WO2024058093A1 - 時限放出型顆粒およびその用途 - Google Patents

時限放出型顆粒およびその用途 Download PDF

Info

Publication number
WO2024058093A1
WO2024058093A1 PCT/JP2023/032969 JP2023032969W WO2024058093A1 WO 2024058093 A1 WO2024058093 A1 WO 2024058093A1 JP 2023032969 W JP2023032969 W JP 2023032969W WO 2024058093 A1 WO2024058093 A1 WO 2024058093A1
Authority
WO
WIPO (PCT)
Prior art keywords
soluble polymer
mass
coating layer
water
core
Prior art date
Application number
PCT/JP2023/032969
Other languages
English (en)
French (fr)
Inventor
佳士 山下
佳之 小林
和紀 河合
勇 佐伯
豊 奥田
Original Assignee
東和薬品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東和薬品株式会社 filed Critical 東和薬品株式会社
Publication of WO2024058093A1 publication Critical patent/WO2024058093A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53831,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction

Definitions

  • the present invention relates to time-release granules that can control the dissolution of active ingredients and their uses.
  • Non-Patent Document 1 describes the use of ethyl cellulose and polyvinylpyrrolidone to improve the sustained release of poorly water-soluble topiramate.
  • a method of forming a coating layer made of (PVP) is described. This document states that the coating layer forms a porous structure, and PVP, which is a water-soluble polymer, acts as a pore-former that dissolves after administration to form pores or water channels. It is stated that.
  • Non-Patent Document 2 describes the use of ethyl cellulose, a water-insoluble polymer, and water-soluble polymer as the bitterness masking layer of orally disintegrating tablets (OD tablets) of lafutidine.
  • OD tablets orally disintegrating tablets
  • a method is disclosed for adjusting the dissolution behavior of active ingredients in combination with the molecule hypromellose.
  • the core of the OD tablet is coated with a bitter taste masking layer via a drug layer and a separation layer.
  • Non-Patent Document 3 discloses a sustained-release film that is formed from a combination of hydroxypropylcellulose and ethylcellulose and has a phase-separated structure. . This document describes that in the phase-separated structure, hydroxypropylcellulose functions as a pore-forming agent, and the sustained-release film can be used to suppress the lag time of drug elution.
  • Non-Patent Documents 1 to 3 cannot improve the elution rate of the active ingredient, and even more cannot improve the elution rate of the active ingredient with low dissolution properties at low pH. That is, as described above, there is a trade-off relationship between elution rate and lag time, and conventional methods cannot maintain a long lag time while maintaining elution rate.
  • an object of the present invention is to provide time-release granules that can adjust the dissolution rate and lag time of active ingredients depending on the purpose, and uses thereof.
  • Another object of the present invention is to provide time-release granules that are highly compatible with the dissolution rate of active ingredients and lag time, and their uses.
  • the present inventors have discovered that by coating the core containing the active ingredient with a coating layer containing a gastro-soluble polymer and a water-soluble polymer, the present invention was completed based on the discovery that it is possible to provide time-release granules in which the elution rate and lag time of components can be adjusted.
  • the granule as aspect [1] of the present invention is a granule including a core containing an active ingredient and a coating layer covering the core, the coating layer comprising a gastrosoluble polymer and a water-soluble polymer. Contains polymers.
  • the gastrosoluble polymer is polyvinyl acetal modified with a (meth)acrylic polymer having an aminoalkyl methacrylate unit and an alkylaminocarboxylic acid. Contains at least one selected from the group consisting of polymers.
  • the water-soluble polymer is selected from the group consisting of polyvinylpyrrolidone, hydroxy C 2-4 alkyl cellulose ether, and hydroxypropyl methylcellulose. Contains at least one species.
  • the gastric soluble polymer and the water-soluble polymer form a phase-separated structure in the coating layer. ing.
  • the phase-separated structure is formed of a matrix phase formed of the gastric soluble polymer and the water-soluble polymer, and It has a sea-island structure including a matrix phase and a dispersed phase.
  • the granule as aspect [7] of the present invention has a structure in which the dispersed phase extends from the core to the surface of the granule in the aspect [6].
  • the coating layer further contains an inorganic compound, and the proportion of the inorganic compound is the same as that of the gastric soluble polymer.
  • the amount is 10 parts by mass or more based on a total of 100 parts by mass of the water-soluble polymer.
  • the ratio of the coating layer is 10 parts by mass or more with respect to 100 parts by mass of the core.
  • the formulation as aspect [10] of the present invention contains the granules of any one of aspects [1] to [9] above.
  • the method for producing granules as aspect [11] of the present invention includes a core forming step of forming a core containing an active ingredient, and a coating composition containing a gastrosoluble polymer and a water-soluble polymer to form the core. and a coating layer forming step of coating to form a coating layer.
  • a method according to aspect [12] of the present invention is a method of controlling the elution rate of the active ingredient by coating the core containing the active ingredient with a coating layer containing a gastrosoluble polymer and a water-soluble polymer. be.
  • a core portion containing an active ingredient is coated with a coating layer containing a gastric soluble polymer and a water soluble polymer, and the gastric soluble polymer and the water soluble polymer are combined. Also included is a method of controlling the elution rate and lag time of the active ingredient by adjusting the mass ratio and/or the mass ratio of the core to the total amount of the gastrosoluble polymer and the water-soluble polymer.
  • the dissolution rate and lag time of the active ingredient in the body can be adjusted depending on the purpose.
  • it is possible to adjust the lag time while improving or maintaining the elution rate it is possible to achieve a high degree of compatibility between the elution rate and the lag time). You can secure it and lengthen the lag time.
  • adjusting the ratio of the gastric soluble polymer and the water soluble polymer For example, adjusting the ratio of the gastric soluble polymer and the water soluble polymer, adjusting the mass ratio of the core to the total amount of the gastric soluble polymer and the water soluble polymer, By selecting the type of polymer and the water-soluble polymer, it is possible to extend the lag time while maintaining the elution rate of the active ingredient. can also be raised. In particular, since a stomach-soluble polymer and a water-soluble polymer are combined, the dissolution of the active ingredient can be improved regardless of the type of active ingredient. Furthermore, since the granules can be manufactured by a simple method of covering the core portion containing the active ingredient with a coating layer, productivity is also high.
  • FIG. 1 is a graph (profile of pH 6.8 test liquid) showing the permeation concentration versus test time of the film-like coating layers obtained in Examples 1 to 3.
  • FIG. 2 is a graph (profiles of pH 6.8 test solution and pH 1.2 test solution) showing the permeation concentration versus test time of the film-like coating layer obtained in Example 1.
  • FIG. 3 is a graph (profiles of pH 6.8 test solution and pH 1.2 test solution) showing the permeation concentration versus test time of the film-like coating layer obtained in Comparative Example 1.
  • FIG. 4 is a graph (profile of pH 6.8 test solution and pH 1.2 test solution) showing the permeation concentration versus test time of the film-like coating layers obtained in Examples 1 and 4 to 5.
  • FIG. 1 is a graph (profile of pH 6.8 test liquid) showing the permeation concentration versus test time of the film-like coating layers obtained in Examples 1 to 3.
  • FIG. 2 is a graph (profiles of pH 6.8 test solution and pH 1.2 test solution) showing the permeation concentration
  • FIG. 5 is a graph (profile of pH 6.8 test liquid) showing the permeation concentration versus test time of the film-like coating layers obtained in Examples 1 and 6 to 10.
  • FIG. 6 is a graph showing the relationship between the coating amount and the central particle diameter (D 50 ) of the time-release granules obtained in Examples 11 to 22.
  • FIG. 7 is an electron micrograph of the surface of the time-release granules obtained in Example 16.
  • FIG. 8 is a graph (overall profile of pH 6.8 test liquid) showing the dissolution rate versus test time of the time-release granules obtained in Examples 11 to 16 and Comparative Example 2.
  • FIG. 9 is a graph (overall profile of pH 6.8 test solution) showing the dissolution rate versus test time of the time-release granules obtained in Examples 16, 19, and 22.
  • FIG. 10 is a graph (initial profile of pH 6.8 test solution) showing the dissolution rate versus test time of the time-release granules obtained in Examples 16, 19, and 22.
  • FIG. 11 is a graph (overall profile of pH 6.8 test solution and pH 1.2 test solution) showing the dissolution rate versus test time of the time-release granules obtained in Example 16.
  • FIG. 12 is a graph (initial profile of pH 6.8 test solution and pH 1.2 test solution) showing the dissolution rate versus test time of the time-release granules obtained in Example 16.
  • FIG. 13 is an electron micrograph of the surface of the time-release granules obtained in Example 16 after the dissolution test.
  • FIG. 14 is a graph (overall profile of pH 6.8 test liquid) showing the dissolution rate versus test time of the time-release granules obtained in Examples 19 to 22.
  • FIG. 15 is a graph (initial profile of pH 6.8 test solution) showing the dissolution rate versus test time of the timed release granules obtained in Examples 19 to 22.
  • FIG. 16 is a graph (overall profile of pH 6.8 test liquid) showing the dissolution rate versus test time of the tablets obtained in Examples 23 to 25.
  • FIG. 17 is a graph (initial profile of pH 6.8 test solution) showing the dissolution rate versus test time of the tablets obtained in Examples 23 to 25.
  • FIG. 18 shows the relationship between the coating amount and the central particle diameter (D 50 ) of the time-release granules obtained in Examples 26 to 31, and the relationship between the coating amount and the median particle diameter (D 50 ) of the time-release granules obtained in Examples 17 to 22. It is a graph comparing the relationship with the central particle diameter (D 50 ).
  • FIG. 19 is a graph (overall profile of pH 6.8 test solution) showing the dissolution rate versus test time of the time-release granules obtained in Examples 20, 22, and 31.
  • the granules of the present invention are time-release granules that include a core containing an active ingredient and a coating layer covering this core, and can adjust the dissolution of the active ingredient.
  • the core contains the active ingredient (A) as an essential ingredient.
  • the active ingredient (A) contained in the core can be used alone or in combination of two or more.
  • the active ingredient (A) is preferably an active ingredient that often requires a strict lag time.
  • the active ingredient (A) may be any conventional or new active ingredient.
  • Active ingredients (A) include, for example, nutritional and tonic health agents, antipyretic, analgesic, and antiinflammatory agents, psychotropic agents, antianxiety agents, antidepressants, hypnotic sedatives, antispasmodics, gastrointestinal agents, antacids, antitussive expectorants, and dental agents.
  • Oral agents antihistamines, cardiac inotropes, arrhythmia agents, diuretics, antihypertensive agents, vasoconstrictors, coronary vasodilators, peripheral vasodilators, choleretic agents, antituberculous agents, antibiotics, antiviral agents, chemotherapy agents, anti-diabetic agents, anti-osteoporosis agents, skeletal muscle relaxants, etc.
  • active ingredients that require masking such as active ingredients that have a bitter taste (for example, antibiotics such as levofloxacin hydrate, antidiabetic agents such as sitagliptin phosphate, etc.) are preferred.
  • the solubility of the active ingredient (A) at pH 6.8 may be 10 mg/mL or more at 37°C, for example 10 to 200 mg/mL, preferably 20 to 180 mg/mL, more preferably 25 to 150 mg/mL. , more preferably 30 to 120 mg/mL, most preferably 40 to 60 mg/mL.
  • solubility at pH 6.8 indicates saturated solubility at 37°C.
  • the proportion of the active ingredient (A) in the core may be 10% by mass or more, for example 30 to 99% by mass, preferably 40 to 98% by mass, more preferably 50 to 95% by mass, more preferably 55% by mass. ⁇ 93% by weight, most preferably 60-90% by weight. If the proportion of the active ingredient (A) is too small, there is a risk that the granules will become large, and if it is too large, there is a possibility that the moldability of the core portion will be reduced.
  • the core may contain a binder (B) (first binder).
  • binder (B) include polyvinylpyrrolidones (povidone, vinyl acetate-vinylpyrrolidone copolymer, etc.), polyvinyl alcohol, carboxyvinyl polymer, polyacrylic acid polymer (sodium polyacrylate, acrylic acid copolymer, etc.).
  • synthetic polymers such as polylactic acid, polyethylene glycol, and polyvinyl acetate; alkylcellulose ethers such as methylcellulose; hydroxyalkylcellulose ethers such as hydroxyethylcellulose, hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose (hypromellose or HPMC) Examples include cellulose esters such as cellulose acetate.
  • binders (B) can be used alone or in combination of two or more.
  • hydroxy C 2-4 alkyl cellulose ethers such as HPC are preferred.
  • the proportion of the binder (B) may be 0.1 to 90% by mass in the core, for example 1 to 50% by mass, preferably 2 to 30% by mass, more preferably 3 to 20% by mass, and more. Preferably it is 5-15% by weight, most preferably 8-12% by weight. If the proportion of the binder (B) is too small, the mechanical properties of the granules may deteriorate; if the proportion is too large, the granules may become large.
  • the core may contain a disintegrant (C).
  • the disintegrant (C) include crosslinked polyvinylpyrrolidones such as crospovidone (crosslinked polyvinylpyrrolidone) and crospovidone copolymer; starches such as corn starch and potato starch; pregelatinized starch, partially pregelatinized starch, oxidized starch, Starch derivatives such as dextrin, cyclodextrin, hydroxypropyl starch, carboxymethyl starch, and sodium carboxymethyl starch; Celluloses such as microcrystalline cellulose, crystalline cellulose, and powdered cellulose; Low-substituted hydroxypropyl cellulose (L-HPC), carboxymethyl cellulose Cellulose ethers such as (carmellose or CMC), carmellose sodium, carmellose calcium, croscarmellose sodium; crystalline cellulose/carmellose sodium; agar, carrageenan, alginic acid, sodium alg
  • disintegrants (C) can be used alone or in combination of two or more.
  • low-substituted hydroxy C 2-4 alkyl cellulose such as L-HPC and crospovidone are preferred.
  • the proportion of the disintegrant (C) can be adjusted as appropriate depending on the active ingredient (A) used, but from the viewpoint of reducing the size of the granules and improving productivity, it is preferably 40% by mass or less in the core. It is particularly preferably 30% by mass or less.
  • the disintegrant (C) is not an essential component, and the core portion may be substantially or completely free of the disintegrant (C).
  • a disintegrant (C) which is 5 to 40% by mass, preferably 10 to 35% by mass, and more preferably 20 to 30% by mass in the core. %.
  • the core may contain conventional additives (D) that are incorporated into oral preparations.
  • Customary additives (D) include, for example, excipients, lubricants, plasticizers, surfactants, pH regulators, colorants, sweeteners or corrigents, antioxidants, preservatives or preservatives, Examples include wetting agents, antistatic agents, and disintegration aids.
  • the total proportion of these additives may be 30% by mass or less in the core, for example 20% by mass or less (for example 0.01 to 20% by mass), preferably 10% by mass or less (for example 0.1 to 20% by mass). (10% by mass), more preferably 5% by mass or less, more preferably 1% by mass or less.
  • the shape of the core is not particularly limited, and may be amorphous, fibrous, ellipsoidal, spherical, tabular, powdery, etc., but spherical is preferred. Furthermore, although the shape of the core may be hollow, a solid shape is preferable from the standpoint of making the granules smaller.
  • the volume-based cumulative 50% particle diameter (or center particle diameter) (D 50 ) of the core is, for example, 100 to 500 ⁇ m, preferably 100 to 450 ⁇ m, more preferably The diameter is 100 to 350 ⁇ m, more preferably 100 to 250 ⁇ m, and most preferably 150 to 200 ⁇ m.
  • the cumulative 50% particle diameter (D 50 ) can be measured on a volume basis using a laser diffraction particle size distribution analyzer.
  • the core portion is coated with a coating layer containing a gastric-soluble polymer and a water-soluble polymer, so that the lag time can be ensured while maintaining the elution rate of the active ingredient.
  • the mechanism by which the coating layer can improve or secure the elution rate and achieve a long lag time is that the solubility of the coating layer in the oral cavity and stomach is improved by the combination of the gastro-soluble polymer and the water-soluble polymer. It can be assumed that this is because the coating layer forms a phase-separated structure and the disintegrability of the coating layer in the stomach and intestines is adjusted to an appropriate range.
  • gastric soluble polymer As the gastric soluble polymer (a), gastric soluble polymers that are commonly used in the pharmaceutical field as polymers that dissolve in the stomach can be used.
  • Preferred gastric soluble polymers (a) include (meth)acrylic polymers having aminoalkyl methacrylate units (first gastric soluble polymers (a1)) and polyvinyl acetal polymers modified with alkylaminocarboxylic acids ( At least one type selected from the group consisting of second gastric soluble polymer (a2)).
  • the aminoalkyl methacrylate unit means a unit derived from aminoalkyl methacrylate (methacrylic acid aminoalkyl ester).
  • the aminoalkyl methacrylate include N,N-dimethylaminoethyl methacrylate (dimethylaminoethyl methacrylate), N,N-diethylaminoethyl methacrylate, N,N-dimethylaminopropyl methacrylate, N,N-diethylaminopropyl methacrylate, and the like.
  • Examples include N,N-diC 1-4 alkylamino C 2-4 alkyl methacrylate.
  • aminoalkyl methacrylates can be used alone or in combination of two or more.
  • N,N-diC 1-3 alkylamino C 2-3 alkyl methacrylates such as N,N-dimethylaminoethyl methacrylate and N,N-diethylaminoethyl methacrylate are preferred ; Particularly preferred is 2- alkylaminoethyl methacrylate.
  • the first gastric soluble polymer (a1) may be a homopolymer of aminomethacrylate units, or a copolymer of aminomethacrylate units and copolymerized units derived from a copolymerizable monomer. .
  • copolymerizable monomers examples include (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, and n-butyl (meth)acrylate. ) Acrylic monomers; vinyl ester monomers; heterocyclic vinyl monomers; polymerizable unsaturated dicarboxylic acids or derivatives thereof. These copolymerizable monomers can be used alone or in combination of two or more. Among these, (meth)acrylic monomers such as (meth)acrylic acid and C 1-4 alkyl (meth)acrylate are preferred, and (meth)acrylic acid or C 1-2 alkyl (meth)acrylate is preferred. More preferred is methacrylic acid or C 1-2 alkyl methacrylate.
  • Examples of the first gastric soluble polymer (a1) include dimethylaminoethyl methacrylate-methacrylic acid copolymer, dimethylaminoethyl methacrylate-methyl methacrylate copolymer, and diethylaminoethyl methacrylate-methyl methacrylate copolymer. Examples include dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer, dimethylaminoethyl methacrylate-ethyl acrylate-methyl methacrylate copolymer, and the like.
  • the polyvinyl acetal polymer modified with alkylaminocarboxylic acid contains residual acetal obtained by the reaction of polyvinyl alcohol and acetaldehyde. It may also be a copolymer in which a part of the hydroxyl group and an alkylaminocarboxylic acid are ester bonded.
  • alkylaminocarboxylic acids examples include N,N-diC 1-4 alkylamino C 2-6 alkanoic acids such as dimethylaminoacetic acid, diethylaminoacetic acid, dimethylaminopropionic acid, diethylaminopropionic acid, dimethylaminobutyric acid, and diethylaminobutyric acid. Examples include. Among these alkylaminocarboxylic acids, N,N-diC 1-3 alkylamino C 2-4 alkanoic acids such as dimethylaminoacetic acid and diethylaminoacetic acid are preferred, and N,N-diC 1-2 alkylaminoC 2 -3 alkanoic acids are particularly preferred.
  • Examples of the second gastric soluble polymer (a2) include polyvinyl acetal dimethylaminoacetate, polyvinyl acetal diethylaminoacetate, and the like.
  • the proportion of the gastric soluble polymer (a) may be 5% by mass or more in the coating layer, for example 5 to 70% by mass, preferably 10 to 65% by mass, more preferably 20 to 60% by mass, more preferably 30-55% by weight, most preferably 40-50% by weight. If the proportion of the gastric soluble polymer (a) is too small, there is a risk that the lag time will become short.
  • water-soluble polymer examples include soluble starch; polysaccharides such as gum arabic, dextrin, sodium alginate, hyaluronic acid, and sodium chondroitin sulfate; polyvinylpyrrolidone (povidone), vinylpyrrolidone- Single or copolymers of vinyl pyrrolidone (vinyl pyrrolidones) such as vinyl acetate copolymer (copovidone); polyvinyl alcohol; carboxyvinyl polymer, polyacrylic acid polymer, polymethacrylic acid polymer (Eudragit L, LD, S, etc.) ); Synthetic polymers such as polyethylene glycol (macrogol, etc.); Methylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, potassium carboxymethylcellulose, hydroxyethylcellulose (HEC), hydroxyethylmethylcellulose , hydroxypropylcellulose (HPC), hydroxypropylmethyl
  • water-soluble polymers (b) vinylpyrrolidones and cellulose ethers are preferred, and polyvinylpyrrolidone, hydroxy C 2-4 alkyl cellulose ether, and hydroxypropyl methylcellulose are more preferred.
  • Preferred water-soluble polymers can be used alone or in combination of two or more.
  • the viscosity of a 2% by mass (20°C) aqueous solution of the water-soluble polymer (b) is, for example, 0. .1 to 1000 mPa ⁇ s, preferably 1 to 500 mPa ⁇ s, more preferably 2 to 100 mPa ⁇ s, more preferably 3 to 30 mPa ⁇ s, and most preferably 5 to 10 mPa ⁇ s.
  • the viscosity of a 2% by mass aqueous solution of the water-soluble polymer (b) is measured using a Brookfield viscometer in accordance with the 18th edition Japanese Pharmacopoeia rotational viscometer method. It can be measured by
  • the content of the water-soluble polymer (b) in the coating layer may be 3% by mass or more, for example 3 to 60% by mass, preferably 5 to 50% by mass, more preferably 10 to 40% by mass, or more. Preferably it is 15-30% by weight, most preferably 20-25% by weight. If the proportion of the water-soluble polymer (b) is too small, there is a risk that the elution rate will decrease.
  • the coating layer may contain an inorganic compound (c).
  • Examples of the inorganic compound (c) include aluminum-free silicic acids [e.g., talc, anhydrous silicic acid such as light anhydrous silicic acid, hydrated silicon dioxide (hydrated silicic acid), calcium silicate, magnesium silicate, etc.], aluminum Containing silicic acids (e.g., silicate aluminates such as magnesium aluminate silicate and magnesium aluminate metasilicate; synthetic aluminum silicate; minerals such as bentonite and kaolin, etc.), synthetic hydrotalcites, metal oxides (e.g., aluminum-free silicic acids [e.g., talc, anhydrous silicic acid such as light anhydrous silicic acid, hydrated silicon dioxide (hydrated silicic acid), calcium silicate, magnesium silicate, etc.], aluminum Containing silicic acids (e.g., silicate aluminates such as magnesium aluminate silicate and magnesium aluminate metasilicate; synthetic aluminum silicate; minerals such as
  • inorganic compounds (c) can be used alone or in combination of two or more.
  • the first inorganic compound (c1) which is at least one selected from the group consisting of aluminum-containing silicic acids and synthetic hydrotalcites, and aluminum
  • a second inorganic compound (c2) which is at least one selected from the group consisting of non-containing silicic acids, metal oxides, carbonates and phosphates is preferred.
  • aluminate silicate and synthetic hydrotalcite are preferable, and synthetic hydrotalcite is more preferable because it can improve the elution rate, achieving both high elution rate and long lag time.
  • Magnesium metasilicate aluminate is most preferable from the viewpoint that it can be used.
  • the BET specific surface area of the first inorganic compound (c1) (especially magnesium aluminate metasilicate) is, for example, 50 to 1000 m 2 /g, preferably 100 to 500 m 2 /g, more preferably 150 to 450 m 2 /g, Most preferably it is 200 to 400 m 2 /g.
  • the shape of the first inorganic compound (c1) is not particularly limited, and may be amorphous, fibrous, ellipsoidal, spherical, tabular, powdery, etc. , usually amorphous, plate-like, powder-like, etc.
  • the volume-based cumulative 50% particle diameter (D 50 ) of the first inorganic compound (c1) (especially magnesium aluminate metasilicate) is, for example, 0.5 to 20 ⁇ m, preferably 1 to 18 ⁇ m, more preferably 2 to 15 ⁇ m, more preferably 3-12 ⁇ m, most preferably 5-10 ⁇ m.
  • talc aluminum-free silicic acids are preferable, and talc is particularly preferable since it is easy to adjust the balance between elution rate and lag time.
  • the BET specific surface area of the second inorganic compound (c2) (especially talc) is, for example, 50 to 1000 m 2 /g, preferably 100 to 500 m 2 /g, more preferably 150 to 450 m 2 /g, and most preferably 200 m 2 /g. ⁇ 400m 2 /g.
  • the shape of the second inorganic compound (c2) is not particularly limited and may be amorphous, fibrous, ellipsoidal, spherical, tabular, granular, etc., and is usually amorphous, granular, etc.
  • the volume-based cumulative 50% particle diameter (D 50 ) of the second inorganic compound (c2) (especially talc) is, for example, 0.3 to 10 ⁇ m, preferably 0.5 to 8 ⁇ m, more preferably 1 to 7 ⁇ m, More preferably 1.5 to 5 ⁇ m, most preferably 2 to 4 ⁇ m.
  • the ratio is 10/90, preferably 90/10 to 30/70, more preferably 80/20 to 50/50, and most preferably 70/30 to 60/40. If the proportion of the second inorganic compound (c2) is too small, there is a risk that the effect of balancing the elution rate and lag time will be reduced, and if it is too large, the lag time may become short.
  • the proportion of the inorganic compound (c) may be 10 parts by mass or more, for example 10 to 100 parts by mass, preferably 10 to 100 parts by mass, based on the total of 100 parts by mass of the gastric soluble polymer (a) and the water-soluble polymer (b). is 15 to 90 parts by weight, more preferably 20 to 80 parts by weight, more preferably 30 to 70 parts by weight, and most preferably 40 to 60 parts by weight. If the proportion of the inorganic compound (c) is too small, there is a possibility that the effect of lengthening the lag time will not be exhibited.
  • the proportion of the inorganic compound (c) in the coating layer may be 60% by mass or less, for example 3 to 60% by mass, preferably 5 to 50% by mass, more preferably 10 to 45% by mass, and even more preferably 20 to 45% by mass. 40% by weight, most preferably 30-35% by weight. If the proportion of the inorganic compound (c) is too large, there is a possibility that the dissolution property will be reduced.
  • the coating layer may contain a water-insoluble polymer (d) in order to adjust the lag time.
  • water-insoluble polymer (d) examples include (meth)acrylic resins, vinyl resins, cellulose derivatives, and the like.
  • Examples of (meth)acrylic resins include methacrylic acid-ethyl acrylate copolymer (methacrylic acid copolymer LD), methacrylic acid-n-butyl acrylate copolymer, methacrylic acid-methyl methacrylate copolymer (methacrylic acid copolymer LD), Acid copolymers L, S), ethyl acrylate-methyl methacrylate-trimethylammonium ethyl methacrylate (ammonio methacrylate) copolymer, and the like.
  • vinyl resin examples include polyvinyl acetate phthalate, polyvinyl acetal diethylaminoacetate, and the like.
  • cellulose derivatives include cellulose ethers such as ethylcellulose, ethylpropylcellulose, and carboxymethylethylcellulose (CMEC); cellulose esters such as cellulose acetate and cellulose acetate propionate; hydroxymethylcellulose acetate succinate, and hydroxypropylmethylcellulose phthalate ( Examples include cellulose ether esters such as HPMCF).
  • CMEC carboxymethylethylcellulose
  • HPMCF hydroxymethylcellulose acetate succinate
  • HPMCF hydroxypropylmethylcellulose phthalate
  • the content of the water-insoluble polymer (d) in the coating layer may be 30% by mass or less, for example, 20% by mass or less (for example, 0.01 to 20% by mass), preferably 10% by mass or less (for example, 0.01 to 20% by mass), preferably 10% by mass or less (for example, .1 to 10% by mass), more preferably 5% by mass or less, and even more preferably 1% by mass or less.
  • the water-insoluble polymer (d) is not an essential component of the coating layer and has a high dissolution property. It is preferable that the water-insoluble polymer (d) is not substantially contained in terms of the improvement.
  • the coating layer is preferably substantially free of cellulose alkyl ethers such as ethyl cellulose, and particularly preferably completely free of cellulose C 1-3 alkyl ethers such as ethyl cellulose.
  • the coating layer may further contain, as other components (e), additives commonly used in oral preparations.
  • Customary additives include, for example, excipients, disintegrants, water-swellable substances, plasticizers, surfactants, pH regulators, colorants, sweeteners or corrigents, antioxidants, preservatives or preservatives. , wetting agents, antistatic agents, disintegration aids, etc. These additives can be used alone or in combination of two or more.
  • the total proportion of these additives may be 30% by weight or less in the coating layer, for example 20% by weight or less (for example 0.01 to 20% by weight), preferably 10% by weight or less (for example 0.1 to 20% by weight). (10% by mass), more preferably 5% by mass or less, more preferably 1% by mass or less.
  • the elution rate and lag time of the active ingredient are adjusted by adjusting the mass ratio of the gastric soluble polymer (a) and the water-soluble polymer (b) contained in the coating layer. Can be controlled.
  • the elution rate and lag time of the active ingredient can also be adjusted by adjusting the thickness of the coating layer relative to the core (particularly, the total amount of the gastrosoluble polymer (a) and the water-soluble polymer (b)). can be controlled.
  • the proportion of the coating layer may be 10 parts by mass or more with respect to 100 parts by mass of the core, for example 10 to 500 parts by mass, preferably 30 to 400 parts by mass, more preferably 50 to 300 parts by mass, and more preferably is from 100 to 250 parts by weight, most preferably from 150 to 200 parts by weight. If the ratio of the coating layer is too small, it may be difficult to suppress the elution of the active ingredient, and if it is too large, the elution rate of the active ingredient will decrease, and it may be difficult to make the granules smaller. be.
  • the average thickness of the coating layer is, for example, 1 to 100 ⁇ m, preferably 10 to 80 ⁇ m, more preferably 15 to 70 ⁇ m, more preferably 20 to 60 ⁇ m, and most preferably 30 to 50 ⁇ m. If the thickness is too thin, it may be difficult to suppress the elution of the active ingredient, and if it is too thick, the elution rate of the active ingredient may decrease, and it may also be difficult to downsize the granules.
  • the total amount of the gastrosoluble polymer (a) and the water-soluble polymer (b) may be 10 parts by mass or more, for example 10 to 500 parts by mass, preferably 30 parts by mass, based on 100 parts by mass of the core. ⁇ 400 parts by weight, more preferably 50 to 300 parts by weight, more preferably 80 to 200 parts by weight, and most preferably 100 to 150 parts by weight. If the total amount is too small, it may be difficult to suppress the elution of the active ingredient, and if it is too large, the elution rate of the active ingredient may decrease, and it may also be difficult to downsize the granules. .
  • the gastric soluble polymer and the water-soluble polymer form a phase-separated structure.
  • the phase-separated structure include a sea-island structure and a co-continuous structure.
  • a matrix phase formed of a gastric soluble polymer (a) and a dispersed phase formed of a water soluble polymer (b) are preferred because they are easy to achieve both high elution rate and long lag time.
  • a sea-island structure including
  • phase separation structure of the coating layer means the phase separation structure in a plan view of the surface of the coating layer.
  • the average diameter of the dispersed phase formed from the water-soluble polymer (b) is, for example, 0.01 to 10 ⁇ m, preferably 0.05 to 5 ⁇ m, more preferably 0.1 to 3 ⁇ m, and even more preferably 0.2 to 1 ⁇ m. , most preferably 0.3 to 0.8 ⁇ m. If the average diameter of the dispersed phase is too small, there is a risk that the elution rate will decrease, and if it is too large, there is a risk that the lag time will become short.
  • the average diameter of the dispersed phase is determined by observing the pore diameter of the surface of the granules from which the dispersed phase is eluted using the paddle method of the 18th edition Japanese Pharmacopoeia dissolution test method, using an electron microscope. It can be measured as an average value of 10 arbitrary locations.
  • the dispersed phase formed by the water-soluble polymer (b) has a structure extending from the core (the surface of the core) to the surface of the granules (i.e., from the surface of the core to the surface of the granules), from the point of view of improving dissolution properties. It is preferable to have a structure that extends up to That is, the dispersed phase has a structure of pores penetrating the coating layer, and the active ingredient can be gradually eluted through the dispersed phase.
  • the dispersed phase is formed of water-soluble polymer (b), so dissolution of water-soluble polymer (b) starts in the oral cavity, and water-soluble polymer (b) is dissolved in the stomach. It can be estimated that the dissolution is complete. Therefore, elution of the active ingredient can be suppressed in the oral cavity, and when the active ingredient has a bitter taste, a bitter taste masking effect can be exerted.
  • dissolution of the gastric soluble polymer (a) begins in the stomach.
  • gastric soluble polymer (a) can adjust the degree of dissolution in the stomach by adjusting the phase separation structure, etc., so while it is possible to improve the elution of the active ingredient in the stomach, it is also difficult to dissolve in the intestine. It is also possible to improve the elution of active ingredients. Therefore, in the present invention, as mentioned above, by controlling the ratio of the gastric soluble polymer (a) and the water-soluble polymer (b) and changing the phase separation structure, the desired elution rate and lag time can be achieved. Can be adjusted.
  • the elution rate and lag time can also be adjusted by changing the type of gastric soluble polymer (a) and/or water-soluble polymer (b). Furthermore, when an inorganic compound (c) is included, the elution rate and lag time can also be adjusted by adjusting the ratio of the first inorganic compound (c1) and the second inorganic compound (c2).
  • the coating layer may be interposed between the coating layer and the core, it is preferable to cover the core with the coating layer without intervening the intermediate layer, since the granules can be made smaller and the productivity is also excellent. It is particularly preferred that the granules are formed of a core and a coating layer covering the core.
  • the time-release granules of the present invention can control the lag time while maintaining the dissolution rate of the active ingredient through the combination of the gastro-soluble polymer (a) and the water-soluble polymer (b), so that the active ingredient has a bitter taste. It is also possible to design a drug in such a way that the elution of the active ingredient is suppressed in the oral cavity and the elution is completed in the stomach and/or intestines.
  • the time-release granules of the present invention can highly suppress the elution of the active ingredient until the lag time, and can prepare an immediate-release preparation that can quickly elute the active ingredient in a short time after the lag time has elapsed. Furthermore, in the coating layer, the lag time can be adjusted depending on the application. For example, when combined with an inorganic compound, even a relatively long lag time can be easily adjusted.
  • the volume-based cumulative 50% particle diameter (D 50 ) of the granules of the present invention is, for example, 130 to 500 ⁇ m, preferably 130 to 400 ⁇ m, more preferably 150 to 350 ⁇ m, more preferably 160 to 300 ⁇ m, and most preferably 190 to 250 ⁇ m. It is.
  • a preferred embodiment is a granule comprising a core containing an active ingredient and a coating layer covering the core,
  • the coating layer includes at least one selected from the group consisting of a (meth)acrylic polymer having an aminoalkyl methacrylate unit and a polyvinyl acetal polymer modified with an alkylaminocarboxylic acid;
  • the phase separation structure is a sea-island structure including a matrix phase formed of the gastrosoluble polymer and a dispersed phase formed of the water-
  • the granules of the present invention are produced by a core forming step (core preparation step) for producing a core containing an active ingredient, and a coating composition containing a gastrosoluble polymer (a) and a water-soluble polymer (b). It can be manufactured through a coating layer forming step (covering step) that covers the core portion.
  • the granulation method for producing the core is not particularly limited, and any conventional granulation method can be used.
  • the conventional granulation method may be dry granulation, but wet granulation is preferred.
  • Wet granulation may be any method in which composite particles are granulated using a solvent, such as extrusion granulation, rolling granulation, fluidized bed granulation, mixing/agitation granulation, and spray drying. Examples include granulation method and vibration granulation method. Among these, granulation methods using a fluidized bed granulation method and a mixing/stirring granulation method are preferred, and a mixing/stirring granulation method is particularly preferred.
  • the mixing/stirring granulation method is not particularly limited as long as the composition containing the active ingredient is mixed and stirred all at once to obtain a core, and any conventional method can be used.
  • the composition may further include a granulation solvent.
  • the granulation solvent is not particularly limited, but from the viewpoint of safety, water, aqueous solvents, etc. can be used.
  • aqueous solvent include lower alcohols (eg, C 2-4 alkanols such as ethanol and isopropanol), aliphatic ketones (eg, acetone), and the like. These solvents can be used alone or in combination of two or more.
  • water alone, an aqueous solvent alone, a mixed solvent of water and an aqueous solvent are preferred, water alone and a mixed solvent of water and a C 2-4 alkanol are more preferred, water alone and a mixture of water and ethanol are preferred. Most preferred are solvents.
  • the proportion of the granulation solvent can be selected from the range of, for example, about 1 to 1000 parts by weight, for example, 5 to 100 parts by weight, preferably 10 to 50 parts by weight, and more preferably 15 to 30 parts by weight, based on 100 parts by weight of the active ingredient. Part by mass.
  • the core portion may be coated with the coating composition using a conventional coating method.
  • Conventional coating methods include, for example, painting, spraying, impregnating or dipping, pan coating, fluid bed coating, tumbling coating, tumbling fluid coating, and the like. Among these, fluidized bed coating and tumbling fluidized coating are preferred, and tumbling fluidized coating is particularly preferred.
  • the gastric soluble polymer (a) and the water soluble polymer (b) form a phase-separated structure. It is particularly preferable to form a sea-island structure including a dispersed phase formed of the polymer (b).
  • the method for forming the phase-separated structure is not particularly limited, but includes a method of adjusting the mass ratio, viscosity ratio, etc. of the gastric soluble polymer (a) and the water-soluble polymer (b).
  • the formulation of the present invention comprises the timed release granules described above.
  • the preparations of the present invention can be suitably used as various oral preparations.
  • oral preparations include pills, liquids, powders, troches, dry syrups, tablets, capsules, suspensions, and the like.
  • oral preparations in which the active ingredient is easily dissolved into the oral cavity such as powders, troches, dry syrups, tablets, and suspensions, are preferred, and orally disintegrating tablets (OD tablets) are particularly preferred.
  • the transmission density ( (transmission amount) was measured (measurement wavelength: 288 nm). Specifically, a film-like coating layer was fixed between diffusion cells, a saturated solution of levofloxacin hydrate (pH 6.8 test solution or pH 1.2 test solution) was placed on the donor side, and a blank solution (pH 6.8 test solution) was placed on the acceptor side. 5 mL of each solution (pH 1.2 test solution or pH 1.2 test solution) was added, and the permeation concentration was measured.
  • the central particle diameter ( D50 ) was measured on a volume basis using a laser diffraction particle size distribution analyzer (manufactured by Malvern Co., Ltd., trade name "Mastersizer 3000").
  • the average dissolution rate of the time-release granules was measured using the 18th edition Japanese Pharmacopoeia dissolution test method paddle method (rotation speed 75 rpm, second dissolution test liquid 900 mL). To prevent adhesion and aggregation of coated granules during the dissolution test, an equal amount of disintegrating granules (granules composed of excipients and disintegrants obtained by the manufacturing method below) is added to the time-release granules in advance. were mixed and charged into a test vessel. The elution rate was measured using a fiber probe type ultraviolet-visible spectrophotometer (measurement wavelength: 288 nm).
  • Method for producing disintegrating granules 71 parts by mass of D-mannitol, 2 parts by mass of ethyl cellulose, and 1 part by mass of light anhydrous silicic acid were charged into a fluidized bed granulation dryer. 20 parts by mass of corn starch and 6 parts by mass of crospovidone were dispersed in 80 parts by mass of purified water, and this dispersion was sprayed onto the above-mentioned material to granulate it, then dried, classified with a 30M sieve, and disintegrated. granules were obtained.
  • Elemental mapping of the time-release granules was performed by first solidifying the granules with a resin, and then preparing sections of the solidified material using a tablet slicer (manufactured by JASCO Corporation, trade name "HS-1"). The obtained section was observed with a scanning electron microscope (manufactured by JEOL Ltd., trade name "JSM-IT200”), and the cross section of the granule was elementally mapped.
  • Time-release granules were mixed with instantly disintegrating particles and magnesium stearate, and tablets were prepared by compressing the mixture using a manual tabletop tablet forming machine (manufactured by Ichihashi Seiki Co., Ltd., trade name "HANDTAB-100").
  • the average dissolution rate of the obtained tablets was measured according to the 18th edition Japanese Pharmacopoeia dissolution test method paddle method (rotation speed 75 rpm, dissolution test second liquid 900 mL).
  • the elution rate was measured using a fiber probe type ultraviolet-visible spectrophotometer (measurement wavelength: 288 nm).
  • the tablet hardness was measured using an ERWEKA tablet hardness meter (manufactured by ERWEKA, trade name "Tablet Hardness Meter TBH425TD") by applying a load to the tablet with an indenter using an electric weight.
  • the resulting mixed solution was sprayed onto a plastic tape on a water bath at 70° C. (0.2 MPa, 50 NL/min (normal liter per minute)) to a film thickness of about 50 ⁇ m.
  • the obtained coating film was peeled off from the plastic tape to obtain a film-like coating layer.
  • Comparative example 1 A film-like coating layer was obtained in the same manner as in Example 1, except that ethyl cellulose ("ETCEL (registered trademark) Standard 7 Premium” manufactured by THE DOW CHEMICAL), which is a water-insoluble polymer, was used instead of gastric soluble polymer A. Ta.
  • ETCEL registered trademark
  • Standard 7 Premium manufactured by THE DOW CHEMICAL
  • Example 2 The drug permeation profile of the film-like coating layer obtained in Example 1 (pH 6.8 test solution and pH 1.2 test solution) is shown in FIG. 2, and the drug permeation profile of the film-like coating layer obtained in Comparative Example 1 ( pH 6.8 test solution and pH 1.2 test solution) are shown in FIG.
  • Example 4 Performed except that gastric soluble polymer B (diethylaminoethyl methacrylate-methyl methacrylate copolymer "Kollicoat (registered trademark) Smartseal 100P" manufactured by BASF Japan Co., Ltd., the same hereinafter) was used instead of gastric soluble polymer A.
  • a film-like coating layer was obtained in the same manner as in Example 1.
  • Example 5 A film-like coating layer was obtained in the same manner as in Example 1, except that gastric soluble polymer C (polyvinyl acetal diethylaminoacetate "AEA (registered trademark)" manufactured by Mitsubishi Chemical Corporation) was used instead of gastric soluble polymer A. Ta.
  • gastric soluble polymer C polyvinyl acetal diethylaminoacetate "AEA (registered trademark)" manufactured by Mitsubishi Chemical Corporation
  • Example 6 A film-like coating layer was obtained in the same manner as in Example 1, except that hydroxypropylcellulose B (“HPC-M” manufactured by Nippon Soda Co., Ltd., 2% by mass aqueous solution viscosity 500 mPa s) was used instead of hydroxypropylcellulose A. Ta.
  • HPC-M hydroxypropylcellulose B
  • Example 7 A film-like coating layer was obtained in the same manner as in Example 1, except that povidone A ("Kollidon 90F” manufactured by BASF Japan Co., Ltd., 2% aqueous solution viscosity 5 mPa ⁇ s) was used instead of hydroxypropyl cellulose A.
  • povidone A Kerdon 90F manufactured by BASF Japan Co., Ltd., 2% aqueous solution viscosity 5 mPa ⁇ s
  • Example 8 A film-like coating layer was obtained in the same manner as in Example 1, except that povidone B (“Kollidon 30” manufactured by BASF Japan Co., Ltd., 2% by mass aqueous solution viscosity 1.5 mPa ⁇ s) was used instead of hydroxypropylcellulose A. .
  • povidone B Korean 30 manufactured by BASF Japan Co., Ltd., 2% by mass aqueous solution viscosity 1.5 mPa ⁇ s
  • Example 9 A film-like coating layer was obtained in the same manner as in Example 1, except that hypromellose A ("TC-5R" manufactured by Shin-Etsu Chemical Co., Ltd., 2 mass % aqueous solution viscosity 6 mPa s) was used instead of hydroxypropyl cellulose A. .
  • hypromellose A (“TC-5R” manufactured by Shin-Etsu Chemical Co., Ltd., 2 mass % aqueous solution viscosity 6 mPa s) was used instead of hydroxypropyl cellulose A. .
  • Example 10 A film-like coating layer was obtained in the same manner as in Example 1, except that hypromellose B ("TC-5S" manufactured by Shin-Etsu Chemical Co., Ltd., 2 mass % aqueous solution viscosity 15 mPa s) was used instead of hydroxypropyl cellulose A. .
  • hypromellose B (“TC-5S” manufactured by Shin-Etsu Chemical Co., Ltd., 2 mass % aqueous solution viscosity 15 mPa s) was used instead of hydroxypropyl cellulose A. .
  • Example 11 [Preparation of spherical core] Consisting of 85 parts by mass of levofloxacin hydrate (0.5 hydrate), 10 parts by mass of hydroxypropyl cellulose A, and 5 parts by mass of low-substituted hydroxypropyl cellulose ("LH-31" manufactured by Shin-Etsu Chemical Co., Ltd., the same hereinafter). 10 parts by mass of a 50% by mass ethanol aqueous solution was sprayed onto the mixed powder, and the mixture was granulated using a high-speed stirring mixer.
  • the obtained granules were dried using a fluidized bed granulation dryer and then classified using sieves with openings of 60M and 200M to obtain spherical cores with particle sizes of 75 to 250 ⁇ m.
  • Table 1 shows the composition of the obtained spherical core.
  • mass conversion means the ratio of the total mass of the polymer in the coating layer to the mass of the spherical core.
  • Example 12 (prescription amount 67/33, CT40%) Time-release granules with a median particle diameter (D 50 ) of 181 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to those shown in Table 3 in the coating step of the coating layer.
  • Example 13 (prescription amount 67/33, CT60%) Time-release granules with a median particle diameter (D 50 ) of 195 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to those shown in Table 3 in the coating step of the coating layer.
  • Example 14 (prescription amount 67/33, CT80%) Time-release granules with a median particle diameter (D 50 ) of 205 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to those shown in Table 3 in the coating step of the coating layer.
  • Example 15 (prescription amount 67/33, CT100%) Time-release granules with a median particle diameter (D 50 ) of 214 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to those shown in Table 3 in the coating step of the coating layer.
  • Example 16 (prescription amount 67/33, CT124%) Time-release granules with a center particle diameter (D 50 ) of 226 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to those shown in Table 3 in the coating step of the coating layer. As a result of elemental mapping of the cross section of the obtained time-release granules, the thickness of the coating layer was approximately 36 ⁇ m.
  • Example 17 (prescription amount 75/25, CT20%) Time-release granules with a median particle diameter (D 50 ) of 173 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to those shown in Table 3 in the coating step of the coating layer.
  • Example 18 (prescription amount 75/25, CT40%) Time-release granules with a median particle diameter (D 50 ) of 187 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to those shown in Table 3 in the coating step of the coating layer.
  • Example 19 (prescription amount 75/25, CT60%) Time-release granules with a median particle diameter (D 50 ) of 199 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to those shown in Table 3 in the coating step of the coating layer. As a result of elemental mapping of the cross section of the obtained time-release granules, the thickness of the coating layer was approximately 20 ⁇ m.
  • Example 20 (prescription amount 75/25, CT80%) Time-release granules with a median particle diameter (D 50 ) of 204 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to those shown in Table 3 in the coating step of the coating layer.
  • Example 21 (prescription amount 75/25, CT100%) Time-release granules with a center particle diameter (D 50 ) of 211 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to those shown in Table 3 in the coating step of the coating layer.
  • Example 22 (prescription amount 75/25, CT124%) Time-release granules with a median particle diameter (D 50 ) of 221 ⁇ m were obtained in the same manner as in Example 11, except that the proportions of each component were changed to the proportions shown in Table 3 in the coating step of the coating layer. As a result of elemental mapping of the obtained time-release granule cross section, the thickness of the coating layer was approximately 38 ⁇ m.
  • compositions of the time-release granules obtained in Examples 11 to 22 are shown in Table 3.
  • the relationship between the coating amount and the center particle diameter (D 50 ) of the time-release granules obtained in Examples 11 to 22 is shown in FIG. 6 together with the particle diameter of the spherical core (0% coating). Furthermore, an electron micrograph of the surface of the time-release granules obtained in Example 16 is shown in FIG. It can be confirmed that both the granules of Examples 11 to 16 with a prescription amount of 67/33 and the granules of Examples 17 to 22 with a prescription amount of 75/22 showed similar particle growth and similar granule surfaces were formed.
  • Example 11 The overall profile of the time-release granules obtained in Examples 11 to 16 (pH 6.8 test solution) is shown in FIG.
  • Example 11 the profile of the granules not covered with the coating layer (spherical core portion with 0% coating) as Comparative Example 2 is also shown in FIG.
  • the film thickness (coating amount) increased, the lag time increased while the elution rate tended to decrease. In other words, it was shown that the lag time can be adjusted by changing the coating amount.
  • Example 16 The overall profile of the time-release granules obtained in Example 16 (pH 6.8 test solution and pH 1.2 test solution) is shown in FIG. 11, and the initial profile (pH 6.8 test solution and pH 1.2 test solution) is shown in Figure 12. As is clear from FIGS. 11 and 12, it was confirmed that the time-release granules obtained in Example 16 elute after a lag time of about 2 minutes at pH 6.8, and quickly elute at pH 1.2. Ta.
  • FIG. 13 shows an electron micrograph of the surface of the time-release granules obtained in Example 16 after the dissolution test. As is clear from FIG. 13, it was confirmed that pores were formed on the surface of the time-release granules obtained in Example 16 after the dissolution test. The average diameter of the pores was 375 nm.
  • Example 23 [Preparation of spherical core] A mixed powder consisting of 83 parts by mass of sitagliptin phosphate, 12 parts by mass of hydroxypropylcellulose A, and 5 parts by mass of low-substituted hydroxypropylcellulose was sprayed with 14 parts by mass of a 50% by mass ethanol aqueous solution, and then mixed using a high-speed stirring mixer. Granulated. The obtained granules were dried using a fluidized bed granulation dryer and then classified using sieves with openings of 60M and 200M to obtain spherical cores with particle sizes of 75 to 250 ⁇ m. Table 4 shows the composition of the obtained spherical core.
  • the tablet powder was compressed using a manual tabletop tablet forming machine at a pressure of 14 kN to prepare tablets.
  • the tablet diameter was 13 mm
  • the tablet thickness was 7.58 mm
  • the hardness was 148 N
  • the disintegration time was 25.64 seconds.
  • Example 24 Time-release granules with a median particle diameter (D 50 ) of 235 ⁇ m were obtained in the same manner as in Example 23, except that the proportions of each component were changed to those shown in Table 6 in the coating step of the coating layer. 439.2 parts by mass of the obtained time-release granules and 635.4 parts by mass of disintegrating granules were mixed in a glass bottle, and 5.4 parts by mass of magnesium stearate was added and mixed to form a tablet powder (for tableting). composition) was prepared. The tablet powder was compressed using a manual tabletop tablet forming machine at a pressure of 14 kN to prepare tablets. The tablet diameter was 13 mm, the tablet thickness was 7.61 mm, the hardness was 141 N, and the disintegration time was 27.91 seconds.
  • Example 25 Time-release granules with a median particle diameter (D 50 ) of 241 ⁇ m were obtained in the same manner as in Example 23, except that the proportions of each component were changed to those shown in Table 6 in the coating step of the coating layer. 446.1 parts by mass of the obtained time-release granules and 628.5 parts by mass of disintegrating granules were mixed in a glass bottle, and 5.4 parts by mass of magnesium stearate was added thereto and mixed. composition) was prepared. The tablet powder was compressed using a manual tabletop tablet forming machine at a pressure of 14 kN to prepare tablets. The tablet diameter was 14 mm, the tablet thickness was 6.85 mm, the hardness was 107 N, and the disintegration time was 22.87 seconds.
  • the overall profile (pH 6.8 test solution) of the tablets obtained in Examples 23 to 25 is shown in FIG. 16, and the initial profile (pH 6.8 test solution) is shown in FIG. 17.
  • the proportion of the gastric soluble polymer increased, the lag time increased while the dissolution rate tended to decrease.
  • sitagliptin phosphate which has higher solubility than levofloxacin hydrate, it was confirmed that the rise after the lag time tends to be faster.
  • Example 26 (increased amount of disintegrant for spherical core, prescription amount 75/25, CT 20%) [Preparation of spherical core]
  • a mixed powder consisting of 60 parts by mass of levofloxacin hydrate, 10 parts by mass of hydroxypropylcellulose A, and 30 parts by mass of crospovidone was sprayed with 14 parts by mass of a 50% by mass ethanol aqueous solution, and granulated using a high-speed stirring mixer.
  • the obtained granules were dried using a fluidized bed granulation dryer and then classified using sieves with openings of 60M and 200M to obtain spherical cores with particle sizes of 75 to 250 ⁇ m.
  • Table 7 shows the composition of the obtained spherical core.
  • Example 27 (increased amount of disintegrant for spherical core, prescription amount 75/25, CT40%) Time-release granules with a median particle diameter (D 50 ) of 180 ⁇ m were obtained in the same manner as in Example 26, except that the proportions of each component were changed to those shown in Table 9 in the coating step of the coating layer.
  • Example 28 (increased amount of disintegrant for spherical core, prescription amount 75/25, CT60%) Time-release granules with a median particle diameter (D 50 ) of 191 ⁇ m were obtained in the same manner as in Example 26, except that the proportions of each component were changed to those shown in Table 9 in the coating step of the coating layer.
  • D 50 median particle diameter
  • Example 29 (increased amount of disintegrant for spherical core, prescription amount 75/25, CT 80%) Time-release granules with a center particle diameter (D 50 ) of 192 ⁇ m were obtained in the same manner as in Example 26, except that the proportions of each component were changed to those shown in Table 9 in the coating step of the coating layer.
  • Example 30 (increased amount of disintegrant for spherical core, prescription amount 75/25, CT 100%) Time-release granules with a center particle diameter (D 50 ) of 210 ⁇ m were obtained in the same manner as in Example 26, except that the proportions of each component were changed to those shown in Table 9 in the coating step of the coating layer.
  • Example 31 (increased amount of disintegrant for spherical core, prescription amount 75/25, CT 124%) Time-release granules with a median particle diameter (D 50 ) of 224 ⁇ m were obtained in the same manner as in Example 26, except that the proportions of each component were changed to those shown in Table 9 in the coating step of the coating layer.
  • compositions of the time-release granules obtained in Examples 26 to 31 are shown in Table 9.
  • Example 31 The overall profile of the timed release granules obtained in Example 31 (pH 6.8 test solution) is shown together with the overall profile of the timed release granules obtained in Examples 20 and 22 (pH 6.8 test solution). 19. As is clear from the results in FIG. 19, the time-release granules obtained in Example 31, in which the proportion of disintegrant in the spherical core was increased, were more eluted than the time-release granules obtained in Examples 20 and 22. It had excellent characteristics.
  • time-release granules of the present invention can be used as granules included in oral preparations containing active ingredients, and are particularly effective as granules included in immediate-release preparations because they can achieve a high level of compatibility between dissolution of the active ingredient and lag time. Available.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)

Abstract

有効成分を含む核部と、この核部を被覆するコーティング層とを組み合わせて、顆粒を調製する。この顆粒は、目的に応じて、有効成分の溶出速度とラグ時間とを調整できる。前記コーティング層は、胃溶性高分子および水溶性高分子を含む。前記胃溶性高分子は、アミノアルキルメタクリレート単位を有する(メタ)アクリル系重合体およびアルキルアミノカルボン酸で変性されたポリビニルアセタール系重合体からなる群より選択された少なくとも1種を含んでいてもよい。前記コーティング層において、前記胃溶性高分子と前記水溶性高分子とは相分離構造を形成していてもよい。前記相分離構造は、前記胃溶性高分子で形成されたマトリックス相と、前記水溶性高分子で形成された分散相とを含む海島構造であってもよい。

Description

時限放出型顆粒およびその用途
 本発明は、有効成分の溶出性を制御できる時限放出型顆粒およびその用途に関する。
 薬効成分などの有効成分は、服用性の向上や有効成分の効果が発現する時期の調整などの目的で溶出性を制御する必要がある。一方で、有効成分による治療効果を十分に発揮させるには、有効成分が体内で速やかに溶出し、体内へ吸収される必要がある。すなわち、有効成分については、体内の適所または適時に発現させるためのラグ時間を確保した上で、体内での溶出速度も向上または確保する必要があるが、溶出速度の向上とラグ時間(溶出開始時間)の確保とはトレードオフの関係にあるため、有効成分の溶出速度の向上と、ラグ時間の確保とを両立させるのは困難である。特に、ラグ時間が長くなると、溶出速度を維持するのが困難となる。しかし、用途によっては、溶出速度を維持しつつ、ラグ時間を延長することや、逆にラグ時間を維持しつつ、溶出速度を上昇させることが要求される。そのため、目的に応じて、有効成分の溶出性、すなわち有効成分の溶出速度とラグ時間とを調整でき、さらに溶出速度の向上または確保と長いラグ時間とを両立できる時限放出型組成物が待望されている。
 有効成分の時限放出性を制御する方法として、International Journal of Pharmaceutics 465 (2014) 187-196(非特許文献1)には、難水溶性トピラマートの徐放性を向上させるために、エチルセルロースおよびポリビニルピロリドン(PVP)で形成されたコーティング層を形成する方法が記載されている。この文献には、前記コーティング層が多孔質構造を形成し、水溶性高分子であるPVPが、投与後に溶解して細孔または導水路を形成する細孔形成剤(pore-former)として作用することが記載されている。
 Journal of Drug Delivery Science and Technology 32 (2016) 38-42(非特許文献2)には、ラフチジンの口腔内崩壊錠(OD錠)の苦みマスキング層として、水不溶性高分子であるエチルセルロースと水溶性高分子であるヒプロメロースとを組み合わせて、有効成分の溶解挙動を調整する方法が開示されている。この文献では、OD錠は、コアに対して、薬物層および分離層を介して苦みマスキング層が被覆されている。
 International Journal of Pharmaceutics 511 (2016) 223-235(非特許文献3)には、徐放性フィルムとして、ヒドロキシプロピルセルロースとエチルセルロースとの組み合わせで形成され、かつ相分離構造を有するフィルムが開示されている。この文献には、前記相分離構造において、ヒドロキシプロピルセルロースが細孔形成剤として機能し、前記徐放性フィルムが薬剤溶出のラグタイムを抑制するために利用できることが記載されている。
 しかし、非特許文献1~3の方法では、有効成分の溶出速度を向上できず、低pHでの溶出性が低い有効成分では尚更有効成分の溶出速度を向上できない。すなわち、前述のように、溶出速度とラグ時間とはトレードオフの関係にあり、従来の方法では、溶出速度を維持しつつ、長いラグ時間を確保することができない。
 従って、本発明の目的は、目的に応じて、有効成分の溶出速度とラグ時間とを調整できる時限放出型顆粒およびその用途を提供することにある。
 本発明の他の目的は、有効成分の溶出速度とラグ時間とを高度に両立できる時限放出型顆粒およびその用途を提供することにある。
 本発明者等は、前記課題を達成するため鋭意検討した結果、有効成分を含む核部を、胃溶性高分子および水溶性高分子を含むコーティング層で被覆することにより、目的に応じて、有効成分の溶出速度とラグ時間とを調整できる時限放出型顆粒を提供できることを見出し、本発明を完成した。
 すなわち、本発明の態様[1]としての顆粒は、有効成分を含む核部と、この核部を被覆するコーティング層とを含む顆粒であって、前記コーティング層が、胃溶性高分子および水溶性高分子を含む。
 本発明の態様[2]としての顆粒は、前記態様[1]において、前記胃溶性高分子が、アミノアルキルメタクリレート単位を有する(メタ)アクリル系重合体およびアルキルアミノカルボン酸で変性されたポリビニルアセタール系重合体からなる群より選択された少なくとも1種を含む。
 本発明の態様[3]としての顆粒は、前記態様[1]または[2]において、前記水溶性高分子が、ポリビニルピロリドン、ヒドロキシC2-4アルキルセルロースエーテルおよびヒドロキシプロピルメチルセルロースからなる群より選択された少なくとも1種を含む。
 本発明の態様[4]としての顆粒は、前記態様[1]~[3]のいずれかにおいて、前記胃溶性高分子と、前記水溶性高分子との質量比が、前者/後者=99/1~10/90である。
 本発明の態様[5]としての顆粒は、前記態様[1]~[4]のいずれかにおいて、前記コーティング層において、前記胃溶性高分子と前記水溶性高分子とが相分離構造を形成している。
 本発明の態様[6]としての顆粒は、前記態様[5]の態様において、前記相分離構造が、前記胃溶性高分子で形成されたマトリックス相と、前記水溶性高分子で形成され、前記マトリックス相に分散した分散相とを含む海島構造である。
 本発明の態様[7]としての顆粒は、前記態様[6]の態様において、前記分散相が、前記核部から前記顆粒の表面まで延びる構造を有する。
 本発明の態様[8]としての顆粒は、前記態様[1]~[7]のいずれかにおいて、前記コーティング層が無機化合物をさらに含み、かつ前記無機化合物の割合が、前記胃溶性高分子および前記水溶性高分子の合計100質量部に対して10質量部以上である。
 本発明の態様[9]としての顆粒は、前記態様[1]~[8]のいずれかにおいて、前記コーティング層の割合が、前記核部100質量部に対して10質量部以上である。
 本発明の態様[10]としての製剤は、前記態様[1]~[9]のいずれかの態様の顆粒を含む。
 本発明の態様[11]としての顆粒の製造方法は、有効成分を含む核部を形成する核部形成工程と、胃溶性高分子および水溶性高分子を含むコーティング組成物によって、前記核部を被覆してコーティング層を形成するコーティング層形成工程とを含む。
 本発明の態様[12]としての方法は、胃溶性高分子および水溶性高分子を含むコーティング層で、有効成分を含む核部を被覆することにより、前記有効成分の溶出速度を制御する方法である。
 本発明の態様[13]としての方法は、胃溶性高分子および水溶性高分子を含むコーティング層で、有効成分を含む核部を被覆し、前記胃溶性高分子と前記水溶性高分子との質量比および/または前記核部と前記胃溶性高分子および前記水溶性高分子の合計量との質量比を調整することにより、前記有効成分の溶出速度およびラグ時間を制御する方法も含まれる。
 本発明では、有効成分を含む核部が、胃溶性高分子および水溶性高分子を含むコーティング層で被覆されているため、目的に応じて、体内における有効成分の溶出速度とラグ時間とを調整でき、特に、溶出速度を向上または確保しつつ、ラグ時間を調整でき(溶出速度とラグ時間とを高度に両立でき)、例えば、溶出速度を向上してラグ時間を確保したり、溶出速度を確保してラグ時間を長くできる。例えば、前記胃溶性高分子および前記水溶性高分子との比率を調整したり、前記核部と前記胃溶性高分子および前記水溶性高分子の合計量の質量比を調整したり、前記胃溶性高分子および前記水溶性高分子の種類を選択することなどによって、有効成分の溶出速度を維持しつつ、ラグ時間を延長することもできる一方で、有効成分のラグ時間を維持しつつ、溶出速度を上昇させることもできる。特に、胃溶性高分子と水溶性高分子とを組み合わせているため、有効成分の種類を問わず、有効成分の溶出性を向上できる。さらに、有効成分を含む核部をコーティング層で被覆する簡便な方法で顆粒を製造できるため、生産性も高い。
図1は、実施例1~3で得られたフィルム状コーティング層の試験時間に対する透過濃度を示すグラフ(pH6.8試験液のプロファイル)である。 図2は、実施例1で得られたフィルム状コーティング層の試験時間に対する透過濃度を示すグラフ(pH6.8試験液およびpH1.2試験液のプロファイル)である。 図3は、比較例1で得られたフィルム状コーティング層の試験時間に対する透過濃度を示すグラフ(pH6.8試験液およびpH1.2試験液のプロファイル)である。 図4は、実施例1および4~5で得られたフィルム状コーティング層の試験時間に対する透過濃度を示すグラフ(pH6.8試験液およびpH1.2試験液のプロファイル)である。 図5は、実施例1および6~10で得られたフィルム状コーティング層の試験時間に対する透過濃度を示すグラフ(pH6.8試験液のプロファイル)である。 図6は、実施例11~22で得られた時限放出型顆粒のコーティング量と中心粒径(D50)との関係を示すグラフである。 図7は、実施例16で得られた時限放出型顆粒表面の電子顕微鏡写真である。 図8は、実施例11~16および比較例2で得られた時限放出型顆粒の試験時間に対する溶出率を示すグラフ(pH6.8試験液の全体プロファイル)である。 図9は、実施例16、19および22で得られた時限放出型顆粒の試験時間に対する溶出率を示すグラフ(pH6.8試験液の全体のプロファイル)である。 図10は、実施例16、19および22で得られた時限放出型顆粒の試験時間に対する溶出率を示すグラフ(pH6.8試験液の初期のプロファイル)である。 図11は、実施例16で得られた時限放出型顆粒の試験時間に対する溶出率を示すグラフ(pH6.8試験液およびpH1.2試験液の全体のプロファイル)である。 図12は、実施例16で得られた時限放出型顆粒の試験時間に対する溶出率を示すグラフ(pH6.8試験液およびpH1.2試験液の初期のプロファイル)である。 図13は、実施例16で得られた時限放出型顆粒の溶出試験後の顆粒表面の電子顕微鏡写真である。 図14は、実施例19~22で得られた時限放出型顆粒の試験時間に対する溶出率を示すグラフ(pH6.8試験液の全体プロファイル)である。 図15は、実施例19~22で得られた時限放出型顆粒の試験時間に対する溶出率を示すグラフ(pH6.8試験液の初期のプロファイル)である。 図16は、実施例23~25で得られた錠剤の試験時間に対する溶出率を示すグラフ(pH6.8試験液の全体のプロファイル)である。 図17は、実施例23~25で得られた錠剤の試験時間に対する溶出率を示すグラフ(pH6.8試験液の初期のプロファイル)である。 図18は、実施例26~31で得られた時限放出型顆粒のコーティング量と中心粒径(D50)との関係と、実施例17~22で得られた時限放出型顆粒のコーティング量と中心粒径(D50)との関係とを比較したグラフである。 図19は、実施例20、22および31で得られた時限放出型顆粒の試験時間に対する溶出率を示すグラフ(pH6.8試験液の全体のプロファイル)である。
 [時限放出型顆粒]
 本発明の顆粒は、有効成分を含む核部と、この核部を被覆するコーティング層とを含み、有効成分の溶出性を調整できる時限放出型顆粒である。
 (核部)
 核部は、必須成分として有効成分(A)を含む。
 (A)有効成分
 核部に含まれる有効成分(A)は、単独でまたは二種以上組み合わせて使用できる。有効成分(A)としては、厳密なラグ時間を要求されることが多い有効成分が好ましい。
 有効成分(A)は、慣用または新規のいずれの有効成分であってもよい。有効成分(A)としては、例えば、滋養強壮保健剤、解熱鎮痛消炎剤、向精神病剤、抗不安剤、抗うつ剤、催眠鎮静剤、鎮痙剤、胃腸剤、制酸剤、鎮咳去痰剤、歯科口腔用剤、抗ヒスタミン剤、強心剤、不整脈用剤、利尿剤、血圧降下剤、血管収縮剤、冠血管拡張剤、末梢血管拡張剤、利胆剤、抗結核剤、抗生物質、抗ウイルス剤、化学療法剤、糖尿病治療剤、骨粗しょう症治療剤、骨格筋弛緩剤などが挙げられる。これらのうち、マスキングが必要な有効成分、例えば苦味を有する有効成分(例えば、レボフロキサシン水和物などの抗生物質、シタグリプチンリン酸塩などの糖尿病治療剤など)が好ましい。
 有効成分(A)のpH6.8での溶解度は、37℃で10mg/mL以上であってもよく、例えば10~200mg/mL、好ましくは20~180mg/mL、さらに好ましくは25~150mg/mL、より好ましくは30~120mg/mL、最も好ましくは40~60mg/mLである。
 なお、本明細書および特許請求の範囲において、pH6.8での溶解度は、37℃における飽和溶解度を示す。
 有効成分(A)の割合は、核部中10質量%以上であってもよく、例えば30~99質量%、好ましくは40~98質量%、さらに好ましくは50~95質量%、より好ましくは55~93質量%、最も好ましくは60~90質量%である。有効成分(A)の割合が少なすぎると、顆粒が大型化する虞があり、多すぎると、核部の成形性が低下する虞がある。
 (B)結合剤
 核部は、結合剤(B)(第1の結合剤)を含んでいてもよい。結合剤(B)としては、例えば、ポリビニルピロリドン類(ポビドン、酢酸ビニル-ビニルピロリドン共重合体など)、ポリビニルアルコール、カルボキシビニルポリマー、ポリアクリル酸系ポリマー(ポリアクリル酸ナトリウム、アクリル酸共重合体など)、ポリ乳酸、ポリエチレングリコール、ポリ酢酸ビニルなどの合成高分子;メチルセルロースなどのアルキルセルロースエーテル類;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース(HPC)、ヒドロキシプロピルメチルセルロース(ヒプロメロースまたはHPMC)などのヒドロキシアルキルセルロースエーテル類;酢酸セルロースなどのセルロースエステル類などが挙げられる。
 これらの結合剤(B)は、単独でまたは二種以上組み合わせて使用できる。これらのうち、HPCなどのヒドロキシC2-4アルキルセルロースエーテルが好ましい。
 結合剤(B)の割合は、核部中0.1~90質量%であってもよく、例えば1~50質量%、好ましくは2~30質量%、さらに好ましくは3~20質量%、より好ましくは5~15質量%、最も好ましくは8~12質量%である。結合剤(B)の割合が少なすぎると、顆粒の機械的特性が低下し、逆に多すぎると、顆粒が大型化する虞がある。
 (C)崩壊剤
 核部は、崩壊剤(C)を含んでいてもよい。崩壊剤(C)としては、例えば、クロスポビドン(架橋ポリビニルピロリドン)、クロスポビドンコポリマーなどの架橋ポリビニルピロリドン類;トウモロコシデンプン、バレイショデンプンなどのデンプン類;アルファ化デンプン、部分アルファ化デンプン、酸化デンプン、デキストリン、シクロデキストリン、ヒドロキシプロピルスターチ、カルボキシメチルスターチ、カルボキシメチルスターチナトリウムなどのデンプン誘導体;微結晶セルロース、結晶セルロース、粉末セルロースなどのセルロース類;低置換度ヒドロキシプロピルセルロース(L-HPC)、カルボキシメチルセルロース(カルメロースまたはCMC)、カルメロースナトリウム、カルメロースカルシウム、クロスカルメロースナトリウムなどのセルロースエーテル類;結晶セルロース・カルメロースナトリウム;寒天、カラギーナン、アルギン酸、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル、グアーガム、ローカストビンガム、アラビアガム、トラガントガム、プルラン、キサンタンガム、ヒアルロン酸、ペクチン、コンドロイチン硫酸ナトリウムなどの多糖類;ゼラチン、カゼイン、ダイズタンパク質などのタンパク質などが挙げられる。
 これらの崩壊剤(C)は、単独でまたは二種以上組み合わせて使用できる。これらのうち、L-HPCなどの低置換度ヒドロキシC2-4アルキルセルロース、クロスポビドンが好ましい。
 崩壊剤(C)の割合は、使用する有効成分(A)に応じて、適宜調整可能であるが、顆粒の小型化および生産性を向上できる点から、核部中40質量%以下が好ましく、30質量%以下であることが特に好ましい。本発明では、崩壊剤(C)は必須成分ではなく、核部は、崩壊剤(C)を実質的に含まなくてもよく、完全に含まなくてもよい。有効成分(A)の溶出性を向上できる点からは、崩壊剤(C)を含むのが好ましく、核部中5~40質量%、好ましくは10~35質量%、さらに好ましくは20~30質量%である。
 (D)慣用の添加剤
 核部は、経口製剤に配合される慣用の添加剤(D)を含んでいてもよい。慣用の添加剤(D)としては、例えば、賦形剤、滑沢剤、可塑剤、界面活性剤、pH調整剤、着色剤、甘味剤または矯味剤、抗酸化剤、防腐剤または保存剤、湿潤剤、帯電防止剤、崩壊補助剤などが挙げられる。これらの添加剤の合計割合は、核部中30質量%以下であってもよく、例えば20質量%以下(例えば0.01~20質量%)、好ましくは10質量%以下(例えば0.1~10質量%)、さらに好ましくは5質量%以下、より好ましくは1質量%以下である。
 (E)核部の特性
 核部の形状は、特に限定されず、無定形状、繊維状、楕円体状、球状、平板状、粉粒状などであってもよいが、球状が好ましい。さらに、核部の形状は、中空形状であってもよいが、顆粒を小型化できる点から、中実状が好ましい。
 核部の体積基準の累積50%粒子径(または中心粒径)(D50)は、ラグ時間と溶出性とのバランスに優れる点から、例えば100~500μm、好ましくは100~450μm、さらに好ましくは100~350μm、より好ましくは100~250μm、最も好ましくは150~200μmである。
 なお、本明細書および請求の範囲において、累積50%粒子径(D50)は、レーザー回折式粒度分布計を用いて体積基準で測定できる。
 (コーティング層)
 本発明の顆粒は、胃溶性高分子および水溶性高分子を含むコーティング層で前記核部が被覆されているため、有効成分の溶出速度を維持しつつ、ラグ時間を確保できる。本発明では、コーティング層によって溶出速度の向上または確保と長いラグ時間とを両立できるメカニズムは、胃溶性高分子と水溶性高分子との組み合わせにより、口腔内や胃でのコーティング層の溶解性が調整されるとともに、コーティング層が相分離構造を形成し、コーティング層の胃や腸における崩壊性が適度な範囲に調整されるためであると推定できる。
 (a)胃溶性高分子
 胃溶性高分子(a)としては、胃で溶解する高分子として製剤の分野で慣用的に利用されている胃溶性高分子を利用できる。好ましい胃溶性高分子(a)は、アミノアルキルメタクリレート単位を有する(メタ)アクリル系重合体(第1の胃溶性高分子(a1))およびアルキルアミノカルボン酸で変性されたポリビニルアセタール系重合体(第2の胃溶性高分子(a2))からなる群より選択された少なくとも1種である。
 第1の胃溶性高分子(a1)において、アミノアルキルメタクリレート単位は、アミノアルキルメタクリレート(メタクリル酸アミノアルキルエステル)由来の単位を意味する。アミノアルキルメタクリレートとしては、例えば、N,N-ジメチルアミノエチルメタクリレート(メタクリル酸ジメチルアミノエチル)、N,N-ジエチルアミノエチルメタクリレート、N,N-ジメチルアミノプロピルメタクリレート、N,N-ジエチルアミノプロピルメタクリレートなどのN,N-ジC1-4アルキルアミノC2-4アルキルメタクリレートなどが挙げられる。これらのアミノアルキルメタクリレートは、単独でまたは2種以上組み合わせて使用できる。これらのうち、N,N-ジメチルアミノエチルメタクリレート、N,N-ジエチルアミノエチルメタクリレートなどのN,N-ジC1-3アルキルアミノC2-3アルキルメタクリレートが好ましく、N,N-ジC1-2アルキルアミノエチルメタクリレートが特に好ましい。
 第1の胃溶性高分子(a1)は、アミノメタクリレート単位の単独重合体であってもよく、アミノメタクリレート単位と共重合性単量体由来の共重合単位との共重合体であってもよい。
 共重合性単量体としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチルなどの(メタ)アクリル系単量体;ビニルエステル系単量体;複素環式ビニル系単量体;重合性不飽和ジカルボン酸またはその誘導体などが挙げられる。これらの共重合性単量体は、単独でまたは二種以上組み合わせて使用できる。これらのうち、(メタ)アクリル酸、(メタ)アクリル酸C1-4アルキルなどの(メタ)アクリル系単量体が好ましく、(メタ)アクリル酸または(メタ)アクリル酸C1-2アルキルがさらに好ましく、メタクリル酸またはメタクリル酸C1-2アルキルがより好ましい。
 第1の胃溶性高分子(a1)としては、例えば、メタクリル酸ジメチルアミノエチル-メタクリル酸共重合体、メタクリル酸ジメチルアミノエチル-メタクリル酸メチル共重合体、メタクリル酸ジエチルアミノエチル-メタクリル酸メチル共重合体、メタクリル酸ジメチルアミノエチル-メタクリル酸メチル-メタクリル酸ブチル共重合体、メタクリル酸ジメチルアミノエチル-アクリル酸エチル-メタクリル酸メチル共重合体などが挙げられる。
 第2の胃溶性高分子(a2)において、アルキルアミノカルボン酸で変性されたポリビニルアセタール系重合体(ポリビニルアセタールアルキルアミノカルボキシレート)は、ポリビニルアルコールとアセトアルデヒドとの反応により得られたアセタールの残存する水酸基の一部と、アルキルアミノカルボン酸とがエステル結合した共重合体であってもよい。
 アルキルアミノカルボン酸としては、例えば、ジメチルアミノ酢酸、ジエチルアミノ酢酸、ジメチルアミノプロピオン酸、ジエチルアミノプロピオン酸、ジメチルアミノ酪酸、ジエチルアミノ酪酸などのN,N-ジC1-4アルキルアミノC2-6アルカン酸などが挙げられる。これらのアルキルアミノカルボン酸のうち、ジメチルアミノ酢酸、ジエチルアミノ酢酸などのN,N-ジC1-3アルキルアミノC2-4アルカン酸が好ましく、N,N-ジC1-2アルキルアミノC2-3アルカン酸が特に好ましい。
 第2の胃溶性高分子(a2)としては、例えば、ポリビニルアセタールジメチルアミノアセテート、ポリビニルアセタールジエチルアミノアセテートなどが挙げられる。
 胃溶性高分子(a)の割合は、コーティング層中5質量%以上であってもよく、例えば5~70質量%、好ましくは10~65質量%、さらに好ましくは20~60質量%、より好ましく30~55質量%、最も好ましくは40~50質量%である。胃溶性高分子(a)の割合が少なすぎると、ラグ時間が短くなる虞がある。
 (b)水溶性高分子
 水溶性高分子(b)としては、例えば、可溶性デンプン;アラビアゴム、デキストリン、アルギン酸ナトリウム、ヒアルロン酸、コンドロイチン硫酸ナトリウムなどの多糖類;ポリビニルピロリドン(ポビドン)、ビニルピロリドン-酢酸ビニル共重合体(コポビドン)などのビニルピロリドンの単独または共重合体(ビニルピロリドン類);ポリビニルアルコール;カルボキシビニルポリマー、ポリアクリル酸系ポリマー、ポリメタクリル酸系ポリマー(オイドラギットL,LD,Sなど)などの(メタ)アクリル酸の単独または共重合体;ポリエチレングリコール(マクロゴールなど)などの合成高分子;メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカリウム、ヒドロキシエチルセルロース(HEC)、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース(HPC)、ヒドロキシプロピルメチルセルロース(ヒプロメロースまたはHPMC)などのセルロースエーテル類などが挙げられる。これらの水溶性高分子(b)は、単独でまたは二種以上組み合わせて使用できる。
 これらの水溶性高分子(b)のうち、ビニルピロリドン類、セルロースエーテル類が好ましく、ポリビニルピロリドン、ヒドロキシC2-4アルキルセルロースエーテル、ヒドロキシプロピルメチルセルロースがさらに好ましい。好ましい水溶性高分子は、単独でまたは二種以上組み合わせて使用できる。
 水溶性高分子(b)の2質量%(20℃)の水溶液の粘度は、胃溶性高分子(a)と水溶性高分子(b)とが相分離構造を形成し易い点から、例えば0.1~1000mPa・s、好ましくは1~500mPa・s、さらに好ましくは2~100mPa・s、より好ましくは3~30mPa・s、最も好ましくは5~10mPa・sである。
 なお、本明細書および請求の範囲において、水溶性高分子(b)の2質量%水溶液の粘度は、ブルックフィールド型粘度計を用いて、第十八改正日本薬局方 回転粘度計法に準拠して測定できる。
 水溶性高分子(b)の含有質量は、コーティング層中3質量%以上であってもよく、例えば3~60質量%、好ましくは5~50質量%、さらに好ましくは10~40質量%、より好ましく15~30質量%、最も好ましくは20~25質量%である。水溶性高分子(b)の割合が少なすぎると、溶出速度が低下する虞がある。
 (c)無機化合物
 コーティング層は、無機化合物(c)を含んでいてもよい。
 無機化合物(c)としては、例えば、アルミニウム非含有ケイ酸類[例えば、タルク、軽質無水ケイ酸などの無水ケイ酸、含水二酸化ケイ素(含水ケイ酸)、ケイ酸カルシウム、ケイ酸マグネシウムなど]、アルミニウム含有ケイ酸類(例えば、ケイ酸アルミン酸マグネシウム、メタケイ酸アルミン酸マグネシウムなどのケイ酸アルミン酸塩;合成ケイ酸アルミニウム;ベントナイト、カオリンなどの鉱物類など)、合成ヒドロタルサイト、金属酸化物(例えば、酸化マグネシウム、酸化チタンなど)、炭酸塩(例えば、沈降性炭酸カルシウム、炭酸マグネシウムなど)、リン酸塩(例えば、無水リン酸水素カルシウム、リン酸一水素カルシウムなど)などが挙げられる。これらの無機化合物(c)は、単独でまたは二種以上組み合わせて使用できる。
 これらのうち、高い溶出速度と長いラグ時間とを両立できる点から、アルミニウム含有ケイ酸類および合成ヒドロタルサイトからなる群より選択された少なくとも1種である第1の無機化合物(c1)と、アルミニウム非含有ケイ酸類、金属酸化物、炭酸塩およびリン酸塩からなる群より選択された少なくとも1種である第2の無機化合物(c2)との組み合わせが好ましい。
 第1の無機化合物(c1)のうち、ケイ酸アルミン酸塩、合成ヒドロタルサイトが好ましく、溶出速度を向上できる点から、合成ヒドロタルサイトがより好ましく、高い溶出速度と長いラグ時間とを両立できる点から、メタケイ酸アルミン酸マグネシウムが最も好ましい。
 第1の無機化合物(c1)(特に、メタケイ酸アルミン酸マグネシウム)のBET比表面積は、例えば50~1000m/g、好ましくは100~500m/g、さらに好ましくは150~450m/g、最も好ましくは200~400m/gである。
 第1の無機化合物(c1)(特に、メタケイ酸アルミン酸マグネシウム)の形状は、特に限定されず、無定形状、繊維状、楕円体状、球状、平板状、粉粒状などであってもよく、通常、無定形状、平板状、粉粒状などである。
 第1の無機化合物(c1)(特に、メタケイ酸アルミン酸マグネシウム)の体積基準の累積50%粒子径(D50)は、例えば0.5~20μm、好ましくは1~18μm、さらに好ましくは2~15μm、より好ましくは3~12μm、最も好ましくは5~10μmである。
 第2の無機化合物(c2)のうち、アルミニウム非含有ケイ酸類が好ましく、溶出速度とラグ時間とのバランスを調整し易い点から、タルクが特に好ましい。
 第2の無機化合物(c2)(特に、タルク)のBET比表面積は、例えば50~1000m/g、好ましくは100~500m/g、さらに好ましくは150~450m/g、最も好ましくは200~400m/gである。
 第2の無機化合物(c2)(特に、タルク)の形状は、特に限定されず、無定形状、繊維状、楕円体状、球状、平板状、粉粒状などであってもよく、通常、無定形状、粉粒状などである。
 第2の無機化合物(c2)(特に、タルク)の体積基準の累積50%粒子径(D50)は、例えば0.3~10μm、好ましくは0.5~8μm、さらに好ましくは1~7μm、より好ましくは1.5~5μm、最も好ましくは2~4μmである。
 第1の無機化合物(c1)と第2の無機化合物(c2)とを組み合わせる場合、両者の質量比は、前者/後者=99/1~1/99の範囲から選択でき、例えば95/5~10/90、好ましくは90/10~30/70、さらに好ましくは80/20~50/50、最も好ましくは70/30~60/40である。第2の無機化合物(c2)の割合が少なすぎると、溶出速度とラグ時間とのバランスを取る効果が低下する虞があり、逆に多すぎると、ラグ時間が短くなる虞がある。
 無機化合物(c)の割合は、胃溶性高分子(a)および水溶性高分子(b)の合計100質量部に対して10質量部以上であってもよく、例えば10~100質量部、好ましくは15~90質量部、さらに好ましくは20~80質量部、より好ましくは30~70質量部、最も好ましくは40~60質量部である。無機化合物(c)の割合が少なすぎると、ラグ時間を長くする効果が発現しない虞がある。
 無機化合物(c)の割合は、コーティング層中60質量%以下であってもよく、例えば3~60質量%、好ましくは5~50質量%、さらに好ましくは10~45質量%、より好ましく20~40質量%、最も好ましくは30~35質量%である。無機化合物(c)の割合が多すぎると、溶出性が低下する虞がある。
 (d)水不溶性高分子
 コーティング層は、ラグ時間を調整するために、水不溶性高分子(d)を含んでいてもよい。
 水不溶性高分子(d)としては、例えば、(メタ)アクリル系樹脂、ビニル系樹脂、セルロース誘導体などが挙げられる。
 (メタ)アクリル系樹脂としては、例えば、メタクリル酸-アクリル酸エチル共重合体(メタクリル酸コポリマーLD)、メタクリル酸-アクリル酸n-ブチル共重合体、メタクリル酸-メタクリル酸メチル共重合体(メタクリル酸コポリマーL,S)、アクリル酸エチル-メタクリル酸メチル-メタクリル酸塩化トリメチルアンモニウムエチル(アンモニオメタクリレート)共重合体などが挙げられる。
 ビニル系樹脂としては、例えば、ポリビニルアセテートフタレート、ポリビニルアセタールジエチルアミノアセテートなどが挙げられる。
 セルロース誘導体としては、例えば、エチルセルロース、エチルプロピルセルロース、カルボキシメチルエチルセルロース(CMEC)などのセルロースエーテル類;セルロースアセテート、セルロースアセテートプロピオネートなどのセルロースエステル類;ヒドロキシメチルセルロースアセテートサクシネート、ヒドロキシプロピルメチルセルロースフタレート(HPMCF)などのセルロースエーテルエステル類などが挙げられる。
 水不溶性高分子(d)の含有質量は、コーティング層中30質量%以下であってもよく、例えば20質量%以下(例えば0.01~20質量%)、好ましくは10質量%以下(例えば0.1~10質量%)、さらに好ましくは5質量%以下、より好ましくは1質量%以下である。
 本発明では、胃溶性高分子(a)と水溶性高分子(b)との組み合わせでラグ時間を長くできるため、コーティング層は、水不溶性高分子(d)は必須成分ではなく、溶出性を向上できる点から、水不溶性高分子(d)を実質的に含まないのが好ましい。特に、コーティング層は、エチルセルロースなどのセルロースアルキルエーテルを実質的に含まないのが好ましく、エチルセルロースなどのセルロースC1-3アルキルエーテルを完全に含まないのが特に好ましい。
 (e)他の成分
 コーティング層は、他の成分(e)として、経口製剤に配合される慣用の添加剤をさらに含んでいてもよい。慣用の添加剤としては、例えば、賦形剤、崩壊剤、水膨潤性物質、可塑剤、界面活性剤、pH調整剤、着色剤、甘味剤または矯味剤、抗酸化剤、防腐剤または保存剤、湿潤剤、帯電防止剤、崩壊補助剤などが挙げられる。これらの添加剤は、単独でまたは二種以上組み合わせて使用できる。これらの添加剤の合計割合は、コーティング層中30質量%以下であってもよく、例えば20質量%以下(例えば0.01~20質量%)、好ましくは10質量%以下(例えば0.1~10質量%)、さらに好ましくは5質量%以下、より好ましくは1質量%以下である。
 (f)コーティング層の特性
 本発明では、コーティング層に含まれる胃溶性高分子(a)と水溶性高分子(b)との質量比を調整することにより、有効成分の溶出速度およびラグ時間を制御できる。
 コーティング層において、胃溶性高分子(a)と水溶性高分子(b)との質量比は、前者/後者=99/1~10/90程度の範囲から選択でき、例えば95/5~20/80、好ましくは90/10~30/70、さらに好ましくは80/20~50/50、最も好ましくは70/30~60/40である。胃溶性高分子(a)の割合が少なすぎると、ラグ時間が短くなる虞があり、逆に多すぎると、溶出性が低下する虞がある。
 本発明では、核部に対するコーティング層の厚み(特に、前記胃溶性高分子(a)および前記水溶性高分子(b)の合計量)を調整することによっても、有効成分の溶出速度およびラグ時間を制御できる。
 コーティング層の割合は、核部100質量部に対して10質量部以上であってもよく、例えば10~500質量部、好ましくは30~400質量部、さらに好ましくは50~300質量部、より好ましくは100~250質量部、最も好ましくは150~200質量部である。コーティング層の割合が少なすぎると、有効成分の溶出を抑制するのが困難となる虞があり、多すぎると、有効成分の溶出速度が低下する上に、顆粒の小型化も困難となる虞がある。
 コーティング層の平均厚みは、例えば1~100μm、好ましくは10~80μm、さらに好ましくは15~70μm、より好ましくは20~60μm、最も好ましくは30~50μmである。厚みが薄すぎると、有効成分の溶出を抑制するのが困難となる虞があり、厚すぎると、有効成分の溶出速度が低下する上に、顆粒の小型化も困難となる虞がある。
 前記胃溶性高分子(a)および前記水溶性高分子(b)の合計量は、核部100質量部に対して10質量部以上であってもよく、例えば10~500質量部、好ましくは30~400質量部、さらに好ましくは50~300質量部、より好ましくは80~200質量部、最も好ましくは100~150質量部である。前記合計量が少なすぎると、有効成分の溶出を抑制するのが困難となる虞があり、多すぎると、有効成分の溶出速度が低下する上に、顆粒の小型化も困難となる虞がある。
 前記コーティング層において、前記胃溶性高分子と前記水溶性高分子とが相分離構造を形成しているのが好ましい。相分離構造としては、例えば、海島構造、共連続構造などが挙げられる。これらの構造のうち、高い溶出速度と長いラグ時間とを両立し易い点から、胃溶性高分子(a)で形成されたマトリックス相と、水溶性高分子(b)で形成された分散相とを含む海島構造が好ましい。
 なお、本明細書および請求の範囲において、コーティング層の相分離構造は、コーティング層表面の平面視における相分離構造を意味する。
 水溶性高分子(b)で形成された分散相の平均径は、例えば0.01~10μm、好ましくは0.05~5μm、さらに好ましくは0.1~3μm、より好ましくは0.2~1μm、最も好ましくは0.3~0.8μmである。分散相の平均径が小さすぎると、溶出速度が低下する虞があり、逆に大きすぎると、ラグ時間が短くなる虞がある。
 なお、本明細書および請求の範囲において、前記分散相の平均径は、第十八改正日本薬局方 溶出試験法 パドル法で分散相を溶出させた顆粒表面の細孔径を電子顕微鏡で観察し、任意の10か所の平均値として測定できる。
 水溶性高分子(b)で形成された分散相は、溶出性を向上できる点から、核部(核部の表面)から顆粒の表面まで延びる構造(すなわち、核部の表面から顆粒の表面にまで至る構造)を有するのが好ましい。すなわち、前記分散相は、コーティング層を貫通する孔としての構造を有し、分散相を通じて有効成分が徐々に溶出できる。
 このような海島構造では、分散相が水溶性高分子(b)で形成されているため、口腔内で水溶性高分子(b)の溶解が開始され、胃で水溶性高分子(b)の溶解が完了すると推定できる。そのため、口腔内では有効成分の溶出を抑制でき、有効成分が苦味を有する場合、苦味のマスキング効果を発現できる。一方、分散相の溶解によって多孔質構造に変換されたコーティング層は、胃で胃溶性高分子(a)の溶解が開始する。そのため、多孔質構造に変換されたコーティング層は、腸に到達する頃には溶解が完了し、胃および/または腸での有効成分の溶出性を向上できる。なお、胃溶性高分子(a)は、相分離構造などを調整することにより、胃での溶解の程度を調整できるため、胃での有効成分の溶出を向上することもできる一方で、腸での有効成分の溶出を向上することもできる。そのため、本発明では、前述の通り、胃溶性高分子(a)と水溶性高分子(b)との比率を制御して、相分離構造を変化させることにより、目的の溶出速度およびラグ時間に調整することができる。また、本発明では、胃溶性高分子(a)および/または水溶性高分子(b)の種類を変更することによっても、溶出速度およびラグ時間を調整できる。さらに、無機化合物(c)を含む場合は、第1の無機化合物(c1)と第2の無機化合物(c2)の比率などを調整することによっても、溶出速度およびラグ時間を調整できる。
 コーティング層と核部との間には、中間層を介在してもよいが、顆粒を小型化でき、生産性にも優れる点から、中間層を介さずに核部がコーティング層で被覆されているのが好ましく、顆粒が核部とこの核部を被覆するコーティング層とで形成されているのが特に好ましい。
 [時限放出型顆粒の特性]
 本発明の時限放出型顆粒は、胃溶性高分子(a)と水溶性高分子(b)との組み合わせにより、有効成分の溶出速度を維持しつつ、ラグ時間を制御できるため、有効成分が苦味を有していても、口腔内では有効成分の溶出を抑制し、胃および/または腸で溶出が完了するように設計することもできる。すなわち、本発明の時限放出型顆粒は、ラグ時間までは高度に有効成分の溶出を抑制でき、ラグ時間経過後は短時間で速やかに有効成分を溶出できる即時放出製剤を調製することができる。さらに、コーティング層において、用途に応じてラグ時間を調整でき、例えば、無機化合物と組み合わせると、比較的長いラグ時間であっても容易に調整できる。
 本発明の顆粒の体積基準の累積50%粒子径(D50)は、例えば130~500μm、好ましくは130~400μm、さらに好ましくは150~350μm、より好ましくは160~300μm、最も好ましくは190~250μmである。
 本発明の時限放出型顆粒において、好ましい態様は、有効成分を含む核部と、この核部を被覆するコーティング層とを含む顆粒であって、
 前記コーティング層が、アミノアルキルメタクリレート単位を有する(メタ)アクリル系重合体およびアルキルアミノカルボン酸で変性されたポリビニルアセタール系重合体からなる群より選択された少なくとも1種を含む胃溶性高分子と、ポリビニルピロリドン、ヒドロキシC2-4アルキルセルロースエーテルおよびヒドロキシプロピルメチルセルロースからなる群より選択された少なくとも1種を含む水溶性高分子と、無機化合物とを含み、
 前記胃溶性高分子と、前記水溶性高分子との質量比が、前者/後者=99/1~10/90であり、
 前記胃溶性高分子と前記水溶性高分子とが相分離構造を形成し、
 前記相分離構造が、前記胃溶性高分子で形成されたマトリックス相と、前記水溶性高分子で形成され、前記マトリックス相に分散した分散相とを含む海島構造であり、
 前記分散相が、前記核部から前記顆粒の表面まで延びる構造を有し、
 前記無機化合物の割合が、前記胃溶性高分子および前記水溶性高分子の合計100質量部に対して10質量部以上であり、かつ
 前記コーティング層の割合が、前記核部100質量部に対して10質量部以上である顆粒であってもよい。
 [時限放出型顆粒の製造方法]
 本発明の顆粒は、有効成分を含む核部を製造する核部形成工程(核部調製工程)と、胃溶性高分子(a)および水溶性高分子(b)を含むコーティング組成物によって、前記核部を被覆するコーティング層形成工程(被覆工程)とを経ることにより製造できる。
 核部形成工程において、核部を製造するための造粒方法としては、特に限定されず、慣用の造粒方法を利用できる。慣用の造粒方法は、乾式造粒法であってもよいが、湿式造粒法が好ましい。湿式造粒法は、溶媒を用いて複合粒子を造粒する方法であればよく、例えば、押出造粒法、転動造粒法、流動層造粒法、混合・攪拌造粒法、噴霧乾燥造粒法、振動造粒法などが挙げられる。これらのうち、流動層造粒法、混合・攪拌造粒法を利用する造粒法が好ましく、混合・攪拌造粒法が特に好ましい。
 混合・攪拌造粒法としては、有効成分を含む組成物を一括して混合・攪拌して核部を得る方法であれば特に限定されず、慣用の方法を利用できる。前記組成物は、造粒溶媒をさらに含んでいてもよい。
 造粒溶媒としては、特に制限されないが、安全性の点から、水、水性溶媒などが利用できる。水性溶媒としては、例えば、低級アルコール(例えば、エタノール、イソプロパノールなどのC2-4アルカノールなど)、脂肪族ケトン(例えば、アセトンなど)などが挙げられる。これらの溶媒は、単独でまたは二種以上組み合わせて使用できる。
 これらの造粒溶媒のうち、水単独、水性溶媒単独、水および水性溶媒の混合溶媒が好ましく、水単独、水およびC2-4アルカノールの混合溶媒がより好ましく、水単独、水およびエタノールの混合溶媒が最も好ましい。
 造粒溶媒の割合は、有効成分100質量部に対して、例えば1~1000質量部程度の範囲から選択でき、例えば5~100質量部、好ましくは10~50質量部、さらに好ましくは15~30質量部である。
 コーティング層形成工程では、核部に対して、前記コーティング組成物を慣用のコーティング方法でコーティングしてもよい。慣用のコーティング方法としては、例えば、塗布、噴霧、含浸または浸漬、パンコーティング、流動層コーティング、転動コーティング、転動流動コーティングなどが挙げられる。これらのうち、流動層コーティング、転動流動コーティングが好ましく、転動流動コーティングが特に好ましい。
 コーティング層形成工程では、胃溶性高分子(a)と水溶性高分子(b)とで相分離構造を形成するのが好ましく、胃溶性高分子(a)で形成されたマトリックス相と、水溶性高分子(b)で形成された分散相とを含む海島構造を形成するのが特に好ましい。相分離構造の形成方法としては、特に限定されないが、胃溶性高分子(a)と水溶性高分子(b)との質量比や粘度比などを調整する方法などが挙げられる。
 [製剤]
 本発明の製剤は、前記時限放出型顆粒を含む。本発明の製剤は、各種の経口製剤として好適に利用できる。経口製剤としては、例えば、丸剤、液剤、散剤、トローチ剤、ドライシロップ剤、錠剤、カプセル剤、懸濁剤などが挙げられる。これらの経口製剤のうち、有効成分が口腔内に溶出し易い経口製剤、例えば、散剤、トローチ剤、ドライシロップ剤、錠剤、懸濁剤が好ましく、口腔内崩壊錠(OD錠)が特に好ましい。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。以下の例における評価方法および使用した原料を以下に示す。
 [拡散セルを用いたフィルム状コーティング層の透過性]
 ファイバープローブ型紫外可視分光光度計(Rainbow,Pion株式会社製、以下同じ)を用いて、経時的にフィルム状コーティング層に対するレボフロキサシン水和物(0.5水和物、以下同じ)の透過濃度(透過量)を測定した(測定波長:288nm)。詳しくは、フィルム状コーティング層を拡散セルの間に固定し、ドナー側にレボフロキサシン水和物の飽和溶液(pH6.8試験液またはpH1.2試験液)、アクセプター側にブランク液(pH6.8試験液またはpH1.2試験液)をそれぞれ5mL添加して透過濃度を測定した。
 [中心粒径]
 中心粒径(D50)は、レーザー回折式粒度分布測定装置(マルバーン社製、商品名「マスターサイザー3000」)を用いて、体積基準で測定した。
 [コーティング層の平均厚み]
 コーティング前後の中心粒径(D50)から算出した。
 [顆粒の溶出性]
 時限放出型顆粒の平均溶出率を、第十八改正日本薬局方 溶出試験法 パドル法(回転数75rpm、溶出試験第2液900mL)で測定した。溶出試験中のコーティング顆粒同士の付着・凝集を防ぐため、事前に時限放出型顆粒に対して等量の崩壊性顆粒(下記製造方法で得られた賦形剤と崩壊剤で構成される顆粒)を混合し、試験ベッセルへ投入した。溶出率は、ファイバープローブ型紫外可視分光光度計を用いて測定した(測定波長:288nm)。
 (崩壊性顆粒の製造方法)
 流動層造粒乾燥機にD-マンニトール71質量部、エチルセルロース2質量部、軽質無水ケイ酸1質量部を投入した。トウモロコシデンプン20質量部およびクロスポビドン6質量部を精製水80質量部に分散させ、この分散液を前記投入物にスプレーして造粒した後、乾燥し、目開き30Mの篩で分級し、崩壊性顆粒を得た。
 [顆粒の元素マッピング]
 時限放出型顆粒の元素マッピングは、まず顆粒をレジンで固化させた後、錠剤スライサー(日本分光社製、商品名「HS-1」)を用いて固化物の切片を作製して実施した。得られた切片を走査型電子顕微鏡(日本電子社製、商品名「JSM-IT200」)で観察し、顆粒断面を元素マッピングした。
 [錠剤の溶出性]
 時限放出型顆粒を即崩壊性粒子およびステアリン酸マグネシウムと混合し、手動式卓上錠剤成型機(市橋精機社製、商品名「HANDTAB―100」)を用いて打錠して錠剤を調製した。得られた錠剤の平均溶出率を、第十八改正日本薬局方 溶出試験法 パドル法(回転数75rpm、溶出試験第2液900mL)で測定した。溶出率は、ファイバープローブ型紫外可視分光光度計を用いて測定した(測定波長:288nm)。
 [錠剤硬度]
 錠剤硬度は、ERWEKA型錠剤硬度計(ERWEKA社製、商品名「錠剤硬度計 TBH425TD」)を用いて、電動錘荷重により圧子で錠剤に荷重を負荷する方法で測定した。
 [錠剤の崩壊時間(第十八改正日本薬局方)]
 崩壊試験機(日本薬局方準拠)を用いた。ガラス容器に37℃の水900mLを入れ、錠剤を入れたバスケット(底部が網状)を容器の水中で上下運動させ、錠剤が完全に崩壊するまでの時間を測定した。
 [原料]
 使用した原料の質量は全て固形分質量である。また、使用した原料名において、胃溶性高分子A~C、ポビドンAおよびB、ヒドロキシプロピルセルロースAおよびB、ヒプロメロースAおよびBにおけるアルファベット文字は、原料を識別するための符号であり、商品のグレードを示す文字ではない。さらに、胃溶性高分子AおよびBは前記第1の胃溶性高分子(a1)に相当し、胃溶性高分子Cは前記第2の胃溶性高分子(a2)に相当する。
 実施例1
 80質量%濃度でエタノールを含むエタノール水溶液に、胃溶性高分子A(エボニック社製のメタクリル酸ジメチルアミノエチル単位を有するコポリマー「オイドラギットE」、以下同じ)およびヒドロキシプロピルセルロースA(日本曹達株式会社製「HPC-L」、2質量%水溶液粘度6.3mPa・s、以下同じ)を合計濃度6質量%でエタノール水溶液中に溶解した(両者の質量比:胃溶性高分子A/ヒドロキシプロピルセルロースA=67/33)。得られた混合液を70℃の湯浴上のプラスチックテープに対して、膜厚約50μmとなるようにスプレー噴霧(0.2MPa,50NL/分(ノルマルリッターパーミニッツ))した。得られたコーティング膜をプラスチックテープから剥離し、フィルム状コーティング層を得た。
 実施例2
 胃溶性高分子AとヒドロキシプロピルセルロースAとの質量比を、胃溶性高分子A/ヒドロキシプロピルセルロースA=75/25に変更する以外は実施例1と同様にしてフィルム状コーティング層を得た。
 実施例3
 胃溶性高分子AとヒドロキシプロピルセルロースAとの質量比を、胃溶性高分子A/ヒドロキシプロピルセルロースA=80/20に変更する以外は実施例1と同様にしてフィルム状コーティング層を得た。
 実施例1~3で得られたフィルム状コーティング層の薬物透過プロファイル(pH6.8試験液)を図1に示す。図1の結果から明らかなように、胃溶性高分子の割合が増加すると、ラグ時間は長くなる一方で、透過速度は低下する傾向を示した。同一の膜厚では、実施例1の透過速度は、実施例2の透過速度の約2倍であった。そのため、実施例2の膜厚を1/2にすることで、透過速度が2倍に向上することが予測できる。
 比較例1
 胃溶性高分子Aの代わりに、水不溶性高分子であるエチルセルロース(THE DOW CHEMICAL社製「エトセル(登録商標)スタンダード7プレミアム」)を用いる以外は実施例1と同様にしてフィルム状コーティング層を得た。
 実施例1で得られたフィルム状コーティング層の薬物透過プロファイル(pH6.8試験液およびpH1.2試験液)を図2に示し、比較例1で得られたフィルム状コーティング層の薬物透過プロファイル(pH6.8試験液およびpH1.2試験液)を図3に示す。
 図2および3の結果から明らかなように、実施例1ではpH1.2で速やかに膜透過したのに対して、比較例1では、pH1.2でも速やかな膜透過は認められなかった。
 実施例4
 胃溶性高分子Aの代わりに、胃溶性高分子B(BASFジャパン株式会社製のメタクリル酸ジエチルアミノエチル-メタクリル酸メチル共重合体「Kollicoat(登録商標)Smartseal 100P」、以下同じ)を用いる以外は実施例1と同様にしてフィルム状コーティング層を得た。
 実施例5
 胃溶性高分子Aの代わりに、胃溶性高分子C(三菱ケミカル株式会社製のポリビニルアセタールジエチルアミノアセテート「AEA(登録商標)」)を用いる以外は実施例1と同様にしてフィルム状コーティング層を得た。
 実施例1および4~5で得られたフィルム状コーティング層の薬物透過プロファイル(pH6.8試験液およびpH1.2試験液)を図4に示す。図4の結果から明らかなように、いずれの胃溶性高分子においても、pH6.8ではラグタイム(ラグ時間)を有し、その後膜透過した。また、いずれの胃溶性高分子においても、pH1.2においては速やかに膜透過した。
 実施例6
 ヒドロキシプロピルセルロースAの代わりに、ヒドロキシプロピルセルロースB(日本曹達株式会社製「HPC-M」、2質量%水溶液粘度500mPa・s)を用いる以外は実施例1と同様にしてフィルム状コーティング層を得た。
 実施例7
 ヒドロキシプロピルセルロースAの代わりに、ポビドンA(BASFジャパン株式会社製「Kollidon 90F」、2%水溶液粘度5mPa・s)を用いる以外は実施例1と同様にしてフィルム状コーティング層を得た。
 実施例8
 ヒドロキシプロピルセルロースAの代わりに、ポビドンB(BASFジャパン株式会社製「Kollidon 30」、2質量%水溶液粘度1.5mPa・s)を用いる以外は実施例1と同様にしてフィルム状コーティング層を得た。
 実施例9
 ヒドロキシプロピルセルロースAの代わりに、ヒプロメロースA(信越化学工業株式会社製「TC-5R」、2質量%水溶液粘度6mPa・s)を用いる以外は実施例1と同様にしてフィルム状コーティング層を得た。
 実施例10
 ヒドロキシプロピルセルロースAの代わりに、ヒプロメロースB(信越化学工業株式会社製「TC-5S」、2質量%水溶液粘度15mPa・s)を用いる以外は実施例1と同様にしてフィルム状コーティング層を得た。
 実施例1および6~10で得られたフィルム状コーティング層の溶出プロファイル(pH6.8試験液)を図5に示す。図5の結果から明らかなように、いずれの水溶性高分子においてもラグタイムを形成可能であった。
 実施例11
 [球状核部の調製]
 レボフロキサシン水和物(0.5水和物)85質量部、ヒドロキシプロピルセルロースA10質量部、低置換度ヒドロキシプロピルセルロース(信越化学工業株式会社製「LH-31」、以下同じ)5質量部からなる混合粉体に、50質量%エタノール水溶液10質量部を噴霧し、高速攪拌混合機を用いて造粒した。得られた造粒物を、流動層造粒乾燥機を用いて乾燥した後、目開き60Mと200Mの篩で分級し、粒径75~250μmの球状核部を得た。得られた球状核部の組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [コーティング層の被覆工程]
 得られた球状核部30.1質量部を転動流動層造粒乾燥機に投入した。胃溶性高分子A4.03質量部、ヒドロキシプロピルセルロースA1.99質量部を、80質量%エタノール水溶液100.34質量部に溶解後、タルク(日本タルク株式会社製「ミクロエースP-3」、以下同じ)2.02質量部およびメタケイ酸アルミン酸マグネシウム(富士化学工業株式会社製「ノイシリンUFL2」、以下同じ)1.01質量部を分散させた分散液を、前記球状核部30.1質量部に対して、表2の条件で全量スプレーしてコーティングした後、50~80℃で乾燥し、目開き30Mの篩で分級し、中心粒径(D50)171μmの時限放出型顆粒を得た。
Figure JPOXMLDOC01-appb-T000002
 実施例11で得られた時限放出型顆粒は、胃溶性高分子と水溶性高分子との質量比が、前者/後者=67/33(以下「処方分量67/33」と称する)であり、かつコーティング量が質量換算で20%(以下「CT20%」と称する)の例である。なお、質量換算は、球状核部の質量に対するコーティング層中のポリマーの総質量の比率を意味する。
 実施例12(処方分量67/33、CT40%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)181μmの時限放出型顆粒を得た。
 実施例13(処方分量67/33、CT60%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)195μmの時限放出型顆粒を得た。
 実施例14(処方分量67/33、CT80%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)205μmの時限放出型顆粒を得た。
 実施例15(処方分量67/33、CT100%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)214μmの時限放出型顆粒を得た。
 実施例16(処方分量67/33、CT124%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)226μmの時限放出型顆粒を得た。得られた時限放出型顆粒断面を元素マッピングした結果、コーティング層の厚みは約36μmであった。
 実施例17(処方分量75/25、CT20%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)173μmの時限放出型顆粒を得た。
 実施例18(処方分量75/25、CT40%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)187μmの時限放出型顆粒を得た。
 実施例19(処方分量75/25、CT60%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)199μmの時限放出型顆粒を得た。得られた時限放出型顆粒断面を元素マッピングした結果、コーティング層の厚みは約20μmであった。
 実施例20(処方分量75/25、CT80%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)204μmの時限放出型顆粒を得た。
 実施例21(処方分量75/25、CT100%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)211μmの時限放出型顆粒を得た。
 実施例22(処方分量75/25、CT124%)
 コーティング層の被覆工程において、各成分の割合を表3に示す割合に変更する以外は実施例11と同様にして中心粒径(D50)221μmの時限放出型顆粒を得た。得られた時限放出型顆粒断面を元素マッピングした結果、コーティング層の厚みは約38μmであった。
 実施例11~22で得られた時限放出型顆粒の組成を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例11~22で得られた時限放出型顆粒のコーティング量と中心粒径(D50)との関係を球状核部の粒径(コーティング0%)とともに図6に示す。さらに、実施例16で得られた時限放出型顆粒表面の電子顕微鏡写真を図7に示す。処方分量67/33の実施例11~16の顆粒および処方分量75/22の実施例17~22の顆粒ともに、類似の粒子成長を示し、類似する顆粒表面が形成されていることが確認できる。
 実施例11~16で得られた時限放出型顆粒の全体のプロファイル(pH6.8試験液)を図8に示す。なお、実施例11において、コーティング層で被覆されていない顆粒(コーティング0%の球状核部)を比較例2としてそのプロファイルも図8に示す。図8から明らかなように、膜厚(コーティング量)が大きくなることにより、ラグ時間は長くなる一方で、溶出速度は低下する傾向を示した。すなわち、コーティング量によってラグ時間を調整できることが示された。
 実施例16、19および22で得られた時限放出型顆粒の全体のプロファイル(pH6.8試験液)を図9に示し、初期のプロファイル(pH6.8試験液)を図10に示す。図9および10から明らかなように、胃溶性高分子の比率を増加させると、ラグ時間が長くなり、溶出速度が低下した。
 実施例16で得られた時限放出型顆粒の全体のプロファイル(pH6.8試験液およびpH1.2試験液)を図11に示し、初期のプロファイル(pH6.8試験液およびpH1.2試験液)を図12に示す。図11および12から明らかなように、実施例16で得られた時限放出型顆粒は、pH6.8では約2分のラグ時間経過後に溶出し、pH1.2では速やかに溶出することが確認できた。
 実施例16で得られた時限放出型顆粒の溶出試験後の顆粒表面の電子顕微鏡写真を図13に示す。図13から明らかなように、溶出試験後には、実施例16で得られた時限放出型顆粒の表面には細孔が形成されていることが確認できた。細孔の平均径は375nmであった。
 実施例19~22で得られた時限放出型顆粒の全体のプロファイル(pH6.8試験液)を図14に示し、初期のプロファイル(pH6.8試験液)を図15に示す。図14および15から明らかなように、膜厚が大きくなることにより、ラグ時間は長くなる一方で、溶出速度は低下する傾向を示した。
 実施例23
 [球状核部の調製]
 シタグリプチンリン酸塩83質量部、ヒドロキシプロピルセルロースA12質量部、低置換度ヒドロキシプロピルセルロース5質量部からなる混合粉体に、50質量%エタノール水溶液14質量部を噴霧し、高速攪拌混合機を用いて造粒した。得られた造粒物を、流動層造粒乾燥機を用いて乾燥した後、目開き60Mと200Mの篩で分級し、粒径75~250μmの球状核部を得た。得られた球状核部の組成を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 [コーティング層の被覆工程]
 得られた球状核部149.5質量部を転動流動層造粒乾燥機に投入した。胃溶性高分子A124.2質量部、ヒドロキシプロピルセルロースA61.18質量部を、80質量%エタノール水溶液3089.66質量部に溶解後、タルク62.10質量部およびメタケイ酸アルミン酸マグネシウム31.05質量部を分散させた分散液を、前記球状核部149.5質量部に対して、表5の条件で全量スプレーしてコーティングした後、50~80℃で乾燥し、目開き60Mの篩で分級し、中心粒径(D50)240μmの時限放出型顆粒を得た。
Figure JPOXMLDOC01-appb-T000005
 得られた時限放出型顆粒の組成を表6に示す。
 [崩壊性顆粒の調製工程]
 流動層造粒乾燥機にD-マンニトール71質量部、エチルセルロース2質量部、軽質無水ケイ酸1質量部を投入した。トウモロコシデンプン20質量部およびクロスポビドン6質量部を精製水80質量部に分散させ、この分散液を前記投入物にスプレーして造粒した後、乾燥し、目開き30Mの篩で分級し、崩壊性顆粒を得た。
 [錠剤の製造工程]
 得られた時限放出型顆粒428.0質量部および崩壊性顆粒646.6質量部をガラス瓶中で混合し、さらにステアリン酸マグネシウム5.4質量部を入れて混合し、打錠末(打錠用組成物)を調製した。打錠末を手動式卓上錠剤成型機を用いて圧力14kNで打錠し、錠剤を調製した。錠剤の錠径は13mm、錠厚は7.58mm、硬度は148N、崩壊時間は25.64秒であった。
 実施例24
 コーティング層の被覆工程において、各成分の割合を表6に示す割合に変更する以外は実施例23と同様にして中心粒径(D50)235μmの時限放出型顆粒を得た。得られた時限放出型顆粒439.2質量部および崩壊性顆粒635.4質量部をガラス瓶中で混合し、さらにステアリン酸マグネシウム5.4質量部を入れて混合し、打錠末(打錠用組成物)を調製した。打錠末を手動式卓上錠剤成型機を用いて圧力14kNで打錠し、錠剤を調製した。錠剤の錠径は13mm、錠厚は7.61mm、硬度は141N、崩壊時間は27.91秒であった。
 実施例25
 コーティング層の被覆工程において、各成分の割合を表6に示す割合に変更する以外は実施例23と同様にして中心粒径(D50)241μmの時限放出型顆粒を得た。得られた時限放出型顆粒446.1質量部および崩壊性顆粒粒628.5質量部をガラス瓶中で混合し、さらにステアリン酸マグネシウム5.4質量部を入れて混合し、打錠末(打錠用組成物)を調製した。打錠末を手動式卓上錠剤成型機を用いて圧力14kNで打錠し、錠剤を調製した。錠剤の錠径は14mm、錠厚は6.85mm、硬度は107N、崩壊時間は22.87秒であった。
Figure JPOXMLDOC01-appb-T000006
 実施例23~25で得られた錠剤の全体のプロファイル(pH6.8試験液)を図16に示し、初期のプロファイル(pH6.8試験液)を図17に示す。図16および17から明らかなように、胃溶性高分子の割合が増加すると、ラグ時間は長くなる一方で、溶出速度は低下する傾向を示した。また、レボフロキサシン水和物に比べて、溶解性が高いシタグリプチンリン酸塩を用いることにより、ラグ時間後の立ち上がりが早い傾向が確認できた。
 実施例26(球状核部の崩壊剤増量、処方分量75/25、CT20%)
 [球状核部の調製]
 レボフロキサシン水和物60質量部、ヒドロキシプロピルセルロースA10質量部、クロスポビドン30質量部からなる混合粉体に、50質量%エタノール水溶液14質量部を噴霧し、高速攪拌混合機を用いて造粒した。得られた造粒物を、流動層造粒乾燥機を用いて乾燥した後、目開き60Mと200Mの篩で分級し、粒径75~250μmの球状核部を得た。得られた球状核部の組成を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 [コーティング層の被覆工程]
 得られた球状核部42.55質量部を転動流動層造粒乾燥機に投入した。胃溶性高分子A6.38質量部、ヒドロキシプロピルセルロースA2.13質量部を、80質量%エタノール水溶液141.84質量部に溶解後、タルク3.19質量部およびメタケイ酸アルミン酸マグネシウム1.60質量部を分散させた分散液を、前記球状核部42.55質量部に対して、表8の条件で全量スプレーしてコーティングした後、50~80℃で乾燥し、目開き30Mの篩で分級し、中心粒径(D50)168μmの時限放出型顆粒を得た。
Figure JPOXMLDOC01-appb-T000008
 実施例27(球状核部の崩壊剤増量、処方分量75/25、CT40%)
 コーティング層の被覆工程において、各成分の割合を表9に示す割合に変更する以外は実施例26と同様にして中心粒径(D50)180μmの時限放出型顆粒を得た。
 実施例28(球状核部の崩壊剤増量、処方分量75/25、CT60%)
 コーティング層の被覆工程において、各成分の割合を表9に示す割合に変更する以外は実施例26と同様にして中心粒径(D50)191μmの時限放出型顆粒を得た。
 実施例29(球状核部の崩壊剤増量、処方分量75/25、CT80%)
 コーティング層の被覆工程において、各成分の割合を表9に示す割合に変更する以外は実施例26と同様にして中心粒径(D50)192μmの時限放出型顆粒を得た。
 実施例30(球状核部の崩壊剤増量、処方分量75/25、CT100%)
 コーティング層の被覆工程において、各成分の割合を表9に示す割合に変更する以外は実施例26と同様にして中心粒径(D50)210μmの時限放出型顆粒を得た。
 実施例31(球状核部の崩壊剤増量、処方分量75/25、CT124%)
 コーティング層の被覆工程において、各成分の割合を表9に示す割合に変更する以外は実施例26と同様にして中心粒径(D50)224μmの時限放出型顆粒を得た。
 実施例26~31で得られた時限放出型顆粒の組成を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 実施例26~31で得られた時限放出型顆粒のコーティング量と中心粒径(D50)との関係と、実施例17~22で得られた時限放出型顆粒のコーティング量と粒径(D50)との関係とを比較した結果を、球状核部の粒径(コーティング0%)とともに図18に示す。
 実施例31で得られた時限放出型顆粒の全体のプロファイル(pH6.8試験液)を、実施例20および22で得られた時限放出型顆粒の全体のプロファイル(pH6.8試験液)と共に図19に示す。図19の結果から明らかなように、球状核部の崩壊剤の割合を増量した実施例31で得られた時限放出型顆粒は、実施例20および22で得られた時限放出型顆粒よりも溶出性が優れていた。
 本発明の時限放出型顆粒は、有効成分を含む経口製剤に含まれる顆粒として利用でき、有効成分の溶出性とラグ時間とを高度に両立できるため、即時放出製剤に含まれる顆粒として特に有効に利用できる。

Claims (13)

  1.  有効成分を含む核部と、この核部を被覆するコーティング層とを含む顆粒であって、
     前記コーティング層が、胃溶性高分子および水溶性高分子を含む、顆粒。
  2.  前記胃溶性高分子が、アミノアルキルメタクリレート単位を有する(メタ)アクリル系重合体およびアルキルアミノカルボン酸で変性されたポリビニルアセタール系重合体からなる群より選択された少なくとも1種を含む請求項1記載の顆粒。
  3.  前記水溶性高分子が、ポリビニルピロリドン、ヒドロキシC2-4アルキルセルロースエーテルおよびヒドロキシプロピルメチルセルロースからなる群より選択された少なくとも1種を含む請求項1または2記載の顆粒。
  4.  前記胃溶性高分子と、前記水溶性高分子との質量比が、前者/後者=99/1~10/90である請求項1または2記載の顆粒。
  5.  前記コーティング層において、前記胃溶性高分子と前記水溶性高分子とが相分離構造を形成している請求項1または2記載の顆粒。
  6.  前記相分離構造が、前記胃溶性高分子で形成されたマトリックス相と、前記水溶性高分子で形成され、前記マトリックス相に分散した分散相とを含む海島構造である請求項5記載の顆粒。
  7.  前記分散相が、前記核部から前記顆粒の表面まで延びる構造を有する請求項6記載の顆粒。
  8.  前記コーティング層が無機化合物をさらに含み、かつ前記無機化合物の割合が、前記胃溶性高分子および前記水溶性高分子の合計100質量部に対して10質量部以上である請求項1または2記載の顆粒。
  9.  前記コーティング層の割合が、前記核部100質量部に対して10質量部以上である請求項1または2記載の顆粒。
  10.  請求項1または2記載の顆粒を含む製剤。
  11.  有効成分を含む核部を形成する核部形成工程と、
     胃溶性高分子および水溶性高分子を含むコーティング組成物によって、前記核部を被覆してコーティング層を形成するコーティング層形成工程とを含む顆粒の製造方法。
  12.  胃溶性高分子および水溶性高分子を含むコーティング層で、有効成分を含む核部を被覆することにより、前記有効成分の溶出速度を制御する方法。
  13.  胃溶性高分子および水溶性高分子を含むコーティング層で、有効成分を含む核部を被覆し、前記胃溶性高分子と前記水溶性高分子との質量比および/または前記核部と前記胃溶性高分子および前記水溶性高分子の合計量との質量比を調整することにより、前記有効成分の溶出速度およびラグ時間を制御する方法。
PCT/JP2023/032969 2022-09-16 2023-09-11 時限放出型顆粒およびその用途 WO2024058093A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-148443 2022-09-16
JP2022148443 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024058093A1 true WO2024058093A1 (ja) 2024-03-21

Family

ID=90274954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032969 WO2024058093A1 (ja) 2022-09-16 2023-09-11 時限放出型顆粒およびその用途

Country Status (1)

Country Link
WO (1) WO2024058093A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286330A (ja) * 1985-06-11 1986-12-16 Teijin Ltd 経口徐放性製剤
JPH04257519A (ja) * 1991-02-08 1992-09-11 Ss Pharmaceut Co Ltd 徐放性経口投与型プラノプロフェン製剤
JP2007211006A (ja) * 2006-01-16 2007-08-23 Ono Pharmaceut Co Ltd 溶出安定性を有するコーティング固形製剤
US20090311317A1 (en) * 2008-05-14 2009-12-17 Capricorn Pharma Inc. Modified release tolterodine formulations
CN101732260A (zh) * 2010-01-09 2010-06-16 山东新时代药业有限公司 一种盐酸头孢他美酯的颗粒剂及其制备方法
JP2016515543A (ja) * 2013-03-19 2016-05-30 ノバルティス アーゲー エベロリムスを含む医薬組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61286330A (ja) * 1985-06-11 1986-12-16 Teijin Ltd 経口徐放性製剤
JPH04257519A (ja) * 1991-02-08 1992-09-11 Ss Pharmaceut Co Ltd 徐放性経口投与型プラノプロフェン製剤
JP2007211006A (ja) * 2006-01-16 2007-08-23 Ono Pharmaceut Co Ltd 溶出安定性を有するコーティング固形製剤
US20090311317A1 (en) * 2008-05-14 2009-12-17 Capricorn Pharma Inc. Modified release tolterodine formulations
CN101732260A (zh) * 2010-01-09 2010-06-16 山东新时代药业有限公司 一种盐酸头孢他美酯的颗粒剂及其制备方法
JP2016515543A (ja) * 2013-03-19 2016-05-30 ノバルティス アーゲー エベロリムスを含む医薬組成物

Similar Documents

Publication Publication Date Title
US10813885B1 (en) Controlled release dosage forms for high dose, water soluble and hygroscopic drug substances
AU2012210777B2 (en) Oral dosage forms for modified release comprising tasocitinib
RU2141822C1 (ru) Новые гранулы для регулируемого высвобождения и фармацевтические препараты, содержащие такие гранулы
AU2005324132B2 (en) Solid, orally applicable pharmaceutical administration forms containing rivaroxaban having modified release
WO2011111818A1 (ja) モサプリドまたはその塩を含む徐放型医薬組成物
CA2344372C (en) Multiple unit controlled food effect-independent release pharmaceutical preparations and method for preparing the same
EP2373319B1 (en) Sustained release pharmaceutical composition of quetiapine and process for preparation thereof
JP2005508331A (ja) 糖尿病の処置のための投与製剤
WO2000009133A1 (en) Sustained release oral preparations of fasudil hydrochloride
NO341321B1 (no) Preparat for oral administrering av tamsulosin-hydroklorid og granul med kontrollert frigivelsesformulering omfattende det samme
MXPA06006677A (es) Formas de dosis de torasemida de liberacion sostenida.
WO2009027786A2 (en) Matrix dosage forms of varenicline
WO2024058093A1 (ja) 時限放出型顆粒およびその用途
WO2011158870A1 (ja) 放出制御型の有核錠剤
JP2003267889A (ja) 持続性医薬製剤
JP6866136B2 (ja) デュロキセチン塩酸塩を含む口腔内崩壊錠
JPH021405A (ja) 放出制御型製剤およびその製法
KR100762846B1 (ko) 서방성 제제
JP5919173B2 (ja) 徐放性塩酸アンブロキソール口腔内崩壊錠
JP2024002959A (ja) 時限放出型顆粒およびその用途
JP2022103591A (ja) 時限放出型顆粒およびその用途
EP1558222A2 (en) Pharmaceutical compositions containing venlafaxine
TWI600425B (zh) 環苄普林之延釋劑型
TW201609196A (zh) 控制釋放製劑及其製備方法
US20040228918A1 (en) Granule modulating hydrogel system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865447

Country of ref document: EP

Kind code of ref document: A1