plates were set to crossed nicols, the brightness of the liquid crystal cell was fixed at its lowest, and the liquid crystal cell was rotated 1° from there to observe the alignment state of the liquid crystal. If no or very slight alignment defects such as unevenness or domains are observed, it is defined as "good", and if alignment defects such as unevenness or domains are clearly observed, it is defined as "poor" and evaluated. Ta.
(V-Tカーブの測定と駆動閾値電圧、最大輝度電圧、透過率評価)
 光軸が合うように白色LEDバックライトと輝度計をセットし、その間に、輝度が最も小さくなるように偏光板を取り付けた液晶セル(液晶表示素子)をセットし、1V間隔で8Vまで電圧を印加し、電圧における輝度を測定することでV-Tカーブの測定を行った。電圧無印加の状態から電圧を印加し、最大透過輝度の10%の時の電圧値(Vth)の値を見積もった。得られたV-Tカーブから輝度が最大になる電圧(Vmax)の値を見積もった。また、電圧無印加の液晶セルを介して、パラレルニコル時の透過輝度を100%とし、V-Tカーブでの最大透過輝度を比較することにより最大透過率(Tmax)として見積もった。
(Measurement of VT curve and evaluation of drive threshold voltage, maximum brightness voltage, and transmittance)
Set the white LED backlight and brightness meter so that the optical axes are aligned, set the liquid crystal cell (liquid crystal display element) with a polarizing plate attached so that the brightness is the lowest, and apply a voltage up to 8V at 1V intervals. The VT curve was measured by applying the voltage and measuring the brightness at the voltage. A voltage was applied from a state where no voltage was applied, and the voltage value (Vth) at 10% of the maximum transmitted brightness was estimated. The value of the voltage (Vmax) at which the brightness becomes maximum was estimated from the obtained VT curve. In addition, the maximum transmittance (Tmax) was estimated by setting the parallel Nicol transmission brightness as 100% through a liquid crystal cell with no voltage applied, and comparing the maximum transmission brightness in the VT curve.
(応答時間(Ton、Toff)の測定)
 上記V-Tカーブの測定で使用した装置を用い、輝度計をオシロスコープに接続し、最大輝度になる電圧を印加した際の応答速度(Ton)及び電圧を0Vに戻した際の応答速度(Toff)を測定した。
(Measurement of response time (Ton, Toff))
Using the device used to measure the VT curve above, connect the luminance meter to the oscilloscope, and measure the response speed (Ton) when applying the voltage that produces the maximum luminance and the response speed (Toff) when the voltage is returned to 0V. ) was measured.
(方位角アンカリング強度(A)の測定)
 強アンカリング水平配向膜NRB-U973及びSE-6414の方位角アンカリング強度ASAは、トルクバランス法により別途測定した値を用いた。弱アンカリング配向膜の方位角アンカリング強度A2,WAは上記で作製した液晶セルのV-Tカーブ測定から得られた駆動閾値電圧(Vth)を用いて下記式(eq2)および(eq3)から算出した。なお、方位角アンカリング強度が1.0×10-4[J/m]よりも小さい場合を弱アンカリング配向膜とし、1.0×10-4[J/m]よりも大きい場合を強アンカリング水平配向膜とする。
(Measurement of azimuthal anchoring strength (A 2 ))
For the azimuthal anchoring strength A 2 and SA of the strong anchoring horizontal alignment films NRB-U973 and SE-6414, values separately measured by a torque balance method were used. The azimuthal anchoring strength A2 , WA of the weak anchoring alignment film is calculated using the following formulas (eq2) and (eq3) using the driving threshold voltage (Vth) obtained from the VT curve measurement of the liquid crystal cell prepared above. Calculated from. Note that a case where the azimuthal anchoring strength is smaller than 1.0×10 −4 [J/m 2 ] is considered a weak anchoring alignment film, and a case where the azimuthal anchoring strength is larger than 1.0×10 −4 [J/m 2 ] is considered a weak anchoring alignment film. is a strong anchoring horizontal alignment film.
Figure JPOXMLDOC01-appb-M000115
Figure JPOXMLDOC01-appb-M000115
Figure JPOXMLDOC01-appb-M000116
 ここで、Vth,SAは強アンカリング液晶セルの駆動閾値電圧、Vth,WAは弱アンカリング液晶セルの駆動閾値電圧を表し、lは櫛歯電極間距離、dはセルギャップ、Kは液晶のツイスト弾性定数、εは真空における液晶の誘電率、Δεは液晶の誘電率異方性である。
 上記式eq3は本来両基板に弱アンカリング配向膜を用いた際の算出式であるため、正確な弱アンカリング液晶配向膜の方位角アンカリング強度は算出できないが、弱アンカリング配向膜の方位角アンカリング強度の近似値として使用している。
Figure JPOXMLDOC01-appb-M000116
Here, V th,SA represents the drive threshold voltage of the strong anchoring liquid crystal cell, V th,WA represents the drive threshold voltage of the weak anchoring liquid crystal cell, l is the distance between the comb-teeth electrodes, d is the cell gap, and K 2 is the twist elastic constant of the liquid crystal, ε 0 is the dielectric constant of the liquid crystal in vacuum, and Δε is the dielectric constant anisotropy of the liquid crystal.
Since the above formula eq3 is originally a calculation formula when weak anchoring alignment films are used for both substrates, it is not possible to accurately calculate the azimuthal anchoring strength of the weak anchoring alignment film, but the azimuth angle anchoring strength of the weak anchoring alignment film cannot be calculated. It is used as an approximate value of angular anchoring strength.
<光配向を用いたセル特性評価>
(弱アンカリングIPS特性の評価結果)
 実施例内容及び評価結果を表5に示す。表5には、IPS基板側の液晶配向膜の方位角アンカリング強度(A)の測定結果も示した。
 実施例1~23では、IPS基板及び対向基板の両方に光配向処理を施した。
 比較例1~6では、対向基板のみに光配向処理を施した。
<Evaluation of cell characteristics using photo-alignment>
(Evaluation results of weak anchoring IPS characteristics)
Table 5 shows the details of the examples and the evaluation results. Table 5 also shows the measurement results of the azimuthal anchoring strength (A 2 ) of the liquid crystal alignment film on the IPS substrate side.
In Examples 1 to 23, both the IPS substrate and the counter substrate were subjected to photoalignment treatment.
In Comparative Examples 1 to 6, only the opposing substrate was subjected to photoalignment treatment.
Figure JPOXMLDOC01-appb-T000117
Figure JPOXMLDOC01-appb-T000117
 実施例1~22は本発明のポリマーアロイを含む液晶配向剤をIPS基板上に形成し、光配向膜を対向基板上に形成し、両方の基板に光配向処理を施したものであり、実施例23は本発明のポリマーアロイを含む液晶配向剤を対向基板上に形成し、光配向膜をIPS基板上に形成し、両方の基板に光配向処理を施したものであり、比較例1~5はポリマーアロイを含む液晶配向剤をIPS基板上に形成し、光配向膜を対向基板上に形成し、対向基板にのみ光配向処理を施したものである。
 実施例1~23いずれも透過率が向上、駆動電圧が低電圧化し、方位角アンカリングエネルギーは1.2×10-5(J/m)程度を示した。これより、本発明のポリマーアロイを用い、かつ光配向処理を施すことでも弱アンカリング性が発現していることが分かる。
In Examples 1 to 22, a liquid crystal alignment agent containing the polymer alloy of the present invention was formed on an IPS substrate, a photo-alignment film was formed on an opposing substrate, and both substrates were subjected to photo-alignment treatment. In Example 23, a liquid crystal aligning agent containing the polymer alloy of the present invention was formed on an opposing substrate, a photo-alignment film was formed on an IPS substrate, and both substrates were subjected to photo-alignment treatment, and Comparative Examples 1 to 23 In No. 5, a liquid crystal aligning agent containing a polymer alloy was formed on an IPS substrate, a photo-alignment film was formed on a counter substrate, and only the counter substrate was subjected to photo-alignment treatment.
In all of Examples 1 to 23, the transmittance was improved, the driving voltage was lowered, and the azimuthal anchoring energy was approximately 1.2×10 −5 (J/m 2 ). From this, it can be seen that weak anchoring properties are expressed even when the polymer alloy of the present invention is used and subjected to photo-alignment treatment.
 実施例1、9、13、16、比較例1~4より、本発明のポリマーアロイを含む弱アンカリング液晶配向剤を塗布した基板に光配向処理を施すことで電圧off時の応答速度(Toff)が約20~30ms程度高速化している。これは、以下の2つの現象によって、弱アンカリング配向膜上に弱アンカリング領域と強アンカリング領域の両方を形成できるためと考えられる。
 ・基板上に液晶配向剤を塗布した際に、物性(熱膨張率や極性)が大きく異なる重合体αと重合体βからなるポリマーアロイは微細な相分離が誘起され、弱アンカリング配向膜表面に重合体αと重合体βが海島状にセグメント化される現象
 ・光配向処理を施すことで重合体βのみが一軸配向する現象
From Examples 1, 9, 13, 16 and Comparative Examples 1 to 4, the response speed at voltage OFF (Toff ) has become faster by about 20 to 30 ms. This is considered to be because both a weak anchoring region and a strong anchoring region can be formed on the weak anchoring alignment film due to the following two phenomena.
・When a liquid crystal aligning agent is applied on a substrate, fine phase separation is induced in the polymer alloy consisting of polymer α and polymer β, which have significantly different physical properties (coefficient of thermal expansion and polarity), and the surface of the weakly anchored alignment film Phenomenon in which polymer α and polymer β are segmented into sea-island shapes ・Phenomenon in which only polymer β becomes uniaxially oriented by photo-alignment treatment
 実施例1~22の方位角アンカリング強度は比較例1~5のそれよりも大きな値を示すことからも、弱アンカリング配向膜上に強アンカリング領域と弱アンカリング領域がセグメント化されていることが示唆される。 The azimuthal anchoring strengths of Examples 1 to 22 are larger than those of Comparative Examples 1 to 5, indicating that strong anchoring regions and weak anchoring regions are segmented on the weak anchoring alignment film. It is suggested that there is.
 実施例1~3より、ポリマーアロイ中の重合体αの占める割合が多いほど、閾値電圧が高電圧化し、最大透過率が低下し、電圧off時の応答速度が遅くなり、方位角アンカリング強度が低下した。これは、弱アンカリング配向膜表面に占める重合体αの比率が大きくなったためであり、重合体αと重合体βの比率を制御することで、弱アンカリング性をコントロールできることを指す。 From Examples 1 to 3, the higher the proportion of polymer α in the polymer alloy, the higher the threshold voltage, the lower the maximum transmittance, the slower the response speed when the voltage is off, and the lower the azimuthal anchoring strength. decreased. This is because the ratio of the polymer α occupying the surface of the weak anchoring alignment film has increased, and indicates that the weak anchoring property can be controlled by controlling the ratio of the polymer α and the polymer β.
 ポリマーアロイに含まれる重合体αは重合体A(実施例1~8)であっても、重合体B(実施例17)であっても、重合体C(実施例9~16)であっても、重合体A~C以外の弱アンカリング成分(実施例18)であっても、光配向処理により電圧off時の応答速度(Toff)は高速応答化した。如何なる弱アンカリング発現成分もその分子設計上、疎水的かつ柔軟で、低Tgであることを特徴とするため、剛直で高極性な重合体βとは良く相分離し、理想的な弱アンカリング領域と強アンカリング領域が形成できると考えられる。 The polymer α contained in the polymer alloy may be polymer A (Examples 1 to 8), polymer B (Example 17), or polymer C (Examples 9 to 16). Also, even with weak anchoring components other than Polymers A to C (Example 18), the response speed (T off ) when the voltage was turned off was increased by the photoalignment treatment. Due to its molecular design, any weak anchoring component is hydrophobic, flexible, and has a low Tg, so it phase separates well from the rigid and highly polar polymer β, making it an ideal weak anchoring agent. It is thought that a strong anchoring region and a strong anchoring region can be formed.
 本発明のポリマーアロイに含まれる重合体αは、液晶素子中で液晶と相溶液体層を形成することで弱アンカリング特性を発現するが、重合体αに含まれる弱アンカリング性を発現する成分については液晶と相溶する重合体であれば、重合性基や重合性モノマーの構造に限定されない。なお、本出願人は、プレチルト角が発生せず安定的に弱アンカリング横電界液晶表示素子が作製できる液晶組成物に含有されるラジカル重合性モノマーであって、弱アンカリングの発生に寄与するラジカル重合性モノマーとして、式(2)で表される化合物、式(3)で表される化合物、式(5)で表される化合物、及び式(7)で表される化合物を見出し、出願している(特願2020-134149、特願2020-163212、特願2021-041196、WO2019/004433、WO2022/030602、WO2022/071286、WO2022/196565。ここに引用されたことによって、これらの出願及び公開公報の内容は、全てが明示されたと同程度に本明細書に組み込まれるものである。)。これらのモノマーを用いることで良好な弱アンカリング特性が実現しやすい。このことから、これらのモノマーの使用が適切であると言える。 The polymer α contained in the polymer alloy of the present invention exhibits weak anchoring properties by forming a phase solution layer with the liquid crystal in the liquid crystal element. The components are not limited to the structure of polymerizable groups or polymerizable monomers as long as they are polymers that are compatible with the liquid crystal. The present applicant has proposed a radically polymerizable monomer that is contained in a liquid crystal composition that can stably produce a weakly anchoring horizontal electric field liquid crystal display element without generating a pretilt angle, and that contributes to the occurrence of weak anchoring. As radically polymerizable monomers, we discovered a compound represented by formula (2), a compound represented by formula (3), a compound represented by formula (5), and a compound represented by formula (7), and filed an application. These applications and The contents of the publications are incorporated herein to the same extent as if expressly set forth in their entirety.) By using these monomers, good weak anchoring properties can be easily achieved. From this, it can be said that the use of these monomers is appropriate.
 実施例1、19~22より、重合体βとして光配向性を有するポリアミック酸やポリアミック酸エステル、ポリイミド、ポリ(メタ)アクリル酸エステルなどが好ましいが、光配向性を有し、重合体αと相分離を誘起できる材料であれば特に限定されない。また、重合体α及び重合体β以外の第三成分として新たな重合体が含有されていても良く、その第三成分は光配向性を有していてもよいし、有していなくてよい。第三成分を含有することで、弱アンカリング配向膜の膜抵抗やシール密着性、機械強度を制御できることが予測される。 From Examples 1 and 19 to 22, polyamic acids, polyamic acid esters, polyimides, poly(meth)acrylic esters, etc., which have photoalignment properties are preferable as the polymer β, but polymers α and the like which have photoalignment properties are preferable. The material is not particularly limited as long as it can induce phase separation. Further, a new polymer may be contained as a third component other than the polymer α and the polymer β, and the third component may or may not have photoalignment property. . It is predicted that by containing the third component, the film resistance, seal adhesion, and mechanical strength of the weakly anchored alignment film can be controlled.
 実施例1、23より、対向基板側に弱アンカリング配向膜を設けることでより高い透過率が得られた。これは、対向基板側に弱アンカリング配向膜を設けることで液晶の駆動前後でより高い位相差変化が得られることを示唆しており、駆動可能な液晶の実行膜厚が拡大していることに起因する。これより、通常高い透過率を得るために液晶の複屈折率差(Δn)とセルギャップ(D)の積が約300nmとなるように液晶またはセルギャップの設計がされるが、上記の値が300nm以下であっても高い透過率を発現可能なため、さらなる高速応答化が実現可能であり、更に、焼き付きやコントラスト改善にも効果があることがわかる。 From Examples 1 and 23, higher transmittance was obtained by providing a weak anchoring alignment film on the opposing substrate side. This suggests that by providing a weak anchoring alignment film on the opposing substrate side, a higher phase difference change can be obtained before and after driving the liquid crystal, and the effective film thickness of the liquid crystal that can be driven is expanded. caused by. From this, in order to obtain high transmittance, the liquid crystal or cell gap is usually designed so that the product of the birefringence difference (Δn) of the liquid crystal and the cell gap (D) is approximately 300 nm. Since high transmittance can be achieved even at a wavelength of 300 nm or less, it is possible to achieve even faster response, and it can be seen that it is also effective in improving burn-in and contrast.
<ラビング配向を用いたセル特性評価>
(弱アンカリングIPS特性の評価結果)
 実施例内容及び評価結果を表6に示す。表6には、IPS基板側の液晶配向膜の方位角アンカリング強度(A)の測定結果も示した。
 実施例24~46では、IPS基板及び対向基板の両方にラビング配向処理を施した。
 比較例7~12では、対向基板のみにラビング配向処理を施した。
<Evaluation of cell characteristics using rubbing orientation>
(Evaluation results of weak anchoring IPS characteristics)
Table 6 shows the details of the examples and the evaluation results. Table 6 also shows the measurement results of the azimuthal anchoring strength (A 2 ) of the liquid crystal alignment film on the IPS substrate side.
In Examples 24 to 46, rubbing alignment treatment was performed on both the IPS substrate and the counter substrate.
In Comparative Examples 7 to 12, only the opposing substrate was subjected to rubbing alignment treatment.
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000118
 実施例24~45は本発明のポリマーアロイを含む液晶配向剤をIPS基板上に形成し、ラビング配向膜を対向基板上に形成し、両方の基板にラビング配向処理を施したものであり、実施例46は本発明のポリマーアロイを含む液晶配向剤を対向基板上に形成し、ラビング配向膜をIPS基板上に形成し、両方の基板にラビング配向処理を施したものであり、比較例7~11はポリマーアロイを含む液晶配向剤をIPS基板上に、ラビング配向膜を対向基板上に形成し、対向基板にのみラビング配向処理を施したものである。
 実施例24~46いずれも透過率が向上、駆動電圧が低電圧化し、方位角アンカリングエネルギーは1.2×10-5(J/m)程度を示した。これより、本発明のポリマーアロイを用い、かつラビング配向処理を施すことでも弱アンカリング性が発現していることが分かる。
In Examples 24 to 45, a liquid crystal aligning agent containing the polymer alloy of the present invention was formed on an IPS substrate, a rubbing alignment film was formed on a counter substrate, and both substrates were subjected to rubbing alignment treatment. In Example 46, a liquid crystal aligning agent containing the polymer alloy of the present invention was formed on a counter substrate, a rubbing alignment film was formed on an IPS substrate, and both substrates were subjected to rubbing alignment treatment. In No. 11, a liquid crystal aligning agent containing a polymer alloy was formed on an IPS substrate, a rubbing alignment film was formed on a counter substrate, and the rubbing alignment treatment was performed only on the counter substrate.
In all of Examples 24 to 46, the transmittance was improved, the driving voltage was lowered, and the azimuthal anchoring energy was approximately 1.2×10 −5 (J/m 2 ). From this, it can be seen that weak anchoring properties are expressed even when the polymer alloy of the present invention is used and subjected to rubbing orientation treatment.
 実施例24、32、36、39、比較例7~10より、本発明のポリマーアロイを含む弱アンカリング液晶配向剤を塗布した基板にラビング配向処理を施すことでも電圧off時の応答速度(Toff)が約20~30ms程度高速化している。これは、前記と同様に以下の2つの現象によって、弱アンカリング配向膜上に弱アンカリング領域と強アンカリング領域の両方を形成できるためと考えられる。
 ・基板上に液晶配向剤を塗布した際に、物性(熱膨張率や極性)が大きく異なる重合体αと重合体βからなるポリマーアロイは微細な相分離が誘起され、弱アンカリング配向膜表面に重合体αと重合体βが海島状にセグメント化される現象
 ・ラビング配向処理を施すことで重合体βのみが一軸配向する現象
 なお、ラビング配向処理をする場合は、弱アンカリング成分が破壊されない強度範囲で行う必要がある。
From Examples 24, 32, 36, and 39, and Comparative Examples 7 to 10, it is clear that the response speed when the voltage is turned off (Toff ) has become faster by about 20 to 30 ms. This is considered to be because, similarly to the above, both the weak anchoring region and the strong anchoring region can be formed on the weak anchoring alignment film due to the following two phenomena.
・When a liquid crystal aligning agent is applied on a substrate, fine phase separation is induced in the polymer alloy consisting of polymer α and polymer β, which have significantly different physical properties (coefficient of thermal expansion and polarity), and the surface of the weakly anchored alignment film A phenomenon in which polymer α and polymer β are segmented into sea-island shapes. - A phenomenon in which only polymer β becomes uniaxially oriented by applying rubbing orientation treatment. In addition, when performing rubbing orientation treatment, the weak anchoring component is destroyed. It must be done in a range of strength that is not
 実施例24~45の方位角アンカリング強度は比較例7~10のそれよりも大きな値を示すことからも、弱アンカリング配向膜上に強アンカリング領域と弱アンカリング領域がセグメント化されていることが示唆される。 The azimuthal anchoring strengths of Examples 24 to 45 are larger than those of Comparative Examples 7 to 10, indicating that strong anchoring regions and weak anchoring regions are segmented on the weak anchoring alignment film. It is suggested that there is.
 実施例24~26より、ポリマーアロイ中の重合体αの占める割合が多いほど、閾値電圧が高電圧化し、最大透過率が低下し、電圧off時の応答速度が遅くなり、方位角アンカリング強度が低下した。これは、弱アンカリング配向膜表面に占める重合体αの比率が大きくなったためであり、重合体αと重合体βの比率を制御することで、弱アンカリング性をコントロールできることを指す。 From Examples 24 to 26, the higher the proportion of polymer α in the polymer alloy, the higher the threshold voltage, the lower the maximum transmittance, the slower the response speed when the voltage is off, and the lower the azimuthal anchoring strength. decreased. This is because the ratio of the polymer α occupying the surface of the weak anchoring alignment film has increased, and indicates that the weak anchoring property can be controlled by controlling the ratio of the polymer α and the polymer β.
 実施例24、42~45より、重合体βとしてラビング配向性を有するポリアミック酸やポリアミック酸エステル、ポリイミド、ポリ(メタ)アクリル酸エステルなどが好ましいが、ラビング配向処理による一軸配向性を有し、重合体αと相分離を誘起できる材料であれば特に限定されない。また、重合体αと重合体β以外の第三成分として新たな重合体が含有されていても良く、その第三成分は一軸向性を有していてもよいし、有していなくてよい。 From Examples 24 and 42 to 45, polyamic acid, polyamic acid ester, polyimide, poly(meth)acrylic acid ester, etc., which have rubbing orientation as the polymer β, are preferable, but have uniaxial orientation due to rubbing orientation treatment, The material is not particularly limited as long as it can induce phase separation with the polymer α. Further, a new polymer may be contained as a third component other than polymer α and polymer β, and the third component may or may not have uniaxial orientation. good.
 実施例23、46より、対向基板側に弱アンカリング配向膜を設けることでより高い透過率が得られた。これは、対向基板側に弱アンカリング配向膜を設けることで液晶の駆動前後でより高い位相差変化が得られることを示唆しており、駆動可能な液晶の実行膜厚が拡大していることに起因する。これより、通常高い透過率を得るために液晶の複屈折率差(Δn)とセルギャップ(D)の積が約300nmとなるように液晶またはセルギャップの設計がされるが、上記の値が300nm以下であっても高い透過率を発現可能なため、さらなる高速応答化が実現可能であり、更に、焼き付きやコントラスト改善にも効果があることがわかる。 From Examples 23 and 46, higher transmittance was obtained by providing a weak anchoring alignment film on the opposing substrate side. This suggests that by providing a weak anchoring alignment film on the opposing substrate side, a higher phase difference change can be obtained before and after driving the liquid crystal, and the effective film thickness of the liquid crystal that can be driven is expanded. caused by. From this, in order to obtain high transmittance, the liquid crystal or cell gap is usually designed so that the product of the birefringence difference (Δn) of the liquid crystal and the cell gap (D) is approximately 300 nm. Since high transmittance can be achieved even at a wavelength of 300 nm or less, it is possible to achieve even faster response, and it can be seen that it is also effective in improving burn-in and contrast.
(接着性評価サンプルの作製)
 上記調製例1、9、13、16~18、23~25で得られた液晶配向剤をそれぞれ孔径1.0μmのフィルターで濾過した後、透明電極付きガラス基板上にスピンコートし、80℃のホットプレート上で2分間乾燥後、230℃で20分間焼成して膜厚100nmの塗膜を得た。また、前記方法と同様に、対向となる基板には全てNRB-U973を形成した。得られた2枚の基板をそれぞれ用意し、一方の基板の液晶配向膜面上に直径4μmのビーズスペーサーを散布した後、シール剤(三井化学社製 XN-1500T)を滴下した。その際、貼り合わせ後のシール剤の直径が約3mmとなるようにシール剤滴下量を調整した。次いで、互いの膜面を向かい合わせ、基板の重なり幅が1cmになるように貼り合わせを行った。貼り合わせた基板同士をクリップにて固定した後、120℃で1時間熱硬化させて、接着性評価用のサンプルを作製した。
(Preparation of adhesive evaluation sample)
The liquid crystal alignment agents obtained in Preparation Examples 1, 9, 13, 16-18, and 23-25 were each filtered through a filter with a pore size of 1.0 μm, and then spin-coated onto a glass substrate with a transparent electrode, and heated at 80°C. After drying on a hot plate for 2 minutes, it was baked at 230° C. for 20 minutes to obtain a coating film with a thickness of 100 nm. Further, in the same manner as in the above method, NRB-U973 was formed on all opposing substrates. The two obtained substrates were each prepared, and after scattering bead spacers with a diameter of 4 μm on the liquid crystal alignment film surface of one substrate, a sealing agent (XN-1500T manufactured by Mitsui Chemicals, Inc.) was dropped. At that time, the amount of the sealant dropped was adjusted so that the diameter of the sealant after bonding was about 3 mm. Next, the substrates were bonded with their film surfaces facing each other so that the overlapping width of the substrates was 1 cm. After fixing the bonded substrates together with clips, they were thermally cured at 120° C. for 1 hour to prepare samples for adhesive evaluation.
(接着力の測定)
 作製したサンプルを島津製作所製の卓上形精密万能試験機AGS-X 500Nにて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の圧力(N)を測定した。なお、計測したシール剤の直径を3.0mmに規格化したときの圧力(N)を用いて接着力(シール剥離強度、シール密着性ともいう)を評価した。結果を表7に示す。
(Measurement of adhesive strength)
After fixing the edge portions of the upper and lower substrates using a tabletop precision universal testing machine AGS-X 500N manufactured by Shimadzu Corporation, press the prepared sample from the top of the center of the substrate to measure the pressure (N) when peeling. was measured. Note that the adhesive force (also referred to as seal peel strength or seal adhesion) was evaluated using the pressure (N) when the measured diameter of the sealant was standardized to 3.0 mm. The results are shown in Table 7.
 以下の表7には、調製例で作製した液晶配向剤を塗布した基板についての配向処理の有無、及び配向処理の種類を記載した。なお、NRB-U973を形成した基板には配向処理(光配向処理)は施していない。 Table 7 below lists the presence or absence of alignment treatment and the type of alignment treatment for the substrate coated with the liquid crystal alignment agent produced in the preparation example. Note that the substrate on which NRB-U973 was formed was not subjected to alignment treatment (photoalignment treatment).
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000119
 配向処理を施した本発明のポリマーアロイ(実施例47~52)はいずれも配向処理を施していないもの(比較例13~18)に比べて高いシール剥離強度を示すことが分かった。これは、配向処理の工程で弱アンカリング液晶配向膜中で物質移動が誘起され、弱アンカリング領域がやや縮小するためだと推測される。 It was found that the polymer alloys of the present invention that were subjected to orientation treatment (Examples 47 to 52) exhibited higher seal peel strength than those that were not subjected to orientation treatment (Comparative Examples 13 to 18). This is presumed to be because mass transfer is induced in the weakly anchored liquid crystal alignment film during the alignment process, and the weakly anchored region is slightly reduced.
 本発明によれば、極めて単純な手法で安定した弱アンカリング膜を製造でき、電圧off時の応答速度を高速化でき、シールとの密着性を改善できるため、弱アンカリングIPSを幅広いアプリケーションに応用することが可能で、加えて実際の工業化において製造に掛かる工程負荷の低減や歩留まりの改善が可能となる。さらに、本発明の材料および手法を用いることで、狭セルギャップ化に伴うプレチルト角の発生を抑制しつつ、従来技術に比べて電圧OFF時の高速応答化、焼き付きの低減、低温環境における高いバックライト透過率と低電圧駆動が実現できるため、優れた特性を安定して発現できる材料および横電界液晶表示素子を提供することができる。 According to the present invention, a stable weak anchoring film can be manufactured using an extremely simple method, the response speed when the voltage is turned off can be increased, and the adhesion with the seal can be improved, so that weak anchoring IPS can be used in a wide range of applications. In addition, it is possible to reduce the process load and improve the yield in actual industrialization. Furthermore, by using the material and method of the present invention, while suppressing the occurrence of pre-tilt angles associated with narrowing cell gaps, compared to conventional technology, faster response when voltage is turned off, less burn-in, and higher backlash in low-temperature environments. Since light transmittance and low voltage driving can be realized, it is possible to provide a material and a horizontal electric field liquid crystal display element that can stably exhibit excellent characteristics.
 1  横電界液晶表示素子
 2  櫛歯電極基板
 2a 基材
 2b 線状電極
 2c 液晶配向膜
 2d 基材
 2e 面電極
 2f 絶縁膜
 2g 線状電極
 2h 液晶配向膜
 3  液晶
 4  対向基板
 4a 液晶配向膜
 4b 基材
 L  電気力線

 
1 Horizontal electric field liquid crystal display element 2 Comb tooth electrode substrate 2a Base material 2b Linear electrode 2c Liquid crystal alignment film 2d Base material 2e Plane electrode 2f Insulating film 2g Linear electrode 2h Liquid crystal alignment film 3 Liquid crystal 4 Counter substrate 4a Liquid crystal alignment film 4b Base Material L Electric lines of force

Claims (16)

  1.  液晶と、弱アンカリング配向膜とを有する液晶セルの製造に用いられる、弱アンカリング配向膜付き基板の製造方法であって、
     弱アンカリング性を発現する成分である重合体αと、弱アンカリング性を発現せず、配向処理によって一軸配向規制力を発現する成分である重合体βとを含む弱アンカリング液晶配向剤を基板上に塗布し、前記基板上に薄膜を設ける工程と、
     前記薄膜に配向処理を施す工程と、
    を含む、弱アンカリング配向膜付き基板の製造方法。
    A method for manufacturing a substrate with a weak anchoring alignment film used for manufacturing a liquid crystal cell having a liquid crystal and a weak anchoring alignment film, the method comprising:
    A weakly anchoring liquid crystal aligning agent containing a polymer α, which is a component that exhibits weak anchoring properties, and a polymer β, which is a component that does not exhibit weak anchoring properties and exhibits a uniaxial alignment regulating force through alignment treatment. coating on a substrate and providing a thin film on the substrate;
    a step of subjecting the thin film to an orientation treatment;
    A method for manufacturing a substrate with a weak anchoring alignment film, comprising:
  2.  前記重合体βが、配向処理をすることで水平配向規制力を有する重合体である、請求項1に記載の弱アンカリング配向膜付き基板の製造方法。 The method for manufacturing a substrate with a weak anchoring alignment film according to claim 1, wherein the polymer β is a polymer that has a horizontal alignment regulating force when subjected to an alignment treatment.
  3.  前記弱アンカリング配向膜が、一軸配向処理された液晶配向膜である、請求項1に記載の弱アンカリング配向膜付き基板の製造方法。 The method for manufacturing a substrate with a weak anchoring alignment film according to claim 1, wherein the weak anchoring alignment film is a liquid crystal alignment film that has been subjected to a uniaxial alignment treatment.
  4.  前記重合体αが、下記重合体A、重合体B及び重合体Cからなる群から選択される少なくとも1種を含有する、請求項1に記載の弱アンカリング配向膜付き基板の製造方法。
     重合体A:前記液晶に相溶するブロックセグメント(A)と、前記液晶に相溶しない又は焼成により前記液晶に不溶化するブロックセグメント(B)とを有するブロック共重合体。
     重合体B:幹ポリマーと、前記幹ポリマーの側鎖として前記幹ポリマーに結合した枝ポリマーとを有するグラフト共重合体であって、前記枝ポリマーが、前記液晶と相溶し、かつ前記幹ポリマーが、前記液晶に相溶しない又は焼成により前記液晶に不相溶化する、グラフト共重合体。
     重合体C:前記液晶に相溶する重合体ユニットを有し、かつ加熱により前記重合体βと反応する重合体。
    The method for producing a substrate with a weak anchoring alignment film according to claim 1, wherein the polymer α contains at least one selected from the group consisting of Polymer A, Polymer B, and Polymer C below.
    Polymer A: A block copolymer having a block segment (A) that is compatible with the liquid crystal and a block segment (B) that is not compatible with the liquid crystal or becomes insolubilized in the liquid crystal upon firing.
    Polymer B: a graft copolymer having a backbone polymer and a branch polymer bonded to the backbone polymer as a side chain of the backbone polymer, wherein the branch polymer is compatible with the liquid crystal and the backbone polymer is not compatible with the liquid crystal or becomes incompatible with the liquid crystal upon firing.
    Polymer C: A polymer that has a polymer unit that is compatible with the liquid crystal and reacts with the polymer β when heated.
  5.  前記重合体Aにおける前記ブロックセグメント(A)が、下記式(2)で表される化合物、下記式(3)で表される化合物、下記式(4)で表される化合物、及び下記式(5)で表される化合物からなる群から選択される少なくとも1種を、構成成分として含み、
     前記重合体Aにおける前記ブロックセグメント(B)が、下記式(6)で表される化合物を、構成成分として含む、
    請求項4に記載の弱アンカリング配向膜付き基板の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(2)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、又はチオエーテル結合を表し、Rは結合基が挿入されていてもよい炭素数1~20のアルキル基を表し、nは1~2の整数である。nが2の場合、2つのX及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Sは単結合、又は結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表し、Tは下記式(3-T)で表される有機基を表し、nは1~2の整数である。nが2の場合、2つのTは同一であってもよいし、異なっていてもよい。ただし、nが2の場合、Sは結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(3-T)中、*は結合部位を示す。Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又はアルキル基を表す。)から選ばれる結合基であり、Cyは6~20員環の非芳香族の環状基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子又は下記式(4-X)を表す。ただし、3つのXの少なくとも一つは式(4-X)を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式(4-X)中、Yは単結合、-O-、-S-又は-N(R)-(RはNに結合する、水素原子又は炭素数1~4のアルキル基を表す。)を表し、*は結合部位を示す。R、R、及びRは、それぞれ独立して、炭素数1~6のアルキル基又は置換基を有していてもよい芳香族炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(5)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、R~Rはそれぞれ独立して単結合、又は結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、X及びXはそれぞれ独立して水素原子、又は置換基を有していてもよい芳香族炭化水素基を表し、RとRとR及びRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、R及びRの合計炭素数は1以上である。)
    Figure JPOXMLDOC01-appb-C000007
    (式(6)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、nは1~2の整数である。Zは下記式(6-Z)で表される基を表す。nが2の場合、2つのZは同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000008
    (式(6-Z)中、Lはトリアルコキシシリル基、イソシアネート基、ブロックイソシアネート基、エポキシ基、オキセタン基、ビニル基、アリル基、オキサゾリン基、アミノ基、保護アミノ基、アニリン基、保護アニリン基、ヒドロキシ基、保護ヒドロキシ基、フェノール基、保護フェノール基、チオール基、保護チオール基、チオフェノール基、保護チオフェノール基、アルデヒド基、カルボキシ基、マレイミド基、N-ヒドロキシスクシンイミドエステル基、結合基が挿入されていてもよい炭素数5~18の芳香族炭化水素基、結合基が挿入されていてもよい炭素数5~18の芳香族複素環基、桂皮酸基、桂皮酸芳香族エステル基、桂皮酸アルキルエステル基、シンナミル基、フェニルベンゾエート基、アゾベンゼン基、N-ベンジリデンアニリン基、スチルベン基、及びトラン基からなる群から選択される官能基を表す。Jは単結合又は炭素数1~6の脂肪族炭化水素基を表す。Kは、芳香族炭化水素基と結合する場合、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、及びチオエーテル結合から選ばれる連結基を示し、それ以外の場合は、単結合を示す。*は結合部位を表す。mは1~3の整数である。mが2又は3の場合、複数のK及びLは同一であってもよいし、異なっていてもよい。ただし、Jが単結合の場合、mは1である。)
    The block segment (A) in the polymer A is a compound represented by the following formula (2), a compound represented by the following formula (3), a compound represented by the following formula (4), and the following formula ( 5) contains as a constituent component at least one selected from the group consisting of the compounds represented by
    The block segment (B) in the polymer A contains a compound represented by the following formula (6) as a constituent component,
    A method for manufacturing a substrate with a weak anchoring alignment film according to claim 4.
    Figure JPOXMLDOC01-appb-C000001
    (In formula (2), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond. , R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same. (It may be different or it may be different.)
    Figure JPOXMLDOC01-appb-C000002
    (In formula (3), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein. , T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.)
    Figure JPOXMLDOC01-appb-C000003
    (In formula (3-T), * indicates a bonding site. X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
    Figure JPOXMLDOC01-appb-C000004
    (In formula (4), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms, and 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).)
    Figure JPOXMLDOC01-appb-C000005
    (In formula (4-X), Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site. R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent. )
    Figure JPOXMLDOC01-appb-C000006
    (In formula (5), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted. represents an alkylene group of 1 to 6, Ar represents an aromatic hydrocarbon group that may have a substituent, and X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together. The total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.)
    Figure JPOXMLDOC01-appb-C000007
    (In formula (6), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and n is an integer of 1 to 2. Z represents a group represented by the following formula (6-Z). (If n is 2, the two Zs may be the same or different.)
    Figure JPOXMLDOC01-appb-C000008
    (In formula (6-Z), L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinnamic acid aromatic ester group , a cinnamic acid alkyl ester group, a cinnamyl group, a phenylbenzoate group, an azobenzene group, an N-benzylideneaniline group, a stilbene group, and a tolan group. J is a single bond or has 1 to 1 carbon atoms. 6 represents an aliphatic hydrocarbon group.When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, an ether bond, an ester bond, an amide bond, a urea bond, a urethane bond, and a thioether bond. In other cases, it indicates a single bond. * represents a binding site. m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same. (However, if J is a single bond, m is 1.)
  6.  前記重合体Bにおける前記枝ポリマーが、下記式(7)で表されるマクロモノマーに由来する、請求項4に記載の弱アンカリング配向膜付き基板の製造方法。
    Figure JPOXMLDOC01-appb-C000009
    (式(7)中、Pは重合可能な不飽和炭化水素基を有する重合性基を表し、Qは下記式(2)~(5)で表される化合物の少なくとも1種を含むモノマーを重合することによって得られる構造であり、nは1~2の整数である。nが2の場合、2つのQは同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000010
    (式(2)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、又はチオエーテル結合を表し、Rは結合基が挿入されていてもよい炭素数1~20のアルキル基を表し、nは1~2の整数である。nが2の場合、2つのX及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000011
    (式(3)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Sは単結合、又は結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表し、Tは下記式(3-T)で表される有機基を表し、nは1~2の整数である。nが2の場合、2つのTは同一であってもよいし、異なっていてもよい。ただし、nが2の場合、Sは結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000012
    (式(3-T)中、*は結合部位を示す。Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又はアルキル基を表す。)から選ばれる結合基であり、Cyは6~20員環の非芳香族の環状基を表す。)
    Figure JPOXMLDOC01-appb-C000013
    (式(4)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子又は下記式(4-X)を表す。ただし、3つのXの少なくとも一つは式(4-X)を表す。)
    Figure JPOXMLDOC01-appb-C000014
    (式(4-X)中、Yは単結合、-O-、-S-又は-N(R)-(RはNに結合する、水素原子又は炭素数1~4のアルキル基を表す。)を表し、*は結合部位を示す。R、R、及びRは、それぞれ独立して、炭素数1~6のアルキル基又は置換基を有していてもよい芳香族炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000015
    (式(5)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、R~Rはそれぞれ独立して単結合、又は結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、X及びXはそれぞれ独立して水素原子、又は置換基を有していてもよい芳香族炭化水素基を表し、RとRとR及びRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、R及びRの合計炭素数は1以上である。)
    5. The method for producing a substrate with a weak anchoring alignment film according to claim 4, wherein the branch polymer in the polymer B is derived from a macromonomer represented by the following formula (7).
    Figure JPOXMLDOC01-appb-C000009
    (In formula (7), P represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and Q represents a polymerizable monomer containing at least one of the compounds represented by the following formulas (2) to (5). (n is an integer of 1 to 2. When n is 2, the two Qs may be the same or different.)
    Figure JPOXMLDOC01-appb-C000010
    (In formula (2), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond. , R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same. (It may be different or it may be different.)
    Figure JPOXMLDOC01-appb-C000011
    (In formula (3), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein. , T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.)
    Figure JPOXMLDOC01-appb-C000012
    (In formula (3-T), * indicates a bonding site. X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
    Figure JPOXMLDOC01-appb-C000013
    (In formula (4), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms, and 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).)
    Figure JPOXMLDOC01-appb-C000014
    (In formula (4-X), Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site. R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent. )
    Figure JPOXMLDOC01-appb-C000015
    (In formula (5), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted. represents an alkylene group of 1 to 6, Ar represents an aromatic hydrocarbon group that may have a substituent, and X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together. The total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.)
  7.  前記重合体Bにおける前記幹ポリマーが、下記式(6)で表される化合物を構成成分として含む、請求項4に記載の弱アンカリング配向膜付き基板の製造方法。
    Figure JPOXMLDOC01-appb-C000016
    (式(6)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、nは1~2の整数である。Zは下記式(6-Z)で表される基を表す。nが2の場合、2つのZは同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000017
    (式(6-Z)中、Lはトリアルコキシシリル基、イソシアネート基、ブロックイソシアネート基、エポキシ基、オキセタン基、ビニル基、アリル基、オキサゾリン基、アミノ基、保護アミノ基、アニリン基、保護アニリン基、ヒドロキシ基、保護ヒドロキシ基、フェノール基、保護フェノール基、チオール基、保護チオール基、チオフェノール基、保護チオフェノール基、アルデヒド基、カルボキシ基、マレイミド基、N-ヒドロキシスクシンイミドエステル基、結合基が挿入されていてもよい炭素数5~18の芳香族炭化水素基、結合基が挿入されていてもよい炭素数5~18の芳香族複素環基、桂皮酸基、桂皮酸芳香族エステル基、桂皮酸アルキルエステル基、シンナミル基、フェニルベンゾエート基、アゾベンゼン基、N-ベンジリデンアニリン基、スチルベン基、及びトラン基からなる群から選択される官能基を表す。Jは単結合又は炭素数1~6の脂肪族炭化水素基を表す。Kは、芳香族炭化水素基と結合する場合、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、及びチオエーテル結合から選ばれる連結基を示し、それ以外の場合は、単結合を示す。*は結合部位を表す。mは1~3の整数である。mが2又は3の場合、複数のK及びLは同一であってもよいし、異なっていてもよい。ただし、Jが単結合の場合、mは1である。)
    5. The method for manufacturing a substrate with a weak anchoring alignment film according to claim 4, wherein the backbone polymer in the polymer B contains a compound represented by the following formula (6) as a constituent component.
    Figure JPOXMLDOC01-appb-C000016
    (In formula (6), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and n is an integer of 1 to 2. Z represents a group represented by the following formula (6-Z). (If n is 2, the two Zs may be the same or different.)
    Figure JPOXMLDOC01-appb-C000017
    (In formula (6-Z), L is a trialkoxysilyl group, an isocyanate group, a blocked isocyanate group, an epoxy group, an oxetane group, a vinyl group, an allyl group, an oxazoline group, an amino group, a protected amino group, an aniline group, a protected aniline group) group, hydroxy group, protected hydroxy group, phenol group, protected phenol group, thiol group, protected thiol group, thiophenol group, protected thiophenol group, aldehyde group, carboxy group, maleimide group, N-hydroxysuccinimide ester group, bonding group Aromatic hydrocarbon group having 5 to 18 carbon atoms which may have a bonding group inserted therein, an aromatic heterocyclic group having 5 to 18 carbon atoms which may have a bonding group inserted therein, a cinnamic acid group, a cinnamic acid aromatic ester group , a cinnamic acid alkyl ester group, a cinnamyl group, a phenylbenzoate group, an azobenzene group, an N-benzylideneaniline group, a stilbene group, and a tolan group. J is a single bond or has 1 to 1 carbon atoms. 6 represents an aliphatic hydrocarbon group.When K is bonded to an aromatic hydrocarbon group, it represents a linking group selected from a single bond, an ether bond, an ester bond, an amide bond, a urea bond, a urethane bond, and a thioether bond. In other cases, it indicates a single bond. * represents a binding site. m is an integer from 1 to 3. When m is 2 or 3, multiple K and L may be the same. (However, if J is a single bond, m is 1.)
  8.  前記重合体Cが、下記式(8)で表される重合体である、請求項4に記載の弱アンカリング配向膜付き基板の製造方法。
    Figure JPOXMLDOC01-appb-C000018
    (式(8)中、Aは下記式(8-A-1)~(8-A-16)から選ばれる、加熱によって前記重合体βと反応する基を有する分子量500以下のn価の有機基を表す。
     Qは下記式(2)~(5)で表される化合物からなる群から選択される少なくとも1種を構成成分として含む、前記液晶と相溶する2価の重合体ユニットである。
     Rは下記式(8-R-1)~(8-R-11)から選ばれる、加熱によって前記重合体βと反応しない分子量500以下の1価の有機基である。
     nは1~2の整数である。nが2の場合、2つのQ及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000019
    (式(8-A-1)~(8-A-16)中、R及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、R及びRはそれぞれ独立して単結合又は炭素数1~12の直鎖若しくは分岐アルキレン基を表し、Xは酸素原子又は硫黄原子を表す。*は結合部位を表す。)
    Figure JPOXMLDOC01-appb-C000020
    (式(8-R-1)~(8-R-11)中、R及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、R及びRはそれぞれ独立して単結合又は炭素数1~12の直鎖若しくは分岐アルキレン基を表す。*は結合部位を表す。)
    Figure JPOXMLDOC01-appb-C000021
    (式(2)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、又はチオエーテル結合を表し、Rは結合基が挿入されていてもよい炭素数1~20のアルキル基を表し、nは1~2の整数である。nが2の場合、2つのX及びRはそれぞれ同一であってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000022
    (式(3)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Sは単結合、又は結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表し、Tは下記式(3-T)で表される有機基を表し、nは1~2の整数である。nが2の場合、2つのTは同一であってもよいし、異なっていてもよい。ただし、nが2の場合、Sは結合基が挿入されていてもよい炭素数1~6の飽和炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000023
    (式(3-T)中、*は結合部位を示す。Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、ウレア結合、チオエーテル結合、-Si(R)(R)-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、-Si(R)(R)-O-(R及びRはそれぞれ独立してSiに結合するアルキル基を表す。)、及び-N(R)-(RはNに結合する、水素原子又はアルキル基を表す。)から選ばれる結合基であり、Cyは6~20員環の非芳香族の環状基を表す。)
    Figure JPOXMLDOC01-appb-C000024
    (式(4)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子又は下記式(4-X)を表す。ただし、3つのXの少なくとも一つは式(4-X)を表す。)
    Figure JPOXMLDOC01-appb-C000025
    (式(4-X)中、Yは単結合、-O-、-S-又は-N(R)-(RはNに結合する、水素原子又は炭素数1~4のアルキル基を表す。)を表し、*は結合部位を示す。R、R、及びRは、それぞれ独立して、炭素数1~6のアルキル基又は置換基を有していてもよい芳香族炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000026
    (式(5)中、Mは重合可能な不飽和炭化水素基を有する重合性基を表し、R~Rはそれぞれ独立して単結合、又は結合基が挿入されていてもよい炭素数1~6のアルキレン基を表し、Arは置換基を有していてもよい芳香族炭化水素基を表し、X及びXはそれぞれ独立して水素原子、又は置換基を有していてもよい芳香族炭化水素基を表し、RとRとR及びRに結合する炭素原子とは一緒になって環を形成していてもよい。ただし、R、R及びRの合計炭素数は1以上である。)
    The method for manufacturing a substrate with a weak anchoring alignment film according to claim 4, wherein the polymer C is a polymer represented by the following formula (8).
    Figure JPOXMLDOC01-appb-C000018
    (In formula (8), A is an n-valent organic compound having a molecular weight of 500 or less and having a group that reacts with the polymer β upon heating, selected from the following formulas (8-A-1) to (8-A-16). represents a group.
    Q is a divalent polymer unit that is compatible with the liquid crystal and contains as a constituent at least one kind selected from the group consisting of compounds represented by the following formulas (2) to (5).
    R is a monovalent organic group selected from the following formulas (8-R-1) to (8-R-11) and having a molecular weight of 500 or less that does not react with the polymer β upon heating.
    n is an integer from 1 to 2. When n is 2, the two Q's and R's may be the same or different. )
    Figure JPOXMLDOC01-appb-C000019
    (In formulas (8-A-1) to (8-A-16), R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and R 3 and R 4 each independently represents a single bond or a linear or branched alkylene group having 1 to 12 carbon atoms, and X represents an oxygen atom or a sulfur atom. * represents a bonding site.)
    Figure JPOXMLDOC01-appb-C000020
    (In formulas (8-R-1) to (8-R-11), R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and R 3 and Each R 4 independently represents a single bond or a linear or branched alkylene group having 1 to 12 carbon atoms. * represents a bonding site.)
    Figure JPOXMLDOC01-appb-C000021
    (In formula (2), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and X represents a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, or thioether bond. , R 1 represents an alkyl group having 1 to 20 carbon atoms which may have a bonding group inserted therein, and n is an integer of 1 to 2. When n is 2, the two X and R 1 are each the same. (It may be different or it may be different.)
    Figure JPOXMLDOC01-appb-C000022
    (In formula (3), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and S represents a single bond or a saturated hydrocarbon group having 1 to 6 carbon atoms which may have a bonding group inserted therein. , T represents an organic group represented by the following formula (3-T), and n is an integer of 1 to 2. When n is 2, the two Ts may be the same or different. (However, when n is 2, S represents a saturated hydrocarbon group having 1 to 6 carbon atoms that may have a bonding group inserted.)
    Figure JPOXMLDOC01-appb-C000023
    (In formula (3-T), * indicates a bonding site. X is a single bond, ether bond, ester bond, amide bond, urethane bond, urea bond, thioether bond, -Si(R 1 )(R 2 )- (R 1 and R 2 each independently represent an alkyl group bonded to Si.), -Si(R 3 )(R 4 )-O-(R 3 and R 4 each independently bond to Si. represents an alkyl group), and -N(R 5 )-(R 5 represents a hydrogen atom or an alkyl group bonded to N), and Cy is a 6- to 20-membered non-ring group. (Represents an aromatic cyclic group.)
    Figure JPOXMLDOC01-appb-C000024
    (In formula (4), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms, and 3 Each of the three X's independently represents a hydrogen atom or the following formula (4-X).However, at least one of the three X's represents the formula (4-X).)
    Figure JPOXMLDOC01-appb-C000025
    (In formula (4-X), Y represents a single bond, -O-, -S-, or -N(R)-(R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms bonded to N. ), and * indicates a bonding site. R 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms or an aromatic hydrocarbon group that may have a substituent. )
    Figure JPOXMLDOC01-appb-C000026
    (In formula (5), M represents a polymerizable group having a polymerizable unsaturated hydrocarbon group, and R 1 to R 3 are each independently a single bond or the number of carbon atoms into which a bonding group may be inserted. represents an alkylene group of 1 to 6, Ar represents an aromatic hydrocarbon group that may have a substituent, and X 1 and X 2 are each independently a hydrogen atom, or R 1 X 1 and R 2 X 2 and the carbon atoms bonded to R 1 X 1 and R 2 X 2 may form a ring together. The total number of carbon atoms in R 1 X 1 , R 2 X 2 and R 3 is 1 or more.)
  9.  前記式(2)中のMが、下記で表されるいずれかの構造であり、
     前記式(3)中のMが、下記で表されるいずれかの構造であり、
     前記式(4)中のMが、下記で表されるいずれかの構造であり、
     前記式(5)中のMが、下記で表されるいずれかの構造である、
    請求項5、6、及び8のいずれかに記載の弱アンカリング配向膜付き基板の製造方法。
    Figure JPOXMLDOC01-appb-C000027
    (式中、R、及びRはそれぞれ独立して水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基を表し、X、Y、及びZはそれぞれ独立して酸素原子又は硫黄原子を表す。*、*及び*は結合部位を表し、*及び*のどちらか一方は水素原子又は炭素数1~12の直鎖若しくは分岐アルキル基で置き換えられていてもよい。nは1~5の整数を表す。)
    M in the formula (2) is any of the structures represented below,
    M in the formula (3) is any of the structures represented below,
    M in the formula (4) is any of the structures represented below,
    M in the formula (5) is any of the structures represented below,
    A method for manufacturing a substrate with a weak anchoring alignment film according to any one of claims 5, 6, and 8.
    Figure JPOXMLDOC01-appb-C000027
    (In the formula, R 1 and R 2 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 12 carbon atoms, and X, Y, and Z each independently represent an oxygen atom or a sulfur atom. *, * 1 and * 2 represent bonding sites, and either one of * 1 and * 2 may be replaced with a hydrogen atom or a straight chain or branched alkyl group having 1 to 12 carbon atoms. n is Represents an integer from 1 to 5.)
  10.  前記重合体βが、ポリイミド、ポリアミック酸、ポリアミック酸エステル、ポリアミド、ポリウレア、及びポリ(メタ)アクリレートからなる群から選ばれる少なくとも一種の重合体である請求項1に記載の弱アンカリング配向膜付き基板の製造方法。 The weak anchoring alignment film according to claim 1, wherein the polymer β is at least one kind of polymer selected from the group consisting of polyimide, polyamic acid, polyamic acid ester, polyamide, polyurea, and poly(meth)acrylate. Substrate manufacturing method.
  11.  前記重合体βが、テトラカルボン酸二無水物及びその誘導体からなる群から選ばれる少なくとも一つの化合物を含むテトラカルボン酸誘導体成分とジアミン成分とを重合反応させることにより得られる、ポリイミド前駆体、及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる重合体である、請求項1に記載の弱アンカリング配向膜付き基板の製造方法。 A polyimide precursor, in which the polymer β is obtained by polymerizing a diamine component and a tetracarboxylic acid derivative component containing at least one compound selected from the group consisting of tetracarboxylic dianhydride and its derivative; 2. The method for producing a substrate with a weak anchoring alignment film according to claim 1, wherein the polymer is a polymer selected from the group consisting of polyimides that are imidized products of the polyimide precursor.
  12.  前記テトラカルボン酸誘導体成分が、下記式(9)で表されるテトラカルボン酸二無水物を含む、請求項11に記載の弱アンカリング配向膜付き基板の製造方法。
    Figure JPOXMLDOC01-appb-C000028
    (式(9)中、Xは、下記式(X-1)~(X-17)、及び(XR-1)~(XR-2)からなる群から選ばれる構造を表す。)
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
    (式(X-1)~(X-17)中、R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、炭素数1~6のアルコキシ基、炭素数2~6のアルコキシアルキル基、炭素数2~6のアルキルオキシカルボニル基、又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。
     式(XR-1)~(XR-2)中、j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン基、スルホニル基、又はアミド基を表す。複数のAは、それぞれ同一でも異なっていてもよい。
     *1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
    The method for manufacturing a substrate with a weak anchoring alignment film according to claim 11, wherein the tetracarboxylic acid derivative component includes a tetracarboxylic dianhydride represented by the following formula (9).
    Figure JPOXMLDOC01-appb-C000028
    (In formula (9), X represents a structure selected from the group consisting of the following formulas (X-1) to (X-17) and (XR-1) to (XR-2).)
    Figure JPOXMLDOC01-appb-C000029
    Figure JPOXMLDOC01-appb-C000030
    (In formulas (X-1) to (X-17), R 1 to R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, Alkynyl group having 2 to 6 carbon atoms, monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, alkoxy group having 1 to 6 carbon atoms, alkoxyalkyl group having 2 to 6 carbon atoms, 2 to 6 carbon atoms represents an alkyloxycarbonyl group or a phenyl group. R 5 and R 6 each independently represent a hydrogen atom or a methyl group.
    In formulas (XR-1) to (XR-2), j and k are integers of 0 or 1, and A 1 and A 2 each independently represent a single bond, -O-, -CO-, -COO-, represents a phenylene group, a sulfonyl group, or an amide group. The plurality of A2 's may be the same or different.
    *1 is a bond bonded to one acid anhydride group, and *2 is a bond bonded to the other acid anhydride group. )
  13.  前記式(X-1)が、下記式(X1-1)~(X1-6)からなる群から選ばれる請求項12に記載の弱アンカリング配向膜付き基板の製造方法。
    Figure JPOXMLDOC01-appb-C000031
    (式(X1-1)~(X1-6)中、*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。)
    The method for manufacturing a substrate with a weak anchoring alignment film according to claim 12, wherein the formula (X-1) is selected from the group consisting of the following formulas (X1-1) to (X1-6).
    Figure JPOXMLDOC01-appb-C000031
    (In formulas (X1-1) to (X1-6), *1 is a bond that is bonded to one acid anhydride group, and *2 is a bond that is bonded to the other acid anhydride group.)
  14.  前記ジアミン成分が、下記式(10)で表されるジアミンを含む、請求項11に記載の弱アンカリング配向膜付き基板の製造方法。
    Figure JPOXMLDOC01-appb-C000032
    (式(10)中、Ar、及びAr1’は、それぞれ独立して、ベンゼン環、ビフェニル構造、又はナフタレン環を表し、該ベンゼン環、該ビフェニル構造、又は該ナフタレン環上の1つ以上の水素原子は1価の基で置換されてもよい。L及びL1’は、それぞれ独立して、単結合、-O-、-C(=O)-、又は-O-C(=O)-を表す。Aは、-CH-、炭素数2~12のアルキレン基、又は該アルキレン基の炭素-炭素結合の間に、-O-、-C(=O)-O-、及び-O-C(=O)-の少なくともいずれかの基が挿入されてなる2価の有機基を表す。Aが有する任意の水素原子は、ハロゲン原子で置換されていてもよい。)
    The method for manufacturing a substrate with a weak anchoring alignment film according to claim 11, wherein the diamine component includes a diamine represented by the following formula (10).
    Figure JPOXMLDOC01-appb-C000032
    (In formula (10), Ar 1 and Ar 1' each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring, and one or more of the benzene ring, the biphenyl structure, or the naphthalene ring The hydrogen atom of may be substituted with a monovalent group. L 1 and L 1' each independently represent a single bond, -O-, -C(=O)-, or -O-C(= O)-.A represents -CH 2 -, an alkylene group having 2 to 12 carbon atoms, or between the carbon-carbon bond of the alkylene group, -O-, -C(=O)-O-, Represents a divalent organic group in which at least one of the following groups is inserted:
  15.  前記重合体Cが、リビング重合若しくは連鎖移動重合によって得られた重合体である請求項4に記載の弱アンカリング配向膜付き基板の製造方法。 The method for manufacturing a substrate with a weakly anchoring alignment film according to claim 4, wherein the polymer C is a polymer obtained by living polymerization or chain transfer polymerization.
  16.  請求項1に記載の弱アンカリング配向膜付き基板の製造方法によって弱アンカリング配向膜付き基板を製造する工程を含む、液晶表示素子の製造方法。

     
    A method for manufacturing a liquid crystal display element, comprising the step of manufacturing a substrate with a weak anchoring alignment film by the method for manufacturing a substrate with a weak anchoring alignment film according to claim 1.

PCT/JP2023/017398 2022-05-10 2023-05-09 Method for manufacturing substrate equipped with weak anchoring alignment film, and method for manufacturing liquid crystal display element WO2023219075A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-077430 2022-05-10
JP2022077430 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023219075A1 true WO2023219075A1 (en) 2023-11-16

Family

ID=88730559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017398 WO2023219075A1 (en) 2022-05-10 2023-05-09 Method for manufacturing substrate equipped with weak anchoring alignment film, and method for manufacturing liquid crystal display element

Country Status (2)

Country Link
TW (1) TW202403414A (en)
WO (1) WO2023219075A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028621A (en) * 2016-08-18 2018-02-22 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display element and manufacturing method therefor
JP2019172997A (en) * 2018-03-26 2019-10-10 Jnc株式会社 Curable composition
WO2022092088A1 (en) * 2020-10-27 2022-05-05 日産化学株式会社 Composition for forming radical-generating film, radical-generating film, method for producing liquid crystal display element, and liquid crystal display element
WO2022260048A1 (en) * 2021-06-09 2022-12-15 日産化学株式会社 Weak anchoring liquid crystal aligning agent, liquid cyrstal display element and copolymer
WO2023048278A1 (en) * 2021-09-27 2023-03-30 日産化学株式会社 Weakly anchoring liquid-crystal alignment agent, liquid-crystal display element, and polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028621A (en) * 2016-08-18 2018-02-22 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display element and manufacturing method therefor
JP2019172997A (en) * 2018-03-26 2019-10-10 Jnc株式会社 Curable composition
WO2022092088A1 (en) * 2020-10-27 2022-05-05 日産化学株式会社 Composition for forming radical-generating film, radical-generating film, method for producing liquid crystal display element, and liquid crystal display element
WO2022260048A1 (en) * 2021-06-09 2022-12-15 日産化学株式会社 Weak anchoring liquid crystal aligning agent, liquid cyrstal display element and copolymer
WO2023048278A1 (en) * 2021-09-27 2023-03-30 日産化学株式会社 Weakly anchoring liquid-crystal alignment agent, liquid-crystal display element, and polymer

Also Published As

Publication number Publication date
TW202403414A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
CN107109050B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
CN105518521B (en) Polymer composition and liquid crystal alignment film for in-plane switching liquid crystal display element
JP7234924B2 (en) Manufacturing method of zero plane anchoring film and liquid crystal display element
CN109312166B (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2022260048A1 (en) Weak anchoring liquid crystal aligning agent, liquid cyrstal display element and copolymer
TW202118812A (en) Lateral-electric-field liquid crystal display element, and method for manufacturing lateral-electric-field liquid crystal cell
CN116348501A (en) Liquid crystal composition, method for manufacturing liquid crystal display element, and liquid crystal display element
WO2023048278A1 (en) Weakly anchoring liquid-crystal alignment agent, liquid-crystal display element, and polymer
CN111512221B (en) Method for manufacturing zero-face anchor film and liquid crystal display element
WO2022092088A1 (en) Composition for forming radical-generating film, radical-generating film, method for producing liquid crystal display element, and liquid crystal display element
WO2023219075A1 (en) Method for manufacturing substrate equipped with weak anchoring alignment film, and method for manufacturing liquid crystal display element
WO2023140322A1 (en) Weak-anchoring liquid crystal alignment agent, and liquid cyrstal display element
WO2023171690A1 (en) Weak-anchoring liquid crystal aligning agent and liquid crystal display element
WO2023157879A1 (en) Weak-anchoring liquid crystal aligning agent, and liquid crystal display element
WO2024058164A1 (en) Liquid crystal aligning agent and liquid crystal display element
TW201927865A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
WO2023106365A1 (en) Liquid-crystal alignment agent and liquid-crystal display element
WO2023120726A1 (en) Weak-anchoring liquid crystal alignment agent, and liquid cyrstal display element
WO2022196565A1 (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element
WO2019244821A1 (en) Production method for zero azimuthal anchoring film, and liquid crystal display element
TW202313937A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, polymer and method for producing the same, and method for producing compound
JPWO2019244820A1 (en) Manufacturing method of zero-plane anchoring film and liquid crystal display element
TW202336217A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element and polymer
JPWO2019244821A5 (en)
JPWO2019244820A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803552

Country of ref document: EP

Kind code of ref document: A1