WO2019244821A1 - Production method for zero azimuthal anchoring film, and liquid crystal display element - Google Patents

Production method for zero azimuthal anchoring film, and liquid crystal display element Download PDF

Info

Publication number
WO2019244821A1
WO2019244821A1 PCT/JP2019/023836 JP2019023836W WO2019244821A1 WO 2019244821 A1 WO2019244821 A1 WO 2019244821A1 JP 2019023836 W JP2019023836 W JP 2019023836W WO 2019244821 A1 WO2019244821 A1 WO 2019244821A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
radical
group
carbon atoms
film
Prior art date
Application number
PCT/JP2019/023836
Other languages
French (fr)
Japanese (ja)
Inventor
尚宏 野田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2020525716A priority Critical patent/JP7367674B2/en
Priority to KR1020217001233A priority patent/KR20210020127A/en
Priority to CN201980041213.XA priority patent/CN112292633A/en
Publication of WO2019244821A1 publication Critical patent/WO2019244821A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention provides a manufacturing method applying a polymer stabilization technique capable of manufacturing a zero-plane anchoring film by a method that is inexpensive and does not include a complicated process, and further reduces the voltage using the manufacturing method.
  • the present invention relates to a liquid crystal display element for realizing driving and a method for manufacturing the same.
  • liquid crystal display elements have been widely used in displays of mobile phones, computers and televisions.
  • Liquid crystal display elements have characteristics such as thinness, light weight, and low power consumption, and are expected to be applied to further contents such as VR and ultra-high-definition displays in the future.
  • Various display modes such as TN (Twisted Nematic), IPS (In-Plane Switching), and VA (Vertical Alignment) have been proposed as display modes of a liquid crystal display. In all modes, the liquid crystal is in a desired alignment state. (Liquid crystal alignment film) is used.
  • products equipped with a touch panel such as a tablet PC, a smartphone, and a smart TV have preferred an IPS mode in which a display is not easily disturbed even when touched.
  • an FFS Frringe
  • a liquid crystal display device using Field (Switching) and a technology using a non-contact technology using optical alignment have come to be used.
  • the FFS has a problem that the manufacturing cost of the substrate is higher than that of the IPS, and a display defect peculiar to the FFS mode called Vcom shift occurs.
  • optical alignment has the advantage of being able to increase the size of a device that can be manufactured and greatly improving display characteristics as compared with the rubbing method. Display failure, isomerization type, burn-in due to insufficient alignment force, etc.).
  • liquid crystal display element makers and liquid crystal alignment film makers have made various efforts to solve these problems.
  • a liquid crystal alignment film having a strong anchoring energy is used for one of the substrates, and one of the substrates having an electrode for generating a lateral electric field has no liquid crystal alignment regulating force.
  • the response speed delay at the time of driving is suppressed.
  • a different material is used in a very fine region. It is necessary to prepare a difficult technique such as painting differently, and it is considered that it will be a big problem in actual industrialization. If such a technical problem can be solved, it will be a great cost merit as a panel maker, and it will be a merit for suppressing battery consumption and improving image quality.
  • the present invention has been made in order to solve the above problems, and a method of creating a zero plane anchoring site and a site having an anchoring force in the plane of a liquid crystal alignment film, and an anchoring energy.
  • the present invention includes the following.
  • a method for producing a patterned zero-plane anchoring film comprising the step of: applying a sufficient energy to the liquid crystal composition to cause a polymerization reaction of the radically polymerizable compound while contacting and maintaining the state.
  • radical generating film is a film in which an organic group that induces radical polymerization is fixed.
  • the radical-generating film is obtained by applying and curing a composition of a compound having a radical-generating group and a polymer to form a film, thereby fixing the film in the film.
  • the polymer containing an organic group that induces radical polymerization is selected from a polyimide precursor, polyimide, polyurea, and polyamide obtained using a diamine component containing a diamine containing an organic group that induces radical polymerization.
  • the organic group that induces radical polymerization is an organic group represented by any of the following structures [X-1] to [X-18], [W], [Y] and [Z]. ], The method of any one of [6] and [7].
  • R 9 and R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • R 9 and R 10 are alkyl groups, they may be bonded to each other at the terminals to form a ring structure, and Q represents the following structure.
  • R 11 represents —CH 2 —, —NR—, —O—, or —S—
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • * represents Q of the compound molecule.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • the diamine having an organic group that induces radical polymerization is a diamine having a structure represented by the following general formula (6) or the following general formula (7). .
  • R 6 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—
  • R 8 has the following formula: Represents a radical polymerization reactive group selected from (In the formulas [X-1] to [X-18], * indicates a bonding site to a part other than the radical polymerization reactive group of the compound molecule, and S 1 and S 2 are each independently -O-,- R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms; R 1 and R 2 each independently represent a hydrogen atom; Represents a halogen atom or an alkyl group having 1 to 4 carbon atoms)) (In the formula (7), T 1 and T 2 are each independently a single bond, —O—, —S—, —COO—,
  • any of the following groups —O—, —COO— , —OCO—, —NHCO—, —CONH—, or —NH— may be replaced by these groups provided that they are not adjacent to each other;
  • J is an organic group represented by any of the following formulas, (Wherein [W], [Y], [Z] in which * represents a bonding site to T 2, Ar is may have an organic group and / or a halogen atom as a substituent phenylene, naphthylene, and biphenylene
  • R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Q represents any of the following: Represents the structure of (Wherein, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • the method described in. [11] The method according to [10], wherein the polymerization reactive group of the radical polymerizable compound is selected from the following structures.
  • * represents a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule.
  • R b represents a linear alkyl group having 2 to 8 carbon atoms
  • E represents a single bond
  • -O-,- represents a bonding group selected from NR c- , -S-, an ester bond and an amide bond
  • R c is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • a liquid crystal composition wherein the polymerization reactive group is selected from the following structures. (In the formula, * represents a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule.
  • R b represents a linear alkyl group having 2 to 8 carbon atoms
  • E represents a single bond
  • -O-,- represents a bonding group selected from NR c- , -S-, an ester bond and an amide bond
  • R c is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • a zero-plane anchoring film can be industrially produced with a high yield.
  • a liquid crystal display element similar to the zero-plane anchoring IPS mode liquid crystal display element described in Patent Documents 1 and 2 can be easily manufactured with inexpensive raw materials and existing manufacturing methods.
  • the liquid crystal display device obtained by the manufacturing method of the present invention has a higher response speed of the liquid crystal at the time of Off than the conventional technology, has a low driving voltage, has no bright spot, can suppress the Vcom shift in the IPS mode, and has a high FFS. In the mode, it is possible to provide a liquid crystal display device having excellent characteristics such as higher definition.
  • FIG. 3 is a diagram of a TN cell having a substrate on which a film having a zero-plane anchoring region and a non-zero-plane anchoring region is formed by having a region irradiated with UV and a region not irradiated with UV.
  • a transparent region is a region without UV irradiation
  • an opaque region is a region with UV irradiation.
  • the present invention includes forming a radical-generating film having an anchoring force on a substrate, and irradiating the radical-generating film with radiation in a region where the anchoring force is desired to be maintained.
  • Preparing a cell having a zero-plane anchoring region and a strong anchoring region patterned comprising the steps of: preparing a cell having the same; and applying sufficient energy to the cell to cause a polymerization reaction of the radical polymerizable compound.
  • a step of preparing a first substrate having a radical generating film subjected to a radiation irradiation treatment and a second substrate not having a radical generating film creating a cell such that the radical generating film faces the second substrate.
  • a low-voltage-driven IPS liquid crystal display device in which the second substrate has no radical generating film, is a substrate having a liquid crystal alignment film that has been subjected to uniaxial alignment treatment, and the first substrate is a substrate that has a comb electrode. How to create.
  • the “zero plane anchoring film” means that there is no or little if any force regulating the alignment of liquid crystal molecules in the in-plane direction. In which the film is not uniaxially oriented.
  • the zero-plane anchoring film is not limited to a solid film, but includes a liquid film covering a solid surface. Normally, a liquid crystal display element aligns liquid crystals using a film that regulates the alignment of liquid crystal molecules, that is, a liquid crystal alignment film is used as a pair. It can be oriented.
  • the horizontal alignment refers to a state in which the major axes of the liquid crystal molecules are arranged substantially parallel to the liquid crystal alignment film surface, and a tilt alignment of about several degrees is also included in the category of the horizontal alignment.
  • the radical generating film forming composition for forming the radical generating film used in the present invention contains a polymer as a component and a group capable of generating a radical.
  • the composition may include a polymer having a radical-generating group bonded thereto, or a composition of a compound having a radical-generating group and a polymer serving as a base resin. It may be a thing.
  • a radical-generating film having a group capable of generating radicals immobilized in the film can be obtained.
  • the group capable of generating a radical is preferably an organic group that induces radical polymerization.
  • Such an organic group that induces radical polymerization is an organic group represented by any of [X-1] to [X-18], [W], [Y] and [Z] represented by the following structure.
  • Groups. (In the formulas [X-1] to [X-18], * represents a bonding site to a part other than the polymerizable unsaturated bond of the compound molecule, and S 1 and S 2 are each independently —O—, ⁇ R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms; R 1 and R 2 each independently represent a hydrogen atom; Represents a halogen atom or an alkyl group having 1 to 4 carbon atoms) (In the formulas [W], [Y] and [Z], * indicates a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule, and Ar has an organic group and / or a halogen atom as a
  • R 9 and R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • R 9 and R 10 are alkyl groups, they may be bonded to each other at the terminals to form a ring structure, and Q represents any of the following structures.
  • R 11 represents —CH 2 —, —NR—, —O—, or —S—
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • * represents Q of the compound molecule. Shows the binding site with other parts.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • polyimide precursor for example, a polyimide precursor and at least one polymer selected from the group consisting of polyimide, polyurea, polyamide, polyacrylate, polymethacrylate, polyorganosiloxane and the like are preferable.
  • a radical-generating film used in the present invention when using a polymer having an organic group that induces the radical polymerization, to obtain a polymer having a group capable of generating a radical, as a monomer component, a methacryl group, A monomer having a photoreactive side chain containing at least one selected from an acryl group, a vinyl group, an allyl group, a coumarin group, a styryl group and a cinnamoyl group, and a site which decomposes by ultraviolet irradiation to generate a radical. It is preferable to use the monomer having the above.
  • monomers that generate radicals may have problems such as spontaneous polymerization themselves and become unstable compounds, so they have radical generating sites in terms of ease of synthesis.
  • polymers derived from diamines and more preferred are polyimide precursors such as polyamic acids and polyamic acid esters, polyimides, polyureas, and polyamides.
  • such a radical-generating site-containing diamine is, for example, a diamine having a polymerizable side chain that generates a radical and includes a diamine represented by the following general formula (6).
  • the present invention is not limited to this.
  • R 6 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—
  • R 8 is the following formula: Represents a radical polymerization reactive group selected from (In the formulas [X-1] to [X-18], * indicates a bonding site to a part other than the radical polymerization reactive group of the compound molecule, and S 1 and S 2 are each independently -O-,- R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms; Represents an alkoxy group, and R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms)
  • the bonding position of the two amino groups (—NH 2 ) in the formula (6) is not limited. Specifically, with respect to the bonding group in the side chain, the positions of 2, 3 on the benzene ring, the positions of 2, 4, the positions of 2, 5, the positions of 2, 6, the positions of 3, 4, and 3, 5 positions. Among them, the 2,4 position, the 2,5 position, or the 3,5 position is preferred from the viewpoint of reactivity when synthesizing the polyamic acid. Taking into account the ease of synthesizing the diamine, the positions of 2, 4 or 3, 5 are more preferable.
  • Examples of the diamine having a photoreactive group containing at least one selected from the group consisting of a methacryl group, an acrylic group, a vinyl group, an allyl group, a coumarin group, a styryl group, and a cinnamoyl group include the following.
  • Compounds include, but are not limited to. (In the formula, J 1 is a single bond, —O—, —COO—, —NHCO—, or a bonding group selected from —NH—, and J 2 is a single bond or unsubstituted or substituted by a fluorine atom. Represents an alkylene group having 1 to 20 carbon atoms.)
  • Examples of the diamine having a site where a radical is generated by being decomposed by irradiation with ultraviolet rays as a side chain include a diamine represented by the following general formula (7), but are not limited thereto.
  • T 1 and T 2 are each independently a single bond, —O—, —S—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, — CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—
  • any of the following groups —O—, —COO— , —OCO—, —NHCO—, —CONH—, or —NH— may be replaced by these groups provided that they are not adjacent to each other;
  • J is an organic group represented by any of the following formulas, (Wherein [W], [Y], [Z] in which * represents a bonding site to T 2, Ar is may have an organic group and / or a halogen atom as a substituent phenylene, naphthylene, and biphenylene
  • R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Q represents any of the following: Represents the structure of (Wherein, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site
  • the bonding position of the two amino groups (—NH 2 ) in the above formula (7) is not limited. Specifically, with respect to the bonding group in the side chain, the positions of 2, 3 on the benzene ring, the positions of 2, 4, the positions of 2, 5, the positions of 2, 6, the positions of 3, 4, and 3, 5 positions. Among them, the 2,4 position, the 2,5 position, or the 3,5 position is preferred from the viewpoint of reactivity when synthesizing the polyamic acid. Taking into account the ease of synthesizing the diamine, the positions of 2, 4 or 3, 5 are more preferable.
  • n is an integer of 2 to 8.
  • the above diamines may be used singly or in combination of two or more, depending on characteristics such as liquid crystal alignment when forming a radical generating film, sensitivity in polymerization reaction, voltage holding characteristics, and accumulated charge.
  • the diamine having such a site where radical polymerization occurs is preferably used in an amount of 5 to 50 mol% of the entire diamine component used for synthesizing the polymer to be contained in the radical generating film-forming composition, more preferably. It is 10 to 40 mol%, particularly preferably 15 to 30 mol%.
  • the polymer used for the radical generating film of the present invention is obtained from a diamine
  • other diamines other than the diamine having a site where the radical is generated are used as a diamine component as long as the effects of the present invention are not impaired. be able to.
  • p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl- m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2, 4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,
  • the above-mentioned other diamines may be used alone or in combination of two or more, depending on properties such as liquid crystal orientation when a radical generating film is formed, sensitivity in a polymerization reaction, voltage holding properties, and accumulated charge. .
  • the tetracarboxylic dianhydride to be reacted with the diamine component is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,2 3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyl Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,
  • tetracarboxylic dianhydride may be used alone or in combination of two or more depending on properties such as liquid crystal alignment when forming a radical generating film, sensitivity in polymerization reaction, voltage holding characteristics, and accumulated charge. .
  • the structure of the tetracarboxylic acid dialkyl ester to be reacted with the above diamine component is not particularly limited, but specific examples thereof are shown below.
  • Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,2 3,4-cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracar
  • aromatic tetracarboxylic acid dialkyl ester examples include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4′-benzophenone tetracarboxylic acid dialkyl ester, Bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7 -Dialkylene naphthalenete
  • the diisocyanate to be reacted with the above diamine component is not particularly limited, and can be used according to availability and the like.
  • the specific structure of the diisocyanate is shown below.
  • R 2 and R 3 represent an aliphatic hydrocarbon having 1 to 10 carbon atoms.
  • Aliphatic diisocyanates represented by K-1 to K-5 are inferior in reactivity but have the merit of improving solvent solubility.
  • Aromatic diisocyanates represented by K-6 to K-7 are rich in reactivity and heat resistance. Has the effect of improving the solubility, but has the disadvantage of lowering the solvent solubility.
  • K-1, K-7, K-8, K-9 and K-10 are particularly preferable, K-12 from the viewpoint of electric characteristics, and K-13 from the viewpoint of liquid crystal alignment. Particularly preferred.
  • One or more diisocyanates can be used in combination, and it is preferable to use various types according to the properties to be obtained.
  • diisocyanates can also be replaced with the tetracarboxylic dianhydride described above, and may be used in the form of a copolymer of a polyamic acid and a polyurea. It may be used in the form of a copolymer.
  • the structure of the dicarboxylic acid to be reacted is not particularly limited, but specific examples are as follows.
  • Specific examples of the aliphatic dicarboxylic acid include malonic acid, oxalic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2- Examples include dicarboxylic acids such as dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid.
  • Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid.
  • aromatic dicarboxylic acids include o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, and 2,5-dimethylterephthalic acid Acid, tetramethylterephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-anthracenedicarboxylic acid, 1,4 -Anthraquinone dicarboxylic acid, 2,5-biphenyl dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 1,5-biphenylenedicarboxylic acid, 4,4 "-terphenyl dicarboxylic acid, 4,4'-diphenyl methane dicar
  • dicarboxylic acid containing a heterocyclic ring examples include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazoledicarboxylic acid, 2-phenyl-4,5-thiazoledicarboxylic acid, 1,2,5-thiadiazole-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples thereof include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
  • dicarboxylic acids may have an acid dihalide or an anhydrous structure.
  • dicarboxylic acids are preferably dicarboxylic acids capable of giving a polyamide having a linear structure, from the viewpoint of maintaining the orientation of liquid crystal molecules.
  • terephthalic acid isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, 4,4′-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propanedicarboxylic acid, 4,4-terphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2, 5-pyridinedicarboxylic acid or an acid dihalide thereof is preferably used.
  • dicarboxylic acids used in the present invention are not limited to the above-mentioned exemplified compounds.
  • diamine as a raw material
  • tetracarboxylic dianhydride as a raw material
  • tetracarboxylic diester diisocyanate and dicarboxylic acid.
  • a known synthesis technique can be used.
  • a diamine component is reacted with one or more components selected from a tetracarboxylic dianhydride component, a tetracarboxylic diester, a diisocyanate, and a dicarboxylic acid in an organic solvent.
  • the reaction between the diamine component and the tetracarboxylic dianhydride component is advantageous in that the reaction proceeds relatively easily in an organic solvent and no by-product is generated.
  • the organic solvent used in the above reaction is not particularly limited as long as the produced polymer can be dissolved. Furthermore, even if it is an organic solvent in which the polymer is not dissolved, the organic solvent may be mixed with the above solvent as long as the produced polymer does not precipitate. Since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polymer, it is preferable to use a dehydrated organic solvent.
  • organic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, -Pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ - Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve,
  • the diamine component or the tetracarboxylic dianhydride component When the diamine component or the tetracarboxylic dianhydride component is composed of a plurality of types of compounds, they may be reacted in a mixed state in advance, may be individually reacted sequentially, or may be separately reacted in a low molecular weight. The polymers may be mixed and reacted to form a high molecular weight product.
  • the temperature at which the diamine component and the tetracarboxylic dianhydride component are reacted can be selected at any temperature, and is, for example, in the range of -20 to 100 ° C, preferably -5 to 80 ° C.
  • the reaction can be performed at any concentration.
  • the total amount of the diamine component and the tetracarboxylic dianhydride component is 1 to 50% by mass, and preferably 5 to 30% by mass, based on the reaction solution. .
  • the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component can be selected arbitrarily according to the molecular weight of the polyamic acid to be obtained.
  • the molecular weight of the generated polyamic acid increases as the molar ratio approaches 1.0.
  • the preferred range is 0.8 to 1.2.
  • the method for synthesizing the polymer used in the present invention is not limited to the above method, and when synthesizing a polyamic acid, the same as the general method for synthesizing a polyamic acid, the above tetracarboxylic dianhydride is used.
  • a corresponding polyamic acid can be obtained by reacting a tetracarboxylic acid derivative having a corresponding structure, such as tetracarboxylic acid or a tetracarboxylic acid dihalide, by a known method.
  • a diamine and a diisocyanate may be reacted.
  • a diamine and a component selected from tetracarboxylic diester and dicarboxylic acid in the presence of a known condensing agent, or after derivatizing to an acid halide by a known method And a diamine.
  • Examples of the method for imidizing the above-described polyamic acid into polyimide include thermal imidization in which a polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the imidization ratio from the polyamic acid to the polyimide is preferably 30% or more, and more preferably 30 to 99%, since the voltage holding ratio can be increased.
  • the content is preferably 70% or less. Taking both characteristics into account, 40 to 80% is more preferable.
  • the temperature at which the polyamic acid is thermally imidized in the solution is usually from 100 to 400 ° C., preferably from 120 to 250 ° C., and is preferably carried out while removing water generated by the imidization reaction out of the system.
  • Catalytic imidation of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a solution of polyamic acid and stirring the mixture at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is usually 0.5 to 30 times, preferably 2 to 20 times, the molar amount of the amic acid group, and the amount of the acid anhydride is usually 1 to 50 times, preferably the molar amount of the amic acid group. It is 3 to 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like.
  • pyridine is preferable because it has an appropriate basicity for causing the reaction to proceed.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride.
  • acetic anhydride is preferred because purification after the reaction is facilitated.
  • the imidization rate by the catalytic imidization can be controlled by adjusting the amount of the catalyst, the reaction temperature, the reaction time, and the like.
  • the reaction solution may be put into a poor solvent to precipitate.
  • the poor solvent used for precipitation generation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
  • the polymer that has been put into the poor solvent and precipitated can be collected by filtration and then dried at normal temperature or under reduced pressure at normal temperature or under normal pressure.
  • impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, and hydrocarbons. It is preferable to use three or more poor solvents selected from these, because the purification efficiency is further increased.
  • the radical generating film forming composition used in the present invention is other than a polymer containing an organic group that induces radical polymerization.
  • Other polymers may be contained.
  • the content of the other polymer in all the components of the polymer is preferably 5 to 95% by mass, more preferably 30 to 70% by mass.
  • the molecular weight of the polymer of the radical-generating film-forming composition is determined by considering the strength of the radical-generating film obtained by applying the radical-generating film, the workability in forming the coating film, and the uniformity of the coating film.
  • the weight average molecular weight measured by the Gel Permeation Chromatography method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the radical-generating film used in the present invention is obtained by coating and curing a composition of a compound having a radical-generating group and a polymer to form a film and immobilizing the polymer in the film,
  • at least one kind of polymer obtained by using a diamine component that is 0 mol% of the entire diamine component used for synthesizing the polymer to be contained in the radical generating film forming composition may be used.
  • Examples of the compound having a group generating a radical to be added at that time include the following.
  • the compound that generates a radical by heat is a compound that generates a radical by heating to a temperature equal to or higher than the decomposition temperature.
  • a radical thermal polymerization initiator include ketone peroxides (eg, methyl ethyl ketone peroxide, cyclohexanone peroxide), diacyl peroxides (eg, acetyl peroxide, benzoyl peroxide), and hydroperoxides (eg, peroxides).
  • the compound that generates a radical by light is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, and 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthi
  • the radical-generating group is used for the purpose of promoting radical polymerization when energy is applied. May be contained.
  • the radical-generating film-forming composition may contain an organic solvent that dissolves or disperses the polymer component and, if necessary, the radical generator and other components.
  • an organic solvent is not particularly limited, and examples thereof include the organic solvents exemplified in the above synthesis of the polyamic acid.
  • N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like are soluble. It is preferable from the viewpoint of.
  • N-methyl-2-pyrrolidone or N-ethyl-2-pyrrolidone is preferable, but a mixed solvent of two or more kinds may be used.
  • a solvent that improves the uniformity and smoothness of the coating film mixed with an organic solvent having high solubility of the components contained in the radical generating film forming composition is preferable to use.
  • Solvents for improving the uniformity and smoothness of the coating film include, for example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol Tall, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether , Dipropylene glycol monomer Diether glycol, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, di
  • the radical generating film forming composition may contain components other than the above.
  • the compound include a compound that improves the film thickness uniformity and surface smoothness when the radical generating film forming composition is applied, a compound that improves the adhesion between the radical generating film forming composition and the substrate, and a radical generating film formation. Compounds that further improve the film strength of the composition are included.
  • Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), Megafac F171, F173, R-30 (manufactured by Dainippon Ink), Florad FC430, FC431 (manufactured by Sumitomo 3M) ), Asahigard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • F-top EF301, EF303, EF352 manufactured by Tochem Products
  • Megafac F171, F173, R-30 manufactured by Dainippon Ink
  • Florad FC430, FC431 manufactured by Sumitomo 3M
  • the use ratio thereof is preferably 0.01 to 2 parts by mass, more preferably 0 to 2 parts by mass, based on 100 parts by mass of the total amount of the polymer contained in the radical generating film forming composition. 0.01 to 1 part by mass.
  • the compound that improves the adhesion between the radical-generating film-forming composition and the substrate include a functional silane-containing compound and an epoxy group-containing compound.
  • a functional silane-containing compound and an epoxy group-containing compound For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysi
  • a phenol compound such as 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol is added. Is also good.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the total amount of the polymer contained in the radical-generating film-forming composition. It is.
  • the radical generating film-forming composition may be a dielectric or conductive material for changing the electrical properties such as the dielectric constant or conductivity of the radical generating film as long as the effects of the present invention are not impaired. Substances may be added.
  • the radical generating film of the present invention is obtained by using the above-mentioned composition for forming a radical generating film.
  • a cured film obtained by applying the radical-generating film forming composition used in the present invention to a substrate, followed by drying and baking can be used as a radical-generating film as it is.
  • the cured film may be rubbed, irradiated with polarized light or light of a specific wavelength, treated with an ion beam, or irradiated with UV on a liquid crystal display element after filling the liquid crystal as an alignment film for PSA. Is also possible.
  • the substrate on which the radical generating film-forming composition is applied is not particularly limited as long as it is a substrate having high transparency, but a substrate on which a transparent electrode for driving liquid crystal is formed is preferred.
  • a substrate on which a transparent electrode for driving liquid crystal is formed is preferred.
  • Specific examples include a glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile,
  • a substrate on which a transparent electrode is formed such as a plastic plate of acetylcellulose, diacetylcellulose, acetate butyrate cellulose, or the like can be given.
  • an electrode pattern such as a standard IPS comb electrode or a PSA fishbone electrode, or a projection pattern such as MVA can be used.
  • a high-performance element such as a TFT element
  • an element such as a transistor formed between an electrode for driving liquid crystal and a substrate is used.
  • a transmissive liquid crystal display element a substrate as described above is generally used.However, when a reflective liquid crystal display element is intended, silicon is used if only one substrate is used. An opaque substrate such as a wafer can also be used. At this time, a material such as aluminum which reflects light can be used for the electrode formed on the substrate.
  • Examples of the method of applying the radical-generating film forming composition include a spin coating method, a printing method, an ink jet method, a spray method, and a roll coating method. From the viewpoint of productivity, the transfer printing method is widely used industrially. Therefore, it is suitably used in the present invention.
  • the drying step after applying the radical-generating film-forming composition is not necessarily required, but when the time from application to baking is not constant for each substrate, or when baking is not performed immediately after application, drying is performed. It is preferable to include a step. This drying may be performed as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by the transfer of the substrate or the like, and the drying means is not particularly limited. For example, a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • a coating film formed by applying the radical-generating film-forming composition by the above method can be fired to form a cured film.
  • the calcination temperature can be usually performed at any temperature of 100 ° C. to 350 ° C., preferably 140 ° C. to 300 ° C., more preferably 150 ° C. to 230 ° C., and still more preferably 160 ° C. to 220 ° C. ° C.
  • the calcination time can be usually from 5 minutes to 240 minutes. Preferably it is 10 to 90 minutes, more preferably 20 to 90 minutes.
  • the heating can be performed by a generally known method, for example, a hot plate, a hot air circulation oven, an IR oven, a belt furnace, or the like.
  • the thickness of the cured film can be selected as necessary, but is preferably 5 nm or more, more preferably 10 nm or more, because the reliability of the liquid crystal display element is easily obtained.
  • the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, it is preferable because the power consumption of the liquid crystal display element does not become extremely large.
  • the first substrate having the radical generating film can be obtained as described above, and the radical generating film can be subjected to a uniaxial orientation treatment.
  • the method for performing the uniaxial orientation treatment include a photo-alignment method, an oblique deposition method, rubbing, and a uniaxial orientation treatment using a magnetic field.
  • the substrate is moved so that the rubbing cloth and the film are in contact with each other while rotating a rubbing roller around which the rubbing cloth is wound.
  • the direction is selected depending on the electrical properties of the liquid crystal.
  • the rubbing direction is set to the comb-shaped electrode. Is preferably substantially the same as the direction in which
  • a process for producing the zero anchoring portion and the strong anchoring portion there is a method of irradiating radiation in an arbitrary pattern via a photomask or the like.
  • Radiation for performing this step includes polarized light or light of a specific wavelength, an ion beam, and the like. It is particularly preferable to irradiate light having a wavelength at which the absorbance of the portion corresponding to the photoradical generation site is the highest.
  • the second substrate of the present invention is the same as the first substrate except that it does not have a radical generating film. It is preferable to use a substrate having a conventionally known liquid crystal alignment film.
  • the liquid crystal cell of the present invention comprises, after forming a radical generating film on a substrate by the above method, a substrate having the radical generating film (first substrate) and a substrate having a known liquid crystal alignment film (second substrate).
  • first substrate a substrate having the radical generating film
  • second substrate a substrate having a known liquid crystal alignment film
  • the radical generating film and the liquid crystal alignment film face each other, fixed with a sealant across a spacer, and injected and sealed with a liquid crystal composition containing a liquid crystal and a radical polymerizable compound.
  • the size of the spacer used is usually 1 to 30 ⁇ m, preferably 2 to 10 ⁇ m.
  • the method of injecting the liquid crystal composition containing the liquid crystal and the radical polymerizable compound is not particularly limited, and a vacuum method of injecting a mixture containing the liquid crystal and the polymerizable compound after reducing the pressure in the manufactured liquid crystal cell, Dropping method in which sealing is performed after dropping a mixture containing a reactive compound and the like.
  • the polymerizable compound used together with the liquid crystal is not particularly limited as long as it is a radical polymerizable compound, for example, a compound having one or two or more polymerizable unsaturated bonds in one molecule It is.
  • a radical polymerizable compound for example, a compound having one or two or more polymerizable unsaturated bonds in one molecule
  • Preferred are compounds having one polymerizable unsaturated bond in one molecule (hereinafter referred to as "compounds having a monofunctional polymerization reactive group", “compounds having a monofunctional polymerization reactive group", etc.) There).
  • the polymerizable unsaturated bond is preferably a radical polymerizable unsaturated bond, for example, a vinyl bond.
  • At least one of the radically polymerizable compounds is compatible with a liquid crystal, and is preferably a compound having one polymerizable unsaturated bond in one molecule, that is, a compound having a monofunctional radical polymerizable group. .
  • the polymerization reactive group of the radical polymerizable compound is preferably a polymerizable group selected from the following structures.
  • * represents a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule.
  • R b represents a linear alkyl group having 2 to 8 carbon atoms
  • E represents a single bond
  • -O-,- represents a bonding group selected from NR c- , -S-, an ester bond and an amide bond
  • R c is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the polymer obtained by polymerizing the radical polymerizable compound contains a radical polymerizable compound having a Tg of 100 ° C. or less.
  • the compound having a monofunctional radical polymerization reactive group has an unsaturated bond capable of undergoing radical polymerization in the presence of an organic radical.
  • examples thereof include t-butyl methacrylate, hexyl methacrylate, and 2-ethylhexyl methacrylate.
  • Methacrylate monomers such as methacrylate, nonyl methacrylate, lauryl methacrylate, and n-octyl methacrylate; acrylate monomers such as t-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, benzyl acrylate, lauryl acrylate, and n-octyl acrylate; Styrene derivatives (eg, o-, m-, p-methoxystyrene, o-, m-, pt-butoxystyrene, o-, m-, p-chloromethylstyrene, etc.).
  • acrylate monomers such as t-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, benzyl acrylate, lauryl acrylate,
  • Vinyl esters eg, vinyl acetate, vinyl propionate, vinyl benzoate, vinyl acetate, etc.
  • vinyl ketones eg, vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone, etc.
  • N-vinyl compounds eg, , N-vinylpyrrolidone, N-vinylpyrrole, N-vinylcarbazole, N-vinylindole, etc.
  • (meth) acrylic acid derivatives eg, acrylonitrile, methacrylonitrile, acrylamide, isopropylacrylamide, methacrylamide, etc.
  • vinyl halide Eg, vinyl chloride, vinylidene chloride, tetrachloroethylene, hexachloroprene, vinyl fluoride, etc.
  • These various radically polymerizable monomers may be used alone or in combination of two or more. Further, it is preferable that these have compatibility
  • R a and R b each independently represent a linear alkyl group having 2 to 8 carbon atoms
  • E represents a single bond, —O—, —NR c —, —S—, an ester bond
  • an amide R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • At least one of the radically polymerizable compounds is compatible with a liquid crystal, and is preferably a compound having one polymerizable unsaturated bond in one molecule, that is, a compound having a monofunctional radical polymerizable group. .
  • Ra and Rb each independently represent a linear alkyl group having 2 to 8 carbon atoms.
  • the polymer obtained by polymerizing the radical polymerizable compound contains a radical polymerizable compound having a Tg of 100 ° C. or less.
  • radically polymerizable monomers may be used alone or in combination of two or more. Further, it is preferable that these have compatibility with the liquid crystal.
  • the content of the radical polymerizable compound in the liquid crystal composition is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 50% by mass, based on the total mass of the liquid crystal and the radical polymerizable compound. Or less, more preferably 20% by mass or less.
  • the polymer obtained by polymerizing the radical polymerizable compound preferably has a Tg of 100 ° C or lower.
  • liquid crystal generally refers to a substance exhibiting properties of both a solid and a liquid.
  • Representative liquid crystal phases include a nematic liquid crystal and a smectic liquid crystal, but the liquid crystal that can be used in the present invention is not particularly limited.
  • An example is 4-pentyl-4'-cyanobiphenyl.
  • a liquid crystal cell into which a mixture (liquid crystal composition) containing the liquid crystal and the radical polymerizable compound has been introduced to cause the radical polymerizable compound to undergo a polymerization reaction.
  • This can be carried out, for example, by applying heat or UV irradiation, and the desired properties are exhibited by the radical polymerizable compound being polymerized in situ.
  • UV irradiation is preferable because UV irradiation enables patterning of orientation and allows a polymerization reaction to be performed in a shorter time.
  • heating may be performed at the time of UV irradiation.
  • the heating temperature at the time of performing the UV irradiation is preferably a temperature range in which the introduced liquid crystal exhibits liquid crystallinity, and is usually 40 ° C. or higher, and is preferably heating at a temperature lower than the temperature at which the liquid crystal changes to an isotropic phase.
  • the UV irradiation wavelength in the case of UV irradiation, it is preferable to select the wavelength having the best reaction quantum yield of the polymerizable compound to be reacted, and the irradiation amount of UV is usually 0.01 to 30 J.
  • the UV irradiation amount is 10 J or less, and the smaller the UV irradiation amount, the more the reduction in the reliability due to the destruction of the members constituting the liquid crystal display can be suppressed, and the shorter the UV irradiation time improves the manufacturing tact, which is preferable. It is.
  • the heating is preferably performed at a temperature at which the polymerizable compound reacts and is lower than the decomposition temperature of the liquid crystal.
  • the temperature is, for example, 100 ° C. or more and 150 ° C. or less.
  • a liquid crystal display element can be manufactured using the liquid crystal cell thus obtained.
  • a reflection type liquid crystal display device can be obtained by providing a reflection electrode, a transparent electrode, a ⁇ / 4 plate, a polarizing film, a color filter layer, and the like in this liquid crystal cell as necessary. Further, by providing a backlight, a polarizing plate, a ⁇ / 4 plate, a transparent electrode, a polarizing film, a color filter layer and the like according to a conventional method in this liquid crystal cell as required, a transmission type liquid crystal display device can be obtained.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyl lactone
  • BCS Butyl cellosolve
  • ⁇ Viscosity measurement> The viscosity of the polyamic acid solution at 25 ° C. was measured with a cone rotor TE-1 (1 ° 34 ′, R24) using a sample amount of 1.1 mL using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.). .
  • the solid is collected by filtration, and the solid is further poured into 300 ml of methanol and stirred and washed twice for 30 minutes.
  • the solid is collected by filtration, air-dried, and then dried in a vacuum oven at 60 ° C.
  • PI-3 polyimide having a number average molecular weight Mn of 12,900, a weight average molecular weight Mw of 31,000, and an imidization ratio of 51% was obtained.
  • non-radical generating film-forming composition Preparation of non-radical generating film-forming composition: AL3 In a 50 ml Erlenmeyer flask equipped with a magnetic stirrer, 2.0 g of the polyimide powder (PI-3) obtained in Synthesis Example 3 was weighed, and 18.0 g of NMP was added. Stirred at 0 C to completely dissolve. Further, 6.7 g of NMP and 6.7 g of BCS were added, and the mixture was further stirred for 3 hours to obtain a non-radical generating film-forming composition to be compared: AL3 (solid content: 6.0% by mass, NMP: 66% by mass, (BCS: 30% by mass).
  • Second step Synthesis of ethyl 2- (heptanoyloxymethyl) acrylate
  • 19.9 g (152) of 2-hydroxymethylacrylic acid obtained by the above method was placed.
  • THF (300 ml) and triethylamine (23.2 g, 229.3 mmol) were added, and while keeping the temperature at 10 ° C. or lower under a nitrogen atmosphere, heptanoyl chloride (25.0 g, 168.2 mmol) was added dropwise and reacted for 6 hours.
  • heptanoyl chloride 25.0 g, 168.2 mmol
  • the precipitated triethylamine hydrochloride was removed by filtration, the reaction solution was concentrated, redissolved in 300 ml of ethyl acetate, washed three times with 100 ml of a 10% aqueous potassium carbonate solution, and washed with 50 ml of pure water. After washing twice and drying over anhydrous magnesium sulfate, filtration and concentration were performed to obtain a pale yellow viscous body.
  • the first substrate (hereinafter also referred to as an IPS substrate) is a non-alkali glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an ITO (Indium-Tin-Oxide) electrode having a comb-shaped pattern with an electrode width of 10 ⁇ m and an interval between the electrodes of 10 ⁇ m is formed to form a pixel. Each pixel is about 10 mm long and about 5 mm wide.
  • the solution was applied to the electrode forming surface of the IPS substrate by spin coating, and dried on a hot plate at 80 ° C. for 1 minute. Then, AL1 to AL3 were baked at 220 ° C. for 20 minutes, and SE-6414 was baked at 220 ° C. for 20 minutes.
  • the substrate with the coating film was shielded from light by a metal plate so that half of the substrate was not exposed to light, and was irradiated with ultraviolet light using a high-pressure mercury lamp through a band-pass filter having a wavelength of 313 nm so that the exposure amount was 5000 mJ.
  • this operation is referred to as primary UV processing.
  • rubbing was performed so that the rubbing direction was inclined by 5 ° from the longitudinal direction of the comb-shaped electrode. Rubbing was performed using rayon cloth: YA-20R manufactured by Yoshikawa Kako Co., Ltd.
  • the substrate was irradiated with ultrasonic waves in pure water for 1 minute and dried at 80 ° C. for 10 minutes.
  • the second substrate (also referred to as a back surface ITO substrate) is a non-alkali glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm, and an ITO film is formed on a back surface (a surface facing the outside of the cell). ing. Further, a columnar spacer having a height of 4 ⁇ m is formed on the surface (the surface facing the inside of the cell). SE-6414 was filtered through a 1.0 ⁇ m filter onto the glass surface of the backside ITO substrate, applied by spin coating, and dried on a hot plate at 80 ° C. for 1 minute. Next, AL1 and AL2 were baked at 220 ° C.
  • SE-6414 was baked at 220 ° C. for 20 minutes to form a coating film having a thickness of 100 nm, respectively, and then rubbed.
  • the rubbing treatment was performed using rayon cloth: YA-20R manufactured by Yoshikawa Kako Co., Ltd. under the conditions of a roll diameter of 120 mm, a rotation speed of 1000 rpm, a moving speed of 50 mm / sec, and a pushing amount of 0.4 mm. After the rubbing treatment, the substrate was irradiated with ultrasonic waves in pure water for 1 minute and dried at 80 ° C. for 10 minutes.
  • the obtained liquid crystal cell constitutes an IPS mode liquid crystal display element and a TN mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was subjected to a heat treatment at 120 ° C. for 10 minutes. As a secondary UV treatment, irradiation was performed using a high-pressure mercury lamp through a band-pass filter having a wavelength of 313 nm. The liquid crystal cell was irradiated with ultraviolet rays so that the exposure amount was 5000 mJ. Table 4 below shows details of the prepared cells.
  • VT curve was measured to measure the change in threshold voltage and the mode efficiency.
  • a white LED backlight and a luminance meter are set so that the optical axes are aligned, and a liquid crystal cell (liquid crystal display element) having a polarizing plate attached thereto is set between the white LED backlight and the luminance meter so as to minimize the luminance. This was performed by applying a voltage up to 8 V at 1 V intervals and measuring the luminance at the voltage. The value of the driving threshold voltage was estimated from the obtained VT curve.
  • the mode efficiency was measured by calculating the ratio of the luminance of the liquid crystal cell at Vmax to the luminance of the LED transmitted light at the time of parallel Nicols of the polarizing plate.
  • an approximate value was estimated from the magnitude of the threshold voltage by the Freedericksz transfer method.
  • the threshold voltage and luminance of the VT curve were changed between the primary UV exposed portion and the unexposed portion. It can be seen from this verification that regions having different anchoring forces can be created in the pixel by performing the primary exposure.
  • the liquid crystal display device obtained by the method of the present invention is useful as a vertical alignment type liquid crystal display device such as a PSA liquid crystal display or an SC-PVA liquid crystal display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention provides an industrial production method for a zero azimuthal anchoring film, and an excellent liquid crystal display element and liquid crystal display element production method which employ the aforementioned method. Provided is a production method for a patterned zero azimuthal anchoring film that includes: a step for irradiating a specific region of a radical generating film with radiation to form a patterned radical generating film; and a step for bringing a liquid crystal composition containing a liquid crystal and a radical-polymerizable compound into contact with the patterned radical generating film and, while maintaining this state, applying sufficient energy to the liquid crystal composition to cause the polymerization of the radical-polymerizable compound. Also provided is a method for creating a functional film that includes a step for preparing a cell in which a liquid crystal composition containing a liquid crystal and a radical-polymerizable compound is sandwiched between a first substrate having a radical generating film and a second substrate not having a radical generating film, and a step for applying, to the cell, sufficient energy to cause the polymerization of the radical polymerizable compound.

Description

ゼロ面アンカリング膜の製造方法及び液晶表示素子Method for manufacturing zero plane anchoring film and liquid crystal display device
 本発明は、安価かつ複雑な工程を含まない手法にて、ゼロ面アンカリング膜を製造することが可能なポリマー安定化技術を応用した製造方法、及び、当該製造方法を用いる、更なる低電圧駆動を実現するための液晶表示素子およびその製造方法に関するものである。 The present invention provides a manufacturing method applying a polymer stabilization technique capable of manufacturing a zero-plane anchoring film by a method that is inexpensive and does not include a complicated process, and further reduces the voltage using the manufacturing method. The present invention relates to a liquid crystal display element for realizing driving and a method for manufacturing the same.
 近年、携帯電話 、コンピュータ及びテレビのディスプレイなどには液晶表示素子が広く用いられている。液晶表示素子は薄型、軽量、低消費電力などの特性を有しており、今後はVRや超高精細のディスプレイ等、更なるコンテンツへの応用が期待されている。液晶ディスプレイの表示方式には、TN(Twisted Nematic)、IPS(In-Plane Switching)、VA(Vertical Alignment)など様々な表示モードが提案されているが、すべてのモードには液晶を所望の配向状態に誘導する膜(液晶配向膜)が使用されている。 {Recently, liquid crystal display elements have been widely used in displays of mobile phones, computers and televisions. Liquid crystal display elements have characteristics such as thinness, light weight, and low power consumption, and are expected to be applied to further contents such as VR and ultra-high-definition displays in the future. Various display modes such as TN (Twisted Nematic), IPS (In-Plane Switching), and VA (Vertical Alignment) have been proposed as display modes of a liquid crystal display. In all modes, the liquid crystal is in a desired alignment state. (Liquid crystal alignment film) is used.
 特にタブレットPCやスマートフォン、スマートTV等のタッチパネルを具備した製品には、タッチしても表示が乱れにくいIPSモードが好まれており、近年ではコントラスト向上や視野角特性の向上の点でFFS(Frindge Field Switching)を用いた液晶表示素子や、光配向を用いた非接触技術を用いた技術が用いられるようになってきた。 In particular, products equipped with a touch panel such as a tablet PC, a smartphone, and a smart TV have preferred an IPS mode in which a display is not easily disturbed even when touched. In recent years, an FFS (Fringe) has been used in view of improvement in contrast and viewing angle characteristics. A liquid crystal display device using Field (Switching) and a technology using a non-contact technology using optical alignment have come to be used.
 しかしながら、FFSはIPSに比べ基板の製造コストが大きく、Vcomシフトと呼ばれるFFSモード特有の表示不良が発生する課題がある。また光配向に関しては、ラビング法に比べ、製造できる素子の大きさを大きくできる点や表示特性を大きく向上できるというメリットがあるが、光配向の原理上の課題(分解型であれば分解物由来の表示不良、異性化型であれば配向力不足による焼き付き等)が挙げられる。それらの課題を解決するために液晶表示素子メーカーや液晶配向膜メーカーは種々工夫を行っているのが現状である。 However, the FFS has a problem that the manufacturing cost of the substrate is higher than that of the IPS, and a display defect peculiar to the FFS mode called Vcom shift occurs. In addition, optical alignment has the advantage of being able to increase the size of a device that can be manufactured and greatly improving display characteristics as compared with the rubbing method. Display failure, isomerization type, burn-in due to insufficient alignment force, etc.). At present, liquid crystal display element makers and liquid crystal alignment film makers have made various efforts to solve these problems.
 一方で、近年ゼロ面アンカリングというものを利用したIPSモードが提案されており、この手法を用いることで従来のIPSモードに比べてコントラスト向上や大幅な低電圧駆動が可能になるという報告がされている(特許文献1参照)。 On the other hand, in recent years, an IPS mode using zero plane anchoring has been proposed, and it has been reported that the use of this method makes it possible to improve the contrast and drastically lower the voltage compared to the conventional IPS mode. (See Patent Document 1).
 具体的には、片側の基板には強いアンカリングエネルギーを有する液晶配向膜を用い、一方の横電界を発生させる方の電極を具備した基板側には一切液晶の配向規制力を有さなくなるような処理を施し、それらを用いてIPSモードの液晶表示素子を作る方法である。 Specifically, a liquid crystal alignment film having a strong anchoring energy is used for one of the substrates, and one of the substrates having an electrode for generating a lateral electric field has no liquid crystal alignment regulating force. This is a method for producing an IPS mode liquid crystal display element by using various processes.
 近年では、濃厚ポリマーブラシ等を用いてゼロ面状態を作り出し、セロ面アンカリングIPSモードの技術提案がなされている(参考文献2)。この技術によりコントラスト比の大幅な向上や駆動電圧の大幅な低下を実現している。
 一方で、応答速度特に電圧OFF時の応答速度が著しく低下する課題がある。これは駆動電圧が低くなるため、通常の駆動方式に比べ弱い電界で応答させることによる影響と、配向膜のアンカリング力が極めて小さいが故に、液晶の復元に時間がかかってしまうことに起因する。これを解決する方法として、画素電極上のみゼロアンカリングにする手法が提案されている(特許文献3)。これにより輝度の向上と応答速度の両立が可能になることが報告されている。
In recent years, a zero-plane state has been created using a thick polymer brush or the like, and a technical proposal has been made for a cello-plane anchoring IPS mode (Reference Document 2). With this technology, a great improvement in the contrast ratio and a great decrease in the driving voltage have been realized.
On the other hand, there is a problem that the response speed, particularly the response speed when the voltage is turned off, is significantly reduced. This is due to the fact that the drive voltage is low, the effect of responding with a weak electric field as compared with the normal drive method, and the fact that the anchoring force of the alignment film is extremely small, so that it takes time to restore the liquid crystal. . As a method for solving this, a method of performing zero anchoring only on the pixel electrode has been proposed (Patent Document 3). It has been reported that this makes it possible to improve both luminance and response speed.
特許第4053530号公報Japanese Patent No. 4053530 特開2013-231757号公報JP 2013-231775 A 特開2017-211566号公報JP-A-2017-212566
 IPS櫛歯電極の電極上のみゼロ面アンカリングにすることで駆動時の応答速度遅延が抑制される一方で、電極上のみゼロアンカリングの状態にするためには非常に細かな領域に異なる材料を塗り分けする等の難しい技術を用意する必要があり、実際の工業化には大きな課題となることが考えられる。
 このような技術的課題を解決できればパネルメーカーとしても大きなコストメリットとなり、バッテリーの消費抑制や画質の向上等にもメリットとなることが考えられる。
 本発明は、上記のような課題を解決するためになされたものであり、液晶配向膜の面内にゼロ面アンカリング部位とアンカリング力を具備した部位を作り出す方法、及び、アンカリングエネルギーを任意の状態にコントロールする方法、常温において、簡便且つ安価な方法で非接触配向と低駆動電圧化とOff時の応答速度も速くすることが同時に実現できる、横電界液晶表示素子およびその製造方法を提供することを目的とする。
By setting the zero plane anchoring only on the electrode of the IPS comb-teeth electrode, the response speed delay at the time of driving is suppressed. On the other hand, in order to achieve the zero anchoring state only on the electrode, a different material is used in a very fine region. It is necessary to prepare a difficult technique such as painting differently, and it is considered that it will be a big problem in actual industrialization.
If such a technical problem can be solved, it will be a great cost merit as a panel maker, and it will be a merit for suppressing battery consumption and improving image quality.
The present invention has been made in order to solve the above problems, and a method of creating a zero plane anchoring site and a site having an anchoring force in the plane of a liquid crystal alignment film, and an anchoring energy. A method for controlling an arbitrary state, a non-contact alignment, a low driving voltage, and a high response speed at the time of off at the same time at a room temperature by a simple and inexpensive method at the same time. The purpose is to provide.
 本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。 (4) The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found that the above-mentioned problems can be solved, and have completed the present invention having the following points.
 すなわち、本発明は以下を包含する。
[1] ラジカル発生膜に特定の領域に放射線を照射してパターニングされたラジカル発生膜を形成するステップ、及び液晶及びラジカル重合性化合物を含有する液晶組成物を、前記パターニングされたラジカル発生膜に接触させ、その状態を保持しつつ、前記ラジカル重合性化合物を重合反応させるのに十分なエネルギーを前記液晶組成物に与えるステップを含む、パターニングされたゼロ面アンカリング膜の製造方法。
[2] 前記ラジカル発生膜が一軸配向処理されたラジカル発生膜である[1]に記載の方法。
[3] エネルギーを与えるステップを無電界で行う、[1]又は[2]に記載の方法。
[4] 前記ラジカル発生膜が、ラジカル重合を誘発する有機基が固定化されて成る膜であることを特徴とする[1]~[3]のいずれか一項に記載の方法。
[5] 前記ラジカル発生膜が、ラジカルを発生する基を有する化合物と重合体との組成物を塗布、硬化して膜を形成することにより膜中に固定化させて得られることを特徴とする[1]~[3]のいずれか一項に記載の方法。
[6] 前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成ることを特徴とする[1]~[3]のいずれか一項に記載の方法。
[7] 前記ラジカル重合を誘発する有機基を含有する重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体であることを特徴とする[6]記載の方法。
[8] 前記ラジカル重合を誘発する有機基が下記構造[X-1]~[X-18]、[W]、[Y]及び[Z]のいずれかで表される有機基である[4]、[6]及び[7]のいずれか一項に記載の方法。
Figure JPOXMLDOC01-appb-C000011

(式[X-1]~[X-18]中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示し、S、Sはそれぞれ独立して-O-、-NR-、-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1~4のアルキル基を表す)
Figure JPOXMLDOC01-appb-C000012

(式[W]、[Y]、[Z]中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記の構造を表す。
Figure JPOXMLDOC01-appb-C000013

(式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素原子数1~4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
[9] 前記ラジカル重合を誘発する有機基を含有するジアミンが下記一般式(6)又は下記一般式(7)で表される構造を有するジアミンであることを特徴とする請求項7記載の方法。
Figure JPOXMLDOC01-appb-C000014

(式(6)中、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい;
は、下記式:
Figure JPOXMLDOC01-appb-C000015
から選択されるラジカル重合反応性基を表す。
(式[X-1]~[X-18]中、*は化合物分子のラジカル重合反応性基以外の部分との結合部位を示し、S、Sはそれぞれ独立して-O-、-NR-、-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1~4のアルキル基を表す))
Figure JPOXMLDOC01-appb-C000016

(式(7)中、T及びTは、それぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、
は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
Jは下記式のいずれかで表される有機基であり、
Figure JPOXMLDOC01-appb-C000017

(式[W]、[Y]、[Z]中、*はTとの結合箇所を表し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、Qは下記のいずれかの構造を表す。
Figure JPOXMLDOC01-appb-C000018

(式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素原子数1~4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。))
[10] 前記ラジカル重合性化合物のうち少なくとも一種が、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物である、[1]~[9]のいずれか一項に記載の方法。
[11] 前記ラジカル重合性化合物の重合反応性基が以下の構造から選ばれる、[10]に記載の方法。
Figure JPOXMLDOC01-appb-C000019

(式中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1~4のアルキル基を示す。)
[12] 前記液晶及びラジカル重合性化合物を含有する液晶組成物において、前記ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有する液晶組成物を用いることを特徴とする[1]~[11]のいずれか一項に記載の方法。
[13] ラジカル発生膜を有する第一基板と、ラジカル発生膜を有していてもよい第二基板とを用意するステップ、
 第一基板上のラジカル発生膜が第二基板に対向するようにセルを作成するステップ、および、
 第一基板と第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップを含み、
 [1]~[12]のいずれか一項に記載の方法を用いる液晶セルの製造方法。
[14] 前記第二基板がラジカル発生膜を有さない第二基板である[13]に記載の液晶セルの製造方法。
[15] 前記第二基板が、一軸配向性を有する液晶配向膜がコーティングされた基板であることを特徴とする[14]に記載の液晶セルの製造方法。
[16] 前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜であることを特徴とする[15]に記載の液晶セルの製造方法。
[17] 前記ラジカル発生膜を有する第一基板が櫛歯電極を有する基板である[13]~[16]のいずれか一項に記載の液晶セルの製造方法。
[18] 液晶及びラジカル重合性化合物を含有し、
 前記ラジカル重合性化合物のうち少なくとも一種が、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物であり、
 重合反応性基が以下の構造から選ばれる、液晶組成物。
Figure JPOXMLDOC01-appb-C000020

(式中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1~4のアルキル基を示す。)
[19] [1]~[17]のいずれか一項に記載の方法を用いて得られたゼロ面アンカリング状態を作り出す膜を用いる液晶表示素子の製造方法。
[20] [19]記載の方法を用いて得られた液晶表示素子。
[21] 第一基板又は第二基板が電極を有する、[20]に記載の液晶表示素子。
[22] 低電圧駆動横電界液晶表示素子である、[20]又は[21]に記載の液晶表示素子。
That is, the present invention includes the following.
[1] A step of irradiating a specific region with radiation to the radical generating film to form a patterned radical generating film, and applying a liquid crystal composition containing a liquid crystal and a radical polymerizable compound to the patterned radical generating film. A method for producing a patterned zero-plane anchoring film, comprising the step of: applying a sufficient energy to the liquid crystal composition to cause a polymerization reaction of the radically polymerizable compound while contacting and maintaining the state.
[2] The method according to [1], wherein the radical generating film is a uniaxially oriented radical generating film.
[3] The method according to [1] or [2], wherein the step of applying energy is performed without an electric field.
[4] The method according to any one of [1] to [3], wherein the radical generating film is a film in which an organic group that induces radical polymerization is fixed.
[5] The radical-generating film is obtained by applying and curing a composition of a compound having a radical-generating group and a polymer to form a film, thereby fixing the film in the film. The method according to any one of [1] to [3].
[6] The method according to any one of [1] to [3], wherein the radical generating film is made of a polymer containing an organic group that induces radical polymerization.
[7] The polymer containing an organic group that induces radical polymerization is selected from a polyimide precursor, polyimide, polyurea, and polyamide obtained using a diamine component containing a diamine containing an organic group that induces radical polymerization. The method according to [6], wherein the method is at least one polymer.
[8] The organic group that induces radical polymerization is an organic group represented by any of the following structures [X-1] to [X-18], [W], [Y] and [Z]. ], The method of any one of [6] and [7].
Figure JPOXMLDOC01-appb-C000011

(In the formulas [X-1] to [X-18], * represents a bonding site to a part other than the polymerizable unsaturated bond of the compound molecule, and S 1 and S 2 are each independently —O—, − R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms; R 1 and R 2 each independently represent a hydrogen atom; Represents a halogen atom or an alkyl group having 1 to 4 carbon atoms)
Figure JPOXMLDOC01-appb-C000012

(In the formulas [W], [Y] and [Z], * indicates a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule, and Ar has an organic group and / or a halogen atom as a substituent. Represents an aromatic hydrocarbon group selected from the group consisting of phenylene, naphthylene, and biphenylene, and R 9 and R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. When R 9 and R 10 are alkyl groups, they may be bonded to each other at the terminals to form a ring structure, and Q represents the following structure.
Figure JPOXMLDOC01-appb-C000013

(Wherein, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )
[9] The method according to claim 7, wherein the diamine having an organic group that induces radical polymerization is a diamine having a structure represented by the following general formula (6) or the following general formula (7). .
Figure JPOXMLDOC01-appb-C000014

(In the formula (6), R 6 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—,
R 7 represents a single bond or an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, wherein at least one of —CH 2 — or —CF 2 — in the alkylene group is independently May be replaced by a group selected from —CH = CH—, a divalent carbocyclic ring, and a divalent heterocyclic ring. Further, any of the following groups: —O—, —COO— , —OCO—, —NHCO—, —CONH—, or —NH— may be replaced by these groups provided that they are not adjacent to each other;
R 8 has the following formula:
Figure JPOXMLDOC01-appb-C000015
Represents a radical polymerization reactive group selected from
(In the formulas [X-1] to [X-18], * indicates a bonding site to a part other than the radical polymerization reactive group of the compound molecule, and S 1 and S 2 are each independently -O-,- R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms; R 1 and R 2 each independently represent a hydrogen atom; Represents a halogen atom or an alkyl group having 1 to 4 carbon atoms))
Figure JPOXMLDOC01-appb-C000016

(In the formula (7), T 1 and T 2 are each independently a single bond, —O—, —S—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, — CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—,
S 0 represents a single bond or an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, wherein at least one of —CH 2 — or —CF 2 — in the alkylene group is independently May be replaced by a group selected from —CH = CH—, a divalent carbocyclic ring, and a divalent heterocyclic ring. Further, any of the following groups: —O—, —COO— , —OCO—, —NHCO—, —CONH—, or —NH— may be replaced by these groups provided that they are not adjacent to each other;
J is an organic group represented by any of the following formulas,
Figure JPOXMLDOC01-appb-C000017

(Wherein [W], [Y], [Z] in which * represents a bonding site to T 2, Ar is may have an organic group and / or a halogen atom as a substituent phenylene, naphthylene, and biphenylene And R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Q represents any of the following: Represents the structure of
Figure JPOXMLDOC01-appb-C000018

(Wherein, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. ))
[10] Any one of [1] to [9], wherein at least one of the radically polymerizable compounds is a compound having compatibility with liquid crystal and having one polymerizable unsaturated bond in one molecule. The method described in.
[11] The method according to [10], wherein the polymerization reactive group of the radical polymerizable compound is selected from the following structures.
Figure JPOXMLDOC01-appb-C000019

(In the formula, * represents a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, -O-,- Represents a bonding group selected from NR c- , -S-, an ester bond and an amide bond, wherein R c is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
[12] In a liquid crystal composition containing the liquid crystal and the radical polymerizable compound, a liquid crystal composition containing a radical polymerizable compound having a Tg of 100 ° C. or less obtained by polymerizing the radical polymerizable compound. The method according to any one of [1] to [11], wherein
[13] a step of preparing a first substrate having a radical generating film and a second substrate which may have a radical generating film;
Creating a cell such that the radical generating film on the first substrate faces the second substrate, and
Filling a liquid crystal composition containing a liquid crystal and a radical polymerizable compound between the first substrate and the second substrate,
A method for manufacturing a liquid crystal cell using the method according to any one of [1] to [12].
[14] The method for manufacturing a liquid crystal cell according to [13], wherein the second substrate is a second substrate having no radical generating film.
[15] The method for producing a liquid crystal cell according to [14], wherein the second substrate is a substrate coated with a liquid crystal alignment film having uniaxial alignment.
[16] The method for producing a liquid crystal cell according to [15], wherein the liquid crystal alignment film having uniaxial alignment is a liquid crystal alignment film for horizontal alignment.
[17] The method for producing a liquid crystal cell according to any one of [13] to [16], wherein the first substrate having the radical generating film is a substrate having a comb electrode.
[18] containing a liquid crystal and a radical polymerizable compound,
At least one of the radically polymerizable compounds is compatible with a liquid crystal, a compound having one polymerizable unsaturated bond in one molecule,
A liquid crystal composition wherein the polymerization reactive group is selected from the following structures.
Figure JPOXMLDOC01-appb-C000020

(In the formula, * represents a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, -O-,- Represents a bonding group selected from NR c- , -S-, an ester bond and an amide bond, wherein R c is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
[19] A method for manufacturing a liquid crystal display element using a film that creates a zero-plane anchoring state obtained by using the method according to any one of [1] to [17].
[20] A liquid crystal display device obtained by using the method according to [19].
[21] The liquid crystal display element according to [20], wherein the first substrate or the second substrate has an electrode.
[22] The liquid crystal display element according to [20] or [21], which is a low-voltage driven lateral electric field liquid crystal display element.
 本発明によれば、ゼロ面アンカリング膜を工業的に、歩留まりよく作り出すことができる。本発明の方法を用いて、安価な原料や既存の製造法で特許文献1、2記載のゼロ面アンカリングIPSモード液晶表示素子に類似した液晶表示素子を簡便に製造することができる。また、本発明の製造方法で得られた液晶表示素子は、従来技術よりもOff時の液晶の応答速度が速く、且つ低駆動電圧、輝点なし、IPSモードではVcomシフトの抑制ができ、FFSモードでは更なる高精細化が可能、といった優れた特性を有する液晶表示素子を提供することができる。 According to the present invention, a zero-plane anchoring film can be industrially produced with a high yield. By using the method of the present invention, a liquid crystal display element similar to the zero-plane anchoring IPS mode liquid crystal display element described in Patent Documents 1 and 2 can be easily manufactured with inexpensive raw materials and existing manufacturing methods. Further, the liquid crystal display device obtained by the manufacturing method of the present invention has a higher response speed of the liquid crystal at the time of Off than the conventional technology, has a low driving voltage, has no bright spot, can suppress the Vcom shift in the IPS mode, and has a high FFS. In the mode, it is possible to provide a liquid crystal display device having excellent characteristics such as higher definition.
UV照射した領域とUV照射をしていない領域を有することにより、ゼロ面アンカリング領域とゼロ面アンカリングではない領域を有する膜を形成した基板を有するTNセルの図である。セル中、透明な領域はUV照射なし、不透明な領域はUV照射ありの領域である。FIG. 3 is a diagram of a TN cell having a substrate on which a film having a zero-plane anchoring region and a non-zero-plane anchoring region is formed by having a region irradiated with UV and a region not irradiated with UV. In the cell, a transparent region is a region without UV irradiation, and an opaque region is a region with UV irradiation.
 本発明は、基板上にアンカリング力を有するラジカル発生膜を形成させ、アンカリング力を維持したい領域にラジカル発生膜に放射線を照射する工程を経て、ラジカル発生膜に特定の重合性化合物を含有する液晶を接触させた状態でUVまたは熱により重合性化合物を重合させることを特徴とするゼロ面アンカリング領域と強アンカリング領域がパターニングされた膜の製造方法である。より具体的には、液晶及びラジカル重合性化合物を含有する液晶組成物を、放射線により処理されたラジカル発生膜を有する第一基板とラジカル発生膜を有していてもよい第二基板との間に有するセルを用意するステップ、及び前記セルに、前記ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるステップを含む、ゼロ面アンカリング領域と強アンカリング領域がパターニングされた膜の製造方法である。好ましくは、放射線照射処理されたラジカル発生膜を有する第一基板と、ラジカル発生膜を有さない第二基板とを用意するステップ、ラジカル発生膜が第二基板に対向するようにセルを作成するステップ、および、第一基板と第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップを含む液晶セルの製造方法である。例えば、第二基板がラジカル発生膜を有さないとともに、一軸配向処理された液晶配向膜を有する基盤であり、第一基板が櫛歯電極を有する基板である、低電圧駆動IPS液晶表示素子の作成方法である。 The present invention includes forming a radical-generating film having an anchoring force on a substrate, and irradiating the radical-generating film with radiation in a region where the anchoring force is desired to be maintained. A method for producing a film in which a zero-plane anchoring region and a strong anchoring region are patterned, wherein a polymerizable compound is polymerized by UV or heat in a state where the liquid crystal is brought into contact. More specifically, a liquid crystal composition containing a liquid crystal and a radical polymerizable compound is placed between a first substrate having a radical generating film treated with radiation and a second substrate which may have a radical generating film. Preparing a cell having a zero-plane anchoring region and a strong anchoring region patterned, comprising the steps of: preparing a cell having the same; and applying sufficient energy to the cell to cause a polymerization reaction of the radical polymerizable compound. Is the way. Preferably, a step of preparing a first substrate having a radical generating film subjected to a radiation irradiation treatment and a second substrate not having a radical generating film, creating a cell such that the radical generating film faces the second substrate. And a step of filling a liquid crystal composition containing a liquid crystal and a radical polymerizable compound between a first substrate and a second substrate. For example, a low-voltage-driven IPS liquid crystal display device in which the second substrate has no radical generating film, is a substrate having a liquid crystal alignment film that has been subjected to uniaxial alignment treatment, and the first substrate is a substrate that has a comb electrode. How to create.
 本発明において「ゼロ面アンカリング膜」とは、面内方向における液晶分子の配向規制力が全く無いか、あったとしても液晶同士の分子間力よりも弱く、この膜のみでは液晶分子をいずれの方向にも一軸配向させない膜をいう。また、このゼロ面アンカリング膜は、固体膜に限定されず固体表面を覆う液体膜も含まれる。通常、液晶表示素子には液晶分子の配向を規制する膜、すなわち液晶配向膜を対で用いて液晶を配向させるが、このゼロ面アンカリング膜と液晶配向膜を対で用いた場合も液晶を配向させることが出来る。これは、液晶配向膜の配向規制力が液晶分子同士の分子間力によって液晶層の厚み方向にも伝達し、結果としてゼロ面アンカリング膜に近接する液晶分子も配向するからである。よって液晶配向膜に水平配向用の液晶配向膜を用いた場合においては液晶セル内全体で水平配向状態を作り出すことが出来る。水平配向とは液晶分子の長軸が液晶配向膜面に対してほぼ平行に配列している状態をいい、数度程度の傾斜配向も水平配向の範疇に含まれる。 In the present invention, the “zero plane anchoring film” means that there is no or little if any force regulating the alignment of liquid crystal molecules in the in-plane direction. In which the film is not uniaxially oriented. The zero-plane anchoring film is not limited to a solid film, but includes a liquid film covering a solid surface. Normally, a liquid crystal display element aligns liquid crystals using a film that regulates the alignment of liquid crystal molecules, that is, a liquid crystal alignment film is used as a pair. It can be oriented. This is because the alignment regulating force of the liquid crystal alignment film is also transmitted in the thickness direction of the liquid crystal layer by the intermolecular force between the liquid crystal molecules, and as a result, the liquid crystal molecules near the zero-plane anchoring film are also aligned. Therefore, when a liquid crystal alignment film for horizontal alignment is used as the liquid crystal alignment film, a horizontal alignment state can be created in the entire liquid crystal cell. The horizontal alignment refers to a state in which the major axes of the liquid crystal molecules are arranged substantially parallel to the liquid crystal alignment film surface, and a tilt alignment of about several degrees is also included in the category of the horizontal alignment.
[ラジカル発生膜形成組成物]
 本発明に用いるラジカル発生膜を形成するためのラジカル発生膜形成組成物は、成分として、重合体を含有し、ラジカルを発生しうる基を含有する。その際、当該組成物は、ラジカルを発生しうる基が結合した重合体を含有するものであってもよいし、ラジカルを発生しうる基を有する化合物と、ベース樹脂となる重合体との組成物であってもよい。このような組成物を塗布、硬化して膜を形成することにより、ラジカルを発生しうる基が膜中に固定化されたラジカル発生膜を得ることができる。ラジカルを発生しうる基は、ラジカル重合を誘発する有機基であることが好ましい。
[Radical generation film forming composition]
The radical generating film forming composition for forming the radical generating film used in the present invention contains a polymer as a component and a group capable of generating a radical. At that time, the composition may include a polymer having a radical-generating group bonded thereto, or a composition of a compound having a radical-generating group and a polymer serving as a base resin. It may be a thing. By coating and curing such a composition to form a film, a radical-generating film having a group capable of generating radicals immobilized in the film can be obtained. The group capable of generating a radical is preferably an organic group that induces radical polymerization.
 そのような、ラジカル重合を誘発する有機基としては下記構造で表される[X-1]~[X-18]、[W]、[Y]及び[Z]のいずれかで表される有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000021

(式[X-1]~[X-18]中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示し、S、Sはそれぞれ独立して-O-、-NR-、-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1~4のアルキル基を表す)
Figure JPOXMLDOC01-appb-C000022

(式[W]、[Y]、[Z]中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記のいずれかの構造を表す。
Figure JPOXMLDOC01-appb-C000023

(式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素原子数1~4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
Such an organic group that induces radical polymerization is an organic group represented by any of [X-1] to [X-18], [W], [Y] and [Z] represented by the following structure. Groups.
Figure JPOXMLDOC01-appb-C000021

(In the formulas [X-1] to [X-18], * represents a bonding site to a part other than the polymerizable unsaturated bond of the compound molecule, and S 1 and S 2 are each independently —O—, − R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms; R 1 and R 2 each independently represent a hydrogen atom; Represents a halogen atom or an alkyl group having 1 to 4 carbon atoms)
Figure JPOXMLDOC01-appb-C000022

(In the formulas [W], [Y] and [Z], * indicates a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule, and Ar has an organic group and / or a halogen atom as a substituent. Represents an aromatic hydrocarbon group selected from the group consisting of phenylene, naphthylene, and biphenylene, and R 9 and R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. When R 9 and R 10 are alkyl groups, they may be bonded to each other at the terminals to form a ring structure, and Q represents any of the following structures.
Figure JPOXMLDOC01-appb-C000023

(Wherein, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )
 重合体としては、例えばポリイミド前駆体、及びポリイミド、ポリウレア、ポリアミド、ポリアクリレート、ポリメタクリレート、ポリオルガノシロキサンなどからなる群から選ばれる少なくとも1種の重合体が好ましい。 As the polymer, for example, a polyimide precursor and at least one polymer selected from the group consisting of polyimide, polyurea, polyamide, polyacrylate, polymethacrylate, polyorganosiloxane and the like are preferable.
 本発明に用いるラジカル発生膜を得るために、前記ラジカル重合を誘発する有機基を有する重合体を用いる場合、ラジカルを発生しうる基を有する重合体を得るには、モノマー成分として、メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基から選択される少なくとも一種を含む光反応性の側鎖を有するモノマーや、紫外線照射により分解し、ラジカルを発生する部位を側鎖に有するモノマーを用いて製造することが好ましい。一方で、ラジカルを発生するモノマーはそれ自体が自発的に重合をしてしまうなどの問題点が考えられ、不安定化合物となってしまうため、合成のしやすさの点ではラジカル発生部位を有するジアミンから誘導される重合体が好ましく、より好ましくはポリアミック酸やポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリウレア、ポリアミドなどが好ましい。 In order to obtain a radical-generating film used in the present invention, when using a polymer having an organic group that induces the radical polymerization, to obtain a polymer having a group capable of generating a radical, as a monomer component, a methacryl group, A monomer having a photoreactive side chain containing at least one selected from an acryl group, a vinyl group, an allyl group, a coumarin group, a styryl group and a cinnamoyl group, and a site which decomposes by ultraviolet irradiation to generate a radical. It is preferable to use the monomer having the above. On the other hand, monomers that generate radicals may have problems such as spontaneous polymerization themselves and become unstable compounds, so they have radical generating sites in terms of ease of synthesis. Preferred are polymers derived from diamines, and more preferred are polyimide precursors such as polyamic acids and polyamic acid esters, polyimides, polyureas, and polyamides.
 そのようなラジカル発生部位含有ジアミンは、具体的には、例えば、ラジカルを発生し重合可能な側鎖を有するジアミンであり、下記の一般式(6)で表されるジアミンを挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000024

(式(6)中、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい;
は、下記式:
Figure JPOXMLDOC01-appb-C000025

から選択されるラジカル重合反応性基を表す。
(式[X-1]~[X-18]中、*は化合物分子のラジカル重合反応性基以外の部分との結合部位を示し、S、Sはそれぞれ独立して-O-、-NR-、-S-を表し、Rは水素原子又は炭素原子数1~4のアルキル基を表し、R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1~4のアルキル基を表す)
Specifically, such a radical-generating site-containing diamine is, for example, a diamine having a polymerizable side chain that generates a radical and includes a diamine represented by the following general formula (6). However, the present invention is not limited to this.
Figure JPOXMLDOC01-appb-C000024

(In the formula (6), R 6 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—,
R 7 represents a single bond or an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, wherein at least one of —CH 2 — or —CF 2 — in the alkylene group is independently May be replaced by a group selected from —CH = CH—, a divalent carbocyclic ring, and a divalent heterocyclic ring. Further, any of the following groups: —O—, —COO— , —OCO—, —NHCO—, —CONH—, or —NH— may be replaced by these groups provided that they are not adjacent to each other;
R 8 is the following formula:
Figure JPOXMLDOC01-appb-C000025

Represents a radical polymerization reactive group selected from
(In the formulas [X-1] to [X-18], * indicates a bonding site to a part other than the radical polymerization reactive group of the compound molecule, and S 1 and S 2 are each independently -O-,- R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms; Represents an alkoxy group, and R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms)
 式(6)における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。 The bonding position of the two amino groups (—NH 2 ) in the formula (6) is not limited. Specifically, with respect to the bonding group in the side chain, the positions of 2, 3 on the benzene ring, the positions of 2, 4, the positions of 2, 5, the positions of 2, 6, the positions of 3, 4, and 3, 5 positions. Among them, the 2,4 position, the 2,5 position, or the 3,5 position is preferred from the viewpoint of reactivity when synthesizing the polyamic acid. Taking into account the ease of synthesizing the diamine, the positions of 2, 4 or 3, 5 are more preferable.
 メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基からなる群から選ばれる少なくとも1種を含む光反応性基を有するジアミンとしては、具体的には、以下のような化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000026

(式中、Jは単結合、-O-、-COO-、-NHCO-、又は-NH-より選ばれる結合基であり、Jは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表す。)
Examples of the diamine having a photoreactive group containing at least one selected from the group consisting of a methacryl group, an acrylic group, a vinyl group, an allyl group, a coumarin group, a styryl group, and a cinnamoyl group include the following. Compounds include, but are not limited to.
Figure JPOXMLDOC01-appb-C000026

(In the formula, J 1 is a single bond, —O—, —COO—, —NHCO—, or a bonding group selected from —NH—, and J 2 is a single bond or unsubstituted or substituted by a fluorine atom. Represents an alkylene group having 1 to 20 carbon atoms.)
 紫外線照射により分解し、ラジカルが発生する部位を側鎖として有するジアミンは、下記の一般式(7)で表されるジアミンを挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027

(式(7)中、T及びTは、それぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、
は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
Jは下記式のいずれかで表される有機基であり、
Figure JPOXMLDOC01-appb-C000028

(式[W]、[Y]、[Z]中、*はTとの結合箇所を表し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、Qは下記のいずれかの構造を表す。
Figure JPOXMLDOC01-appb-C000029

(式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素原子数1~4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。))
Examples of the diamine having a site where a radical is generated by being decomposed by irradiation with ultraviolet rays as a side chain include a diamine represented by the following general formula (7), but are not limited thereto.
Figure JPOXMLDOC01-appb-C000027

(In the formula (7), T 1 and T 2 are each independently a single bond, —O—, —S—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, — CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—,
S 0 represents a single bond or an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, wherein at least one of —CH 2 — or —CF 2 — in the alkylene group is independently May be replaced by a group selected from —CH = CH—, a divalent carbocyclic ring, and a divalent heterocyclic ring. Further, any of the following groups: —O—, —COO— , —OCO—, —NHCO—, —CONH—, or —NH— may be replaced by these groups provided that they are not adjacent to each other;
J is an organic group represented by any of the following formulas,
Figure JPOXMLDOC01-appb-C000028

(Wherein [W], [Y], [Z] in which * represents a bonding site to T 2, Ar is may have an organic group and / or a halogen atom as a substituent phenylene, naphthylene, and biphenylene And R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Q represents any of the following: Represents the structure of
Figure JPOXMLDOC01-appb-C000029

(Wherein, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. ))
 上記式(7)における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。 The bonding position of the two amino groups (—NH 2 ) in the above formula (7) is not limited. Specifically, with respect to the bonding group in the side chain, the positions of 2, 3 on the benzene ring, the positions of 2, 4, the positions of 2, 5, the positions of 2, 6, the positions of 3, 4, and 3, 5 positions. Among them, the 2,4 position, the 2,5 position, or the 3,5 position is preferred from the viewpoint of reactivity when synthesizing the polyamic acid. Taking into account the ease of synthesizing the diamine, the positions of 2, 4 or 3, 5 are more preferable.
 特に合成の容易さ、汎用性の高さ、特性などの点を鑑みて、下記式のいずれかで表される構造が最も好ましいが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000030

(式中、nは2~8の整数である。)
In particular, in view of ease of synthesis, high versatility, characteristics, and the like, a structure represented by any of the following formulas is most preferable, but not limited thereto.
Figure JPOXMLDOC01-appb-C000030

(In the formula, n is an integer of 2 to 8.)
 上記のジアミンは、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The above diamines may be used singly or in combination of two or more, depending on characteristics such as liquid crystal alignment when forming a radical generating film, sensitivity in polymerization reaction, voltage holding characteristics, and accumulated charge.
 このようなラジカル重合が発生する部位を有するジアミンは、ラジカル発生膜形成組成物に含有させる重合体の合成に用いるジアミン成分全体の5~50モル%となる量を用いることが好ましく、より好ましくは10~40モル%であり、特に好ましくは15~30モル%である。 The diamine having such a site where radical polymerization occurs is preferably used in an amount of 5 to 50 mol% of the entire diamine component used for synthesizing the polymer to be contained in the radical generating film-forming composition, more preferably. It is 10 to 40 mol%, particularly preferably 15 to 30 mol%.
 なお、本発明のラジカル発生膜に用いる重合体をジアミンから得る場合、本発明の効果を損わない限りにおいて、上記ラジカルが発生する部位を有するジアミン以外の、その他のジアミンをジアミン成分として併用することができる。具体的には、例えば、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、トランス-1,4-ビス(4-アミノフェニル)シクロヘキサン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン;ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン;1,3-ビス[2-(p-アミノフェニル)エチル]ウレア、1,3-ビス[2-(p-アミノフェニル)エチル]-1-ターシャリーブチルオキシカルボニルウレア等のウレア構造を有するジアミン;N-p-アミノフェニル-4-p-アミノフェニル(ターシャリーブチルオキシカルボニル)アミノメチルピペリジン等の含窒素不飽和複素環構造を有するジアミン;N-ターシャリーブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン等のN-Boc基を有するジアミン等が挙げられる。 When the polymer used for the radical generating film of the present invention is obtained from a diamine, other diamines other than the diamine having a site where the radical is generated are used as a diamine component as long as the effects of the present invention are not impaired. be able to. Specifically, for example, p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl- m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2, 4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'- Aminobiphenyl, 3,3′-difluoro-4,4′-biphenyl, 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 2,2'-diaminodiphenylmethane, 2, 3'-diaminodiphenylmethane, 4,4'-diaminodiphenylether, 3,3'-diaminodiphenylether, 3,4'-diaminodiphenylether, 2,2'-diaminodiphenylether, 2,3'-diaminodiphenylether, 4,4 ' -Sulfonyldianiline, 3,3'-sulfonyl Aniline, bis (4-aminophenyl) silane, bis (3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4′-thiodianiline, , 3'-thiodianiline, 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenylamine, 3,4'-diaminodiphenylamine, 2,2'-diaminodiphenylamine, 2,3'-diaminodiphenylamine, N-methyl ( 4,4'-diaminodiphenyl) amine, N-methyl (3,3'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) Amine, N-methyl (2,3'-diaminodiphenyl) amine, 4,4'-diamino Benzophenone, 3,3′-diaminobenzophenone, 3,4′-diaminobenzophenone, 1,4-diaminonaphthalene, 2,2′-diaminobenzophenone, 2,3′-diaminobenzophenone, 1,5-diaminonaphthalene, 1, 6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2 -Bis (4-aminophenyl) ethane, 1,2-bis (3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4-aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis ( , 5-Diethyl-4-aminophenyl) methane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene , 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4-aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 '-[1,4- [Phenylenebis (methylene)] dianiline, 4,4 '-[1,3-phenylenebis (methylene)] dianiline, 3,4'-[1,4-phenylenebis (methylene)] dianiline, 3,4 '-[ 1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4-phenylenebis (methylene)] dianiline, 3,3 ′-[1,3-phenylenebis (methylene)] di Nirin, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenylenebis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis (4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4 -Aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-aminophenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3- Aminophenyl) isophthalate, N, N '-(1,4-phenylene) bis (4-aminobenzami C), N, N '-(1,3-phenylene) bis (4-aminobenzamide), N, N'-(1,4-phenylene) bis (3-aminobenzamide), N, N '-(1 , 3-Phenylene) bis (3-aminobenzamide), N, N'-bis (4-aminophenyl) terephthalamide, N, N'-bis (3-aminophenyl) terephthalamide, N, N'-bis ( 4-aminophenyl) isophthalamide, N, N'-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-aminophenyl) anthracene, 4,4'-bis (4-aminophenoxy) diphenylsulfone 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) hexafluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2'-bis (4-aminophenyl) propane, 2,2'-bis (3-aminophenyl) propane, 2,2'-bis (3-amino-4-methylphenyl) propane, trans-1, 4-bis (4-aminophenyl) cyclohexane, 3,5-diaminobenzoic acid, 2,5-diaminobenzoic acid, bis (4-aminophenoxy) methane, 1,2-bis (4-aminophenoxy) ethane, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis (4-aminophenoxy) butane 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6-bis (4-aminophenoxy) Hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7-bis (3-aminophenoxy) heptane, 1,8-bis (4 -Aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3-aminophenoxy) nonane, 1,10-bis (4-aminophenoxy) decane, 1,10-bis (3-aminophenoxy) decane, 1,11-bis (4-aminophenoxy) undecane, 1,11-bis (3-amido) Aromatic diamines such as nophenoxy) undecane, 1,12-bis (4-aminophenoxy) dodecane and 1,12-bis (3-aminophenoxy) dodecane; bis (4-aminocyclohexyl) methane, bis (4-amino Alicyclic diamines such as -3-methylcyclohexyl) methane; 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, Aliphatic diamines such as 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, and 1,12-diaminododecane; 1,3-bis [2- (p- Aminophenyl) ethyl] urea, 1,3-bis [2- (p-aminophenyl) ethyl] -1-tert-butyl Diamine having a urea structure such as cyclocarbonyl urea; diamine having a nitrogen-containing unsaturated heterocyclic structure such as Np-aminophenyl-4-p-aminophenyl (tert-butyloxycarbonyl) aminomethylpiperidine; N-tersha And diamines having an N-Boc group such as riboxycarbonyl-N- (2- (4-aminophenyl) ethyl) -N- (4-aminobenzyl) amine.
 上記その他のジアミンは、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The above-mentioned other diamines may be used alone or in combination of two or more, depending on properties such as liquid crystal orientation when a radical generating film is formed, sensitivity in a polymerization reaction, voltage holding properties, and accumulated charge. .
 重合体がポリアミック酸である場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。具体的には、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、3,4-ジカルボキシ-1-シクロへキシルコハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸、テトラシクロ[6,2,1,1,0<2,7>]ドデカ-4,5,9,10-テトラカルボン酸、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸等のテトラカルボン酸の二無水物が挙げられる。 テ ト ラ In the synthesis where the polymer is a polyamic acid, the tetracarboxylic dianhydride to be reacted with the diamine component is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2,2 3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyl Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-di Carboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) Nyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2,6-bis (3 , 4-dicarboxyphenyl) pyridine, 3,3 ', 4,4'-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, 1,3-diphenyl-1,2,3,3 4-cyclobutanetetracarboxylic acid, oxydiphthaltetracarboxylic acid, 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexane Tetracarboxylic acid, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2-dimethyl-1,2,3,3 -Cyclobutanetetracarboxylic acid, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cycloheptanetetracarboxylic acid, 2,3,4,5-tetrahydrofurantetracarboxylic Acid, 3,4-dicarboxy-1-cyclohexylsuccinic acid, 2,3,5-tricarboxycyclopentylacetic acid, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic acid, Bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic acid, bicyclo [4,3,0] nonane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4 0] decane-2,4,7,9-tetracarboxylic acid, bicyclo [4,4,0] decane-2,4,8,10-tetracarboxylic acid, tricyclo [6.3.0.0 <2 6>] Undecane-3,5,9,11-tetracarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4 -Tetrahydrinaphthalene-1,2-dicarboxylic acid, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic acid, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexane-1,2-dicarboxylic acid, tetracyclo [6,2,1,1,0 <2,7>] dodeca-4,5,9,10-tetracarboxylic acid, 3 , 5,6-tricarboxynorbornane-2: 3,5: 6 dicarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid and other dianhydrides of tetracarboxylic acids.
 勿論、テトラカルボン酸二無水物も、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用してもよい。 Of course, tetracarboxylic dianhydride may be used alone or in combination of two or more depending on properties such as liquid crystal alignment when forming a radical generating film, sensitivity in polymerization reaction, voltage holding characteristics, and accumulated charge. .
 重合体がポリアミド酸エステルである場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸ジアルキルエステルの構造は特に限定されないが、その具体例を以下に挙げる。
 脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.0<2,5>]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.1<2,7>.0<3,6>.1<9,14>.0<10,13>]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボンジアルキルエステルなどが挙げられる。
In the synthesis where the polymer is a polyamic acid ester, the structure of the tetracarboxylic acid dialkyl ester to be reacted with the above diamine component is not particularly limited, but specific examples thereof are shown below.
Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,2 3,4-cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1 -Dialkyl cyclohexylsuccinate, 3,4-dicarboxy- 2,2,3,4-tetrahydro-1-naphthalene dialkyl succinate, 1,2,3,4-butanetetracarboxylic dialkyl ester, bicyclo [3,3,0] octane-2,4,6,8- Dialkyl tetracarboxylate, dialkyl 3,3 ', 4,4'-dicyclohexyltetracarboxylate, dialkyl 2,3,5-tricarboxycyclopentylacetic acid, cis-3,7-dibutylcycloocta-1,5- Diene-1,2,5,6-tetracarboxylic acid dialkyl ester, tricyclo [4.2.1.0 <2,5>] nonane-3,4,7,8-tetracarboxylic acid-3,4: 7 , 8-dialkyl ester, hexacyclo [6.6.0.1 <2,7>. 0 <3,6>. 1 <9, 14>. 0 <10,13>] hexadecane-4,5,11,12-tetracarboxylic acid-4,5: 11,12-dialkyl ester, 4- (2,5-dioxotetrahydrofuran-3-yl) -1, 2,3,4-tetrahydronaphthalene-1,2-dicarboxylic dialkyl ester and the like.
 芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。 Examples of the aromatic tetracarboxylic acid dialkyl ester include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4′-benzophenone tetracarboxylic acid dialkyl ester, Bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7 -Dialkylene naphthalenetetracarboxylate Tel and the like.
 重合体がポリウレアである場合の合成で、上記のジアミン成分と反応させるジイソシアネートに関しては、特に限定はせず、入手性等に応じて使用することができる。ジイソシアネートの具体的構造を以下に示す。
Figure JPOXMLDOC01-appb-C000031

式中R、Rは炭素数1~10の脂肪族炭化水素を表す。
In the synthesis where the polymer is a polyurea, the diisocyanate to be reacted with the above diamine component is not particularly limited, and can be used according to availability and the like. The specific structure of the diisocyanate is shown below.
Figure JPOXMLDOC01-appb-C000031

In the formula, R 2 and R 3 represent an aliphatic hydrocarbon having 1 to 10 carbon atoms.
 K-1~K-5に示す脂肪族ジイソシアネートは、反応性は劣るが溶媒溶解性を向上させるメリットがあり、K-6~K-7の示すような芳香族ジイソシアネートは反応性に富み耐熱性を向上させる効果があるが、溶媒溶解性を低下させる欠点が挙げられる。汎用性や特性面において特に好ましくはK-1、K-7、K-8、K-9、K-10が好ましく、電気特性の観点ではK-12、液晶配向性の観点ではK-13が特に好ましい。ジイソシアネートは1種以上を併用して使用することもでき、得たい特性に応じて種々適用するのが好ましい。
 また、一部のジイソシアネートを上記で説明したテトラカルボン酸二無水物に置き換えることもでき、ポリアミック酸とポリウレアの共重合体のような形で使用しても良く、化学イミド化によってポリイミドとポリウレアの共重合体のような形で使用しても良い。
Aliphatic diisocyanates represented by K-1 to K-5 are inferior in reactivity but have the merit of improving solvent solubility. Aromatic diisocyanates represented by K-6 to K-7 are rich in reactivity and heat resistance. Has the effect of improving the solubility, but has the disadvantage of lowering the solvent solubility. From the viewpoint of versatility and characteristics, K-1, K-7, K-8, K-9 and K-10 are particularly preferable, K-12 from the viewpoint of electric characteristics, and K-13 from the viewpoint of liquid crystal alignment. Particularly preferred. One or more diisocyanates can be used in combination, and it is preferable to use various types according to the properties to be obtained.
In addition, some diisocyanates can also be replaced with the tetracarboxylic dianhydride described above, and may be used in the form of a copolymer of a polyamic acid and a polyurea. It may be used in the form of a copolymer.
 重合体がポリアミドである場合の合成で、反応させるジカルボン酸の構造は特に限定されないが、あえて具体例を以下に挙げれば以下のとおりである。脂肪族ジカルボン酸の具体例として、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライイン酸、セバシン酸およびスベリン酸等のジカルボン酸を挙げることができる。 構造 In the synthesis where the polymer is a polyamide, the structure of the dicarboxylic acid to be reacted is not particularly limited, but specific examples are as follows. Specific examples of the aliphatic dicarboxylic acid include malonic acid, oxalic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2- Examples include dicarboxylic acids such as dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid and suberic acid.
 脂環式系のジカルボン酸としては、1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、3,4-ジフェニル-1,2-シクロブタンジカルボン酸、2,4-ジフェニル-1,3-シクロブタンジカルボン酸、1-シクロブテン-1,2-ジカルボン酸、1-シクロブテン-3,4-ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-(2-ノルボルネン)ジカルボン酸、ノルボルネン-2,3-ジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸、2,5-ジオキソ-1,4-ビシクロ[2.2.2]オクタンジカルボン酸、1,3-アダマンタンジカルボン酸、4,8-ジオキソ-1,3-アダマンタンジカルボン酸、2,6-スピロ[3.3]ヘプタンジカルボン酸、1,3-アダマンタン二酢酸、カンファー酸等を挙げることができる。 Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid. Acid, 3,4-diphenyl-1,2-cyclobutanedicarboxylic acid, 2,4-diphenyl-1,3-cyclobutanedicarboxylic acid, 1-cyclobutene-1,2-dicarboxylic acid, 1-cyclobutene-3,4-dicarboxylic acid Acid, 1,1-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,1-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexane Dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,4- (2-nor Lenene) dicarboxylic acid, norbornene-2,3-dicarboxylic acid, bicyclo [2.2.2] octane-1,4-dicarboxylic acid, bicyclo [2.2.2] octane-2,3-dicarboxylic acid, 2, 5-dioxo-1,4-bicyclo [2.2.2] octanedicarboxylic acid, 1,3-adamantanedicarboxylic acid, 4,8-dioxo-1,3-adamantanedicarboxylic acid, 2,6-spiro [3. 3] Heptanedicarboxylic acid, 1,3-adamantanediacetic acid, camphoric acid and the like.
 芳香族ジカルボン酸としては、o-フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、5-tert-ブチルイソフタル酸、5-アミノイソフタル酸、5-ヒドロキシイソフタル酸、2,5-ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、1,4-アントラキノンジカルボン酸、2,5-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、1,5-ビフェニレンジカルボン酸、4,4”-ターフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ビベンジルジカルボン酸、4,4’-スチルベンジカルボン酸、4,4’-トランジカルボン酸、4,4’-カルボニル二安息香酸、4,4’-スルホニル二安息香酸、4,4’-ジチオ二安息香酸、p-フェニレン二酢酸、3,3’-p-フェニレンジプロピオン酸、4-カルボキシ桂皮酸、p-フェニレンジアクリル酸、3,3’-[4,4’-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]二酪酸、(イソプロピリデンジ-p-フェニレンジオキシ)二酪酸、ビス(p-カルボキシフェニル)ジメチルシラン等のジカルボン酸を挙げることができる。 Examples of aromatic dicarboxylic acids include o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, and 2,5-dimethylterephthalic acid Acid, tetramethylterephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-anthracenedicarboxylic acid, 1,4 -Anthraquinone dicarboxylic acid, 2,5-biphenyl dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 1,5-biphenylenedicarboxylic acid, 4,4 "-terphenyl dicarboxylic acid, 4,4'-diphenyl methane dicarboxylic acid, 4,4'-diphenylethanedicarboxylic acid, 4,4'-diph Nylpropane dicarboxylic acid, 4,4'-diphenylhexafluoropropane dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-bibenzyl dicarboxylic acid, 4,4'-stilbene dicarboxylic acid, 4,4'- Tolandicarboxylic acid, 4,4'-carbonyldibenzoic acid, 4,4'-sulfonyldibenzoic acid, 4,4'-dithiodibenzoic acid, p-phenylene diacetate, 3,3'-p-phenylenedipropion Acid, 4-carboxycinnamic acid, p-phenylenediacrylic acid, 3,3 ′-[4,4 ′-(methylenedi-p-phenylene)] dipropionic acid, 4,4 ′-[4,4 ′-( Oxydi-p-phenylene)] dipropionic acid, 4,4 ′-[4,4 ′-(oxydi-p-phenylene)] dibutyric acid, (isopropylidenedi-p-phenylenedioate) Shi) Secondary acid, and bis (p- carboxyphenyl) dicarboxylic acids such as dimethyl silane.
 複素環を含むジカルボン酸としては、1,5-(9-オキソフルオレン)ジカルボン酸、3,4-フランジカルボン酸、4,5-チアゾールジカルボン酸、2-フェニル-4,5-チアゾールジカルボン酸、1,2,5-チアジアゾール-3,4-ジカルボン酸、1,2,5-オキサジアゾール-3,4-ジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸等を挙げることができる。 Examples of the dicarboxylic acid containing a heterocyclic ring include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazoledicarboxylic acid, 2-phenyl-4,5-thiazoledicarboxylic acid, 1,2,5-thiadiazole-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples thereof include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
 上記の各種ジカルボン酸は酸ジハライドあるいは無水の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、2,2-ビス(フェニル)プロパンジカルボン酸、4、4-ターフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-ピリジンジカルボン酸またはこれらの酸ジハライド等が好ましく用いられる。これらの化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。なお、本発明に使用するジカルボン酸類は、上記の例示化合物に限定されるものではない。 The above-mentioned various dicarboxylic acids may have an acid dihalide or an anhydrous structure. These dicarboxylic acids are preferably dicarboxylic acids capable of giving a polyamide having a linear structure, from the viewpoint of maintaining the orientation of liquid crystal molecules. Among them, terephthalic acid, isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, 4,4′-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propanedicarboxylic acid, 4,4-terphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2, 5-pyridinedicarboxylic acid or an acid dihalide thereof is preferably used. Some of these compounds have isomers, but may be a mixture containing them. Further, two or more compounds may be used in combination. In addition, the dicarboxylic acids used in the present invention are not limited to the above-mentioned exemplified compounds.
 原料であるジアミン(「ジアミン成分」とも記載する)と原料であるテトラカルボン酸二無水物(「テトラカルボン酸二無水物成分」とも記載する)、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる成分との反応により、ポリアミック酸、ポリアミック酸エステル、ポリウレア、ポリアミドを得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる一種以上の成分とを、有機溶媒中で反応させる方法である。 It is selected from diamine as a raw material (also described as “diamine component”), tetracarboxylic dianhydride as a raw material (also described as “tetracarboxylic dianhydride component”), tetracarboxylic diester, diisocyanate and dicarboxylic acid. In order to obtain a polyamic acid, a polyamic acid ester, a polyurea, or a polyamide by a reaction with the components, a known synthesis technique can be used. In general, a diamine component is reacted with one or more components selected from a tetracarboxylic dianhydride component, a tetracarboxylic diester, a diisocyanate, and a dicarboxylic acid in an organic solvent.
 ジアミン成分とテトラカルボン酸二無水物成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。 (4) The reaction between the diamine component and the tetracarboxylic dianhydride component is advantageous in that the reaction proceeds relatively easily in an organic solvent and no by-product is generated.
 上記反応に用いる有機溶媒としては、生成した重合体が溶解するものであれば特に限定されない。さらに、重合体が溶解しない有機溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。なお、有機溶媒中の水分は、重合反応を阻害し、さらには生成した重合体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 有機 The organic solvent used in the above reaction is not particularly limited as long as the produced polymer can be dissolved. Furthermore, even if it is an organic solvent in which the polymer is not dissolved, the organic solvent may be mixed with the above solvent as long as the produced polymer does not precipitate. Since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polymer, it is preferable to use a dehydrated organic solvent.
 有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、2-エチル-1-ヘキサノール等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。 Examples of the organic solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, -Pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ- Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve Acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene Glycol monobutyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene Glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3- Methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether , Dioxane, n-hexane, n-pentane, n-octane, diethyl ether Ter, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, 3 -Methyl ethyl ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, diglyme, 4-hydroxy-4-methyl- 2-pentanone, 2-ethyl-1-hexanol and the like. These organic solvents may be used alone or as a mixture.
 ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌し、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。 When reacting a diamine component and a tetracarboxylic dianhydride component in an organic solvent, a solution obtained by dispersing or dissolving the diamine component in the organic solvent is stirred, and the tetracarboxylic dianhydride component is allowed to stand as it is or the organic component is dissolved. Dispersing or dissolving in a solvent and adding the dicarboxylic acid to the solution obtained by dispersing or dissolving the tetracarboxylic dianhydride component in the organic solvent, and adding the diamine component to the solution. A method of alternately adding them and the like are mentioned, and any of these methods may be used. When the diamine component or the tetracarboxylic dianhydride component is composed of a plurality of types of compounds, they may be reacted in a mixed state in advance, may be individually reacted sequentially, or may be separately reacted in a low molecular weight. The polymers may be mixed and reacted to form a high molecular weight product.
 ジアミン成分とテトラカルボン酸二無水物成分とを反応させる際の温度は、任意の温度を選択することができ、例えば、-20~100℃、好ましくは-5~80℃の範囲である。また、反応は任意の濃度で行うことができ、例えば、反応液に対してジアミン成分とテトラカルボン酸二無水物成分との合計量が1~50質量%、好ましくは5~30質量%である。 The temperature at which the diamine component and the tetracarboxylic dianhydride component are reacted can be selected at any temperature, and is, for example, in the range of -20 to 100 ° C, preferably -5 to 80 ° C. The reaction can be performed at any concentration. For example, the total amount of the diamine component and the tetracarboxylic dianhydride component is 1 to 50% by mass, and preferably 5 to 30% by mass, based on the reaction solution. .
 上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて任意の値を選択することができる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。好ましい範囲としては、0.8~1.2である。 比率 In the above polymerization reaction, the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component can be selected arbitrarily according to the molecular weight of the polyamic acid to be obtained. As in the ordinary polycondensation reaction, the molecular weight of the generated polyamic acid increases as the molar ratio approaches 1.0. The preferred range is 0.8 to 1.2.
 本発明に用いられる重合体を合成する方法は、上記の手法に限定されず、ポリアミック酸を合成する場合は、一般的なポリアミック酸の合成方法と同様に、上記のテトラカルボン酸二無水物に代えて、対応する構造のテトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用い、公知の方法で反応させることでも対応するポリアミック酸を得ることができる。また、ポリウレアを合成する場合は、ジアミンとジイソシアネートとを反応させればよい。ポリアミック酸エステルまたはポリアミドを製造する際には、ジアミンと、テトラカルボン酸ジエステル及びジカルボン酸から選ばれる成分を、公知の縮合剤の存在下で、又は、公知の方法で酸ハライドに誘導したのちに、ジアミンと反応させればよい。 The method for synthesizing the polymer used in the present invention is not limited to the above method, and when synthesizing a polyamic acid, the same as the general method for synthesizing a polyamic acid, the above tetracarboxylic dianhydride is used. Alternatively, a corresponding polyamic acid can be obtained by reacting a tetracarboxylic acid derivative having a corresponding structure, such as tetracarboxylic acid or a tetracarboxylic acid dihalide, by a known method. When synthesizing polyurea, a diamine and a diisocyanate may be reacted. When producing a polyamic acid ester or polyamide, a diamine and a component selected from tetracarboxylic diester and dicarboxylic acid, in the presence of a known condensing agent, or after derivatizing to an acid halide by a known method And a diamine.
 上記したポリアミック酸をイミド化させてポリイミドとする方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。なお、ポリアミック酸からポリイミドへのイミド化率は、電圧保持率を高くできることから、30%以上であることが好ましく、30~99%であることがより好ましい。一方、白化特性の、すなわち、ワニス中での重合体の析出を抑制する観点から、70%以下が好ましい。両方の特性を加味すると、40~80%がより好ましい。 Examples of the method for imidizing the above-described polyamic acid into polyimide include thermal imidization in which a polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution. Incidentally, the imidization ratio from the polyamic acid to the polyimide is preferably 30% or more, and more preferably 30 to 99%, since the voltage holding ratio can be increased. On the other hand, from the viewpoint of whitening characteristics, that is, from the viewpoint of suppressing the precipitation of the polymer in the varnish, the content is preferably 70% or less. Taking both characteristics into account, 40 to 80% is more preferable.
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、通常100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。 The temperature at which the polyamic acid is thermally imidized in the solution is usually from 100 to 400 ° C., preferably from 120 to 250 ° C., and is preferably carried out while removing water generated by the imidization reaction out of the system.
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、通常-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミド酸基の通常0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の通常1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができるが、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間などを調節することにより制御することができる。 触媒 Catalytic imidation of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a solution of polyamic acid and stirring the mixture at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is usually 0.5 to 30 times, preferably 2 to 20 times, the molar amount of the amic acid group, and the amount of the acid anhydride is usually 1 to 50 times, preferably the molar amount of the amic acid group. It is 3 to 30 mole times. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like. Among them, pyridine is preferable because it has an appropriate basicity for causing the reaction to proceed. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, and pyromellitic anhydride. Among them, acetic anhydride is preferred because purification after the reaction is facilitated. The imidization rate by the catalytic imidization can be controlled by adjusting the amount of the catalyst, the reaction temperature, the reaction time, and the like.
 重合体の反応溶液から、生成した重合体を回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿生成に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。 場合 When recovering the produced polymer from the reaction solution of the polymer, the reaction solution may be put into a poor solvent to precipitate. Examples of the poor solvent used for precipitation generation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer that has been put into the poor solvent and precipitated can be collected by filtration and then dried at normal temperature or under reduced pressure at normal temperature or under normal pressure. In addition, by repeating the operation of re-dissolving the polymer recovered by precipitation in an organic solvent and recovering and recovering the precipitate 2 to 10 times, impurities in the polymer can be reduced. Examples of the poor solvent at this time include alcohols, ketones, and hydrocarbons. It is preferable to use three or more poor solvents selected from these, because the purification efficiency is further increased.
 また、前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る場合、本発明に用いるラジカル発生膜形成組成物は、ラジカル重合を誘発する有機基を含有する重合体以外の他の重合体を含有していてもよい。その際、重合体全成分中における、他の重合体の含有量は5~95質量%が好ましく、より好ましくは30~70質量%である。 Further, when the radical generating film is composed of a polymer containing an organic group that induces radical polymerization, the radical generating film forming composition used in the present invention is other than a polymer containing an organic group that induces radical polymerization. Other polymers may be contained. At that time, the content of the other polymer in all the components of the polymer is preferably 5 to 95% by mass, more preferably 30 to 70% by mass.
 ラジカル発生膜形成組成物が有する重合体の分子量は、ラジカル発生膜を塗布して得られるラジカル発生膜の強度、塗膜形成時の作業性、塗膜の均一性等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で、5,000~1,000,000が好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polymer of the radical-generating film-forming composition is determined by considering the strength of the radical-generating film obtained by applying the radical-generating film, the workability in forming the coating film, and the uniformity of the coating film. The weight average molecular weight measured by the Gel Permeation Chromatography method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
 本発明に用いるラジカル発生膜を、ラジカルを発生する基を有する化合物と重合体との組成物を塗布、硬化して膜を形成することにより膜中に固定化させて得る場合の重合体としては、上記の製造方法に準じて製造されるポリイミド前駆体、及びポリイミド、ポリウレア、ポリアミド、ポリアクリレート、ポリメタクリレートなどからなる群から選ばれる重合体であって、ラジカル重合が発生する部位を有するジアミンが、ラジカル発生膜形成組成物に含有させる重合体の合成に用いるジアミン成分全体の0モル%であるジアミン成分を用いて得られる少なくとも1種の重合体を用いてもよい。その際に添加するラジカルを発生する基を有する化合物としては、以下のものが挙げられる。 When the radical-generating film used in the present invention is obtained by coating and curing a composition of a compound having a radical-generating group and a polymer to form a film and immobilizing the polymer in the film, A polyimide precursor produced according to the above production method, and a polymer selected from the group consisting of polyimide, polyurea, polyamide, polyacrylate, and polymethacrylate, and a diamine having a site where radical polymerization occurs. Alternatively, at least one kind of polymer obtained by using a diamine component that is 0 mol% of the entire diamine component used for synthesizing the polymer to be contained in the radical generating film forming composition may be used. Examples of the compound having a group generating a radical to be added at that time include the following.
 熱でラジカルを発生する化合物としては、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類 (ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、および2,2’-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。 化合物 The compound that generates a radical by heat is a compound that generates a radical by heating to a temperature equal to or higher than the decomposition temperature. Examples of such a radical thermal polymerization initiator include ketone peroxides (eg, methyl ethyl ketone peroxide, cyclohexanone peroxide), diacyl peroxides (eg, acetyl peroxide, benzoyl peroxide), and hydroperoxides (eg, peroxides). Hydrogen, tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxides {(di-tert-butyl peroxide, dicumyl peroxide, dilauroyl peroxide, etc.), peroxyketals (dibutylperoxycyclohexane) Etc.), alkyl peresters (peroxyneodecanoic acid-tert-butyl ester, peroxypivalic acid-tert-butyl ester, peroxy-2-ethylcyclohexane) Sannic acid-tert-amyl ester, etc.), persulfates (potassium persulfate, sodium persulfate, ammonium persulfate, etc.), azo compounds (azobisisobutyronitrile, and 2,2′-di (2-hydroxyethyl) Azobisisobutyronitrile). One of these radical thermal polymerization initiators can be used alone, or two or more can be used in combination.
 光でラジカルを発生する化合物としては、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、又は2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。 The compound that generates a radical by light is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation. Examples of such radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, and 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenyl ketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2- Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-di (t-butylperoxycarbonyl) benzophenone 3,4,4'-tri (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4'-methoxystyryl) -4,6-bis (trichloromethyl) -S-triazine, 2- (3 ', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6-bis (Trichloromethyl) -s-triazine, 2- (2'-methoxystyryl) -4,6-bis (trichloromethyl ) -S-Triazine, 2- (4′-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [pN, N-di (ethoxycarbonylmethyl)]-2, 6-di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2′-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (4 ′ -Methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzothiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis (7-diethylamino Coumarin), 2- (o-chlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bi (2-chlorophenyl) -4,4 ', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4 4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'bis (2,4-dibromophenyl) -4,4', 5,5'-tetraphenyl-1,2 ' -Biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 3- (2-methyl-2 -Dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexylphenyl ketone, bis (5-2,4-cyclopentadi 1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone 3,3 ', 4,4'-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di (methoxycarbonyl) -4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4 '-Di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxycarbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone, -(3-methyl-3H-benzothiazol-2-ylidene) -1-naphthalen-2-yl-ethanone, or 2- (3-methyl-1 3- benzothiazol -2 (3H) - ylidene) -1- (2-benzoyl) ethanone, and the like. These compounds can be used alone or in combination of two or more.
 なお、前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る場合であっても、エネルギーを与えた際にラジカル重合を促進する目的で、上記のラジカルを発生する基を有する化合物を含有させてもよい。 In addition, even when the radical generating film is made of a polymer containing an organic group that induces radical polymerization, the radical-generating group is used for the purpose of promoting radical polymerization when energy is applied. May be contained.
 ラジカル発生膜形成組成物は、重合体成分、必要に応じてラジカル発生剤その他の含有成分を溶解又は分散する有機溶媒を含有することができる。そのような有機溶媒に特に限定はなく、例えば、上記のポリアミック酸の合成で例示したような有機溶媒を挙げることができる。中でも、N-メチル-2-ピロリドン、γ-ブチロラクトン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等は、溶解性の観点から好ましい。特に、N-メチル-2-ピロリドン又はN-エチル-2-ピロリドンが好ましいが、2種類以上の混合溶媒を用いてもよい。 (4) The radical-generating film-forming composition may contain an organic solvent that dissolves or disperses the polymer component and, if necessary, the radical generator and other components. Such an organic solvent is not particularly limited, and examples thereof include the organic solvents exemplified in the above synthesis of the polyamic acid. Among them, N-methyl-2-pyrrolidone, γ-butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like are soluble. It is preferable from the viewpoint of. Particularly, N-methyl-2-pyrrolidone or N-ethyl-2-pyrrolidone is preferable, but a mixed solvent of two or more kinds may be used.
 また、塗膜の均一性や平滑性を向上させる溶媒を、ラジカル発生膜形成組成物の含有成分の溶解性が高い有機溶媒に混合して使用すると好ましい。 Further, it is preferable to use a solvent that improves the uniformity and smoothness of the coating film mixed with an organic solvent having high solubility of the components contained in the radical generating film forming composition.
 塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、2-エチル-1-ヘキサノールなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、液晶配向剤に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。 Solvents for improving the uniformity and smoothness of the coating film include, for example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol Tall, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether , Dipropylene glycol monomer Diether glycol, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether , Dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, Sobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, acetic acid Ethyl, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1 -Phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2 -Ethoxypropoxy) propanol, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isoamyl lactate, 2-ethyl-1-hexanol and the like. These solvents may be used in combination of two or more. When these solvents are used, the content is preferably 5 to 80% by mass, more preferably 20 to 60% by mass of the total solvent contained in the liquid crystal aligning agent.
 ラジカル発生膜形成組成物には、上記以外の成分を含有させてもよい。その例としては、ラジカル発生膜形成組成物を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、ラジカル発生膜形成組成物と基板との密着性を向上させる化合物、ラジカル発生膜形成組成物の膜強度をさらに向上させる化合物などが挙げられる。 The radical generating film forming composition may contain components other than the above. Examples of the compound include a compound that improves the film thickness uniformity and surface smoothness when the radical generating film forming composition is applied, a compound that improves the adhesion between the radical generating film forming composition and the substrate, and a radical generating film formation. Compounds that further improve the film strength of the composition are included.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤を使用する場合、その使用割合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 化合物 Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), Megafac F171, F173, R-30 (manufactured by Dainippon Ink), Florad FC430, FC431 (manufactured by Sumitomo 3M) ), Asahigard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). When these surfactants are used, the use ratio thereof is preferably 0.01 to 2 parts by mass, more preferably 0 to 2 parts by mass, based on 100 parts by mass of the total amount of the polymer contained in the radical generating film forming composition. 0.01 to 1 part by mass.
 ラジカル発生膜形成組成物と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、3-(N-アリル-N-グリシジル)アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。 Specific examples of the compound that improves the adhesion between the radical-generating film-forming composition and the substrate include a functional silane-containing compound and an epoxy group-containing compound. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetra Glycidyl-2,4-hexanediol, N, N, N ', N'-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N' , N'-tetraglycidyl-4,4'-diaminodiphenylmethane, 3- (N-allyl-N-glycidyl) aminopropyltrimethoxysilane, 3- (N, N-diglycidyl) aminopropyltrimethoxysilane and the like. .
 また、ラジカル発生膜の膜強度をさらに上げるためには、2,2’-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。 In order to further increase the film strength of the radical generating film, a phenol compound such as 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol is added. Is also good. When these compounds are used, the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the total amount of the polymer contained in the radical-generating film-forming composition. It is.
 さらに、ラジカル発生膜形成組成物には、上記の他、本発明の効果が損なわれない範囲であれば、ラジカル発生膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。 Further, in addition to the above, the radical generating film-forming composition may be a dielectric or conductive material for changing the electrical properties such as the dielectric constant or conductivity of the radical generating film as long as the effects of the present invention are not impaired. Substances may be added.
[ラジカル発生膜]
 本発明のラジカル発生膜は、上記ラジカル発生膜形成組成物を用いて得られる。例えば、本発明に用いるラジカル発生膜形成組成物を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのままラジカル発生膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子にUVを照射することも可能である。
[Radical generation film]
The radical generating film of the present invention is obtained by using the above-mentioned composition for forming a radical generating film. For example, a cured film obtained by applying the radical-generating film forming composition used in the present invention to a substrate, followed by drying and baking can be used as a radical-generating film as it is. The cured film may be rubbed, irradiated with polarized light or light of a specific wavelength, treated with an ion beam, or irradiated with UV on a liquid crystal display element after filling the liquid crystal as an alignment film for PSA. Is also possible.
 ラジカル発生膜形成組成物を塗布する基板としては、透明性の高い基板であれば特に限定されないが、基板上に液晶を駆動するための透明電極が形成された基板が好ましい。
 具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。
The substrate on which the radical generating film-forming composition is applied is not particularly limited as long as it is a substrate having high transparency, but a substrate on which a transparent electrode for driving liquid crystal is formed is preferred.
Specific examples include a glass plate, polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, A substrate on which a transparent electrode is formed, such as a plastic plate of acetylcellulose, diacetylcellulose, acetate butyrate cellulose, or the like can be given.
 IPS方式の液晶表示素子に使用できる基板には、標準的なIPS櫛歯電極やPSAフィッシュボーン電極といった電極パターンやMVAのような突起パターンでも使用できる。
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 透過型の液晶表示素子を意図している場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子を意図している場合では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
As a substrate that can be used for an IPS mode liquid crystal display element, an electrode pattern such as a standard IPS comb electrode or a PSA fishbone electrode, or a projection pattern such as MVA can be used.
In the case of a high-performance element such as a TFT element, an element such as a transistor formed between an electrode for driving liquid crystal and a substrate is used.
When a transmissive liquid crystal display element is intended, a substrate as described above is generally used.However, when a reflective liquid crystal display element is intended, silicon is used if only one substrate is used. An opaque substrate such as a wafer can also be used. At this time, a material such as aluminum which reflects light can be used for the electrode formed on the substrate.
 ラジカル発生膜形成組成物の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。 Examples of the method of applying the radical-generating film forming composition include a spin coating method, a printing method, an ink jet method, a spray method, and a roll coating method. From the viewpoint of productivity, the transfer printing method is widely used industrially. Therefore, it is suitably used in the present invention.
 ラジカル発生膜形成組成物を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃~150℃、好ましくは60℃~100℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。 The drying step after applying the radical-generating film-forming composition is not necessarily required, but when the time from application to baking is not constant for each substrate, or when baking is not performed immediately after application, drying is performed. It is preferable to include a step. This drying may be performed as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by the transfer of the substrate or the like, and the drying means is not particularly limited. For example, a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
 上記の方法でラジカル発生膜形成組成物を塗布して形成される塗膜は、焼成して硬化膜とすることができる。その際、焼成温度は、通常100℃~350℃の任意の温度で行うことができるが、好ましくは140℃~300℃であり、より好ましくは150℃~230℃、更に好ましくは160℃~220℃である。焼成時間は通常5分~240分の任意の時間で焼成を行うことができる。好ましくは10~90分であり、より好ましくは20~90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環オーブン、IRオーブン、ベルト炉などを用いることができる。 塗膜 A coating film formed by applying the radical-generating film-forming composition by the above method can be fired to form a cured film. At that time, the calcination temperature can be usually performed at any temperature of 100 ° C. to 350 ° C., preferably 140 ° C. to 300 ° C., more preferably 150 ° C. to 230 ° C., and still more preferably 160 ° C. to 220 ° C. ° C. The calcination time can be usually from 5 minutes to 240 minutes. Preferably it is 10 to 90 minutes, more preferably 20 to 90 minutes. The heating can be performed by a generally known method, for example, a hot plate, a hot air circulation oven, an IR oven, a belt furnace, or the like.
 この硬化膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が得られ易いので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。 (4) The thickness of the cured film can be selected as necessary, but is preferably 5 nm or more, more preferably 10 nm or more, because the reliability of the liquid crystal display element is easily obtained. When the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, it is preferable because the power consumption of the liquid crystal display element does not become extremely large.
 以上のようにしてラジカル発生膜を有する第一基板を得ることができるが、当該ラジカル発生膜に一軸配向処理を施すことができる。一軸配向処理を行う方法としては、光配向法、斜方蒸着法、ラビング、磁場による一軸配向処理等が挙げられる。 第一 The first substrate having the radical generating film can be obtained as described above, and the radical generating film can be subjected to a uniaxial orientation treatment. Examples of the method for performing the uniaxial orientation treatment include a photo-alignment method, an oblique deposition method, rubbing, and a uniaxial orientation treatment using a magnetic field.
 一方向にラビング処理することによる配向処理を行う場合には、例えば、ラビング布が巻きつけられたラビングローラーを回転させながら、ラビング布と膜とが接触するように基板を移動させる。櫛歯電極が形成されている本発明の第一基板の場合、液晶の電気的物性によって方向が選択されるが、正の誘電異方性を有する液晶を用いる場合においてはラビング方向は櫛歯電極の延びている方向とほぼ同一の方向とすることが好ましい。 In the case of performing the alignment treatment by performing the rubbing treatment in one direction, for example, the substrate is moved so that the rubbing cloth and the film are in contact with each other while rotating a rubbing roller around which the rubbing cloth is wound. In the case of the first substrate of the present invention in which a comb-shaped electrode is formed, the direction is selected depending on the electrical properties of the liquid crystal. However, when a liquid crystal having positive dielectric anisotropy is used, the rubbing direction is set to the comb-shaped electrode. Is preferably substantially the same as the direction in which
 ゼロアンカリング部と強アンカリング部を作り出す工程として、フォトマスク等を介して任意のパターンにて放射線を照射する方法が挙げられる。これは予めラジカル発生膜に放射線を照射することによりラジカル発生部位を消失させ、ゼロアンカリング状態にならないようにする工程である。この工程を行う際の放射線として偏光又は特定の波長の光や、イオンビーム等が挙げられる。光ラジカル発生部位に該当する部分の吸光度が最も高くなる波長の光を照射することが特に好ましい。 As a process for producing the zero anchoring portion and the strong anchoring portion, there is a method of irradiating radiation in an arbitrary pattern via a photomask or the like. This is a step of irradiating the radical generating film in advance with radiation to eliminate the radical generating site and prevent a zero anchoring state. Radiation for performing this step includes polarized light or light of a specific wavelength, an ion beam, and the like. It is particularly preferable to irradiate light having a wavelength at which the absorbance of the portion corresponding to the photoradical generation site is the highest.
 本発明の第二基板は、ラジカル発生膜を有さないほかは、上記第一基板と同様である。従来から知られている液晶配向膜を有する基板とすることが好ましい。 第二 The second substrate of the present invention is the same as the first substrate except that it does not have a radical generating film. It is preferable to use a substrate having a conventionally known liquid crystal alignment film.
<液晶セル>
 本発明の液晶セルは、上記の方法により、基板にラジカル発生膜を形成した後、当該ラジカル発生膜を有する基板(第一基板)と、公知の液晶配向膜を有する基板(第二基板)とを、ラジカル発生膜と液晶配向膜とが向かい合うように配置し、スペーサーを挟んで、シール剤で固定し、液晶及びラジカル重合性化合物を含有する液晶組成物を注入して封止することにより得られる。その際、用いるスペーサーの大きさは通常1~30μmであるが、好ましくは2~10μmである。
 液晶及びラジカル重合性化合物を含有する液晶組成物を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液晶と重合性化合物を含む混合物を注入する真空法、液晶と重合性化合物とを含む混合物を滴下した後に封止を行う滴下法などを挙げることができる。
<Liquid crystal cell>
The liquid crystal cell of the present invention comprises, after forming a radical generating film on a substrate by the above method, a substrate having the radical generating film (first substrate) and a substrate having a known liquid crystal alignment film (second substrate). Are arranged so that the radical generating film and the liquid crystal alignment film face each other, fixed with a sealant across a spacer, and injected and sealed with a liquid crystal composition containing a liquid crystal and a radical polymerizable compound. Can be At this time, the size of the spacer used is usually 1 to 30 μm, preferably 2 to 10 μm.
The method of injecting the liquid crystal composition containing the liquid crystal and the radical polymerizable compound is not particularly limited, and a vacuum method of injecting a mixture containing the liquid crystal and the polymerizable compound after reducing the pressure in the manufactured liquid crystal cell, Dropping method in which sealing is performed after dropping a mixture containing a reactive compound and the like.
<液晶及びラジカル重合性化合物を含有する液晶組成物>
 本発明の液晶表示素子の作成において、液晶とともに用いる重合性化合物は、ラジカル重合性化合物であれば特に限定されないが、例えば、一分子中に一個又は二個以上の重合性不飽和結合を有する化合物である。好ましくは一分子中に一個の重合性不飽和結合を有する化合物である(以下、「一官能の重合反応性基を有する化合物」、「単官能の重合反応性基を有する化合物」等と称する場合がある)。重合性不飽和結合は、好ましくはラジカル重合性不飽和結合であり、例えばビニル結合である。
<Liquid crystal composition containing liquid crystal and radical polymerizable compound>
In the production of the liquid crystal display device of the present invention, the polymerizable compound used together with the liquid crystal is not particularly limited as long as it is a radical polymerizable compound, for example, a compound having one or two or more polymerizable unsaturated bonds in one molecule It is. Preferred are compounds having one polymerizable unsaturated bond in one molecule (hereinafter referred to as "compounds having a monofunctional polymerization reactive group", "compounds having a monofunctional polymerization reactive group", etc.) There). The polymerizable unsaturated bond is preferably a radical polymerizable unsaturated bond, for example, a vinyl bond.
 前記ラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。 At least one of the radically polymerizable compounds is compatible with a liquid crystal, and is preferably a compound having one polymerizable unsaturated bond in one molecule, that is, a compound having a monofunctional radical polymerizable group. .
 そして、前記ラジカル重合性化合物の重合反応性基としては以下の構造から選ばれる重合性基が好ましい。
Figure JPOXMLDOC01-appb-C000032

(式中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1~4のアルキル基を示す。)
The polymerization reactive group of the radical polymerizable compound is preferably a polymerizable group selected from the following structures.
Figure JPOXMLDOC01-appb-C000032

(In the formula, * represents a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, -O-,- Represents a bonding group selected from NR c- , -S-, an ester bond and an amide bond, wherein R c is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
 また、前記液晶及びラジカル重合性化合物を含有する液晶組成物において、前記ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有することが好ましい。 In the liquid crystal composition containing the liquid crystal and the radical polymerizable compound, it is preferable that the polymer obtained by polymerizing the radical polymerizable compound contains a radical polymerizable compound having a Tg of 100 ° C. or less.
 単官能のラジカル重合反応性基を有する化合物は、有機ラジカルの存在下でラジカル重合を行うことが可能な不飽和結合を有するものであり、例えば、t-ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、ラウリルメタクリレート、n-オクチルメタクリレートなどのメタクリレート系モノマー;t-ブチルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、ベンジルアクリレート、ラウリルアクリレート、n-オクチルアクリレートなどのアクリレート系モノマー;スチレン、スチレン誘導体(例えば、o-、m-、p-メトキシスチレン、o-、m-、p-t-ブトキシスチレン、o-、m-、p-クロロメチルスチレンなど)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酢酸ビニルなど)、ビニルケトン類(例えば、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンなど)、N-ビニル化合物(例えば、N-ビニルピロリドン、N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドールなど)、(メタ)アクリル酸誘導体(例えば、アクリロニトリル、メタアクリロニトリル、アクリルアミド、イソプロピルアクリルアミド、メタクリルアミドなど)、ハロゲン化ビニル類(例えば、塩化ビニル、塩化ビニリデン、テトラクロロエチレン、ヘキサクロロプレン、フッ化ビニルなど)などのビニルモノマーが挙げられるが、これらに限定はしない。これらの各種ラジカル重合性モノマーは、単独で使用しても、2種以上を併用してもよい。また、これらは、液晶と相溶性を有することが好ましい。 The compound having a monofunctional radical polymerization reactive group has an unsaturated bond capable of undergoing radical polymerization in the presence of an organic radical. Examples thereof include t-butyl methacrylate, hexyl methacrylate, and 2-ethylhexyl methacrylate. Methacrylate monomers such as methacrylate, nonyl methacrylate, lauryl methacrylate, and n-octyl methacrylate; acrylate monomers such as t-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, benzyl acrylate, lauryl acrylate, and n-octyl acrylate; Styrene derivatives (eg, o-, m-, p-methoxystyrene, o-, m-, pt-butoxystyrene, o-, m-, p-chloromethylstyrene, etc.). ), Vinyl esters (eg, vinyl acetate, vinyl propionate, vinyl benzoate, vinyl acetate, etc.), vinyl ketones (eg, vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone, etc.), N-vinyl compounds (eg, , N-vinylpyrrolidone, N-vinylpyrrole, N-vinylcarbazole, N-vinylindole, etc.), (meth) acrylic acid derivatives (eg, acrylonitrile, methacrylonitrile, acrylamide, isopropylacrylamide, methacrylamide, etc.), vinyl halide (Eg, vinyl chloride, vinylidene chloride, tetrachloroethylene, hexachloroprene, vinyl fluoride, etc.), but is not limited thereto. These various radically polymerizable monomers may be used alone or in combination of two or more. Further, it is preferable that these have compatibility with the liquid crystal.
 また、前記ラジカル重合性化合物としては、下記式(1)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000033

式(1)中、RおよびRはそれぞれ独立に炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合、アミド結合から選ばれる結合基を表し、Rは水素原子、炭素数1~4のアルキル基を示す。
Further, as the radical polymerizable compound, a compound represented by the following formula (1) is also preferable.
Figure JPOXMLDOC01-appb-C000033

In the formula (1), R a and R b each independently represent a linear alkyl group having 2 to 8 carbon atoms, and E represents a single bond, —O—, —NR c —, —S—, an ester bond, an amide R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 前記ラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。 At least one of the radically polymerizable compounds is compatible with a liquid crystal, and is preferably a compound having one polymerizable unsaturated bond in one molecule, that is, a compound having a monofunctional radical polymerizable group. .
 そして、前記式(1)で表されるラジカル重合性化合物としては式中Eがエステル結合(-C(=O)-O-または-O-C(=O)-であらわされる結合)のものが合成のしやすさや液晶への相溶性、重合反応性の観点で好ましく、具体的には以下のような構造を有する化合物が好ましいが、特に限定はしない。
Figure JPOXMLDOC01-appb-C000034

式(1-1)及び(1-2)中、RaおよびRbはそれぞれ独立に炭素数2~8の直鎖アルキル基を表す。
The radical polymerizable compound represented by the formula (1) is a compound in which E is an ester bond (a bond represented by —C (= O) —O— or —OC (= O) —). Is preferred from the viewpoint of easiness of synthesis, compatibility with liquid crystal, and polymerization reactivity. Specifically, compounds having the following structures are preferred, but there is no particular limitation.
Figure JPOXMLDOC01-appb-C000034

In the formulas (1-1) and (1-2), Ra and Rb each independently represent a linear alkyl group having 2 to 8 carbon atoms.
 また、前記液晶及びラジカル重合性化合物を含有する液晶組成物において、前記ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有することが好ましい。 In the liquid crystal composition containing the liquid crystal and the radical polymerizable compound, it is preferable that the polymer obtained by polymerizing the radical polymerizable compound contains a radical polymerizable compound having a Tg of 100 ° C. or less.
 これらの各種ラジカル重合性モノマーは、単独で使用しても、2種以上を併用してもよい。また、これらは、液晶と相溶性を有することが好ましい。 These radically polymerizable monomers may be used alone or in combination of two or more. Further, it is preferable that these have compatibility with the liquid crystal.
 液晶組成物中のラジカル重合性化合物の含有量は、液晶とラジカル重合性化合物との合計質量に対して、好ましくは3質量%以上、より好ましくは5質量%以上であり、好ましくは50質量%以下、より好ましくは20質量%以下である。 The content of the radical polymerizable compound in the liquid crystal composition is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 50% by mass, based on the total mass of the liquid crystal and the radical polymerizable compound. Or less, more preferably 20% by mass or less.
 前記ラジカル重合性化合物を重合させて得られるポリマーは、そのTgを100℃以下とすることが好ましい。 ポ リ マ ー The polymer obtained by polymerizing the radical polymerizable compound preferably has a Tg of 100 ° C or lower.
 なお、液晶とは一般に固体と液体の両方の性質を示す状態にある物質をいい、代表的な液晶相としてネマティック液晶とスメクティック液晶があるが、本発明において使用できる液晶は特に限定されない。一例を挙げれば4-ペンチル-4’-シアノビフェニルである。 液晶 Note that the liquid crystal generally refers to a substance exhibiting properties of both a solid and a liquid. Representative liquid crystal phases include a nematic liquid crystal and a smectic liquid crystal, but the liquid crystal that can be used in the present invention is not particularly limited. An example is 4-pentyl-4'-cyanobiphenyl.
 次に、この液晶とラジカル重合性化合物とを含む混合物(液晶組成物)が導入された液晶セルに当該ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与える。これは、例えば、熱を加えるか、UV照射することにより実施することができ、当該ラジカル重合性化合物がその場で重合されることで、所望の特性が発現する。中でもUVの使用は配向性のパターニングが可能となり、更に短時間で重合反応させられる点で、UV照射が好ましい。 Next, sufficient energy is applied to a liquid crystal cell into which a mixture (liquid crystal composition) containing the liquid crystal and the radical polymerizable compound has been introduced to cause the radical polymerizable compound to undergo a polymerization reaction. This can be carried out, for example, by applying heat or UV irradiation, and the desired properties are exhibited by the radical polymerizable compound being polymerized in situ. Above all, UV irradiation is preferable because UV irradiation enables patterning of orientation and allows a polymerization reaction to be performed in a shorter time.
 またUV照射の際、加熱を行ってもよい。UV照射を行う際の加熱温度は、導入された液晶が液晶性を発現する温度範囲が好ましく、通常40℃以上であり、液晶の等方相に変わる温度未満での加熱が好ましい。 In addition, heating may be performed at the time of UV irradiation. The heating temperature at the time of performing the UV irradiation is preferably a temperature range in which the introduced liquid crystal exhibits liquid crystallinity, and is usually 40 ° C. or higher, and is preferably heating at a temperature lower than the temperature at which the liquid crystal changes to an isotropic phase.
 ここで、UV照射する場合におけるUV照射波長は、反応する重合性化合物の反応量子収率の最も良い波長を選択することが好ましく、UVの照射量は、通常0.01~30Jであるが、好ましくは、10J以下であり、UV照射量が少ないほうが、液晶ディスプレイを構成する部材の破壊からなる信頼性低下を抑制でき、かつUV照射時間を減らせることで製造上のタクトが向上するので好適である。 Here, as the UV irradiation wavelength in the case of UV irradiation, it is preferable to select the wavelength having the best reaction quantum yield of the polymerizable compound to be reacted, and the irradiation amount of UV is usually 0.01 to 30 J. Preferably, the UV irradiation amount is 10 J or less, and the smaller the UV irradiation amount, the more the reduction in the reliability due to the destruction of the members constituting the liquid crystal display can be suppressed, and the shorter the UV irradiation time improves the manufacturing tact, which is preferable. It is.
 また、UV照射ではなく、加熱のみで重合させる場合の加熱は、重合性化合物の反応する温度であって、液晶の分解温度未満となる温度範囲で行うことが好ましい。具体的には、例えば、100℃以上150℃以下である。 加熱 In addition, in the case of performing polymerization only by heating, not by UV irradiation, the heating is preferably performed at a temperature at which the polymerizable compound reacts and is lower than the decomposition temperature of the liquid crystal. Specifically, the temperature is, for example, 100 ° C. or more and 150 ° C. or less.
 ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるとき、電圧を印加しない、無電界状態であることが好ましい。 (4) It is preferable that no voltage is applied and no electric field is applied when energy sufficient to cause a polymerization reaction of the radical polymerizable compound is given.
<液晶表示素子>
 このようにして得られた液晶セルを用いて液晶表示素子を作製することができる。
例えば、この液晶セルに必要に応じて反射電極、透明電極、λ/4板、偏光膜、カラーフィルター層等を常法に従って設けることにより反射型液晶表示素子とすることができる。
 また、この液晶セルに必要に応じてバックライト、偏光板、λ/4板、透明電極、偏光膜、カラーフィルター層等を常法に従って設けることにより透過型液晶表示素子とすることができる。
<Liquid crystal display device>
A liquid crystal display element can be manufactured using the liquid crystal cell thus obtained.
For example, a reflection type liquid crystal display device can be obtained by providing a reflection electrode, a transparent electrode, a λ / 4 plate, a polarizing film, a color filter layer, and the like in this liquid crystal cell as necessary.
Further, by providing a backlight, a polarizing plate, a λ / 4 plate, a transparent electrode, a polarizing film, a color filter layer and the like according to a conventional method in this liquid crystal cell as required, a transmission type liquid crystal display device can be obtained.
 本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。ポリマーの重合および膜形成組成物の調製で使用した化合物の略号、及び特性評価の方法は以下のとおりである。 The present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. The abbreviations of the compounds used in the polymerization of the polymer and the preparation of the film-forming composition, and the methods for evaluating the properties are as follows.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
NMP:N-メチル-2-ピロリドン、
GBL:γ―ブチルラクトン、
BCS:ブチルセロソルブ
NMP: N-methyl-2-pyrrolidone,
GBL: γ-butyl lactone,
BCS: Butyl cellosolve
<粘度測定>
 ポリアミド酸溶液について、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)にて25℃の粘度を測定した。
<Viscosity measurement>
The viscosity of the polyamic acid solution at 25 ° C. was measured with a cone rotor TE-1 (1 ° 34 ′, R24) using a sample amount of 1.1 mL using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.). .
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05質量%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液の500MHzのプロトンNMRを、測定装置(日本電子データム社製、JNW-ECA500)にて測定した。
 イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド基のNHに由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 式中、xはアミド基のNH由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド基のNHプロトン1個に対する基準プロトンの個数割合である。
<Measurement of imidation ratio>
20 mg of the polyimide powder is placed in an NMR sample tube (NMR sampling tube standard φ5 manufactured by Kusano Kagaku Co., Ltd.), and 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% by mass TMS (tetramethylsilane) mixture) is added. Then, ultrasonic waves were applied to completely dissolve. The 500 MHz proton NMR of this solution was measured with a measuring device (JNW-ECA500, manufactured by JEOL Datum).
The imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and calculating the peak integrated value of this proton and the proton peak derived from NH of the amide group appearing at about 9.5 to 10.0 ppm. It was determined by the following formula using the values.
Imidation ratio (%) = (1−α · x / y) × 100
In the formula, x is the integrated value of the proton peak derived from NH of the amide group, y is the integrated value of the peak of the standard proton, α is the standard proton for one NH proton of the amide group in the case of polyamic acid (imidation ratio is 0%). Is the number ratio.
<ポリマーの重合およびラジカル発生膜形成組成物の調製>
合成例1
TC-1、TC-2(50)/DA-1(50)、DA-2(50) ポリイミドの重合
 窒素導入管、空冷管、メカニカルスターラーを備えた100mlの4口フラスコに、DA-1を1.62g(15.00mmol)、DA-2を3.96g(15.00mmol)測り取り、NMP48.2gを加え窒素雰囲気下で撹拌し、完全に溶解させた。溶解を確認した後、TC-2を3.75g(15.00mmol)加え、窒素雰囲気下60℃で3時間反応させ。再び室温に戻し、TC-1を2.71g(13.80mmol)加え、窒素雰囲気下40℃で12時間反応させた。重合粘度を確認し、重合粘度が1000mPa・sになるように更にTC-1を添加し、ポリアミック酸濃度が20質量%の重合液を得た。
 マグネティックスターラーを備えた200mlの三角フラスコに、上記で得られたポリアミック酸溶液60gを測り取り、NMPを111.4g加え、7質量%の溶液を調製し、撹拌しながら無水酢酸を9.10g(88.52mmol)、ピリジンを3.76g(47.53mmol)加え、室温で30分撹拌後、55℃で3時間撹拌し反応させた。反応終了後、溶液を室温に戻し、500mlのメタノール中に撹拌しながらこの反応溶液を注ぎ、固体を析出させた。個体をろ過により回収し、更に300mlのメタノール中に固体を投入し30分間撹拌洗浄を計2回行い、固体をろ過により回収し、風乾を行った後、真空オーブン60℃にて乾燥を行うことで数平均分子量は11300、重量平均分子量は32900、イミド化率が53%のポリイミド(PI-1)を得た。
<Polymer polymerization and preparation of radical-generating film-forming composition>
Synthesis Example 1
TC-1, TC-2 (50) / DA-1 (50), DA-2 (50) Polymerization of polyimide DA-1 was placed in a 100 ml four-necked flask equipped with a nitrogen inlet tube, an air cooling tube, and a mechanical stirrer. 1.62 g (15.00 mmol) and 3.96 g (15.00 mmol) of DA-2 were measured, 48.2 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere and completely dissolved. After confirming dissolution, 3.75 g (15.00 mmol) of TC-2 was added and reacted at 60 ° C. for 3 hours under a nitrogen atmosphere. The temperature was returned to room temperature, 2.71 g (13.80 mmol) of TC-1 was added, and the mixture was reacted at 40 ° C. for 12 hours under a nitrogen atmosphere. After confirming the polymerization viscosity, TC-1 was further added so that the polymerization viscosity became 1000 mPa · s, to obtain a polymerization solution having a polyamic acid concentration of 20% by mass.
In a 200 ml Erlenmeyer flask equipped with a magnetic stirrer, weigh 60 g of the polyamic acid solution obtained above, add 111.4 g of NMP, prepare a 7% by mass solution, and stir 9.10 g of acetic anhydride (with stirring). 88.52 mmol) and 3.76 g (47.53 mmol) of pyridine were added, and the mixture was stirred at room temperature for 30 minutes and then reacted at 55 ° C. for 3 hours. After the completion of the reaction, the solution was returned to room temperature, and the reaction solution was poured into 500 ml of methanol while stirring to precipitate a solid. The solid is collected by filtration, and the solid is further poured into 300 ml of methanol and stirred and washed twice for 30 minutes. The solid is collected by filtration, air-dried, and then dried in a vacuum oven at 60 ° C. As a result, a polyimide (PI-1) having a number average molecular weight of 11,300, a weight average molecular weight of 32,900 and an imidization ratio of 53% was obtained.
合成例2
TC-1、TC-2(50)/DA-1(50)、DA-3(50)ポリイミドの重合
 窒素導入管、空冷管、メカニカルスターラーを備えた100mlの4口フラスコに、DA-1を1.62g(15.00mmol)、DA-3を4.96g(15.00mmol)測り取り、NMP51.90gを加え窒素雰囲気下で撹拌し、完全に溶解させた。溶解を確認した後、TC-2を3.75g(15.00mmol)加え、窒素雰囲気下60℃で3時間反応させ。再び室温に戻し、TC-1を2.64g(13.5mmol)加え、窒素雰囲気下40℃で12時間反応させた。重合粘度を確認し、重合粘度が1000mPa・sになるように更にTC-1を添加し、ポリアミック酸濃度が20質量%の重合液を得た。
 マグネティックスターラーを備えた200mlの三角フラスコに、上記で得られたポリアミック酸溶液60gを測り取り、NMPを111.4g加え加え、7質量%の溶液を調製し、撹拌しながら無水酢酸を8.38g(81.4mmol)、ピリジンを3.62g(45.8mmol)加え、室温で30分撹拌後、55℃で3時間撹拌し反応させた。反応終了後、溶液を室温に戻し、500mlのメタノール中に撹拌しながらこの反応溶液を注ぎ、固体を析出させた。個体をろ過により回収し、更に300mlのメタノール中に固体を投入し30分間撹拌洗浄を計2回行い、固体をろ過により回収し、風乾を行った後、真空オーブン60℃にて乾燥を行うことで数平均分子量Mnは13100、重量平均分子量Mwは34000、イミド化率が55%のポリイミド(PI-2)を得た。
Synthesis Example 2
Polymerization of TC-1, TC-2 (50) / DA-1 (50), DA-3 (50) polyimide DA-1 was placed in a 100 ml four-necked flask equipped with a nitrogen inlet tube, an air cooling tube, and a mechanical stirrer. 1.62 g (15.00 mmol) and 4.96 g (15.00 mmol) of DA-3 were weighed out, 51.90 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere and completely dissolved. After confirming dissolution, 3.75 g (15.00 mmol) of TC-2 was added and reacted at 60 ° C. for 3 hours under a nitrogen atmosphere. The temperature was returned to room temperature, 2.64 g (13.5 mmol) of TC-1 was added, and the mixture was reacted at 40 ° C. for 12 hours under a nitrogen atmosphere. After confirming the polymerization viscosity, TC-1 was further added so that the polymerization viscosity became 1000 mPa · s, to obtain a polymerization solution having a polyamic acid concentration of 20% by mass.
In a 200 ml Erlenmeyer flask equipped with a magnetic stirrer, 60 g of the polyamic acid solution obtained above was weighed, 111.4 g of NMP was added, and a 7% by mass solution was prepared. (81.4 mmol) and 3.62 g (45.8 mmol) of pyridine were added, and the mixture was stirred at room temperature for 30 minutes and then reacted at 55 ° C. for 3 hours. After the completion of the reaction, the solution was returned to room temperature, and the reaction solution was poured into 500 ml of methanol while stirring to precipitate a solid. The solid is collected by filtration, and the solid is further poured into 300 ml of methanol and stirred and washed twice for 30 minutes. The solid is collected by filtration, air-dried, and then dried in a vacuum oven at 60 ° C. As a result, a polyimide (PI-2) having a number average molecular weight Mn of 13100, a weight average molecular weight Mw of 34000, and an imidization ratio of 55% was obtained.
合成例3
TC-1、TC-2(50)/DA-1(50)、DA-4(50)ポリイミドの重合
 窒素導入管、空冷管、メカニカルスターラーを備えた100mlの4口フラスコに、DA-1を1.62g(15.00mmol)、DA-4を5.65g(15.00mmol)測り取り、NMP55.4gを加え窒素雰囲気下で撹拌し、完全に溶解させた。溶解を確認した後、TC-2を3.75g(15.00mmol)加え、窒素雰囲気下60℃で3時間反応させ。再び室温に戻し、TC-1を2.82g(14.40mmol)加え、窒素雰囲気下40℃で12時間反応させた。重合粘度を確認し、重合粘度が1000mPa・sになるように更にTC-1を添加し、ポリアミック酸濃度が20質量%の重合液を得た。
 マグネティックスターラーを備えた200mlの三角フラスコに、上記で得られたポリアミック酸溶液60gを測り取り、NMPを111.4g加え、7質量%の溶液を調製し、撹拌しながら無水酢酸を8.36g(81.2mmol)、ピリジンを3.65g(46.1mmol)加え、室温で30分撹拌後、55℃で3時間撹拌し反応させた。反応終了後、溶液を室温に戻し、500mlのメタノール中に撹拌しながらこの反応溶液を注ぎ、固体を析出させた。個体をろ過により回収し、更に300mlのメタノール中に固体を投入し30分間撹拌洗浄を計2回行い、固体をろ過により回収し、風乾を行った後、真空オーブン60℃にて乾燥を行うことで数平均分子量Mnは12900、重量平均分子量Mwは31000、イミド化率が51%のポリイミド(PI-3)を得た。
Synthesis Example 3
Polymerization of TC-1, TC-2 (50) / DA-1 (50), DA-4 (50) polyimide DA-1 was placed in a 100 ml four-necked flask equipped with a nitrogen inlet tube, an air cooling tube, and a mechanical stirrer. 1.62 g (15.00 mmol) and 5.65 g (15.00 mmol) of DA-4 were weighed, and 55.4 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere and completely dissolved. After confirming dissolution, 3.75 g (15.00 mmol) of TC-2 was added and reacted at 60 ° C. for 3 hours under a nitrogen atmosphere. The temperature was returned to room temperature, 2.82 g (14.40 mmol) of TC-1 was added, and the mixture was reacted at 40 ° C. for 12 hours under a nitrogen atmosphere. After confirming the polymerization viscosity, TC-1 was further added so that the polymerization viscosity became 1000 mPa · s, to obtain a polymerization solution having a polyamic acid concentration of 20% by mass.
In a 200 ml Erlenmeyer flask equipped with a magnetic stirrer, weigh 60 g of the polyamic acid solution obtained above, add 111.4 g of NMP, prepare a 7% by mass solution, and add 8.36 g of acetic anhydride while stirring ( 81.2 mmol) and 3.65 g (46.1 mmol) of pyridine were added, and the mixture was stirred at room temperature for 30 minutes and then reacted at 55 ° C. for 3 hours. After the completion of the reaction, the solution was returned to room temperature, and the reaction solution was poured into 500 ml of methanol while stirring to precipitate a solid. The solid is collected by filtration, and the solid is further poured into 300 ml of methanol and stirred and washed twice for 30 minutes. The solid is collected by filtration, air-dried, and then dried in a vacuum oven at 60 ° C. As a result, a polyimide (PI-3) having a number average molecular weight Mn of 12,900, a weight average molecular weight Mw of 31,000, and an imidization ratio of 51% was obtained.
ラジカル発生膜形成組成物:AL1の調製
 マグネティックスターラーを備えた50ml三角フラスコに、合成例1で得られたポリイミド粉末(PI-1)を2.0g測り取り、NMPを18.0g加え、50℃で撹拌し、完全に溶解させた。更にNMPを6.7g、BCSを6.7g加え、更に3時間撹拌することで本発明に係るラジカル発生膜形成組成物:AL1(固形分:6.0質量%、NMP:66質量%、BCS:30質量%)を得た。
Preparation of Radical Generating Film Forming Composition: AL1 In a 50 ml Erlenmeyer flask equipped with a magnetic stirrer, 2.0 g of the polyimide powder (PI-1) obtained in Synthesis Example 1 was measured, and 18.0 g of NMP was added. And completely dissolved. Further, 6.7 g of NMP and 6.7 g of BCS were added, and the mixture was further stirred for 3 hours to form a radical-generating film-forming composition according to the present invention: AL1 (solid content: 6.0% by mass, NMP: 66% by mass, BCS : 30% by mass).
ラジカル発生膜形成組成物:AL2の調製
 マグネティックスターラーを備えた50ml三角フラスコに、合成例2で得られたポリイミド粉末(PI-2)を2.0g測り取り、NMPを18.0g加え、50℃で撹拌し、完全に溶解させた。更にNMPを6.7g、BCSを6.7g加え、更に3時間撹拌することで本発明に係るラジカル発生膜形成組成物:AL2(固形分:6.0質量%、NMP:66質量%、BCS:30質量%)を得た。
Preparation of Radical Generating Film Forming Composition: AL2 In a 50 ml Erlenmeyer flask equipped with a magnetic stirrer, 2.0 g of the polyimide powder (PI-2) obtained in Synthesis Example 2 was weighed, and 18.0 g of NMP was added. And completely dissolved. Further, 6.7 g of NMP and 6.7 g of BCS were added, and the mixture was further stirred for 3 hours to form a radical-generating film-forming composition according to the present invention: AL2 (solid content: 6.0% by mass, NMP: 66% by mass, BCS : 30% by mass).
非ラジカル発生膜形成組成物:AL3の調製
 マグネティックスターラーを備えた50ml三角フラスコに、合成例3で得られたポリイミド粉末(PI-3)を2.0g測り取り、NMPを18.0g加え、50℃で撹拌し、完全に溶解させた。更にNMPを6.7g、BCSを6.7g加え、更に3時間撹拌することで比較対象とする非ラジカル発生膜形成組成物:AL3(固形分:6.0質量%、NMP:66質量%、BCS:30質量%)を得た。
Preparation of non-radical generating film-forming composition: AL3 In a 50 ml Erlenmeyer flask equipped with a magnetic stirrer, 2.0 g of the polyimide powder (PI-3) obtained in Synthesis Example 3 was weighed, and 18.0 g of NMP was added. Stirred at 0 C to completely dissolve. Further, 6.7 g of NMP and 6.7 g of BCS were added, and the mixture was further stirred for 3 hours to obtain a non-radical generating film-forming composition to be compared: AL3 (solid content: 6.0% by mass, NMP: 66% by mass, (BCS: 30% by mass).
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
<重合性化合物の製造>
重合性化合物合成例1
2-(ヘプタノイルオキシメチル)アクリル酸 エチルエステルの合成
Figure JPOXMLDOC01-appb-C000039
<Production of polymerizable compound>
Synthesis example 1 of polymerizable compound
Synthesis of ethyl 2- (heptanoyloxymethyl) acrylate
Figure JPOXMLDOC01-appb-C000039
第1工程:2-ヒドロキシメチルアクリル酸エチルエステルの合成 窒素導入管を取り付けた500mlの四口フラスコに、4-メトキシフェノール10mg、DABCO(1,4-ジアザビシクロ[2.2.2]オクタン)21.88g(195.1mmol)を測り取り、純水を50ml加え、窒素雰囲気下で10℃以下で攪拌しながらパラホルムアルデヒド11.52g(390.1mmol)を加え、1時間攪拌した。スラリー状態から溶液状態に変化したのを確認し、アセトニトリルを300ml加え、アクリル酸エチル19.53g(195.1mmol)を滴下しながら加え、50℃で5時間反応させた。反応終了後、分液ロートに反応溶液を移し、n-ヘキサン50mlを加えた。3層に分かれたのを確認し、下の2層を回収し、この操作を3回行った。更にpHが4~5になるように塩酸を加え、酢酸エチルを用いて抽出を行った。抽出した溶液に無水硫酸マグネシウムを加え攪拌し乾燥させた後、濾過・濃縮を行い、無色透明のオイル状液体22.9g(175.6mmol、収率90%)を得た。構造は核磁気共鳴スペクトル(H-NMRスペクトル)にて目的物であることを確認した。測定データを以下に示す。
H NMR (400 MHz,CDCl)δ:6.81(1H)、5.80(1H)、4.31(2H)、4.17(1H)、1.98(1H)、0.93(3H) 
First step: Synthesis of ethyl 2-hydroxymethyl acrylate In a 500 ml four-necked flask equipped with a nitrogen inlet tube, 10 mg of 4-methoxyphenol and DABCO (1,4-diazabicyclo [2.2.2] octane) 21 were added. 0.88 g (195.1 mmol) was weighed out, 50 ml of pure water was added, and 11.52 g (390.1 mmol) of paraformaldehyde was added while stirring at 10 ° C. or lower under a nitrogen atmosphere, followed by stirring for 1 hour. After confirming the change from the slurry state to the solution state, 300 ml of acetonitrile was added, 19.53 g (195.1 mmol) of ethyl acrylate was added dropwise, and the mixture was reacted at 50 ° C. for 5 hours. After the completion of the reaction, the reaction solution was transferred to a separating funnel, and 50 ml of n-hexane was added. After confirming that the layers were separated into three layers, the lower two layers were collected, and this operation was performed three times. Further, hydrochloric acid was added so that the pH became 4 to 5, and extraction was performed using ethyl acetate. Anhydrous magnesium sulfate was added to the extracted solution, and the mixture was stirred and dried, and then filtered and concentrated to obtain 22.9 g (175.6 mmol, yield 90%) of a colorless and transparent oily liquid. The structure was confirmed to be the desired product by a nuclear magnetic resonance spectrum ( 1 H-NMR spectrum). The measurement data is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ: 6.81 (1H), 5.80 (1H), 4.31 (2H), 4.17 (1H), 1.98 (1H), 0.93 (3H)
第2工程:2-(ヘプタノイルオキシメチル)アクリル酸 エチルエステルの合成
 窒素導入管を取り付けた500mlの4口フラスコに、上記方法にて得られた2-ヒドロキシメチルアクリル酸を19.9g(152.9mmol)測りとり、THF300ml、トリエチルアミン23.2g(229.3mmol)を加え、窒素雰囲気下10℃以下に保ちながらヘプタノイルクロリド25.0g(168.2mmol)を滴下しながら加え、6時間反応させた。反応終了後、析出したトリエチルアミン塩酸塩を濾過にて除去し、反応溶液を濃縮させ、酢酸エチル300mlてに再溶解させ、10%炭酸カリウム水溶液100mlにて3回洗浄し、純水50mlにて3回洗浄し、無水硫酸マグネシウムにて乾燥させた後、濾過・濃縮を行い薄黄色の粘体を得た。更にフラッシュカラムクロマトグラフィー(展開溶媒:酢酸エチル:n-ヘキサン=20:80)にて精製し、溶媒除去・真空乾燥を行うことで無色透明のオイル状液体32.2g(133.0mmol:収率87%)を得た。構造は核磁気共鳴スペクトル(H-NMRスペクトル)にて目的物であることを確認した。測定データを以下に示す。
H NMR (400 MHz,CDCl)δ:6.37(1H)、5.80(1H)、3.80(2H)、4.23-4.21(2H)、2.39-2.37(2H)、1.64-1.58(2H)、1.30-1.27(9H)、0.86(3H)
Second step: Synthesis of ethyl 2- (heptanoyloxymethyl) acrylate In a 500 ml four-necked flask equipped with a nitrogen inlet tube, 19.9 g (152) of 2-hydroxymethylacrylic acid obtained by the above method was placed. 2.9 mmol), THF (300 ml) and triethylamine (23.2 g, 229.3 mmol) were added, and while keeping the temperature at 10 ° C. or lower under a nitrogen atmosphere, heptanoyl chloride (25.0 g, 168.2 mmol) was added dropwise and reacted for 6 hours. Was. After completion of the reaction, the precipitated triethylamine hydrochloride was removed by filtration, the reaction solution was concentrated, redissolved in 300 ml of ethyl acetate, washed three times with 100 ml of a 10% aqueous potassium carbonate solution, and washed with 50 ml of pure water. After washing twice and drying over anhydrous magnesium sulfate, filtration and concentration were performed to obtain a pale yellow viscous body. Further, the product is purified by flash column chromatography (developing solvent: ethyl acetate: n-hexane = 20: 80), and the solvent is removed and dried under vacuum to obtain 32.2 g (133.0 mmol: yield) of a colorless and transparent oily liquid. 87%). The structure was confirmed to be the desired product by a nuclear magnetic resonance spectrum ( 1 H-NMR spectrum). The measurement data is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ: 6.37 (1H), 5.80 (1H), 3.80 (2H), 4.23-4.21 (2H), 2.39-2. 37 (2H), 1.64-1.58 (2H), 1.30-1.27 (9H), 0.86 (3H)
重合性化合物合成例3
イタコン酸ジヘキシルの合成
Figure JPOXMLDOC01-appb-C000040
Synthesis example 3 of polymerizable compound
Synthesis of dihexyl itaconate
Figure JPOXMLDOC01-appb-C000040
 ディーンスターク管を取り付けた4口フラスコに、イタコン酸23.8g(182.9mmol)、1-ヘキサノール35.5g(347.5mmol)を測りとり、シクロヘキサン500ml、濃硫酸0.9g(9.1mmol)、ジブチルヒドロキシトルエン(BHT)0.04g(1.82mmol)を加え、窒素雰囲気にし、110℃にて24時間脱水縮合反応させた。反応終了後、反応溶液にn-ヘキサンを100ml加え、10%炭酸ナトリウム水溶液100gで3回、純水100mlにて3回洗浄し、無水硫酸マグネシウムで乾燥させた。濾過・濃縮後真空乾燥させることで無色透明のオイル状液体48.6g(162.8mmol:収率89%)を得た。構造は核磁気共鳴スペクトル(H-NMRスペクトル)にて目的物であることを確認した。測定データを以下に示す。
H NMR (400 MHz,CDCl)δ:6.30(1H)、5.65(1H)、4.20―4.00(4H)、3.32(2H)、1.64-1.58(4H)、1.40-1.25(12H)、0.96-0.83(6H)
In a four-necked flask equipped with a Dean-Stark tube, 23.8 g (182.9 mmol) of itaconic acid and 35.5 g (347.5 mmol) of 1-hexanol were measured, and 500 ml of cyclohexane and 0.9 g (9.1 mmol) of concentrated sulfuric acid were measured. And 0.04 g (1.82 mmol) of dibutylhydroxytoluene (BHT) were added thereto, and a dehydration condensation reaction was performed at 110 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, 100 ml of n-hexane was added to the reaction solution, and the mixture was washed three times with 100 g of a 10% aqueous sodium carbonate solution and three times with 100 ml of pure water, and dried over anhydrous magnesium sulfate. After filtration, concentration and vacuum drying, 48.6 g (162.8 mmol: 89% yield) of a colorless and transparent oily liquid was obtained. The structure was confirmed to be the desired product by a nuclear magnetic resonance spectrum ( 1 H-NMR spectrum). The measurement data is shown below.
1 H NMR (400 MHz, CDCl 3 ) δ: 6.30 (1H), 5.65 (1H), 4.20-4.00 (4H), 3.32 (2H), 1.64-1. 58 (4H), 1.40-1.25 (12H), 0.96-0.83 (6H)
<液晶表示素子の作製>
 上記で得たAL1~AL3及び水平配向用の液晶配向剤であるSE-6414(日産化学工業株式会社製)を用い、表3に示す構成で液晶表示素子を作製した。
<Production of liquid crystal display element>
Using AL1 to AL3 obtained above and SE-6414 (manufactured by Nissan Chemical Industries, Ltd.) as a liquid crystal aligning agent for horizontal alignment, a liquid crystal display device having the configuration shown in Table 3 was produced.
(第一基板)
 第一基板(以後IPS基板ともいう)は、30mm×35mmの大きさで、厚さが0.7mmの無アルカリガラス基板である。基板上には電極幅が10μm、電極と電極の間隔が10μmの櫛歯型パターンを備えたITO(Indium-Tin-Oxide)電極が形成され、画素を形成している。各画素のサイズは、縦10mmで横約5mmである。
 AL1~AL3又は1.0μmのフィルターで濾過した後、上記IPS基板の電極形成面にスピンコート法にて塗布し、80℃のホットプレート上で1分間乾燥させた。次いで、AL1~AL3は220℃で20分間、SE-6414は220℃で20分焼成し、焼成して、それぞれ膜厚100nmの塗膜とした。
(First substrate)
The first substrate (hereinafter also referred to as an IPS substrate) is a non-alkali glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm. On the substrate, an ITO (Indium-Tin-Oxide) electrode having a comb-shaped pattern with an electrode width of 10 μm and an interval between the electrodes of 10 μm is formed to form a pixel. Each pixel is about 10 mm long and about 5 mm wide.
After filtering through a filter of AL1 to AL3 or 1.0 μm, the solution was applied to the electrode forming surface of the IPS substrate by spin coating, and dried on a hot plate at 80 ° C. for 1 minute. Then, AL1 to AL3 were baked at 220 ° C. for 20 minutes, and SE-6414 was baked at 220 ° C. for 20 minutes.
 この塗膜付き基板を、基板の半分は光を当てないように金属板で遮光し、高圧水銀ランプを用い波長313nmのバンドパスフィルター介して露光量が5000mJとなるよう紫外線を照射した。以降はこの操作を1次UV処理と呼ぶ。
 露光処理後、ラビング方向が櫛歯電極の長手方向から5°傾斜するようにラビングした。ラビングは吉川化工製のレーヨン布:YA-20Rを用い、ロール径120mm、回転数300rpm、移動速度50mm/sec、押し込み量0.4mmの条件にて行った。ラビング処理後は、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
The substrate with the coating film was shielded from light by a metal plate so that half of the substrate was not exposed to light, and was irradiated with ultraviolet light using a high-pressure mercury lamp through a band-pass filter having a wavelength of 313 nm so that the exposure amount was 5000 mJ. Hereinafter, this operation is referred to as primary UV processing.
After the exposure treatment, rubbing was performed so that the rubbing direction was inclined by 5 ° from the longitudinal direction of the comb-shaped electrode. Rubbing was performed using rayon cloth: YA-20R manufactured by Yoshikawa Kako Co., Ltd. under the conditions of a roll diameter of 120 mm, a rotation speed of 300 rpm, a moving speed of 50 mm / sec, and a pushing amount of 0.4 mm. After the rubbing treatment, the substrate was irradiated with ultrasonic waves in pure water for 1 minute and dried at 80 ° C. for 10 minutes.
(第二基板)
 第二基板(裏面ITO基板ともいう)は、30mm×35mmの大きさで、厚さが0.7mmの無アルカリガラス基板であり、裏面(セルの外側を向く面)にITO膜が成膜されている。また、表面(セルの内側を向く面)には高さ4μmの柱状のスペーサーが形成されている。
 上記裏面ITO基板のガラス面に、SE-6414を1.0μmのフィルターで濾過した後、スピンコート法にて塗布し、80℃のホットプレート上で1分間乾燥させた。次いで、AL1、AL2は220℃で20分間焼成し、SE-6414は220℃で20分焼成して、それぞれ膜厚100nmの塗膜とした後、ラビング処理を行った。ラビング処理は、吉川化工製のレーヨン布:YA-20Rを用い、ロール径120mm、回転数1000rpm、移動速度50mm/sec、押し込み量0.4mmの条件にてラビングを行った。ラビング処理後は、純水中にて1分間超音波照射を行い、80℃で10分間乾燥した。
(Second substrate)
The second substrate (also referred to as a back surface ITO substrate) is a non-alkali glass substrate having a size of 30 mm × 35 mm and a thickness of 0.7 mm, and an ITO film is formed on a back surface (a surface facing the outside of the cell). ing. Further, a columnar spacer having a height of 4 μm is formed on the surface (the surface facing the inside of the cell).
SE-6414 was filtered through a 1.0 μm filter onto the glass surface of the backside ITO substrate, applied by spin coating, and dried on a hot plate at 80 ° C. for 1 minute. Next, AL1 and AL2 were baked at 220 ° C. for 20 minutes, and SE-6414 was baked at 220 ° C. for 20 minutes to form a coating film having a thickness of 100 nm, respectively, and then rubbed. The rubbing treatment was performed using rayon cloth: YA-20R manufactured by Yoshikawa Kako Co., Ltd. under the conditions of a roll diameter of 120 mm, a rotation speed of 1000 rpm, a moving speed of 50 mm / sec, and a pushing amount of 0.4 mm. After the rubbing treatment, the substrate was irradiated with ultrasonic waves in pure water for 1 minute and dried at 80 ° C. for 10 minutes.
(液晶セルの作製)
 上記液晶配向膜付きの2種類の基板(第一基板及び第二基板)を用い、液晶注入口を残して周囲をシールし、セルギャップが約4μmの空セルを作製した。この際、第一基板と第二基板のラビング方向が逆平行になるものと、85°に交差するものをそれぞれ作成した。
 この空セルに、液晶(メルク社製IPS用ポジ液晶MLC-3019及びメルク社製TN用液晶MLC3018Uに各添加剤を最適条件にて添加したもの)を常温で真空注入した後、注入口を封止して液晶セルとした。得られた液晶セルは、IPSモード液晶表示素子とTNモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で10分加熱処理を行った。
 2次UV処理として、高圧水銀ランプを用い波長313nmのバンドパスフィルター介して照射を行った。露光量は5000mJとなるよう液晶セルに紫外線を照射した。以下作成したセルの詳細を以下の表4に示す。
(Production of liquid crystal cell)
Using two kinds of substrates (the first substrate and the second substrate) with the liquid crystal alignment film, the periphery was sealed except for the liquid crystal injection port, and an empty cell having a cell gap of about 4 μm was produced. At this time, a substrate in which the rubbing directions of the first substrate and the second substrate are antiparallel and a substrate in which the rubbing directions intersect at 85 ° were prepared.
Liquid crystal (a liquid obtained by adding each additive to a positive liquid crystal MLC-3019 for IPS manufactured by Merck and a liquid crystal MLC3018U for TN manufactured by Merck under optimum conditions) is vacuum-injected into the empty cell at room temperature, and then the injection port is sealed. The liquid crystal cell was stopped. The obtained liquid crystal cell constitutes an IPS mode liquid crystal display element and a TN mode liquid crystal display element. Thereafter, the obtained liquid crystal cell was subjected to a heat treatment at 120 ° C. for 10 minutes.
As a secondary UV treatment, irradiation was performed using a high-pressure mercury lamp through a band-pass filter having a wavelength of 313 nm. The liquid crystal cell was irradiated with ultraviolet rays so that the exposure amount was 5000 mJ. Table 4 below shows details of the prepared cells.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
<液晶配向性の目視評価>
 クロスニコルにセットした偏光板を用いてTNモード液晶セルの配向性を確認した。UV処理をしていない場合、片側配向膜の配向規制力が失われる(すなわちゼロアンカリング状態になる)ため、液晶中のカイラルドーパントの規制力では十分に捩じられなくなるため水平配向状態に変化する。一方、UV処理した領域は重合反応性が失われるため、アンカリング力が維持される。よってツイスト配向が発生する。これにより画素内に2種類の配向状態が発生する。図1に示したように膜にUVを照射した領域はTN配向(白)、UVを照射していない領域が水平配向(黒)になっている場合は〇、各領域に変化がない場合は×とした。
<Visual evaluation of liquid crystal orientation>
The orientation of the TN mode liquid crystal cell was confirmed using a polarizing plate set in crossed Nicols. When the UV treatment is not performed, the alignment regulating force of the one-sided alignment film is lost (that is, the film becomes a zero anchoring state), and is not sufficiently twisted by the regulating force of the chiral dopant in the liquid crystal. I do. On the other hand, the UV-treated area loses the polymerization reactivity, so that the anchoring force is maintained. Therefore, twist orientation occurs. As a result, two types of alignment states occur in the pixel. As shown in FIG. 1, the region where the film was irradiated with UV was TN oriented (white), the region where UV was not irradiated was horizontally oriented (black), and the case where there was no change in each region. X.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 液晶中に添加材が無い液晶を用いた場合、および光によってラジカルが発生しない材料を用いた場合は1次UV処理を行っても配向パターニングすなわち配向規制力の変化は発生しなかった。このことから本発明の光ラジカル発生膜と添加剤の組み合わせが重要であることが分かる。 (4) When a liquid crystal having no additive in the liquid crystal was used, and when a material that did not generate radicals by light was used, alignment patterning, that is, a change in alignment control force did not occur even when the primary UV treatment was performed. This indicates that the combination of the photo-radical generating film of the present invention and the additive is important.
<電気光学特性評価>
 セル13~24(水平配向セル)を用い、V-Tカーブを測定することにより閾値電圧の変化及びモード効率の測定を行った。V-Tカーブの測定は、光軸が合うように白色LEDバックライトと輝度計をセットし、その間に、輝度が最も小さくなるように偏光板を取り付けた液晶セル(液晶表示素子)をセットし、1V間隔で8Vまで電圧を印加し、電圧における輝度を測定することで行った。得られたV-Tカーブから駆動閾値電圧の値を見積もった。モード効率の測定は、偏光板のパラレルニコル時のLED透過光の輝度に対する液晶セルのVmax時の輝度を割合として算出することで求めた。
 アンカリング測定は閾値電圧の大きさからフレデリクス転移法によりおおよその値を見積もった。
<Electro-optical property evaluation>
Using cells 13 to 24 (horizontal alignment cells), the VT curve was measured to measure the change in threshold voltage and the mode efficiency. For the measurement of the VT curve, a white LED backlight and a luminance meter are set so that the optical axes are aligned, and a liquid crystal cell (liquid crystal display element) having a polarizing plate attached thereto is set between the white LED backlight and the luminance meter so as to minimize the luminance. This was performed by applying a voltage up to 8 V at 1 V intervals and measuring the luminance at the voltage. The value of the driving threshold voltage was estimated from the obtained VT curve. The mode efficiency was measured by calculating the ratio of the luminance of the liquid crystal cell at Vmax to the luminance of the LED transmitted light at the time of parallel Nicols of the polarizing plate.
In the anchoring measurement, an approximate value was estimated from the magnitude of the threshold voltage by the Freedericksz transfer method.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 セル13~24は水平配向セルのため、ゼロアンカリング配向になっても目視では変化がない。一方で1次UV露光部と未露光部でV-Tカーブの閾値電圧及び輝度に変化が見られた。この検証からも1次露光を行うことにより画素内に異なるアンカリング力を有する領域を作り出せることが分かる。 Because the cells 13 to 24 are horizontal alignment cells, there is no visual change even when the alignment becomes zero anchoring alignment. On the other hand, the threshold voltage and luminance of the VT curve were changed between the primary UV exposed portion and the unexposed portion. It can be seen from this verification that regions having different anchoring forces can be created in the pixel by performing the primary exposure.
 本発明によれば、アンカリングの異なるゼロ面領域を安価な原料から、工業的に、歩留まりよく作り出すことができる。また、本発明の方法で得られる液晶表示素子は、PSA型液晶ディスプレイやSC-PVA型液晶ディスプレイ等の垂直配向方式の液晶表示素子として有用である。 According to the present invention, zero plane regions with different anchoring can be industrially produced with good yield from inexpensive raw materials. Further, the liquid crystal display device obtained by the method of the present invention is useful as a vertical alignment type liquid crystal display device such as a PSA liquid crystal display or an SC-PVA liquid crystal display.

Claims (22)

  1.  ラジカル発生膜に特定の領域に放射線を照射してパターニングされたラジカル発生膜を形成するステップ、及び液晶及びラジカル重合性化合物を含有する液晶組成物を、前記パターニングされたラジカル発生膜に接触させ、その状態を保持しつつ、前記ラジカル重合性化合物を重合反応させるのに十分なエネルギーを前記液晶組成物に与えるステップを含む、パターニングされたゼロ面アンカリング膜の製造方法。 Forming a patterned radical generating film by irradiating a specific region with radiation to the radical generating film, and contacting a liquid crystal composition containing a liquid crystal and a radical polymerizable compound with the patterned radical generating film, A method for producing a patterned zero-plane anchoring film, comprising a step of applying sufficient energy to the liquid crystal composition to cause a polymerization reaction of the radically polymerizable compound while maintaining the state.
  2.  前記ラジカル発生膜が一軸配向処理されたラジカル発生膜である請求項1に記載の方法。 The method according to claim 1, wherein the radical generating film is a uniaxially oriented radical generating film.
  3.  エネルギーを与えるステップを無電界で行う、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the step of applying energy is performed without an electric field.
  4.  前記ラジカル発生膜が、ラジカル重合を誘発する有機基が固定化されて成る膜であることを特徴とする請求項1~3のいずれか一項に記載の方法。 (4) The method according to any one of (1) to (3), wherein the radical generating film is a film in which an organic group that induces radical polymerization is fixed.
  5.  前記ラジカル発生膜が、ラジカルを発生する基を有する化合物と重合体との組成物を塗布、硬化して膜を形成することにより膜中に固定化させて得られることを特徴とする請求項1~3のいずれか一項に記載の方法。 2. The radical-generating film is obtained by applying and curing a composition of a compound having a radical-generating group and a polymer to form a film, thereby fixing the film in the film. The method according to any one of claims 1 to 3.
  6.  前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成ることを特徴とする請求項1~3のいずれか一項に記載の方法。 (4) The method according to any one of (1) to (3), wherein the radical generating film is made of a polymer containing an organic group that induces radical polymerization.
  7.  前記ラジカル重合を誘発する有機基を含有する重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体であることを特徴とする請求項6記載の方法。 The polymer containing an organic group that induces radical polymerization is a polyimide precursor obtained using a diamine component containing a diamine containing an organic group that induces radical polymerization, at least one kind selected from polyimide, polyurea, and polyamide. 7. The method according to claim 6, wherein the method is a polymer.
  8.  前記ラジカル重合を誘発する有機基が下記構造[X-1]~[X-18]、[W]、[Y]及び[Z]のいずれかで表される有機基である請求項4、6及び7のいずれか一項に記載の方法。
    Figure JPOXMLDOC01-appb-C000001

    (式[X-1]~[X-18]中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示し、S、Sはそれぞれ独立して-O-、-NR-、-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1~4のアルキル基を表す)
    Figure JPOXMLDOC01-appb-C000002

    (式[W]、[Y]、[Z]中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記の構造を表す。
    Figure JPOXMLDOC01-appb-C000003

    (式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素原子数1~4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
    12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
    7. The organic group which induces radical polymerization is an organic group represented by any of the following structures [X-1] to [X-18], [W], [Y] and [Z]. The method according to any one of claims 1 to 7.
    Figure JPOXMLDOC01-appb-C000001

    (In the formulas [X-1] to [X-18], * represents a bonding site to a part other than the polymerizable unsaturated bond of the compound molecule, and S 1 and S 2 are each independently —O—, − R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms; R 1 and R 2 each independently represent a hydrogen atom; Represents a halogen atom or an alkyl group having 1 to 4 carbon atoms)
    Figure JPOXMLDOC01-appb-C000002

    (In the formulas [W], [Y] and [Z], * indicates a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule, and Ar has an organic group and / or a halogen atom as a substituent. Represents an aromatic hydrocarbon group selected from the group consisting of phenylene, naphthylene, and biphenylene, and R 9 and R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. When R 9 and R 10 are alkyl groups, they may be bonded to each other at the terminals to form a ring structure, and Q represents the following structure.
    Figure JPOXMLDOC01-appb-C000003

    (Wherein, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
    R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )
  9.  前記ラジカル重合を誘発する有機基を含有するジアミンが下記一般式(6)又は下記一般式(7)で表される構造を有するジアミンであることを特徴とする請求項7記載の方法。
    Figure JPOXMLDOC01-appb-C000004

    (式(6)中、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
    は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい;
    は、下記式:
    Figure JPOXMLDOC01-appb-C000005
    から選択されるラジカル重合反応性基を表す。
    (式[X-1]~[X-18]中、*は化合物分子のラジカル重合反応性基以外の部分との結合部位を示し、S、Sはそれぞれ独立して-O-、-NR-、-S-を表し、Rは水素原子、ハロゲン原子、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基を表し、R,Rはそれぞれ独立して水素原子、ハロゲン原子、炭素数1~4のアルキル基を表す))
    Figure JPOXMLDOC01-appb-C000006

    (式(7)中、T及びTは、それぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、
    は単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
    Jは下記式のいずれかで表される有機基であり、
    Figure JPOXMLDOC01-appb-C000007

    (式[W]、[Y]、[Z]中、*はTとの結合箇所を表し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、Qは下記のいずれかの構造を表す。
    Figure JPOXMLDOC01-appb-C000008

    (式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rは水素原子又は炭素原子数1~4のアルキル基を表し、*は化合物分子のQ以外の部分との結合部位を示す。)
    12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。))
    The method according to claim 7, wherein the diamine having an organic group that induces radical polymerization is a diamine having a structure represented by the following general formula (6) or (7).
    Figure JPOXMLDOC01-appb-C000004

    (In the formula (6), R 6 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—,
    R 7 represents a single bond or an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, wherein at least one of —CH 2 — or —CF 2 — in the alkylene group is independently May be replaced by a group selected from —CH = CH—, a divalent carbocyclic ring, and a divalent heterocyclic ring. Further, any of the following groups: —O—, —COO— , —OCO—, —NHCO—, —CONH—, or —NH— may be replaced by these groups provided that they are not adjacent to each other;
    R 8 is the following formula:
    Figure JPOXMLDOC01-appb-C000005
    Represents a radical polymerization reactive group selected from
    (In the formulas [X-1] to [X-18], * indicates a bonding site to a part other than the radical polymerization reactive group of the compound molecule, and S 1 and S 2 are each independently -O-,- R represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms; R 1 and R 2 each independently represent a hydrogen atom; Represents a halogen atom or an alkyl group having 1 to 4 carbon atoms))
    Figure JPOXMLDOC01-appb-C000006

    (In the formula (7), T 1 and T 2 are each independently a single bond, —O—, —S—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, — CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—,
    S 0 represents a single bond or an unsubstituted or substituted alkylene group having 1 to 20 carbon atoms, wherein at least one of —CH 2 — or —CF 2 — in the alkylene group is independently May be replaced by a group selected from —CH = CH—, a divalent carbocyclic ring, and a divalent heterocyclic ring. Further, any of the following groups: —O—, —COO— , —OCO—, —NHCO—, —CONH—, or —NH— may be replaced by these groups provided that they are not adjacent to each other;
    J is an organic group represented by any of the following formulas,
    Figure JPOXMLDOC01-appb-C000007

    (Wherein [W], [Y], [Z] in which * represents a bonding site to T 2, Ar is may have an organic group and / or a halogen atom as a substituent phenylene, naphthylene, and biphenylene And R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Q represents any of the following: Represents the structure of
    Figure JPOXMLDOC01-appb-C000008

    (Wherein, R 11 represents —CH 2 —, —NR—, —O—, or —S—, R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents Q of the compound molecule. Shows the binding site with other parts.)
    R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. ))
  10.  前記ラジカル重合性化合物のうち少なくとも一種が、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物である、請求項1~9のいずれか一項に記載の方法。 (10) The method according to any one of (1) to (9), wherein at least one of the radically polymerizable compounds is a compound having one polymerizable unsaturated bond in one molecule, which is compatible with a liquid crystal.
  11.  前記ラジカル重合性化合物の重合反応性基が以下の構造から選ばれる、請求項10に記載の方法。
    Figure JPOXMLDOC01-appb-C000009

    (式中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1~4のアルキル基を示す。)
    The method according to claim 10, wherein the polymerization reactive group of the radical polymerizable compound is selected from the following structures.
    Figure JPOXMLDOC01-appb-C000009

    (In the formula, * represents a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, -O-,- Represents a bonding group selected from NR c- , -S-, an ester bond and an amide bond, wherein R c is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
  12.  前記液晶及びラジカル重合性化合物を含有する液晶組成物において、前記ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下のものになるラジカル重合性化合物を含有する液晶組成物を用いることを特徴とする請求項1~11のいずれか一項に記載の方法。 In the liquid crystal composition containing the liquid crystal and the radical polymerizable compound, a liquid crystal composition containing a radical polymerizable compound having a Tg of 100 ° C. or lower is obtained by polymerizing the radical polymerizable compound. The method according to any one of claims 1 to 11, characterized in that:
  13.  ラジカル発生膜を有する第一基板と、ラジカル発生膜を有していてもよい第二基板とを用意するステップ、
     第一基板上のラジカル発生膜が第二基板に対向するようにセルを作成するステップ、および、
     第一基板と第二基板との間に、液晶及びラジカル重合性化合物を含有する液晶組成物を充填するステップを含み、
     請求項1~12のいずれか一項に記載の方法を用いる液晶セルの製造方法。
    Preparing a first substrate having a radical generating film and a second substrate that may have a radical generating film,
    Creating a cell such that the radical generating film on the first substrate faces the second substrate, and
    Filling a liquid crystal composition containing a liquid crystal and a radical polymerizable compound between the first substrate and the second substrate,
    A method for manufacturing a liquid crystal cell using the method according to any one of claims 1 to 12.
  14.  前記第二基板がラジカル発生膜を有さない第二基板である請求項13に記載の液晶セルの製造方法。 14. The method for manufacturing a liquid crystal cell according to claim 13, wherein the second substrate is a second substrate having no radical generating film.
  15.  前記第二基板が、一軸配向性を有する液晶配向膜がコーティングされた基板であることを特徴とする請求項14に記載の液晶セルの製造方法。 The method according to claim 14, wherein the second substrate is a substrate coated with a liquid crystal alignment film having uniaxial alignment.
  16.  前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜であることを特徴とする請求項15に記載の液晶セルの製造方法。 16. The method according to claim 15, wherein the liquid crystal alignment film having uniaxial alignment is a liquid crystal alignment film for horizontal alignment.
  17.  前記ラジカル発生膜を有する第一基板が櫛歯電極を有する基板である請求項13~16のいずれか一項に記載の液晶セルの製造方法。 17. The method for manufacturing a liquid crystal cell according to claim 13, wherein the first substrate having the radical generating film is a substrate having a comb electrode.
  18.  液晶及びラジカル重合性化合物を含有し、
     前記ラジカル重合性化合物のうち少なくとも一種が、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物であり、
     重合反応性基が以下の構造から選ばれる、液晶組成物。
    Figure JPOXMLDOC01-appb-C000010

    (式中、*は化合物分子の重合性不飽和結合以外の部分との結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、炭素数1~4のアルキル基を示す。)
    Contains liquid crystal and radical polymerizable compound,
    At least one of the radically polymerizable compounds is compatible with a liquid crystal, a compound having one polymerizable unsaturated bond in one molecule,
    A liquid crystal composition wherein the polymerization reactive group is selected from the following structures.
    Figure JPOXMLDOC01-appb-C000010

    (In the formula, * represents a bonding site to a portion other than the polymerizable unsaturated bond of the compound molecule. R b represents a linear alkyl group having 2 to 8 carbon atoms, E represents a single bond, -O-,- Represents a bonding group selected from NR c- , -S-, an ester bond and an amide bond, wherein R c is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
  19.  請求項1~17のいずれか一項に記載の方法を用いて得られたゼロ面アンカリング状態を作り出す膜を用いる液晶表示素子の製造方法。 A method for manufacturing a liquid crystal display device using a film that creates a zero-plane anchoring state obtained by using the method according to any one of claims 1 to 17.
  20.  請求項19記載の方法を用いて得られた液晶表示素子。 A liquid crystal display device obtained by using the method according to claim 19.
  21.  第一基板又は第二基板が電極を有する、請求項20に記載の液晶表示素子。 21. The liquid crystal display device according to claim 20, wherein the first substrate or the second substrate has an electrode.
  22.  低電圧駆動横電界液晶表示素子である、請求項20又は21に記載の液晶表示素子。 22. The liquid crystal display element according to claim 20, wherein the liquid crystal display element is a low-voltage driven lateral electric field liquid crystal display element.
PCT/JP2019/023836 2018-06-18 2019-06-17 Production method for zero azimuthal anchoring film, and liquid crystal display element WO2019244821A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020525716A JP7367674B2 (en) 2018-06-18 2019-06-17 Manufacturing method of zero-plane anchoring film and liquid crystal display element
KR1020217001233A KR20210020127A (en) 2018-06-18 2019-06-17 Method for manufacturing zero plane anchoring film and liquid crystal display device
CN201980041213.XA CN112292633A (en) 2018-06-18 2019-06-17 Method for manufacturing zero-plane anchoring film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018115595 2018-06-18
JP2018-115595 2018-06-18

Publications (1)

Publication Number Publication Date
WO2019244821A1 true WO2019244821A1 (en) 2019-12-26

Family

ID=68983749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023836 WO2019244821A1 (en) 2018-06-18 2019-06-17 Production method for zero azimuthal anchoring film, and liquid crystal display element

Country Status (4)

Country Link
JP (1) JP7367674B2 (en)
KR (1) KR20210020127A (en)
CN (1) CN112292633A (en)
WO (1) WO2019244821A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290654A (en) * 1999-04-06 2000-10-17 Nof Corp Liquid crystal composite display device and its production
WO2016072498A1 (en) * 2014-11-07 2016-05-12 日産化学工業株式会社 Liquid crystal display element
WO2018097155A1 (en) * 2016-11-22 2018-05-31 日産化学工業株式会社 Method for manufacturing liquid crystal display element, substrate for liquid crystal display element, and liquid crystal display element assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053530B2 (en) 2004-09-14 2008-02-27 独立行政法人科学技術振興機構 Zero-plane anchoring liquid crystal alignment method and liquid crystal device
JP2013231757A (en) 2012-04-27 2013-11-14 Lg Display Co Ltd Method of aligning liquid crystal having no anchoring in plane and non-contact liquid crystal aligning method using the same, and liquid crystal display device
KR102425044B1 (en) * 2014-11-12 2022-07-25 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6858486B2 (en) * 2015-03-12 2021-04-14 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display element and manufacturing method of liquid crystal display element
JP6858495B2 (en) 2016-05-27 2021-04-14 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display device and manufacturing method of liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000290654A (en) * 1999-04-06 2000-10-17 Nof Corp Liquid crystal composite display device and its production
WO2016072498A1 (en) * 2014-11-07 2016-05-12 日産化学工業株式会社 Liquid crystal display element
WO2018097155A1 (en) * 2016-11-22 2018-05-31 日産化学工業株式会社 Method for manufacturing liquid crystal display element, substrate for liquid crystal display element, and liquid crystal display element assembly

Also Published As

Publication number Publication date
TW202000870A (en) 2020-01-01
CN112292633A (en) 2021-01-29
JPWO2019244821A1 (en) 2021-07-26
KR20210020127A (en) 2021-02-23
JP7367674B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP7234924B2 (en) Manufacturing method of zero plane anchoring film and liquid crystal display element
WO2022260048A1 (en) Weak anchoring liquid crystal aligning agent, liquid cyrstal display element and copolymer
WO2021020399A1 (en) Lateral-electric-field liquid crystal display element, and method for manufacturing lateral-electric-field liquid crystal cell
WO2022030602A1 (en) Liquid-crystal composition, method for producing liquid-crystal display element, and liquid-crystal display element
JP7276149B2 (en) Manufacturing method of zero plane anchoring film and liquid crystal display element
JP7367674B2 (en) Manufacturing method of zero-plane anchoring film and liquid crystal display element
JP7367673B2 (en) Manufacturing method of zero-plane anchoring film and liquid crystal display element
WO2022196565A1 (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element
TWI846705B (en) Method for producing zero plane anchoring film, and liquid crystal display element
WO2022071286A1 (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element
WO2021125327A1 (en) Method for manufacturing patterned liquid crystal display element
WO2021125319A1 (en) Liquid crystal aligning agent, radical generation film and method for producing in-plane switching liquid crystal cell
WO2023140322A1 (en) Weak-anchoring liquid crystal alignment agent, and liquid cyrstal display element
JPWO2019244821A5 (en)
JPWO2019244820A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19821669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001233

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19821669

Country of ref document: EP

Kind code of ref document: A1