WO2024058127A1 - 樹脂部材、リール体、包装体及び樹脂材料 - Google Patents

樹脂部材、リール体、包装体及び樹脂材料 Download PDF

Info

Publication number
WO2024058127A1
WO2024058127A1 PCT/JP2023/033066 JP2023033066W WO2024058127A1 WO 2024058127 A1 WO2024058127 A1 WO 2024058127A1 JP 2023033066 W JP2023033066 W JP 2023033066W WO 2024058127 A1 WO2024058127 A1 WO 2024058127A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
less
resin member
resin
groups
Prior art date
Application number
PCT/JP2023/033066
Other languages
English (en)
French (fr)
Inventor
祐樹 宮本
秀一 近藤
晃一 斉藤
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024058127A1 publication Critical patent/WO2024058127A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5397Phosphine oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present disclosure relates to a resin member, a reel body, a packaging body, and a resin material.
  • a separator is essential in the form of the product (for example, Patent Document 1).
  • An object of the present disclosure is to provide a resin member that can be used as an adhesive material without using a separator.
  • An object of the present disclosure is to provide a resin material suitable for forming the resin member.
  • the present disclosure provides the following [1] to [11].
  • [1] A resin member containing a resin component that develops adhesiveness through photoreaction and a photoradical generator.
  • the resin component is a reaction product of a compound a having two or more (meth)acryloyl groups and a compound b having two or more groups capable of reacting with the (meth)acryloyl group, and the compound
  • the photo-radical generator is a compound that gives benzoyl radicals when irradiated with light, and the ratio of the number of moles of the benzoyl radical to the number of moles of the (meth)acryloyl group in the compound a-1 is , 5/6 or less, the resin member according to [3].
  • the resin component is a reaction product of a compound c having two or more isocyanate groups and a compound d having two or more groups capable of reacting with the isocyanate groups, and at least one of the compound c and the compound d is The resin member according to [1] or [2], one of which has a disulfide bond in the molecule.
  • a reel body comprising a core and the resin member according to [6] wound around the core.
  • the resin member according to any one of [1] to [6] or the reel body according to [7] has a light-shielding property, and the resin member or the reel body is accommodated.
  • a packaging body comprising a packaging bag.
  • the photo-radical generator is a compound that gives benzoyl radicals when irradiated with light, and the ratio of the number of moles of the benzoyl radical to the number of moles of the (meth)acryloyl group in the compound a-1 is , 5/6 or less, the resin material according to [9].
  • a resin member that can be used as an adhesive material without using a separator. According to the present disclosure, a resin material suitable for forming the resin member can be provided.
  • FIG. 3 is a graph showing changes in storage modulus with respect to elapsed time in Examples 1a to 1d.
  • FIG. 2 is a graph showing changes in storage modulus with respect to elapsed time in Examples 2a to 2e.
  • FIG. 3 is a graph showing changes in storage modulus with respect to elapsed time in Examples 1a to 1d.
  • FIG. 2 is a graph showing changes in storage modulus with respect to elapsed time in Examples 2a to 2e.
  • process refers not only to an independent process, but also to processes that cannot be clearly distinguished from other processes, as long as the intended effect of the process is achieved.
  • a numerical range indicated using “ ⁇ ” indicates a range that includes the numerical values written before and after " ⁇ " as the minimum and maximum values, respectively.
  • each component in a resin member or resin material is defined as the content of each component in a resin member or resin material unless otherwise specified. It means the total amount of the plurality of substances present. Unless otherwise specified, the illustrated materials may be used alone or in combination of two or more.
  • the upper limit or lower limit of the numerical range of one step may be replaced with the upper limit or lower limit of the numerical range of another step.
  • the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
  • a or B may include either A or B, or may include both.
  • a "(meth)acryloyl group” is a methacryloyl group or an acryloyl group.
  • the "weight average molecular weight” is a polystyrene equivalent value obtained by gel permeation chromatography (GPC) using a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • room temperature means 25 ⁇ 10°C.
  • the resin member according to the present embodiment includes a resin component that develops adhesiveness through photoreaction and a photoradical generator.
  • the resin member according to this embodiment exhibits adhesiveness after being irradiated with light. Therefore, for example, the resin member according to the present embodiment is provided in contact with an adhesive object in a non-adhesive state before being irradiated with light, and when used by a user, the resin member is softened by light irradiation and becomes tacky. It can be used as an adhesive material without using a separator.
  • the resin component includes a resin that develops adhesiveness through photoreaction.
  • the resin component may include a polymer having one or more (two or more) photoreactive functional groups.
  • the number of photoreactive functional groups may be, for example, 1 to 1000, or 4 to 50.
  • some or all of the photoreactive groups are decomposed by light irradiation and the molecular weight of the resin component is lowered, thereby developing adhesiveness.
  • photoreactive functional groups include disulfide bonds (-SS-), trithiocarbonates, nitrobenzyl, alkylphenones, acylphosphine oxides, oxime esters, hexaarylbisimidazoles, allyl sulfides, and styrylpyrene dimers. can be mentioned.
  • the resin component may be a resin having a disulfide bond, or may be a resin having a disulfide bond in the main chain of the polymer.
  • the resin component may have a crosslinked structure. When the resin component has a crosslinked structure, disulfide bonds may be present in one or both of the main chain and the crosslinked site.
  • the total content of the resin component may be 60% by mass or more, 70% by mass or more, or 80% by mass or more, and 99% by mass or less, 97% by mass or less, or 95% by mass, based on the total amount of the resin member. It may be the following.
  • the resin component may be a reaction product of a compound A having two or more first groups and a compound B having two or more second groups that can react with the first group.
  • at least one of compound A and compound B may have a disulfide bond in the molecule.
  • the first group may be, for example, a (meth)acryloyl group or an isocyanate group.
  • the second group can be appropriately selected depending on the type of the first group. Examples of the second group include a thiol group (-SH) and an amino group (-NH 2 , -NH-, etc.).
  • the resin component is a reaction product of a compound a having two or more (meth)acryloyl groups in the molecule and a compound b having two or more groups capable of reacting with the (meth)acryloyl group in the molecule. May contain things.
  • Compound a may include compound a-1 having three or more (meth)acryloyl groups.
  • Compound a-1 is a compound having three or more groups of one or more types selected from the group consisting of methacryloyl groups and acryloyl groups in the molecule.
  • the upper limit of the number of (meth)acryloyl groups in compound a-1 may be, for example, 10 or less, 8 or less, 6 or less, or 4 or less per molecule.
  • Compound a-1 may be a compound having three (meth)acryloyl groups.
  • the molecular weight or weight average molecular weight of compound a-1 may be 150 or more, 500 or more, or 1000 or more, and may be 50000 or less, 10000 or less, or 2000 or less.
  • Compound a-1 is a compound having a trimethylolpropane skeleton and three or more (meth)acryloyl groups, a compound having a pentaerythritol skeleton and three or more (meth)acryloyl groups, and an isocyanate.
  • Examples include compounds having a nurate skeleton and three or more (meth)acryloyl groups, and compounds having a pentaerythritol skeleton and three or more (meth)acryloyl groups.
  • Compound a-1 having a trimethylolpropane skeleton may be, for example, a compound represented by the following formula (a1).
  • R 1 represents a hydrogen atom or a methyl group
  • L 1 represents an alkylene group.
  • n1, n2 and n3 each independently represent an integer of 1 or more.
  • a plurality of R 1 's may be the same or different.
  • the number of carbon atoms in the alkylene group represented by L 1 may be 2 or more, 10 or less, 6 or less, or 3 or less.
  • the alkylene group represented by L 1 may be, for example, an ethylene group (-CH 2 -CH 2 -).
  • L1 's each may be the same or different.
  • the sum n1+n2+n3 of n1, n2, and n3 may be, for example, 0 or more, 6 or more, 27 or less, 20 or less, or 9.
  • a-1 having four or more (meth)acryloyl groups include, for example, EBECRYL4265, EBECRYL4587, EBECRYL4666, EBECRYL8210, EBECRYL8606, EBECRYL1290, EBECRYL5129, EBECRYL8254, EB ECRYL8301R, KRM8200, KRM8904, KRM8452, EBECRYL220 (all Daicel Ornyx Corporation) NK Ester A-TMMT, NK Ester ATM-35E, NK Ester AD-TMP, NK Ester A-DPH, NK Ester A-9550, NK Ester A-DPH-12E, and NK Ester TPOA- 50 (both manufactured by Shin-Nakamura Chemical Industry Co., Ltd.).
  • Compound a may further contain compound a-2 having two (meth)acryloyl groups.
  • Compound a-2 is a compound having two or more groups selected from the group consisting of methacryloyl groups and acryloyl groups in its molecule.
  • Compound a-2 further includes a linking group linking two (meth)acryloyl groups.
  • the molecular weight or weight average molecular weight of compound a-2 may be 150 or more, 500 or more, or 1000 or more, and may be 50000 or less, 10000 or less, or 2000 or less.
  • Compound a-2 may be, for example, a compound represented by the following formula (a2).
  • R 2 represents a hydrogen atom or a methyl group.
  • L 2 represents an alkylene group.
  • a plurality of R 2 's may be the same or different.
  • the number of carbon atoms in the alkylene group represented by L 2 may be 2 or more, 10 or less, 6 or less, or 3 or less.
  • the alkylene group represented by L 2 may be, for example, an ethylene group (-CH 2 -CH 2 -).
  • m represents an integer of 1 or more.
  • m may be 2 or more or 3 or more.
  • the upper limit of m may be, for example, 10 or less, 8 or less, 6 or less, or 5 or less.
  • each of them may be the same or different.
  • NK Ester HD-N NK Ester NOD-N
  • NK Ester DOD-N NK Ester NPG
  • the content of compound a (total content of compound a-1 and compound a-2) may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, based on the total amount of the resin member, It may be 99% by weight or less, 97% by weight or less, or 95% by weight or less.
  • the content of compound a-1 may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and 90% by mass or less, 70% by mass or less, or 50% by mass, based on the total amount of the resin member. % or less.
  • the content of compound a-2 may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and 99% by mass or less, 97% by mass or less, or 95% by mass, based on the total amount of the resin member. % or less.
  • the ratio of the number of moles of compound a-1 to the total number of moles of compound a is 0.2 or more, 0.3 or more, or 0.4 or more. It may be 1.0 or less, 0.9 or less, or 0.8 or less.
  • the number of disulfide bonds in compound a-1 or compound a-2 may be, for example, 1 to 1000 or 4 to 50.
  • Compound b is a compound b that has two or more groups that can react with a (meth)acryloyl group.
  • the upper limit of the number of groups that can react with the (meth)acryloyl group may be, for example, 10 or less, 8 or less, 6 or less, 4 or less, or 3 or less per molecule.
  • Compound b may be a compound in which the group capable of reacting with a (meth)acryloyl group is a thiol group. That is, compound b may be a compound having two or more thiol groups in the molecule.
  • the number of disulfide bonds in compound b may be, for example, 1 to 1000 or 4 to 50.
  • the molecular weight or weight average molecular weight of compound b may be 100 or more, 1000 or more, or 3000 or more, and may be 50000 or less, 30000 or less, or 10000 or less.
  • Compound b has a linear molecular chain and a terminal group, and may be a compound (for example, a polymer or oligomer) having a disulfide bond in the molecular chain.
  • the terminal group in compound b may be a thiol group.
  • compound b is such a compound, it becomes even easier to form a reaction product (cured product) that can exhibit excellent phototackiness.
  • the molecular chain in compound b may contain a disulfide bond and a polyether chain, or may consist of a disulfide bond and a polyether chain.
  • Compound b may be, for example, a compound represented by formula (1): HS-(A-S-S) p -A-SH (compound (1)).
  • A represents a polyether chain.
  • a plurality of A's may be the same or different.
  • p represents an integer of 1 or more.
  • p may be, for example, 1 or more, 4 or more, and 1000 or less.
  • Compound b may be a chain-extended compound of compound (1).
  • the polyether chain as A may be, for example, a polyoxyalkylene chain.
  • the polyether chain as A may be, for example, a group represented by -A 1 -O-A 2 -O-A 3 -.
  • a 1 to A 3 may each independently be an alkylene group, and may be an alkylene group having 1 to 2 carbon atoms (eg, methylene group, ethylene group).
  • Examples of the polyether chain as A include -CH 2 CH 2 -O-CH 2 -O-CH 2 CH 2 -.
  • compound b Commercially available products of compound b include, for example, Thiokol LP series (dithiol having a disulfide bond, manufactured by Toray Fine Chemical Co., Ltd.).
  • Compound b may be used alone or in combination of two or more.
  • Compound b can also be obtained by converting the reactive functional group of a starting compound having a reactive functional group and a disulfide bond at its terminal into a thiol group.
  • the reactive functional group in the raw material compound include a carboxy group and a hydroxy group.
  • the raw material compound having a reactive functional group and a disulfide bond at the terminal include 3,3'-dithiodipropionic acid, dithiodiethanol, and cystamine.
  • the content of compound b may be 1% by mass or more, 3% by mass or more, 5% by mass or more, 30% by mass or more, or 50% by mass or more, and 99% by mass or less, based on the total mass of the resin member. , 97% by mass or less, or 95% by mass or less.
  • the ratio of the number of moles of the thiol group in compound b to the number of moles of the (meth)acryloyl group in compound a may be, for example, 0.90 or more, or 0.95 or more, and 1.1 or less, or It may be 1.05 or less.
  • the ratio of the number of moles of the thiol group in compound b to the number of moles of the (meth)acryloyl group in compound a is within the above-mentioned range, the decrease in phototackiness is further suppressed and storage of the resin member is improved. Decrease in stability is further suppressed.
  • the reaction product of compound a and compound b may be a Michael addition reaction product of the (meth)acryloyl group in compound a and the thiol group in compound b.
  • the reaction between compound a and compound b may proceed by heating, or may proceed at room temperature using a catalyst (curing catalyst) that promotes the reaction between compound a and compound b.
  • the temperature of the reaction between compound a and compound b may be, for example, 0 to 200°C, 30 to 150°C, or 60 to 100°C.
  • the time for maintaining the above reaction temperature may be, for example, 0.1 to 168 hours, 72 hours or less, 24 hours or less, 12 hours or less, 6 hours or less, 4 hours or less, 3 hours or less, or 2 hours or less. It may be.
  • Examples of catalysts that promote the reaction between compound a and compound b include amine compounds and phosphorus compounds.
  • the amine compound may be, for example, a tertiary amine compound or a secondary amine compound.
  • Amine compounds include dicyandiamide, trimethylamine, triethylamine, tripropylamine, tributylamine, tri-n-octylamine, dimethylethylamine, dimethylpropylamine, dimethylbutylmian, dimethyl-n-octylamine, 1,4-diazabicyclo[2 .2.2] octane, 1,8-diazabicyclo[5.4.0]undec-7-ene, benzyldimethylamine, 4-methyl-N,N-dimethylbenzylamine, 2,4,6-tris(dimethyl (aminomethyl)phenol, 4-dimethylaminopyridine, and the like.
  • the catalyst that promotes the reaction between compound a and compound b is 1,8-diazabicyclo [5.4.0 ] undec-7-ene, a phosphorus compound or a secondary amine compound.
  • the content of the catalyst that promotes the reaction between compound a and compound b may be 0.02% by mass or more, 0.1% by mass or more, or 1% by mass or more, based on the total amount of the resin member, and 3 It may be less than or equal to 2.5% by weight, or less than or equal to 2% by weight.
  • R represents a hydrogen atom or a methyl group
  • * represents a bond.
  • a disulfide bond serving as a bond cleavage site may be present in one or both of the main chain and side chain of the reaction product.
  • a disulfide bond may be present in the main chain of the reaction product since it is easy to obtain a resin component that exhibits adhesiveness after irradiation with light.
  • the reaction product of compound a and compound b may include a compound having a structure represented by the following formula (x1).
  • R 1 , L 1 , n1, n2 and n3 are defined as in formula (a1), A and p are defined as in formula (1), and * represents a bond.
  • a plurality of R 1 , L 1 , A and p may be the same or different from each other.
  • the reaction product of compound a and compound b may include a compound having a structure represented by the following formula (x2).
  • R 2 , L 2 and m have the same meanings as in formula (a2), A and p have the same meanings as in formula (1), and * indicates a bond.
  • a plurality of R 2 , A and p may be the same or different.
  • the resin component may include a reaction product of a compound c having two or more isocyanate groups in the molecule and a compound d having two or more groups capable of reacting with the isocyanate groups in the molecule.
  • the upper limit of the number of isocyanate groups in compound c may be, for example, 10 or less, 8 or less, 6 or less, or 4 or less per molecule.
  • Compound c may be a compound having two or three isocyanate groups.
  • the molecular weight or weight average molecular weight of compound c may be 150 or more, and may be 600 or less, 1000 or less, or 10000 or less.
  • the compound c may include a compound c-1 having two isocyanate groups and a compound c-2 having three isocyanate groups.
  • the flexibility of the resin member can be increased.
  • the degree of crosslinking can be increased and rigidity can be imparted.
  • Examples of the compound c-1 having two isocyanate groups include aliphatic diisocyanates such as ethylene diisocyanate, propylene diisocyanate, butylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate; isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, Alicyclic diisocyanates such as norbornane diisocyanate, 1,4-isocyanatocyclohexane, 1,3-bis(isocyanatomethyl)-cyclohexane, 1,3-bis(2-isocyanatopropyl-2yl)-cyclohexane; tolylene diisocyanate; Examples include aromatic diisocyanates such as isocyanate, 4,4'-diphenylmethane diisocyanate, xylene diisocyanate, and 1,5-naphthalene diisocyanate. Among
  • Examples of the compound c-2 having three isocyanate groups include triphenylmethane-4,4',4''-triisocyanate, 1,3,5-triisocyanatobenzene, 1,3,5-tris( Examples include cyclohexane (isocyanatomethyl), 1,3,5-tris(isocyanatomethyl)benzene, and 2-isocyanatoethyl 2,6-diisocyanatocaproate.
  • Examples of the compound c-2 having three isocyanate groups include the trimer of the above-mentioned compound c-1. Among these, compound c-2 may be a trimer of aliphatic diisocyanate, or may be a trimer of hexamethylene diisocyanate (HDI).
  • the isocyanate group in compound c may be protected with a blocking agent.
  • Isocyanate groups protected with blocking agents are generally stable at room temperature.
  • Compound c having two or more isocyanate groups protected by a blocking agent generates free isocyanate groups when heated to a temperature equal to or higher than the dissociation temperature of the blocking agent.
  • blocking agents include methyl ethyl ketone oxime (MEKO, dissociation temperature 130°C), dimethyl pyrazole (DMP, dissociation temperature 110°C), diethyl malonate (DEM, dissociation temperature 110°C), and active methylene compounds (dissociation temperature 90°C). It may be.
  • the content of compound c constituting the resin component (for example, the total content of compound c-1 and compound c-2) is 2% by mass or more, 4% by mass or more, or 7% by mass based on the total amount of the resin member. % or more, and may be 50% by mass or less, 40% by mass or less, or 30% by mass or less.
  • the ratio of the number of moles of compound c-2 to the total number of moles of compound c may be 0.5 or more.
  • the ratio may be 0.7 or more, 0.8 or more, or 0.9 or more.
  • the upper limit of the ratio may be 1 or less.
  • the number of disulfide bonds in one molecule may be, for example, 1 to 1000 or 4 to 50.
  • Compound d is a compound having two or more groups that can react with isocyanate groups.
  • a compound having two or more thiol groups (-SH) in the molecule can be used. Details of the compound having two or more thiol groups (-SH) in the molecule may be as described above.
  • the ratio of the number of moles of thiol groups in compound d to the number of moles of isocyanate groups in compound c may be, for example, 0.90 or more, or 0.95 or more, and 1.1 or less, or 1.05 or less. It may be.
  • the reaction product of compound c and compound d is formed by a thiourethane reaction between the isocyanate group in compound c and the thiol group in compound d.
  • the reaction between compound c and compound d may be allowed to proceed by heating, or may be allowed to proceed at room temperature using a catalyst (curing catalyst) that promotes the reaction between compound c and compound d.
  • the temperature of the reaction of compound c and compound d may be, for example, 0 to 200°C, 30 to 150°C, or 60 to 100°C.
  • the time for maintaining the above reaction temperature may be, for example, 0.1 to 168 hours, 72 hours or less, 24 hours or less, 12 hours or less, 6 hours or less, 4 hours or less, 3 hours or less, or 2 hours or less. It may be.
  • the catalysts exemplified as catalysts that promote the reaction of compound c and compound d can be used as the catalyst that promotes the reaction of compound c and compound d.
  • the content of the catalyst that promotes the reaction of compound c and compound d may be 0.01 part by mass or more, 0.1 part by mass or more, or 1 part by mass or more based on 100 parts by mass of the total amount of the resin component. , 3 parts by weight or less, 2.5 parts by weight or less, or 2% by weight or less.
  • * represents a bond.
  • a disulfide bond may be present in one or both of the main chain and side chain of the reaction product.
  • a disulfide bond may be present in the main chain of the reaction product since it facilitates the development of phototackiness.
  • reaction product of compound c and compound d may contain a compound containing a structure represented by the following formula (y1).
  • a photo-radical generator is a component that generates radicals when irradiated with light.
  • the photoradical generator for example, a component used as a photopolymerization initiator can be used.
  • Examples of photo-radical generators include hydrogen-extracting photo-radical polymerization initiators that generate radicals by extracting hydrogen from other molecules when irradiated with light; Examples include intramolecular cleavage type photoradical polymerization initiators.
  • the photo radical generator is preferably an intramolecular cleavage type photo radical generator.
  • Examples of the hydrogen abstraction type photoradical generator include hexaarylbisimidazole (HABI) compounds, benzophenone compounds, thioxanthone compounds, fluorenone compounds, ⁇ -diketone compounds, and the like.
  • HABI hexaarylbisimidazole
  • HABI compounds include 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole (for example, 2,2'-bis(2-chlorophenyl)-4,4' , 5,5'-tetraphenyl-1,2'-biimidazole), 2,2'-bis(o-bromophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2' -bis(o,p-dichlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetra(m -methoxyphenyl)biimidazole, 2,2'-bis(o,o'-dichlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'
  • benzophenone compound examples include 4,4'-bis(dimethylamino)benzophenone, 4,4'-bis(diethylamino)benzophenone, and the like.
  • thioxanthone compounds include thioxanthone, 2-isopropylthioxanthone, 2-dodecylthioxanthone, 2-cyclohexylthioxanthone, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 1-phenoxythioxanthone, 1-methoxycarbonylthioxanthone, 2-ethoxy Carbonylthioxanthone, 3-(2-methoxyethoxycarbonyl)-thioxanthone, 4-butoxycarbonylthioxanthone, 3-butoxycarbonyl-7-methylthioxanthone, 3,4-di-[2-(2-methoxyethoxy)-ethoxycarbonyl] -thioxanthone, 2-chlorothioxanthone, 1-ethoxycarbonyl-3-ethoxythioxanthone, 1-ethoxycarbonyl-3-chlorothioxanth
  • fluorenone compounds include 9-fluorenone, 3,4-benzo-9-fluorenone, 2-dimethylamino-9-fluorenone, 2-methoxy-9-fluorenone, 2-chloro-9-fluorenone, and 2,7-dichloro- Examples include 9-fluorenone, 2-bromo-9-fluorenone, 2,7-dibromo-9-fluorenone, 2-nitro-9-fluorenone, and 2-acetoky-9-fluorenone.
  • ⁇ -diketone compound examples include benzyl (a compound also referred to as diphenylethanedione or dibenzoyl).
  • Intramolecular cleavage type photoradical generators include benzyl ketal photoradical generators, ⁇ -aminoalkylphenone photoradical generators, ⁇ -hydroxyalkylphenone photoradical generators, and ⁇ -hydroxyacetophenone photoradical generators. , acylphosphine oxide photoradical generators, and the like.
  • benzyl ketal photoradical generator examples include 2,2-dimethoxy-1,2-diphenylethan-1-one (Omnirad 651).
  • Examples of ⁇ -aminoalkylphenone photoradical generators include 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (Omnirad369), 2-methyl-1-[4-(methylthio ) phenyl]-2-morpholinopropan-1-one (Omnirad907), 2-dimethylamino-2-(4-methyl-benzyl)-1-(4-morpholin-4-yl-phenyl)-butane-1- On (Omnirad 379EG) and the like.
  • Examples of the ⁇ -hydroxyalkylphenone photoradical generator include 1-hydroxy-cyclohexyl-phenyl-ketone (Omnirad 184).
  • acylphosphine oxide photoradical generators examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (OmniradTPO H), bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Omnirad819), etc. can be mentioned.
  • the 5% weight loss temperature of the photoradical generator may be 150°C or higher, 200°C or higher, or 250°C or higher, and, for example, 300°C or lower, since the heat resistance of the resin member is further improved. good.
  • the 5% weight loss temperature is the temperature at which the mass of the sample decreases by 5% from the initial value in thermogravimetric analysis in which changes in the mass of the sample are measured while increasing the temperature.
  • the photo-radical generator can be a compound that generates two or more molecules of monoradicals per molecule of the photo-radical generator and does not generate diradicals when irradiated with light, since it becomes more likely to develop adhesive properties.
  • a photoradical generator for example, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-one (5% weight loss temperature: 204 °C), 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl ⁇ -2-methyl-propan-1-one (5% weight loss temperature: 220 °C), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1 (5% weight loss temperature: 248°C), 2-dimethylamino-2-(4-methyl-benzyl) -1-(4-morpholin-4-yl-phenyl)-butan-1-one (5% weight loss temperature: 248
  • the photoradical generator may be a compound that provides benzoyl radicals upon irradiation with light.
  • a compound that gives a benzoyl radical when irradiated with light is a compound that is cleaved by a photoreaction to give a benzoyl radical.
  • Examples of compounds that give benzoyl radicals when irradiated with light include 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-hydroxy-cyclohexyl-phenyl-ketone, and 2-hydroxy-2-methyl-1- Phenyl-propan-1-one, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 1-[4-(2-hydroxyethoxy)-phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-dimethylamino-2-(4-methyl-benzyl )-1-(4-morpholin-4-yl-phenyl)-butan-1-one, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and bis(2,4,6-trimethylbenzoyl) - phenylphosphine oxide.
  • the content of the photoradical generator may be 1% by mass or more, 2% by mass or more, or 3% by mass or more, and 15% by mass or less, 12% by mass or less, or 9% by mass, based on the total amount of the resin member. % or less.
  • the ratio of the number of moles of benzoyl radical to the number of moles of (meth)acryloyl group (total number of moles of acryloyl group and methacryloyl group) in compound a-1 is 5. /6 or less, 4/6 or less, 7/12 or less, or 1/2 or less, 1/12 or more, 1/6 or more, or 1/4 or more.
  • the distance Mc (g/mol) between crosslinking points of the resin member may be 50,000 or less, 35,000 or less, or 20,000 or less, and may be 3,000 or more, 3,500 or more, or 4,000 or more.
  • the distance between crosslinking points is less than or equal to the above upper limit value, the occurrence of tack before light irradiation is suppressed, it becomes difficult to form a gel, and the change in adhesiveness before and after light irradiation becomes larger.
  • adhesion between resins becomes less likely to occur before light irradiation, and lamination becomes easier.
  • the distance between crosslinking points is equal to or greater than the above lower limit, the amount of photo-radical generator required to develop tackiness after light irradiation can be further reduced, and tackiness can be developed more easily.
  • the distance between crosslinking points Mc is the molecular weight between crosslinking points, that is, the average molecular weight between crosslinking points, and the theoretical value is calculated from the formulation.
  • the distance between crosslinking points can be calculated by using an atom in which a C-C or C-O single bond in the resin component is branched in three or more directions as a crosslinking point, or using a cyclic skeleton such as isocyanurate in three or more directions. When it has a branch, the calculation is performed by considering the cyclic skeleton itself (the six-membered ring of C and N itself) as a crosslinking point. The specific calculation method is as described in the Examples described later.
  • the storage modulus G' of the resin member may be 100000000 or less, 10000000 or less, or 2000000 or less, and may be 10000 or more, 100000 or more, or 500000 or more.
  • the loss tangent tan ⁇ of the resin member may be 1 or less, 0.9 or less, or 0.8 or less, and may be 0.005 or more, 0.01 or more, or 0.02 or more.
  • the loss tangent tan ⁇ is expressed as the ratio of the loss modulus G' to the storage modulus G' (G''/G').
  • the storage modulus G' and loss modulus G'' of the resin member can be measured by the method described in the Examples below.
  • the shear adhesive strength of the resin member (resin member before light irradiation) at 25° C. may be 5 N/cm 2 or less, and may be 0 N/cm 2 .
  • the shear adhesive strength of the resin member can be measured by the method described in Examples below.
  • the resin member develops adhesiveness when irradiated with light.
  • the light used for light irradiation may be, for example, light containing light with a wavelength of 365 nm or 405 nm.
  • the exposure amount of light irradiation may be, for example, 1000 mJ/cm 2 or more. In this specification, the exposure amount means the product of illuminance (mW/cm 2 ) and irradiation time (seconds).
  • the light may be irradiated directly onto the object to be irradiated, or may be irradiated through glass or the like.
  • the light source used for light irradiation is not particularly limited, and includes, for example, an LED lamp, a mercury lamp (low pressure, high pressure, ultra-high pressure, etc.), a metal halide lamp, an excimer lamp, a xenon lamp, and the like.
  • the light source used for light irradiation may be an LED lamp, a mercury lamp, or a metal halide lamp.
  • the storage modulus G' of the resin member after light irradiation is usually lower than the storage modulus G' of the resin member before light irradiation.
  • the storage modulus G' of the resin member after light irradiation may be 1,000,000 or less, 500,000 or less, or 200,000 or less, and may be 1,000 or more, 10,000 or more, or 20,000 or more.
  • the loss modulus G'' of the resin member after light irradiation may be 1,000,000 or less, 500,000 or less, or 200,000 or less, and may be 1,000 or more, 10,000 or more, or 20,000 or more.
  • the loss tangent tan ⁇ of the resin member after light irradiation may be 2 or less, 1.7 or less, or 1.5 or less, and may be 0.1 or more, 0.15 or more, or 0.2 or more. good.
  • the storage modulus G' and loss modulus G'' of the resin member after light irradiation can be measured by the method described in the Examples described below.
  • the shear adhesive strength at 25° C. of the resin member after light irradiation may be 5 N/cm 2 or more, 10 N/cm 2 or more, or 15 N/cm 2 or more.
  • the shear adhesive strength at 25° C. of the resin member after light irradiation can be measured by the method described in the Examples below.
  • the shape of the resin member may be various shapes such as a film shape or a block shape.
  • the method of forming into a film or block is not particularly limited, and any known method can be applied.
  • the thickness of the film-like resin member may be, for example, 5 ⁇ m or more, or 10 ⁇ m or more, and 5 mm or less, or 1 mm or less.
  • the resin member can be used for applications such as adhesive materials, protective materials, and pick-up materials for parts and materials.
  • the resin member can be obtained by a method that includes a step of reacting a precursor of a resin component in a mixture containing a precursor of a resin component that develops adhesiveness through photoreaction and a photoradical generator. Reaction conditions may be as described above.
  • the resin material includes a compound a having two or more (meth)acryloyl groups, a compound b having two or more groups capable of reacting with the (meth)acryloyl group, and a photoradical generator.
  • compound a includes compound a-1 having three or more (meth)acryloyl groups, and at least one of compound a and compound b has a disulfide bond in the molecule.
  • the resin material according to another embodiment includes a compound c having two or more isocyanate groups, a compound d having two or more groups capable of reacting with the isocyanate groups, and a photoradical generator.
  • a compound c having two or more isocyanate groups In the resin material, at least one of compound c and compound d has a disulfide bond in the molecule.
  • the compound c may include a compound having three or more isocyanate groups.
  • the above-mentioned embodiments can be applied to specific embodiments of the compounds a to d, the photoradical generator, etc.
  • the above-mentioned resin material is suitable for forming a resin member that can be used as an adhesive material without using a separator.
  • the reel body according to this embodiment includes a core and the above-described resin member wound around the core.
  • the resin member described above is in the form of a film.
  • the reel body can be manufactured, for example, by a method that includes winding a long film-like resin member around the outer surface of a cylindrical winding core.
  • the packaging body according to the present embodiment includes the resin member or the reel body, and a packaging bag that has light blocking properties and accommodates the resin member or the reel body.
  • the packaging bag is not particularly limited as long as it has a light shielding property against light from the outside and can accommodate the above-mentioned resin member or the above-mentioned reel body.
  • Test Example 1 1-1. Preparation of resin material and production of film for evaluation Polysulfide, which is a terminal bifunctional thiol (molecular weight approximately 3700) having a disulfide bond in the chain, trimethylolpropane triacrylate, and Omnirad-379EG were used as test materials. The test materials were blended in a 100 mL plastic ointment jar, heated at 95°C for 1 hour, and then stirred for 3 minutes at a rotational speed of 2000 rpm using a rotation-revolution stirrer (Awatori Rentaro ARE-310; manufactured by Shinky Co., Ltd.). Completed. In this way, resin materials of Examples 1a to 1d were prepared.
  • the resin material obtained together with a spacer of the desired film thickness was sandwiched between the mold release surfaces of two mold release PET sheets (Film Biner DB-50 (manufactured by Fujimori Industries Co., Ltd.)), and the resin material was kept at room temperature for one week. It was cured under the following conditions.
  • the curing method was based on previous reports on the reaction between mercapto groups and acrylic groups, and by adding 2 parts by weight of 2,4,6-trisdimethylaminomethylphenol (ADEKA Hardener EHC-30; manufactured by ADEKA Co., Ltd.) as a catalyst. , the Michael addition reaction between a mercapto group and an acrylic group was allowed to proceed at room temperature.
  • the curing rate was calculated from the measurement results of the infrared absorption spectrum, and polymerization was considered complete when the integral value of the acrylic group peak around 810 cm ⁇ 1 decreased by 95% or more compared to the unpolymerized state.
  • the release film was peeled off to obtain evaluation films of Examples 1a to 1d.
  • the obtained evaluation film was used as a test subject for various evaluations.
  • UV irradiation device manufactured by Panasonic Devices SUNX Co., Ltd., power supply: Aicure UJ30, 405 nm LED head: ANUJ6189
  • the irradiation conditions were measured using a luminometer UIT-250 (manufactured by Ushio Inc.) using a 405 nm light receiver.
  • shear adhesive strength To measure shear adhesive strength, a film with a thickness of 500 ⁇ 100 ⁇ m obtained by the method of “1-1. Preparation of resin material and production of evaluation film” was shaped into a cylinder with a diameter of 10 ⁇ 1 mm. A punched out piece was used. The cured product was punched into a cylindrical shape and stacked in the order of the adherend, the test object, and the adherend from the bottom, as shown in Figure 1, so that the adherends intersect, and a load of 500 g was applied for 1 hour to bond and shear. A sample for measurement of adhesive strength was obtained. A polycarbonate (PC) plate was used as the adherend.
  • PC polycarbonate
  • the shear adhesive strength was measured before and after light irradiation, and the light irradiation was performed by irradiating 5000 mJ/cm 2 of LED light with a wavelength of 405 nm from both sides using the device described in "1-2. Light irradiation”.
  • the shear adhesive strength of the obtained test piece was measured using Autograph AGS-X manufactured by Shimadzu Corporation at a tensile rate of 10 mm/min in an environment of 25°C. Even if the films before UV irradiation were laminated, the films did not adhere to each other and could be peeled off and isolated.
  • Table 1 shows the evaluation results of storage modulus, loss modulus, and shear adhesive strength before and after light irradiation.
  • FIG. 2 is a graph showing changes in storage modulus over time in Examples 1a to 1d.
  • the elastic modulus decreased after irradiation with light, and it was confirmed that the resin members developed adhesiveness. All the resin member samples before light irradiation could be easily peeled off and isolated after being laminated. The above results suggested that the resin member designed in Test Example 1 could function as a separator-less adhesive material.
  • the obtained resin material was sandwiched between the release surfaces of two release PET films (Film Bina DB-50 (manufactured by Fujimori Industries Co., Ltd.)) together with a 500 ⁇ m thick spacer, and cured at room temperature for one week.
  • the release film was peeled off to obtain evaluation films of Examples 2a to 2e.
  • the evaluation film was used as a specimen for mechanical property evaluation. Completion of curing (polymerization) was confirmed by infrared absorption spectrum measurement, and curing (polymerization) was determined to be complete when the integral value of the isocyanate peak near 2260 cm -1 decreased by 90% or more compared to the unpolymerized state. .
  • FIG. 3 is a graph showing changes in storage modulus over time in Examples 2a to 2e.
  • the elastic modulus decreased after light irradiation, and the development of tackiness was confirmed.
  • the resin member of the present disclosure can be used as an adhesive material without using a separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本開示は、光反応によって粘着性を発現する樹脂成分と、光ラジカル発生剤と、を含む、樹脂部材に関する。

Description

樹脂部材、リール体、包装体及び樹脂材料
 本開示は、樹脂部材、リール体、包装体及び樹脂材料に関する。
 粘着材は、その粘着性及び癒着性故に積層した後の剥離及び単離が不可能なため、製品の形態としてはセパレーターが必須となる(例えば、特許文献1)。
特開2004-10647号公報
 昨今の温室効果ガス削減を重視する社会環境においては、セパレーターの非使用化は大きな貢献となる。
 本開示は、セパレーターを使用しない粘着材として利用可能な樹脂部材を提供することを目的とする。本開示は、上記樹脂部材の形成に適した樹脂材料を提供することを目的とする。
 本開示は、いくつかの側面において、下記[1]~[11]を提供する。
[1] 光反応によって粘着性を発現する樹脂成分と、光ラジカル発生剤と、を含む、樹脂部材。
[2] 前記樹脂成分が、架橋構造を有し、かつ、ジスルフィド結合を有する、[1]に記載の樹脂部材。
[3] 前記樹脂成分が、(メタ)アクリロイル基を2個以上有する化合物aと、前記(メタ)アクリロイル基と反応し得る基を2個以上有する化合物bとの反応生成物であり、前記化合物aが(メタ)アクリロイル基を3個以上有する化合物a-1を含み、前記化合物a及び前記化合物bの少なくとも一方が分子内にジスルフィド結合を有する、[1]又は[2]に記載の樹脂部材。
[4] 前記光ラジカル発生剤が、光照射によってベンゾイルラジカルを与える化合物であり、前記化合物a-1中の前記(メタ)アクリロイル基のモル数に対して、前記ベンゾイルラジカルのモル数の比が、5/6以下である、[3]に記載の樹脂部材。
[5] 前記樹脂成分が、イソシアネート基を2個以上有する化合物cと前記イソシアネート基と反応し得る基を2個以上有する化合物dとの反応生成物であり、前記化合物c及び前記化合物dの少なくとも一方が分子内にジスルフィド結合を有する、[1]又は[2]に記載の樹脂部材。
[6] フィルム状である、[1]~[5]のいずれかに記載の樹脂部材。
[7] 巻芯と、前記巻芯に巻き取られた[6]に記載の樹脂部材とを含む、リール体。
[8] [1]~[6]のいずれかに記載の樹脂部材、又は[7]に記載のリール体と、遮光性を有し、かつ、前記樹脂部材、又は前記リール体が収容された包装袋と、を備える、包装体。
[9] (メタ)アクリロイル基を2個以上有する化合物aと、前記(メタ)アクリロイル基と反応し得る基を2個以上有する化合物bと、光ラジカル発生剤と、を含み、前記化合物aが(メタ)アクリロイル基を3個以上有する化合物a-1を含み、前記化合物a及び前記化合物bの少なくとも一方が分子内にジスルフィド結合を有する、樹脂材料。
[10] 前記光ラジカル発生剤が、光照射によってベンゾイルラジカルを与える化合物であり、前記化合物a-1中の前記(メタ)アクリロイル基のモル数に対して、前記ベンゾイルラジカルのモル数の比が、5/6以下である、[9]に記載の樹脂材料。
[11] イソシアネート基を2個以上有する化合物cと、イソシアネート基と反応し得る基を2個以上有する化合物dと、光ラジカル発生剤と、を含み、前記化合物cがイソシアネート基を3個以上有する化合物を含み、化合物c及び化合物dの少なくとも一方が分子内にジスルフィド結合を有する、樹脂材料。
 本開示によれば、セパレーターを使用しない粘着材として利用可能な樹脂部材を提供することができる。本開示によれば、当該樹脂部材の形成に適した樹脂材料を提供することができる。
粘着力評価のために作製される試験片を示す図である。 実施例1a~1dの経過時間に対する貯蔵弾性率の変化を示すグラフである。 実施例2a~2eの経過時間に対する貯蔵弾性率の変化を示すグラフである。
 以下、本開示の実施形態について詳細に説明する。ただし、本開示は以下の実施形態に限定されるものではない。
 本明細書において、「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書において、樹脂部材又は樹脂材料中の各成分の含有量は、樹脂部材又は樹脂材料中に各成分に該当する物質が複数存在する場合、特に断らない限り、樹脂部材又は樹脂材料中に存在する当該複数の物質の合計量を意味する。例示材料は特に断らない限り、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、AとBとのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書において、「(メタ)アクリロイル基」は、メタクリロイル基又はアクリロイル基である。本明細書において、「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。本明細書において、「室温」は、25±10℃を意味する。
〔樹脂部材〕
 本実施形態に係る樹脂部材は、光反応によって粘着性を発現する樹脂成分と、光ラジカル発生剤と、を含む。
 従来の粘着材は、その粘着性及び癒着性ゆえに、粘着材の粘着面側を覆うセパレーターとともに用いられている。本実施形態に係る樹脂部材は、光照射後に粘着性を発現する。そのため、例えば、本実施形態に係る樹脂部材は、粘着性を有しない光照射前の状態で粘着対象物と接触させて提供され、ユーザー使用時に光照射により樹脂部材を軟化させ、粘着化させることで、セパレーターを使用しない粘着材として利用することができる。
<樹脂成分>
 樹脂成分は、光反応によって粘着性を発現する樹脂を含む。樹脂成分は、光反応性官能基を1又は複数個(2個以上)有する重合体を含んでいてよい。光反応性官能基の数は、例えば、1~1000、又は4~50であってよい。樹脂成分は、例えば、光照射によって光反応性基の一部又は全部が分解し、低分子量化することによって粘着性を発現する。
 光反応性官能基としては、例えば、ジスルフィド結合(-S-S-)、トリチオカーボネート、ニトロベンジル、アルキルフェノン、アシルフォスフィンオキサイド、オキシムエステル、ヘキサアリールビスイミダゾール、アリルスルフィド及びスチリルピレン二量体が挙げられる。
 樹脂成分は、ジスルフィド結合を有する樹脂であってよく、ジスルフィド結合を重合体の主鎖に有する樹脂であってよい。樹脂成分は架橋構造を有していてよい。樹脂成分が架橋構造を有する場合、ジスルフィド結合は、主鎖及び架橋部位の一方又は両方に存在していてよい。
 樹脂成分の総含有量は、樹脂部材の総量を基準として、60質量%以上、70質量%以上、又は80質量%以上であってよく、99質量%以下、97質量%以下、又は95質量%以下であってよい。
 樹脂成分は、第1の基を2個以上有する化合物Aと、第1の基と反応し得る基である第2の基を2個以上有する化合物Bとの反応生成物であってよい。樹脂成分において、化合物A及び化合物Bの少なくとも一方は分子内にジスルフィド結合を有していてよい。第1の基は、例えば、(メタ)アクリロイル基又はイソシアネート基であってよい。第2の基は、第1の基の種類に応じて適宜選択することができる。第2の基としては、例えば、チオール基(-SH)、及びアミノ基(-NH、及び-NH-等)が挙げられる。
 樹脂成分は、一実施形態において、分子内に(メタ)アクリロイル基を2個以上有する化合物aと、分子内に(メタ)アクリロイル基と反応し得る基を2個以上有する化合物bとの反応生成物を含んでいてよい。
 化合物aは、(メタ)アクリロイル基を3個以上有する化合物a-1を含んでいてよい。化合物a-1は、メタクリロイル基及びアクリロイル基からなる群より選択される1種以上の基を分子内に3個以上有する化合物である。化合物a-1の(メタ)アクリロイル基の数の上限は、1分子あたり、例えば、10以下、8以下、6以下、又は4以下であってよい。化合物a-1は、(メタ)アクリロイル基を3個有する化合物であってよい。
 化合物a-1の分子量又は重量平均分子量は、150以上、500以上、又は1000以上であってよく、50000以下、10000以下、又は2000以下であってよい。
 化合物a-1は、トリメチロールプロパン骨格を有し、かつ、(メタ)アクリロイル基を3個以上有する化合物、ペンタエリスリトール骨格を有し、かつ、(メタ)アクリロイル基を3個以上有する化合物、イソシアヌレート骨格を有し、かつ、(メタ)アクリロイル基を3個以上有する化合物、ペンタエリスリトール骨格を有し、かつ、(メタ)アクリロイル基を3個以上有する化合物が挙げられる。
 トリメチロールプロパン骨格を有する化合物a-1は、例えば、下記式(a1)で表される化合物であってよい。
 式(a1)中、Rは、水素原子又はメチル基を示し、Lはアルキレン基を示す。n1、n2及びn3は、それぞれ独立して1以上の整数を示す。複数存在するRはそれぞれ同一であっても異なっていてもよい。Lで表されるアルキレン基の炭素数は、2以上であってよく、10以下、6以下、又は3以下であってよい。Lで表されるアルキレン基は、例えば、エチレン基(-CH-CH-)であってよい。Lは複数存在する場合、それぞれ同一であっても異なっていてもよい。n1、n2及びn3の合計n1+n2+n3は、例えば、0以上、又は6以上であってよく、27以下、又は20以下であってよく、9であってよい。
 (メタ)アクリロイル基を3個有する化合物a-1の市販品としては、例えば、ファンクリルFA-133(昭和電工マテリアルズ株式会社製)、FA-132A、FA-137A、FA-133M、FA-137M(いずれも昭和電工マテリアルズ株式会社製)、NKエステルA-TMPT、NKエステルA-TMPT-9EO、NKエステルAT-20E、NKエステルA-GLY-3E、NKエステルA-GLY-9E、NKエステルA-GLY-20E、NKエステルA-9300(いずれも新中村化学工業株式会社製)TMPTA、EBECRYL160S、OTA480(いずれもダイセル・オルニクス株式会社製)ビスコート#295, ビスコート#300(いずれも大阪有機化学工業株式会)、EBECRYL4513、EBECRYL8465、EBECRYL9260、EBECRYL8701、KRM8667、及びKRM8296(いずれもダイセル・オルニクス株式会社製)が挙げられる。(メタ)アクリロイル基を4個以上有する化合物a-1の市販品としては、例えば、EBECRYL4265、EBECRYL4587、EBECRYL4666、EBECRYL8210、EBECRYL8606、EBECRYL1290,EBECRYL5129、EBECRYL8254、EBECRYL8301R、KRM8200、KRM8904、KRM8452、EBECRYL220(いずれもダイセル・オルニクス株式会社製)NKエステルA-TMMT、NKエステルATM-35E、NKエステルAD-TMP、NKエステルA-DPH、NKエステルA-9550、NKエステルA-DPH-12E、及びNKエステルTPOA-50(いずれも新中村化学工業株式会社製)が挙げられる。
 化合物aは、(メタ)アクリロイル基を2個有する化合物a-2を更に含んでいてよい。化合物a-2は、メタクリロイル基及びアクリロイル基からなる群より選択される1種以上の基を分子内に2個有する化合物である。化合物a-2は、2個の(メタ)アクリロイル基を連結する連結基を更に含む。
 化合物a-2の分子量又は重量平均分子量は、150以上、500以上、又は1000以上であってよく、50000以下、10000以下、又は2000以下であってよい。
 化合物a-2は、例えば、下記式(a2)で表される化合物であってよい。
 式(a2)中、Rは、水素原子又はメチル基を示す。Lはアルキレン基を示す。複数存在するRはそれぞれ同一であっても異なっていてもよい。Lで表されるアルキレン基の炭素数は、2以上であってよく、10以下、6以下、又は3以下であってよい。Lで表されるアルキレン基は、例えば、エチレン基(-CH-CH-)であってよい。mは、1以上の整数を示す。mは、2以上又は3以上であってよい。mの上限は、例えば、10以下、8以下、6以下、又は5以下であってよい。Lは複数存在する場合、それぞれ同一であっても異なっていてもよい。
 化合物a-2の市販品としては、例えば、ファンクリルFA-220(昭和電工マテリアルズ株式会社製)、NKエステルHD-N、NKエステルNOD-N、NKエステルDOD-N、NKエステルNPG、NKエステル701、NKエステル2G、NKエステル3G、NKエステル4G、NKエステル9G、NKエステル14G、NKエステル23G、NKエステル9PG、NKエステルDCP、NKエステルBPE-80N、NKエステルBPE-100、NKエステルBPE-200、NKエステルBPE-500、NKエステルBPE-900、NKエステルBPE-1300N、NKエステルA-HD-N、NKエステルA-NOD-N、NKエステルA-DOD-N、NKエステルA-NPG-N、NKエステル701A、NKエステルA-200、NKエステルA-400、NKエステルA-600、NKエステルA-1000、NKエステルAPG-200、NKエステルAPG-400、NKエステルAPG-700、NKエステルA-PTMG65、NKエステルA-DCP、NKエステルABE-300、NKエステルA-BPE-4、NKエステルA-BPE-10、NKエステルA-BPE-20(いずれも新中村化学工業株式会社製)、EBECRYL210、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8804、EBECRYL8807、EBECRYL9270、EBECRYL8191、紫光TMUV-2000B、紫光TMUV-3000B、紫光TMUV-3200B、紫光TMUV-3300B、紫光TMUV-3310B、紫光TMUV-3500BA、紫光TMUV-3520EA、紫光TMUV-3700B、及び紫光TMUV-6640B(いずれも三菱ケミカル株式会社製)が挙げられる。
 化合物aの含有量(化合物a-1及び化合物a-2の合計含有量)は、樹脂部材の総量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、99質量%以下、97質量%以下、又は95質量%以下であってよい。
 化合物a-1の含有量は、樹脂部材の総量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、90質量%以下、70質量%以下、又は50質量%以下であってよい。
 化合物a-2の含有量は、樹脂部材の総量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、99質量%以下、97質量%以下、又は95質量%以下であってよい。
 化合物aの総モル数(化合物a-1及び化合物a-2の総モル数)に対する、化合物a-1のモル数の比は、0.2以上、0.3以上、又は0.4以上であってよく、1.0以下、0.9以下、又は0.8以下であってよい。
 化合物aが分子内にジスルフィド結合を有する場合、化合物a-1又は化合物a-2中のジスルフィド結合の数は、例えば、1~1000、又は4~50であってよい。
 化合物bは(メタ)アクリロイル基と反応し得る基を2個以上有する化合物bである。(メタ)アクリロイル基と反応し得る基の数の上限は、1分子当たり、例えば、10以下、8以下、6以下、4以下又は3以下であってよい。化合物bは、(メタ)アクリロイル基と反応し得る基がチオール基である化合物であってよい。すなわち、化合物bは、分子内にチオール基を2個以上有する化合物であってよい。
 化合物bが分子内にジスルフィド結合を有する場合、化合物b中のジスルフィド結合の数は、例えば、1~1000、又は4~50であってよい。
 化合物bの分子量又は重量平均分子量は、100以上、1000以上、又は3000以上であってよく、50000以下、30000以下、又は10000以下であってよい。
 化合物bは、直鎖状の分子鎖と末端基とを有し、当該分子鎖中にジスルフィド結合を有する化合物(例えば、ポリマー又はオリゴマー)であってよい。この場合、化合物b中の末端基がチオール基であってよい。化合物bがこのような化合物である場合、優れた光粘着性を発揮し得る反応生成物(硬化物)をより一層形成しやすくなる。化合物b中の分子鎖は、ジスルフィド結合とポリエーテル鎖とを含んでいてよく、ジスルフィド結合とポリエーテル鎖とからなっていてよい。
 化合物bは、例えば、式(1):HS-(A-S-S)-A-SHで表される化合物(化合物(1))であってよい。式中、Aは、ポリエーテル鎖を示す。複数存在するAは、互いに同一であっても異なっていてもよい。pは、1以上の整数を示す。pは、例えば、1以上、又は4以上であってよく、1000以下であってもよい。化合物bは、化合物(1)を鎖延長した化合物であってもよい。
 Aとしてのポリエーテル鎖は、例えば、ポリオキシアルキレン鎖であってよい。Aとしてのポリエーテル鎖は、例えば、-A-O-A-O-A-で表される基であってよい。A~Aは、それぞれ独立に、アルキレン基であってよく、炭素数1~2のアルキレン基(例えば、メチレン基、エチレン基)であってよい。Aとしてのポリエーテル鎖としては、例えば、-CHCH-O-CH-O-CHCH-等が挙げられる。
 化合物bの市販品としては、例えば、チオコールLPシリーズ(ジスルフィド結合を有するジチオール、東レ・ファインケミカル株式会社製)等が挙げられる。化合物bは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。化合物bは、末端に反応性官能基と、ジスルフィド結合とを有する原料化合物の反応性官能基をチオール基に変換することによって得ることもできる。原料化合物中の反応性官能基としては、カルボキシ基、ヒドロキシ基等が挙げられる。末端に反応性官能基と、ジスルフィド結合とを有する原料化合物としては、3,3’-ジチオジプロピオン酸、ジチオジエタノール及びシスタミン等が挙げられる。
 化合物bの含有量は、樹脂部材の全質量を基準として、1質量%以上、3質量%以上、5質量%以上、30質量%以上、又は50質量%以上であってよく、99質量%以下、97質量%以下又は95質量%以下であってよい。
 化合物a中の(メタ)アクリロイル基のモル数に対する、化合物b中のチオール基のモル数の比は、例えば、0.90以上、又は0.95以上であってよく、1.1以下、又は1.05以下であってよい。化合物a中の(メタ)アクリロイル基のモル数に対する、化合物b中のチオール基のモル数の比が上述した範囲内であると、光粘着性の低下が更に抑制されるとともに、樹脂部材の保管安定性の低下が更に抑制される。
 化合物aと、化合物bとの反応生成物は、より具体的には、化合物a中の(メタ)アクリロイル基と、化合物b中のチオール基とのMichael付加反応物であってよい。化合物aと、化合物bとの反応は、加熱することによって進行させてもよく、化合物aと化合物bとの反応を促進する触媒(硬化触媒)を用いて、室温で進行させてもよい。化合物aと、化合物bとの反応の温度は、例えば、0~200℃であってよく、30~150℃又は60~100℃であってもよい。上記反応温度に保持する時間は、例えば、0.1~168時間であってよく、72時間以下、24時間以下、12時間以下、6時間以下、4時間以下、3時間以下、又は2時間以下であってもよい。
 化合物aと化合物bとの反応を促進する触媒としては、例えば、アミン化合物及びリン化合物が挙げられる。アミン化合物は、例えば、三級アミン化合物、又は、二級アミン化合物であってよい。アミン化合物としては、ジシアンジアミド、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリ-n-オクチルアミン、ジメチルエチルアミン、ジメチルプロピルアミン、ジメチルブチルミアン、ジメチル-n-オクチルアミン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ベンジルジメチルアミン、4-メチル-N,N-ジメチルベンジルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、4-ジメチルアミノピリジン等が挙げられる。
 化合物aと化合物bとの反応を促進する触媒は、室温での速硬化がより容易になること、オープンタイムの調節がより容易になること等から、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、リン化合物又は二級アミン化合物であってよい。
 化合物aと化合物bとの反応を促進する触媒の含有量は、樹脂部材の総量を基準として、0.02質量%以上、0.1質量%以上、又は1質量%以上であってよく、3質量%以下、2.5質量%以下、又は2質量%以下であってよい。
 化合物aと、化合物bとの反応生成物は、式(I):*-C(=O)-CHR-CH-S-*で表される構造と、ジスルフィド結合と、を有する。式(I)中、Rは水素原子又はメチル基を示し、*は結合手を示す。結合切断部位となるジスルフィド結合は、反応生成物の主鎖及び側鎖の一方又は両方に存在していてもよい。光照射後に粘着性を発現する樹脂成分が得られ易いことから、ジスルフィド結合は、反応生成物の主鎖中に存在していてよい。
 化合物aと、化合物bとの反応生成物は、下記式(x1)で表される構造を含む化合物を含んでいてよい。
 式(x1)中、R、L、n1、n2及びn3は式(a1)と同義であり、A及びpは式(1)と同義であり、*は結合手を示す。式(x1)中において複数存在するR、L、A及びpはそれぞれ互いに同一であっても異なっていてもよい。
 化合物aと、化合物bとの反応生成物は、下記式(x2)で表される構造を含む化合物を含んでいてよい。
 式(x2)中、R、L及びmは式(a2)と同義であり、A及びpは式(1)と同義であり、*は結合手を示す。式(x2)中において複数存在するR、A及びpは、互いに同一であっても異なっていてもよい。
 樹脂成分は、一実施形態において、分子内にイソシアネート基を2個以上有する化合物cと、分子内にイソシアネート基と反応し得る基を2個以上有する化合物dとの反応生成物を含んでいてよい。
 化合物cのイソシアネート基の数の上限は、1分子あたり、例えば、10個以下、8個以下、6個以下、又は4個以下であってよい。化合物cは、イソシアネート基を2個又は3個有する化合物であってよい。
 化合物cの分子量又は重量平均分子量は、150以上であってよく、600以下、1000以下、又は10000以下であってよい。
 化合物cは、一実施形態において、イソシアネート基を2個有する化合物c-1と、イソシアネート基を3個有する化合物c-2とを含んでいてもよい。イソシアネート基を2個有する化合物c-1の含有量を大きくすることにより、樹脂部材の柔軟性を高めることができる。イソシアネート基を3個有する化合物c-2の含有量を大きくすることにより、架橋度を増加させることができ、剛直性を付与することができる。
 イソシアネート基を2個有する化合物c-1としては、例えば、エチレンジイソシアネート、プロピレンジイソシアネート、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート;イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ノルボルナンジイソシアネート、1,4-イソシアナトシクロヘキサン、1,3-ビス(イソシアナトメチル)-シクロヘキサン、1,3-ビス(2-イソシアナトプロピル-2イル)-シクロヘキサン等の脂環族ジイソシアネート;トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシレンジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ジイソシアネートなどが挙げられる。これらの中で、化合物c-1は、脂肪族ジイソシアネートであってよく、ヘキサメチレンジイソシアネート(HDI)であってもよい。
 イソシアネート基を3個有する化合物c-2としては、例えば、トリフェニルメタン-4,4’,4’’-トリイソシアネート、1,3,5-トリイソシアナトベンゼン、1,3,5-トリス(イソシアナトメチル)シクロヘキサン、1,3,5-トリス(イソシアナトメチル)ベンゼン、2,6-ジイソシアナトカプロン酸-2-イソシアナトエチル等が挙げられる。イソシアネート基を3個有する化合物c-2としては、例えば、上記の化合物c-1の三量体等が挙げられる。これらの中で、化合物c-2は、脂肪族ジイソシアネートの三量体であってよく、ヘキサメチレンジイソシアネート(HDI)の三量体であってもよい。
 化合物cにおけるイソシアネート基はブロック剤で保護されていてよい。ブロック剤で保護されたイソシアネート基は通常、常温で安定である。ブロック剤で保護されたイソシアネート基を2個以上有する化合物cは、ブロック剤の解離温度以上の温度に加熱すると、遊離のイソシアネート基を生成する。ブロック剤としては、例えば、メチルエチルケトンオキシム(MEKO、解離温度130℃)、ジメチルピラゾール(DMP、解離温度110℃)、マロン酸ジエチル(DEM、解離温度110℃)及び活性メチレン化合物(解離温度90℃)であってもよい。
 樹脂成分を構成する化合物cの含有量(例えば、化合物c-1及び化合物c-2の合計含有量)は、樹脂部材の総量を基準として、2質量%以上、4質量%以上、又は7質量%以上であってよく、50質量%以下、40質量%以下、又は30質量%以下であってよい。
 化合物cの総モル数(化合物c-1及び化合物c-2の総モル数)に対する化合物c-2のモル数の比は、一実施形態において、0.5以上であってよい。当該比が0.5以上であると、架橋度を増加させることができ、剛直性を付与することができる。この場合、当該比は、0.7以上、0.8以上、又は0.9以上であってもよい。当該比の上限は、1以下であってよい。
 化合物c(化合物c-1及び化合物c-2)が分子内にジスルフィド結合を有する場合、1分子中のジスルフィド結合の数は、例えば、1~1000又は4~50であってよい。
 化合物dはイソシアネート基と反応し得る基を2個以上有する化合物である。化合物dは、分子内にチオール基(-SH)を2個以上有する化合物を用いることができる。分子内にチオール基(-SH)を2個以上有する化合物の詳細は上述したとおりであってよい。
 化合物c中のイソシアネート基のモル数に対する化合物d中のチオール基のモル数の比は、例えば、0.90以上、又は0.95以上であってよく、1.1以下、又は1.05以下であってよい。
 化合物c及び化合物dの反応生成物は、より具体的には、化合物c中のイソシアネート基と、化合物d中のチオール基とのチオウレタン化反応によって形成される。化合物c及び化合物dの反応は、加熱することによって進行させてもよく、化合物c及び化合物dの反応を促進する触媒(硬化触媒)を用いて、室温で進行させてもよい。化合物c及び化合物dの反応の温度は、例えば、0~200℃であってよく、30~150℃又は60~100℃であってもよい。上記反応温度に保持する時間は、例えば、0.1~168時間であってよく、72時間以下、24時間以下、12時間以下、6時間以下、4時間以下、3時間以下、又は2時間以下であってもよい。
 化合物c及び化合物dの反応を促進する触媒は、化合物c及び化合物dの反応を促進する触媒として例示した触媒を用いることができる。化合物c及び化合物dの反応を促進する触媒の含有量は、樹脂成分の総量100質量部に対して、0.01質量部以上、0.1質量部以上、又は1質量部以上であってよく、3質量部以下、2.5質量部以下、又は2質量%以下であってよい。
 化合物c及び化合物dの反応生成物は、式(II):*-NH-C(=O)-S-*で表される構造と、ジスルフィド結合と、を有する。式(II)中、*は結合手を示す。ジスルフィド結合は、反応生成物の主鎖及び側鎖の一方又は両方に存在していてもよい。光粘着性がより発現しやすくなることことから、ジスルフィド結合は、反応生成物の主鎖中に存在していてもよい。
 化合物c及び化合物dの反応生成物は、下記式(y1)で表される構造を含む化合物を含んでいてよい。
 式(y1)中、A及びpは式(1)と同義であり、*は結合手を示す。
<光ラジカル発生剤>
 光ラジカル発生剤は、光照射によって、ラジカルを発生する成分である。光ラジカル発生剤は、例えば、光重合開始剤として用いられる成分を使用することができる。光ラジカル発生剤としては、例えば、光照射によって他の分子から水素を引き抜いてラジカルを生成する水素引き抜き型光ラジカル重合開始剤、光照射によってその物自体が光開裂して2つのラジカルを生成する分子内開裂型光ラジカル重合開始剤等が挙げられる。光ラジカル発生剤は、分子内開裂型光ラジカル発生剤であることが好ましい。
 水素引き抜き型光ラジカル発生剤としては、例えば、ヘキサアリールビスイミダゾール(HABI)化合物、ベンゾフェノン化合物、チオキサントン化合物、フルオレノン化合物、α-ジケトン化合物等が挙げられる。
 HABI化合物としては、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール(例えば、2,2’―ビス(2―クロロフェニル)-4,4’,5,5’-テトラフェニル-1、2’―ビイミダゾール)、2,2’-ビス(o-ブロモフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o,p-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラ(m-メトキシフェニル)ビイミダゾール、2,2’-ビス(o,o’-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-ニトロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(o-メチルフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール等が挙げられる。
 ベンゾフェノン化合物としては、4、4’-ビス(ジメチルアミノ)ベンゾフェノン、4、4’-ビス(ジエチルアミノ)ベンゾフェノン等が挙げられる。
 チオキサントン化合物としては、チオキサントン、2-イソプロピルチオキサントン、2-ドデシルチオキサントン、2-シクロヘキシルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、1-フェノキシチオキサントン、1-メトキシカルボニルチオキサントン、2-エトキシカルボニルチオキサントン、3-(2-メトキシエトキシカルボニル)-チオキサントン、4-ブトキシカルボニルチオキサントン、3-ブトキシカルボニル-7-メチルチオキサントン、3,4-ジ-[2-(2-メトキシエトキシ)-エトキシカルボニル]-チオキサントン、2-クロロチオキサントン、1-エトキシカルボニル-3-エトキシチオキサントン、1-エトキシカルボニル-3-クロロチオキサントン、1-クロロ-4-n-プロポキシチオキサントン、2-メチル-6-ジメトキシメチル-チオキサントン、2-メチル-6-(1,1-ジメトキシベンジル)-チオキサントン、6-エトキシカルボニル-2-メトキシ-チオキサントン、6-エトキシカルボニル-2-メチルチオキサントン、1-エトキシカルボニル-3-(1-メチル-1-モルホリノエチル)-チオキサントン、2-モルホリノメチルチオキサントン、2-メチル-6-モルホリノメチルチオキサントン、チオキサントン-2-カルボン酸ポリエチレングリコールエステル等が挙げられる。
 フルオレノン化合物としては、9-フルオレノン、3,4-ベンゾ―9-フルオレノン、2―ジメチルアミノ―9-フルオレノン、2-メトキシ―9―フルオレノン、2-クロロ―9-フルオレノン、2,7-ジクロロ―9―フルオレノン、2-ブロモ―9―フルオレノン、2,7-ジブロモ―9―フルオレノン、2-ニトロ-9-フルオレノン、2-アセトキ-9-フルオレノン等が挙げられる。
 α-ジケトン化合物としては、ベンジル(ジフェニルエタンジオン又はジベンゾイルとも称される化合物)等が挙げられる。
 分子内開裂型光ラジカル発生剤としては、ベンジルケタール系光ラジカル発生剤、α-アミノアルキルフェノン系光ラジカル発生剤、α-ヒドロキシアルキルフェノン系光ラジカル発生剤、α-ヒドロキシアセトフェノン系光ラジカル発生剤、アシルホスフィンオキシド系光ラジカル発生剤等が挙げられる。
 ベンジルケタール系光ラジカル発生剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(Omnirad651)等が挙げられる。
 α-アミノアルキルフェノン系光ラジカル発生剤としては、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(Omnirad369)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(Omnirad907)、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オン(Omnirad379EG)等が挙げられる。
 α-ヒドロキシアルキルフェノン系光ラジカル発生剤としては、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(Omnirad184)等が挙げられる。
 α-ヒドロキシアセトフェノン系光ラジカル発生剤としては、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(Omnirad127)、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(Omnirad1173)等が挙げられる。
 アシルホスフィンオキシド系光ラジカル発生剤としては、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(OmniradTPO H)、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(Omnirad819)等が挙げられる。
 光ラジカル発生剤の5%重量減少温度は、樹脂部材の耐熱性が更に向上することから、150℃以上、200℃以上、又は、250℃以上であってよく、例えば、300℃以下であってよい。5%重量減少温度は、昇温しながら試料の質量変化を測定する熱重量分析において、試料の質量が初期から5%減少した時点の温度である。
 光ラジカル発生剤は、光照射により粘着性がより発現しやすくなることから、光照射によって、光ラジカル発生剤1分子あたり2分子以上のモノラジカルを生じ、ジラジカルを生じない化合物であってよい。このような光ラジカル発生剤としては、例えば、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(5%重量減少温度:204℃)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(5%重量減少温度:220℃)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(5%重量減少温度:248℃)、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オン(5%重量減少温度:248℃)、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(5%重量減少温度:241℃)、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(5%重量減少温度:253℃)、及びそれらの重合物が挙げられる。
 光ラジカル発生剤は、光照射によってベンゾイルラジカルを与える化合物であってよい。光照射によってベンゾイルラジカルを与える化合物とは、光反応によって開裂してベンゾイルラジカルを生じる化合物である。光照射によってベンゾイルラジカルを与える化合物としては、例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-ジメチルアミノ-2-(4-メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、及び、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイドが挙げられる。
 光ラジカル発生剤の含有量は、樹脂部材の総量を基準として、1質量%以上、2質量%以上、又は3質量%以上であってよく、15質量%以下、12質量%以下、又は9質量%以下であってよい。
 樹脂成分が化合物a-1を含む場合、化合物a-1中の(メタ)アクリロイル基のモル数(アクリロイル基及びメタクリロイル基の合計モル数)に対して、ベンゾイルラジカルのモル数の比は、5/6以下であってよく、4/6以下、7/12以下、又は1/2以下であってよく、1/12以上、1/6以上、又は1/4以上であってよい。
<樹脂部材の物性等>
 樹脂部材の架橋点間距離Mc(g/mol)は、50000以下、35000以下、又は、20000以下であってよく、3000以上、3500以上、又は、4000以上であってよい。架橋点間距離が上記上限値以下であると、光照射前におけるタックの発生が抑制され、ゲル状になりにくくなり、光照射前後での粘着性の変化がより大きくなる。架橋点間距離が上記上限値以下であると、光照射前に樹脂同士の癒着の発生が起こりにくくなり、より積層しやすくなる。架橋点間距離が上記下限値以上であると、光照射後の粘着性の発現に要する光ラジカル発生剤の使用量をより低減することができ、より容易に粘着性を発現させることができる。
 架橋点間距離Mcは架橋間分子量、すなわち架橋点と架橋点の間の平均分子量であり、配合から理論値を算出する。架橋点間距離の計算は、樹脂成分中のC-C又はC-O単結合が3方向以上に分岐している原子を架橋点として、又は、イソシアヌレート等の環状骨格から3方向以上への分岐を有する場合、環状骨格そのもの(CとNの六員環そのもの)を架橋点とみなして算出する。具体的な算出方法は、後述する実施例に記載されるとおりである。
 樹脂部材の貯蔵弾性率G’は、100000000以下、10000000以下、又は、2000000以下であってよく、10000以上、100000以上、又は、500000以上であってよい。
 樹脂部材の損失正接tanδは、1以下、0.9以下、又は、0.8以下であってよく、0.005以上、0.01以上、又は、0.02以上であってよい。損失正接tanδは、貯蔵弾性率G’に対する損失弾性率G’の比(G’’/G’)で表される。
 樹脂部材の貯蔵弾性率G’及び損失弾性率G’’は、後述する実施例に記載の方法によって測定することができる。
 樹脂部材(光照射前の樹脂部材)の25℃におけるせん断接着力は、5N/cm以下であってよく、0N/cmであってよい。樹脂部材のせん断接着力は、後述する実施例に記載の方法によって測定することができる。
 樹脂部材は、光照射によって粘着性を発現する。光照射する際の光は、例えば、波長365nm又は波長405nmの光を含む光であってよい。光照射の露光量は、例えば、1000mJ/cm以上であってよい。本明細書において、露光量は、照度(mW/cm)と照射時間(秒)との積を意味する。光の照射は、照射する対象に対して直接行ってもよく、ガラス等を介して行ってもよい。光照射に用いられる光源は、特に限定されず、例えば、LEDランプ、水銀ランプ(低圧、高圧、超高圧等)、メタルハライドランプ、エキシマランプ、キセノンランプ等が挙げられる。これらの中でも、光照射に用いられる光源は、LEDランプ、水銀ランプ、又はメタルハライドランプであってよい。
 光照射後の樹脂部材の貯蔵弾性率G’は、通常、光照射前の樹脂部材の貯蔵弾性率G’よりも低い。光照射後の樹脂部材の貯蔵弾性率G’は、1000000以下、500000以下、又は、200000以下であってよく、1000以上、10000以上、又は、20000以上であってよい。
 光照射後の樹脂部材の損失弾性率G’’は、1000000以下、500000以下、又は、200000以下であってよく、1000以上、10000以上、又は、20000以上であってよい。
 光照射後の樹脂部材の損失正接tanδは、2以下、1.7以下、又は、1.5以下であってよく、0.1以上、0.15以上、又は、0.2以上であってよい。
 光照射後の樹脂部材の貯蔵弾性率G’及び損失弾性率G’’は、後述する実施例に記載の方法によって測定することができる。
 光照射後の樹脂部材の25℃におけるせん断接着力は、5N/cm以上、10N/cm以上、又は、15N/cm以上であってよい。光照射後の樹脂部材の25℃におけるせん断接着力は、後述する実施例に記載の方法によって測定することができる。
 樹脂部材の形状は、フィルム状、ブロック状等の種々の形状であってよい。フィルム状又はブロック状に形成する方法は、特に制限されず、公知の方法を適用することができる。フィルム状の樹脂部材の厚さは、例えば、5μm以上、又は10μm以上であってよく、5mm以下又は1mm以下であってよい。
 樹脂部材は、粘着材、保護材、並びに、部品及び材料のピックアップ材等の用途に用いることができる。
 樹脂部材は、光反応によって粘着性を発現する樹脂成分の前駆体と、光ラジカル発生剤とを含む混合物中で樹脂成分の前駆体を反応させる工程を含む方法によって得ることができる。反応条件は上述したとおりであってよい。
〔樹脂材料〕
 一実施形態に係る樹脂材料は、(メタ)アクリロイル基を2個以上有する化合物aと、(メタ)アクリロイル基と反応し得る基を2個以上有する化合物bと、光ラジカル発生剤と、を含む。当該樹脂材料において、化合物aは(メタ)アクリロイル基を3個以上有する化合物a-1を含み、化合物a及び化合物bの少なくとも一方は分子内にジスルフィド結合を有する。
 他の実施形態に係る樹脂材料は、イソシアネート基を2個以上有する化合物cと、イソシアネート基と反応し得る基を2個以上有する化合物dと、光ラジカル発生剤と、を含む。当該樹脂材料において、化合物c及び化合物dの少なくとも一方は分子内にジスルフィド結合を有する。当該樹脂材料において、化合物cはイソシアネート基を3個以上有する化合物を含んでいてよい。
 上述した樹脂材料において、化合物a~d及び光ラジカル発生剤等の具体的態様は上述した態様を適用することができる。
 上述した樹脂材料は、セパレーターを使用しない粘着材として利用可能な樹脂部材の形成に適した材料である。
〔リール体〕
 本実施形態に係るリール体は、巻芯と、巻芯に巻き取られた上述した樹脂部材とを含む。リール体において、上述した樹脂部材はフィルム状である。リール体は、例えば、筒状の巻芯の外面に、長尺のフィルム状樹脂部材を巻き取ることを含む方法によって製造することができる。
〔包装体〕
 本実施形態に係る包装体は、上記樹脂部材、又は上記リール体と、遮光性を有し、かつ、当該樹脂部材、又は当該リール体が収容された包装袋と、を備える。包装袋は、外部からの光に対する遮光性を有し、かつ、上述した樹脂部材、又は上述したリール体を収容可能であれば特に制限されない。
 以下、実施例により本開示を具体的に説明するが、本開示はこれらの実施例に限定されるものではない。
〔供試材料〕
 合成に用いた材料は、購入した材料をそのまま用いた。
<化合物A>
・トリメチロールプロパントリアクリレート(ファンクリルFA-133、EO変性トリメチロールプロパントリアクリレート、昭和電工マテリアルズ株式会社製)
・1,3,5-トリス(6-イソシアナトヘキサ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(デスモジュールN-3300(HDIトリマー)、住化コベストロウレタン株式会社製)
<化合物B>
・ポリスルフィド(チオコールLP-55、東レファインケミカル株式会社製、SH%=1.8%)
<光ラジカル発生剤>
・2-(ジメチルアミノ)-2-(4-メチルベンジル)-1-[4-モルホリン-4-イル-フェニル)ブタン-1-オン(Omnirad-379EG;IGM Resins B.V.社製、5%重量減少温度:248℃)
・2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド(Omnirad-TPO、IGM Resins B.V.社製、5%重量減少温度:253℃)
<硬化触媒>
・2,4,6-トリスジメチルアミノメチルフェノール(アデカハードナーEHC-30;株式会社ADEKA製)
・トリエチルアミン(TEA、東京化成工業株式会社製)
〔試験例1〕
1-1.樹脂材料の調製及び評価用フィルムの作製
 ジスルフィド結合を鎖中に有する末端2官能チオール(分子量約3700)であるポリスルフィドと、トリメチロールプロパントリアクリレートと、Omnirad-379EGとを供試材料として用いた。供試材料を100mLプラスチック軟膏つぼに配合し、95℃で1時間加熱した後、自公転攪拌機(あわとり練太郎ARE-310;シンキー社製)を用いて回転数2000rpmで3分攪拌して配合完了とした。これにより、実施例1a~1dの樹脂材料を調製した。
 2枚の離型PET(フィルムバイナDB-50(藤森工業株式会社製))の離型面の間に目的の膜厚のスペーサーと共に得られた樹脂材料を挟み、当該樹脂材料を室温で1週間の条件で硬化させた。硬化方法はメルカプト基とアクリル基の反応についての既報を参考とし、触媒として2,4,6-トリスジメチルアミノメチルフェノール(アデカハードナーEHC-30;株式会社ADEKA製)を2重量部配合することで、メルカプト基とアクリル基とのMichael付加反応を室温で進行させた。硬化率は赤外吸収スペクトルの測定結果から算出し、810cm-1付近のアクリル基のピークの積分値が未重合時と比較して95%以上減少した状態で重合完了とした。
 硬化させた後に離型フィルムを剥離して、実施例1a~1dの評価用フィルムを得た。得られた評価用フィルムを各種評価の被検体として用いた。
1-2.光照射
 UV照射にはUV照射装置(パナソニックデバイスSUNX株式会社製、電源:AicureUJ30、405nmLEDヘッド:ANUJ6189)を用いた。照射条件は照度計UIT-250(ウシオ電機株式会社製)で405nm用の受光器を用いて測定した。
1-3.架橋点間距離(理論値)算出
 樹脂材料を硬化させて得られる樹脂部材の架橋点間距離Mc(g/mol)(理論値)を算出した。架橋点間距離(理論値)は、架橋部位としては3官能モノマーを用いたため、トリアクリレートの一分子そのものを架橋点とみなし、光ラジカル発生剤等の可塑性分の影響は除外して算出した。実施例1a~1dの樹脂部材の架橋点間距離Mcは、4139であった。
1-4.機械的特性評価
 粘弾性測定装置(TA Instruments社製、商品名:DHR-2)のオプションとして顕微鏡観察用ガラスステージ、8mmディスポローターを用い、ガラスステージ底面から「1-2.光照射」に記載のUV照射装置で評価サンプルに対して光照射することで、光照射に対する粘弾性の変化を評価した。ステージとローターのギャップは500±200μm、周波数は1Hz、変位1%で測定を行った。測定には「1-1.樹脂材料の調製及び評価用フィルムの作製」の方法で得られた膜厚500±200μmフィルムを直径8mmの円柱状に打ち抜いたものを用いた。
1-5.せん断接着力の評価
 せん断接着力の測定には「1-1.樹脂材料の調製及び評価用フィルムの作製」の方法で得られた膜厚500±100μmのフィルムを直径10±1mmの円柱状に打ち抜いたものを用いた。円柱状に打ち抜いた硬化物を図1のように下から被着体、被検体及び被着体の順に被着体が交差するように重ね、500gの加重を1時間加えて貼合し、せん断接着力の測定サンプルを得た。被着体としてはポリカーボネート(PC)板を用いた。せん断接着力の測定は光照射前後で行い、光照射は「1-2.光照射」の装置を用いて波長405nmのLED光を両面から5000mJ/cmずつ照射した。得られた試験片は、島津製作所株式会社製オートグラフAGS-Xを用いて、25℃環境下で引張速度10mm/minでせん断接着力を測定した。UV照射前のフィルムは積層してもフィルム同士が癒着することなく、剥離及び単離可能であった。
1-6.光粘弾性の評価結果
 表1は、光照射前後の貯蔵弾性率、損失弾性率及びせん断接着力の評価結果を示す。
Figure JPOXMLDOC01-appb-T000008
 ポリスルフィドに対する光ラジカル開始剤のモル比が70~60%である樹脂部材では、樹脂部材を剥離した後の樹脂残りは認められず、せん断接着力も更に向上した。
 図2は、実施例1a~1dの経過時間に対する貯蔵弾性率の変化を示すグラフである。実施例1a~1dの樹脂部材は、光照射後に弾性率が低下し、粘着性の発現が確認された。光照射前の全ての樹脂部材のサンプルは、それ自身を積層した後に簡単に剥離、単離することが可能であった。以上の結果から、試験例1で設計した樹脂部材がセパレーターレスの粘着材として機能しうることが示唆された。
〔試験例2〕
2-1.樹脂材料の調製及び評価用フィルムの作製
 表2に示す組成(単位:質量部)で、以下の手順に従って供試材料を配合した。まず、化合物B及び硬化触媒を30mLプラスチック軟膏つぼに配合した。このとき、硬化触媒の含有量が化合物B及び硬化触媒の総量を基準として1質量%となるように化合物Bの配合量を調整した。続いて、自公転撹拌機(あわとり練太郎ARE-310、株式会社シンキー製)を用いて、配合物を回転数2000rpmで1.5分間撹拌し、混合物aを得た。次に、残りの化合物B及び光ラジカル発生剤を100mLプラスチック軟膏つぼに配合し、同様の自公転撹拌機を用いて、配合物を回転数2000rpmで1.5分間撹拌し、これを95℃で1時間加熱した。加熱後、同様の自公転撹拌機を用いて、回転数2000rpmで1.5分間さらに撹拌してから室温まで冷却し、化合物Aを加えて、混合物bを得た。続いて、30mLプラスチック軟膏つぼに、混合物a及び混合物bを配合し、配合物を回転数2000rpmで1.5分間撹拌して、実施例2a~2eの樹脂材料を調製した。
 得られた樹脂材料を膜厚500μmのスペーサーとともに、2枚の離型PETフィルム(フィルムバイナDB-50(藤森工業株式会社製))の離型面の間に挟み、室温で1週間硬化させ、離型フィルムを剥離して、実施例2a~2eの評価用フィルムを得た。当該評価用フィルムを機械的特性評価の被検体として用いた。硬化(重合)完了は、赤外吸収スペクトル測定で確認し、2260cm-1付近のイソシアネートのピークの積分値が未重合時と比較して90%以上減少した時点を硬化(重合)完了と判断した。
Figure JPOXMLDOC01-appb-T000009
2-2.光照射
 光照射は、「1-2.光照射」と同様のUV照射装置及び照度計を用いて実施した。
2-3.架橋点間距離(理論値)算出
 樹脂材料を硬化させて得られる樹脂部材の架橋点間距離Mc(g/mol)(理論値)を算出した。架橋点間距離(理論値)は、HDIトリマーのイソシアヌレート環そのものを架橋点とみなし、光ラジカル発生剤等の可塑性分の影響は除外して算出した。結果を表3に示す。実施例2a~2eの樹脂部材の架橋点間距離Mcは、3956であった。
2-4.機械的特性評価
 粘弾性測定装置(TA Instruments社製、商品名:DHR-2)のオプションとして顕微鏡観察用ガラスステージ、8mmディスポローターを用い、ガラスステージ底面から「1-2.光照射」に記載のUV照射装置で評価サンプルに対して光照射することで、光照射に対する粘弾性の変化を評価した。ステージとローターのギャップは、600±100μm、周波数は1Hz、変位1%で測定を行った。なお、測定には、「2-1.樹脂材料の調製及び評価用フィルムの作製」の方法で得られた膜厚500±100μmのフィルムを直径8mmの円柱状に打ち抜いたものを用いた。光照射は、測定開始10秒後から10秒毎に波長405nmのLED光を500mW/cmで2秒間照射することを繰り返し、露光量が30J/cmとなるまで行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
2-5.光粘弾性の評価結果
 実施例2a~2eの樹脂部材について、光粘弾性を評価した。それぞれのサンプルに10秒毎に波長405nmのLED光を500mW/cmで2秒照射して粘弾性を測定した。
 図3は、実施例2a~2eの経過時間に対する貯蔵弾性率の変化を示すグラフである。実施例2a~2eの樹脂部材は、光照射後に弾性率が低下し、粘着性の発現が確認された。
 以上より、本開示の樹脂部材が、セパレーターを使用しない粘着材として利用可能であることが示唆された。

 

Claims (11)

  1.  光反応によって粘着性を発現する樹脂成分と、光ラジカル発生剤と、を含む、樹脂部材。
  2.  前記樹脂成分が、架橋構造を有し、かつ、ジスルフィド結合を有する、請求項1に記載の樹脂部材。
  3.  前記樹脂成分が、(メタ)アクリロイル基を2個以上有する化合物aと、前記(メタ)アクリロイル基と反応し得る基を2個以上有する化合物bとの反応生成物であり、
     前記化合物aが(メタ)アクリロイル基を3個以上有する化合物a-1を含み、
     前記化合物a及び前記化合物bの少なくとも一方が分子内にジスルフィド結合を有する、請求項1又は2記載の樹脂部材。
  4.  前記光ラジカル発生剤が、光照射によってベンゾイルラジカルを与える化合物であり、
     前記化合物a-1中の前記(メタ)アクリロイル基のモル数に対して、前記ベンゾイルラジカルのモル数の比が、5/6以下である、請求項3に記載の樹脂部材。
  5.  前記樹脂成分が、イソシアネート基を2個以上有する化合物cと前記イソシアネート基と反応し得る基を2個以上有する化合物dとの反応生成物であり、
     前記化合物c及び前記化合物dの少なくとも一方が分子内にジスルフィド結合を有する、請求項1又は2に記載の樹脂部材。
  6.  フィルム状である、請求項1に記載の樹脂部材。
  7.  巻芯と、前記巻芯に巻き取られた請求項6に記載の樹脂部材とを含む、リール体。
  8.  請求項1に記載の樹脂部材、又は請求項7に記載のリール体と、
     遮光性を有し、かつ、前記樹脂部材、又は前記リール体が収容された包装袋と、を備える、包装体。
  9.  (メタ)アクリロイル基を2個以上有する化合物aと、
     前記(メタ)アクリロイル基と反応し得る基を2個以上有する化合物bと、
     光ラジカル発生剤と、を含み、
     前記化合物aが(メタ)アクリロイル基を3個以上有する化合物a-1を含み、
     前記化合物a及び前記化合物bの少なくとも一方が分子内にジスルフィド結合を有する、樹脂材料。
  10.  前記光ラジカル発生剤が、光照射によってベンゾイルラジカルを与える化合物であり、
     前記化合物a-1中の前記(メタ)アクリロイル基のモル数に対して、前記ベンゾイルラジカルのモル数の比が、5/6以下である、請求項9に記載の樹脂材料。
  11.  イソシアネート基を2個以上有する化合物cと、
     イソシアネート基と反応し得る基を2個以上有する化合物dと、
     光ラジカル発生剤と、を含み、
     前記化合物cがイソシアネート基を3個以上有する化合物を含み、
     化合物c及び化合物dの少なくとも一方が分子内にジスルフィド結合を有する、樹脂材料。 

     
PCT/JP2023/033066 2022-09-12 2023-09-11 樹脂部材、リール体、包装体及び樹脂材料 WO2024058127A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022144365 2022-09-12
JP2022-144365 2022-09-12

Publications (1)

Publication Number Publication Date
WO2024058127A1 true WO2024058127A1 (ja) 2024-03-21

Family

ID=90275005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033066 WO2024058127A1 (ja) 2022-09-12 2023-09-11 樹脂部材、リール体、包装体及び樹脂材料

Country Status (1)

Country Link
WO (1) WO2024058127A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209268A1 (ja) * 2019-04-11 2020-10-15 日立化成株式会社 光軟化性樹脂組成物、光軟化性樹脂組成物の軟化物の製造方法、硬化性樹脂組成物及びその硬化物、並びにパターン膜及びその製造方法
WO2023100861A1 (ja) * 2021-11-30 2023-06-08 日東電工株式会社 粘着剤および/または接着剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020209268A1 (ja) * 2019-04-11 2020-10-15 日立化成株式会社 光軟化性樹脂組成物、光軟化性樹脂組成物の軟化物の製造方法、硬化性樹脂組成物及びその硬化物、並びにパターン膜及びその製造方法
WO2023100861A1 (ja) * 2021-11-30 2023-06-08 日東電工株式会社 粘着剤および/または接着剤

Similar Documents

Publication Publication Date Title
EP3940025A1 (en) Optically softening resin composition, method for producing softened product of optically softening resin composition, curable resin composition and cured product of same, and patterned film and method for producing same
JP4802461B2 (ja) 光重合開始剤及びそれを用いた光硬化性材料
JPWO2007086461A1 (ja) チオール化合物を含有する硬化性組成物
WO2019139016A1 (ja) 接着剤組成物、並びにそれを用いた電池用材料、リチウムイオン電池用材料、熱融着性部材、及びリチウムイオン電池用包装材料
WO2022075366A1 (ja) 接着剤セット、フィルム、接着体、及び被着体の分離方法
JP5556011B2 (ja) パターン形成剤、パターン形成方法およびパターンが形成された基板
WO2022080405A1 (ja) 光硬化性組成物及びその硬化物、光融解性樹脂組成物、並びに接着剤セット
WO2024058127A1 (ja) 樹脂部材、リール体、包装体及び樹脂材料
TW201842135A (zh) 可固化組成物及自其製備之低黏性、自黏的黏著劑
WO2024058107A1 (ja) 樹脂部材、リール体、及び包装体
JP2022064484A (ja) 光硬化性組成物、光硬化性組成物の光硬化物、パターン膜及びパターン膜の製造方法
US10072113B2 (en) Composition, curable composition, production method therefor, and cured product
JP2001146577A (ja) ウレタン樹脂組成物
WO2024058117A1 (ja) 樹脂材料及び樹脂組成物
WO2015041266A1 (ja) 活性エネルギー線硬化型粘着剤組成物
WO2023054373A1 (ja) 熱硬化性組成物及びその硬化物、光融解性組成物、並びに構造体の製造方法
WO2019182155A1 (ja) 硬化性組成物、硬化物、硬化物の製造方法、硬化物の傷の修復方法
JP2553091B2 (ja) ウレタン変性アクリレ−ト樹脂組成物
WO2024058129A1 (ja) 樹脂材料及び樹脂組成物
JP2022061630A (ja) 接着剤セット、フィルム、接着体、及び被着体の分離方法
JP2022061627A (ja) 接着剤セット、フィルム、接着体、及び被着体の分離方法
JP2003292830A (ja) 活性エネルギー線硬化性ワニスおよび硬化方法
JP2024504654A (ja) シリコーンウレタン(メタ)アクリレート、ならびに3d印刷樹脂およびコーティング組成物におけるそれらの使用
Scholte Effects of prepolymer structure on photopolymer network formation and thermomechanical properties
JP2023053575A (ja) 培養基材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865480

Country of ref document: EP

Kind code of ref document: A1