WO2024055269A1 - 一种高速电机用无取向硅钢及其制备方法 - Google Patents

一种高速电机用无取向硅钢及其制备方法 Download PDF

Info

Publication number
WO2024055269A1
WO2024055269A1 PCT/CN2022/119212 CN2022119212W WO2024055269A1 WO 2024055269 A1 WO2024055269 A1 WO 2024055269A1 CN 2022119212 W CN2022119212 W CN 2022119212W WO 2024055269 A1 WO2024055269 A1 WO 2024055269A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon steel
oriented silicon
rolling
speed motors
thickness
Prior art date
Application number
PCT/CN2022/119212
Other languages
English (en)
French (fr)
Inventor
岳重祥
兰昊天
胡显军
朱赫男
Original Assignee
张家港扬子江冷轧板有限公司
江苏省沙钢钢铁研究院有限公司
江苏沙钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张家港扬子江冷轧板有限公司, 江苏省沙钢钢铁研究院有限公司, 江苏沙钢集团有限公司 filed Critical 张家港扬子江冷轧板有限公司
Publication of WO2024055269A1 publication Critical patent/WO2024055269A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present application relates to the technical field of non-oriented silicon steel, and specifically to a non-oriented silicon steel for high-speed motors and a preparation method thereof.
  • High-speed motors usually refer to motors with a speed exceeding 10,000r/min.
  • High-speed motors have significant advantages such as high speed, relatively small size, high power density, and high efficiency. They are widely used in centrifugal compressors of air conditioners and refrigerators, energy storage flywheels, high-speed grinders, and many other applications. They are also used in electric vehicles and distributed power generation. The system has broad application prospects. It has become one of the research hotspots in the international electrotechnical field.
  • the main characteristics of high-speed motors are high rotor speed, stator winding current and high magnetic flux frequency in the core.
  • the centrifugal force on the motor rotor is proportional to the square of the linear speed. Since the speed of high-speed motors exceeds 10,000 r/min, the rotor core is required to be made of non-oriented silicon steel with high mechanical strength. At the same time, in order to meet the technical indicators of high speeds, the volume of high-speed motors is much smaller than that of normal-speed motors of the same power.
  • the iron core is required to be made of non-oriented silicon steel with high magnetic induction. In short, in order to achieve the high speed, small size and high efficiency control requirements of high-speed motors, non-oriented silicon steel as the core material of its core should have higher strength, lower high-frequency iron loss P 1.0/1000 and higher. High magnetic induction.
  • the Chinese patent publication number CN111471927A discloses a high magnetic induction non-oriented silicon steel for automobile generators and a preparation method thereof.
  • the non-oriented silicon steel includes the following chemical components in weight percentage: Si 0.60-1.60%, Mn 0.10 ⁇ 0.65%, P 0.040 ⁇ 0.100%, Als ⁇ 0.0080%, Sn 0.01 ⁇ 0.10%, C+S+O+N+Ti ⁇ 100ppm, and the content of each element is ⁇ 25ppm, the remaining components are Fe and unavoidable impurity elements.
  • the magnetic properties of the final product meet the iron loss P 1.5/50 ⁇ 4.50W/kg, magnetic induction B 5000 ⁇ 1.74T; the mechanical properties meet the Vickers microhardness HV1 in the range of 110 to 120, extending Rate A50 ⁇ 40%.
  • Chinese patent publication number CN 107964631 B discloses a non-oriented silicon steel for high-speed motor rotors with a yield strength of ⁇ 500MPa. Its chemical composition in wt% is: Si: 4.12 ⁇ 4.5%, Al: 1.62 ⁇ 2.0% , Mn: 0.5 ⁇ 2.0, N ⁇ 0.005%, S ⁇ 0.002%, C ⁇ 0.003%, P ⁇ 0.05%, Cu ⁇ 0.05%, Ti+Nb+V+Zr ⁇ 0.01%.
  • Production methods converter smelting; RH vacuum refining; heating of the slab; rough rolling and then finishing rolling; coiling; pickling; cold rolling; annealing.
  • the yield strength of the non-oriented silicon steel for high-speed motor rotors disclosed in this application is not less than 500MPa, and the iron loss of the finished product for thicknesses of 0.35mm and below is P 1.0/400 ⁇ 18W/kg.
  • the Chinese patent publication number is CN 107974620 B.
  • the patent document discloses a non-oriented silicon steel for high-speed rotors with a yield strength of 600MPa. Its chemical composition in wt% is: C 0.001 ⁇ 0.003%, Si 2.6 ⁇ 3.4%, Mn 0.20 ⁇ 0.60 %, P ⁇ 0.005%, S ⁇ 0.005%, Als 0.75 ⁇ 0.95%, N 0.002 ⁇ 0.006%, Nb 0.053 ⁇ 0.20%.
  • Production steps smelting in a converter and casting into a billet; heating of the continuous casting billet; conventional rough rolling and finish rolling; normalization; cold rolling after pickling; continuous annealing.
  • the finished product of non-oriented silicon steel with a thickness not exceeding 0.35mm has a yield strength of ⁇ 600MPa, a tensile strength of ⁇ 700MPa, P 1.0/400 ⁇ 35W/kg, and B 5000 ⁇ 1.60T.
  • non-oriented silicon steel for ordinary motors provided by the above patents CN111471927A, CN 107964631 B and 107974620 B can meet the requirements of high-speed motors in terms of mechanical strength and magnetic induction, they only focus on the iron loss under the frequency condition of 50Hz to 400Hz.
  • the iron loss of non-oriented silicon steel includes hysteresis loss, eddy current loss and abnormal loss. Since abnormal losses account for a small proportion of iron losses, hysteresis losses and eddy current losses are generally focused on.
  • Hysteresis loss Ph k h *f*B 2
  • eddy current loss P e k e *f 2 *B 2 .
  • hysteresis loss P h is proportional to f
  • eddy current loss P e is proportional to f 2 . Therefore, as the frequency increases, the eddy current loss in the iron loss increases significantly.
  • hysteresis loss accounts for the majority of the iron loss; at high frequencies ( ⁇ 1000Hz), eddy current losses account for the majority of the iron loss.
  • iron loss composition under high-frequency and low-frequency conditions, it is difficult for non-oriented silicon steel with good magnetic properties under low-frequency conditions to ensure that it still has good magnetic properties under high-frequency conditions. That is, the non-oriented silicon steel and the production method described in the above patent are difficult to It meets the use requirements of high-frequency iron loss P 1.0/1000 for non-oriented silicon steel for high-speed motors, but has the disadvantage of high iron loss at high frequencies.
  • the Chinese patent publication number is CN 104480386B.
  • the patent document discloses a 0.2mm thick non-oriented silicon steel for high-speed motors. Its composition and wt% are: C 0.001 ⁇ 0.025%, Si 2.6 ⁇ 3.0%, Al 0.25 ⁇ 0.55%, Mn 0.10 ⁇ 0.30%, P ⁇ 0.015%, S 0.001 ⁇ 0.0025%, N 0.001 ⁇ 0.0025%.
  • the Chinese patent publication number is CN 112538592 B.
  • the patent document discloses a non-oriented silicon steel for high-speed motors with a frequency of ⁇ 10000Hz. Its composition and wt% are: C ⁇ 0.003%, Si 2.8 ⁇ 3.5%, Mn 0.05 ⁇ 1.0%, P ⁇ 0.0015%, N ⁇ 0.0008%, Al 0.75 ⁇ 1.5%, S ⁇ 0.0009%, Sb 0.001 ⁇ 0.1%, Sn 0.001 ⁇ 0.1%, and satisfy Sb+Sn at 0.001 ⁇ 0.1%; steps: smelting and pouring into Billet; the cast billet is heated and kept hot, then hot rolled and coiled; normalized, kept warm, pickled and coiled; the first cold rolling; the first continuous annealing; the second cold rolling; the second continuous annealing; the third Three times of cold rolling; continuous annealing of the finished product; slow cooling, insulation coating and curling.
  • This application achieves excellent magnetic properties at a thickness of 0.02 to 0.15mm, that is,
  • Chinese patent documents with publication numbers CN 104480386 B and CN 112538592 B respectively disclose a non-oriented silicon steel for high-speed motors with current frequencies of 1000Hz and 10000Hz.
  • the production process is complex and the cost is high.
  • the Chinese patent publication number is CN 104480386 B.
  • the patent document discloses a 0.2mm thick non-oriented silicon steel for high-speed motors. Its production process adopts secondary cold rolling + secondary annealing; while the Chinese patent publication number is CN 112538592 B.
  • the patent document discloses A non-oriented silicon steel for high-speed motors with a frequency of ⁇ 10,000Hz is developed. Its production process includes three cold rolling + three annealings.
  • the technical problem to be solved by this application is to overcome the existing defects in the existing technology of non-oriented silicon steel for high-speed motors, such as complex production processes or high iron losses at high frequencies, thereby providing a non-oriented silicon steel for high-speed motors and a preparation method thereof. .
  • this application provides a non-oriented silicon steel for high-speed motors.
  • Its chemical composition in mass percentage is: C ⁇ 0.0020%, S ⁇ 0.0010%, N ⁇ 0.0030%, Si: 3.0 ⁇ 3.4%, Al: 0.80 ⁇ 1.0%, Mn: 0.2 ⁇ 0.4%, P ⁇ 0.01%, Sn+Sb ⁇ 0.004%, Nb ⁇ 0.005%, V ⁇ 0.005%, Ti ⁇ 0.005%, Mo ⁇ 0.005%, Cr ⁇ 0.05%, Ni ⁇ 0.05%, Cu ⁇ 0.05%, the others are Fe and inevitable inclusions; among them, 0 ⁇ C+S+N ⁇ 0.0050%; the thickness of the finished product is 0.20-0.30mm, and the grain size of the finished product is 80-100 ⁇ m.
  • the yield strength of the non-oriented silicon steel for high-speed motors is ⁇ 550MPa, the magnetic induction B 5000 ⁇ 1.65, the high-frequency iron loss P 1.0/1000 ⁇ 45W/kg at a thickness of 0.30mm, and the high-frequency iron loss P at a thickness of 0.25mm.
  • C, S and N are all harmful elements in non-oriented silicon steel. Increased C content results in high iron loss and low magnetic induction; high C can also cause magnetic aging problems, and the lower the content, the better. S and Mn form fine MnS, and N and Al form fine AlN, which not only hinders the growth of grains during annealing, but also directly hinders domain wall movement and increases hysteresis loss.
  • Non-oriented silicon steel generally adopts vacuum refining. It is not difficult to control C below 0.002% and N below 0.003%. Generally, the S content of medium and low-grade non-oriented silicon steel is controlled below 0.0030%. If the S content continues to be reduced, the cost will increase.
  • Si 3.0 ⁇ 3.4%, Al 0.80 ⁇ 1.0% Both Si and Al are effective additive elements that increase resistivity, reduce iron loss, and increase strength.
  • the difficulty of rolling steel increases. Edge cracks are prone to occur during hot rolling and strip breakage occurs during cold rolling. Especially when the Si content is greater than 3.5%, the difficulty of rolling increases significantly.
  • the Si and Al content increase, and the magnetic induction of the steel plate decreases.
  • the Si content is controlled at 3.0 ⁇ 3.4%
  • the Al content is controlled at 0.80 ⁇ 1.0%, which reduces high-frequency iron loss, increases the strength of the steel plate, and significantly reduces the O content in the molten steel, creating conditions for ultra-low S smelting.
  • the cast slab With the control of chemical composition (P, Sn+Sb), the cast slab is naturally cooled to 400 ⁇ 500°C, then heated to 1080 ⁇ 1100°C at a heating rate of no more than 10°C/min, and then kept warm for 0.5 ⁇ 1.0h before reheating.
  • Rolling, low temperature normalization of 830-870°C and measures to preheat the steel plate to 100-200°C before cold rolling can achieve stable production without edge cracks in hot rolling and stable production at high reduction rates in cold rolling, with a low strip breakage rate in cold rolling at 0.5%.
  • the finished product has a high magnetic induction.
  • Mn 0.2 ⁇ 0.4% Adding an appropriate amount of Mn is beneficial to improving the magnetic properties of the steel plate and improving the strength of the steel plate; Mn can inhibit the thermal brittleness caused by S and easily form coarse MnS precipitates with S, thereby reducing the iron loss of the steel plate.
  • the price of Mn alloy is relatively high.
  • the Mn content in this application is controlled at 0.2 to 0.4%. Since the S content in this application is ⁇ 0.0010%, Mn/S is relatively high, which can promote the precipitation and growth of MnS, which is beneficial to the magnetic properties.
  • P has little effect on magnetism. Increasing the P content can effectively improve the strength of the steel plate. However, for high-grade non-oriented silicon steel, when the P content increases, the difficulty of cold rolling production increases significantly, and strip breakage is prone to occur during the rolling process. .
  • the control idea of this application is to adopt the design of high Si and high Al composition and the thin specification design of the finished product, and obtain high strength through fine grain control of the finished product; the thickness of the finished product is obtained through one cold rolling, so P ⁇ 0.01% should be controlled to improve the rollability of the steel plate. properties and simplify the production process.
  • Sn+Sb ⁇ 0.004% Both Sn and Sb are grain boundary segregation elements. Adding Sn alone, adding Sb alone or adding Sn and Sb in combination in non-oriented silicon steel are all aimed at segregation of Sn and Sb at grain boundaries. , reducing the proportion of ⁇ 111 ⁇ unfavorable textures and improving the magnetic induction of the finished product. Especially in the production process of impermanent processes, the effect is more obvious. However, due to the grain boundary segregation behavior of Sn and Sb, the grain boundaries of the steel plate are embrittled, and the cold rolling is easy to break, making the production more difficult.
  • Nb ⁇ 0.005%, V ⁇ 0.005%, Ti ⁇ 0.005%, Mo ⁇ 0.005%, Cr ⁇ 0.05%, Ni ⁇ 0.05%, Cu ⁇ 0.05%: Nb, V, Ti, Mo, Cr, Ni, Cu will reduce
  • the small grain size of the finished non-oriented silicon steel results in a decrease in the magnetic properties of the non-oriented silicon steel under low-frequency conditions, including increased iron loss and reduced magnetic induction intensity.
  • the non-oriented silicon steel used in this application requires the finished product to have low iron content under high-frequency operating conditions. loss, it is necessary to reduce the eddy current loss by appropriately reducing the grain size.
  • the iron loss of non-oriented silicon steel includes hysteresis loss, eddy current loss and abnormal loss.
  • Hysteresis loss is a phenomenon in which inclusions, crystal defects, internal stress, crystal orientation and other factors in the material hinder the movement of domain walls during the magnetization and demagnetization processes of magnetic materials, and the change in magnetic flux is blocked, causing the magnetic induction intensity to lag behind the change in magnetic field intensity.
  • Eddy current loss is the energy loss caused by eddy current caused by the local electromotive force induced around the magnetic flux according to Faraday's electromagnetic induction law when the magnetic flux changes size or direction during the alternating magnetization process of magnetic materials.
  • Abnormal loss is the energy loss caused by the different magnetic domain structures when the material is magnetized, and it accounts for a small proportion of the iron loss.
  • Hysteresis loss Ph k h *f*B 2
  • eddy current loss P e k e *f 2 *B 2 .
  • hysteresis loss accounts for about 70%
  • eddy current loss accounts for about 30%. It can be seen from the formulas of hysteresis loss and eddy current loss that P h is proportional to f and P e is proportional to f 2.
  • the design concept of traditional non-oriented silicon steel under low frequency conditions, for non-oriented silicon steel with the same composition, due to the high proportion of hysteresis loss, the process design is generally required to be designed around the large grain size of the finished product. Because the grain boundaries will hinder the movement of domain walls, the grains will increase, the grain boundaries will decrease, the hysteresis loss will be less, and the iron loss will be low.
  • the large grain design of the finished product is beneficial to reducing low-frequency iron loss, but the strength of the steel plate decreases as the grain increases. That is, under low frequency conditions, low iron loss and high strength are contradictory for grain size control.
  • the grain size should be increased, and then the strength should be increased through other strengthening methods such as solid solution strengthening, precipitation strengthening and dislocation strengthening.
  • solid solution strengthening precipitation strengthening and dislocation strengthening.
  • adding Cu, Cr, Ni, Nb, V, Ti and other alloying elements in the composition design performing incomplete recrystallization annealing or secondary cold rolling in the process design; or a combination of the above two methods.
  • the design concept of the non-oriented silicon steel in this application under high-frequency conditions, for non-oriented silicon steel with the same composition, due to the high proportion of eddy current loss, the finished product grains no longer pursue large grains during process design because the grains become larger. Afterwards, the grain boundaries decrease and the magnetic domain movement speed increases, causing the magnetization to change rapidly, thus increasing the eddy current loss.
  • the eddy current loss which accounts for the largest proportion of high-frequency iron loss, can be reduced by reducing the grain size.
  • hysteresis loss will increase, the overall high-frequency iron loss will decrease.
  • the strength of the steel plate can be improved with the help of grain refinement. That is, under high-frequency conditions, for grain size control, low iron loss and high strength are organically unified. By controlling the grain size, fine grain strengthening and high-frequency low iron loss can be achieved at the same time.
  • This application also provides a method for preparing non-oriented silicon steel for high-speed motors, which includes smelting and casting into continuous casting billet, cooling and heating of continuous casting billet, hot rolling, normalizing, pickling, cold rolling, annealing and coating treatment .
  • the normalizing temperature is 830-870°C, and the holding time is 3-5 minutes; the cold pressing reduction rate is controlled at 89%-90%; the annealing temperature is 880-900°C, and the holding time is 120-150s.
  • a vacuum induction furnace is used for smelting, controlling 0 ⁇ C+S+N ⁇ 0.0050%, and casting into a continuous casting billet with a thickness of 200 ⁇ 250mm.
  • the step of cooling and heating the cast slab is to naturally cool the cast slab to 400-500°C, then heat it to 1080-1100°C at a heating rate of no more than 10°C/min, and then keep it warm for 0.5-1.0 hours.
  • the hot rolling includes 6 passes of rough rolling and 7 passes of finish rolling; and/or,
  • An intermediate billet with a thickness of 30 ⁇ 45mm is obtained through rough rolling, and a hot-rolled plate with a thickness of 2.0 ⁇ 3.0mm is obtained through finish rolling; and/or,
  • the finishing rolling temperature is 800-860°C
  • the coiling temperature is 600-660°C
  • the fluctuation range of finishing rolling temperature and coiling temperature is ⁇ 15°C
  • the total reduction rate of finishing rolling is 92.5-93.5%.
  • the steel plate is cooled to 80-150°C, and then shot blasting and pickling processes are performed.
  • hydrochloric acid can be used for pickling.
  • the temperature of the acid solution is 75-85°C, and the concentration of hydrochloric acid in the acid solution is 120-160g/L.
  • the steel plate is preheated to 100-200°C before cold rolling; and/or the recrystallized grain size after normalization is 60-80 ⁇ m, and the recrystallized structure volume ratio is 100%.
  • the chemical composition of the non-oriented silicon steel for high-speed motors provided by this application in terms of mass percentage is: C ⁇ 0.0020%, S ⁇ 0.0010%, N ⁇ 0.0030%, Si: 3.0 ⁇ 3.4%, Al: 0.80 ⁇ 1.0% , Mn: 0.2 ⁇ 0.4%, P ⁇ 0.01%, Sn+Sb ⁇ 0.004%, Nb ⁇ 0.005%, V ⁇ 0.005%, Ti ⁇ 0.005%, Mo ⁇ 0.005%, Cr ⁇ 0.05%, Ni ⁇ 0.05%, Cu ⁇ 0.05%, the rest is Fe and inevitable inclusions; among them, 0 ⁇ C+S+N ⁇ 0.0050%; the thickness of the finished product is 0.20-0.30mm, and the grain size of the finished product is 80-100 ⁇ m, through precise control of chemical composition and The control of finished product thickness and grain size improves strength while reducing high-frequency iron loss P 1.0/1000 .
  • the smelting cost is low, the production process is simple, and the production cost is low. It meets the application of high-speed motors with high rotation speed, small volume, and high efficiency. According to the requirements, there is no need to add additional alloy strengthening elements such as Cu, Cr, Ni, Nb, V, Ti, etc., nor to add texture control elements such as Sn, Sb, etc.
  • the non-oriented silicon steel for high-speed motors provided in this application has a finished product yield strength ⁇ 550MPa, a magnetic induction B 5000 ⁇ 1.65, a high-frequency iron loss P 1.0/1000 ⁇ 45W/kg when the thickness is 0.30mm, and a high-frequency iron loss when the thickness is 0.25mm. Loss P 1.0/1000 ⁇ 40W/kg, high frequency iron loss P 1.0/1000 ⁇ 35W/kg when thickness is 0.20mm; meeting the needs of the rapid development of high-speed motors in the future.
  • the preparation method of non-oriented silicon steel for high-speed motors includes smelting and casting into continuous casting billet, cooling and heating of continuous casting billet, hot rolling, normalizing, pickling, cold rolling, annealing and coating treatment,
  • the production process is short and the production efficiency is high.
  • the contradiction between high-frequency iron loss, magnetic induction and strength is reconciled with the help of resistivity control, inclusion control, texture control and grain size control, while achieving high strength. , high magnetic properties and excellent high-frequency magnetic properties.
  • the preparation method of non-oriented silicon steel for high-speed motors provided in this application avoids cracks in high-silicon steel cast slabs and ensures thermal stability by controlling the content of P, Sn, and Sb elements in the composition design, combined with controlling the temperature and heating rate of natural cooling of the cast slab. Rolling proceeds smoothly; by controlling the recrystallization grain size after normalization and preheating before cold rolling, high silicon steel can be cold rolled at a large reduction rate in one go, and finished products with a thickness of 0.20 to 0.30mm can be obtained through one annealing, and the production process is short. ,high productivity.
  • the preparation method of non-oriented silicon steel for high-speed motors provided in this application requires normalization at 830-870°C for 3-5 minutes and heating at low temperature for a longer period of time to achieve complete recrystallization of the hot-rolled plate and avoid excessive grain growth. Large, making the grain size 60 ⁇ 80 ⁇ m.
  • the reason why the cold pressing reduction rate is controlled at 89%-90% is to increase the storage energy and nucleation point, increase the annealing nucleation rate, and create conditions for precise and stable control of the grain size of the finished product during the annealing process. Combined with annealing at 880-900°C for 120-150 seconds, the control of the above three process conditions combined with precise control of chemical composition ensures complete recrystallization and controls the grain size of the finished product to 80-100 ⁇ m.
  • Embodiments 1 to 8 respectively provide a kind of non-oriented silicon steel for high-speed motors.
  • the chemical composition is as shown in Table 1 in terms of mass percentage, and the rest is Fe and inevitable inclusions; and, the non-oriented silicon steel for high-speed motors prepared in each embodiment is Silicon steel is specifically a steel plate with the thickness shown in Table 1.
  • step (2) Stack the continuous casting billet obtained in step (1), and after naturally cooling to 450°C, send it to the heating furnace, heat it at a heating rate of 5°C/min and then keep it warm.
  • the heating temperature and holding time are as shown in Table 2 Show.
  • step (2) Carry out rough rolling and finish rolling on the heated continuous cast billet in step (2).
  • the rough rolling adopts the 1+5 mode, and the intermediate billet is obtained through six passes of rolling; then, 7 passes of finish rolling and coiling are performed to obtain the hot rolled billet.
  • Rolled plate coils The thickness of the intermediate billet obtained by rough rolling, the final rolling temperature of finishing rolling, the total reduction rate of the finishing rolling process, the thickness of the obtained hot-rolled plate and the coiling temperature are shown in Table 2.
  • step (4) The normalized pickled steel plate obtained in step (4) was preheated and then cold rolled.
  • the preheating temperature, thickness before rolling, thickness after rolling, and cold rolling reduction ratio were shown in Table 4.
  • Example 1 Normalized temperature(°C) Normalization time (s) Volume proportion of recrystallized tissue (%) Recrystallized grain size ( ⁇ m)
  • Example 1 852 252 100 70
  • Example 2 848 252 100
  • Example 3 853 252 100
  • Example 4 856 210 100
  • Example 5 850 210 100
  • Example 6 852 210 100
  • Example 7 846 252 100
  • Example 865 180 100 76
  • Comparative Examples 1 to 8 each provide a non-oriented silicon steel, the chemical composition of which is shown in Table 5 in terms of mass percentage; and the non-oriented silicon steel prepared in each comparative example is specifically a steel plate with a thickness shown in Table 5.
  • Comparative Examples 4 to 6 are based on Comparative Examples 1 to 3.
  • the contents of Nb and Ti are increased, and the strength of the steel plate is increased through the solid solution strengthening and fine grain strengthening effects of micro-alloying elements Nb and Ti.
  • Comparative Example 7 increasing the Si content during component design is beyond the scope of this application, and the strip is prone to breakage during cold rolling. Therefore, in Comparative Example 8, the thickness of the finished product is increased to 0.35mm based on Comparative Example 7 to reduce the risk of strip breakage.
  • step (2) Stack the continuous casting slabs obtained in step (1), and after naturally cooling to 450°C, send them to the heating furnace, heat them at a heating rate of 5°C/min and then keep them warm.
  • the heating temperature and holding time are as shown in Table 6. Show.
  • step (2) Carry out rough rolling and finish rolling on the heated continuous cast billet in step (2).
  • the rough rolling adopts the 1+5 mode, and the intermediate billet is obtained through six passes of rolling; then, 7 passes of finish rolling and coiling are performed to obtain the hot rolled billet.
  • Rolled plate coils The thickness of the intermediate billet obtained by rough rolling, the final rolling temperature of finishing rolling, the total reduction rate of the finishing rolling process, the thickness of the obtained hot-rolled plate and the coiling temperature are shown in Table 6.
  • step (4) Preheat the normalized pickled steel plate obtained in step (4) and then perform cold rolling.
  • the preheating temperature, thickness before rolling, thickness after rolling, and cold rolling reduction ratio are as shown in the table. As shown in 8. In Comparative Example 7, the strip broke during the cold rolling process and the rolling was not completed.
  • the non-oriented silicon steel for high-speed motors using the embodiment of the present application not only has high strength and high magnetic induction, but also has low high-frequency iron loss P 1.0/1000 , and has low smelting cost.
  • the production process is simple and the production cost is low, which meets the application requirements of high-speed motors.
  • Comparative Examples 1 to 3 use similar chemical compositions to Examples 1 to 3, and obtain large grains of the finished product by controlling the normalizing temperature, holding time, cold pressing reduction rate, annealing temperature and holding time. However, the strength of the finished product is significantly lower than that of Examples 1 to 3, and the high-frequency iron loss P 1.0/1000 of the same finished product thickness is significantly higher than that of Examples 1 to 3.
  • Comparative Examples 4 to 6 are based on Comparative Examples 1 to 3.
  • the contents of Nb and Ti are increased.
  • the strength of the steel plate is slightly increased.
  • the test results show that the grain size is smaller than Comparative Examples 1-3 and the strength is higher than Comparative Examples 1-3.
  • Comparative Examples 4 to 6 have the same finished product thickness, low strength, high iron loss, low magnetic induction, and high alloy cost.
  • Comparative Example 8 increases the thickness of the finished product to 0.35mm based on Comparative Example 7. As the thickness of the steel plate increases, its resistivity decreases, causing the high-frequency iron loss of the finished product to be significantly higher than that of Examples 1 to 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本申请涉及无取向硅钢技术领域,具体提供了一种高速电机用无取向硅钢及其制备方法,该高速电机用无取向硅钢的化学成分如说明书所限定;其中,成品厚度为0.20-0.30mm,成品晶粒尺寸为80-100μm,所述的高速电机用无取向硅钢的制备方法,包括冶炼并铸成连铸坯、连铸坯冷却与加热、热轧、常化、酸洗、冷轧、退火和涂层处理,本申请通过化学成分和上述全流程的工艺设计,借助电阻率控制、夹杂物控制、织构控制和晶粒度控制等手段,在提高强度的同时降低了高频铁损P 1.0/1000,且冶炼成本低、生产工艺简单、生产成本低,满足高速电机高转速、小体积、高效率的应用要求。

Description

一种高速电机用无取向硅钢及其制备方法
相关申请的交叉引用
本申请要求在2022年9月13日提交中国国家知识产权局、申请号为202211107301.5、发明名称为“一种高速电机用无取向硅钢及其制备方法”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及无取向硅钢技术领域,具体涉及一种高速电机用无取向硅钢及其制备方法。
背景技术
高速电机通常是指转速超过10000r/min的电机。高速电机具有转速高、相对尺寸小、功率密度大、效率高等显著优点,在空调和冰箱的离心式压缩机、储能飞轮、高速磨床等诸多场合具有较多应用,在电动汽车、分布式发电系统中具有广阔的应用前景。目前已成为国际电工领域的研究热点之一。
高速电机的主要特点是转子速度高、定子绕组电流和铁芯中的磁通频率高。电机转子上的离心力与线速度的平方成正比。由于高速电机转速超过10000r/min,故要求其转子铁芯用无取向硅钢具有很高的机械强度;同时,高速电机为满足高转速的技术指标,其体积远小于同等功率的常速电机,故要求其铁芯用无取向硅钢具有较高的磁感。简而言之,为实现高速电机高转速、小体积、高效率控制要求,作为其铁芯核心材料的无取向硅钢应该具有较高的强度、较低的高频铁损P 1.0/1000及较高的磁感。
现有无取向硅钢生产技术绝大部分仅关注50Hz~400Hz频率条件下的铁损,仅有少量生产技术关注1000Hz及以上频率条件下的铁损,但生产工艺复杂,难以满足未来高速电机快速发展的需要。
例如,中国专利公开号为CN111471927A的专利文献公开了一种汽车 发电机用高磁感无取向硅钢及其制备方法,所述无取向硅钢包括以下重量百分比的化学成分:Si 0.60~1.60%、Mn 0.10~0.65%、P 0.040~0.100%、Als≤0.0080%、Sn 0.01~0.10%、C+S+O+N+Ti≤100ppm,且各元素含量均≤25ppm,其余成分为Fe及不可避免的杂质元素。通过成分和工艺设计优化,最终产品的磁性能满足,铁损P 1.5/50≤4.50W/kg,磁感B 5000≥1.74T;力学性能满足维氏显微硬度HV1在110~120范围,延伸率A50≥40%。
中国专利公开号为CN 107964631 B的专利文献公开了一种屈服强度≥500MPa的高速电机转子用无取向硅钢,其化学成分按wt%计为:Si:4.12~4.5%,Al:1.62~2.0%,Mn:0.5~2.0,N≤0.005%,S≤0.002%,C≤0.003%,P≤0.05%,Cu≤0.05%,Ti+Nb+V+Zr≤0.01%。生产方法:转炉冶炼;RH真空精炼;对铸坯加热;粗轧后精轧;卷取;酸洗;冷轧;退火。该申请公开的高速电机转子用无取向硅钢屈服强度不低于500MPa,对于0.35mm及以下厚度成品铁损为P 1.0/400≤18W/kg。
中国专利公开号为CN 107974620 B专利文献公开了一种屈服强度600MPa级高速转子用无取向硅钢,其化学成分按wt%计为:C 0.001~0.003%、Si 2.6~3.4%、Mn 0.20~0.60%、P≤0.005%、S≤0.005%、Als 0.75~0.95%、N 0.002~0.006%、Nb 0.053~0.20%。生产步骤:经转炉冶炼并浇铸成坯;对连铸坯加热;常规的粗轧及精轧;常化;酸洗后进行冷轧;连续退火。该申请公开无取向硅钢厚度不超过0.35mm的成品屈服强度≥600MPa,抗拉强度≥700MPa,P 1.0/400≤35W/kg,B 5000≥1.60T。
以上专利CN111471927A、CN 107964631 B和107974620 B提供的普通电机用无取向硅钢尽管在机械强度和磁感方面能够满足高速电机的要求,但仅关注50Hz~400Hz频率条件下的铁损。无取向硅钢的铁损包括磁滞损耗、涡流损耗和反常损耗三部分。由于反常损耗在铁损中占比较小,故一般重点关注磁滞损耗和涡流损耗。磁滞损耗P h=k h*f*B 2,涡流损耗P e=k e*f 2*B 2。从磁滞损耗和涡流损耗的公式可以看出,磁滞损耗P h与f成正比,涡流损耗P e与f 2成正比。所以,随着频率增加,铁损中涡流损耗大幅度增加。在低频(50Hz~400Hz)情况下,磁滞损耗占铁损的大部分比例;在高频(≥1000Hz)下,涡流损耗占铁损的大部分比例。显然,由于高频和低频条件下铁损组成的不同,低频条件下磁性能良好的无取向硅钢难以保证 高频下仍具有良好的磁性能,也即以上专利所述无取向硅钢及生产方法难以满足高速电机用无取向硅钢高频铁损P 1.0/1000的使用要求,存在高频率下的铁损较高的缺陷。
中国专利公开号为CN 104480386B专利文献公开了一种高速电机用0.2mm厚无取向硅钢,其组分及wt%为:C 0.001~0.025%、Si 2.6~3.0%、Al 0.25~0.55%、Mn 0.10~0.30%、P≤0.015%、S 0.001~0.0025%、N 0.001~0.0025%。生产步骤:用真空感应炉冶炼并铸成钢锭;开坯加热;经锻打后加热;热轧;常化;酸洗;第一次冷轧;中间退火;第二次冷轧;成品退火;按常规冷却、剪切、制样、磁性与机械性能测量。该申请在保证磁性能P 1.0/1000≤40w/kg,B 5000≥1.68T的前提下,兼顾机械性能屈强比在0.70~0.73,满足制造高速电机铁芯的使用要求。
中国专利公开号为CN 112538592 B专利文献公开了一种用于频率≥10000Hz高速电机的无取向硅钢,其组分及wt%:C≤0.003%、Si 2.8~3.5%、Mn 0.05~1.0%、P≤0.0015%、N≤0.0008%、Al 0.75~1.5%、S≤0.0009%、Sb 0.001~0.1%、Sn 0.001~0.1%,且满足Sb+Sn在0.001~0.1%;步骤:冶炼并浇注成坯;铸坯加热、保温后热轧,卷取;常化、保温、酸洗并卷取;第一次冷轧;第一次连续退火;第二次冷轧;第二次连续退火;第三次冷轧;成品连续退火;缓冷、涂敷绝缘层及卷曲。该申请在厚度0.02~0.15mm下,获得磁性能优异,即P 0.1/10000不超过15.5W/kg,P 0.1/400不超过9.5W/kg,B 5000不低于1.6T。
中国专利公开号为CN 104480386 B和CN 112538592 B的专利文献分别公开了一种电流频率为1000Hz和10000Hz的高速电机用无取向硅钢,但是生产工艺复杂,成本高。如中国专利公开号为CN 104480386 B专利文献公开了一种高速电机用0.2mm厚无取向硅钢,其生产工艺采用二次冷轧+二次退火;而中国专利公开号为CN 112538592 B专利文献公开了一种用于频率≥10000Hz高速电机的无取向硅钢,其生产工艺包括三次冷轧+三次退火。
可见,现有无取向硅钢生产技术绝大部分仅关注50Hz~400Hz频率条件下的铁损,仅有少量生产技术关注1000Hz及以上频率条件下的铁损,但生产工艺复杂,难以满足未来高速电机快速发展的需要。
发明内容
本申请要解决的技术问题在于克服现有技术中高速电机用无取向硅钢存在的生产工艺复杂或者高频率下的铁损较高的缺陷,从而提供一种高速电机用无取向硅钢及其制备方法。
为此,本申请提供了一种高速电机用无取向硅钢,其化学成分按质量百分数计为:C≤0.0020%、S≤0.0010%、N≤0.0030%、Si:3.0~3.4%、Al:0.80~1.0%、Mn:0.2~0.4%、P≤0.01%、Sn+Sb≤0.004%、Nb≤0.005%、V≤0.005%、Ti≤0.005%、Mo≤0.005%、Cr≤0.05%、Ni≤0.05%、Cu≤0.05%,其它为Fe及不可避免的夹杂;其中,0<C+S+N≤0.0050%;成品厚度为0.20-0.30mm,成品晶粒尺寸为80-100μm。
进一步地,所述高速电机用无取向硅钢的屈服强度≥550MPa,磁感B 5000≥1.65,0.30mm厚度时高频铁损P 1.0/1000≤45W/kg,0.25mm厚度时高频铁损P 1.0/1000≤40W/kg,0.20mm厚度时高频铁损P 1.0/1000≤35W/kg。
进一步地,4.8%≤Si+2Al≤5.2%。
本申请中各元素和工序的主要作用如下:
C≤0.0020%、S≤0.0010%、N≤0.0030%:在无取向硅钢中C、S、N均为有害元素。C含量增加,铁损高、磁感低;C高还可引起磁时效问题,其含量越低越好。S与Mn形成细小的MnS,N与Al形成细小的AlN,不仅阻碍退火时晶粒的长大,还直接阻碍畴壁移动,提高磁滞损耗。无取向硅钢一般采用真空精炼,控制C在0.002%以下,N在0.003%以下,难度不高。一般中低牌号无取向硅钢S含量控制在0.0030%以下,继续降低S含量,成本增加。但对本申请高速电机用高牌号无取向硅钢来说,由于Si含量控制在3.0~3.4%,Al含量控制在0.80~1.0%,钢液中O含量大幅降低。根据脱硫反应CaO+S=CaS+O,钢液中O含量降低后,脱硫难度降低。故本申请控制C在0.0020%以下,S在0.0010%以下,N在0.0030%以下,同时控制0<C+S+N≤0.0050%。有害元素C、S、N的控制,不仅降低了本申请无取向硅钢在高频运行时的磁滞损耗,还提高了磁感,减少了磁时效。
Si 3.0~3.4%、Al 0.80~1.0%:Si和Al均是提高电阻率、降低铁损、提高强度的有效添加元素。但Si、Al含量增加,轧钢难度增加,热轧过程易 出现边裂,冷轧过程易发生断带;特别是当Si含量大于3.5%后,轧制难度大幅度增加。同时Si、Al含量增加,钢板的磁感降低。本申请中Si含量控制在3.0~3.4%,Al含量控制在0.80~1.0%,降低高频铁损,提高钢板强度,同时使钢液中O含量大幅降低,为超低S冶炼创造条件。配合化学成分(P、Sn+Sb)控制、将铸坯自然冷却至400~500℃后,以不高于10℃/min的加热速度加热到1080~1100℃,然后保温0.5~1.0h再热轧、830-870℃的低温常化以及冷轧前将钢板预热至100-200℃的措施,可实现热轧无边裂稳定生产和冷轧大压下率稳定生产,冷轧断带率低于0.5%。并且,通过上述低温常化工艺,使得成品具有较高的磁感。
Mn 0.2~0.4%:适量添加Mn,对提高钢板的磁性能有利,同时可提高钢板强度;Mn可以抑制S引起的热脆性,易与S形成粗大的MnS析出物而使得钢板的铁损降低。Mn合金价格较高,基于成本考虑,本申请Mn含量控制在0.2~0.4%。由于本申请S含量≤0.0010%,Mn/S较高,可促进MnS的析出与长大,对磁性能有利。
P≤0.01%:P对磁性影响不大,提高P含量可有效提高钢板强度,但对高牌号无取向硅钢来说,P含量增加后,冷轧生产难度大幅增加,轧制过程易发生断带。本申请控制思想是采用高Si、高Al成分设计和成品薄规格设计,通过成品细晶控制,获得高强度;通过一次冷轧获得成品厚度,故应控制P≤0.01%,提高钢板的可轧性,简化生产工艺。
Sn+Sb≤0.004%:Sn和Sb均为晶界偏聚元素,在无取向硅钢中单独添加Sn、单独添加Sb或复合添加Sn和Sb,目的都是通过Sn和Sb在晶界的偏聚,减少{111}不利织构的比例,提高成品的磁感。特别是在无常化工序生产流程中,效果更为明显。但是由于Sn和Sb的晶界偏聚行为,导致钢板晶界脆化,冷轧易断带,生产难度增加。本申请在冷轧前,热轧卷经过常化处理,可显著降低成品{111}不利织构的比例,故成分设计时,不特意添加Sn和Sb,控制Sn+Sb≤0.004%,以确保钢板的可轧性,简化生产工艺。
Nb≤0.005%、V≤0.005%、Ti≤0.005%、Mo≤0.005%、Cr≤0.05%、Ni≤0.05%、Cu≤0.05%:Nb、V、Ti、Mo、Cr、Ni、Cu会减小无取向硅钢成品晶粒尺寸,导致低频条件下无取向硅钢的磁性能下降,包括铁损增大、磁感应强度降低;本申请高速电机用无取向硅钢要求成品在高频运行条件下具有低 铁损,需要通过适当减小晶粒尺寸,以减小涡流损耗。故本申请高速电机用无取向硅钢中适当含量Nb、V、Ti、Mo、Cr、Ni、Cu的存在,可减小无取向硅钢成品晶粒尺寸,不仅有利于提高强度,还有利于减小高频涡流损耗。但考虑到这些元素的合金价格较高,本申请不特意添加,仅适当放宽其控制要求,降低炼钢难度。控制Nb≤0.005%、V≤0.005%、Ti≤0.005%、Mo≤0.005%、Cr≤0.05%、Ni≤0.05%、Cu≤0.05%。
无取向硅钢的铁损包括磁滞损耗、涡流损耗和反常损耗三部分。磁滞损耗是磁性材料在磁化和反磁化过程中,由于材料中夹杂物、晶体缺陷、内应力和晶体位向等因素阻碍畴壁移动,磁通变化受阻,造成磁感应强度落后于磁场强度变化的磁滞现象而引起的能量损耗。涡流损耗是磁性材料在交变磁化过程中,在磁通改变大小或方向时,按照法拉第电磁感应法则,在磁通周围感生出局部电动势而引起涡电流所造成的能量损耗。也就是说磁壁移动时磁化迅速变化而产生涡流损耗,可按经典涡流损耗公式计算。反常损耗是材料磁化时由于磁畴结构不同而引起的能量损耗,在铁损中占比较小。
可见,无论是磁滞损耗、涡流损耗,还是反常损耗,均是磁性材料在磁化和反磁化过程中产生的能量损耗。由于反常损耗在铁损中占比较小,故一般重点关注磁滞损耗和涡流损耗。磁滞损耗P h=k h*f*B 2,涡流损耗P e=k e*f 2*B 2。在工频(50Hz)情况下,磁滞损耗约占70%、涡流损耗约占30%。从磁滞损耗和涡流损耗的公式可以看出,P h与f成正比,P e与f 2成正比,所以,随着频率增加,铁损中涡流损耗大幅度增加。在低频(50Hz~400Hz)情况下,磁滞损耗占铁损的大部分比例;在高频(≥1000Hz)下,涡流损耗占铁损的大部分比例。
由于低频和高频铁损组成的不同,本申请采用与传统无取向硅钢截然不同的的设计理念。
传统无取向硅钢的设计理念:低频条件下,对同一成分无取向硅钢来说,由于磁滞损耗占比较高,故工艺设计时一般要求围绕成品大晶粒设计。因为晶界会阻碍畴壁移动,晶粒增大,晶界减少,磁滞损耗较少,铁损低。成品大晶粒设计,有利于降低低频铁损,但晶粒增加后钢板强度降低。即低频条件下,对晶粒尺寸控制来说,低铁损和高强度是矛盾的。为降低铁 损,应增加晶粒尺寸,然后通过固溶强化、沉淀强化及位错强化等其它强化方式来提高强度。比如:在成分设计中添加Cu、Cr、Ni、Nb、V、Ti等合金元素;在工艺设计上进行不完全再结晶退火或二次冷轧;或者以上两种方式的组合。
本申请的无取向硅钢的设计理念:高频条件下,对同一成分无取向硅钢来说,由于涡流损耗占比较高,故工艺设计时成品晶粒不再追求大晶粒,因为晶粒变大后,晶界减少,磁畴移动速度增加,导致磁化迅速变化,从而增加了涡流损耗。也就是说,高频条件下,可以通过减小晶粒尺寸,减少占高频铁损最大比例的涡流损耗,虽然磁滞损耗会增加,但整体高频铁损降低。同时可借助晶粒细化,提高钢板强度。即高频条件下,对晶粒尺寸控制来说,低铁损和高强度是有机统一的,可以通过控制晶粒尺寸,同时实现细晶强化和高频低铁损。
本申请还提供了一种高速电机用无取向硅钢的制备方法,包括冶炼并铸成连铸坯、连铸坯冷却与加热、热轧、常化、酸洗、冷轧、退火和涂层处理。
进一步地,常化温度为830-870℃,保温时间为3-5min;冷压压下率控制在89%-90%;退火温度为880-900℃,保温时间为120-150s。
进一步地,采用真空感应炉进行冶炼,控制0<C+S+N≤0.0050%,并铸成厚度200~250mm连铸坯。
进一步地,所述铸坯冷却与加热步骤为,将铸坯自然冷却至400~500℃后,以不高于10℃/min的加热速度加热到1080~1100℃,然后保温0.5~1.0h。
进一步地,所述热轧包括6道次粗轧和7道次精轧工序;和/或,
通过粗轧获得厚度为30~45mm中间坯,通过精轧获得厚度为2.0~3.0mm的热轧板;和/或,
精轧终轧温度800~860℃,卷取温度600~660℃,精轧终轧温度和卷取温度的波动范围为±15℃,精轧的总压下率为92.5-93.5%。
进一步地,常化后将钢板冷却至80~150℃后,进行抛丸和酸洗工序。
可采用现有常规试剂酸洗,例如采用盐酸进行酸洗,酸液温度为75~85℃,酸液中盐酸的浓度为120~160g/L。
进一步地,冷轧前将钢板预热至100-200℃;和/或,常化后再结晶晶粒 尺寸为60~80μm,再结晶组织体积占比为100%。
本申请技术方案,具有如下优点:
1.本申请提供的高速电机用无取向硅钢,其化学成分按质量百分数计为:C≤0.0020%、S≤0.0010%、N≤0.0030%、Si:3.0~3.4%、Al:0.80~1.0%、Mn:0.2~0.4%、P≤0.01%、Sn+Sb≤0.004%、Nb≤0.005%、V≤0.005%、Ti≤0.005%、Mo≤0.005%、Cr≤0.05%、Ni≤0.05%、Cu≤0.05%,其它为Fe及不可避免的夹杂;其中,0<C+S+N≤0.0050%;成品厚度为0.20-0.30mm,成品晶粒尺寸为80-100μm,通过化学成分精确控制以及成品厚度和晶粒尺寸的控制在提高强度的同时降低了高频铁损P 1.0/1000,且冶炼成本低、生产工艺简单、生产成本低,满足高速电机高转速、小体积、高效率的应用要求,既不需要额外添加Cu、Cr、Ni、Nb、V、Ti等合金强化元素,又不需要添加Sn、Sb等织构控制元素。
2.本申请提供的高速电机用无取向硅钢,成品屈服强度≥550MPa,磁感B 5000≥1.65,0.30mm厚度时高频铁损P 1.0/1000≤45W/kg,0.25mm厚度时高频铁损P 1.0/1000≤40W/kg,0.20mm厚度时高频铁损P 1.0/1000≤35W/kg;满足未来高速电机快速发展的需要。
3.本申请提供的高速电机用无取向硅钢的制备方法,包括冶炼并铸成连铸坯、连铸坯冷却与加热、热轧、常化、酸洗、冷轧、退火和涂层处理,生产流程短,生产效率高。通过化学成分的控制和上述全流程工艺设计,借助电阻率控制、夹杂物控制、织构控制和晶粒度控制等手段调和高频铁损、磁感和强度之间的矛盾,同时实现高强度、高磁性能和优良的高频磁性能。
4.本申请提供的高速电机用无取向硅钢的制备方法,通过控制成分设计中P、Sn、Sb元素含量,结合控制铸坯自然冷却的温度和加热速度,避免高硅钢铸坯裂纹,确保热轧顺行;通过常化后再结晶晶粒尺寸的控制和冷轧轧前预热,实现高硅钢大压下率一次冷轧,通过一次退火即可获得厚度0.20~0.30mm成品,生产流程短,生产效率高。
5.本申请提供的高速电机用无取向硅钢的制备方法,在830-870℃下保温3-5min的常化,低温较长时间加热,既实现热轧板完全再结晶,又避免晶粒过大,使得晶粒尺寸为60~80μm。之所以控制冷压压下率在89%-90%, 提高储存能和形核点,增加退火形核率,为退火过程精确稳定控制成品晶粒尺寸创造条件。结合在880-900℃下保温120-150s的退火,上述三个工序条件的控制结合对化学成分精确控制确保实现完全再结晶,控制成品晶粒尺寸为80~100μm。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1~8分别提供一种高速电机用无取向硅钢,化学成分以质量百分比计如表1所示,其余为Fe及不可避免的夹杂;并且,各实施例制备得到的高速电机用无取向硅钢具体为如表1所示厚度的钢板。
表1
Figure PCTCN2022119212-appb-000001
本申请各实施例的高速电机用无取向硅钢均按照如下步骤生产:
(1)采用真空感应炉进行冶炼,控制0<C+S+N≤0.0050%,并铸成厚度220mm连铸坯;连铸坯的化学成分如表1所示;冶炼过程不特意添加Nb、V、Ti、Mo、Cr、Ni、Cu,但适当放宽其控制要求,控制Nb≤0.005%,V≤0.005%, Ti≤0.005%,Mo≤0.005%,Cr≤0.05%,Ni≤0.05%,Cu≤0.05%降低炼钢难度。
(2)将步骤(1)所得连铸坯堆垛,并自然冷却至450℃后,送入加热炉,以5℃/min的加热速度加热后进行保温,加热温度和保温时间如表2所示。
(3)将步骤(2)加热后的连铸坯进行粗轧和精轧,粗轧采用1+5模式,通过六道次轧制获得中间坯;然后进行7道次精轧和卷取得到热轧板卷。粗轧所得中间坯厚度、精轧终轧温度、精轧过程的总压下率、所得热轧板的厚度以及卷取温度如表2所示。
(4)将步骤(3)所得热轧卷板在纯干N 2气氛下进行常化,常化温度、常化时间如表3所示;常化后钢板冷却至100℃后,先进行抛丸,然后采用盐酸进行酸洗,酸液温度为80℃,酸液中盐酸的浓度为140g/L,酸洗液中Fe 2+的质量浓度控制在50±20g/L。对各个实施例的常化钢板进行金相组织检测,测量所得的再结晶组织体积占比、再结晶晶粒尺寸分别如表3所示;
(5)将步骤(4)所得常化酸洗钢板将常化酸洗后钢板进行预热,然后进行冷轧,预热温度、轧前厚度、轧后厚度、冷轧压下率分别如表4所示。
(6)将步骤(5)所得轧硬钢板在H 2和N 2混合气氛中进行连续退火,H 2含量为15%;退火温度和保温时间如表4所示。
(7)将步骤(6)所得钢板按常规方法进行涂层及精整。
表2
Figure PCTCN2022119212-appb-000002
表3
  常化温度(℃) 常化时间(s) 再结晶组织体积占比(%) 再结晶晶粒尺寸(μm)
实施例1 852 252 100 70
实施例2 848 252 100 72
实施例3 853 252 100 75
实施例4 856 210 100 75
实施例5 850 210 100 73
实施例6 852 210 100 70
实施例7 846 252 100 64
实施例8 865 180 100 76
表4
Figure PCTCN2022119212-appb-000003
对比例
对比例1~8分别提供一种无取向硅钢,化学成分以质量百分比计如表5所示;并且,各对比例制备得到的无取向硅钢具体为如表5所示厚度的钢板。
表5
Figure PCTCN2022119212-appb-000004
对比例1~8的无取向硅钢均按照低频无取向硅钢设计思路组织生产:
对比例1~3,通过控制常化温度和保温时间使得常化后再结晶晶粒尺寸较大,再结合冷压压下率、退火温度和保温时间的控制,获得成品大晶粒,具体工艺参数如表6~8所示;
对比例4~6在对比例1~3基础上,在成分设计时,增加Nb、Ti含量,通过微合金元素Nb、Ti的固溶强化和细晶强化效果,增加钢板强度。
对比例7在成分设计时增加Si含量超出本申请的范围,冷轧过程易断带,故对比例8在对比例7基础上增加成品厚度至0.35mm,降低断带风险。
对比例1~8的无取向硅钢生产步骤如下:
(1)采用真空感应炉进行冶炼,并铸成厚度220mm连铸坯;连铸坯的化学成分如表5所示。
(2)将步骤(1)所得连铸坯堆垛,并自然冷却至450℃后,送入加热炉,以5℃/min的加热速度加热后进行保温,加热温度和保温时间如表6所示。
(3)将步骤(2)加热后的连铸坯进行粗轧和精轧,粗轧采用1+5模式,通过六道次轧制获得中间坯;然后进行7道次精轧和卷取得到热轧板卷。粗轧所得中间坯厚度、精轧终轧温度、精轧过程的总压下率、所得热轧板的厚度以及卷取温度如表6所示。
(4)将步骤(3)所得热轧卷板在纯干N 2气氛下进行常化,常化温度、常化时间如表7所示;常化后钢板冷却至100℃后,先进行抛丸,然后采用盐酸进行酸洗,酸液温度为80℃,酸液中盐酸的浓度为140g/L,Fe 2+的质量浓度控制在50±20g/L。对各个对比例的常化钢板进行金相组织检测,测量所得的再结晶组织体积占比、再结晶晶粒尺寸分别如表7所示;
(5)将步骤(4)所得常化酸洗钢板将常化酸洗后钢板进行预热,然后进行冷轧,预热温度、轧前厚度、轧后厚度、冷轧压下率分别如表8所示。其中对比例7冷轧过程断带,未完成轧制。
(6)将步骤(5)所得轧硬钢板在H 2和N 2混合气氛中进行连续退火,H 2含量≥15%;退火温度和保温时间如表8所示。
(7)将步骤(6)所得钢板按常规方法进行涂层及精整。
表6
Figure PCTCN2022119212-appb-000005
表7
  常化温度(℃) 常化时间(s) 再结晶组织体积占比(%) 再结晶晶粒尺寸(μm)
对比例1 893 215 100 103
对比例2 888 215 100 102
对比例3 885 215 100 106
对比例4 884 215 100 106
对比例5 890 215 100 103
对比例6 893 215 100 105
对比例7 889 215 100 104
对比例8 895 215 100 106
表8
Figure PCTCN2022119212-appb-000006
测试实施例1~8、对比例1~6和对比例8制得的无取向硅钢的再结晶晶粒尺寸和再结晶组织体积占比(%)、屈服强度和抗拉强度以及铁损P 1.0/1000,测试实施例1~8和对比例4~6制得的无取向硅钢的磁感应强度B 5000。结果见下表所示。
表9
Figure PCTCN2022119212-appb-000007
从上述实施例1~8可以看出,采用本申请实施方式的高速电机用无取向硅钢,不仅具有高强度和较高磁感,而且高频铁损P 1.0/1000低,且冶炼成本低、生产工艺简单、生产成本低,满足高速电机的应用要求。
对比例1~3采用与实施例1~3相似的化学成分,通过控制常化温度、保温时间、冷压压下率、退火温度和保温时间,获得成品大晶粒。但成品强度显著低于实施例1~3,相同成品厚度高频铁损P 1.0/1000显著高于实施例1~3。
对比例4~6在对比例1~3基础上,在成分设计时,增加Nb、Ti含量,通过微合金元素Nb、Ti的固溶强化和细晶强化效果,相比于对比例1~3钢板强度略有增加。测试结果显示其晶粒尺寸小于对比例1~3,强度高于对比例1~3。与实施例1~3相比,对比例4~6相同成品厚度强度低、铁损高、磁感低,且合金成本高。
对比例7在成分设计时不增加Nb、Ti含量,而是增加Si含量至3.5%以上。结果在轧制目标厚度0.30mm钢板时,即使已经将轧前预热温度提升至180℃,但依然冷轧断带。
对比例8在对比例7基础上增加成品厚度至0.35mm,由于钢板厚度增加,其电阻率降低,造成成品高频铁损显著高于实施例1~8。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种高速电机用无取向硅钢,其化学成分按质量百分数计为:C≤0.0020%、S≤0.0010%、N≤0.0030%、Si:3.0~3.4%、Al:0.80~1.0%、Mn:0.2~0.4%、P≤0.01%、Sn+Sb≤0.004%、Nb≤0.005%、V≤0.005%、Ti≤0.005%、Mo≤0.005%、Cr≤0.05%、Ni≤0.05%、Cu≤0.05%,其它为Fe及不可避免的夹杂;其中,0<C+S+N≤0.0050%;成品厚度为0.20-0.30mm,成品晶粒尺寸为80-100μm。
  2. 根据权利要求1所述的高速电机用无取向硅钢,其特征在于,所述高速电机用无取向硅钢的屈服强度≥550MPa,磁感B 5000≥1.65,0.30mm厚度时高频铁损P 1.0/1000≤45W/kg,0.25mm厚度时高频铁损P 1.0/1000≤40W/kg,0.20mm厚度时高频铁损P 1.0/1000≤35W/kg。
  3. 根据权利要求1或2所述的高速电机用无取向硅钢,其特征在于,4.8%≤Si+2Al≤5.2%。
  4. 一种权利要求1-3中任一所述的高速电机用无取向硅钢的制备方法,其特征在于,包括冶炼并铸成连铸坯、连铸坯冷却与加热、热轧、常化、酸洗、冷轧、退火和涂层处理。
  5. 根据权利要求4所述的高速电机用无取向硅钢的制备方法,其特征在于,常化温度为830-870℃,保温时间为3-5min;冷压压下率控制在89%-90%;退火温度为880-900℃,保温时间为120-150s。
  6. 根据权利要求4或5所述的高速电机用无取向硅钢的制备方法,其特征在于,采用真空感应炉进行冶炼,控制0<C+S+N≤0.0050%,并铸成厚度200~250mm连铸坯。
  7. 根据权利要求4或5所述的高速电机用无取向硅钢的制备方法,其 特征在于,所述铸坯冷却与加热步骤为,将铸坯自然冷却至400~500℃后,以不高于10℃/min的加热速度加热到1080~1100℃,然后保温0.5~1.0h。
  8. 根据权利要求4或5所述的高速电机用无取向硅钢的制备方法,其特征在于,所述热轧包括6道次粗轧和7道次精轧工序;和/或,
    通过粗轧获得厚度为30~45mm中间坯,通过精轧获得厚度为2.0~3.0mm的热轧板;和/或,
    精轧终轧温度800~860℃,卷取温度600~660℃,精轧终轧温度和卷取温度的波动范围为±15℃,精轧的总压下率为92.5-93.5%。
  9. 根据权利要求4或5所述的高速电机用无取向硅钢的制备方法,其特征在于,常化后将钢板冷却至80~150℃后,进行抛丸和酸洗工序。
  10. 根据权利要求4或5所述的高速电机用无取向硅钢的制备方法,其特征在于,冷轧前将钢板预热至100-200℃;和/或,常化后再结晶晶粒尺寸为60~80μm,再结晶组织体积占比为100%。
PCT/CN2022/119212 2022-09-13 2022-09-16 一种高速电机用无取向硅钢及其制备方法 WO2024055269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211107301.5 2022-09-13
CN202211107301.5A CN115198198B (zh) 2022-09-13 2022-09-13 一种高速电机用无取向硅钢及其制备方法

Publications (1)

Publication Number Publication Date
WO2024055269A1 true WO2024055269A1 (zh) 2024-03-21

Family

ID=83572721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119212 WO2024055269A1 (zh) 2022-09-13 2022-09-16 一种高速电机用无取向硅钢及其制备方法

Country Status (2)

Country Link
CN (1) CN115198198B (zh)
WO (1) WO2024055269A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118639087A (zh) * 2024-08-16 2024-09-13 鞍钢股份有限公司 一种无取向硅钢高效产品的生产方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116287999A (zh) * 2023-03-06 2023-06-23 首钢智新迁安电磁材料有限公司 一种无取向硅钢及其制备方法
CN117305717B (zh) * 2023-11-27 2024-03-05 张家港扬子江冷轧板有限公司 无取向硅钢的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176803A (ja) * 1997-01-27 1997-07-08 Nkk Corp Si拡散浸透処理法により製造される加工性の優れた高珪素鋼板
CN104480386A (zh) 2014-11-27 2015-04-01 武汉钢铁(集团)公司 高速电机用0.2mm厚无取向硅钢及生产方法
CN107964631A (zh) 2017-12-15 2018-04-27 武汉钢铁有限公司 屈服强度≥500MPa的高速电机转子用无取向硅钢及生产方法
CN107974620A (zh) 2017-12-01 2018-05-01 武汉钢铁有限公司 一种屈服强度≥600Mpa高速电机转子用无取向硅钢及生产方法
CN111471927A (zh) 2020-04-27 2020-07-31 马鞍山钢铁股份有限公司 一种汽车发电机用高磁感无取向硅钢及其制备方法
CN112538592A (zh) 2020-09-17 2021-03-23 武汉钢铁有限公司 一种用于频率≥10000Hz高速电机的无取向硅钢及生产方法
CN114045433A (zh) * 2021-11-10 2022-02-15 张家港扬子江冷轧板有限公司 超低铁损无取向硅钢及其生产方法
CN114107799A (zh) * 2021-09-15 2022-03-01 鞍钢股份有限公司 一种高强型高频电磁性能优异的硅钢薄带板及生产工艺
CN114196887A (zh) * 2021-10-26 2022-03-18 江苏省沙钢钢铁研究院有限公司 新能源驱动电机用无取向硅钢及其生产方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100567545C (zh) * 2007-06-25 2009-12-09 宝山钢铁股份有限公司 一种高牌号无取向硅钢及其制造方法
CN101967602B (zh) * 2010-10-19 2012-08-08 东北大学 一种无取向硅钢薄带及其制备方法
CN103173678A (zh) * 2011-12-23 2013-06-26 宝山钢铁股份有限公司 一种转子用无取向硅钢及其制造方法
CN102851577B (zh) * 2012-08-28 2014-05-14 武汉钢铁(集团)公司 薄板坯连铸连轧生产高牌号无取向硅钢及制造方法
CN105779878A (zh) * 2014-12-23 2016-07-20 鞍钢股份有限公司 一种中频冷轧无取向硅钢薄带的生产方法
CN105779880A (zh) * 2014-12-23 2016-07-20 鞍钢股份有限公司 冷轧高牌号无取向电工钢薄带的生产方法
CN108085603B (zh) * 2018-01-29 2019-09-27 东北大学 一种基于薄带连铸的高牌号无取向硅钢制备方法
CN111719078B (zh) * 2019-03-19 2021-06-15 江苏集萃冶金技术研究院有限公司 一种消除瓦楞状缺陷的无取向硅钢生产方法
CN110423877A (zh) * 2019-08-23 2019-11-08 山西太钢不锈钢股份有限公司 薄规格高牌号硅钢及其制造方法
CN111575594B (zh) * 2020-06-29 2021-12-14 马鞍山钢铁股份有限公司 一种低磁场下的无取向电工钢及其生产方法
CN114045434B (zh) * 2021-11-10 2022-09-20 张家港扬子江冷轧板有限公司 高牌号无取向硅钢及其生产方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176803A (ja) * 1997-01-27 1997-07-08 Nkk Corp Si拡散浸透処理法により製造される加工性の優れた高珪素鋼板
CN104480386A (zh) 2014-11-27 2015-04-01 武汉钢铁(集团)公司 高速电机用0.2mm厚无取向硅钢及生产方法
CN107974620A (zh) 2017-12-01 2018-05-01 武汉钢铁有限公司 一种屈服强度≥600Mpa高速电机转子用无取向硅钢及生产方法
CN107964631A (zh) 2017-12-15 2018-04-27 武汉钢铁有限公司 屈服强度≥500MPa的高速电机转子用无取向硅钢及生产方法
CN111471927A (zh) 2020-04-27 2020-07-31 马鞍山钢铁股份有限公司 一种汽车发电机用高磁感无取向硅钢及其制备方法
CN112538592A (zh) 2020-09-17 2021-03-23 武汉钢铁有限公司 一种用于频率≥10000Hz高速电机的无取向硅钢及生产方法
CN114107799A (zh) * 2021-09-15 2022-03-01 鞍钢股份有限公司 一种高强型高频电磁性能优异的硅钢薄带板及生产工艺
CN114196887A (zh) * 2021-10-26 2022-03-18 江苏省沙钢钢铁研究院有限公司 新能源驱动电机用无取向硅钢及其生产方法
CN114045433A (zh) * 2021-11-10 2022-02-15 张家港扬子江冷轧板有限公司 超低铁损无取向硅钢及其生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118639087A (zh) * 2024-08-16 2024-09-13 鞍钢股份有限公司 一种无取向硅钢高效产品的生产方法

Also Published As

Publication number Publication date
CN115198198B (zh) 2022-12-23
CN115198198A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2024055269A1 (zh) 一种高速电机用无取向硅钢及其制备方法
CN111206192B (zh) 一种电动汽车驱动电机用高磁感冷轧无取向硅钢薄带及制造方法
JP4126479B2 (ja) 無方向性電磁鋼板の製造方法
JP5724824B2 (ja) 圧延方向の磁気特性が良好な無方向性電磁鋼板の製造方法
CN115341083B (zh) 一种高频电机用无取向硅钢及其生产方法
CN112538592B (zh) 一种用于频率≥10000Hz高速电机的无取向硅钢及生产方法
WO2023070982A1 (zh) 新能源驱动电机用无取向硅钢及其生产方法
WO2013134895A1 (zh) 一种无取向电工钢板及其制造方法
CN111575594B (zh) 一种低磁场下的无取向电工钢及其生产方法
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
JP7378585B2 (ja) 無方向性電磁鋼板及びその製造方法
CN110640104B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN110643891B (zh) 一种磁性能优良的无取向电工钢板及其制造方法
CN114107799B (zh) 一种高强型高频电磁性能优异的硅钢薄带板及生产工艺
CN109868349A (zh) 一种采用超快冷工艺生产全工艺冷轧无取向电工钢35wd1900的方法
WO2021238895A1 (zh) 一种低成本极低铝的无取向电工钢板及其制造方法
CN113403455A (zh) 无取向硅钢的生产方法
CN108823372B (zh) 一种取向高硅钢薄带及其高效退火模式的制备方法
CN113186451A (zh) 一种宽频率低铁损变频电机用无取向电工钢及制造方法
CN117305717B (zh) 无取向硅钢的制备方法
CN112921164B (zh) 一种低铁损高磁导率无取向电工钢及其生产方法
WO2024149262A1 (zh) 一种高磁感低铁损无取向电工钢板及其制造方法
CN115369225B (zh) 新能源驱动电机用无取向硅钢及其生产方法与应用
WO2024017345A1 (zh) 一种无取向电工钢板及其制造方法
WO2023131224A1 (zh) 一种磁性能优良的无取向电工钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022958460

Country of ref document: EP

Effective date: 20240823

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024017840

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 11202405601X

Country of ref document: SG