WO2024058165A1 - Silicon oxide gel dispersion, transparent low-refractive-index film, and method for manufacturing silicon oxide gel dispersion - Google Patents
Silicon oxide gel dispersion, transparent low-refractive-index film, and method for manufacturing silicon oxide gel dispersion Download PDFInfo
- Publication number
- WO2024058165A1 WO2024058165A1 PCT/JP2023/033175 JP2023033175W WO2024058165A1 WO 2024058165 A1 WO2024058165 A1 WO 2024058165A1 JP 2023033175 W JP2023033175 W JP 2023033175W WO 2024058165 A1 WO2024058165 A1 WO 2024058165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon oxide
- gel
- oxide gel
- dispersion
- solvent
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 122
- 239000006185 dispersion Substances 0.000 title claims abstract description 120
- 229910052814 silicon oxide Inorganic materials 0.000 title claims abstract description 111
- 238000000034 method Methods 0.000 title claims description 49
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- 239000002904 solvent Substances 0.000 claims abstract description 77
- 239000007787 solid Substances 0.000 claims abstract description 22
- 239000011148 porous material Substances 0.000 claims description 41
- 239000002245 particle Substances 0.000 claims description 27
- 238000003756 stirring Methods 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 24
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- 239000000499 gel Substances 0.000 description 174
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 36
- 239000007788 liquid Substances 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 238000001914 filtration Methods 0.000 description 22
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 22
- 238000005259 measurement Methods 0.000 description 22
- 239000002210 silicon-based material Substances 0.000 description 22
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 21
- 239000003054 catalyst Substances 0.000 description 18
- 239000000047 product Substances 0.000 description 17
- 238000010298 pulverizing process Methods 0.000 description 15
- -1 trade name WPBG-140) Chemical compound 0.000 description 15
- 239000007863 gel particle Substances 0.000 description 14
- 239000012528 membrane Substances 0.000 description 14
- 238000001035 drying Methods 0.000 description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 150000002430 hydrocarbons Chemical group 0.000 description 11
- 229940035429 isobutyl alcohol Drugs 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 230000032683 aging Effects 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 238000002834 transmittance Methods 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 125000001931 aliphatic group Chemical group 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 230000007062 hydrolysis Effects 0.000 description 8
- 238000006460 hydrolysis reaction Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 7
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- 238000009295 crossflow filtration Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000002612 dispersion medium Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 5
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 4
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 239000003377 acid catalyst Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 4
- 238000001879 gelation Methods 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 235000006408 oxalic acid Nutrition 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- HFROTQKOFJESPY-CMDGGOBGSA-N (e)-3-(2-hydroxyphenyl)-1-piperidin-1-ylprop-2-en-1-one Chemical compound OC1=CC=CC=C1\C=C\C(=O)N1CCCCC1 HFROTQKOFJESPY-CMDGGOBGSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 2
- DOYKFSOCSXVQAN-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CCO[Si](C)(OCC)CCCOC(=O)C(C)=C DOYKFSOCSXVQAN-UHFFFAOYSA-N 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000005370 alkoxysilyl group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 125000005504 styryl group Chemical group 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- JCGDCINCKDQXDX-UHFFFAOYSA-N trimethoxy(2-trimethoxysilylethyl)silane Chemical compound CO[Si](OC)(OC)CC[Si](OC)(OC)OC JCGDCINCKDQXDX-UHFFFAOYSA-N 0.000 description 2
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- VJDHKUHTYJLWPV-UHFFFAOYSA-N (2-nitrophenyl)methyl 4-(2-methylprop-2-enoyloxy)piperidine-1-carboxylate Chemical compound C(C(=C)C)(=O)OC1CCN(CC1)C(=O)OCC1=C(C=CC=C1)[N+](=O)[O-] VJDHKUHTYJLWPV-UHFFFAOYSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 1
- QWOVEJBDMKHZQK-UHFFFAOYSA-N 1,3,5-tris(3-trimethoxysilylpropyl)-1,3,5-triazinane-2,4,6-trione Chemical compound CO[Si](OC)(OC)CCCN1C(=O)N(CCC[Si](OC)(OC)OC)C(=O)N(CCC[Si](OC)(OC)OC)C1=O QWOVEJBDMKHZQK-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- UYBGGSUXZMAIBV-UHFFFAOYSA-N 1-(9,10-dioxoanthracen-2-yl)ethyl 1h-imidazole-2-carboxylate Chemical compound C=1C=C2C(=O)C3=CC=CC=C3C(=O)C2=CC=1C(C)OC(=O)C1=NC=CN1 UYBGGSUXZMAIBV-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- 125000006023 1-pentenyl group Chemical group 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- 125000004974 2-butenyl group Chemical group C(C=CC)* 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- NHCZYSDZAMNWGB-UHFFFAOYSA-N 3,4,6,7,8,9-hexahydro-2h-pyrimido[1,2-a]pyrimidine;2-(9-oxoxanthen-2-yl)propanoic acid Chemical compound C1CCN2CCCNC2=N1.C1=CC=C2C(=O)C3=CC(C(C(O)=O)C)=CC=C3OC2=C1 NHCZYSDZAMNWGB-UHFFFAOYSA-N 0.000 description 1
- ZADOWCXTUZWAKL-UHFFFAOYSA-N 3-(3-trimethoxysilylpropyl)oxolane-2,5-dione Chemical group CO[Si](OC)(OC)CCCC1CC(=O)OC1=O ZADOWCXTUZWAKL-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- LZMNXXQIQIHFGC-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propyl 2-methylprop-2-enoate Chemical compound CO[Si](C)(OC)CCCOC(=O)C(C)=C LZMNXXQIQIHFGC-UHFFFAOYSA-N 0.000 description 1
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- KBQVDAIIQCXKPI-UHFFFAOYSA-N 3-trimethoxysilylpropyl prop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C=C KBQVDAIIQCXKPI-UHFFFAOYSA-N 0.000 description 1
- PRKPGWQEKNEVEU-UHFFFAOYSA-N 4-methyl-n-(3-triethoxysilylpropyl)pentan-2-imine Chemical compound CCO[Si](OCC)(OCC)CCCN=C(C)CC(C)C PRKPGWQEKNEVEU-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- CBFAZWAGKJUAAD-UHFFFAOYSA-N C(C)O[Si](OCC)(OCC)C(CC)(CC)[Si](OCC)(OCC)OCC Chemical compound C(C)O[Si](OCC)(OCC)C(CC)(CC)[Si](OCC)(OCC)OCC CBFAZWAGKJUAAD-UHFFFAOYSA-N 0.000 description 1
- CBMHHCNDXPVVKT-UHFFFAOYSA-N CO[Si](OC)(OC)C(CN)(N(CCC)CCCC)[Si](OC)(OC)OC Chemical compound CO[Si](OC)(OC)C(CN)(N(CCC)CCCC)[Si](OC)(OC)OC CBMHHCNDXPVVKT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 125000004018 acid anhydride group Chemical group 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- WPKTVSACVFWTHQ-UHFFFAOYSA-N anisole;ethyl acetate Chemical compound CCOC(C)=O.COC1=CC=CC=C1 WPKTVSACVFWTHQ-UHFFFAOYSA-N 0.000 description 1
- ZWDNVDDEDBXBMD-UHFFFAOYSA-N anthracen-9-ylmethyl n,n-diethylcarbamate Chemical compound C1=CC=C2C(COC(=O)N(CC)CC)=C(C=CC=C3)C3=CC2=C1 ZWDNVDDEDBXBMD-UHFFFAOYSA-N 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000000861 blow drying Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- ZZNQQQWFKKTOSD-UHFFFAOYSA-N diethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OCC)(OCC)C1=CC=CC=C1 ZZNQQQWFKKTOSD-UHFFFAOYSA-N 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- AHUXYBVKTIBBJW-UHFFFAOYSA-N dimethoxy(diphenyl)silane Chemical compound C=1C=CC=CC=1[Si](OC)(OC)C1=CC=CC=C1 AHUXYBVKTIBBJW-UHFFFAOYSA-N 0.000 description 1
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- CZWLNMOIEMTDJY-UHFFFAOYSA-N hexyl(trimethoxy)silane Chemical compound CCCCCC[Si](OC)(OC)OC CZWLNMOIEMTDJY-UHFFFAOYSA-N 0.000 description 1
- QGGUMTNPIYCTSF-UHFFFAOYSA-N hexylsilane Chemical compound CCCCCC[SiH3] QGGUMTNPIYCTSF-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- HMDRAGZZZBGZJC-UHFFFAOYSA-N n-[3-[3-aminopropoxy(dimethoxy)silyl]propyl]-1-phenylprop-2-en-1-amine Chemical compound NCCCO[Si](OC)(OC)CCCNC(C=C)C1=CC=CC=C1 HMDRAGZZZBGZJC-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- XBXHCBLBYQEYTI-UHFFFAOYSA-N piperidin-4-ylmethanol Chemical compound OCC1CCNCC1 XBXHCBLBYQEYTI-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000734 polysilsesquioxane polymer Polymers 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 125000005409 triarylsulfonium group Chemical group 0.000 description 1
- FOQJQXVUMYLJSU-UHFFFAOYSA-N triethoxy(1-triethoxysilylethyl)silane Chemical compound CCO[Si](OCC)(OCC)C(C)[Si](OCC)(OCC)OCC FOQJQXVUMYLJSU-UHFFFAOYSA-N 0.000 description 1
- PGVSPORIGRCPMG-UHFFFAOYSA-N triethoxy(1-triethoxysilylhexyl)silane Chemical compound CCCCCC([Si](OCC)(OCC)OCC)[Si](OCC)(OCC)OCC PGVSPORIGRCPMG-UHFFFAOYSA-N 0.000 description 1
- LMEKMHPYJBYBEV-UHFFFAOYSA-N triethoxy(2-triethoxysilylpropan-2-yl)silane Chemical compound CCO[Si](OCC)(OCC)C(C)(C)[Si](OCC)(OCC)OCC LMEKMHPYJBYBEV-UHFFFAOYSA-N 0.000 description 1
- IDGYYGWFOFXISD-UHFFFAOYSA-N triethoxy(3-triethoxysilylbutan-2-yl)silane Chemical compound C(C)O[Si](OCC)(OCC)C(C)C(C)[Si](OCC)(OCC)OCC IDGYYGWFOFXISD-UHFFFAOYSA-N 0.000 description 1
- WUMSTCDLAYQDNO-UHFFFAOYSA-N triethoxy(hexyl)silane Chemical compound CCCCCC[Si](OCC)(OCC)OCC WUMSTCDLAYQDNO-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- NIINUVYELHEORX-UHFFFAOYSA-N triethoxy(triethoxysilylmethyl)silane Chemical compound CCO[Si](OCC)(OCC)C[Si](OCC)(OCC)OCC NIINUVYELHEORX-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- JBYXACURRYATNJ-UHFFFAOYSA-N trimethoxy(1-trimethoxysilylhexyl)silane Chemical compound CCCCCC([Si](OC)(OC)OC)[Si](OC)(OC)OC JBYXACURRYATNJ-UHFFFAOYSA-N 0.000 description 1
- QRTOPPGMVFGMNI-UHFFFAOYSA-N trimethoxy(3-trimethoxysilylbutan-2-yl)silane Chemical compound CO[Si](OC)(OC)C(C(C)[Si](OC)(OC)OC)C QRTOPPGMVFGMNI-UHFFFAOYSA-N 0.000 description 1
- BQXJQTRISSSESR-UHFFFAOYSA-N trimethoxy(3-trimethoxysilylpentan-3-yl)silane Chemical compound CO[Si](OC)(OC)C(CC)(CC)[Si](OC)(OC)OC BQXJQTRISSSESR-UHFFFAOYSA-N 0.000 description 1
- ZNOCGWVLWPVKAO-UHFFFAOYSA-N trimethoxy(phenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1 ZNOCGWVLWPVKAO-UHFFFAOYSA-N 0.000 description 1
- DJYGUVIGOGFJOF-UHFFFAOYSA-N trimethoxy(trimethoxysilylmethyl)silane Chemical compound CO[Si](OC)(OC)C[Si](OC)(OC)OC DJYGUVIGOGFJOF-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/145—Preparation of hydroorganosols, organosols or dispersions in an organic medium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/157—After-treatment of gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/20—Diluents or solvents
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/111—Anti-reflection coatings using layers comprising organic materials
Definitions
- the present invention relates to silicon oxide gel dispersions. Specifically, the present invention relates to a silicon oxide gel dispersion liquid that is easy to handle, a transparent low refractive index film, and a method for producing a silicon oxide gel dispersion liquid.
- Gels are used in various fields.
- dried gels made of silicon oxide have functional properties such as heat insulation, low dielectric constant properties, and low refractive index properties, and are used in optical materials, electronic materials, etc. It is used for various purposes.
- a method of preparing a dispersion in which the ground gelled product is dispersed in a solvent, applying this to a base material and drying it to form a film made of the gelled product described above. etc. are known.
- Patent Document 1 describes that a hydrophobic silica airgel film with a smooth surface was obtained by forming a film using a dispersion of organically modified silica in a ketone solvent.
- Patent Document 2 describes a gel-pulverized liquid containing Si element that is difficult to separate into solid and liquid and has excellent uniformity
- Patent Document 3 describes a gel-pulverized liquid containing Si element that is difficult to separate into solid-liquid and has excellent uniformity.
- a gel for producing a low refractive index film that can produce a film with a low refractive index, and a paint for producing a low refractive index film containing a pulverized product of the gel and a solvent are described.
- an object of the present invention is to provide a silicon oxide gel dispersion having excellent handling properties.
- the present inventor conducted various studies on silicon oxide gel dispersions and found that the viscosity of the gel dispersion is related to ease of handling during solvent replacement and pulverization processes. They discovered that the gel dispersion liquid has excellent handling properties, and completed the present invention. That is, the present invention provides the following aspects of the invention.
- [1] A silicon oxide gel dispersion containing a silicon oxide gel and a solvent, wherein the dispersion has a viscosity of 10 to 2000 mPa when the solid content concentration is 3.0 ⁇ 0.1% by mass.
- a silicon oxide gel dispersion liquid characterized by being s.
- the silicon oxide gel dispersion of the present invention has excellent handling properties. By using the silicon oxide gel dispersion of the present invention, optical materials can be suitably obtained.
- the present invention provides a silicon oxide gel dispersion containing a silicon oxide gel and a solvent, wherein the dispersion has a viscosity of 10 to 10% when the solid content concentration is 3.0 ⁇ 0.1% by mass.
- This is a silicon oxide gel dispersion characterized by a pressure of 2000 mPa ⁇ s.
- silicon oxide gel dispersions have been handled at a viscosity above a certain level (for example, about 4000 mPa ⁇ s or above) due to concerns about separation during storage; In terms of handling, there were problems such as the circulation path being blocked and the process not being able to proceed. Since the gel dispersion of the present invention has a viscosity within the above range, it can be easily handled in solvent replacement and pulverization steps. On the other hand, if the viscosity is in a low viscosity region, for example less than 10 mPa ⁇ s, the contents will begin to settle immediately after redispersion, making it extremely difficult to handle as a uniform dispersion.
- the viscosity is preferably 15 to 1,500 mPa ⁇ s, more preferably 20 to 1,000 mPa ⁇ s, even more preferably 25 to 500 mPa ⁇ s, and even more preferably 25 to 400 mPa ⁇ s. It is preferably 25 to 200 mPa ⁇ s, and most preferably 25 to 200 mPa ⁇ s.
- the above viscosity can be determined by measuring at 25° C. using an E-type viscometer (product number: TV-20L, manufactured by Toki Sangyo Co., Ltd.). Examples of methods for adjusting the solid content concentration of the dispersion to 3.0 ⁇ 0.1% by mass include a method of concentrating by filtration or centrifugation, and a method of diluting with a solvent contained in the dispersion.
- the silicon oxide gel contained in the silicon oxide gel dispersion of the present invention is a gel-like compound of silicon oxide obtained by subjecting a silicon-containing compound to a hydrolysis/condensation reaction.
- the silicon-containing compound described above will be explained in the method for producing a silicon oxide gel dispersion described later.
- the silicon oxide gel preferably contains a hydrolysis/condensation product of tetraalkoxysilane or alkylalkoxysilane, more preferably a hydrolysis/condensation product of alkylalkoxysilane, and contains alkyltrialkoxysilane. It is more preferable to include a hydrolyzed/condensed product of silane.
- the silicon oxide gel is an organosilicon oxide gel.
- the shape of the silicon oxide gel is not particularly limited, but in the case of gel particles such as pulverized gel, examples include spherical and non-spherical shapes.
- the average particle size of the silicon oxide gel is preferably 1 to 99 ⁇ m. When the average particle size of the silicon oxide gel is within the above range, the storage stability of the dispersion is good, and if further pulverization of the gel is required, it can be processed with a pulverizer without any problem.
- the average particle size is more preferably 5 to 80 ⁇ m, and even more preferably 10 to 60 ⁇ m, from the viewpoint of suppressing gel sedimentation.
- the above-mentioned average particle diameter is a number average particle diameter, and can be determined using a laser diffraction particle size distribution analyzer, and specifically, can be determined by the method described in the Examples described below.
- the silicon oxide gel preferably has pores. By filling the pores with air, gas, etc., the refractive index becomes low, and the above dispersion liquid can be used as a low refractive index material.
- the pore volume of the dried silicon oxide gel is preferably 0.5 to 3.0 cm 3 /g. When the pore volume of the dry product of the silicon oxide gel is within the above range, a coating film with a low refractive index and high strength can be obtained.
- the pore volume may be appropriately selected depending on the purpose and use, but it is more preferably 0.8 to 2.8 cm 3 /g, and more preferably 1.2 to 2.5 cm 3 /g. More preferred.
- the pore volume is determined by measuring the dry silicon oxide gel using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell), and analyzing the measurement results using the BJH method. It can be found by
- the dried silicon oxide gel is not particularly limited as long as the solvent in the gel has completely evaporated and the silicon oxide gel has been dried, for example, by heating at 80 to 100°C for 3 to 24 hours. Examples include dried products that can be obtained, but preferably, drying is performed at 80°C for 24 hours at 0.02 MPa or less, and then further dried at 100°C for 3 hours or more at 10 Pa or less before measurement. It is a thing. Specifically, the pore volume can be determined by the method described in Examples below.
- the pore diameter of the dried silicon oxide gel is preferably 1 to 45 nm. When the pore diameter of the dried silicon oxide gel is within the above range, a coating film with a low refractive index and high strength can be obtained.
- the pore diameter is more preferably from 5 to 37 nm, and even more preferably from 13 to 29 nm.
- the pore diameter is measured on the dried silicon oxide gel dispersion using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell), and the measurement results are analyzed by the BJH method. It can be determined by the method and is a volume distribution.
- the dried silicon oxide gel described above can be prepared by a method similar to the method described above. Specifically, the pore diameter can be determined by the method described in Examples described later.
- the dry silicon oxide gel preferably has a specific surface area of 460 to 870 m 2 /g.
- the specific surface area of the silicon oxide gel is within the above range, a coating film with a low refractive index and high strength can be obtained.
- the specific surface area is preferably 530 to 800 m 2 /g, more preferably 600 to 730 m 2 /g.
- the specific surface area is measured for the dried silicon oxide gel dispersion using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell), and the measurement results are analyzed by the BET method.
- the dried product of the silicon oxide gel can be prepared by a method similar to the method described above. Specifically, the specific surface area can be determined by the method described in Examples described later.
- the amount of water in the silicon oxide gel dispersion is preferably 0.01 to 5% by mass based on 100% by mass of the gel.
- the moisture content is more preferably 0.01 to 3% by mass, and even more preferably 0.01 to 1% by mass.
- the above water content can be determined by the Karl Fischer method.
- the above-mentioned solvent contained as a dispersion medium in the silicon oxide gel dispersion of the present invention is not particularly limited, and may be appropriately selected depending on the purpose and use of the above-mentioned silicon oxide gel dispersion. It is preferable to contain an organic solvent having a hydroxyl group in terms of good properties.
- organic solvent having a hydroxyl group examples include alcohols such as methanol, ethanol, isopropyl alcohol, n-butanol, 2-butanol, isobutyl alcohol, pentyl alcohol, hexanol, octanol, ethylene glycol, diethylene glycol, propylene glycol, and glycerin.
- Preferred examples include solvents. Among these, isopropyl alcohol, n-butanol, 2-butanol, isobutyl alcohol, and pentyl alcohol are more preferred, and isobutyl alcohol is even more preferred, since the drying rate can be easily controlled.
- the above solvents may be used alone or in combination of two or more.
- the solvent as the dispersion medium may contain other solvents in addition to the above-mentioned organic solvent having a hydroxyl group, but when it contains another solvent, the amount of the organic solvent having a hydroxyl group is It is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more, based on 100% by mass of the total solvent in the dispersion.
- solvents mentioned above include, for example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ether solvents such as diethyl ether, tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, diethylene glycol ethyl ether, and anisole; ethyl acetate, butyl acetate , propylene glycol monomethyl ether acetate, and 3-methoxybutyl acetate; cellosolve solvents such as methyl cellosolve, ethyl cellosolve, and butyl cellosolve; aromatic hydrocarbons such as benzene and toluene. These may be used alone or in combination of two or more.
- ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
- the solid content concentration of the silicon oxide gel dispersion is preferably 1 to 10% by mass, and 2 to 8% by mass at the time the gel is dispersed in the dispersion medium containing the organic solvent having hydroxyl groups. It is more preferably 2.5 to 5% by mass, and even more preferably 2.5 to 5% by mass.
- the above-mentioned solid content concentration means the ratio (mass %) of the total amount of components other than the solvent which is the dispersion medium of the silicon oxide in the gel dispersion to 100 mass % of the gel dispersion.
- the above-mentioned solid content concentration can be determined by the method described in Examples described later.
- the silicon oxide gel dispersion may contain other additives such as a catalyst, depending on the purpose and use of the silicon oxide gel dispersion.
- the other additives include photoactive catalysts and thermally active catalysts.
- the photoactive catalyst include photocatalyst generators, such as photobase generators (substances that generate basic catalysts when irradiated with light), photoacid generators (substances that generate acidic catalysts when irradiated with light), etc. are mentioned, and photobase generators are preferred.
- photobase generator examples include 9-anthrylmethyl N,N-diethylcarbamate (trade name WPBG-018), (E)-1-[3-(2- hydroxyphenyl)-2-propenoyl]piperidine ((E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine, trade name WPBG-027), 1-(anthraquinon-2-yl)ethyl imidazole carboxy Rate (1-(anthraquinon-2-yl)ethyl imidazolecarboxylate, trade name WPBG-140), 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate (trade name WPBG-165), 1,2-diisopropyl- 3-[bis(dimethylamino)methylene]guanidium 2-(3-benzoylphenyl)propionate (trade name WPBG-266), 1,2-dicyclohexyl-4,4,5,5-t
- photoacid generator examples include aromatic sulfonium salts (product name SP-170: ADEKA), triarylsulfonium salts (product name CPI101A: Sun-Apro), aromatic iodonium salts (product name Irgacure 250: Ciba Japan). Company), etc.
- a thermally activated catalyst (or a thermal catalyst generator) may be used in the gel dispersion of the present invention.
- the thermally active catalyst include base catalysts such as potassium hydroxide, sodium hydroxide, and ammonium hydroxide, and acid catalysts such as hydrochloric acid, acetic acid, and oxalic acid. Among these, base catalysts are preferred.
- a crosslinking aid may be added to the gel dispersion of the present invention.
- the above-mentioned cross-linking adjuvant enters between the particles, and the particles and the cross-linking adjuvant interact or bond with each other, making it possible to bond even particles that are somewhat distant, efficiently increasing the strength of the gel. It becomes possible to raise the As the crosslinking aid, a multi-crosslinked silane monomer is preferred.
- the multi-crosslinked silane monomer may have, for example, 2 or more and 3 or less alkoxysilyl groups, the chain length between the alkoxysilyl groups may be 1 or more and 10 or less carbon atoms, and an element other than carbon. may also be included.
- the crosslinking aid include bis(trimethoxysilyl)ethane, bis(triethoxysilyl)ethane, bis(trimethoxysilyl)methane, bis(triethoxysilyl)methane, bis(triethoxysilyl)propane, and bis(trimethoxysilyl)ethane.
- the method for producing the silicon oxide gel dispersion of the present invention is not particularly limited, but may include, for example, a step of gelling the silicon oxide dispersion while stirring, since it can be produced efficiently. preferable.
- a step of gelling the silicon oxide dispersion while stirring the temperature is uniformly applied to the gel, making it possible to obtain a homogeneous gel even in mass production, and a gel dispersion with a low viscosity.
- a lumpy gel is obtained and a cutting step and a coarse grinding step are required, such steps can be omitted and simplified.
- Such a method for producing a silicon oxide gel dispersion which includes a step of gelling the silicon oxide dispersion while stirring, is also part of the present invention.
- the gelling step (also referred to as gelling step (2)) is a step in which at least a portion of the silicon oxide contained in the silicon oxide dispersion becomes gelled.
- the silicon oxide dispersion liquid is a dispersion liquid containing a hydrolyzate of a silicon-containing compound that is a raw material for a silicon oxide gel dispersion liquid. At least a portion of the hydrolyzate is dehydrated and condensed to produce a gel-like silicon oxide. Therefore, the above-mentioned gelling step is a step in which the hydrolyzate of the silicon-containing compound is condensed to form a gel of silicon oxide.
- the above-mentioned stirring method is not particularly limited and includes known stirring methods, such as known stirring methods using a stirrer having stirring blades such as paddle blades, inclined paddle blades, Max Blend, anchor blades, helical ribbon blades, etc.
- known stirring methods such as known stirring methods using a stirrer having stirring blades such as paddle blades, inclined paddle blades, Max Blend, anchor blades, helical ribbon blades, etc.
- stirring methods include:
- a dispersion with a predetermined viscosity can be prepared without stirring. can.
- the gelation is preferably performed by adding a base catalyst to the hydrolyzate of the silicon-containing compound.
- a base catalyst to the hydrolyzate of the silicon-containing compound, the hydrolyzate is dehydrated and condensed to form a gel.
- the hydrolyzate of the silicon-containing compound can be obtained by mixing the silicon-containing compound with water, an acid catalyst, and, if necessary, a solvent other than water (solvent for gel production).
- the above hydrolysis may be performed by stirring the mixture.
- Examples of the silicon-containing compound include a compound represented by the following formula (1).
- R 1 and R 2 are the same or different and represent a hydrogen atom or an organic group.
- a plurality of R 1 and R 2 may be the same or different from each other.
- a is , represents an integer from 1 to 4.
- the organic groups represented by R 1 and R 2 above include hydrocarbon groups that may have a substituent, hydrocarbon groups that may have a substituent, -NH-, -CO-, -O- , a group in which a divalent group such as a phenylene group is combined, and a group in which at least a part of the atoms constituting the hydrocarbon group is replaced with a nitrogen atom, an oxygen atom, or a sulfur atom.
- the above hydrocarbon group may be linear, branched, or cyclic, and may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
- the hydrocarbon group is preferably linear or branched, more preferably linear.
- the saturated hydrocarbon group is an aliphatic hydrocarbon group.
- the aliphatic hydrocarbon groups include linear alkyl groups such as methyl, ethyl, propyl, and butyl; branched alkyl groups such as isopropyl and isobutyl; and cycloalkyl groups such as cyclohexyl. ; etc.
- Examples of the unsaturated hydrocarbon group include linear alkenyl groups such as vinyl group, n-propenyl group, 1-butenyl group, 2-butenyl group, and 1-pentenyl group; branched alkenyl groups such as isopropenyl group.
- Aryl groups such as phenyl, tolyl, and xylyl groups; aralkyl groups such as benzyl and phenethyl groups; and aromatic hydrocarbon groups such as styryl groups.
- the hydrocarbon group preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and even more preferably 1 to 2 carbon atoms.
- hydrocarbon group may have examples include epoxy groups, (meth)acryloyl groups, amino groups, isocyanate groups, mercapto groups, succinic anhydride groups, and isocyanurate substituents. It will be done.
- R 1 is preferably an aliphatic hydrocarbon group from the viewpoint of membrane strength and stability of primary particles within the gel, and preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms. More preferred is a methyl group, and even more preferred is a methyl group.
- R 2 is preferably a hydrogen atom or an aliphatic hydrocarbon group, preferably a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. More preferably, it has 1 to 2 aliphatic hydrocarbon groups.
- a in the above formula (1) represents an integer of 1 to 4, preferably 2 to 4, and more preferably 3 to 4.
- the silicon-containing compound is preferably di- to tetrafunctional, more preferably trifunctional, from the standpoint of maintaining high film strength and flexibility.
- silicon-containing compounds include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane; methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyl Alkyltrialkoxysilanes such as triethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and alkylalkoxysilanes such as alkyldialkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane.
- tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, t
- Aryl alkoxysilane such as phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane; Vinyl group-containing alkoxysilane such as vinyltrimethoxysilane, vinyltriethoxysilane; 2-(3,4-epoxy Epoxies such as cyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, etc.
- the silicon-containing compound may be a salt such as a hydrochloride of these silane compounds.
- the silicon-containing compound is preferably at least one selected from the group consisting of tetraalkoxysilane and alkylalkoxysilane, more preferably alkylalkoxysilane, from the viewpoint of maintaining high film strength and flexibility. More preferred are trialkoxysilanes.
- the above silicon-containing compounds may be used alone or in combination of two or more.
- the above-mentioned water is not particularly limited, and may be any water such as distilled water, ion-exchanged water, and pure water.
- the amount of water used is not particularly limited, but for example, it is preferably 20 to 400 parts by weight, more preferably 40 to 200 parts by weight, and 60 to 100 parts by weight, based on 100 parts by weight of the silicon-containing compound. More preferably, it is parts by mass.
- the acid catalyst examples include hydrochloric acid, oxalic acid, and sulfuric acid.
- the amount of the acid catalyst used is not particularly limited, but for example, it is preferably 0.001 to 0.5 parts by mass, and 0.01 to 0.2 parts by mass, based on 100 parts by mass of the silicon-containing compound. It is more preferable that the amount is 0.02 to 0.1 parts by mass.
- the solvent other than water is not particularly limited, and known solvents commonly used for gel production can be used, such as dimethyl sulfoxide (DMSO), N-methylpyrrolidone ( Aprotic polar solvents such as NMP), N,N-dimethylacetamide (DMAc), dimethylformamide (DMF), ⁇ -butyllactone (GBL), acetonitrile (AN), acetone, and ethylene glycol monoethyl ether (EGEE);
- DMSO dimethyl sulfoxide
- NMP N,N-dimethylacetamide
- DMF dimethylformamide
- GBL ⁇ -butyllactone
- AN acetonitrile
- EGEE ethylene glycol monoethyl ether
- protic polar solvents such as alcoholic solvents such as methanol, ethanol, isopropyl alcohol, isobutyl alcohol, and n-butyl alcohol.
- aprotic polar solvents are preferred from the viewpoint of ensuring the stability and transparency of the primary particles of silicon oxide gel, such as N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO).
- NMP N-methylpyrrolidone
- DMSO dimethylsulfoxide
- DMF dimethylformamide
- GBL ⁇ -butyllactone
- DMAc N,N-dimethylacetamide
- the solvents other than water may be used alone or in combination of two or more.
- the amount of the solvent other than water used is not particularly limited, but for example, it is preferably 50 to 600 parts by mass, more preferably 100 to 400 parts by mass, based on 100 parts by mass of the silicon-containing compound. More preferably, the amount is 150 to 250 parts by mass.
- the reaction temperature for the above hydrolysis is preferably 10 to 60°C, more preferably 15 to 50°C, even more preferably 20 to 40°C. Further, the reaction time is preferably 0.1 to 40 hours, more preferably 0.2 to 20 hours, and even more preferably 0.5 to 10 hours.
- Hydrolysis of the silicon-containing compound produces a hydrolyzate in which at least a portion of "(OR 2 ) a " in formula (1) representing the silicon-containing compound becomes "(OH) a ".
- the method for producing the silicon oxide gel dispersion preferably includes the step (1) of hydrolyzing the silicon-containing compound before the gelling step (2).
- the chlorine catalyst examples include ammonia, potassium hydroxide, sodium hydroxide, and the like.
- the base When mixing the base catalyst, the base may be diluted with a solvent or water in advance.
- the amount of the base catalyst used is preferably 0.1 to 50 parts by weight, more preferably 1 to 30 parts by weight, and 10 to 20 parts by weight based on 100 parts by weight of the silicon-containing compound. It is even more preferable.
- the temperature of the gelling step is preferably 10 to 80°C, more preferably 15 to 70°C, and even more preferably 20 to 60°C.
- the method may further include a step (3) of aging the silicon oxide gel.
- a crosslinking reaction progresses through aging, and the skeleton of the silicon oxide gel becomes stronger.
- the aging step (3) is preferably carried out with stirring for the same reason as the gelling step (2) described above.
- Examples of the above-mentioned stirring method include the same method as the stirring method in the gelling step described above.
- the temperature of the aging reaction is not particularly limited, but is preferably the same as the gelling step described above.
- the reaction time is preferably 1 to 40 hours, more preferably 2 to 35 hours, and still more preferably 3 to 30 hours, including the gelation step.
- the gelling step (or also including the aging step) produces a gel-like silicon oxide.
- the above silicon oxide is a compound (siloxane compound) having a siloxane bond (Si--O--Si bond).
- the siloxane compound may be a compound having a chain-like (straight-chain or branched), ladder-like, network-like, cyclic, cage-like, cubic-like, random-like structure, or the like.
- the siloxane compound is polysilsesquioxane.
- the above manufacturing method further includes a solvent replacement step.
- the resulting gel or gel solution contains the solvent used during gel production.
- the silicon oxide gel dispersion can be made suitable for the purpose and use.
- the solvent not only the unnecessary solvent during gel production but also the remaining amount of catalyst and generated by-products can be reduced, improving the storage stability of the resulting gel dispersion and improving its properties. can be more fully demonstrated.
- the method for replacing the solvent is not particularly limited, and may be carried out by any known method such as contacting the silicon oxide gel obtained in the gelling step (or aging step) with a replacement solvent.
- the silicon oxide gel is immersed in or brought into contact with a replacement solvent to dissolve the gel manufacturing solvent in the gel, the alcohol component produced by the condensation reaction, water, etc. in the replacement solvent, and then, Examples include a method in which the above-mentioned replacement solvent in which the gel is immersed or brought into contact is discarded, and the above-mentioned gel is immersed in or brought into contact with a new replacement solvent again.
- the gel may be immersed or brought into contact with the gel once or repeatedly several times.
- Another method for replacing the solvent in the silicon oxide gel is a method using a filtration membrane, and specifically, for example, by adding a replacement solvent to the silicon oxide gel and filtering it. , a filtration method in which the gel manufacturing solvent, alcohol component, etc. dissolved in the replacement solvent are continuously passed through a membrane.
- a filtration method is preferred in terms of good solvent replacement efficiency, and cross-flow filtration is more preferred.
- cross-flow filtration is a method of filtration in which the liquid direction is perpendicular to the filtration direction, and is not particularly limited as long as it is such a cross-flow type filtration method, and it can be performed by a known method. Can be done.
- efficient filtration can be achieved by circulating the liquid to be filtered and bringing it into contact with a filtration membrane.
- the filtration membrane used in the cross-flow filtration is not particularly limited, and includes polysulfone, polyacrylonitrile, polyethylene, tetrafluoroethylene, polypropylene, polyethersulfone, aluminum oxide, zirconium oxide, titanium oxide, stainless steel, glass, ceramic, and metal.
- a filtration membrane made of a known material such as mesh can be used. Among these, filtration membranes made of ceramic are preferred because they have high corrosion resistance, high heat resistance, and high strength.
- the pore size of the filtration membrane may be selected appropriately depending on the size of the gel, but is preferably 0.005 to 10 ⁇ m, more preferably 0.01 to 5 ⁇ m, and 0.05 to 3 ⁇ m. It is even more preferable.
- the above-mentioned filtration membrane may be a commercially available product.
- Examples of the filtration membrane that can be used in the present invention include a ceramic membrane filter manufactured by NGK Insulators, a ceramic filter manufactured by Noritake Company, and a ceramic membrane filter manufactured by Nippon Pall. etc.
- the above-mentioned filtration conditions are not particularly limited, and may be appropriately selected from known methods.
- the solvent replacement described above may be performed by directly replacing the solvent for gel production with the target solvent, or by replacing the solvent in multiple steps. Among these, from the viewpoint of production efficiency, it is preferable to perform solvent replacement in one step.
- the above-mentioned replacement solvent is not particularly limited and may be appropriately selected depending on the purpose and use of the dispersion, and examples thereof include the solvent as the dispersion medium of the gel dispersion of the present invention described above.
- the above manufacturing method may further include a pulverization step.
- pulverizing the gel By pulverizing the gel, the particle size of the gel particles can be adjusted, and the desired gel dispersion can be efficiently produced. Moreover, the amount of gel manufacturing solvent and by-products can be reduced more efficiently.
- the pulverization method is not particularly limited as long as it can be pulverized to the desired particle size of the gel particles, and includes emulsifying and dispersing machines such as homomixers, milders, ultrasonic homogenizers, and high-speed rotation homogenizers, ball mills, bead mills, and sand mills.
- emulsifying and dispersing machines such as homomixers, milders, ultrasonic homogenizers, and high-speed rotation homogenizers, ball mills, bead mills, and sand mills.
- Known pulverization methods such as a media pulverizer such as .
- the above-mentioned pulverization step may be performed in a solvent.
- the solvent used for pulverization may be the same as the above-mentioned gel manufacturing solvent or substitution solvent, or may be a mixture thereof. Further, pulverization may be performed by appropriately adding these solvents.
- the pulverizing step may be performed before or after the solvent replacement step, or may be performed before or after the solvent replacement step.
- the method for producing the dispersion liquid may include other commonly known steps such as a concentration step, a purification step, a washing step, and the like.
- the residual amount of the gel manufacturing solvent in the silicon oxide gel dispersion obtained by the above manufacturing method is preferably 20,000 ppm or less, more preferably 10,000 ppm or less, even more preferably 5,000 ppm or less, and 1,000 ppm or less. It is even more preferable that it is below, and particularly preferably that it is 500 ppm or less.
- the silicon oxide gel dispersion of the present invention can be suitably used as an optical silicon oxide gel dispersion.
- the silicon oxide gel dispersion of the present invention is preferably used for a low refractive index material having a refractive index of 1.25 or less.
- the low refractive index material having a refractive index of 1.25 or less means that the refractive index of the dry product of the low refractive index material is 1.25 or less.
- the dried material include a film-like material. For example, by using the silicon oxide gel dispersion described above, a low refractive index film having a refractive index of 1.25 or less can be obtained.
- Examples of the method for producing a low refractive index film using the silicon oxide gel dispersion of the present invention include a method of applying the silicon oxide gel dispersion to a base material and drying the coated material. It will be done.
- the above-mentioned base material is not particularly limited, and includes, for example, a glass base material; an inorganic base material such as silicon; a thermoplastic resin base material such as polyethylene terephthalate, acrylic, cellulose acetate propionate, polyethylene phthalate, polyethylene, and polypropylene; Examples include carbon fiber base materials. Examples of the form of the base material include a film, sheet, plate, and the like.
- the coating method is not particularly limited, and includes known coating methods such as dip coating, spray coating, and die coating.
- the drying method is not particularly limited, and includes known drying means such as leaving drying, blow drying, and heating drying.
- the heating temperature may be appropriately selected depending on the boiling point of the solvent contained in the gel dispersion, but for example, it is preferably 80 to 110°C, and preferably 85 to 100°C. The temperature is more preferably 90 to 95°C.
- the heating time is not particularly limited, for example, it is preferably 1 hour or less, more preferably 0.5 hour or less, and even more preferably 0.1 hour or less.
- the thickness of the low refractive index film formed on the base material is not particularly limited, but is preferably 0.01 to 100 ⁇ m, more preferably 0.05 to 10 ⁇ m, and 0.1 to 3 ⁇ m. It is more preferable that
- the refractive index of the low refractive index film is preferably 1.25 or less, more preferably 1.23 or less, and even more preferably 1.21 or less.
- the above-mentioned refractive index can be determined by the method described in Examples described later.
- the low refractive index film preferably has pores. Having pores can provide a low refractive index.
- the porosity of the low refractive index film is preferably 40 to 65%, more preferably 45 to 62%, and even more preferably 50 to 60%.
- the porosity can be calculated from the measured value of the refractive index using the Lorentz-Lorentz equation.
- the total light transmittance of the low refractive index film is preferably 80% or more, more preferably 85% or more, and even more preferably 88% or more in terms of excellent transparency.
- the total light transmittance can be measured using a haze meter HM-150 (manufactured by Murakami Color Research Institute), and specifically, can be determined by the method described in Examples.
- Such a low refractive index film produced using the silicon oxide gel dispersion and characterized by having pores is also one of the preferred embodiments of the present invention.
- the above-mentioned low refractive index film is also referred to as a "low refractive index film.”
- a transparent low refractive index film characterized by having pores and produced using the silicon oxide gel dispersion is also part of the present invention.
- silicon oxide gel dispersion of the present invention is useful not only for optical (material) applications as described above, but also for heat insulating materials and low dielectric materials.
- viscosity E-type viscometer (manufactured by Toki Sangyo Co., Ltd.: TV-20L, low viscosity area: 1° 34' x R24 rotor, or high viscosity area: 3° x R9.7 rotor, upper limit of viscosity of the rotor for low viscosity area) (607.6 mPa ⁇ s, if the viscosity is higher, use a rotor for high viscosity range) at 25°C and a rotational speed of 5 rpm, and 2.5 minutes after the start of the measurement. The value was adopted.
- pore volume The gel dispersion was dried at 80° C. under reduced pressure conditions (0.02 MPa or less) for 24 hours, and a dried gel obtained was used as a measurement sample.
- the pore volume was calculated by measuring using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell Co., Ltd.) and analyzing the measurement results by the BJH method. The above measurement was performed as a pretreatment after drying the measurement sample at 10 Pa or less and 100° C. for 3 hours or more before the measurement.
- the gel dispersion was dried at 80° C. under reduced pressure conditions (0.02 MPa or less) for 24 hours, and a dried gel obtained was used as a measurement sample.
- the specific surface area was measured using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell Co., Ltd.), and the measurement results were analyzed by the BET method to calculate the specific surface area. Note that the above measurement was performed as a pretreatment after drying the measurement sample at 10 Pa or less and 100° C. for 3 hours or more before the measurement.
- the gel dispersion was dried at 80° C. under reduced pressure conditions (0.02 MPa or less) for 24 hours, and a dried gel obtained was used as a measurement sample.
- the pore diameter was calculated by measuring using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell Co., Ltd.) and analyzing the measurement results by the BJH method. Note that the above measurement was performed as a pretreatment after drying the measurement sample at 10 Pa or less and 100° C. for 3 hours or more before the measurement.
- Solid content Solid content was measured by the following method. 1. The aluminum plate was accurately weighed. 2. A sample (gel dispersion liquid) whose solid content was to be measured was placed on an accurately weighed aluminum plate, and the sample was accurately weighed. 3. On a hot plate adjusted to 180°C, 2. The accurately weighed sample was placed in the aluminum dish for 1 hour. 4. After 1 hour, the aluminum plate and the component whose solid content was to be measured were removed from the hot plate and allowed to cool. 5. After cooling, the aluminum plate and the sample (after drying) whose solid content was to be measured were accurately weighed. 6. Using the weight measured above, the solid content was calculated using the following formula.
- Solid content (%) ⁇ [(Weight obtained with the precision scale in 5 above) - (Weight of the aluminum plate obtained with the precision scale in 1 above)] / [(Weight obtained with the precision scale in 2 above) ) - (Weight of the aluminum plate obtained using the precision scale in 1 above)] ⁇ x 100
- a film with a low refractive index layer cut into a size of 25 mm x 50 mm was bonded to the surface of a glass plate (thickness: 3 mm) via an adhesive.
- the center part (about 20 mm in diameter) of the back surface of the glass plate was filled in with black marker to prepare a sample that did not reflect on the back surface of the glass plate.
- the sample was set in an ellipsometer (manufactured by J.A. Woollam Japan: VASE), and the refractive index was measured at a wavelength of 550 nm and an incident angle of 50 to 80 degrees.
- Total light transmittance The side surface of the film with a low refractive index layer is pasted on a slide glass (total light transmittance of 92% or more), and the side surface of the low refractive index layer of the resulting laminate is measured using a haze meter HM-150 (Murakami Color Technology). (manufactured by Kenkyusho Co., Ltd.).
- Example 1 In a four-necked flask equipped with a cooling tube, a thermometer, and a dripping port, 208 parts of dimethyl sulfoxide, 23 parts of ion-exchanged water, and 100 parts of methyltrimethoxysilane (trade name KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.) were charged. The internal temperature was adjusted to 30°C while stirring using a three-one motor (manufactured by Shinto Kagakusha). After 53 parts of a 0.015M oxalic acid aqueous solution was dropped into the temperature-controlled mixed solution from the dropping port while stirring was continued, methyltrimethoxysilane was hydrolyzed by keeping the internal temperature at 30° C.
- the resulting gel dispersion had a solid content of 3.09% by mass, a residual DMSO amount of 99 ppm, and a viscosity of 25 mPa ⁇ s.
- the number average particle diameter of the gel particles was 44 ⁇ m.
- the pore volume of the dried gel was 2.2 cm 3 /g, the specific surface area was 714 m 2 /g, and the pore diameter was 18.4 nm.
- the obtained gel dispersion was treated with a mixer (model: high-speed homogenizer HF93, manufactured by SMT Co., Ltd.) at 9000 rpm for 5 minutes, and then treated with an ultra-high pressure wet atomization device (Nano Veita, manufactured by Yoshida Kikai Kogyo Co., Ltd.) at 100 MPa, 50 MPa, It was pulverized three times under the condition of 50 MPa to obtain a nano-pulverized liquid (average particle size of gel particles 0.2 ⁇ m). The average particle diameter of the gel particles of the nano-pulverized liquid was measured using a dynamic light scattering particle size distribution meter NICOMP manufactured by MS Scientific.
- the obtained nano-pulverized liquid 0.062 g of a 1.5% by mass MEK (methyl ethyl ketone) solution of a photobase generator (Fujifilm Wako Pure Chemical Industries, Ltd.: trade name WPBG266) was added, and bis(trimethoxy A 5% MEK solution of (silyl) hexane was added at a ratio of 0.036 g to obtain a gel dispersion coating solution.
- the obtained gel dispersion coating liquid was applied onto an acrylic base material (total light transmittance: 92%) and dried at 100° C. for 2 minutes. As a result, a film with a low refractive index layer was obtained.
- the thickness of the low refractive index layer was 0.9 ⁇ m
- the refractive index was 1.163
- the total light transmittance 91%.
- Example 2 Example 1 was carried out in the same manner as in Example 1, except that the amounts of dimethyl sulfoxide and ion-exchanged water added after hydrolysis were changed to 1335 parts and 210 parts, respectively, to obtain an isobutyl alcohol-substituted silicon oxide gel dispersion.
- the resulting gel dispersion had a solid content of 3.1% by mass, a residual DMSO amount of 43 ppm, and a viscosity of 105 mPa ⁇ s.
- the number average particle diameter of the gel particles was 41 ⁇ m.
- the pore volume of the dried gel was 2.0 cm 3 /g, the specific surface area was 707 m 2 /g, and the pore diameter was 18.4 nm.
- the obtained gel dispersion was treated with a mixer (model: high-speed homogenizer HF93, manufactured by SMT Co., Ltd.) at 9000 rpm for 5 minutes, and then treated with an ultra-high pressure wet atomization device (Nano Veita, manufactured by Yoshida Kikai Kogyo Co., Ltd.) at 150 MPa, 150 MPa, It was pulverized three times under the condition of 50 MPa to obtain a nano-pulverized liquid (average particle size 0.1 ⁇ m).
- Example 2 The same operation as in Example 1 was performed to obtain a film with a low refractive index layer.
- the thickness of the low refractive index layer was 0.9 ⁇ m, the refractive index was 1.166, and the total light transmittance was 91%.
- Example 3 In Example 1, the amounts of dimethyl sulfoxide and ion-exchanged water added after hydrolysis were changed to 733 parts and 82 parts, respectively, and the stirring operation was not performed during aging. I got it.
- the obtained aged gel was coarsely ground using a spatula and a plastic container, 100 parts of isobutyl alcohol was added to 100 parts of the coarsely ground gel, and the mixture was ground for 5 minutes at 25°C and 8,000 rpm using a homomixer MARKII model 2.5 manufactured by Primix. By doing so, a stirred and aged gel slurry containing gel particles was obtained. Thereafter, as in Example 1, solvent replacement was performed to obtain an isobutyl alcohol-substituted silicon oxide gel dispersion.
- the resulting gel dispersion had a solid content of 3.10% by mass, a residual DMSO amount of 109 ppm, and a viscosity of 476 mPa ⁇ s.
- the number average particle diameter of the gel particles was 71 ⁇ m.
- the dried gel had a pore volume of 1.4 cm 3 /g, a specific surface area of 803 m 2 /g, and a pore diameter of 12.1 nm.
- the obtained gel dispersion was treated with a mixer (model: HF93, manufactured by SMT Co., Ltd.) at 9000 rpm for 5 minutes, and then treated at 100 MPa, 50 MPa, and 50 MPa using an ultra-high pressure wet atomization device (Nano Veita, manufactured by Yoshida Kikai Kogyo Co., Ltd.).
- the nano-pulverized liquid was obtained by pulverizing three times under the following conditions.
- Example 2 The same operation as in Example 1 was performed to obtain a film with a low refractive index layer.
- the thickness of the low refractive index layer was 0.9 ⁇ m, the refractive index was 1.178, and the total light transmittance was 91%.
- Example 4 In a four-necked flask equipped with a cooling tube, thermometer, and dropping port, add 208 parts of 90% dimethyl sulfoxide, 23 parts of ion-exchanged water, and 100 parts of methyltrimethoxysilane (trade name KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.). , 10 parts of tetraethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) were charged, and the internal temperature was adjusted to 30° C. while stirring using a three-one motor (manufactured by Shinto Kagaku Co., Ltd.).
- the resulting gel dispersion had a solid content of 3.06% by mass, a residual DMSO amount of 55 ppm, and a viscosity of 52 mPa ⁇ s.
- the number average particle diameter of the gel particles was 56 ⁇ m.
- the pore volume of the dried gel was 1.7 cm 3 /g, the specific surface area was 708 m 2 /g, and the pore diameter was 12.7 nm.
- the obtained gel dispersion was treated with a mixer (model: high-speed homogenizer HF93, manufactured by SMT Co., Ltd.) at 9000 rpm for 5 minutes, and then treated with an ultra-high pressure wet atomization device (Nano Veita, manufactured by Yoshida Kikai Kogyo Co., Ltd.) at 150 MPa, 150 MPa, It was pulverized three times under the condition of 50 MPa to obtain a nano-pulverized liquid (average particle size of gel particles 0.1 ⁇ m). The average particle diameter of the gel particles of the nano-pulverized liquid was measured using a dynamic light scattering particle size distribution meter NICOMP manufactured by MS Scientific.
- the obtained gel dispersion coating liquid was applied onto an acrylic base material (total light transmittance: 92%) and dried at 100° C. for 2 minutes. As a result, a film with a low refractive index layer was obtained.
- the thickness of the low refractive index layer was 0.9 ⁇ m, the refractive index was 1.236, and the total light transmittance was 91%.
- Comparative example 1 A dispersion of isobutyl alcohol-substituted silicon oxide gel was obtained in the same manner as in Example 1, except that the stirring operation was not performed during ripening and coarse pulverization was performed before dilution with isobutyl alcohol.
- the resulting gel dispersion had a solid content of 3.11% by mass, a residual DMSO amount of 64 ppm, and a viscosity of 4250 mPa ⁇ s.
- the pressure loss of the cross-flow type filtration device was large, and it appeared that the liquid was not circulating sufficiently. Furthermore, a large amount of isobutyl alcohol-substituted silicon oxide gel dispersion remained in the apparatus and could not be recovered.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Silicon Compounds (AREA)
Abstract
The purpose of the present invention is to provide a silicon oxide gel dispersion that has excellent ease of handling. The present invention is a silicon oxide gel dispersion that includes a silicon oxide gel and a solvent, wherein the viscosity of the dispersion is 10-2000 mPa∙s when the solid content concentration thereof is 3.0 ±0.1 mass%.
Description
本発明は、ケイ素酸化物ゲル分散液に関する。詳しくは、取り扱い性に優れたケイ素酸化物ゲル分散液、透明低屈折率フィルム、及び、ケイ素酸化物ゲル分散液の製造方法に関する。
The present invention relates to silicon oxide gel dispersions. Specifically, the present invention relates to a silicon oxide gel dispersion liquid that is easy to handle, a transparent low refractive index film, and a method for producing a silicon oxide gel dispersion liquid.
ゲルは様々な分野で使用されており、例えば、ケイ素酸化物からなるゲルの乾燥物は、断熱性、低誘電率特性、低屈折率性等の機能特性を有し、光学材料や電子材料等の種々の用途に使用されている。このようなゲル化物を使用する場合、例えば、粉砕したゲル化物を溶媒中に分散させた分散液を調製し、これを基材に塗工乾燥させて、上記ゲル化物からなる膜を形成する方法等が知られている。
Gels are used in various fields. For example, dried gels made of silicon oxide have functional properties such as heat insulation, low dielectric constant properties, and low refractive index properties, and are used in optical materials, electronic materials, etc. It is used for various purposes. When using such a gelled product, for example, a method of preparing a dispersion in which the ground gelled product is dispersed in a solvent, applying this to a base material and drying it to form a film made of the gelled product described above. etc. are known.
このようなゲル化物の製造に使用するケイ素酸化物ゲルの分散液は、これまでに種々知られている。
例えば、特許文献1には、有機修飾シリカをケトン系溶媒に分散させた分散液によって膜を形成することにより、平滑な表面を有し、疎水性のシリカエアロゲル膜を得たことが記載されている。
また、例えば、特許文献2には、固液分離しにくくて均一性に優れたSi元素を含むゲル粉砕含有液が記載され、特許文献3には、ゲル中のゲル製造用溶媒の残存量が少なく、低屈折率の膜を製造することが可能な低屈折率膜製造用ゲルや当該ゲルの粉砕物と溶媒とを含む低屈折率膜製造用塗料が記載されている。 Various silicon oxide gel dispersions used for producing such gelled products have been known so far.
For example, Patent Document 1 describes that a hydrophobic silica airgel film with a smooth surface was obtained by forming a film using a dispersion of organically modified silica in a ketone solvent. There is.
Further, for example, Patent Document 2 describes a gel-pulverized liquid containing Si element that is difficult to separate into solid and liquid and has excellent uniformity, and Patent Document 3 describes a gel-pulverized liquid containing Si element that is difficult to separate into solid-liquid and has excellent uniformity. A gel for producing a low refractive index film that can produce a film with a low refractive index, and a paint for producing a low refractive index film containing a pulverized product of the gel and a solvent are described.
例えば、特許文献1には、有機修飾シリカをケトン系溶媒に分散させた分散液によって膜を形成することにより、平滑な表面を有し、疎水性のシリカエアロゲル膜を得たことが記載されている。
また、例えば、特許文献2には、固液分離しにくくて均一性に優れたSi元素を含むゲル粉砕含有液が記載され、特許文献3には、ゲル中のゲル製造用溶媒の残存量が少なく、低屈折率の膜を製造することが可能な低屈折率膜製造用ゲルや当該ゲルの粉砕物と溶媒とを含む低屈折率膜製造用塗料が記載されている。 Various silicon oxide gel dispersions used for producing such gelled products have been known so far.
For example, Patent Document 1 describes that a hydrophobic silica airgel film with a smooth surface was obtained by forming a film using a dispersion of organically modified silica in a ketone solvent. There is.
Further, for example, Patent Document 2 describes a gel-pulverized liquid containing Si element that is difficult to separate into solid and liquid and has excellent uniformity, and Patent Document 3 describes a gel-pulverized liquid containing Si element that is difficult to separate into solid-liquid and has excellent uniformity. A gel for producing a low refractive index film that can produce a film with a low refractive index, and a paint for producing a low refractive index film containing a pulverized product of the gel and a solvent are described.
しかしながら、従来のケイ素酸化物ゲル分散液は、溶媒置換や濃縮をする場合に、循環経路が閉塞するといった問題や、粉砕する時に泡噛みや閉塞が生じるといった問題があり、取り扱い性が良好ではなかった。また、ケイ素酸化物の表面処理を行う場合、製造工程がより長くなるといった問題があった。
本発明は、上記現状に鑑みて、取り扱い性に優れたケイ素酸化物ゲル分散液を提供することを目的とする。 However, conventional silicon oxide gel dispersions have problems such as clogging of the circulation path when replacing the solvent or concentrating, and problems such as bubbles and clogging when pulverizing, and are not easy to handle. Ta. Furthermore, when surface treatment of silicon oxide is performed, there is a problem that the manufacturing process becomes longer.
In view of the above-mentioned current situation, an object of the present invention is to provide a silicon oxide gel dispersion having excellent handling properties.
本発明は、上記現状に鑑みて、取り扱い性に優れたケイ素酸化物ゲル分散液を提供することを目的とする。 However, conventional silicon oxide gel dispersions have problems such as clogging of the circulation path when replacing the solvent or concentrating, and problems such as bubbles and clogging when pulverizing, and are not easy to handle. Ta. Furthermore, when surface treatment of silicon oxide is performed, there is a problem that the manufacturing process becomes longer.
In view of the above-mentioned current situation, an object of the present invention is to provide a silicon oxide gel dispersion having excellent handling properties.
本発明者は、ケイ素酸化物ゲル分散液について種々検討したところ、ゲル分散液の粘度が溶媒置換や粉砕工程における取り扱い性に関係することを見いだし、更に、その粘度を特定の範囲とすることで、ゲル分散液の取り扱い性に優れることを見いだし、本発明を完成するに至った。
すなわち、本発明は、下記の態様の発明を提供する。
[1]ケイ素酸化物ゲルと、溶媒とを含むケイ素酸化物ゲル分散液であって、上記分散液は、固形分濃度が3.0±0.1質量%である場合の粘度が10~2000mPa・sであることを特徴とするケイ素酸化物ゲル分散液。
[2]上記ケイ素酸化物ゲルの平均粒径が、1~99μmであることを特徴とする上記[1]に記載のケイ素酸化物ゲル分散液。
[3]上記溶媒は、ヒドロキシル基を有する有機溶媒であることを特徴とする上記[1]又は[2]に記載のケイ素酸化物ゲル分散液。
[4]上記ケイ素酸化物ゲルの乾燥物の細孔容積が、0.5~3.0cm3/gであることを特徴とする上記[1]~[3]のいずれかに記載のケイ素酸化物ゲル分散液。
[5]屈折率が1.25以下である低屈折率材料用であることを特徴とする上記[1]~[4]のいずれかに記載のケイ素酸化物ゲル分散液。
[6]上記[1]~[5]のいずれかに記載のケイ素酸化物ゲル分散液を用いて作製された、空孔を有することを特徴とする透明低屈折率フィルム。
[7]ケイ素酸化物ゲル分散液の製造方法であって、上記製造方法は、撹拌しながらケイ素酸化物分散液をゲル化する工程を含むことを特徴とするケイ素酸化物ゲル分散液の製造方法。 The present inventor conducted various studies on silicon oxide gel dispersions and found that the viscosity of the gel dispersion is related to ease of handling during solvent replacement and pulverization processes. They discovered that the gel dispersion liquid has excellent handling properties, and completed the present invention.
That is, the present invention provides the following aspects of the invention.
[1] A silicon oxide gel dispersion containing a silicon oxide gel and a solvent, wherein the dispersion has a viscosity of 10 to 2000 mPa when the solid content concentration is 3.0±0.1% by mass. - A silicon oxide gel dispersion liquid characterized by being s.
[2] The silicon oxide gel dispersion as described in [1] above, wherein the silicon oxide gel has an average particle size of 1 to 99 μm.
[3] The silicon oxide gel dispersion according to [1] or [2] above, wherein the solvent is an organic solvent having a hydroxyl group.
[4] The silicon oxide according to any one of [1] to [3] above, wherein the pore volume of the dried silicon oxide gel is 0.5 to 3.0 cm 3 /g. substance gel dispersion.
[5] The silicon oxide gel dispersion according to any one of [1] to [4] above, which is used for a low refractive index material having a refractive index of 1.25 or less.
[6] A transparent low refractive index film characterized by having pores and produced using the silicon oxide gel dispersion according to any one of [1] to [5] above.
[7] A method for producing a silicon oxide gel dispersion, wherein the production method includes a step of gelling the silicon oxide dispersion while stirring. .
すなわち、本発明は、下記の態様の発明を提供する。
[1]ケイ素酸化物ゲルと、溶媒とを含むケイ素酸化物ゲル分散液であって、上記分散液は、固形分濃度が3.0±0.1質量%である場合の粘度が10~2000mPa・sであることを特徴とするケイ素酸化物ゲル分散液。
[2]上記ケイ素酸化物ゲルの平均粒径が、1~99μmであることを特徴とする上記[1]に記載のケイ素酸化物ゲル分散液。
[3]上記溶媒は、ヒドロキシル基を有する有機溶媒であることを特徴とする上記[1]又は[2]に記載のケイ素酸化物ゲル分散液。
[4]上記ケイ素酸化物ゲルの乾燥物の細孔容積が、0.5~3.0cm3/gであることを特徴とする上記[1]~[3]のいずれかに記載のケイ素酸化物ゲル分散液。
[5]屈折率が1.25以下である低屈折率材料用であることを特徴とする上記[1]~[4]のいずれかに記載のケイ素酸化物ゲル分散液。
[6]上記[1]~[5]のいずれかに記載のケイ素酸化物ゲル分散液を用いて作製された、空孔を有することを特徴とする透明低屈折率フィルム。
[7]ケイ素酸化物ゲル分散液の製造方法であって、上記製造方法は、撹拌しながらケイ素酸化物分散液をゲル化する工程を含むことを特徴とするケイ素酸化物ゲル分散液の製造方法。 The present inventor conducted various studies on silicon oxide gel dispersions and found that the viscosity of the gel dispersion is related to ease of handling during solvent replacement and pulverization processes. They discovered that the gel dispersion liquid has excellent handling properties, and completed the present invention.
That is, the present invention provides the following aspects of the invention.
[1] A silicon oxide gel dispersion containing a silicon oxide gel and a solvent, wherein the dispersion has a viscosity of 10 to 2000 mPa when the solid content concentration is 3.0±0.1% by mass. - A silicon oxide gel dispersion liquid characterized by being s.
[2] The silicon oxide gel dispersion as described in [1] above, wherein the silicon oxide gel has an average particle size of 1 to 99 μm.
[3] The silicon oxide gel dispersion according to [1] or [2] above, wherein the solvent is an organic solvent having a hydroxyl group.
[4] The silicon oxide according to any one of [1] to [3] above, wherein the pore volume of the dried silicon oxide gel is 0.5 to 3.0 cm 3 /g. substance gel dispersion.
[5] The silicon oxide gel dispersion according to any one of [1] to [4] above, which is used for a low refractive index material having a refractive index of 1.25 or less.
[6] A transparent low refractive index film characterized by having pores and produced using the silicon oxide gel dispersion according to any one of [1] to [5] above.
[7] A method for producing a silicon oxide gel dispersion, wherein the production method includes a step of gelling the silicon oxide dispersion while stirring. .
本発明のケイ素酸化物ゲル分散液は、取り扱い性に優れたものである。本発明のケイ素酸化物ゲル分散液を用いれば、光学用材料を好適に得ることができる。
The silicon oxide gel dispersion of the present invention has excellent handling properties. By using the silicon oxide gel dispersion of the present invention, optical materials can be suitably obtained.
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。 The present invention will be explained in detail below.
Note that a combination of two or more of the individual preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。 The present invention will be explained in detail below.
Note that a combination of two or more of the individual preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.
<ケイ素酸化物ゲル分散液>
本発明は、ケイ素酸化物ゲルと、溶媒とを含むケイ素酸化物ゲル分散液であって、上記分散液は、固形分濃度が3.0±0.1質量%である場合の粘度が10~2000mPa・sであることを特徴とするケイ素酸化物ゲル分散液である。
上記分散液の固形分濃度が3.0±0.1質量%である場合の粘度が上述の範囲であると、溶媒置換や粉砕工程で流動性を保ったまま処理でき、取り扱い性に優れる。
従来、例えば、ケイ素酸化物ゲル分散液は保存時の分離を懸念して、一定以上(例えば、4000mPa・s程度以上)の粘度で取り扱っていたが、そのような粘度では溶媒置換や粉砕工程における取り扱い性において、循環経路が閉塞し、工程を進めることができない等といった問題があった。本発明のゲル分散液は、上記範囲の粘度を有することにより、溶媒置換や粉砕工程において良好に取り扱うことができる。
一方、低粘度領域、例えば10mPa・s未満となると再分散直後から内容物の沈降が進行し、均一分散液としての取り扱いが極めて困難となる。 <Silicon oxide gel dispersion>
The present invention provides a silicon oxide gel dispersion containing a silicon oxide gel and a solvent, wherein the dispersion has a viscosity of 10 to 10% when the solid content concentration is 3.0±0.1% by mass. This is a silicon oxide gel dispersion characterized by a pressure of 2000 mPa·s.
When the solid content concentration of the dispersion liquid is 3.0±0.1% by mass, and the viscosity is within the above-mentioned range, it can be processed while maintaining fluidity in the solvent replacement and pulverization steps, and is excellent in handleability.
Conventionally, for example, silicon oxide gel dispersions have been handled at a viscosity above a certain level (for example, about 4000 mPa・s or above) due to concerns about separation during storage; In terms of handling, there were problems such as the circulation path being blocked and the process not being able to proceed. Since the gel dispersion of the present invention has a viscosity within the above range, it can be easily handled in solvent replacement and pulverization steps.
On the other hand, if the viscosity is in a low viscosity region, for example less than 10 mPa·s, the contents will begin to settle immediately after redispersion, making it extremely difficult to handle as a uniform dispersion.
本発明は、ケイ素酸化物ゲルと、溶媒とを含むケイ素酸化物ゲル分散液であって、上記分散液は、固形分濃度が3.0±0.1質量%である場合の粘度が10~2000mPa・sであることを特徴とするケイ素酸化物ゲル分散液である。
上記分散液の固形分濃度が3.0±0.1質量%である場合の粘度が上述の範囲であると、溶媒置換や粉砕工程で流動性を保ったまま処理でき、取り扱い性に優れる。
従来、例えば、ケイ素酸化物ゲル分散液は保存時の分離を懸念して、一定以上(例えば、4000mPa・s程度以上)の粘度で取り扱っていたが、そのような粘度では溶媒置換や粉砕工程における取り扱い性において、循環経路が閉塞し、工程を進めることができない等といった問題があった。本発明のゲル分散液は、上記範囲の粘度を有することにより、溶媒置換や粉砕工程において良好に取り扱うことができる。
一方、低粘度領域、例えば10mPa・s未満となると再分散直後から内容物の沈降が進行し、均一分散液としての取り扱いが極めて困難となる。 <Silicon oxide gel dispersion>
The present invention provides a silicon oxide gel dispersion containing a silicon oxide gel and a solvent, wherein the dispersion has a viscosity of 10 to 10% when the solid content concentration is 3.0±0.1% by mass. This is a silicon oxide gel dispersion characterized by a pressure of 2000 mPa·s.
When the solid content concentration of the dispersion liquid is 3.0±0.1% by mass, and the viscosity is within the above-mentioned range, it can be processed while maintaining fluidity in the solvent replacement and pulverization steps, and is excellent in handleability.
Conventionally, for example, silicon oxide gel dispersions have been handled at a viscosity above a certain level (for example, about 4000 mPa・s or above) due to concerns about separation during storage; In terms of handling, there were problems such as the circulation path being blocked and the process not being able to proceed. Since the gel dispersion of the present invention has a viscosity within the above range, it can be easily handled in solvent replacement and pulverization steps.
On the other hand, if the viscosity is in a low viscosity region, for example less than 10 mPa·s, the contents will begin to settle immediately after redispersion, making it extremely difficult to handle as a uniform dispersion.
上記粘度は、15~1500mPa・sであることが好ましく、20~1000mPa・sであることがより好ましく、25~500mPa・sであることが更に好ましく、25~400mPa・sであることが更により好ましく、25~200mPa・sであることが最も好ましい。
上記粘度は、E型粘度計(品番:TV-20L、東機産業社製)を用いて25℃で測定して求めることができる。
上記分散液の固形分濃度を3.0±0.1質量%に調製する方法としては、濾過や遠心分離で濃縮する方法や、分散液に含まれる溶媒で希釈する方法が挙げられる。 The viscosity is preferably 15 to 1,500 mPa·s, more preferably 20 to 1,000 mPa·s, even more preferably 25 to 500 mPa·s, and even more preferably 25 to 400 mPa·s. It is preferably 25 to 200 mPa·s, and most preferably 25 to 200 mPa·s.
The above viscosity can be determined by measuring at 25° C. using an E-type viscometer (product number: TV-20L, manufactured by Toki Sangyo Co., Ltd.).
Examples of methods for adjusting the solid content concentration of the dispersion to 3.0±0.1% by mass include a method of concentrating by filtration or centrifugation, and a method of diluting with a solvent contained in the dispersion.
上記粘度は、E型粘度計(品番:TV-20L、東機産業社製)を用いて25℃で測定して求めることができる。
上記分散液の固形分濃度を3.0±0.1質量%に調製する方法としては、濾過や遠心分離で濃縮する方法や、分散液に含まれる溶媒で希釈する方法が挙げられる。 The viscosity is preferably 15 to 1,500 mPa·s, more preferably 20 to 1,000 mPa·s, even more preferably 25 to 500 mPa·s, and even more preferably 25 to 400 mPa·s. It is preferably 25 to 200 mPa·s, and most preferably 25 to 200 mPa·s.
The above viscosity can be determined by measuring at 25° C. using an E-type viscometer (product number: TV-20L, manufactured by Toki Sangyo Co., Ltd.).
Examples of methods for adjusting the solid content concentration of the dispersion to 3.0±0.1% by mass include a method of concentrating by filtration or centrifugation, and a method of diluting with a solvent contained in the dispersion.
本発明のケイ素酸化物ゲル分散液に含まれるケイ素酸化物ゲルは、ケイ素含有化合物を加水分解・縮合反応させることで得られる、ケイ素酸化物のゲル状化合物である。上記ケイ素含有化合物については、後述するケイ素酸化物ゲル分散液の製造方法において説明する。
The silicon oxide gel contained in the silicon oxide gel dispersion of the present invention is a gel-like compound of silicon oxide obtained by subjecting a silicon-containing compound to a hydrolysis/condensation reaction. The silicon-containing compound described above will be explained in the method for producing a silicon oxide gel dispersion described later.
上記ケイ素酸化物ゲルは、後述するように、テトラアルコキシシラン、アルキルアルコキシシランの加水分解・縮合物を含むことが好ましく、アルキルアルコキシシランの加水分解・縮合物を含むことがより好ましく、アルキルトリアルコキシシランの加水分解・縮合物を含むことが更に好ましい。
上記ケイ素酸化物ゲルは、有機ケイ素酸化物ゲルであることが好ましい。 As described later, the silicon oxide gel preferably contains a hydrolysis/condensation product of tetraalkoxysilane or alkylalkoxysilane, more preferably a hydrolysis/condensation product of alkylalkoxysilane, and contains alkyltrialkoxysilane. It is more preferable to include a hydrolyzed/condensed product of silane.
Preferably, the silicon oxide gel is an organosilicon oxide gel.
上記ケイ素酸化物ゲルは、有機ケイ素酸化物ゲルであることが好ましい。 As described later, the silicon oxide gel preferably contains a hydrolysis/condensation product of tetraalkoxysilane or alkylalkoxysilane, more preferably a hydrolysis/condensation product of alkylalkoxysilane, and contains alkyltrialkoxysilane. It is more preferable to include a hydrolyzed/condensed product of silane.
Preferably, the silicon oxide gel is an organosilicon oxide gel.
上記ケイ素酸化物ゲルの形状としては、特に限定されないが、ゲル粉砕物等のゲル粒子の場合、球状、非球状等の形状が挙げられる。
The shape of the silicon oxide gel is not particularly limited, but in the case of gel particles such as pulverized gel, examples include spherical and non-spherical shapes.
上記ケイ素酸化物ゲルの平均粒径は、1~99μmであることが好ましい。上記ケイ素酸化物ゲルの平均粒径が上述の範囲であると、分散液の貯蔵安定性が良好であり、更なるゲルの粉砕が必要な場合、粉砕機で問題なく処理できる。上記平均粒径は、ゲルの沈降を抑制できる点で、5~80μmであることがより好ましく、10~60μmであることが更に好ましい。
上記平均粒径は、個数平均粒子径であり、レーザー回折式粒度分布測定装置を用いて求めることができ、具体的には、後述する実施例に記載の方法で求めることができる。 The average particle size of the silicon oxide gel is preferably 1 to 99 μm. When the average particle size of the silicon oxide gel is within the above range, the storage stability of the dispersion is good, and if further pulverization of the gel is required, it can be processed with a pulverizer without any problem. The average particle size is more preferably 5 to 80 μm, and even more preferably 10 to 60 μm, from the viewpoint of suppressing gel sedimentation.
The above-mentioned average particle diameter is a number average particle diameter, and can be determined using a laser diffraction particle size distribution analyzer, and specifically, can be determined by the method described in the Examples described below.
上記平均粒径は、個数平均粒子径であり、レーザー回折式粒度分布測定装置を用いて求めることができ、具体的には、後述する実施例に記載の方法で求めることができる。 The average particle size of the silicon oxide gel is preferably 1 to 99 μm. When the average particle size of the silicon oxide gel is within the above range, the storage stability of the dispersion is good, and if further pulverization of the gel is required, it can be processed with a pulverizer without any problem. The average particle size is more preferably 5 to 80 μm, and even more preferably 10 to 60 μm, from the viewpoint of suppressing gel sedimentation.
The above-mentioned average particle diameter is a number average particle diameter, and can be determined using a laser diffraction particle size distribution analyzer, and specifically, can be determined by the method described in the Examples described below.
上記ケイ素酸化物ゲルは、細孔を有することが好ましい。細孔が空気、ガス等で満たされることにより、低屈折率となり、上記分散液は低屈折率材料として使用できる。
上記ケイ素酸化物ゲルの乾燥物の細孔容積は、0.5~3.0cm3/gであることが好ましい。上記ケイ素酸化物ゲルの乾燥物の細孔容積が上述の範囲であると、低屈折率を示し、強度の高い塗膜を得ることができる。上記細孔容積は、目的、用途に応じて適宜選択すればよいが、0.8~2.8cm3/gであることがより好ましく、1.2~2.5cm3/gであることが更に好ましい。 The silicon oxide gel preferably has pores. By filling the pores with air, gas, etc., the refractive index becomes low, and the above dispersion liquid can be used as a low refractive index material.
The pore volume of the dried silicon oxide gel is preferably 0.5 to 3.0 cm 3 /g. When the pore volume of the dry product of the silicon oxide gel is within the above range, a coating film with a low refractive index and high strength can be obtained. The pore volume may be appropriately selected depending on the purpose and use, but it is more preferably 0.8 to 2.8 cm 3 /g, and more preferably 1.2 to 2.5 cm 3 /g. More preferred.
上記ケイ素酸化物ゲルの乾燥物の細孔容積は、0.5~3.0cm3/gであることが好ましい。上記ケイ素酸化物ゲルの乾燥物の細孔容積が上述の範囲であると、低屈折率を示し、強度の高い塗膜を得ることができる。上記細孔容積は、目的、用途に応じて適宜選択すればよいが、0.8~2.8cm3/gであることがより好ましく、1.2~2.5cm3/gであることが更に好ましい。 The silicon oxide gel preferably has pores. By filling the pores with air, gas, etc., the refractive index becomes low, and the above dispersion liquid can be used as a low refractive index material.
The pore volume of the dried silicon oxide gel is preferably 0.5 to 3.0 cm 3 /g. When the pore volume of the dry product of the silicon oxide gel is within the above range, a coating film with a low refractive index and high strength can be obtained. The pore volume may be appropriately selected depending on the purpose and use, but it is more preferably 0.8 to 2.8 cm 3 /g, and more preferably 1.2 to 2.5 cm 3 /g. More preferred.
上記細孔容積は、上記ケイ素酸化物ゲルの乾燥物について、比表面積/細孔分布測定装置(マイクロトラック・ベル社製BELSORP-miniX)を用いて測定し、測定結果をBJH法により解析する方法で求めることができる。上記ケイ素酸化物ゲルの乾燥物は、ゲル中の溶媒が完全に揮発して乾燥した状態となった物であれば特に限定されず、例えば、80~100℃、3~24時間加熱することにより得ることができる乾燥物が挙げられるが、好ましくは、0.02MPa以下で80℃、24時間乾燥を行った後、測定前に更に、10Pa以下で100℃、3時間以上乾燥して得られる乾燥物である。
上記細孔容積は、具体的には、後述する実施例に記載の方法で求めることができる。 The pore volume is determined by measuring the dry silicon oxide gel using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell), and analyzing the measurement results using the BJH method. It can be found by The dried silicon oxide gel is not particularly limited as long as the solvent in the gel has completely evaporated and the silicon oxide gel has been dried, for example, by heating at 80 to 100°C for 3 to 24 hours. Examples include dried products that can be obtained, but preferably, drying is performed at 80°C for 24 hours at 0.02 MPa or less, and then further dried at 100°C for 3 hours or more at 10 Pa or less before measurement. It is a thing.
Specifically, the pore volume can be determined by the method described in Examples below.
上記細孔容積は、具体的には、後述する実施例に記載の方法で求めることができる。 The pore volume is determined by measuring the dry silicon oxide gel using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell), and analyzing the measurement results using the BJH method. It can be found by The dried silicon oxide gel is not particularly limited as long as the solvent in the gel has completely evaporated and the silicon oxide gel has been dried, for example, by heating at 80 to 100°C for 3 to 24 hours. Examples include dried products that can be obtained, but preferably, drying is performed at 80°C for 24 hours at 0.02 MPa or less, and then further dried at 100°C for 3 hours or more at 10 Pa or less before measurement. It is a thing.
Specifically, the pore volume can be determined by the method described in Examples below.
上記ケイ素酸化物ゲルの乾燥物の細孔径は、1~45nmであることが好ましい。上記ケイ素酸化物ゲルの乾燥物の細孔径が上述の範囲であると、低屈折率を示し、強度の高い塗膜を得ることができる。上記細孔径は、5~37nmであることがより好ましく、13~29nmであることが更に好ましい。
The pore diameter of the dried silicon oxide gel is preferably 1 to 45 nm. When the pore diameter of the dried silicon oxide gel is within the above range, a coating film with a low refractive index and high strength can be obtained. The pore diameter is more preferably from 5 to 37 nm, and even more preferably from 13 to 29 nm.
上記細孔径は、上記ケイ素酸化物ゲル分散液の乾燥物について、比表面積/細孔分布測定装置(マイクロトラック・ベル社製BELSORP-miniX)を用いて測定し、測定結果をBJH法により解析する方法で求めることができ、体積分布である。上記ケイ素酸化物ゲルの乾燥物は、上述した方法と同様の方法により調製することができる。
上記細孔径は、具体的には、後述する実施例に記載の方法で求めることができる。 The pore diameter is measured on the dried silicon oxide gel dispersion using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell), and the measurement results are analyzed by the BJH method. It can be determined by the method and is a volume distribution. The dried silicon oxide gel described above can be prepared by a method similar to the method described above.
Specifically, the pore diameter can be determined by the method described in Examples described later.
上記細孔径は、具体的には、後述する実施例に記載の方法で求めることができる。 The pore diameter is measured on the dried silicon oxide gel dispersion using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell), and the measurement results are analyzed by the BJH method. It can be determined by the method and is a volume distribution. The dried silicon oxide gel described above can be prepared by a method similar to the method described above.
Specifically, the pore diameter can be determined by the method described in Examples described later.
上記ケイ素酸化物ゲルの乾燥物の比表面積は、460~870m2/gであることが好ましい。上記ケイ素酸化物ゲルの比表面積が上述の範囲であると、低屈折率を示し、強度の高い塗膜を得ることができる。上記比表面積は、530~800m2/gであることが好ましく、600~730m2/gであることがより好ましい。
The dry silicon oxide gel preferably has a specific surface area of 460 to 870 m 2 /g. When the specific surface area of the silicon oxide gel is within the above range, a coating film with a low refractive index and high strength can be obtained. The specific surface area is preferably 530 to 800 m 2 /g, more preferably 600 to 730 m 2 /g.
上記比表面積は、上記ケイ素酸化物ゲル分散液の乾燥物について、比表面積/細孔分布測定装置(マイクロトラック・ベル社製BELSORP-miniX)を用いて測定し、測定結果をBET法により解析する方法で求めることができ、上記ケイ素酸化物ゲルの乾燥物は、上述した方法と同様の方法により調製することができる。
上記比表面積は、具体的には、後述する実施例に記載の方法で求めることができる。 The specific surface area is measured for the dried silicon oxide gel dispersion using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell), and the measurement results are analyzed by the BET method. The dried product of the silicon oxide gel can be prepared by a method similar to the method described above.
Specifically, the specific surface area can be determined by the method described in Examples described later.
上記比表面積は、具体的には、後述する実施例に記載の方法で求めることができる。 The specific surface area is measured for the dried silicon oxide gel dispersion using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell), and the measurement results are analyzed by the BET method. The dried product of the silicon oxide gel can be prepared by a method similar to the method described above.
Specifically, the specific surface area can be determined by the method described in Examples described later.
上記ケイ素酸化物ゲル分散液中の水分量は、ゲル100質量%中、0.01~5質量%であることが好ましい。上記ケイ素酸化物ゲルの水分量が上述の範囲であると、分散液中のゲルが良好に分散し、分散液を塗工した場合に均質な塗膜を得ることができる。上記水分量は、0.01~3質量%であることがより好ましく、0.01~1質量%であることが更に好ましい。
上記水分量は、カールフィッシャー法により求めることができる。 The amount of water in the silicon oxide gel dispersion is preferably 0.01 to 5% by mass based on 100% by mass of the gel. When the water content of the silicon oxide gel is within the above range, the gel in the dispersion is well dispersed, and a homogeneous coating film can be obtained when the dispersion is applied. The moisture content is more preferably 0.01 to 3% by mass, and even more preferably 0.01 to 1% by mass.
The above water content can be determined by the Karl Fischer method.
上記水分量は、カールフィッシャー法により求めることができる。 The amount of water in the silicon oxide gel dispersion is preferably 0.01 to 5% by mass based on 100% by mass of the gel. When the water content of the silicon oxide gel is within the above range, the gel in the dispersion is well dispersed, and a homogeneous coating film can be obtained when the dispersion is applied. The moisture content is more preferably 0.01 to 3% by mass, and even more preferably 0.01 to 1% by mass.
The above water content can be determined by the Karl Fischer method.
本発明のケイ素酸化物ゲル分散液において分散媒として含まれる上記溶媒としては、特に限定されず、上記ケイ素酸化物ゲル分散液の目的、用途に応じて適宜選択すればよいが、ゲルの分散性が良好である点で、ヒドロキシル基を有する有機溶媒を含むことが好ましい。
The above-mentioned solvent contained as a dispersion medium in the silicon oxide gel dispersion of the present invention is not particularly limited, and may be appropriately selected depending on the purpose and use of the above-mentioned silicon oxide gel dispersion. It is preferable to contain an organic solvent having a hydroxyl group in terms of good properties.
上記ヒドロキシル基を有する有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、n-ブタノール、2-ブタノール、イソブチルアルコール、ペンチルアルコール、ヘキサノール、オクタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等のアルコール系溶媒等が好ましく挙げられる。なかでも、乾燥速度の制御が容易である点で、イソプロピルアルコール、n-ブタノール、2-ブタノール、イソブチルアルコール、ペンチルアルコールがより好ましく、イソブチルアルコールが更に好ましい。上記溶媒は、1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。
Examples of the organic solvent having a hydroxyl group include alcohols such as methanol, ethanol, isopropyl alcohol, n-butanol, 2-butanol, isobutyl alcohol, pentyl alcohol, hexanol, octanol, ethylene glycol, diethylene glycol, propylene glycol, and glycerin. Preferred examples include solvents. Among these, isopropyl alcohol, n-butanol, 2-butanol, isobutyl alcohol, and pentyl alcohol are more preferred, and isobutyl alcohol is even more preferred, since the drying rate can be easily controlled. The above solvents may be used alone or in combination of two or more.
また、上記分散媒としての溶媒は、上述したヒドロキシル基を有する有機溶媒以外に、他の溶媒を含有してもよいが、他の溶媒を含有する場合、上記ヒドロキシル基を有する有機溶媒の量は、分散液中の全溶媒量100質量%に対して80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。
Further, the solvent as the dispersion medium may contain other solvents in addition to the above-mentioned organic solvent having a hydroxyl group, but when it contains another solvent, the amount of the organic solvent having a hydroxyl group is It is preferably 80% by mass or more, more preferably 90% by mass or more, and even more preferably 95% by mass or more, based on 100% by mass of the total solvent in the dispersion.
上記他の溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルエーテル、アニソール等のエーテル系溶媒;酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のエステル系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのセロソルブ系溶媒;ベンゼン、トルエン等の芳香族炭化水素類等が挙げられる。これらは、1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。
Other solvents mentioned above include, for example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ether solvents such as diethyl ether, tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, diethylene glycol ethyl ether, and anisole; ethyl acetate, butyl acetate , propylene glycol monomethyl ether acetate, and 3-methoxybutyl acetate; cellosolve solvents such as methyl cellosolve, ethyl cellosolve, and butyl cellosolve; aromatic hydrocarbons such as benzene and toluene. These may be used alone or in combination of two or more.
上記ケイ素酸化物ゲル分散液の固形分濃度は、当該ゲルを、上記ヒドロキシル基を有する有機溶媒を含む分散媒中に分散させた時点で、1~10質量%であることが好ましく、2~8質量%であることがより好ましく、2.5~5質量%であることが更に好ましい。上記固形分濃度とは、上記ゲル分散液100質量%に対する、上記ゲル分散液中の、上記ケイ素酸化物の分散媒である溶媒以外の総成分量の割合(質量%)を意味する。上記固形分濃度は、後述する実施例に記載の方法で求めることができる。
The solid content concentration of the silicon oxide gel dispersion is preferably 1 to 10% by mass, and 2 to 8% by mass at the time the gel is dispersed in the dispersion medium containing the organic solvent having hydroxyl groups. It is more preferably 2.5 to 5% by mass, and even more preferably 2.5 to 5% by mass. The above-mentioned solid content concentration means the ratio (mass %) of the total amount of components other than the solvent which is the dispersion medium of the silicon oxide in the gel dispersion to 100 mass % of the gel dispersion. The above-mentioned solid content concentration can be determined by the method described in Examples described later.
上記ケイ素酸化物ゲル分散液は、上述したケイ素酸化物ゲル、溶媒の他に、上記ケイ素酸化物ゲル分散液の目的、用途に応じて、触媒等、他の添加剤を含んでいてもよい。上記他の添加剤としては、例えば、光活性触媒、及び、熱活性触媒が挙げられる。上記光活性触媒としては、光触媒発生剤等が挙げられ、例えば、光塩基発生剤(光照射により塩基性触媒を発生する物質)、光酸発生剤(光照射により酸性触媒を発生する物質)等が挙げられ、光塩基発生剤が好ましい。
In addition to the silicon oxide gel and solvent described above, the silicon oxide gel dispersion may contain other additives such as a catalyst, depending on the purpose and use of the silicon oxide gel dispersion. Examples of the other additives include photoactive catalysts and thermally active catalysts. Examples of the photoactive catalyst include photocatalyst generators, such as photobase generators (substances that generate basic catalysts when irradiated with light), photoacid generators (substances that generate acidic catalysts when irradiated with light), etc. are mentioned, and photobase generators are preferred.
上記光塩基発生剤としては、例えば、9-アントリルメチル N,N-ジエチルカルバメート(9-anthrylmethyl N,N-diethylcarbamate、商品名WPBG-018)、(E)-1-[3-(2-ヒドロキシフェニル)-2-プロペノイル]ピペリジン((E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine、商品名WPBG-027)、1-(アントラキノン-2-イル)エチル イミダゾールカルボキシレート(1-(anthraquinon-2-yl)ethyl imidazolecarboxylate、商品名WPBG-140)、2-ニトロフェニルメチル 4-メタクリロイルオキシピペリジン-1-カルボキシラート(商品名WPBG-165)、1,2-ジイソプロピル-3-〔ビス(ジメチルアミノ)メチレン〕グアニジウム 2-(3-ベンゾイルフェニル)プロピオナート(商品名WPBG-266)、1,2-ジシクロヘキシル-4,4,5,5-テトラメチルビグアニジウム n-ブチルトリフェニルボラート(商品名WPBG-300)、及び2-(9-オキソキサンテン-2-イル)プロピオン酸1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(東京化成工業株式会社製)、4-ピペリジンメタノールを含む化合物(商品名HDPD-PB100:ヘレウス社製)等が挙げられる。なお、上記「WPBG」を含む商品名は、いずれも富士フイルム和光純薬株式会社の商品名である。
Examples of the photobase generator include 9-anthrylmethyl N,N-diethylcarbamate (trade name WPBG-018), (E)-1-[3-(2- hydroxyphenyl)-2-propenoyl]piperidine ((E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine, trade name WPBG-027), 1-(anthraquinon-2-yl)ethyl imidazole carboxy Rate (1-(anthraquinon-2-yl)ethyl imidazolecarboxylate, trade name WPBG-140), 2-nitrophenylmethyl 4-methacryloyloxypiperidine-1-carboxylate (trade name WPBG-165), 1,2-diisopropyl- 3-[bis(dimethylamino)methylene]guanidium 2-(3-benzoylphenyl)propionate (trade name WPBG-266), 1,2-dicyclohexyl-4,4,5,5-tetramethylbiguanidium n-butyl triphenylborate (trade name WPBG-300), and 1,5,7-triazabicyclo[4.4.0]dec-5-ene 2-(9-oxoxanthen-2-yl)propionic acid (Tokyo (manufactured by Kasei Kogyo Co., Ltd.), a compound containing 4-piperidinemethanol (trade name: HDPD-PB100: manufactured by Heraeus), and the like. Note that all the product names including "WPBG" mentioned above are product names of Fujifilm Wako Pure Chemical Industries, Ltd.
上記光酸発生剤としては、例えば、芳香族スルホニウム塩(商品名SP-170:ADEKA社)、トリアリールスルホニウム塩(商品名CPI101A:サンアプロ社)、芳香族ヨードニウム塩(商品名Irgacure250:チバ・ジャパン社)等が挙げられる。
Examples of the photoacid generator include aromatic sulfonium salts (product name SP-170: ADEKA), triarylsulfonium salts (product name CPI101A: Sun-Apro), aromatic iodonium salts (product name Irgacure 250: Ciba Japan). Company), etc.
また、本発明のゲル分散液には、例えば、熱活性触媒(又は熱触媒発生剤)を使用してもよい。上記熱活性触媒としては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化アンモニウム等の塩基触媒、塩酸、酢酸、シュウ酸等の酸触媒等が挙げられる。これらの中では、塩基触媒が好ましい。
Further, for example, a thermally activated catalyst (or a thermal catalyst generator) may be used in the gel dispersion of the present invention. Examples of the thermally active catalyst include base catalysts such as potassium hydroxide, sodium hydroxide, and ammonium hydroxide, and acid catalysts such as hydrochloric acid, acetic acid, and oxalic acid. Among these, base catalysts are preferred.
また、例えば、本発明のゲル分散液には、架橋補助剤を添加してもよい。上記架橋補助剤が、粒子同士の間に入り込み、粒子と架橋補助剤が各々相互作用もしくは結合することで、距離的に多少離れた粒子同士も結合させることが可能であり、効率よくゲルの強度を上げることが可能となる。上記架橋補助剤としては、多架橋シランモノマーが好ましい。
Further, for example, a crosslinking aid may be added to the gel dispersion of the present invention. The above-mentioned cross-linking adjuvant enters between the particles, and the particles and the cross-linking adjuvant interact or bond with each other, making it possible to bond even particles that are somewhat distant, efficiently increasing the strength of the gel. It becomes possible to raise the As the crosslinking aid, a multi-crosslinked silane monomer is preferred.
上記多架橋シランモノマーは、具体的には、例えば、2以上3以下のアルコキシシリル基を有し、アルコキシシリル基間の鎖長が炭素数1以上10以下であっても良く、炭素以外の元素も含んでもよい。上記架橋補助剤としては、例えば、ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)エタン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリエトキシシリル)プロパン、ビス(トリメトキシシリル)プロパン、ビス(トリエトキシシリル)ブタン、ビス(トリメトキシシリル)ブタン、ビス(トリエトキシシリル)ペンタン、ビス(トリメトキシシリル)ペンタン、ビス(トリエトキシシリル)ヘキサン、ビス(トリメトキシシリル)ヘキサン、ビス(トリメトキシシリル)-N-ブチル-N-プロピル-エタン-1,2-ジアミン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、トリス-(3-トリエトキシシリルプロピル)イソシアヌレート等が挙げられる。
Specifically, the multi-crosslinked silane monomer may have, for example, 2 or more and 3 or less alkoxysilyl groups, the chain length between the alkoxysilyl groups may be 1 or more and 10 or less carbon atoms, and an element other than carbon. may also be included. Examples of the crosslinking aid include bis(trimethoxysilyl)ethane, bis(triethoxysilyl)ethane, bis(trimethoxysilyl)methane, bis(triethoxysilyl)methane, bis(triethoxysilyl)propane, and bis(trimethoxysilyl)ethane. (trimethoxysilyl)propane, bis(triethoxysilyl)butane, bis(trimethoxysilyl)butane, bis(triethoxysilyl)pentane, bis(trimethoxysilyl)pentane, bis(triethoxysilyl)hexane, bis(trimethoxysilyl) methoxysilyl)hexane, bis(trimethoxysilyl)-N-butyl-N-propyl-ethane-1,2-diamine, tris-(3-trimethoxysilylpropyl)isocyanurate, tris-(3-triethoxysilylpropyl) ) Isocyanurate and the like.
<ケイ素酸化物ゲル分散液の製造方法>
本発明のケイ素酸化物ゲル分散液を製造する方法としては、特に限定されないが、効率良く製造することができる点で、例えば、撹拌しながらケイ素酸化物分散液をゲル化する工程を含むことが好ましい。撹拌しながらケイ素酸化物分散液をゲル化することにより、温度がゲルに均一にかかり、大量生産においても均質なゲルが取得可能となり、低粘度のゲル分散液を得ることができる。また、従来では塊状のゲルが得られて切断工程や粗粉砕工程が必要となるところ、そのような工程を省略簡素化できる。
このような、撹拌しながらケイ素酸化物分散液をゲル化する工程を含むケイ素酸化物ゲル分散液の製造方法もまた、本発明の一つである。 <Method for producing silicon oxide gel dispersion>
The method for producing the silicon oxide gel dispersion of the present invention is not particularly limited, but may include, for example, a step of gelling the silicon oxide dispersion while stirring, since it can be produced efficiently. preferable. By gelling the silicon oxide dispersion while stirring, the temperature is uniformly applied to the gel, making it possible to obtain a homogeneous gel even in mass production, and a gel dispersion with a low viscosity. Furthermore, whereas conventionally a lumpy gel is obtained and a cutting step and a coarse grinding step are required, such steps can be omitted and simplified.
Such a method for producing a silicon oxide gel dispersion, which includes a step of gelling the silicon oxide dispersion while stirring, is also part of the present invention.
本発明のケイ素酸化物ゲル分散液を製造する方法としては、特に限定されないが、効率良く製造することができる点で、例えば、撹拌しながらケイ素酸化物分散液をゲル化する工程を含むことが好ましい。撹拌しながらケイ素酸化物分散液をゲル化することにより、温度がゲルに均一にかかり、大量生産においても均質なゲルが取得可能となり、低粘度のゲル分散液を得ることができる。また、従来では塊状のゲルが得られて切断工程や粗粉砕工程が必要となるところ、そのような工程を省略簡素化できる。
このような、撹拌しながらケイ素酸化物分散液をゲル化する工程を含むケイ素酸化物ゲル分散液の製造方法もまた、本発明の一つである。 <Method for producing silicon oxide gel dispersion>
The method for producing the silicon oxide gel dispersion of the present invention is not particularly limited, but may include, for example, a step of gelling the silicon oxide dispersion while stirring, since it can be produced efficiently. preferable. By gelling the silicon oxide dispersion while stirring, the temperature is uniformly applied to the gel, making it possible to obtain a homogeneous gel even in mass production, and a gel dispersion with a low viscosity. Furthermore, whereas conventionally a lumpy gel is obtained and a cutting step and a coarse grinding step are required, such steps can be omitted and simplified.
Such a method for producing a silicon oxide gel dispersion, which includes a step of gelling the silicon oxide dispersion while stirring, is also part of the present invention.
上記ゲル化する工程(ゲル化工程(2)とも称する。)とは、ケイ素酸化物分散液に含まれるケイ素酸化物の少なくとも一部がゲル状になる工程である。
上記ケイ素酸化物分散液は、ケイ素酸化物ゲル分散液の原料となるケイ素含有化合物の加水分解物を含む分散液である。上記加水分解物の少なくとも一部が脱水縮合してゲル状のケイ素酸化物が生成する。従って、上記ゲル化する工程は、ケイ素含有化合物の加水分解物が縮合してケイ素酸化物のゲルが生成する工程である。 The gelling step (also referred to as gelling step (2)) is a step in which at least a portion of the silicon oxide contained in the silicon oxide dispersion becomes gelled.
The silicon oxide dispersion liquid is a dispersion liquid containing a hydrolyzate of a silicon-containing compound that is a raw material for a silicon oxide gel dispersion liquid. At least a portion of the hydrolyzate is dehydrated and condensed to produce a gel-like silicon oxide. Therefore, the above-mentioned gelling step is a step in which the hydrolyzate of the silicon-containing compound is condensed to form a gel of silicon oxide.
上記ケイ素酸化物分散液は、ケイ素酸化物ゲル分散液の原料となるケイ素含有化合物の加水分解物を含む分散液である。上記加水分解物の少なくとも一部が脱水縮合してゲル状のケイ素酸化物が生成する。従って、上記ゲル化する工程は、ケイ素含有化合物の加水分解物が縮合してケイ素酸化物のゲルが生成する工程である。 The gelling step (also referred to as gelling step (2)) is a step in which at least a portion of the silicon oxide contained in the silicon oxide dispersion becomes gelled.
The silicon oxide dispersion liquid is a dispersion liquid containing a hydrolyzate of a silicon-containing compound that is a raw material for a silicon oxide gel dispersion liquid. At least a portion of the hydrolyzate is dehydrated and condensed to produce a gel-like silicon oxide. Therefore, the above-mentioned gelling step is a step in which the hydrolyzate of the silicon-containing compound is condensed to form a gel of silicon oxide.
上記撹拌方法としては、特に限定されず、公知の攪拌方法が挙げられるが、例えば、パドル翼、傾斜パドル翼、マックスブレンド、アンカー翼、ヘリカルリボン翼等の攪拌翼を有する撹拌機を用いた公知の攪拌方法が挙げられる。
The above-mentioned stirring method is not particularly limited and includes known stirring methods, such as known stirring methods using a stirrer having stirring blades such as paddle blades, inclined paddle blades, Max Blend, anchor blades, helical ribbon blades, etc. Examples of stirring methods include:
また、攪拌を行わなくても、製造時に使用する(例えば、塩基触媒の希釈に使用する)水やゲル製造用溶媒の量を少なくすることで、所定の粘度を有する分散液を調製することもできる。
In addition, by reducing the amount of water or gel manufacturing solvent used during production (for example, used to dilute the base catalyst), a dispersion with a predetermined viscosity can be prepared without stirring. can.
上記ゲル化は、上記ケイ素含有化合物の加水分解物に塩基触媒を添加することにより行うことが好ましい。上記ケイ素含有化合物の加水分解物に塩基触媒を添加することにより、上記加水分解物が脱水縮合してゲルが生成する。
The gelation is preferably performed by adding a base catalyst to the hydrolyzate of the silicon-containing compound. By adding a base catalyst to the hydrolyzate of the silicon-containing compound, the hydrolyzate is dehydrated and condensed to form a gel.
上記ケイ素含有化合物の加水分解物は、ケイ素含有化合物を、水と、酸触媒と、必要に応じて水以外の溶媒(ゲル製造用溶媒)とを混合することにより得ることができる。上記加水分解は、混合物を撹拌して行ってもよい。
The hydrolyzate of the silicon-containing compound can be obtained by mixing the silicon-containing compound with water, an acid catalyst, and, if necessary, a solvent other than water (solvent for gel production). The above hydrolysis may be performed by stirring the mixture.
上記ケイ素含有化合物としては、例えば、下記式(1)で表される化合物が挙げられる。
(R1)4-aSi(OR2)a (1)
(式中、R1及びR2は、同一又は異なって、水素原子、又は、有機基を表す。複数あるR1及びR2は、それぞれ互いに同一であっても異なっていてもよい。aは、1~4の整数を表す。) Examples of the silicon-containing compound include a compound represented by the following formula (1).
(R 1 ) 4-a Si(OR 2 ) a (1)
(In the formula, R 1 and R 2 are the same or different and represent a hydrogen atom or an organic group. A plurality of R 1 and R 2 may be the same or different from each other. a is , represents an integer from 1 to 4.)
(R1)4-aSi(OR2)a (1)
(式中、R1及びR2は、同一又は異なって、水素原子、又は、有機基を表す。複数あるR1及びR2は、それぞれ互いに同一であっても異なっていてもよい。aは、1~4の整数を表す。) Examples of the silicon-containing compound include a compound represented by the following formula (1).
(R 1 ) 4-a Si(OR 2 ) a (1)
(In the formula, R 1 and R 2 are the same or different and represent a hydrogen atom or an organic group. A plurality of R 1 and R 2 may be the same or different from each other. a is , represents an integer from 1 to 4.)
上記R1及びR2で表される有機基としては、置換基を有してもよい炭化水素基、置換基を有してもよい炭化水素基と-NH-、-CO-、-O-、フェニレン基等の2価の基とを組み合わせた基、上記炭化水素基を構成する原子の少なくとも一部を、窒素原子、酸素原子又は硫黄原子に置換したもの等が挙げられる。
The organic groups represented by R 1 and R 2 above include hydrocarbon groups that may have a substituent, hydrocarbon groups that may have a substituent, -NH-, -CO-, -O- , a group in which a divalent group such as a phenylene group is combined, and a group in which at least a part of the atoms constituting the hydrocarbon group is replaced with a nitrogen atom, an oxygen atom, or a sulfur atom.
上記炭化水素基は、直鎖状、分岐状、環状のいずれであってもよく、飽和炭化水素基であっても、不飽和炭化水素基であってもよい。なかでも、上記炭化水素基は、直鎖状又は分岐状であることが好ましく、直鎖状であることがより好ましい。
The above hydrocarbon group may be linear, branched, or cyclic, and may be a saturated hydrocarbon group or an unsaturated hydrocarbon group. Among these, the hydrocarbon group is preferably linear or branched, more preferably linear.
上記飽和炭化水素基としては、好ましくは脂肪族炭化水素基が挙げられる。
上記脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、等の直鎖状アルキル基;イソプロピル基、イソブチル基等の分岐状アルキル基;シクロヘキシル基等のシクロアルキル基;等が挙げられる。 Preferably, the saturated hydrocarbon group is an aliphatic hydrocarbon group.
Examples of the aliphatic hydrocarbon groups include linear alkyl groups such as methyl, ethyl, propyl, and butyl; branched alkyl groups such as isopropyl and isobutyl; and cycloalkyl groups such as cyclohexyl. ; etc.
上記脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、等の直鎖状アルキル基;イソプロピル基、イソブチル基等の分岐状アルキル基;シクロヘキシル基等のシクロアルキル基;等が挙げられる。 Preferably, the saturated hydrocarbon group is an aliphatic hydrocarbon group.
Examples of the aliphatic hydrocarbon groups include linear alkyl groups such as methyl, ethyl, propyl, and butyl; branched alkyl groups such as isopropyl and isobutyl; and cycloalkyl groups such as cyclohexyl. ; etc.
上記不飽和炭化水素基としては、例えば、ビニル基、n-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基等の直鎖状アルケニル基;イソプロペニル基等の分岐状アルケニル基;フェニル基、トリル基、キシリル基等のアリール基や、ベンジル基、フェネチル基等のアラルキル基、スチリル基等の芳香族炭化水素基;等が挙げられる。
Examples of the unsaturated hydrocarbon group include linear alkenyl groups such as vinyl group, n-propenyl group, 1-butenyl group, 2-butenyl group, and 1-pentenyl group; branched alkenyl groups such as isopropenyl group. Aryl groups such as phenyl, tolyl, and xylyl groups; aralkyl groups such as benzyl and phenethyl groups; and aromatic hydrocarbon groups such as styryl groups.
上記炭化水素基の炭素数は、1~6であることが好ましく、1~3であることがより好ましく、1~2であることが更に好ましい。
The hydrocarbon group preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, and even more preferably 1 to 2 carbon atoms.
上記炭化水素基が有してもよい置換基としては、例えば、エポキシ基、(メタ)アクリロイル基、アミノ基、イソシアネート基、メルカプト基、コハク酸無水物基、イソシアヌレート体の置換基等が挙げられる。
Examples of the substituents that the hydrocarbon group may have include epoxy groups, (meth)acryloyl groups, amino groups, isocyanate groups, mercapto groups, succinic anhydride groups, and isocyanurate substituents. It will be done.
なかでも、上記R1は、膜強度やゲル内での一次粒子の安定性の観点より、脂肪族炭化水素基であることが好ましく、炭素数1~3の脂肪族炭化水素基であることがより好ましく、メチル基であることが更に好ましい。
Among these, R 1 is preferably an aliphatic hydrocarbon group from the viewpoint of membrane strength and stability of primary particles within the gel, and preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms. More preferred is a methyl group, and even more preferred is a methyl group.
上記R2は、水素原子、又は、脂肪族炭化水素基であることが好ましく、水素原子、又は、炭素数1~3の脂肪族炭化水素基であることが好ましく、水素原子、又は、炭素数1~2の脂肪族炭化水素基であることが更に好ましい。
The above R 2 is preferably a hydrogen atom or an aliphatic hydrocarbon group, preferably a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms. More preferably, it has 1 to 2 aliphatic hydrocarbon groups.
上記式(1)中のaは、1~4の整数を表し、2~4であることが好ましく、3~4であることがより好ましい。なお、上記式(1)において、それぞれ、aが1である場合は「1官能」、aが2である場合は「2官能」、aが3である場合は「3官能」のケイ素含有化合物となる。
なかでも、上記ケイ素含有化合物は、膜強度が高く柔軟性を維持できる点で、2~4官能であることが好ましく、3官能であることが更に好ましい。 a in the above formula (1) represents an integer of 1 to 4, preferably 2 to 4, and more preferably 3 to 4. In addition, in the above formula (1), when a is 1, it is "monofunctional", when a is 2, it is "bifunctional", and when a is 3, it is "trifunctional" silicon-containing compound. becomes.
Among these, the silicon-containing compound is preferably di- to tetrafunctional, more preferably trifunctional, from the standpoint of maintaining high film strength and flexibility.
なかでも、上記ケイ素含有化合物は、膜強度が高く柔軟性を維持できる点で、2~4官能であることが好ましく、3官能であることが更に好ましい。 a in the above formula (1) represents an integer of 1 to 4, preferably 2 to 4, and more preferably 3 to 4. In addition, in the above formula (1), when a is 1, it is "monofunctional", when a is 2, it is "bifunctional", and when a is 3, it is "trifunctional" silicon-containing compound. becomes.
Among these, the silicon-containing compound is preferably di- to tetrafunctional, more preferably trifunctional, from the standpoint of maintaining high film strength and flexibility.
上記ケイ素含有化合物の具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等のテトラアルコキシシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン等のアルキルトリアルコキシシランや、ジメチルジメトキシシラン、ジメチルジエトキリシラン等のアルキルジアルコキシシラン等のアルキルアルコキシシラン;フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン等のアリールアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル基含有アルコキシシラン;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基含有アルコキシシラン;p-スチリルトリメトキシシラン等のスチリル基含有アルコキシシラン;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリロイル基含有アルコキシシラン;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン;トリス-(トリメトキシシリルプロピル)イソシアヌレート等のイソシアヌレートアルコキシシラン;3-ウレイドプロピルトリアルコキシシラン等のウレイドアルコキシシラン;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト基含有アルコキシシラン;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有アルコキシシラン;3-トリメトキシシリルプロピルコハク酸無水物等の酸無水物基含有アルコキシシラン等が挙げられる。また、上記ケイ素含有化合物は、これらのシラン化合物の塩酸塩等の塩であってもよい。なかでも、上記ケイ素含有化合物は、膜強度が高く柔軟性を維持できる点で、テトラアルコキシシラン、及び、アルキルアルコキシシランからなる群より選択される少なくとも一種が好ましく、アルキルアルコキシシランがより好ましく、アルキルトリアルコキシシランが更に好ましい。上記ケイ素含有化合物は、1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。
Specific examples of the silicon-containing compounds include tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, and tetrabutoxysilane; methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, and ethyl Alkyltrialkoxysilanes such as triethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and alkylalkoxysilanes such as alkyldialkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane. ; Aryl alkoxysilane such as phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane; Vinyl group-containing alkoxysilane such as vinyltrimethoxysilane, vinyltriethoxysilane; 2-(3,4-epoxy Epoxies such as cyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, etc. Group-containing alkoxysilane; Styryl group-containing alkoxysilane such as p-styryltrimethoxysilane; 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldiethoxysilane (Meth)acryloyl group-containing alkoxysilanes such as roxypropyltriethoxysilane and 3-acryloxypropyltrimethoxysilane; N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl) -3-Aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3 - Amino group-containing alkoxysilanes such as aminopropyltrimethoxysilane and N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane; isocyanurate alkoxysilanes such as tris-(trimethoxysilylpropyl)isocyanurate ; Ureido alkoxysilane such as 3-ureidopropyltrialkoxysilane; Mercapto group-containing alkoxysilane such as 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane; Isocyanate group-containing alkoxy such as 3-isocyanatepropyltriethoxysilane Silane: Examples include alkoxysilanes containing acid anhydride groups such as 3-trimethoxysilylpropylsuccinic anhydride. Further, the silicon-containing compound may be a salt such as a hydrochloride of these silane compounds. Among these, the silicon-containing compound is preferably at least one selected from the group consisting of tetraalkoxysilane and alkylalkoxysilane, more preferably alkylalkoxysilane, from the viewpoint of maintaining high film strength and flexibility. More preferred are trialkoxysilanes. The above silicon-containing compounds may be used alone or in combination of two or more.
上記水は、特に限定されず、蒸留水、イオン交換水、純水等、いずれの水であってもよい。
上記水の使用量は、特に限定されないが、例えば、ケイ素含有化合物100質量部に対して、20~400質量部であることが好ましく、40~200質量部であることがより好ましく、60~100質量部であることが更に好ましい。 The above-mentioned water is not particularly limited, and may be any water such as distilled water, ion-exchanged water, and pure water.
The amount of water used is not particularly limited, but for example, it is preferably 20 to 400 parts by weight, more preferably 40 to 200 parts by weight, and 60 to 100 parts by weight, based on 100 parts by weight of the silicon-containing compound. More preferably, it is parts by mass.
上記水の使用量は、特に限定されないが、例えば、ケイ素含有化合物100質量部に対して、20~400質量部であることが好ましく、40~200質量部であることがより好ましく、60~100質量部であることが更に好ましい。 The above-mentioned water is not particularly limited, and may be any water such as distilled water, ion-exchanged water, and pure water.
The amount of water used is not particularly limited, but for example, it is preferably 20 to 400 parts by weight, more preferably 40 to 200 parts by weight, and 60 to 100 parts by weight, based on 100 parts by weight of the silicon-containing compound. More preferably, it is parts by mass.
上記酸触媒としては、例えば、塩酸、シュウ酸、硫酸等が挙げられる。
上記酸触媒の使用量は、特に限定されないが、例えば、ケイ素含有化合物100質量部に対して、0.001~0.5質量部であることが好ましく、0.01~0.2質量部であることがより好ましく、0.02~0.1質量部であることが更に好ましい。 Examples of the acid catalyst include hydrochloric acid, oxalic acid, and sulfuric acid.
The amount of the acid catalyst used is not particularly limited, but for example, it is preferably 0.001 to 0.5 parts by mass, and 0.01 to 0.2 parts by mass, based on 100 parts by mass of the silicon-containing compound. It is more preferable that the amount is 0.02 to 0.1 parts by mass.
上記酸触媒の使用量は、特に限定されないが、例えば、ケイ素含有化合物100質量部に対して、0.001~0.5質量部であることが好ましく、0.01~0.2質量部であることがより好ましく、0.02~0.1質量部であることが更に好ましい。 Examples of the acid catalyst include hydrochloric acid, oxalic acid, and sulfuric acid.
The amount of the acid catalyst used is not particularly limited, but for example, it is preferably 0.001 to 0.5 parts by mass, and 0.01 to 0.2 parts by mass, based on 100 parts by mass of the silicon-containing compound. It is more preferable that the amount is 0.02 to 0.1 parts by mass.
上記水以外の溶媒(ゲル製造用溶媒)としては、特に限定されず、ゲルの製造に通常使用される公知の溶媒を使用することができ、例えば、ジメチルスルホキシド(DMSO)、N-メチルピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、γ-ブチルラクトン(GBL)、アセトニトリル(AN)、アセトン、エチレングリコールモノエチルエーテル(EGEE)等の非プロトン性極性溶媒;メタノール、エタノール、イソプロピルアルコール、イソブチルアルコール、n-ブチルアルコール等のアルコール系溶媒等のプロトン性極性溶媒が挙げられる。
なかでも、上記水以外の溶媒としては、ケイ素酸化物ゲルの一次粒子の安定性や透明性確保の点で、非プロトン性極性溶媒が好ましく、N-メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、γ-ブチルラクトン(GBL)、N,N-ジメチルアセトアミド(DMAc)がより好ましく、ジメチルスルホキシドが更に好ましい。
上記水以外の溶媒は、1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。 The solvent other than water (solvent for gel production) is not particularly limited, and known solvents commonly used for gel production can be used, such as dimethyl sulfoxide (DMSO), N-methylpyrrolidone ( Aprotic polar solvents such as NMP), N,N-dimethylacetamide (DMAc), dimethylformamide (DMF), γ-butyllactone (GBL), acetonitrile (AN), acetone, and ethylene glycol monoethyl ether (EGEE); Examples include protic polar solvents such as alcoholic solvents such as methanol, ethanol, isopropyl alcohol, isobutyl alcohol, and n-butyl alcohol.
Among these, as the solvent other than water, aprotic polar solvents are preferred from the viewpoint of ensuring the stability and transparency of the primary particles of silicon oxide gel, such as N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). , dimethylformamide (DMF), γ-butyllactone (GBL), and N,N-dimethylacetamide (DMAc) are more preferred, and dimethyl sulfoxide is even more preferred.
The solvents other than water may be used alone or in combination of two or more.
なかでも、上記水以外の溶媒としては、ケイ素酸化物ゲルの一次粒子の安定性や透明性確保の点で、非プロトン性極性溶媒が好ましく、N-メチルピロリドン(NMP)、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、γ-ブチルラクトン(GBL)、N,N-ジメチルアセトアミド(DMAc)がより好ましく、ジメチルスルホキシドが更に好ましい。
上記水以外の溶媒は、1種のみ使用してもよいし、2種以上を組み合わせて使用してもよい。 The solvent other than water (solvent for gel production) is not particularly limited, and known solvents commonly used for gel production can be used, such as dimethyl sulfoxide (DMSO), N-methylpyrrolidone ( Aprotic polar solvents such as NMP), N,N-dimethylacetamide (DMAc), dimethylformamide (DMF), γ-butyllactone (GBL), acetonitrile (AN), acetone, and ethylene glycol monoethyl ether (EGEE); Examples include protic polar solvents such as alcoholic solvents such as methanol, ethanol, isopropyl alcohol, isobutyl alcohol, and n-butyl alcohol.
Among these, as the solvent other than water, aprotic polar solvents are preferred from the viewpoint of ensuring the stability and transparency of the primary particles of silicon oxide gel, such as N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO). , dimethylformamide (DMF), γ-butyllactone (GBL), and N,N-dimethylacetamide (DMAc) are more preferred, and dimethyl sulfoxide is even more preferred.
The solvents other than water may be used alone or in combination of two or more.
上記水以外の溶媒の使用量は、特に限定されないが、例えば、ケイ素含有化合物100質量部に対して、50~600質量部であることが好ましく、100~400質量部であることがより好ましく、150~250質量部であることが更に好ましい。
The amount of the solvent other than water used is not particularly limited, but for example, it is preferably 50 to 600 parts by mass, more preferably 100 to 400 parts by mass, based on 100 parts by mass of the silicon-containing compound. More preferably, the amount is 150 to 250 parts by mass.
上記加水分解の反応温度は、10~60℃であることが好ましく、15~50℃であることがより好ましく、20~40℃であることが更に好ましい。また、反応時間は、0.1~40時間であることが好ましく、0.2~20時間であることがより好ましく、0.5~10時間であることが更に好ましい。
The reaction temperature for the above hydrolysis is preferably 10 to 60°C, more preferably 15 to 50°C, even more preferably 20 to 40°C. Further, the reaction time is preferably 0.1 to 40 hours, more preferably 0.2 to 20 hours, and even more preferably 0.5 to 10 hours.
上記ケイ素含有化合物の加水分解により、上記ケイ素含有化合物を表す式(1)中の「(OR2)a」の少なくとも一部が、「(OH)a」となった加水分解物が生じる。
Hydrolysis of the silicon-containing compound produces a hydrolyzate in which at least a portion of "(OR 2 ) a " in formula (1) representing the silicon-containing compound becomes "(OH) a ".
このように、上記ケイ素酸化物ゲル分散液の製造方法は、上記ゲル化工程(2)の前に、ケイ素含有化合物を加水分解する工程(1)を有することが好ましい。
As described above, the method for producing the silicon oxide gel dispersion preferably includes the step (1) of hydrolyzing the silicon-containing compound before the gelling step (2).
上記塩素触媒としては、アンモニア、水酸化カリウム、水酸化ナトリウム等が挙げられる。上記塩基触媒を混合する際、塩基を溶媒や水で予め希釈してもよい。
上記塩基触媒の使用量は、ケイ素含有化合物100質量部に対して、0.1~50質量部であることが好ましく、1~30質量部であることがより好ましく、10~20質量部であることが更に好ましい。 Examples of the chlorine catalyst include ammonia, potassium hydroxide, sodium hydroxide, and the like. When mixing the base catalyst, the base may be diluted with a solvent or water in advance.
The amount of the base catalyst used is preferably 0.1 to 50 parts by weight, more preferably 1 to 30 parts by weight, and 10 to 20 parts by weight based on 100 parts by weight of the silicon-containing compound. It is even more preferable.
上記塩基触媒の使用量は、ケイ素含有化合物100質量部に対して、0.1~50質量部であることが好ましく、1~30質量部であることがより好ましく、10~20質量部であることが更に好ましい。 Examples of the chlorine catalyst include ammonia, potassium hydroxide, sodium hydroxide, and the like. When mixing the base catalyst, the base may be diluted with a solvent or water in advance.
The amount of the base catalyst used is preferably 0.1 to 50 parts by weight, more preferably 1 to 30 parts by weight, and 10 to 20 parts by weight based on 100 parts by weight of the silicon-containing compound. It is even more preferable.
ゲル化工程の温度は、好ましくは10~80℃であり、より好ましくは15~70℃であり、更に好ましくは20~60℃である。
The temperature of the gelling step is preferably 10 to 80°C, more preferably 15 to 70°C, and even more preferably 20 to 60°C.
上記ゲル化工程(2)の後、更に、ケイ素酸化物ゲルを熟成させる工程(3)を有していてもよい。熟成により架橋反応が進行して、ケイ素酸化物ゲルの骨格が強固になる。
After the gelling step (2), the method may further include a step (3) of aging the silicon oxide gel. A crosslinking reaction progresses through aging, and the skeleton of the silicon oxide gel becomes stronger.
上記熟成工程(3)は、上述したゲル化工程(2)と同様の理由により、攪拌しながら行われることが好ましい。上記攪拌方法としては、上述したゲル化工程における撹拌方法と同様の方法が挙げられる。
The aging step (3) is preferably carried out with stirring for the same reason as the gelling step (2) described above. Examples of the above-mentioned stirring method include the same method as the stirring method in the gelling step described above.
上記熟成反応の温度は、特に限定されないが、好ましくは、上述したゲル化工程と同様である。反応時間は、上記ゲル化工程を含む反応時間として、好ましくは1~40時間であり、より好ましくは2~35時間であり、更に好ましくは3~30時間である。
The temperature of the aging reaction is not particularly limited, but is preferably the same as the gelling step described above. The reaction time is preferably 1 to 40 hours, more preferably 2 to 35 hours, and still more preferably 3 to 30 hours, including the gelation step.
上記ゲル化工程(又は、熟成工程も含む)により、ゲル状のケイ素酸化物が生成される。上記ケイ素酸化物は、シロキサン結合(Si-O-Si結合)を有する化合物(シロキサン化合物)である。
上記シロキサン化合物は、鎖状(直鎖状又は分岐状)、ラダー状、網状、環状、籠状、キュービック状、ランダム状等の骨格を有する化合物であってもよい。上記シロキサン化合物は、ポリシルセスキオキサンであることが好ましい。 The gelling step (or also including the aging step) produces a gel-like silicon oxide. The above silicon oxide is a compound (siloxane compound) having a siloxane bond (Si--O--Si bond).
The siloxane compound may be a compound having a chain-like (straight-chain or branched), ladder-like, network-like, cyclic, cage-like, cubic-like, random-like structure, or the like. Preferably, the siloxane compound is polysilsesquioxane.
上記シロキサン化合物は、鎖状(直鎖状又は分岐状)、ラダー状、網状、環状、籠状、キュービック状、ランダム状等の骨格を有する化合物であってもよい。上記シロキサン化合物は、ポリシルセスキオキサンであることが好ましい。 The gelling step (or also including the aging step) produces a gel-like silicon oxide. The above silicon oxide is a compound (siloxane compound) having a siloxane bond (Si--O--Si bond).
The siloxane compound may be a compound having a chain-like (straight-chain or branched), ladder-like, network-like, cyclic, cage-like, cubic-like, random-like structure, or the like. Preferably, the siloxane compound is polysilsesquioxane.
(溶媒置換工程)
上記製造方法は、更に、溶媒置換工程を有することが好ましい。上記ゲル化工程(又は熟成工程)の後、得られるゲル又はゲル溶液にはゲル製造時に使用した溶媒が含まれる。そのゲル製造時に使用した溶媒から、最終的に得ようとする分散液の所望の溶媒に置換することで、目的・用途に適した上記ケイ素酸化物ゲル分散液とすることができる。また、溶媒置換することにより、不要なゲル製造時の溶媒だけでなく、触媒、生成した副生成物の残存量も低減することができ、得られるゲル分散液の貯蔵安定性が向上し、特性をより充分に発揮することができる。 (Solvent replacement step)
It is preferable that the above manufacturing method further includes a solvent replacement step. After the gelling step (or aging step), the resulting gel or gel solution contains the solvent used during gel production. By replacing the solvent used during gel production with a desired solvent for the dispersion to be finally obtained, the silicon oxide gel dispersion can be made suitable for the purpose and use. In addition, by replacing the solvent, not only the unnecessary solvent during gel production but also the remaining amount of catalyst and generated by-products can be reduced, improving the storage stability of the resulting gel dispersion and improving its properties. can be more fully demonstrated.
上記製造方法は、更に、溶媒置換工程を有することが好ましい。上記ゲル化工程(又は熟成工程)の後、得られるゲル又はゲル溶液にはゲル製造時に使用した溶媒が含まれる。そのゲル製造時に使用した溶媒から、最終的に得ようとする分散液の所望の溶媒に置換することで、目的・用途に適した上記ケイ素酸化物ゲル分散液とすることができる。また、溶媒置換することにより、不要なゲル製造時の溶媒だけでなく、触媒、生成した副生成物の残存量も低減することができ、得られるゲル分散液の貯蔵安定性が向上し、特性をより充分に発揮することができる。 (Solvent replacement step)
It is preferable that the above manufacturing method further includes a solvent replacement step. After the gelling step (or aging step), the resulting gel or gel solution contains the solvent used during gel production. By replacing the solvent used during gel production with a desired solvent for the dispersion to be finally obtained, the silicon oxide gel dispersion can be made suitable for the purpose and use. In addition, by replacing the solvent, not only the unnecessary solvent during gel production but also the remaining amount of catalyst and generated by-products can be reduced, improving the storage stability of the resulting gel dispersion and improving its properties. can be more fully demonstrated.
上記溶媒置換の方法としては、特に限定されず、上記ゲル化工程(又は熟成工程)で得られたケイ素酸化物ゲルを置換用溶媒に接触させる等の公知の方法で行えばよく、具体的には、例えば、上記ケイ素酸化物ゲルを置換用溶媒に浸漬又は接触させて、ゲル中のゲル製造用溶媒、縮合反応で生成したアルコール成分、水等を上記置換用溶媒中に溶解させ、その後、上記ゲルを浸漬又は接触させた上記置換用溶媒を廃棄し、新たな置換用溶媒に再度上記ゲルを浸漬又は接触させる方法等が挙げられる。上記ゲルを浸漬又は接触させるのは、1回でもよいし、数回繰り返し行ってもよい。
The method for replacing the solvent is not particularly limited, and may be carried out by any known method such as contacting the silicon oxide gel obtained in the gelling step (or aging step) with a replacement solvent. For example, the silicon oxide gel is immersed in or brought into contact with a replacement solvent to dissolve the gel manufacturing solvent in the gel, the alcohol component produced by the condensation reaction, water, etc. in the replacement solvent, and then, Examples include a method in which the above-mentioned replacement solvent in which the gel is immersed or brought into contact is discarded, and the above-mentioned gel is immersed in or brought into contact with a new replacement solvent again. The gel may be immersed or brought into contact with the gel once or repeatedly several times.
上記ケイ素酸化物ゲルの溶媒を置換する方法としてはまた、濾過膜を使用する方法が挙げられ、具体的には、例えば、上記ケイ素酸化物ゲルに置換用溶媒を添加しつつ、濾過することで、上記置換用溶媒中に溶解した上記ゲル製造用溶媒やアルコール成分等を連続的に膜透過させる濾過方法が挙げられる。
なかでも、上記溶媒置換の方法としては、溶媒置換効率が良好である点で濾過方法が好ましく、クロスフロー濾過がより好ましい。 Another method for replacing the solvent in the silicon oxide gel is a method using a filtration membrane, and specifically, for example, by adding a replacement solvent to the silicon oxide gel and filtering it. , a filtration method in which the gel manufacturing solvent, alcohol component, etc. dissolved in the replacement solvent are continuously passed through a membrane.
Among these, as the method for the solvent replacement, a filtration method is preferred in terms of good solvent replacement efficiency, and cross-flow filtration is more preferred.
なかでも、上記溶媒置換の方法としては、溶媒置換効率が良好である点で濾過方法が好ましく、クロスフロー濾過がより好ましい。 Another method for replacing the solvent in the silicon oxide gel is a method using a filtration membrane, and specifically, for example, by adding a replacement solvent to the silicon oxide gel and filtering it. , a filtration method in which the gel manufacturing solvent, alcohol component, etc. dissolved in the replacement solvent are continuously passed through a membrane.
Among these, as the method for the solvent replacement, a filtration method is preferred in terms of good solvent replacement efficiency, and cross-flow filtration is more preferred.
上記クロスフロー濾過は、濾過する方向に対し、液方向が垂直方向となる形式で濾過する方法であり、そのようなクロスフロー形式の濾過方法であれば特に限定されず、公知の方法で行うことができる。クロスフロー濾過では、濾過する液を循環させて濾過膜に接触させるようにすることで効率的に濾過を行うことができる。
The above-mentioned cross-flow filtration is a method of filtration in which the liquid direction is perpendicular to the filtration direction, and is not particularly limited as long as it is such a cross-flow type filtration method, and it can be performed by a known method. Can be done. In cross-flow filtration, efficient filtration can be achieved by circulating the liquid to be filtered and bringing it into contact with a filtration membrane.
上記クロスフロー濾過に使用する濾過膜は、特に限定されず、ポリスルホン、ポリアクリロニトリル、ポリエチレン、4フッ化エチレン、ポリプロピレン、ポリエーテルスルホン、酸化アルミニウム、酸化ジルコニウム、酸化チタン、ステンレス、ガラス、セラミック、金属メッシュ等の公知の材質からなる濾過膜を使用することができる。なかでも、高耐食性、高耐熱性、高強度である点で、セラミックからなる濾過膜が好ましい。
The filtration membrane used in the cross-flow filtration is not particularly limited, and includes polysulfone, polyacrylonitrile, polyethylene, tetrafluoroethylene, polypropylene, polyethersulfone, aluminum oxide, zirconium oxide, titanium oxide, stainless steel, glass, ceramic, and metal. A filtration membrane made of a known material such as mesh can be used. Among these, filtration membranes made of ceramic are preferred because they have high corrosion resistance, high heat resistance, and high strength.
上記濾過膜の孔径は、ゲルのサイズに応じて適宜選択すればよいが、0.005~10μmであることが好ましく、0.01~5μmであることがより好ましく、0.05~3μmであることが更に好ましい。
The pore size of the filtration membrane may be selected appropriately depending on the size of the gel, but is preferably 0.005 to 10 μm, more preferably 0.01 to 5 μm, and 0.05 to 3 μm. It is even more preferable.
上記濾過膜は市販品を使用してもよく、本発明において使用できる濾過膜としては、例えば、日本ガイシ社製のセラミック膜フィルター、ノリタケカンパニー社製のセラミックフィルター、日本ポール社製のセラミック膜フィルター等が挙げられる。
上記濾過条件は、特に制限されず、公知の方法から適宜選択すればよい。 The above-mentioned filtration membrane may be a commercially available product. Examples of the filtration membrane that can be used in the present invention include a ceramic membrane filter manufactured by NGK Insulators, a ceramic filter manufactured by Noritake Company, and a ceramic membrane filter manufactured by Nippon Pall. etc.
The above-mentioned filtration conditions are not particularly limited, and may be appropriately selected from known methods.
上記濾過条件は、特に制限されず、公知の方法から適宜選択すればよい。 The above-mentioned filtration membrane may be a commercially available product. Examples of the filtration membrane that can be used in the present invention include a ceramic membrane filter manufactured by NGK Insulators, a ceramic filter manufactured by Noritake Company, and a ceramic membrane filter manufactured by Nippon Pall. etc.
The above-mentioned filtration conditions are not particularly limited, and may be appropriately selected from known methods.
上記溶媒置換は、ゲル製造用溶媒から目的とする溶媒に直接置換してもよいし、多段階で置換してもよい。なかでも、製造効率の点で、1段階で溶媒置換を行うことが好ましい。
The solvent replacement described above may be performed by directly replacing the solvent for gel production with the target solvent, or by replacing the solvent in multiple steps. Among these, from the viewpoint of production efficiency, it is preferable to perform solvent replacement in one step.
上記置換用溶媒としては、特に限定されず、分散液の目的、用途に応じて、適宜選択すればよく、上述した本発明のゲル分散液の分散媒としての溶媒が挙げられる。
The above-mentioned replacement solvent is not particularly limited and may be appropriately selected depending on the purpose and use of the dispersion, and examples thereof include the solvent as the dispersion medium of the gel dispersion of the present invention described above.
(粉砕工程)
上記製造方法は、更に、粉砕工程を有していてもよい。ゲルを粉砕する工程により、ゲル粒子の粒度を調整し、目的とするゲル分散液を効率的に製造することができる。また、ゲル製造用溶媒や副生成物量をより効率的に低減することができる。 (Crushing process)
The above manufacturing method may further include a pulverization step. By pulverizing the gel, the particle size of the gel particles can be adjusted, and the desired gel dispersion can be efficiently produced. Moreover, the amount of gel manufacturing solvent and by-products can be reduced more efficiently.
上記製造方法は、更に、粉砕工程を有していてもよい。ゲルを粉砕する工程により、ゲル粒子の粒度を調整し、目的とするゲル分散液を効率的に製造することができる。また、ゲル製造用溶媒や副生成物量をより効率的に低減することができる。 (Crushing process)
The above manufacturing method may further include a pulverization step. By pulverizing the gel, the particle size of the gel particles can be adjusted, and the desired gel dispersion can be efficiently produced. Moreover, the amount of gel manufacturing solvent and by-products can be reduced more efficiently.
粉砕方法としては、目的とするゲル粒子の粒度に粉砕することができるのであれば特に限定されず、ホモミキサー、マイルダーや、超音波ホモジナイザー、高速回転ホモジナイザー等の乳化分散機、ボールミル、ビーズミル、サンドミル等のメディア粉砕機等の公知の粉砕方法が挙げられる。
The pulverization method is not particularly limited as long as it can be pulverized to the desired particle size of the gel particles, and includes emulsifying and dispersing machines such as homomixers, milders, ultrasonic homogenizers, and high-speed rotation homogenizers, ball mills, bead mills, and sand mills. Known pulverization methods such as a media pulverizer such as .
上記粉砕工程は、溶媒中で行ってもよい。粉砕に使用する溶媒は、上述したゲル製造用溶媒又は置換用溶媒と同じ溶媒であってよいし、これらの混合液であってもよい。またこれらの溶媒を適宜添加して、粉砕を行ってもよい。
The above-mentioned pulverization step may be performed in a solvent. The solvent used for pulverization may be the same as the above-mentioned gel manufacturing solvent or substitution solvent, or may be a mixture thereof. Further, pulverization may be performed by appropriately adding these solvents.
上記粉砕工程は、上記溶媒置換工程の前又は後に行ってもよいし、上記溶媒置換工程前後に行ってもよい。
The pulverizing step may be performed before or after the solvent replacement step, or may be performed before or after the solvent replacement step.
上記分散液の製造方法は、上述した工程以外に、濃縮工程、精製工程、洗浄工程等、通常行われる公知の他の工程を行ってもよい。
In addition to the steps described above, the method for producing the dispersion liquid may include other commonly known steps such as a concentration step, a purification step, a washing step, and the like.
上記製造方法で得られるケイ素酸化物ゲル分散液中のゲル製造用溶媒の残存量は、20000ppm以下であることが好ましく、10000ppm以下であることがより好ましく、5000ppm以下であることが更に好ましく、1000ppm以下であることが更により好ましく、500ppm以下であることが特に好ましい。
The residual amount of the gel manufacturing solvent in the silicon oxide gel dispersion obtained by the above manufacturing method is preferably 20,000 ppm or less, more preferably 10,000 ppm or less, even more preferably 5,000 ppm or less, and 1,000 ppm or less. It is even more preferable that it is below, and particularly preferably that it is 500 ppm or less.
<用途>
本発明のケイ素酸化物ゲル分散液は、光学用ケイ素酸化物ゲル分散液として好適に使用することができる。 <Application>
The silicon oxide gel dispersion of the present invention can be suitably used as an optical silicon oxide gel dispersion.
本発明のケイ素酸化物ゲル分散液は、光学用ケイ素酸化物ゲル分散液として好適に使用することができる。 <Application>
The silicon oxide gel dispersion of the present invention can be suitably used as an optical silicon oxide gel dispersion.
本発明のケイ素酸化物ゲル分散液は、屈折率が1.25以下である低屈折率材料用であることが好ましい。屈折率が1.25以下である低屈折率材料とは、上記低屈折率材料の乾燥物の屈折率が1.25以下であることを意味する。上記乾燥物としては、例えば、膜状のもの等が挙げられる。例えば、上記ケイ素酸化物ゲル分散液を用いれば、屈折率が1.25以下である低屈折率膜を得ることができる。
The silicon oxide gel dispersion of the present invention is preferably used for a low refractive index material having a refractive index of 1.25 or less. The low refractive index material having a refractive index of 1.25 or less means that the refractive index of the dry product of the low refractive index material is 1.25 or less. Examples of the dried material include a film-like material. For example, by using the silicon oxide gel dispersion described above, a low refractive index film having a refractive index of 1.25 or less can be obtained.
本発明のケイ素酸化物ゲル分散液を用いて、低屈折率膜を製造する方法としては、例えば、上記ケイ素酸化物ゲル分散液を基材に塗工し、塗工物を乾燥させる方法が挙げられる。
Examples of the method for producing a low refractive index film using the silicon oxide gel dispersion of the present invention include a method of applying the silicon oxide gel dispersion to a base material and drying the coated material. It will be done.
上記基材としては、特に限定されず、例えば、ガラス基材;シリコン等の無機基材;リエチレンテレフタレート、アクリル、セルロースアセテートプロピオネート、ポリエチレンはフタレート、ポリエチレン、ポリプロピレン等の熱可塑性樹脂基材;炭素繊維系基材等が挙げられる。
上記基材の形態としては、例えば、フィルム、シート、プレート等が挙げられる。 The above-mentioned base material is not particularly limited, and includes, for example, a glass base material; an inorganic base material such as silicon; a thermoplastic resin base material such as polyethylene terephthalate, acrylic, cellulose acetate propionate, polyethylene phthalate, polyethylene, and polypropylene; Examples include carbon fiber base materials.
Examples of the form of the base material include a film, sheet, plate, and the like.
上記基材の形態としては、例えば、フィルム、シート、プレート等が挙げられる。 The above-mentioned base material is not particularly limited, and includes, for example, a glass base material; an inorganic base material such as silicon; a thermoplastic resin base material such as polyethylene terephthalate, acrylic, cellulose acetate propionate, polyethylene phthalate, polyethylene, and polypropylene; Examples include carbon fiber base materials.
Examples of the form of the base material include a film, sheet, plate, and the like.
上記塗工方法としては、特に限定されず、例えばディップコーティング、スプレーコーティング、ダイコーティング等の公知の塗工方法が挙げられる。
The coating method is not particularly limited, and includes known coating methods such as dip coating, spray coating, and die coating.
上記乾燥方法としては、特に限定されず、放置乾燥、送風乾燥、加熱乾燥等の公知の乾燥手段が挙げられる。
加熱乾燥の場合、加熱温度は、上記ゲル分散液に含まれる溶媒の沸点等に応じて適宜選択すればよいが、例えば、80~110℃であることが好ましく、85~100℃であることがより好ましく、90~95℃であることが更に好ましい。
加熱時間は、特に限定されないが、例えば、1時間以下であることが好ましく、0.5時間以下であることがより好ましく、0.1時間以下であることが更に好ましい。 The drying method is not particularly limited, and includes known drying means such as leaving drying, blow drying, and heating drying.
In the case of heating drying, the heating temperature may be appropriately selected depending on the boiling point of the solvent contained in the gel dispersion, but for example, it is preferably 80 to 110°C, and preferably 85 to 100°C. The temperature is more preferably 90 to 95°C.
Although the heating time is not particularly limited, for example, it is preferably 1 hour or less, more preferably 0.5 hour or less, and even more preferably 0.1 hour or less.
加熱乾燥の場合、加熱温度は、上記ゲル分散液に含まれる溶媒の沸点等に応じて適宜選択すればよいが、例えば、80~110℃であることが好ましく、85~100℃であることがより好ましく、90~95℃であることが更に好ましい。
加熱時間は、特に限定されないが、例えば、1時間以下であることが好ましく、0.5時間以下であることがより好ましく、0.1時間以下であることが更に好ましい。 The drying method is not particularly limited, and includes known drying means such as leaving drying, blow drying, and heating drying.
In the case of heating drying, the heating temperature may be appropriately selected depending on the boiling point of the solvent contained in the gel dispersion, but for example, it is preferably 80 to 110°C, and preferably 85 to 100°C. The temperature is more preferably 90 to 95°C.
Although the heating time is not particularly limited, for example, it is preferably 1 hour or less, more preferably 0.5 hour or less, and even more preferably 0.1 hour or less.
上記基材上に形成される低屈折率膜の膜厚は、特に限定されないが、0.01~100μmであることが好ましく、0.05~10μmであることがより好ましく、0.1~3μmであることが更に好ましい。
The thickness of the low refractive index film formed on the base material is not particularly limited, but is preferably 0.01 to 100 μm, more preferably 0.05 to 10 μm, and 0.1 to 3 μm. It is more preferable that
上記低屈折率膜の屈折率は、1.25以下であることが好ましく、1.23以下であることがより好ましく、1.21以下であることが更に好ましい。
上記屈折率は、後述する実施例に記載の方法で求めることができる。 The refractive index of the low refractive index film is preferably 1.25 or less, more preferably 1.23 or less, and even more preferably 1.21 or less.
The above-mentioned refractive index can be determined by the method described in Examples described later.
上記屈折率は、後述する実施例に記載の方法で求めることができる。 The refractive index of the low refractive index film is preferably 1.25 or less, more preferably 1.23 or less, and even more preferably 1.21 or less.
The above-mentioned refractive index can be determined by the method described in Examples described later.
上記低屈折率膜は空孔を有することが好ましい。空孔を有することにより、低屈折率となりうる。
上記低屈折率膜の空孔率は、40~65%であることが好ましく、45~62%であることがより好ましく、50~60%であることが更に好ましい。
上記空孔率は、屈折率の測定値からローレンツ-ローレンツの式を用いて算出することができる。 The low refractive index film preferably has pores. Having pores can provide a low refractive index.
The porosity of the low refractive index film is preferably 40 to 65%, more preferably 45 to 62%, and even more preferably 50 to 60%.
The porosity can be calculated from the measured value of the refractive index using the Lorentz-Lorentz equation.
上記低屈折率膜の空孔率は、40~65%であることが好ましく、45~62%であることがより好ましく、50~60%であることが更に好ましい。
上記空孔率は、屈折率の測定値からローレンツ-ローレンツの式を用いて算出することができる。 The low refractive index film preferably has pores. Having pores can provide a low refractive index.
The porosity of the low refractive index film is preferably 40 to 65%, more preferably 45 to 62%, and even more preferably 50 to 60%.
The porosity can be calculated from the measured value of the refractive index using the Lorentz-Lorentz equation.
上記低屈折率膜の全光線透過率は、透明性に優れる点で、80%以上であることが好ましく、85%以上であることがより好ましく、88%以上であることが更に好ましい。
上記全光線透過率は、ヘイズメーターHM-150(村上色彩技術研究所社製)を用いて測定することができ、具体的には、実施例に記載の方法で求めることができる。 The total light transmittance of the low refractive index film is preferably 80% or more, more preferably 85% or more, and even more preferably 88% or more in terms of excellent transparency.
The total light transmittance can be measured using a haze meter HM-150 (manufactured by Murakami Color Research Institute), and specifically, can be determined by the method described in Examples.
上記全光線透過率は、ヘイズメーターHM-150(村上色彩技術研究所社製)を用いて測定することができ、具体的には、実施例に記載の方法で求めることができる。 The total light transmittance of the low refractive index film is preferably 80% or more, more preferably 85% or more, and even more preferably 88% or more in terms of excellent transparency.
The total light transmittance can be measured using a haze meter HM-150 (manufactured by Murakami Color Research Institute), and specifically, can be determined by the method described in Examples.
このような、上記ケイ素酸化物ゲル分散液を用いて作製され、空孔を有することを特徴とする低屈折率膜もまた、本発明の好ましい形態の一つである。本明細書では、上記低屈折率膜を「低屈折率フィルム」とも称する。上記ケイ素酸化物ゲル分散液を用いて作製された、空孔を有することを特徴とする透明低屈折率フィルムもまた、本発明の一つである。
Such a low refractive index film produced using the silicon oxide gel dispersion and characterized by having pores is also one of the preferred embodiments of the present invention. In this specification, the above-mentioned low refractive index film is also referred to as a "low refractive index film." A transparent low refractive index film characterized by having pores and produced using the silicon oxide gel dispersion is also part of the present invention.
また、本発明のケイ素酸化物ゲル分散液は、上述のとおり光学(材料)用として有用であるが、断熱材料用や低誘電材料用としても有用である。
Furthermore, the silicon oxide gel dispersion of the present invention is useful not only for optical (material) applications as described above, but also for heat insulating materials and low dielectric materials.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を、それぞれ意味するものとする。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples. In addition, unless otherwise specified, "part" means "part by mass" and "%" means "% by mass", respectively.
(粘度)
E型粘度計(東機産業社製:TV-20L、低粘度領域:1°34’×R24ローター、又は、高粘度領域:3°×R9.7ローター、低粘度領域用ローターの粘度の上限は607.6mPa・s、それより高い粘度の場合は、高粘度領域用ローターを使用する。)を用いて、25℃で、回転速度5rpmで測定を行い、測定開始から2.5分後の値を採用した。 (viscosity)
E-type viscometer (manufactured by Toki Sangyo Co., Ltd.: TV-20L, low viscosity area: 1° 34' x R24 rotor, or high viscosity area: 3° x R9.7 rotor, upper limit of viscosity of the rotor for low viscosity area) (607.6 mPa・s, if the viscosity is higher, use a rotor for high viscosity range) at 25°C and a rotational speed of 5 rpm, and 2.5 minutes after the start of the measurement. The value was adopted.
E型粘度計(東機産業社製:TV-20L、低粘度領域:1°34’×R24ローター、又は、高粘度領域:3°×R9.7ローター、低粘度領域用ローターの粘度の上限は607.6mPa・s、それより高い粘度の場合は、高粘度領域用ローターを使用する。)を用いて、25℃で、回転速度5rpmで測定を行い、測定開始から2.5分後の値を採用した。 (viscosity)
E-type viscometer (manufactured by Toki Sangyo Co., Ltd.: TV-20L, low viscosity area: 1° 34' x R24 rotor, or high viscosity area: 3° x R9.7 rotor, upper limit of viscosity of the rotor for low viscosity area) (607.6 mPa・s, if the viscosity is higher, use a rotor for high viscosity range) at 25°C and a rotational speed of 5 rpm, and 2.5 minutes after the start of the measurement. The value was adopted.
(細孔容積)
ゲル分散液を80℃、減圧条件(0.02MPa以下)で24時間乾燥して得られたゲル乾燥物を測定試料とした。比表面積/細孔分布測定装置(マイクロトラック・ベル社製BELSORP-miniX)を用いて測定し、測定結果をBJH法により解析することで細孔容積を算出した。なお、上記測定は、前処理として、測定前に、更に、上記測定試料を10Pa以下、100℃で、3時間以上乾燥させた後に行った。 (pore volume)
The gel dispersion was dried at 80° C. under reduced pressure conditions (0.02 MPa or less) for 24 hours, and a dried gel obtained was used as a measurement sample. The pore volume was calculated by measuring using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell Co., Ltd.) and analyzing the measurement results by the BJH method. The above measurement was performed as a pretreatment after drying the measurement sample at 10 Pa or less and 100° C. for 3 hours or more before the measurement.
ゲル分散液を80℃、減圧条件(0.02MPa以下)で24時間乾燥して得られたゲル乾燥物を測定試料とした。比表面積/細孔分布測定装置(マイクロトラック・ベル社製BELSORP-miniX)を用いて測定し、測定結果をBJH法により解析することで細孔容積を算出した。なお、上記測定は、前処理として、測定前に、更に、上記測定試料を10Pa以下、100℃で、3時間以上乾燥させた後に行った。 (pore volume)
The gel dispersion was dried at 80° C. under reduced pressure conditions (0.02 MPa or less) for 24 hours, and a dried gel obtained was used as a measurement sample. The pore volume was calculated by measuring using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell Co., Ltd.) and analyzing the measurement results by the BJH method. The above measurement was performed as a pretreatment after drying the measurement sample at 10 Pa or less and 100° C. for 3 hours or more before the measurement.
(比表面積)
ゲル分散液を80℃、減圧条件(0.02MPa以下)で24時間乾燥して得られたゲル乾燥物を測定試料とした。比表面積/細孔分布測定装置(マイクロトラック・ベル社製BELSORP-miniX)を用いて測定し、測定結果をBET法により解析することで比表面積を算出した。なお、上記測定は、前処理として、測定前に、更に、上記測定試料を10Pa以下、100℃で、3時間以上乾燥させた後に行った。 (Specific surface area)
The gel dispersion was dried at 80° C. under reduced pressure conditions (0.02 MPa or less) for 24 hours, and a dried gel obtained was used as a measurement sample. The specific surface area was measured using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell Co., Ltd.), and the measurement results were analyzed by the BET method to calculate the specific surface area. Note that the above measurement was performed as a pretreatment after drying the measurement sample at 10 Pa or less and 100° C. for 3 hours or more before the measurement.
ゲル分散液を80℃、減圧条件(0.02MPa以下)で24時間乾燥して得られたゲル乾燥物を測定試料とした。比表面積/細孔分布測定装置(マイクロトラック・ベル社製BELSORP-miniX)を用いて測定し、測定結果をBET法により解析することで比表面積を算出した。なお、上記測定は、前処理として、測定前に、更に、上記測定試料を10Pa以下、100℃で、3時間以上乾燥させた後に行った。 (Specific surface area)
The gel dispersion was dried at 80° C. under reduced pressure conditions (0.02 MPa or less) for 24 hours, and a dried gel obtained was used as a measurement sample. The specific surface area was measured using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell Co., Ltd.), and the measurement results were analyzed by the BET method to calculate the specific surface area. Note that the above measurement was performed as a pretreatment after drying the measurement sample at 10 Pa or less and 100° C. for 3 hours or more before the measurement.
(細孔径)
ゲル分散液を80℃、減圧条件(0.02MPa以下)で24時間乾燥して得られたゲル乾燥物を測定試料とした。比表面積/細孔分布測定装置(マイクロトラック・ベル社製BELSORP-miniX)を用いて測定し、測定結果をBJH法により解析することで細孔径を算出した。なお、上記測定は、前処理として、測定前に、更に、上記測定試料を10Pa以下、100℃で、3時間以上乾燥させた後に行った。 (pore diameter)
The gel dispersion was dried at 80° C. under reduced pressure conditions (0.02 MPa or less) for 24 hours, and a dried gel obtained was used as a measurement sample. The pore diameter was calculated by measuring using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell Co., Ltd.) and analyzing the measurement results by the BJH method. Note that the above measurement was performed as a pretreatment after drying the measurement sample at 10 Pa or less and 100° C. for 3 hours or more before the measurement.
ゲル分散液を80℃、減圧条件(0.02MPa以下)で24時間乾燥して得られたゲル乾燥物を測定試料とした。比表面積/細孔分布測定装置(マイクロトラック・ベル社製BELSORP-miniX)を用いて測定し、測定結果をBJH法により解析することで細孔径を算出した。なお、上記測定は、前処理として、測定前に、更に、上記測定試料を10Pa以下、100℃で、3時間以上乾燥させた後に行った。 (pore diameter)
The gel dispersion was dried at 80° C. under reduced pressure conditions (0.02 MPa or less) for 24 hours, and a dried gel obtained was used as a measurement sample. The pore diameter was calculated by measuring using a specific surface area/pore distribution measuring device (BELSORP-miniX manufactured by Microtrac Bell Co., Ltd.) and analyzing the measurement results by the BJH method. Note that the above measurement was performed as a pretreatment after drying the measurement sample at 10 Pa or less and 100° C. for 3 hours or more before the measurement.
(個数平均粒子径)
ゲル分散液をイソブチルアルコールで3~10倍に希釈した分散液を測定試料として、レーザー回折式粒度分布測定装置(マルバーン社製「マスターサイザー3000」)により、個数平均粒子径を求めた。 (Number average particle diameter)
Using a dispersion obtained by diluting the gel dispersion 3 to 10 times with isobutyl alcohol as a measurement sample, the number average particle diameter was determined using a laser diffraction particle size distribution analyzer ("Mastersizer 3000" manufactured by Malvern).
ゲル分散液をイソブチルアルコールで3~10倍に希釈した分散液を測定試料として、レーザー回折式粒度分布測定装置(マルバーン社製「マスターサイザー3000」)により、個数平均粒子径を求めた。 (Number average particle diameter)
Using a dispersion obtained by diluting the gel dispersion 3 to 10 times with isobutyl alcohol as a measurement sample, the number average particle diameter was determined using a laser diffraction particle size distribution analyzer ("Mastersizer 3000" manufactured by Malvern).
(固形分)
固形分を以下の方法で測定した。
1.アルミ皿を精秤した。
2.精秤したアルミ皿に固形分を測定する試料(ゲル分散液)をのせ、精秤した。
3.180℃に調温したホットプレートに、2.で精秤した試料をアルミ皿ごと1時間入れた。
4.1時間後、アルミ皿及び固形分を測定する成分をホットプレートから取り出し、放冷した。
5.放冷後、アルミ皿及び固形分を測定する試料(乾燥後)を精秤した。
6.上記で測定した重量を用いて、以下の式により、固形分を算出した。
固形分(%)={[(上記5の精秤で得られた重量)-(上記1の精秤で得られたアルミ皿の重量)]/[(上記2の精秤で得られた重量)-(上記1の精秤で得られたアルミ皿の重量)]}×100 (solid content)
Solid content was measured by the following method.
1. The aluminum plate was accurately weighed.
2. A sample (gel dispersion liquid) whose solid content was to be measured was placed on an accurately weighed aluminum plate, and the sample was accurately weighed.
3. On a hot plate adjusted to 180°C, 2. The accurately weighed sample was placed in the aluminum dish for 1 hour.
4. After 1 hour, the aluminum plate and the component whose solid content was to be measured were removed from the hot plate and allowed to cool.
5. After cooling, the aluminum plate and the sample (after drying) whose solid content was to be measured were accurately weighed.
6. Using the weight measured above, the solid content was calculated using the following formula.
Solid content (%) = {[(Weight obtained with the precision scale in 5 above) - (Weight of the aluminum plate obtained with the precision scale in 1 above)] / [(Weight obtained with the precision scale in 2 above) ) - (Weight of the aluminum plate obtained using the precision scale in 1 above)]} x 100
固形分を以下の方法で測定した。
1.アルミ皿を精秤した。
2.精秤したアルミ皿に固形分を測定する試料(ゲル分散液)をのせ、精秤した。
3.180℃に調温したホットプレートに、2.で精秤した試料をアルミ皿ごと1時間入れた。
4.1時間後、アルミ皿及び固形分を測定する成分をホットプレートから取り出し、放冷した。
5.放冷後、アルミ皿及び固形分を測定する試料(乾燥後)を精秤した。
6.上記で測定した重量を用いて、以下の式により、固形分を算出した。
固形分(%)={[(上記5の精秤で得られた重量)-(上記1の精秤で得られたアルミ皿の重量)]/[(上記2の精秤で得られた重量)-(上記1の精秤で得られたアルミ皿の重量)]}×100 (solid content)
Solid content was measured by the following method.
1. The aluminum plate was accurately weighed.
2. A sample (gel dispersion liquid) whose solid content was to be measured was placed on an accurately weighed aluminum plate, and the sample was accurately weighed.
3. On a hot plate adjusted to 180°C, 2. The accurately weighed sample was placed in the aluminum dish for 1 hour.
4. After 1 hour, the aluminum plate and the component whose solid content was to be measured were removed from the hot plate and allowed to cool.
5. After cooling, the aluminum plate and the sample (after drying) whose solid content was to be measured were accurately weighed.
6. Using the weight measured above, the solid content was calculated using the following formula.
Solid content (%) = {[(Weight obtained with the precision scale in 5 above) - (Weight of the aluminum plate obtained with the precision scale in 1 above)] / [(Weight obtained with the precision scale in 2 above) ) - (Weight of the aluminum plate obtained using the precision scale in 1 above)]} x 100
(残存DMSO量)
ゲル分散液約1gとアセトン1gを混合し、一時間以上静置した。混合液をフィルターで濾過し、濾液をサンプル管に取り精秤した。同重量のアセトニトリル、0.1gのジエチレングリコールジエチルエーテル(内部標準)を加え、混合したものを測定試料とした。ガスクロマトグラフィーの条件は以下の通りとした。
装置:GC-2014(島津製作所製)
カラム:DB-WAX(アジレント・テクノロジー製)
キャリアガス:ヘリウム
カラム温度 :50℃で5分間保持、10℃/分で昇温、240℃で6分間保持
注入口温度 :280℃
検出器温度 :320℃(FID)
検出される物質と保持時間:ジエチレングリコールジエチルエーテル(12分)、ジメチルスルホキシド(14分) (Residual DMSO amount)
Approximately 1 g of the gel dispersion and 1 g of acetone were mixed and allowed to stand for over an hour. The mixed solution was filtered, and the filtrate was taken into a sample tube and accurately weighed. The same weight of acetonitrile and 0.1 g of diethylene glycol diethyl ether (internal standard) were added and the mixture was used as a measurement sample. The conditions for gas chromatography were as follows.
Equipment: GC-2014 (manufactured by Shimadzu Corporation)
Column: DB-WAX (manufactured by Agilent Technologies)
Carrier gas: helium
Column temperature: Hold at 50°C for 5 minutes, increase temperature at 10°C/min, hold at 240°C for 6 minutes Inlet temperature: 280°C
Detector temperature: 320℃ (FID)
Detected substances and retention times: diethylene glycol diethyl ether (12 minutes), dimethyl sulfoxide (14 minutes)
ゲル分散液約1gとアセトン1gを混合し、一時間以上静置した。混合液をフィルターで濾過し、濾液をサンプル管に取り精秤した。同重量のアセトニトリル、0.1gのジエチレングリコールジエチルエーテル(内部標準)を加え、混合したものを測定試料とした。ガスクロマトグラフィーの条件は以下の通りとした。
装置:GC-2014(島津製作所製)
カラム:DB-WAX(アジレント・テクノロジー製)
キャリアガス:ヘリウム
カラム温度 :50℃で5分間保持、10℃/分で昇温、240℃で6分間保持
注入口温度 :280℃
検出器温度 :320℃(FID)
検出される物質と保持時間:ジエチレングリコールジエチルエーテル(12分)、ジメチルスルホキシド(14分) (Residual DMSO amount)
Approximately 1 g of the gel dispersion and 1 g of acetone were mixed and allowed to stand for over an hour. The mixed solution was filtered, and the filtrate was taken into a sample tube and accurately weighed. The same weight of acetonitrile and 0.1 g of diethylene glycol diethyl ether (internal standard) were added and the mixture was used as a measurement sample. The conditions for gas chromatography were as follows.
Equipment: GC-2014 (manufactured by Shimadzu Corporation)
Column: DB-WAX (manufactured by Agilent Technologies)
Carrier gas: helium
Column temperature: Hold at 50°C for 5 minutes, increase temperature at 10°C/min, hold at 240°C for 6 minutes Inlet temperature: 280°C
Detector temperature: 320℃ (FID)
Detected substances and retention times: diethylene glycol diethyl ether (12 minutes), dimethyl sulfoxide (14 minutes)
(屈折率)
低屈折率層付きフィルムを25mm×50mmのサイズにカットしたものを、粘着剤を介してガラス板(厚み:3mm)の表面に貼合した。上記ガラス板の裏面中央部(直径20mm程度)を黒マジックで塗りつぶして、該ガラス板の裏面で反射しないサンプルとした。エリプソメーター(J.A.Woollam Japan社製:VASE)に上記サンプルをセットし、550nmの波長、入射角50~80度の条件で、屈折率を測定した。 (Refractive index)
A film with a low refractive index layer cut into a size of 25 mm x 50 mm was bonded to the surface of a glass plate (thickness: 3 mm) via an adhesive. The center part (about 20 mm in diameter) of the back surface of the glass plate was filled in with black marker to prepare a sample that did not reflect on the back surface of the glass plate. The sample was set in an ellipsometer (manufactured by J.A. Woollam Japan: VASE), and the refractive index was measured at a wavelength of 550 nm and an incident angle of 50 to 80 degrees.
低屈折率層付きフィルムを25mm×50mmのサイズにカットしたものを、粘着剤を介してガラス板(厚み:3mm)の表面に貼合した。上記ガラス板の裏面中央部(直径20mm程度)を黒マジックで塗りつぶして、該ガラス板の裏面で反射しないサンプルとした。エリプソメーター(J.A.Woollam Japan社製:VASE)に上記サンプルをセットし、550nmの波長、入射角50~80度の条件で、屈折率を測定した。 (Refractive index)
A film with a low refractive index layer cut into a size of 25 mm x 50 mm was bonded to the surface of a glass plate (thickness: 3 mm) via an adhesive. The center part (about 20 mm in diameter) of the back surface of the glass plate was filled in with black marker to prepare a sample that did not reflect on the back surface of the glass plate. The sample was set in an ellipsometer (manufactured by J.A. Woollam Japan: VASE), and the refractive index was measured at a wavelength of 550 nm and an incident angle of 50 to 80 degrees.
(全光線透過率)
低屈折率層付きフィルムのフィルム側面を、スライドガラス(全光線透過率92%以上のもの)上に貼り付け、得られた積層体の低屈折率層側面からヘイズメーターHM-150(村上色彩技術研究所社製)を用いて測定することによって求めた。 (Total light transmittance)
The side surface of the film with a low refractive index layer is pasted on a slide glass (total light transmittance of 92% or more), and the side surface of the low refractive index layer of the resulting laminate is measured using a haze meter HM-150 (Murakami Color Technology). (manufactured by Kenkyusho Co., Ltd.).
低屈折率層付きフィルムのフィルム側面を、スライドガラス(全光線透過率92%以上のもの)上に貼り付け、得られた積層体の低屈折率層側面からヘイズメーターHM-150(村上色彩技術研究所社製)を用いて測定することによって求めた。 (Total light transmittance)
The side surface of the film with a low refractive index layer is pasted on a slide glass (total light transmittance of 92% or more), and the side surface of the low refractive index layer of the resulting laminate is measured using a haze meter HM-150 (Murakami Color Technology). (manufactured by Kenkyusho Co., Ltd.).
実施例1
冷却管、温度計、滴下口を備えた四つ口フラスコに、ジメチルスルホキシド208部と、イオン交換水23部、メチルトリメトキシシラン(商品名KBM-13:信越化学工業社製)100部を仕込み、スリーワンモータ(新東科学社製)を用いて撹拌しながら内温を30℃に調整した。調温した混合液に撹拌継続下、滴下口から0.015Mシュウ酸水溶液53部を滴下した後、内温30℃で45分保持することでメチルトリメトキシシランを加水分解させた。得られた加水分解液に、別途ジメチルスルホキシド918部と、イオン交換水121部、25%アンモニア水溶液58部を混合した液を添加し、撹拌継続下、内温40℃で20時間保持することで、ゲル化と熟成を行った。 Example 1
In a four-necked flask equipped with a cooling tube, a thermometer, and a dripping port, 208 parts of dimethyl sulfoxide, 23 parts of ion-exchanged water, and 100 parts of methyltrimethoxysilane (trade name KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.) were charged. The internal temperature was adjusted to 30°C while stirring using a three-one motor (manufactured by Shinto Kagakusha). After 53 parts of a 0.015M oxalic acid aqueous solution was dropped into the temperature-controlled mixed solution from the dropping port while stirring was continued, methyltrimethoxysilane was hydrolyzed by keeping the internal temperature at 30° C. for 45 minutes. A mixture of 918 parts of dimethyl sulfoxide, 121 parts of ion-exchanged water, and 58 parts of a 25% ammonia aqueous solution was added to the obtained hydrolyzed solution, and the mixture was kept at an internal temperature of 40°C for 20 hours with continuous stirring. , gelation and aging were performed.
冷却管、温度計、滴下口を備えた四つ口フラスコに、ジメチルスルホキシド208部と、イオン交換水23部、メチルトリメトキシシラン(商品名KBM-13:信越化学工業社製)100部を仕込み、スリーワンモータ(新東科学社製)を用いて撹拌しながら内温を30℃に調整した。調温した混合液に撹拌継続下、滴下口から0.015Mシュウ酸水溶液53部を滴下した後、内温30℃で45分保持することでメチルトリメトキシシランを加水分解させた。得られた加水分解液に、別途ジメチルスルホキシド918部と、イオン交換水121部、25%アンモニア水溶液58部を混合した液を添加し、撹拌継続下、内温40℃で20時間保持することで、ゲル化と熟成を行った。 Example 1
In a four-necked flask equipped with a cooling tube, a thermometer, and a dripping port, 208 parts of dimethyl sulfoxide, 23 parts of ion-exchanged water, and 100 parts of methyltrimethoxysilane (trade name KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.) were charged. The internal temperature was adjusted to 30°C while stirring using a three-one motor (manufactured by Shinto Kagakusha). After 53 parts of a 0.015M oxalic acid aqueous solution was dropped into the temperature-controlled mixed solution from the dropping port while stirring was continued, methyltrimethoxysilane was hydrolyzed by keeping the internal temperature at 30° C. for 45 minutes. A mixture of 918 parts of dimethyl sulfoxide, 121 parts of ion-exchanged water, and 58 parts of a 25% ammonia aqueous solution was added to the obtained hydrolyzed solution, and the mixture was kept at an internal temperature of 40°C for 20 hours with continuous stirring. , gelation and aging were performed.
得られたゲルスラリー100部にイソブチルアルコール100部を加え、プライミクス製ホモミクサーMARKII 2.5型で、25℃、8000rpmで5分間、粉砕することで、ゲル粒子を含む攪拌熟成ゲルスラリーを得た。そして、得られた攪拌熟成ゲルスラリーを、孔径0.1μmのセラミック製精密濾過膜(日本ガイシ社製)を備えたクロスフロー型濾過装置に入れ、1900部のイソブチルアルコールを連続的に添加、ろ過することで溶媒置換し、濃縮処理を行うことで、イソブチルアルコール置換ケイ素酸化物ゲル分散液を得た。得られたゲル分散液の固形分は3.09質量%、残存DMSO量は99ppm、粘度は25mPa・sであった。ゲル粒子の個数平均粒子径は44μmであった。また、ゲル乾燥物の細孔容積は、2.2cm3/g、比表面積は714m2/g、細孔径は18.4nmであった。
100 parts of isobutyl alcohol was added to 100 parts of the obtained gel slurry, and the mixture was pulverized for 5 minutes at 25° C. and 8000 rpm using a Homomixer MARKII model 2.5 manufactured by Primix, to obtain a stirred aged gel slurry containing gel particles. Then, the obtained stirring aged gel slurry is placed in a cross-flow type filtration device equipped with a ceramic precision filtration membrane (manufactured by NGK Insulators) with a pore size of 0.1 μm, and 1900 parts of isobutyl alcohol is continuously added and filtered. By replacing the solvent and performing a concentration process, an isobutyl alcohol-substituted silicon oxide gel dispersion was obtained. The resulting gel dispersion had a solid content of 3.09% by mass, a residual DMSO amount of 99 ppm, and a viscosity of 25 mPa·s. The number average particle diameter of the gel particles was 44 μm. Moreover, the pore volume of the dried gel was 2.2 cm 3 /g, the specific surface area was 714 m 2 /g, and the pore diameter was 18.4 nm.
得られたゲル分散液をミキサー(型式:高速ホモジナイザーHF93、エスエムテー社製)で9000rpm、5分間処理した後に、超高圧湿式微粒化装置(ナノヴェイタ、吉田機械興業社製)を用いて100MPa、50MPa、50MPaの条件で3回粉砕し、ナノ粉砕液(ゲル粒子の平均粒径0.2μm)を得た。なお、ナノ粉砕液のゲル粒子の平均粒径は、MSサイエンティフィック社製動的光散乱粒度分布計NICOMPで測定した。
The obtained gel dispersion was treated with a mixer (model: high-speed homogenizer HF93, manufactured by SMT Co., Ltd.) at 9000 rpm for 5 minutes, and then treated with an ultra-high pressure wet atomization device (Nano Veita, manufactured by Yoshida Kikai Kogyo Co., Ltd.) at 100 MPa, 50 MPa, It was pulverized three times under the condition of 50 MPa to obtain a nano-pulverized liquid (average particle size of gel particles 0.2 μm). The average particle diameter of the gel particles of the nano-pulverized liquid was measured using a dynamic light scattering particle size distribution meter NICOMP manufactured by MS Scientific.
得られたナノ粉砕液0.75gに対し、光塩基発生剤(富士フイルム和光純薬株式会社:商品名WPBG266)の1.5質量%濃度MEK(メチルエチルケトン)溶液を0.062g、ビス(トリメトキシシリル)ヘキサンの5%濃度MEK溶液を0.036gの比率で添加し、ゲル分散塗工液を得た。
次いで、得られたゲル分散塗工液をアクリル基材(全光線透過率92%)上に塗工し、100℃で2分乾燥させた。これにより低屈折率層付きフィルムを得た。
低屈折率層の厚みは0.9μmであり、屈折率は1.163であり、全光線透過率は91%であった。 To 0.75 g of the obtained nano-pulverized liquid, 0.062 g of a 1.5% by mass MEK (methyl ethyl ketone) solution of a photobase generator (Fujifilm Wako Pure Chemical Industries, Ltd.: trade name WPBG266) was added, and bis(trimethoxy A 5% MEK solution of (silyl) hexane was added at a ratio of 0.036 g to obtain a gel dispersion coating solution.
Next, the obtained gel dispersion coating liquid was applied onto an acrylic base material (total light transmittance: 92%) and dried at 100° C. for 2 minutes. As a result, a film with a low refractive index layer was obtained.
The thickness of the low refractive index layer was 0.9 μm, the refractive index was 1.163, and the total light transmittance was 91%.
次いで、得られたゲル分散塗工液をアクリル基材(全光線透過率92%)上に塗工し、100℃で2分乾燥させた。これにより低屈折率層付きフィルムを得た。
低屈折率層の厚みは0.9μmであり、屈折率は1.163であり、全光線透過率は91%であった。 To 0.75 g of the obtained nano-pulverized liquid, 0.062 g of a 1.5% by mass MEK (methyl ethyl ketone) solution of a photobase generator (Fujifilm Wako Pure Chemical Industries, Ltd.: trade name WPBG266) was added, and bis(trimethoxy A 5% MEK solution of (silyl) hexane was added at a ratio of 0.036 g to obtain a gel dispersion coating solution.
Next, the obtained gel dispersion coating liquid was applied onto an acrylic base material (total light transmittance: 92%) and dried at 100° C. for 2 minutes. As a result, a film with a low refractive index layer was obtained.
The thickness of the low refractive index layer was 0.9 μm, the refractive index was 1.163, and the total light transmittance was 91%.
実施例2
実施例1において、加水分解後に添加するジメチルスルホキシド、イオン交換水の添加量をそれぞれ1335部、210部と変更した以外は同様に処理をしてイソブチルアルコール置換ケイ素酸化物ゲル分散液を得た。得られたゲル分散液の固形分は3.1質量%、残存DMSO量は43ppm、粘度は105mPa・sであった。ゲル粒子の個数平均粒子径は、41μmであった。また、ゲル乾燥物の細孔容積は2.0cm3/g、比表面積は707m2/g、細孔径は18.4nmであった。 Example 2
Example 1 was carried out in the same manner as in Example 1, except that the amounts of dimethyl sulfoxide and ion-exchanged water added after hydrolysis were changed to 1335 parts and 210 parts, respectively, to obtain an isobutyl alcohol-substituted silicon oxide gel dispersion. The resulting gel dispersion had a solid content of 3.1% by mass, a residual DMSO amount of 43 ppm, and a viscosity of 105 mPa·s. The number average particle diameter of the gel particles was 41 μm. Further, the pore volume of the dried gel was 2.0 cm 3 /g, the specific surface area was 707 m 2 /g, and the pore diameter was 18.4 nm.
実施例1において、加水分解後に添加するジメチルスルホキシド、イオン交換水の添加量をそれぞれ1335部、210部と変更した以外は同様に処理をしてイソブチルアルコール置換ケイ素酸化物ゲル分散液を得た。得られたゲル分散液の固形分は3.1質量%、残存DMSO量は43ppm、粘度は105mPa・sであった。ゲル粒子の個数平均粒子径は、41μmであった。また、ゲル乾燥物の細孔容積は2.0cm3/g、比表面積は707m2/g、細孔径は18.4nmであった。 Example 2
Example 1 was carried out in the same manner as in Example 1, except that the amounts of dimethyl sulfoxide and ion-exchanged water added after hydrolysis were changed to 1335 parts and 210 parts, respectively, to obtain an isobutyl alcohol-substituted silicon oxide gel dispersion. The resulting gel dispersion had a solid content of 3.1% by mass, a residual DMSO amount of 43 ppm, and a viscosity of 105 mPa·s. The number average particle diameter of the gel particles was 41 μm. Further, the pore volume of the dried gel was 2.0 cm 3 /g, the specific surface area was 707 m 2 /g, and the pore diameter was 18.4 nm.
得られたゲル分散液をミキサー(型式:高速ホモジナイザーHF93、エスエムテー社製)で9000rpm、5分間処理した後に、超高圧湿式微粒化装置(ナノヴェイタ、吉田機械興業社製)を用いて150MPa、150MPa、50MPaの条件で3回粉砕し、ナノ粉砕液(平均粒径0.1μm)を得た。
The obtained gel dispersion was treated with a mixer (model: high-speed homogenizer HF93, manufactured by SMT Co., Ltd.) at 9000 rpm for 5 minutes, and then treated with an ultra-high pressure wet atomization device (Nano Veita, manufactured by Yoshida Kikai Kogyo Co., Ltd.) at 150 MPa, 150 MPa, It was pulverized three times under the condition of 50 MPa to obtain a nano-pulverized liquid (average particle size 0.1 μm).
実施例1と同様の操作を行い、低屈折率層付きフィルムを得た。低屈折率層の厚みは0.9μmであり、屈折率は1.166であり、全光線透過率は91%であった。
The same operation as in Example 1 was performed to obtain a film with a low refractive index layer. The thickness of the low refractive index layer was 0.9 μm, the refractive index was 1.166, and the total light transmittance was 91%.
実施例3
実施例1において、加水分解後に添加するジメチルスルホキシド、イオン交換水の添加量をそれぞれ733部、82部と変更、熟成時に撹拌操作なしとした以外は同様に処理をして、バルク一体の熟成ゲルを得た。得られた熟成ゲルをスパチュラ及びプラスチック容器を用いて粗粉砕し、粗粉砕したゲル100部にイソブチルアルコール100部を加え、プライミクス製ホモミクサーMARKII 2.5型で、25℃、8000rpmで5分間、粉砕することで、ゲル粒子を含む攪拌熟成ゲルスラリーを得た。その後、実施例1同様、溶媒置換を実施し、イソブチルアルコール置換ケイ素酸化物ゲル分散液を得た。得られたゲル分散液の固形分は3.10質量%、残存DMSO量は109ppm、粘度は476mPa・sであった。ゲル粒子の個数平均粒子径は、71μmであった。ゲル乾燥物の細孔容積は1.4cm3/g、比表面積は803m2/g、細孔径は12.1nmであった。 Example 3
In Example 1, the amounts of dimethyl sulfoxide and ion-exchanged water added after hydrolysis were changed to 733 parts and 82 parts, respectively, and the stirring operation was not performed during aging. I got it. The obtained aged gel was coarsely ground using a spatula and a plastic container, 100 parts of isobutyl alcohol was added to 100 parts of the coarsely ground gel, and the mixture was ground for 5 minutes at 25°C and 8,000 rpm using a homomixer MARKII model 2.5 manufactured by Primix. By doing so, a stirred and aged gel slurry containing gel particles was obtained. Thereafter, as in Example 1, solvent replacement was performed to obtain an isobutyl alcohol-substituted silicon oxide gel dispersion. The resulting gel dispersion had a solid content of 3.10% by mass, a residual DMSO amount of 109 ppm, and a viscosity of 476 mPa·s. The number average particle diameter of the gel particles was 71 μm. The dried gel had a pore volume of 1.4 cm 3 /g, a specific surface area of 803 m 2 /g, and a pore diameter of 12.1 nm.
実施例1において、加水分解後に添加するジメチルスルホキシド、イオン交換水の添加量をそれぞれ733部、82部と変更、熟成時に撹拌操作なしとした以外は同様に処理をして、バルク一体の熟成ゲルを得た。得られた熟成ゲルをスパチュラ及びプラスチック容器を用いて粗粉砕し、粗粉砕したゲル100部にイソブチルアルコール100部を加え、プライミクス製ホモミクサーMARKII 2.5型で、25℃、8000rpmで5分間、粉砕することで、ゲル粒子を含む攪拌熟成ゲルスラリーを得た。その後、実施例1同様、溶媒置換を実施し、イソブチルアルコール置換ケイ素酸化物ゲル分散液を得た。得られたゲル分散液の固形分は3.10質量%、残存DMSO量は109ppm、粘度は476mPa・sであった。ゲル粒子の個数平均粒子径は、71μmであった。ゲル乾燥物の細孔容積は1.4cm3/g、比表面積は803m2/g、細孔径は12.1nmであった。 Example 3
In Example 1, the amounts of dimethyl sulfoxide and ion-exchanged water added after hydrolysis were changed to 733 parts and 82 parts, respectively, and the stirring operation was not performed during aging. I got it. The obtained aged gel was coarsely ground using a spatula and a plastic container, 100 parts of isobutyl alcohol was added to 100 parts of the coarsely ground gel, and the mixture was ground for 5 minutes at 25°C and 8,000 rpm using a homomixer MARKII model 2.5 manufactured by Primix. By doing so, a stirred and aged gel slurry containing gel particles was obtained. Thereafter, as in Example 1, solvent replacement was performed to obtain an isobutyl alcohol-substituted silicon oxide gel dispersion. The resulting gel dispersion had a solid content of 3.10% by mass, a residual DMSO amount of 109 ppm, and a viscosity of 476 mPa·s. The number average particle diameter of the gel particles was 71 μm. The dried gel had a pore volume of 1.4 cm 3 /g, a specific surface area of 803 m 2 /g, and a pore diameter of 12.1 nm.
得られたゲル分散液をミキサー(型式:HF93、エスエムテー社製)で9000rpm、5分間処理した後に、超高圧湿式微粒化装置(ナノヴェイタ、吉田機械興業社製)を用いて100MPa、50MPa、50MPaの条件で3回粉砕し、ナノ粉砕液を得た。
The obtained gel dispersion was treated with a mixer (model: HF93, manufactured by SMT Co., Ltd.) at 9000 rpm for 5 minutes, and then treated at 100 MPa, 50 MPa, and 50 MPa using an ultra-high pressure wet atomization device (Nano Veita, manufactured by Yoshida Kikai Kogyo Co., Ltd.). The nano-pulverized liquid was obtained by pulverizing three times under the following conditions.
実施例1と同様の操作を行ない、低屈折率層付きフィルムを得た。低屈折率層の厚みは0.9μmであり、屈折率は1.178であり、全光線透過率は91%であった。
The same operation as in Example 1 was performed to obtain a film with a low refractive index layer. The thickness of the low refractive index layer was 0.9 μm, the refractive index was 1.178, and the total light transmittance was 91%.
実施例4
冷却管、温度計、滴下口を備えた四つ口フラスコに、90%ジメチルスルホキシド208部と、イオン交換水23部、メチルトリメトキシシラン(商品名KBM-13:信越化学工業社製)100部、テトラエトキシシラン(東京化成工業社製)10部を仕込み、スリーワンモータ(新東科学社製)を用いて撹拌しながら内温を30℃に調整した。調温した混合液に撹拌継続下、滴下口から0.015Mシュウ酸水溶液53部を滴下した後、内温30℃で45分保持することでメチルトリメトキシシランとテトラエトキシシランを加水分解させた。得られた加水分解液に、別途90%ジメチルスルホキシド1334部と、イオン交換水210部、25%アンモニア水溶液58部を混合した液を添加し、撹拌継続下、内温40℃で20時間保持することで、ゲル化と熟成を行った。 Example 4
In a four-necked flask equipped with a cooling tube, thermometer, and dropping port, add 208 parts of 90% dimethyl sulfoxide, 23 parts of ion-exchanged water, and 100 parts of methyltrimethoxysilane (trade name KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.). , 10 parts of tetraethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) were charged, and the internal temperature was adjusted to 30° C. while stirring using a three-one motor (manufactured by Shinto Kagaku Co., Ltd.). After dropping 53 parts of a 0.015M oxalic acid aqueous solution from the dropping port into the temperature-controlled mixed solution with continuous stirring, the mixture was maintained at an internal temperature of 30°C for 45 minutes to hydrolyze methyltrimethoxysilane and tetraethoxysilane. . A mixture of 1334 parts of 90% dimethyl sulfoxide, 210 parts of ion-exchanged water, and 58 parts of a 25% ammonia aqueous solution was added to the obtained hydrolyzed solution, and the mixture was kept at an internal temperature of 40°C for 20 hours with continuous stirring. This allowed for gelation and aging.
冷却管、温度計、滴下口を備えた四つ口フラスコに、90%ジメチルスルホキシド208部と、イオン交換水23部、メチルトリメトキシシラン(商品名KBM-13:信越化学工業社製)100部、テトラエトキシシラン(東京化成工業社製)10部を仕込み、スリーワンモータ(新東科学社製)を用いて撹拌しながら内温を30℃に調整した。調温した混合液に撹拌継続下、滴下口から0.015Mシュウ酸水溶液53部を滴下した後、内温30℃で45分保持することでメチルトリメトキシシランとテトラエトキシシランを加水分解させた。得られた加水分解液に、別途90%ジメチルスルホキシド1334部と、イオン交換水210部、25%アンモニア水溶液58部を混合した液を添加し、撹拌継続下、内温40℃で20時間保持することで、ゲル化と熟成を行った。 Example 4
In a four-necked flask equipped with a cooling tube, thermometer, and dropping port, add 208 parts of 90% dimethyl sulfoxide, 23 parts of ion-exchanged water, and 100 parts of methyltrimethoxysilane (trade name KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.). , 10 parts of tetraethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) were charged, and the internal temperature was adjusted to 30° C. while stirring using a three-one motor (manufactured by Shinto Kagaku Co., Ltd.). After dropping 53 parts of a 0.015M oxalic acid aqueous solution from the dropping port into the temperature-controlled mixed solution with continuous stirring, the mixture was maintained at an internal temperature of 30°C for 45 minutes to hydrolyze methyltrimethoxysilane and tetraethoxysilane. . A mixture of 1334 parts of 90% dimethyl sulfoxide, 210 parts of ion-exchanged water, and 58 parts of a 25% ammonia aqueous solution was added to the obtained hydrolyzed solution, and the mixture was kept at an internal temperature of 40°C for 20 hours with continuous stirring. This allowed for gelation and aging.
得られたゲルスラリー100部にイソブチルアルコール48部を加え、プライミクス製ホモミクサーMARKII 2.5型で、25℃、8000rpmで5分間、粉砕することで、ゲル粒子を含む攪拌熟成ゲルスラリーを得た。そして、得られた攪拌熟成ゲルスラリーを、孔径0.1μmのセラミック製精密濾過膜(日本ガイシ社製)を備えたクロスフロー型濾過装置に入れ、1418部のイソブチルアルコールを連続的に添加、ろ過することで溶媒置換し、濃縮処理を行うことで、イソブチルアルコール置換ケイ素酸化物ゲル分散液を得た。得られたゲル分散液の固形分は3.06質量%、残存DMSO量は55ppm、粘度は52mPa・sであった。ゲル粒子の個数平均粒子径は56μmであった。また、ゲル乾燥物の細孔容積は、1.7cm3/g、比表面積は708m2/g、細孔径は12.7nmであった。
48 parts of isobutyl alcohol was added to 100 parts of the obtained gel slurry, and the mixture was pulverized at 25° C. and 8000 rpm for 5 minutes using a Homomixer MARKII model 2.5 manufactured by Primix, to obtain a stirred aged gel slurry containing gel particles. Then, the obtained stirring aged gel slurry is placed in a cross-flow type filtration device equipped with a ceramic precision filtration membrane (manufactured by NGK Insulators) with a pore size of 0.1 μm, and 1418 parts of isobutyl alcohol is continuously added and filtered. By replacing the solvent and performing a concentration process, an isobutyl alcohol-substituted silicon oxide gel dispersion was obtained. The resulting gel dispersion had a solid content of 3.06% by mass, a residual DMSO amount of 55 ppm, and a viscosity of 52 mPa·s. The number average particle diameter of the gel particles was 56 μm. Further, the pore volume of the dried gel was 1.7 cm 3 /g, the specific surface area was 708 m 2 /g, and the pore diameter was 12.7 nm.
得られたゲル分散液をミキサー(型式:高速ホモジナイザーHF93、エスエムテー社製)で9000rpm、5分間処理した後に、超高圧湿式微粒化装置(ナノヴェイタ、吉田機械興業社製)を用いて150MPa、150MPa、50MPaの条件で3回粉砕し、ナノ粉砕液(ゲル粒子の平均粒径0.1μm)を得た。なお、ナノ粉砕液のゲル粒子の平均粒径は、MSサイエンティフィック社製動的光散乱粒度分布計NICOMPで測定した。
The obtained gel dispersion was treated with a mixer (model: high-speed homogenizer HF93, manufactured by SMT Co., Ltd.) at 9000 rpm for 5 minutes, and then treated with an ultra-high pressure wet atomization device (Nano Veita, manufactured by Yoshida Kikai Kogyo Co., Ltd.) at 150 MPa, 150 MPa, It was pulverized three times under the condition of 50 MPa to obtain a nano-pulverized liquid (average particle size of gel particles 0.1 μm). The average particle diameter of the gel particles of the nano-pulverized liquid was measured using a dynamic light scattering particle size distribution meter NICOMP manufactured by MS Scientific.
得られたナノ粉砕液300gに対し、光塩基発生剤(富士フイルム和光純薬株式会社:商品名WPBG266)の1.5質量%濃度MEK(メチルエチルケトン)溶液を48g、ビス(トリメトキシシリル)ヘキサンの5%濃度MEK溶液を14.40gの比率で添加し、ゲル分散塗工液を得た。
To 300 g of the obtained nano-pulverized liquid, 48 g of a 1.5% by mass MEK (methyl ethyl ketone) solution of a photobase generator (Fuji Film Wako Pure Chemical Industries, Ltd.: trade name WPBG266) and bis(trimethoxysilyl)hexane were added. A 5% MEK solution was added at a ratio of 14.40 g to obtain a gel dispersion coating solution.
次いで、得られたゲル分散塗工液をアクリル基材(全光線透過率92%)上に塗工し、100℃で2分乾燥させた。これにより低屈折率層付きフィルムを得た。
低屈折率層の厚みは0.9μmであり、屈折率は1.236であり、全光線透過率は91%であった。 Next, the obtained gel dispersion coating liquid was applied onto an acrylic base material (total light transmittance: 92%) and dried at 100° C. for 2 minutes. As a result, a film with a low refractive index layer was obtained.
The thickness of the low refractive index layer was 0.9 μm, the refractive index was 1.236, and the total light transmittance was 91%.
低屈折率層の厚みは0.9μmであり、屈折率は1.236であり、全光線透過率は91%であった。 Next, the obtained gel dispersion coating liquid was applied onto an acrylic base material (total light transmittance: 92%) and dried at 100° C. for 2 minutes. As a result, a film with a low refractive index layer was obtained.
The thickness of the low refractive index layer was 0.9 μm, the refractive index was 1.236, and the total light transmittance was 91%.
比較例1
実施例1において、熟成時に撹拌操作なしとし、イソブチルアルコールでの希釈前に粗粉砕した以外は同様に処理をしてイソブチルアルコール置換ケイ素酸化物ゲル分散液を得た。得られたゲル分散液の固形分は3.11質量%、残存DMSO量は64ppm、粘度は4250mPa・sであった。クロスフロー型濾過装置の圧力損失が大きく、液が十分循環していない様子であった。また、多量のイソブチルアルコール置換ケイ素酸化物ゲル分散液が装置内に残留し、回収できなかった。
これより、ケイ素酸化物ゲル分散液の粘度が高いと、クロスフロー濾過の取り扱い性が低くなることが認められた。このような、上記ゲル分散液の粘度がクロスフロー濾過の取り扱い性に関係することは本発明で初めて得られた知見である。 Comparative example 1
A dispersion of isobutyl alcohol-substituted silicon oxide gel was obtained in the same manner as in Example 1, except that the stirring operation was not performed during ripening and coarse pulverization was performed before dilution with isobutyl alcohol. The resulting gel dispersion had a solid content of 3.11% by mass, a residual DMSO amount of 64 ppm, and a viscosity of 4250 mPa·s. The pressure loss of the cross-flow type filtration device was large, and it appeared that the liquid was not circulating sufficiently. Furthermore, a large amount of isobutyl alcohol-substituted silicon oxide gel dispersion remained in the apparatus and could not be recovered.
From this, it was recognized that when the viscosity of the silicon oxide gel dispersion liquid is high, the handling property in cross-flow filtration becomes low. It is a finding obtained for the first time in the present invention that the viscosity of the gel dispersion is related to the ease of handling in cross-flow filtration.
実施例1において、熟成時に撹拌操作なしとし、イソブチルアルコールでの希釈前に粗粉砕した以外は同様に処理をしてイソブチルアルコール置換ケイ素酸化物ゲル分散液を得た。得られたゲル分散液の固形分は3.11質量%、残存DMSO量は64ppm、粘度は4250mPa・sであった。クロスフロー型濾過装置の圧力損失が大きく、液が十分循環していない様子であった。また、多量のイソブチルアルコール置換ケイ素酸化物ゲル分散液が装置内に残留し、回収できなかった。
これより、ケイ素酸化物ゲル分散液の粘度が高いと、クロスフロー濾過の取り扱い性が低くなることが認められた。このような、上記ゲル分散液の粘度がクロスフロー濾過の取り扱い性に関係することは本発明で初めて得られた知見である。 Comparative example 1
A dispersion of isobutyl alcohol-substituted silicon oxide gel was obtained in the same manner as in Example 1, except that the stirring operation was not performed during ripening and coarse pulverization was performed before dilution with isobutyl alcohol. The resulting gel dispersion had a solid content of 3.11% by mass, a residual DMSO amount of 64 ppm, and a viscosity of 4250 mPa·s. The pressure loss of the cross-flow type filtration device was large, and it appeared that the liquid was not circulating sufficiently. Furthermore, a large amount of isobutyl alcohol-substituted silicon oxide gel dispersion remained in the apparatus and could not be recovered.
From this, it was recognized that when the viscosity of the silicon oxide gel dispersion liquid is high, the handling property in cross-flow filtration becomes low. It is a finding obtained for the first time in the present invention that the viscosity of the gel dispersion is related to the ease of handling in cross-flow filtration.
Claims (7)
- ケイ素酸化物ゲルと、溶媒とを含むケイ素酸化物ゲル分散液であって、
該分散液は、固形分濃度が3.0±0.1質量%である場合の粘度が10~2000mPa・sであることを特徴とするケイ素酸化物ゲル分散液。 A silicon oxide gel dispersion containing a silicon oxide gel and a solvent,
A silicon oxide gel dispersion characterized in that the dispersion has a viscosity of 10 to 2000 mPa·s when the solid content concentration is 3.0±0.1% by mass. - 前記ケイ素酸化物ゲルの平均粒径が1~99μmであることを特徴とする請求項1に記載のケイ素酸化物ゲル分散液。 The silicon oxide gel dispersion according to claim 1, wherein the silicon oxide gel has an average particle size of 1 to 99 μm.
- 前記溶媒は、ヒドロキシル基を有する有機溶媒であることを特徴とする請求項1又は2に記載のケイ素酸化物ゲル分散液。 The silicon oxide gel dispersion according to claim 1 or 2, wherein the solvent is an organic solvent having a hydroxyl group.
- 前記ケイ素酸化物ゲルの乾燥物の細孔容積が0.5~3.0cm3/gであることを特徴とする請求項1~3のいずれかに記載のケイ素酸化物ゲル分散液。 The silicon oxide gel dispersion according to any one of claims 1 to 3, wherein the pore volume of the dried silicon oxide gel is 0.5 to 3.0 cm 3 /g.
- 屈折率が1.25以下である低屈折率材料用であることを特徴とする請求項1~4のいずれかに記載のケイ素酸化物ゲル分散液。 The silicon oxide gel dispersion according to any one of claims 1 to 4, which is used for a low refractive index material having a refractive index of 1.25 or less.
- 請求項1~5のいずれかに記載のケイ素酸化物ゲル分散液を用いて作製された、空孔を有することを特徴とする透明低屈折率フィルム。 A transparent low refractive index film characterized by having pores and produced using the silicon oxide gel dispersion according to any one of claims 1 to 5.
- ケイ素酸化物ゲル分散液の製造方法であって、
該製造方法は、撹拌しながらケイ素酸化物分散液をゲル化する工程を含む
ことを特徴とするケイ素酸化物ゲル分散液の製造方法。 A method for producing a silicon oxide gel dispersion, the method comprising:
A method for producing a silicon oxide gel dispersion, characterized in that the production method includes a step of gelling the silicon oxide dispersion while stirring.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-144579 | 2022-09-12 | ||
JP2022144579 | 2022-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024058165A1 true WO2024058165A1 (en) | 2024-03-21 |
Family
ID=90275086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/033175 WO2024058165A1 (en) | 2022-09-12 | 2023-09-12 | Silicon oxide gel dispersion, transparent low-refractive-index film, and method for manufacturing silicon oxide gel dispersion |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024058165A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017057116A (en) * | 2015-09-16 | 2017-03-23 | 日東電工株式会社 | Sol liquid and method for producing the same, method for producing laminate film, laminate film, optical member, and image display device |
WO2017057331A1 (en) * | 2015-09-29 | 2017-04-06 | 日東電工株式会社 | Method for producing porous gel-containing liquid, porous gel-containing liquid, method for producing high-porosity layer, method for producing high-porosity porous body, and method for producing layered film roll |
WO2018142813A1 (en) * | 2017-01-31 | 2018-08-09 | 日東電工株式会社 | Low refractive index layer-containing adhesive sheet, method for producing low refractive index layer-containing adhesive sheet, and optical device |
WO2019065803A1 (en) * | 2017-09-29 | 2019-04-04 | 日東電工株式会社 | Gap layer, layered body, method for manufacturing gap layer, and optical member and optical device |
-
2023
- 2023-09-12 WO PCT/JP2023/033175 patent/WO2024058165A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017057116A (en) * | 2015-09-16 | 2017-03-23 | 日東電工株式会社 | Sol liquid and method for producing the same, method for producing laminate film, laminate film, optical member, and image display device |
WO2017057331A1 (en) * | 2015-09-29 | 2017-04-06 | 日東電工株式会社 | Method for producing porous gel-containing liquid, porous gel-containing liquid, method for producing high-porosity layer, method for producing high-porosity porous body, and method for producing layered film roll |
WO2018142813A1 (en) * | 2017-01-31 | 2018-08-09 | 日東電工株式会社 | Low refractive index layer-containing adhesive sheet, method for producing low refractive index layer-containing adhesive sheet, and optical device |
WO2019065803A1 (en) * | 2017-09-29 | 2019-04-04 | 日東電工株式会社 | Gap layer, layered body, method for manufacturing gap layer, and optical member and optical device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5109108B2 (en) | Method for producing silica airgel membrane | |
US9441139B2 (en) | Process for producing silica-based fine particle dispersion sols, silica-based fine particle dispersion sol, coating composition containing the dispersion sol, curable coating film, and substrate having the curable coating film | |
JP2020023718A (en) | Silicone porous body and method for producing the same | |
JP4913129B2 (en) | Low refractive index film-forming coating composition and film produced therefrom | |
CN1664657A (en) | Liquid crystal directing agent, liquid crystal oriented film and liquid crystal indicator element | |
US20120321803A1 (en) | Compositions of metal oxides functionalised by oligomer siloxanols and use thereof | |
CN1276275C (en) | Optical element with anti reflective film | |
JP2017502102A (en) | UV curable silicone composition, cured product thereof, and method of use thereof | |
JP4778087B2 (en) | Composition and method for forming porous material | |
JP2009513758A (en) | Particles containing zwitterionic structural elements | |
WO2016104762A1 (en) | Porous silicone object and process for producing same | |
JP6323861B2 (en) | Method for producing surface-modified mesoporous silica nanoparticles | |
US20130158140A1 (en) | Anti-reflection coating composition and process for preparing the same | |
JP6580101B2 (en) | Void layer, laminate, method for producing gap layer, optical member and optical device | |
EP2450193B1 (en) | A process for tinting articles, and tintable compositions for use in said process | |
EP1551908A2 (en) | Coating composition and method for the production thereof | |
JP2017025276A (en) | Gap structure film coupled via catalytic action, and method for producing the same | |
JP2017025277A (en) | Coating material and method for producing the same | |
JP6329959B2 (en) | Superhydrophilic antireflection coating composition containing a siloxane compound, superhydrophilic antireflection film using the same, and method for producing the same | |
JP2009297626A (en) | Method for forming silica-based coating film and coating liquid | |
JP5713668B2 (en) | Hard coat layer film forming coating composition | |
JP4288432B2 (en) | Coating composition and optical member | |
JP2014091256A (en) | Protective sheet and display apparatus | |
JP2019044146A (en) | Organic solvent-free, spectacle lens hard coating liquid composition and production method thereof | |
WO2024058165A1 (en) | Silicon oxide gel dispersion, transparent low-refractive-index film, and method for manufacturing silicon oxide gel dispersion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23865517 Country of ref document: EP Kind code of ref document: A1 |