WO2024055521A1 - 一种铋系负极材料的制备方法及其应用 - Google Patents

一种铋系负极材料的制备方法及其应用 Download PDF

Info

Publication number
WO2024055521A1
WO2024055521A1 PCT/CN2023/077689 CN2023077689W WO2024055521A1 WO 2024055521 A1 WO2024055521 A1 WO 2024055521A1 CN 2023077689 W CN2023077689 W CN 2023077689W WO 2024055521 A1 WO2024055521 A1 WO 2024055521A1
Authority
WO
WIPO (PCT)
Prior art keywords
bismuth
negative electrode
preparation
present
electrode material
Prior art date
Application number
PCT/CN2023/077689
Other languages
English (en)
French (fr)
Inventor
郑子良
王榆彬
廖折军
杨云广
李长东
Original Assignee
广东邦普循环科技有限公司
宁德邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 宁德邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024055521A1 publication Critical patent/WO2024055521A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical fields of inorganic material preparation and nano-energy, and in particular to a preparation method and application of a bismuth-based negative electrode material.
  • Bismuth oxide (Bi 2 O 3 ) is an important functional material due to its unique properties (semiconductor band gap, high refractive index, high dielectric constant, high oxygen conductivity, resistivity, photoconductivity and photoluminescence, etc. ) has been deeply studied and widely used in technical fields such as photoelectric conversion materials, high-temperature superconducting materials, electronic ceramic materials, fireproof materials, nuclear engineering glass manufacturing, and nuclear reactor fuel. Because bismuth oxide has excellent electrochemical stability and good redox reversibility, bismuth oxide is also considered a potential secondary battery electrode material. But when used as secondary battery electrode materials, the specific capacity of both elemental bismuth and Bi2O3 is relatively low.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention provides a method for preparing a bismuth-based negative electrode material, which can effectively improve the capacity of the obtained bismuth-based negative electrode material.
  • the invention also provides bismuth-based negative electrode materials prepared by the above preparation method and their applications.
  • the preparation method includes:
  • the mechanism of the preparation method is as follows:
  • the bismuthate reacts hydrothermally under alkaline conditions, and crystallization occurs during the process. Specifically, the cations of the bismuthate are desorbed, and the remaining BiO 2 - is converted into BiO 2-x .
  • the surface of the resulting bismuth-based negative electrode material has a large number of defects. (Oxygen vacancies).
  • BiO 2-x with defects has a typical hierarchical structure assembled by hexagons. It is a high-price bismuth-containing compound with It has a narrow band gap (1.67eV) and has good response to the entire spectrum; moreover, it has excellent photocatalytic activity (photoelectrochemical properties) and good stability, and is also environmentally friendly, low-toxic, and low-cost Low and high photocatalytic performance.
  • defective BiO 2-x has rarely been used as anode material for lithium-ion batteries.
  • BiO 2-x Compared with Bi 2 O 3 , BiO 2-x has oxygen vacancies. These oxygen vacancies enable it to have higher energy density, larger chemical diffusion coefficient, and higher safety factor when used as anode material for secondary batteries.
  • the present invention found that the degree of crystallization, particle size and oxygen vacancies of BiO 2-x are related to the pH of the hydrothermal reaction system and affect its lithium storage ability when used as an anode material.
  • the preparation method provided by the invention has a simple process and uses a hydrothermal method to obtain BiO 2-x in one step. It is easy to operate, has mild conditions, has good repeatability, and the raw materials are green, environmentally friendly, low-toxic, and low-cost.
  • the present invention significantly improves the crystallization degree of the obtained product and improves its lithium storage capacity.
  • the bismuthate salt includes sodium bismuthate. Compared with other types of bismuthates, sodium bismuthate is more conducive to generating oxygen-deficient bismuth oxide under alkaline conditions, thereby reducing the difficulty of the preparation method.
  • the preparation method of the aqueous solution includes mixing the bismuth acid salt and water and then heating and stirring.
  • the temperature of the heating and stirring is 60-80°C.
  • the temperature of the heating and stirring is about 70°C.
  • the rotation speed of the heating and stirring is 200-800 rpm.
  • the rotation speed of the heating and stirring is about 400 rpm.
  • the duration of the heating and stirring is 30 to 50 minutes.
  • the duration of the heating and stirring is about 30 minutes.
  • the instrument used for heating and stirring includes at least one of a magnetic stirrer and a mechanical stirrer (mechanically driven paddle).
  • the concentration of bismuthate in the aqueous solution is about 0.1-0.2 mol/L.
  • the pH adjusting reagent includes at least one of a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution.
  • the pH adjusting reagent is selected from sodium hydroxide aqueous solution.
  • the concentration of the adjusting reagent is approximately 3 mol/L. Therefore, the concentration of the adjusting reagent is relatively high, which will not seriously affect the concentration of the bismuth acid salt aqueous solution during the pH adjustment process, and further will not affect the performance of the obtained bismuth-based negative electrode material.
  • the preparation method of the adjustment reagent includes: mixing at least one of sodium hydroxide or potassium hydroxide with water and then stirring.
  • the stirring speed is 200 to 800 rpm.
  • the stirring speed is about 400 rpm.
  • the stirring duration is 30 to 50 minutes.
  • the stirring duration is about 30 minutes.
  • the solute in the aqueous solution and the adjusting reagent can be fully dissolved, and a uniform dispersion system is generated, which can generate a bismuth-based negative electrode with uniform texture and particle size for subsequent hydrothermal reactions.
  • Materials provide the foundation.
  • stirring method and stirring speed are not the only methods, any method can be used as long as the solute can be fully dissolved.
  • the pH adjustment method includes stirring and mixing the adjustment reagent and the aqueous solution.
  • the rotating speed of stirring and mixing is 200-500 rpm.
  • the stirring and mixing duration is ⁇ 30 minutes. This increases the mass transfer rate and indirectly increases the speed and uniformity of the hydrothermal reaction.
  • the pH of the aqueous solution is approximately 12.
  • the temperature of the hydrothermal reaction is 180-200°C.
  • the duration of the hydrothermal reaction is 4 to 12 hours.
  • the material of the hydrothermal reaction container includes polytetrafluoroethylene. This can avoid contamination of the reaction system by the container and avoid corrosion of the container by the reaction system.
  • the preparation method further includes performing solid-liquid separation after the hydrothermal reaction, and washing and drying the obtained solid.
  • the solid-liquid separation further includes cooling the system after the hydrothermal reaction.
  • the cooled temperature is room temperature (10-50°C). This can avoid damage during subsequent operations such as solid-liquid separation.
  • the solid-liquid separation method includes at least one of centrifugation, static sedimentation, and filtration.
  • the washing includes at least one of water washing, absolute ethanol washing, and acetone washing.
  • the washing includes washing with water, washing with absolute ethanol, and washing with acetone in sequence. Therefore, water washing can remove unreacted inorganic water-soluble substances, and anhydrous ethanol washing and acetone washing can remove residual moisture in the solid, and use its advantage of fast evaporation to increase the speed of subsequent drying and avoid the drying of the solid product. harden.
  • the drying temperature is 60-90°C.
  • the drying method is negative pressure drying.
  • a bismuth-based negative electrode material prepared by the preparation method.
  • the chemical formula of the bismuth-based negative electrode material is BiO 2-x , where 0 ⁇ x ⁇ 2.
  • the bismuth-based negative electrode material provided by the present invention has a certain amount of oxygen vacancies, that is, it has a narrow band gap and higher activity at the same time. During charging and discharging, it can store more lithium ions, and the capacity is greatly improved. Big improvement. That is, compared with the traditional use of Bi or Bi 2 O 3 as the negative electrode material, the capacity is increased.
  • the bismuth-based negative electrode material inherits the special structure of bismuthate, especially sodium bismuthate. Specifically, it has a unique layered structure and [Bi-O] units, thereby being more It is beneficial to the insertion and extraction of lithium ions, so that the obtained product is more suitable for use in bismuth-based negative electrode materials.
  • the bismuth-based negative electrode material has a gram specific capacity ⁇ 1000 mAh/g.
  • the bismuth-based negative electrode material has a gram specific capacity ⁇ 1112 mAh/g.
  • test current of the gram specific capacity is ⁇ 100mA/g, and the test voltage is 0.01-3V (Vs Li/Li + ).
  • the bismuth-based negative electrode material has a sheet structure.
  • the sheet diameter of the sheet-like structure is 200 to 1000 nm.
  • oxygen defects exist in the bismuth-based negative electrode material.
  • the valence states of bismuth in the bismuth-based negative electrode material include +3 valence and +5 valence.
  • a negative electrode piece is proposed, and the raw materials for preparing the negative electrode piece include the bismuth-based negative electrode material.
  • the raw materials for preparing the negative electrode sheet further include a conductive agent, a binder and a solvent.
  • the conductive agent includes at least one of carbon black, graphene, and acetylene black.
  • the binder includes PVDF (polyvinylidene fluoride).
  • the solvent includes NMP (N-methylpyrrolidone).
  • the ratio of the bismuth-based negative electrode material, conductive agent and binder is 70-96:1.5-15:1.5-15 in parts by weight.
  • the ratio of the bismuth-based negative electrode material, conductive agent and binder is approximately 75:15:10 in parts by weight.
  • a secondary battery includes the bismuth-based negative electrode material.
  • the secondary batteries all use the bismuth-based negative electrode materials mentioned in the previous embodiments, the secondary batteries have the Describe all the beneficial effects of bismuth-based negative electrode materials.
  • the secondary battery includes at least one of a lithium ion battery, a lithium metal battery, a sodium ion battery, and a sodium metal battery.
  • the secondary battery can be used in at least one field among power batteries, energy storage batteries and 3C batteries (small household electronics).
  • Figure 1 is the XRD pattern of the bismuth-based negative electrode material obtained in Example 1 of the present invention.
  • Figure 2 is an SEM image of the bismuth-based negative electrode material obtained in Example 1 of the present invention.
  • Figure 3 is an SEM image of the bismuth-based negative electrode material obtained in Example 1 of the present invention.
  • Figure 4 is a TEM image of the bismuth-based negative electrode material obtained in Example 1 of the present invention.
  • Figure 5 is an HR-TEM image of the bismuth-based negative electrode material obtained in Example 1 of the present invention.
  • Figure 6 is an SEM image of the bismuth-based negative electrode material obtained in Comparative Example 1 of the present invention.
  • Figure 7 is an SEM image of the bismuth-based negative electrode material obtained in Comparative Example 1 of the present invention.
  • Figure 8 is an SEM image of the bismuth-based negative electrode material obtained in Comparative Example 1 of the present invention.
  • Figure 9 is a charge-discharge curve of the bismuth-based negative electrode material obtained in Example 1 of the present invention.
  • Figure 10 is a cyclic voltammogram curve of the bismuth-based negative electrode material obtained in Example 1 of the present invention.
  • Figure 11 is a charge-discharge curve of the bismuth-based negative electrode material obtained in Comparative Example 1 of the present invention.
  • Figure 12 is a cyclic voltammetry curve of the bismuth-based negative electrode material obtained in Comparative Example 1 of the present invention.
  • a bismuth-based negative electrode material is prepared.
  • the specific steps are:
  • step S3 Pour the mixture obtained in step S2 into a polytetrafluoroethylene reactor with a capacity of 100 mL. After sealing, perform a hydrothermal reaction in a 180°C oven for 6 hours (the oven's constant temperature duration);
  • reaction kettle After the reaction kettle is cooled to room temperature (below 50°C, preferably not hot to the touch), centrifuge the resulting mixture to collect the solid components;
  • Wash the solid components first wash 3 times with deionized water, and then wash 3 times with absolute ethanol; after each washing, use centrifugation to separate the washing reagent and solid, and then proceed to the next step with the resulting solid washing;
  • This comparative example prepares a bismuth-based negative electrode material.
  • the specific difference from Example 1 is:
  • step S1 the preparation method of the adjustment reagent is: weigh 3.2g of NaOH, dissolve it in 20mL of deionized water, mix it and stir it at a rotation speed of 400rpm for 30min;
  • a negative electrode piece is prepared.
  • the specific steps are:
  • the active material conductive carbon black and binder (PVDF) were ground evenly in a mass ratio of 7.5:1.5:1, and then 3 mL of NMP ( N-methylpyrrolidone) was prepared into a slurry, then evenly coated on the copper foil, and placed in an 80°C blast drying oven to dry overnight to obtain a negative electrode piece.
  • PVDF conductive carbon black and binder
  • the negative electrode sheet obtained in Application Example 1 is used as raw material to prepare a button battery for testing.
  • the specific steps are:
  • the first aspect of this test example is to characterize the physical phase of the bismuth-based negative electrode material obtained in Example 1.
  • the specific characterization method is XRD testing.
  • the above diffraction peaks respectively correspond to the diffraction crystal planes of (111), (200), (220), (311), (222), (400), (331) and (420) of BiO 2-x ; in the XRD pattern No other impurity peaks appear, and the intensity of each diffraction peak is high (the half-peak width is small), indicating that the synthesized sample is pure phase BiO 2-x and has good crystallinity.
  • the specific map is shown in Figure 1.
  • the second aspect of this test example is to characterize the morphology of the bismuth-based negative electrode materials obtained in Example 1 and Comparative Example 1.
  • the specific characterization methods include scanning electron microscopy (SEM), ordinary transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR). -TEM), the results show:
  • the bismuth-based negative electrode material obtained in Example 1 has a flake structure, and the sheet diameter is mainly distributed between 200 and 1000 nm. At the same time, in the HR-TEM, it also shows clear and equally spaced lattice stripes, which further proves that the bismuth-based negative electrode material obtained in the present invention
  • the crystallization properties of the negative electrode material are good, which is consistent with the XRD pattern.
  • the specific morphology pictures are shown in Figures 2 to 5.
  • the morphology of the bismuth-based anode material obtained in Comparative Example 1 shows that part of the lamellar structure has poor crystallinity, and it is speculated that atoms may fall off, so its electrochemical performance may be inferior to that of the bismuth-based anode material obtained in Example 1.
  • the specific test patterns are shown in Figures 6 to 8.
  • the button battery obtained in Application Example 2 was tested to characterize the electrochemical performance of the bismuth-based anode material obtained in Example 1 and Comparative Example 1. Specifically, the charge and discharge curves of the first 5 weeks and the previous test were tested. 3-week cyclic voltammetry curve (CV chart), the results show:
  • the bismuth-based negative electrode material obtained in Example 1 has a discharge gram specific capacity as high as 1112mAh/g. It can be expected that if the structure and configuration of the battery are By optimizing the ratio, the gram specific capacity of the bismuth-based negative electrode material provided by the present invention will be higher than 1112mAh/g.
  • the specific test chart is shown in Figure 9. Under the same conditions, the gram specific capacity of the bismuth-based anode material obtained in Comparative Example 1 is approximately 960 mAh/g, which is significantly lower than that of the bismuth-based anode material obtained in Example 1.
  • the preparation method provided by the present invention can produce a sheet material with good crystallization properties.
  • the material When the material is used as an active material for the negative electrode of a secondary battery, it can exhibit excellent electrochemical properties. It is expected that the bismuth-based negative electrode material obtained by the present invention is expected to have broad application prospects in the fields of power batteries, energy storage batteries and 3C batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种铋系负极材料的制备方法及其应用,属于无机材料制备和纳米能源技术领域。本发明提供的铋系负极材料的制备方法,包括配制含铋酸盐的水溶液,并将其pH调整至11~13后,进行水热反应。上述制备方法制得的铋系负极材料能够有效提高所得铋系负极材料的电化学性能。本发明还提供了上述制备方法制得的铋系负极材料以及对应铋系负极材料的应用。

Description

一种铋系负极材料的制备方法及其应用 技术领域
本发明涉及无机材料制备和纳米能源技术领域,尤其是涉及一种铋系负极材料的制备方法及其应用。
背景技术
为了满足新能源汽车和便携式电子产品不断增长的需求,开发具有高功率密度和能量密度的储能设备是目前研发的重点方向之一。
氧化铋(Bi2O3)是一种重要的功能材料,由于其独特的特性(半导体带隙、高折射率、高介电常数、高氧导电性、电阻率、光电导率和光致发光等)而被深入研究,并被广泛应用于光电转换材料、高温超导材料、电子陶瓷材料、防火材料、核工程玻璃制造和核反应堆燃料等技术领域。由于氧化铋具有优异的电化学稳定性、较好的氧化还原可逆性,所以,氧化铋还被认为是一种潜在的二次电池电极材料。但当用于二次电池电极材料时,无论是单质铋还是Bi2O3的比容量都相对较低。
因此,有必要开发一种铋氧化物材料的制备方法,以通过简单、温和的制备条件,获取比容量大的铋系电极材料。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种铋系负极材料的制备方法,能够有效提高所得铋系负极材料的容量。
本发明还提供上述制备方法制得的铋系负极材料及其应用。
根据本发明的第一方面实施例,提出了一种铋系负极材料的制备方法,所述制备方法包括:
配制含铋酸盐的水溶液,并将其pH调整至11~13后,进行水热反应。
所述制备方法的机理如下:
铋酸盐在碱性条件下水热反应,过程中发生了结晶化,具体地,铋酸盐的阳离子脱出,剩余的BiO2 -转为BiO2-x,得到的铋系负极材料表面具有大量缺陷(氧空位)。
根据本发明实施例的制备方法,至少具有如下有益效果:
(1)具有缺陷的BiO2-x是由六边形组装的典型分层结构,它是一种高价含铋化合物,具 有较窄的带隙(1.67eV),对整个光谱具有良好的响应;而且,其具有优异的光催化活性(光电化学性质)和较好的稳定性,且还具有绿色环保、低毒、成本低且光催化性能高等优点。但是具有缺陷的BiO2-x鲜有被用作锂离子电池负极材料。
与Bi2O3相比,BiO2-x拥有氧空位,这些氧空位使其用于二次电池负极材料时,具有更高的能量密度、较大的化学扩散系数、较高的安全系数。
(2)本发明研究发现,BiO2-x的结晶程度、粒径和氧空位与水热反应体系的pH相关,且影响其作为负极材料时的储锂能力。
(3)本发明提供的制备方法工艺简单,利用水热法一步得出BiO2-x,操作简便,条件温和,可重复性好,且原材料绿色环保,低毒,成本低。
本发明通过控制pH为11~13,显著提升了所得产物的结晶程度,并提升了其储锂能力。
根据本发明的一些实施例,所述铋酸盐包括铋酸钠。与其他种类的铋酸盐相比,铋酸钠更有利于在碱性条件下生成缺氧的氧化铋,由此降低了所述制备方法进行的难度。
根据本发明的一些实施例,所述水溶液的配制方法包括将所述铋酸盐和水混合后进行加热搅拌。
根据本发明的一些实施例,所述加热搅拌的温度为60~80℃。
根据本发明的一些优选的实施例,所述加热搅拌的温度约为70℃。
根据本发明的一些实施例,所述加热搅拌的转速为200~800rpm。
根据本发明的一些优选的实施例,所述加热搅拌的转速约为400rpm。
根据本发明的一些实施例,所述加热搅拌的时长为30~50min。
根据本发明的一些优选的实施例,所述加热搅拌的时长约为30min。
根据本发明的一些实施例,所述加热搅拌所用的仪器包括磁力搅拌器和机械搅拌器(机械驱动浆叶)中的至少一种。
根据本发明的一些实施例,所述水溶液中铋酸盐的浓度约为0.1~0.2mol/L。
根据本发明的一些实施例,所述pH的调整试剂包括氢氧化钠水溶液和氢氧化钾水溶液中的至少一种。
优选地,所述pH的调整试剂选自氢氧化钠水溶液。
根据本发明的一些实施例,所述调整试剂的浓度约为3mol/L。由此,调整试剂的浓度较高,在调节pH的过程中不会严重影响所述铋酸盐的水溶液的浓度,进而不会影响所得铋系负极材料的性能。
根据本发明的一些实施例,所述调整试剂的配制方法包括:将氢氧化钠或氢氧化钾中的至少一种,与水混合后搅拌。
根据本发明的一些实施例,所述搅拌的转速为200~800rpm。
根据本发明的一些优选的实施例,所述搅拌的转速约为400rpm。
根据本发明的一些实施例,所述搅拌的时长为30~50min。
根据本发明的一些优选的实施例,所述搅拌的时长约为30min。
在上述搅拌的转速、时长以及温度条件下,所述水溶液和所述调整试剂中的溶质均可充分溶解,并生成质地均匀的分散体系,为后续水热反应生成质地、粒度均匀的铋系负极材料提供了基础。
但是上述搅拌方法、搅拌速度并不是唯一的方法,只要能将溶质充分溶解的方法均可。
根据本发明的一些实施例,所述pH的调整方法,包括将所述调整试剂和水溶液搅拌混合。
根据本发明的一些实施例,所述搅拌混合的转速为200~500rpm。
根据本发明的一些实施例,所述搅拌混合的时长≥30min。由此增加了传质速度,间接增加了所述水热反应的速度和均匀程度。
根据本发明的一些优选的实施例,调整后,所述水溶液的pH约为12。
根据本发明的一些实施例,所述水热反应的温度为180~200℃。
在上述温度范围内,有利于铋系负极材料的临界成核,并有助于提升其生长速率,还有助于提升其结晶程度和粒径均匀度。
根据本发明的一些实施例,所述水热反应的时长为4~12h。
根据本发明的一些实施例,所述水热反应的容器材质包括聚四氟乙烯。由此可避免容器对反应体系的污染,同时避免反应体系对容器的侵蚀。
根据本发明的一些实施例,所述制备方法还包括在所述水热反应后进行固液分离,并洗涤、干燥所得固体。
根据本发明的一些实施例,所述固液分离之前还包括将所述水热反应后的体系进行冷却。
根据本发明的一些实施例,所述冷却后的温度为室温(10~50℃)。由此,可避免在后续固液分离等操作中的损伤。
根据本发明的一些实施例,所述固液分离的方法包括离心、静置沉降和过滤中的至少一种。
根据本发明的一些实施例,所述洗涤包括水洗、无水乙醇洗和丙酮洗涤中的至少一种。
根据本发明的一些实施例,所述洗涤包括依次进行的水洗、无水乙醇洗和丙酮洗涤。由此,水洗可去除未反应完全的无机水溶物,无水乙醇洗和丙酮洗涤可去除固体中残留的水分,并利用其蒸发快的优点,提升后续干燥的速度,并避免干燥后固体产物的板结。
根据本发明的一些实施例,所述干燥的温度为60~90℃。
根据本发明的一些实施例,所述干燥的方法为负压干燥。
根据本发明的第二方面实施例,提供了一种所述制备方法制得的铋系负极材料,所述铋系负极材料的化学式为BiO2-x,其中0<x<2。
根据本发明实施例的铋系负极材料,至少具有如下有益效果:
根据化学式可知,本发明提供的铋系负极材料具有一定量的氧空位,即同时具备较窄的带隙和更高的活性,在充放电时,能储存锂离子的数量更多,容量得到很大的提升。即与传统的以Bi或Bi2O3作为负极材料时相比,提升了容量。
根据本发明的一些实施例,所述铋系负极材料继承了铋酸盐,特别是铋酸钠的特殊结构,具体地,拥有独特的层状结构和[Bi-O]单元,由此更有利于锂离子的嵌入和脱出,以使所得产物更适合用于铋系负极材料。
根据本发明的一些实施例,所述铋系负极材料的克比容量≥1000mAh/g。
根据本发明的一些优选的实施例,所述铋系负极材料的克比容量≥1112mAh/g。
所述克比容量的测试电流≤100mA/g,测试电压为0.01-3V(Vs Li/Li+)。
根据本发明的一些实施例,所述铋系负极材料具有片状结构。
根据本发明的一些实施例,所述片状结构的片径为200~1000nm。
根据本发明的一些实施例,所述铋系负极材料中存在氧缺陷。
根据本发明的一些实施例,所述铋系负极材料中铋的价态包括+3价和+5价。
根据本发明的第三方面实施例,提出了一种负极极片,所述负极极片的制备原料包括所述铋系负极材料。
根据本发明的一些实施例,所述负极极片的制备原料还包括导电剂、粘结剂和溶剂。
根据本发明的一些实施例,所述导电剂包括炭黑、石墨烯和乙炔黑中的至少一种。
根据本发明的一些实施例,所述粘结剂包括PVDF(聚偏氟乙烯)。
根据本发明的一些实施例,所述溶剂包括NMP(N-甲基吡咯烷酮)。
根据本发明的一些实施例,按重量份计,所述铋系负极材料、导电剂和粘结剂的比例为70~96:1.5~15:1.5~15。
根据本发明的一些优选的实施例,按重量份计,所述铋系负极材料、导电剂和粘结剂的比例约为75:15:10。
根据本发明的第四方面实施例,提供了一种二次电池,所述二次电池包括所述的铋系负极材料。
由于所述二次电池均引用了前述实施例提到的铋系负极材料,因此所述二次电池具有所 述铋系负极材料所有的有益效果。
根据本发明的一些实施例,所述二次电池包括锂离子电池、锂金属电池、钠离子电池和钠金属电池中的至少一种。
根据本发明的一些实施例,所述二次电池可用于动力电池、储能电池和3C电池(家用小电子)中的至少一个领域。
若无特殊说明,本发明中的“约”表示误差范围在±2%之间,例如约100表示的实际含义是100±2%×100。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明实施例1所得铋系负极材料的XRD图谱;
图2为本发明实施例1所得铋系负极材料的SEM图;
图3为本发明实施例1所得铋系负极材料的SEM图;
图4为本发明实施例1所得铋系负极材料的TEM图;
图5为本发明实施例1所得铋系负极材料的HR-TEM图;
图6为本发明对比例1所得铋系负极材料的SEM图;
图7为本发明对比例1所得铋系负极材料的SEM图;
图8为本发明对比例1所得铋系负极材料的SEM图;
图9为本发明实施例1所得铋系负极材料的充放电曲线图;
图10为本发明实施例1所得铋系负极材料的循环伏安曲线图;
图11为本发明对比例1所得铋系负极材料的充放电曲线图;
图12为本发明对比例1所得铋系负极材料的循环伏安曲线图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
在本发明的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
实施例1
本实施例制备了一种铋系负极材料,具体步骤为:
S1.首先称取2mmol NaBiO3与20mL去离子水混合,之后放置于磁力搅拌器上加热至70℃,并以400rpm的转速搅拌30min,得铋酸盐的水溶液;
称取2.4g的NaOH溶于20mL去离子水混合后于400rpm的转速搅拌30min,得pH的调整试剂;
S2.调整试剂倒入处于70℃的铋酸盐的水溶液中,以400rpm的转速搅拌30min后,测试pH值为12;
S3.将步骤S2所得混合物倒入容量为100mL的聚四氟乙烯反应釜中,密封后,在180℃烘箱内水热反应6h(烘箱的恒温时长);
S4.待反应釜冷却至室温后(50℃以下,以不烫手为宜),将所得混合物进行离心,收集固体成分;
对固体成分进行洗涤:先用去离子水洗涤3次,再用无水乙醇洗涤3次;其中,每次洗涤结束后,采用离心的方法将洗涤试剂和固体分离,然后将所得固体进行下一步的洗涤;
最终,将所得固体在80℃干燥24h(真空烘箱),得到BiO2-x
对比例1
本对比例制备了一种铋系负极材料,具体和实施例1的区别在于:
(1)步骤S1中,调整试剂的配制方法为:称取3.2g的NaOH溶于20mL去离子水混合后于400rpm的转速搅拌30min;
(2)步骤S2所得混合物的pH为14。
应用例1
本应用例制备了一种负极极片,具体步骤为:
以实施例1和对比例1所得铋系负极材料为活性材料,将活性材料与导电炭黑和粘结剂(PVDF)按质量比为7.5:1.5:1质量比研磨均匀后,加3mL NMP(N-甲基吡咯烷酮)调制成浆状,然后均匀涂在铜箔上,并置于80℃鼓风干燥箱中干燥过夜,得负极极片。
应用例2
本应用例以应用例1所得负极极片为原料,制备了用于测试的扣式电池,具体步骤为:
在无水无氧的手套箱中(水、氧含量<0.01PPm),将扣式电池正极壳开口朝上,平放于垫板上,应用例1所得负极极片放入正极壳的正中;然后用胶头滴管滴加2~3滴(每滴的量约为0.05mL)电解液,浸润负极极片表面,并夹取隔膜(celgard 2400film),覆盖负极极片;再次滴加2~3滴电解液,润湿隔膜表面;然后夹取金属锂片置于隔膜正中,盖上负极壳后密封,即得扣式电池,扣式电池以制备铋系负极材料的具体实施方式进行命名。
测试例
本测试例的第一方面,表征了实施例1所得铋系负极材料的物相,具体表征方法为XRD测试。
结果显示,实施例1所得铋系负极材料在2θ位于28.2°,32.6°,46.9°,55.6°,58.3°,68.5°,75.6°和77.9°均有比较明显的特征峰,且完全与BiO2-x标准卡片(JCPDS No.47-1057)一致。上述衍射峰分别对应于BiO2-x的(111)、(200)、(220)、(311)、(222)、(400)、(331)和(420)的衍射晶面;XRD图谱中没有其他的杂峰出现,各衍射峰强度高(半峰宽较小),表明所合成的样品为纯相BiO2-x且具有良好的结晶性。具体图谱如图1所示。
本测试例的第二方面,表征了实施例1和对比例1所得铋系负极材料的形貌,具体表征方法有扫描电镜(SEM)、普通透射电镜(TEM)和高分辨率透射电镜(HR-TEM),结果显示:
实施例1所得铋系负极材料具有片状结构,片径主要分布在200~1000nm,同时在HR-TEM中,还显示出清晰、等间距的晶格条纹,这进一步佐证了本发明所得铋系负极材料的结晶性能良好,这与XRD图谱相一致。具体形貌图片如图2~5所示。
对比例1所得铋系负极材料的形貌显示:部分片层结构结晶性不好,猜测有原子脱落的可能,因此其电化学性能可能劣于实施例1所得铋系负极材料。具体测试图谱如图6~8所示。
本测试例的第三方面,测试了应用例2所得扣式电池,以此表征实施例1和对比例1所得铋系负极材料的电化学性能,具体测试了前5周的充放电曲线以及前3周循环伏安曲线(CV图),结果显示:
当循环电压为0.01~3.0V,充放电电流密度为100mA g-1时,实施例1所得铋系负极材料的放电克比容量高达1112mAh/g,可以预期的是,若对电池的结构、配比进行优化,本发明提供的铋系负极材料的克比容量会高于1112mAh/g,具体测试图谱如图9所示。同等条件下,对比例1所得铋系负极材料的克比容量约为960mAh/g,显著低于实施例1所得铋系负极材料,这进一步佐证,参与水热反应时,混合体系的pH对所得铋系负极材料的电化学性能有明显影响,具体是通过影响结晶性能,进而影响电化学性能。具体测试图谱如图11所示。
实施例1所得铋系负极材料在0.01-3V电压窗口(Vs Li/Li+)下测试的CV测试结果显示, 在电压值为1.0V、1.7V和2.4V时出现了明显的氧化峰,而在电压值为0.5V、1.15V、1.35V和1.8V处出现了还原峰。这些氧化还原反应对应于锂离子的脱嵌,其反应机理如下:
BiO2-x+(5-2x)Li++(5-2x)e-→LiBi+(5-2x)Li2O;
LiBi+Li++e-→Li2Bi;
Li2Bi+Li++e-→Li3Bi;
Li2Bi+3Li++3e-→Li5Bi;
由上述机理可知,本发明提供的铋系负极材料BiO2-x的电化学储能行为与单质Bi类似,即在首圈放电过程中BiO2-x还原成Bi伴随着锂离子的逐步插入,随后在充电时又逐步脱出锂离子,与Bi2O3相比,能储存锂离子的数量更多,容量得到很大的提升。实施例1所得CV图谱如图10所示。
对比例1所得铋系负极材料的CV测试结果显示:在电压值为0.97V、1.8V和2.35V时出现了明显的氧化峰,而在电压值为0.18V、0.92V、1.16V和1.6V处出现了还原峰;由此可知,对比例所得铋系负极材料在充放电过程中出现了不可逆相变,因此作为负极材料的电化学性能较差。具体测试图谱如图12所示。
综上,本发明提供的制备方法可制得结晶性能良好的片状材料,该材料用作二次电池负极活性材料后,可发挥优异的电化学性能。可以预期的是,本发明所得的铋系负极材料有望在动力电池、储能电池和3C电池领域具有广阔的应用前景。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种铋系负极材料的制备方法,其特征在于,所述制备方法包括:
    配制含铋酸盐的水溶液,并将其pH调整至11~13后,进行水热反应。
  2. 根据权利要求1所述的制备方法,其特征在于,所述水热反应的温度为180~200℃。
  3. 根据权利要求1所述的制备方法,其特征在于,所述水热反应的时长为4~12h。
  4. 根据权利要求1所述的制备方法,其特征在于,所述铋酸盐包括铋酸钠。
  5. 根据权利要求1所述的制备方法,其特征在于,所述水溶液中铋酸盐的浓度为0.1~0.2mol/L。
  6. 根据权利要求1所述的制备方法,其特征在于,所述pH的调整试剂包括氢氧化钠水溶液和氢氧化钾水溶液中的至少一种。
  7. 根据权利要求1~6任一项所述的制备方法,其特征在于,所述制备方法还包括在所述水热反应后进行固液分离,并洗涤、干燥所得固体。
  8. 一种如权利要求1~7任一项所述制备方法制得的铋系负极材料,其特征在于,所述铋系负极材料的化学式为BiO2-x,其中0<x<2。
  9. 一种负极极片,其特征在于,所述负极极片的制备原料包括如权利要求8所述的铋系负极材料。
  10. 一种二次电池,其特征在于,包括如权利要求8所述的铋系负极材料或如权利要求9所述的负极极片。
PCT/CN2023/077689 2022-09-15 2023-02-22 一种铋系负极材料的制备方法及其应用 WO2024055521A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211121072.2A CN115477325B (zh) 2022-09-15 2022-09-15 一种铋系负极材料的制备方法及其应用
CN202211121072.2 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024055521A1 true WO2024055521A1 (zh) 2024-03-21

Family

ID=84423837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077689 WO2024055521A1 (zh) 2022-09-15 2023-02-22 一种铋系负极材料的制备方法及其应用

Country Status (3)

Country Link
CN (1) CN115477325B (zh)
FR (1) FR3139949A1 (zh)
WO (1) WO2024055521A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477325B (zh) * 2022-09-15 2024-02-09 广东邦普循环科技有限公司 一种铋系负极材料的制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229498A (zh) * 2016-08-04 2016-12-14 武汉理工大学 一种适用于水系金属离子电池的负极材料及其制备方法
CN111035761A (zh) * 2019-12-13 2020-04-21 国家纳米科学中心 一种用于放疗的增敏剂及其制备方法和应用
CN113731396A (zh) * 2021-09-13 2021-12-03 江西科技师范大学 一种富氧缺陷Bi2O4光催化材料及其制备方法和用途
CN115057473A (zh) * 2022-06-13 2022-09-16 哈尔滨工程大学 一种氧空位型超薄氧化铋纳米片的制备方法及利用其低频超声诱导产生热效应的方法
CN115304099A (zh) * 2022-03-31 2022-11-08 中国科学院化学研究所 表面电子定域的氧化铋纳米片及其在电催化二氧化碳还原和锌-二氧化碳电池中的应用
CN115477325A (zh) * 2022-09-15 2022-12-16 广东邦普循环科技有限公司 一种铋系负极材料的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229498A (zh) * 2016-08-04 2016-12-14 武汉理工大学 一种适用于水系金属离子电池的负极材料及其制备方法
CN111035761A (zh) * 2019-12-13 2020-04-21 国家纳米科学中心 一种用于放疗的增敏剂及其制备方法和应用
CN114712500A (zh) * 2019-12-13 2022-07-08 国家纳米科学中心 一种用于放疗的增敏剂及其应用
CN113731396A (zh) * 2021-09-13 2021-12-03 江西科技师范大学 一种富氧缺陷Bi2O4光催化材料及其制备方法和用途
CN115304099A (zh) * 2022-03-31 2022-11-08 中国科学院化学研究所 表面电子定域的氧化铋纳米片及其在电催化二氧化碳还原和锌-二氧化碳电池中的应用
CN115057473A (zh) * 2022-06-13 2022-09-16 哈尔滨工程大学 一种氧空位型超薄氧化铋纳米片的制备方法及利用其低频超声诱导产生热效应的方法
CN115477325A (zh) * 2022-09-15 2022-12-16 广东邦普循环科技有限公司 一种铋系负极材料的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGLI SUN ET AL.: "Vacany-rich BiO2-x as a highly-efficient persulfate activator under near infrared irradiation for bacterial inactivation and mechanism study", JOURNAL OF HAZARDOUS MATERIALS, vol. 431, 18 February 2022 (2022-02-18), XP087007154, DOI: 10.1016/j.jhazmat.2022.128510 *
LI LINNA; CHEN TIANHUA; LIU ZHANGSHENG; FENG PEIZHONG: "Novel BiO2−xphotocatalyst: Typical hierarchical architecture and commendable activity", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 212, 1 January 1900 (1900-01-01), AMSTERDAM, NL , pages 267 - 270, XP085282294, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2017.10.078 *
WEI CHANGHAO, GUO SIGUANG; MA WEN; MEI SHIXIONG; XIANG BEN; GAO BIAO: "Recent Progress of Bismuth-Based Electrode Materials for Advanced Sodium Ion Batteries Anode", CHINESE JOURNAL OF RARE METALS, CN, vol. 45, no. 5, 31 May 2021 (2021-05-31), CN , pages 611 - 631, XP093146573, ISSN: 0258-7076, DOI: 10.13373/j.cnki.cjrm.XY20070021 *

Also Published As

Publication number Publication date
CN115477325B (zh) 2024-02-09
FR3139949A1 (fr) 2024-03-22
CN115477325A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
CN110589791B (zh) 一种锡掺杂焦磷酸钛的制备方法
CN112645390B (zh) 一种具有包覆结构的钴酸锂前驱体、其制备方法及用途
CN109888247B (zh) 一种锂离子电池用钛酸锌锂/碳纳米复合负极材料的制备方法
Hao et al. Synthesis and characterization of LiFePO4 coating with aluminum doped zinc oxide
CN114520323A (zh) 一种双策略改性层状氧化物钠离子电池正极材料及其制备方法和应用
CN101284655A (zh) 类石墨结构的锂离子电池负极材料及其制备方法
WO2024055521A1 (zh) 一种铋系负极材料的制备方法及其应用
CN109037632A (zh) 一种纳米钛酸锂复合材料及其制备方法、锂离子电池
CN112928246A (zh) 一种复合材料、其制备方法及应用
CN100483809C (zh) 一种锂离子电池正极材料超细LiFePO4/C的制备方法
CN108217725B (zh) 一种水合碱式焦钒酸锌(Zn3V2O7(OH)2·2H2O)材料的制备方法及应用
CN113644274A (zh) 一种o2型锂离子电池正极材料及其制备方法与应用
CN113772718A (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
WO2019104948A1 (zh) 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池
WO2022032749A1 (zh) 一种三维棒状钛酸钾材料的制备方法
CN115050944B (zh) 一种三维纳米花结构的复合材料及其制备方法和应用
CN1254872C (zh) 锂离子电池正极材料层状锰酸锂的氧化—插层制备方法
CN103247801A (zh) 一种高导电率磷酸铁锂正极材料的制备方法
CN115714172A (zh) 空心石墨烯@iva族氧化物复合材料的制备方法及其产品和应用
Xia et al. Influence of complexing agents on the structure and electrochemical properties of LiNi0. 80Co0. 15Al0. 05O2 cathode synthesized by sol-gel method: a comparative study
Gu et al. Carbon coating with oleic acid on Li4Ti5O12
Yang et al. Fast preparation of LiFePO4 nanoparticles for lithium batteries by microwave-assisted hydrothermal method
CN114229921A (zh) Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN113707865A (zh) 一种高电压高倍率型复合正极材料及其制备方法和应用
CN112520787A (zh) 一种β相偏钒酸钠的溶液制备方法及其在锂离子电池的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864264

Country of ref document: EP

Kind code of ref document: A1