WO2024055247A1 - 热管理部件、箱体组件、电池和用电装置 - Google Patents

热管理部件、箱体组件、电池和用电装置 Download PDF

Info

Publication number
WO2024055247A1
WO2024055247A1 PCT/CN2022/119067 CN2022119067W WO2024055247A1 WO 2024055247 A1 WO2024055247 A1 WO 2024055247A1 CN 2022119067 W CN2022119067 W CN 2022119067W WO 2024055247 A1 WO2024055247 A1 WO 2024055247A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
thermal management
battery
management component
exhaust space
Prior art date
Application number
PCT/CN2022/119067
Other languages
English (en)
French (fr)
Inventor
陈小波
王学辉
高雄伟
胡璐
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/119067 priority Critical patent/WO2024055247A1/zh
Publication of WO2024055247A1 publication Critical patent/WO2024055247A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, in particular to thermal management components, box components, batteries and electrical devices.
  • thermal management components such as water-cooling plates
  • traditional batteries have greater safety risks.
  • the application provides a thermal management component for a battery.
  • the battery includes a battery cell, wherein the thermal management component includes a first heat exchange part and a second heat exchange part.
  • the first heat exchange part is used to communicate with The battery cells perform heat exchange, and the second heat exchange part is used for heat exchange with the emissions from the battery cells.
  • the first heat exchange part of the thermal management component can be used to conduct heat exchange with the battery cells, and the second heat exchange part can also be used to conduct heat exchange with the emissions of the battery cells, so as to avoid the problems caused by the battery cells.
  • the temperature of the runaway gas generated by thermal runaway is too high and increases the internal temperature of the battery, which can improve the safety of the battery and reduce the safety hazards of the battery.
  • the thermal management component includes an exhaust space for receiving or guiding emissions from the battery cells, and the exhaust space is configured to allow the emissions from the battery cells to exchange heat with the second heat. perform heat exchange.
  • the emissions from the battery cells are received or guided through the exhaust space, and can be heat exchanged with the second heat exchange part, which can effectively achieve thermal management of the emissions from the battery cells and avoid thermal runaway of the battery cells.
  • the temperature of the runaway gas generated is too high and increases the internal temperature of the battery.
  • the second heat exchange part includes an interface piece and a receiving cavity
  • the receiving cavity is used to accommodate the heat exchange medium
  • the interface piece is used to communicate the receiving cavity and the exhaust space, so that the heat exchange medium can reach through the interface piece Exhaust space.
  • the interface piece can be used to release the heat exchange medium in the accommodation cavity to the exhaust space, so that the heat exchange medium can conduct heat exchange with the exhaust materials received or guided by the battery cells in the exhaust space.
  • the inlet of the interface piece is connected to the accommodation cavity, and the outlet of the interface piece faces into the exhaust space.
  • the heat exchange medium in the accommodation cavity can be released into the exhaust space through the inlet of the interface piece and the outlet of the interface piece, so as to conduct heat exchange with the exhaust materials received or guided by the battery cells in the exhaust space.
  • the exhaust space extends along a first direction, and the outlet direction of the interface piece intersects with the first direction.
  • the emissions entering the exhaust space can flow along the first direction and can well intersect with the heat exchange medium released from the outlet of the interface piece, so that the emissions entering the exhaust space can better interact with this part.
  • the heat exchange medium carries out heat exchange, which can improve the effect of heat exchange.
  • the thermal management component further includes a receiving part, the receiving part is configured to correspond to the battery cell, so that the emissions from the battery cell reach the exhaust space via the receiving part, the outlet direction of the interface piece and the receiving part The receiving direction intersection setting.
  • the emissions from the battery cells can reach the exhaust space through the receiving part, and the emissions reaching the exhaust space can conduct heat exchange with the heat exchange medium reaching the exhaust space to reduce the temperature inside the battery and improve the safety of the battery.
  • the heat exchange medium sprayed from the outlet of the interface piece will not be released toward the battery cells, which can avoid disturbance caused by the two airflows spraying against each other, and this part of the heat exchange medium can well interact with the emissions from the battery cells.
  • the intersection in the exhaust space can not only prevent the internal temperature of the battery from being too high, but also effectively reduce safety hazards.
  • the thermal management component includes two interface pieces arranged adjacently along the second direction; along the second direction, the receiving portion is arranged between the two adjacent interface pieces.
  • both interface pieces can release the heat exchange medium into the exhaust space, and the emissions from the battery cells can flow into the exhaust space and exchange heat with the heat exchange medium released into the exhaust space, which can Improve the efficiency of heat exchange.
  • the second heat exchange part is provided with a plurality of interface pieces spaced apart along the third direction, and the outlet of each of the plurality of interface pieces is disposed along the second direction, and the same second heat exchange part
  • the plurality of interface pieces on the body correspond to the plurality of receiving portions in a one-to-one manner; the second direction and the third direction are arranged to intersect.
  • the heat exchange medium in the accommodation cavity can be released into the exhaust space more quickly through multiple interface pieces.
  • the emissions from the battery cells reach the exhaust space through the receiving part. Due to the outlet direction of the interface piece and the position of the receiving part,
  • the intersecting receiving directions can not only enable this part of the emissions and the heat exchange medium to intersect well in the exhaust space, but also avoid disturbances in the two airflows. This can prevent the internal temperature of the battery from being too high, and at the same time, Effectively reduce safety risks.
  • the interface piece includes a connection channel and a switch part, and the connection channel is configured to communicate with the accommodation cavity and the exhaust space after the switch part is opened.
  • the switch is opened, and the heat exchange medium in the accommodation cavity can reach the exhaust space through the communication channel to conduct heat exchange with the emissions in the exhaust space.
  • the switch portion is configured as a thermal melt structure, an electrical switch or a weak structure.
  • the thermal management component includes a thermal management frame.
  • the thermal management frame and the first heat exchange part define an exhaust space; the second heat exchange part is disposed in the exhaust space to communicate with the battery cells.
  • the emissions are heat exchanged. When a battery cell undergoes thermal runaway, the emissions from the battery cells can flow into the exhaust space, and the second heat exchange part in the exhaust space can well perform heat exchange with this part of the emissions.
  • the thermal management component includes an exhaust component, the exhaust component is used to form an exhaust space, and the first heat exchange part, the second heat exchange part and the exhaust component are arranged in a stack. It facilitates heat exchange between the heat exchange medium released by the second heat exchange part and the emissions discharged into the exhaust space. At the same time, the stacked structure can also effectively reduce the overall volume of the thermal management component.
  • the first heat exchange part and the exhaust member are respectively located on both sides of the second heat exchange part.
  • the battery cells can be extended along the stacking direction and provided on one side of the thermal management component, so that the first heat exchange part can conduct heat exchange with the battery cells, and the heat exchange medium in the accommodation cavity of the second heat exchange part can pass through
  • the interface piece reaches the exhaust space and exchanges heat with the emissions from the battery cells.
  • the exhaust component is located between the first heat exchange part and the second heat exchange part.
  • the battery cells can be arranged on the side of the first heat exchange part away from the exhaust member, which can better save the floor space of the battery cells and thermal management components.
  • An exhaust space is defined between the two second heat exchange parts.
  • At least one second heat exchange part is provided with an interface on its surface facing the exhaust space. pieces.
  • At least one of the two second heat exchange parts releases the heat exchange medium into the exhaust space through the interface piece to perform heat exchange with the emissions from the battery cells.
  • first heat exchange parts there are two first heat exchange parts and they are respectively arranged on the outer surfaces of the two second heat exchange parts.
  • the battery cell can be disposed between the two first heat exchange parts, and the battery cell is located on one side of the exhaust space perpendicular to the stacking direction of the second heat exchange part.
  • the two first heat exchange parts perform heat exchange with the battery cells at the same time, and at least one of the two second heat exchange parts releases the heat exchange medium into the exhaust space through the interface piece to exchange heat with the emissions from the battery cells. exchange.
  • this application also provides a box assembly, including the above-mentioned thermal management component.
  • the thermal management component includes an exhaust component, the exhaust component is used to form an exhaust space, and the first heat exchange part, the second heat exchange part and the exhaust component are arranged in a stack.
  • the thermal management component is configured as at least one of a top structure, a bottom structure, an edge beam, or a middle beam of the box assembly.
  • thermal management components are configured as mid-section beams of the box assembly. It is convenient to use one thermal management component to simultaneously thermally manage the battery cells and the emissions from the battery cells on both sides of the thermal management component.
  • this application also provides a battery.
  • the battery includes a battery cell and the above-mentioned box assembly.
  • the box assembly has an electrical cavity, and the battery cell is accommodated in the electrical cavity.
  • the electrical cavity can communicate with the exhaust space so that the exhaust space can receive or direct emissions from the battery cells.
  • the electrical cavity is located on one side of the thermal management component. So that the exhaust space can receive or guide the emissions from the battery cells, so that the second heat exchange part of the thermal management component can well exchange heat with the emissions from the battery cells, and in addition, the first heat exchange part of the thermal management component The part can also exchange heat well with the battery cells.
  • the thermal management component is configured as a middle beam of the box assembly, and there are multiple electrical cavities distributed on both sides of the thermal management component.
  • battery cells can be placed in each electrical cavity, and one thermal management component can be used to thermally manage the battery cells on both sides and the emissions from the battery cells, and the overall structure of the battery is more compact.
  • the present application also provides a battery, which includes a plurality of battery cells and the above-mentioned thermal management component.
  • the box assembly is the above-mentioned thermal management component, and the thermal management component further includes a receiving portion, the receiving portion is configured to correspond to the battery cell, so that the emissions from the battery cell reach the exhaust gas through the receiving portion. space, the outlet direction of the interface piece and the receiving direction of the receiving part are arranged to intersect.
  • the battery cell includes a pressure relief mechanism, and the pressure relief mechanism is arranged toward the receiving part. As a result, the emissions ejected by the pressure relief mechanism of the battery cell can better flow into the exhaust space through the receiving portion.
  • the pressure relief mechanisms of the multiple battery cells are configured to correspond to the multiple receiving parts one by one.
  • the emissions ejected by the pressure relief mechanism of the battery cell can flow into the exhaust space through the corresponding receiving portion.
  • the present application also provides an electrical device, which includes the above-mentioned battery.
  • Figure 1 shows a schematic structural diagram of a vehicle according to an embodiment of the present application
  • Figure 2 shows a schematic structural diagram of a battery in an embodiment of the present application
  • Figure 3 shows a side cross-sectional view (first perspective) of a battery in an embodiment of the present application
  • Figure 4 shows an enlarged schematic view of A in Figure 3;
  • Figure 5 shows a side cross-sectional view (second perspective) of a battery in an embodiment of the present application
  • Figure 6 shows an enlarged schematic view of B in Figure 5;
  • Figure 7 shows a schematic structural diagram of the thermal management component 201 and the receiving part in an embodiment of the present application
  • Figure 8 shows a top view of the thermal management component 201 and the receiving part in an embodiment of the present application
  • Figure 9 shows a partial structural diagram of a battery in an embodiment of the present application.
  • Figure 10 shows a schematic structural diagram of the first heat exchange part in an embodiment of the present application
  • Figure 11 shows a schematic structural diagram of a thermal management board in an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • Batteries include batteries.
  • thermal management components such as water-cooling plates
  • traditional batteries have greater safety risks.
  • the inventor of the present application found through research that the reason why traditional batteries have greater safety risks is that in traditional batteries, the runaway gas generated when the battery cells are thermally runaway is not cooled, resulting in the occurrence of thermal runaway of the battery cells. The temperature of the out-of-control gas is too high and increases the internal temperature of the battery, which in turn causes great safety risks for traditional batteries.
  • thermal management component In order to solve the problem of great safety hazards of traditional batteries, the inventor of this application has designed a thermal management component after in-depth research.
  • This thermal management component can not only perform thermal management of battery cells, but also Thermal management of emissions produced during thermal runaway can prevent the internal temperature of the battery from being too high, which can effectively reduce battery safety risks.
  • the thermal management components, box components, and battery cells/batteries disclosed in the embodiments of the present application can be, but are not limited to, used in electrical devices such as vehicles, ships, or aircraft.
  • Electric devices can be, but are not limited to, mobile phones, tablets, laptops, electric toys, power tools, battery cars, electric vehicles, ships, spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • a power supply system including the battery cells/batteries disclosed in the present application can be used to form the electrical device. In this way, it is convenient to provide electric drive for the electrical device.
  • Vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 10 is disposed inside the vehicle 1 , and the battery 10 can be disposed at the bottom, head, or tail of the vehicle 1 .
  • the battery 10 may be used to power the vehicle 1 , for example, the battery 10 may serve as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 20 and a motor 30 .
  • the controller 20 is used to control the battery 10 to provide power to the motor 30 , for example, to meet the power requirements for starting, navigation and driving of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • FIG. 2 shows a schematic structural diagram of the battery 10 in an embodiment of the present application.
  • the thermal management component 201 provided by an embodiment of the present application is used in the battery 10 .
  • the battery 10 includes a battery cell 110, and the thermal management component 201 includes a first heat exchange part 210 and a second heat exchange part 220.
  • the first heat exchange part 210 is used for heat exchange with the battery cell 110, and the second heat exchange part 220
  • the portion 220 is used for heat exchange with the emissions from the battery cells 110 .
  • the first heat exchange part 210 refers to a component that can perform thermal management of the battery cell 110.
  • the first heat exchange part 210 may have a heat exchange cavity 212 for containing a heat exchange medium, so as to use the heat exchange cavity 212 to heat the battery.
  • the cell 110 performs thermal management; it may also have a heat exchange cavity 212 for accommodating the heat exchange medium and corresponding to the battery cell 110, so that the heat exchange medium in the heat exchange cavity 212 can be used to perform thermal management on the corresponding battery cell 110. Thermal management; not specifically limited here.
  • the first heat exchange part 210 may be in direct contact or indirect contact with the battery cell 110 to perform heat exchange with the battery cell 110 .
  • the second heat exchange part 210 can be disposed on one side of the battery cell 110 and can perform heat exchange with the emissions from the battery cells 110, such as collecting the emissions from the battery cells 110 in a space and utilizing the space.
  • the side walls of the battery cell 110 conduct heat exchange with the exhaust gas of the battery cell 110 .
  • the emissions from the battery cells 110 are collected in a space, and the second heat exchange part 210 can release the heat exchange medium into the space to perform heat exchange with the emissions from the battery cells 110 .
  • the application is not limited to this.
  • the emissions from the battery cell 110 may be high-temperature substances ejected from the pressure relief mechanism 111 of the battery cell 110 , and the high-temperature substances include gases and solid objects carried by the gases.
  • the first heat exchange part 210 of the thermal management component 201 can be used to exchange heat with the battery cells 110, and the second heat exchange part 220 can also be used to exchange heat with the emissions from the battery cells 110, so as to avoid damage caused by the battery cells.
  • the temperature of the runaway gas generated by the thermal runaway of the body 120 is too high and increases the internal temperature of the battery 10 , which can improve the safety of the battery 10 .
  • the thermal management component 201 includes an exhaust space 2311 for receiving or guiding emissions from the battery cells 110 , and the exhaust space 2311 is configured to The discharge from the battery cell 110 is allowed to exchange heat with the second heat exchange part 220 .
  • the second heat exchange part 220 may be independent of the exhaust space 2311, such as being provided outside the exhaust space 2311.
  • the second heat exchange part 220 may also be located in the exhaust space 2311, so that the second heat exchange part 220 is used to perform heat exchange on the emissions of the battery cells 110 received or guided in the exhaust space 2311.
  • the above-mentioned “second heat exchange part 220" may be a component in which a heat exchange medium is provided and an interface part 221 is provided, so that the heat exchange medium can be released into the exhaust space 2311 when the battery cell 110 has thermal runaway, so as to exchange heat with the exhaust.
  • the "second heat exchange part 220” may also be other components that can release the heat exchange medium into the exhaust space 2311 by means of the interface part 221 when the battery cell 110 has thermal runaway, and the “second heat exchange part 220” may also be a component that can directly contact with the exhaust of the battery cell 110 to exchange heat, and no specific limitation is made here.
  • the emissions from the battery cells 110 are received or guided through the exhaust space 2311, and can be heat exchanged with the second heat exchange part 220, which can effectively achieve thermal management of the emissions from the battery cells 110 and avoid battery problems.
  • the temperature of the runaway gas generated by the thermal runaway of the cell 120 is too high and increases the internal temperature of the battery 10 .
  • the second heat exchange part 220 includes an interface piece 221 and a receiving cavity 222.
  • the receiving cavity 222 is used to accommodate the heat exchange medium, and the interface piece is used to connect the receiving cavity 222 and the exhaust space 2311. So that the heat exchange medium can reach the exhaust space 211 through the interface piece.
  • the interface piece 221 can be a nozzle that is connected to the accommodation cavity 222 and the exhaust space 2311 respectively, or it can be a pipe that is connected to the accommodation cavity 222 and the exhaust space 2311 respectively, or it can be other things that can be used to connect the accommodation cavity 222 and the exhaust space 2311.
  • the components of the exhaust space 2311 are not limited to these.
  • the above-mentioned interface member 221 may include a component that can be thermally melted to form a crack when the battery cell 110 undergoes thermal runaway (for example, the outlet 2211 of the interface member 221 may be blocked with a component that is heated and melted), or may include a component that is capable of forming a crack in the battery cell 110 .
  • a component that forms a crack due to thermal expansion for example, a component containing a thermally expanded material is blocked at the outlet 2211 of the interface member 221
  • An electrical switch that is open during thermal runaway. It may also be in other forms capable of releasing the heat exchange medium into the exhaust space 2311 in response to thermal runaway of the battery cell 110 , which is not specifically limited here.
  • the interface piece 221 can be used to release the heat exchange medium in the accommodation cavity 222 to the exhaust space 211 , so that the heat exchange medium can exchange heat with the emissions received or guided from the battery cells 110 in the exhaust space 2311 .
  • the interface piece 221 is configured to spray the mist heat exchange medium into the exhaust space 2311 when the battery cell 110 undergoes thermal runaway.
  • the interface piece 221 sprays the mist heat exchange medium in the exhaust space 2311.
  • the heat exchange medium can better exchange heat with the emissions flowing into the exhaust space 2311, and the mist heat exchange medium can better be discharged out of the exhaust space 2311 together with the emissions for centralized treatment.
  • the inlet of the interface member 221 is connected to the accommodation cavity 222, and the outlet 2211 of the interface member 221 faces into the exhaust space 2311.
  • the heat exchange medium in the accommodation cavity 222 can be released into the exhaust space 2311 via the inlet of the interface piece 221 and the outlet 2211 of the interface piece 221 .
  • the interface member is a nozzle
  • the heat exchange medium in the accommodation cavity 222 can be sprayed into the exhaust space 2311 to conduct heat exchange with the emissions from the battery cells 110 that are received or guided in the exhaust space 2311.
  • the exhaust space 2311 extends along the first direction F 1 , and the outlet direction of the interface piece 221 intersects with the first direction.
  • the exhaust space 2311 extends along the first direction F 1 .
  • the exhaust port 211 connected to the exhaust space 2311 may be located on one side of the exhaust space 2311 along the first direction F 1 , or it may be connected to the exhaust space 2311 .
  • the exhaust ports 211 are located on opposite sides of the exhaust space 2311 along the first direction F 1 , and may also be in other ways that can guide the emissions flowing into the exhaust space 2311 to flow along the first direction F 1 , which is not specifically limited here. .
  • the emissions entering the exhaust space 2311 can flow along the first direction F1 and can well intersect with the heat exchange medium released from the outlet of the interface piece 221, so that the emissions entering the exhaust space 2311 can flow more efficiently.
  • Proper heat exchange with this part of the heat exchange medium can improve the heat exchange effect.
  • the thermal management component 201 further includes a receiving portion 240 configured to correspond to the battery cell 110 so that the emissions from the battery cell 110 reach the exhaust space 2311 via the receiving portion 240.
  • the interface piece The outlet direction of 221 and the receiving direction of the receiving part 240 are arranged to intersect.
  • the receiving part 240 is configured to correspond to the battery cells 110" may be that the receiving part 240 corresponds to the battery cells 110 one by one, or one receiving part 240 may correspond to multiple battery cells 110, which is not specifically limited here.
  • the receiving part 240 may have a cavity or hole that can receive the emissions from the battery cell 110 and is connected to the exhaust space 2311.
  • the receiving part 240 may also include a thermal melt structure, a weak structure or an electric switch as described below, so as to When the battery cell 110 undergoes thermal runaway, the emissions from the battery cell can reach the exhaust space 2311 through the receiving part 240 . No specific restrictions are made here.
  • the emissions from the battery cells 110 can reach the exhaust space 2311 via the receiving portion 240 , and the emissions reaching the exhaust space 2311 can perform heat exchange with the heat exchange medium reaching the exhaust space 2311 to reduce the internal temperature of the battery 10 . temperature, improving the safety of the battery 10.
  • the heat exchange medium sprayed from the outlet 2211 of the interface member 221 will not be released toward the battery cell 110, which can avoid disturbance caused by the two airflows spraying against each other, and this part of the heat exchange medium can interact well with the battery cell 110.
  • the emissions meet in the exhaust space 2311, which can not only prevent the internal temperature of the battery 10 from being too high, but also effectively reduce safety hazards.
  • the thermal management component 201 includes two interface pieces 221 adjacently arranged along the second direction F 2 , and the receiving portion 240 is arranged adjacent to the second direction F 2 . between two interface pieces 221.
  • the thermal management component 201 includes two interface pieces 221 adjacently arranged along the second direction F2 " may mean that the thermal management component 201 includes two second heat exchange parts 220 spaced apart along the second direction F2 , each with a second The heat exchange part 200 is provided with an interface piece 221, and two adjacent interface pieces 221 of the two second heat exchange parts 200 are arranged oppositely along the second direction F2 .
  • a second heat exchange part 220 may include two interface members 221 adjacently arranged along the second direction F2 . No specific restrictions are made here.
  • both interface members 221 can release the heat exchange medium into the exhaust space 2311, and the emissions from the battery cells 110 can flow into the exhaust space 2311 and interact with the heat exchange medium released into the exhaust space 2311. Heat exchange occurs, which can improve the efficiency of heat exchange.
  • the heat-exchanged mixed gas can be discharged through the exhaust space 2311 for centralized treatment.
  • the thermal management component 201 can be used to thermally manage the emissions from the battery cells 110 to prevent the internal temperature of the battery 10 from being too high. The safety risks of the battery 10 are greatly reduced.
  • the second heat exchange part 220 is provided with a plurality of interface members 221 spaced apart along the third direction F3 , and the outlet 2211 of each of the plurality of interface members 221 is They are arranged along the second direction F 2 , and the plurality of interface pieces 221 on the same second heat exchange part 220 correspond to the plurality of receiving parts 240 one-to-one.
  • the second direction F 2 intersects the third direction F 3 .
  • the third direction F 3 may be parallel to the above-mentioned first direction F 1 , or may be arranged to intersect the above-mentioned first direction F 1 , and is not specifically limited here.
  • FIG. 5 shows an example in which the third direction F 3 is parallel to the above-mentioned first direction F 1 .
  • the heat exchange medium in the accommodation cavity 222 can be released into the exhaust space 2311 more quickly through the plurality of interface pieces 221 , and the emissions from the battery cells 110 reach the exhaust space 2311 via the receiving portion 240 . Since the interface pieces 221 The outlet direction and the receiving direction of the receiving part 240 intersect, so that this part of the exhaust and the heat exchange medium can well intersect with each other in the exhaust space 2311, and can avoid the disturbance of the two airflows, which can avoid the battery 10 When the internal temperature is too high, it can also effectively reduce safety risks.
  • the interface piece 221 includes a communication channel and a switch part, and the connection channel is configured to communicate with the accommodation cavity 222 and the exhaust space 2311 after the switch part is opened.
  • the switch When the battery cell 110 undergoes thermal runaway, the switch is opened, and the heat exchange medium in the accommodation cavity 222 can reach the exhaust space 2311 through the communication channel to exchange heat with the emissions in the exhaust space 2311.
  • the communication channels are respectively connected with the inlet of the interface piece 221 and the outlet 2211 of the interface piece 221.
  • a switch part can be provided at the outlet 2211 of the interface piece 221, a switch part can also be set at the inlet of the interface piece 221, or a switch part can be provided on the connecting channel.
  • the switch part is not specifically limited here.
  • the switch part is configured as a thermal melt structure, an electric switch or a weak structure, or may be configured as a chemical material structure that can react with smoke.
  • the switch part may be a heat-melt structure blocked in the communication channel or the outlet 2211 of the interface piece 221.
  • the heat-melt structure is configured to melt to form a cracking part when the temperature of the gas in the exhaust space 2311 reaches a preset temperature. So that the outlet 2211 can communicate with the exhaust space 2311 through the crack.
  • hot melt structure refers to a component that can melt when the temperature of the gas in the exhaust space 2311 reaches a preset temperature.
  • the material of the hot melt structure can be a temperature-sensitive material or other components that can melt in the exhaust space 2311.
  • the material that melts when the temperature of the gas reaches the preset temperature is not specifically limited here.
  • the preset temperature can be set to 60-100°C.
  • the emissions from the battery cell 110 can flow into the exhaust space 2311, so that the hot melt structure of the outlet 2211 located in the exhaust space 2311 can melt and form cracks when it reaches the preset temperature. part, and then the heat exchange medium in the interface piece 221 is sprayed into the exhaust space 2311 through the cracked part, so that the temperature of the high-temperature substance ejected from the battery cell 110 can be reduced, and the internal temperature of the battery 10 is prevented from being too high. The potential safety hazard of the battery 10 is reduced.
  • the switch part is an electric switch, such as a battery switch provided on the outlet 2211 of the interface member 221 .
  • the electric switch is configured to be in an open state when the battery cell 110 undergoes thermal runaway.
  • the emissions from the battery cell 110 can flow into the exhaust space 2311, so that the electric switch located on the outlet 2211 in the exhaust space 2311 can be in an open state, thereby causing the interface piece 221 to open.
  • the heat exchange medium flows into the exhaust space 2311 through the outlet 2211, so that the temperature of the emissions from the battery cells 110 can be reduced, preventing the internal temperature of the battery 10 from being too high, and reducing the safety hazards of the battery 10.
  • the thermal management component 201 includes a thermal management frame 231.
  • the thermal management frame 231 and the first heat exchange part 210 define an exhaust space 2311.
  • the second heat exchange part 220 is disposed in the exhaust space 2311 to perform heat exchange with the emissions from the battery cells 110 .
  • the emissions from the battery cell 110 can flow into the exhaust space 2311, and the second heat exchange part 220 in the exhaust space 2311 can interact well with this part of the emissions. heat exchange.
  • the thermal management component 201 includes an exhaust component, the exhaust component is used to form the exhaust space 2311, the first heat exchange part 210, the second heat exchange part 220 and the exhaust gas.
  • the pieces are set up for stacking.
  • the first heat exchange part 210, the second heat exchange part 220 and the exhaust element are arranged in a stack may mean that one of the first heat exchange part 210, the second heat exchange part 220 and the exhaust element is placed on the other two.
  • the first heat exchange part 210 and the exhaust member are respectively located on both sides of the second heat exchange part 220.
  • the exhaust member is located between the first heat exchange part 210 and the second heat exchange part 220.
  • the thermal management component 201 can be disposed on one side of the battery cell 110, and the exhaust component is located between the first heat exchange part 210 and the second heat exchange part 220.
  • the battery cell 110 is disposed on the side of the first heat exchange part 210 away from the exhaust member, which can better save the floor space of the battery cell 110 and the thermal management component 201 and also facilitate the use of the first heat exchange part 210
  • a heat exchange hole 2101 connected to the exhaust space 2311 can be provided in the first heat exchange part 210, so that the heat exchange medium in the accommodation cavity 222 of the second heat exchange part 220 can pass through the interface.
  • the emissions from the battery cells 110 can flow into the exhaust space 2311 through the heat exchange holes 2101 of the first heat exchange part 210, and exchange heat with the heat exchange medium in the exhaust space 2311. This reduces the temperature of the emissions from the battery cells 110 and improves the safety of the battery 10 .
  • the thermal management component 201 includes a first heat exchange part 210, a second heat exchange part 220 and an exhaust member that are stacked in sequence. That is to say, the first The heat exchange part 210 and the exhaust member are respectively located on both sides of the second heat exchange part 220, allowing the battery cells 110 to extend along the stacking direction and be provided on one side of the thermal management component 201, so that the first heat exchange part 210 can communicate with The battery cells 110 perform heat exchange, and the heat exchange medium in the accommodation cavity 222 of the second heat exchange part 220 can reach the exhaust space 2311 through the interface piece 221 and conduct heat exchange with the emissions from the battery cells 110 .
  • An exhaust space 2311 is defined between the two second heat exchange parts 220.
  • At least one second heat exchange part 220 is arranged in a stacked manner.
  • An interface piece 221 is provided on the surface of the hot part 211 facing the exhaust space 2311.
  • At least one of the two second heat exchange parts 210 releases the heat exchange medium into the exhaust space 2311 through the interface piece 221 to perform heat exchange with the emissions from the battery cells 110 .
  • first heat exchange parts 210 there are two first heat exchange parts 210 and they are respectively disposed on the outer surfaces of the two second heat exchange parts 220 .
  • the battery cell 110 may be located between the two first heat exchange parts 210 , and the battery cell 110 may be located on one side of the exhaust space 2311 along the stacking direction perpendicular to the second heat exchange part 220 .
  • the two first heat exchange parts 210 perform heat exchange with the battery cells 110 at the same time, and at least one of the two second heat exchange parts 210 releases the heat exchange medium into the exhaust space 2311 through the interface piece 221 to communicate with the battery.
  • the exhaust from the cell 110 undergoes heat exchange.
  • a box assembly 200 provided by an embodiment of the present application includes the above-mentioned thermal management component 201.
  • the thermal management component 201 includes the above-mentioned exhaust component.
  • the exhaust component is used to form the exhaust space 2311.
  • the first heat exchange part 210, the second heat exchange part 220 and the exhaust component are arranged in a stack.
  • the thermal management component 201 is configured as at least one of a top structure, a bottom structure, an edge beam, or a middle beam of the box assembly 200 .
  • the thermal management component 201 is configured as at least one of the top structure, the bottom structure, the side beams, or the middle beam of the box assembly 200.
  • the thermal management component 201 may be at least one of the top structure, the bottom structure, the side beams, or the middle beam.
  • the thermal management component 201 can be the top structure of the box assembly 200, and the battery cells 110 are provided on one side of the top structure of the box assembly 200. In this way, the thermal management component 201 can be used to protect the batteries on one side.
  • the cell 110 exchanges heat with the emissions from the battery cells.
  • the thermal management component 201 can be a bottom structure, a side beam or a middle beam. It can be understood that the management component 201 is the top structure of the box assembly 200, and will not be described again here.
  • FIG. 1 gives an example of a thermal management component 201 configured as a mid-rail of a box assembly 200 .
  • An exhaust space 2311 is defined between the two second heat exchange parts 220.
  • At least one second heat exchange part 220 faces the exhaust space 2311.
  • An interface piece 221 is provided on the surface, and the thermal management member 201 is configured as a middle beam of the box assembly 200 .
  • the middle beam of the box assembly 200 may be a cross beam or a longitudinal beam, and the battery cells 110 are distributed on both sides of the cross beam or longitudinal beam along its thickness direction.
  • the battery cells 110 can be disposed on the top or bottom side of the middle beam of the box assembly 200, whereby the interface piece 221 of the at least one second heat exchange part 210 releases the heat exchange medium into the exhaust space 2311, which can interact with the battery.
  • the exhaust from the cell 110 undergoes heat exchange.
  • a battery 10 provided in an embodiment of the present application includes a battery cell 110 and the above-mentioned box assembly 200 , wherein the box assembly 200 has an electrical cavity 2321 , and the battery cell 110 is accommodated in the electrical cavity 2321 .
  • the electrical cavity 2321 can be communicated with the exhaust space 2311 so that the exhaust space 2311 can receive or guide emissions from the battery cells 110.
  • the electrical cavity 2321 can be connected to the exhaust space 2311 may mean that the electrical cavity 2321 is connected to the exhaust space 2311 through the hole on the box assembly 200, or the box assembly 200 may be provided with the above-mentioned hot melt structure, Weak structures or electrical switches are used to connect the electrical cavity 2321 with the exhaust space 2311 when the battery cell 110 undergoes thermal runaway.
  • the application is not limited to this.
  • the battery cells 110 and the emissions from the battery cells 110 in the case assembly 200 can be thermally managed using the thermal management component 201 of the case assembly 200 .
  • the battery 10 includes a battery cell 110 and the above-mentioned case assembly 200.
  • the case assembly 200 has an electrical cavity 2321, and the battery cell 110 is accommodated in the electrical cavity 2321" may include: the electrical cavity 2321 is located on one side of the thermal management component 201 .
  • the electrical cavity 2321 can be connected with the exhaust space 2311, so that the exhaust space 2311 can receive or guide the emissions from the battery cells 110, so that the second heat exchange part 220 of the thermal management component 201 can be well connected with the battery cells 110.
  • the first heat exchange part 210 of the thermal management component 201 can also perform heat exchange with the battery cell 110 well.
  • the battery 10 includes a battery cell 110 and the above-mentioned case assembly 200.
  • the case assembly 200 has an electrical cavity 2321, and the battery cell 110 is accommodated in the electrical cavity 2321.” It may also include: the electrical cavity 2321 is located in a part of the thermal management component 201. On the other hand, the electrical cavity 2321 can communicate with the exhaust space 2311 , and the thermal management component 201 is configured as at least one of a top structure, a bottom structure, a side beam, or a middle beam of the box assembly 200 .
  • the thermal management component 201 is configured as at least one of the top structure, the bottom structure, the side beams, or the middle beam of the box assembly 200.
  • the thermal management component 201 may be at least one of the top structure, the bottom structure, the side beams, or the middle beam.
  • the thermal management component 201 can be the top structure of the box assembly 200.
  • the box assembly 200 surrounds an electrical cavity 2321, and the battery cells 110 are accommodated in the electrical cavity 2321. It can be understood that the thermal management component 201 It is equivalent to the top wall of the electrical cavity 2321. In this way, the thermal management component 201 can be used to exchange heat between the battery cells 110 of the electrical cavity 2321 on one side and the emissions from the battery cells.
  • thermal management component 201 can be a bottom structure, a side beam or a middle beam. It can be understood that the management component 201 is the top structure of the box assembly 200, and will not be described again here.
  • FIG. 1 gives an example of a thermal management component 201 configured as a mid-rail of a box assembly 200 .
  • the thermal management component 201 can be effectively used to exchange heat between the battery cells 110 and the emissions from the battery cells in the electrical cavity 2321 on one side.
  • the box assembly 200 includes a thermal management component 201 and a battery frame 232.
  • the battery frame 232 and the thermal management frame 2311 of the thermal management component 201 are both connected.
  • the first heat exchange part 210 is connected along the thickness direction of the first heat exchange part 210.
  • the first heat exchange part 210 and the thermal management frame 231 define an exhaust space 2311.
  • the first heat exchange part 210 and the battery frame 232 surrounds an electrical cavity 2321 for accommodating the battery cell 110, and the first heat exchange part 210 is provided with heat exchange holes 2101 that are respectively connected to the electrical cavity 2321 and the exhaust space 2311 (as shown in Figure 4) .
  • the thermal management component 201 can be used to greatly reduce the temperature of the emissions ejected from the battery cell 110 , thereby preventing the internal temperature of the battery 10 from being too high, and greatly reducing the safety risks of the battery 10 .
  • the first heat exchange part 210 includes two thermal management plates 215 arranged in a stack. At least one heat exchange cavity 212 is defined between the two thermal management plates 215 .
  • the thermal management plate 215 is provided with a fluid inlet pipe 213 and a fluid outlet pipe 214 that are respectively connected with the heat exchange cavity 212. The fluid flowing from the fluid inlet pipe 213 into the heat exchange cavity 212 is used for heat exchange with the battery cells 110.
  • the heat exchange cavity 212 is used to accommodate a heat exchange medium to exchange heat with the battery cells 110.
  • the heat exchange cavity 212 can be one or two thermal management plates defining a one-to-one correspondence with the battery cells 110.
  • the multiple heat exchange cavities 212 are not specifically limited here.
  • the heat exchange medium can flow into the heat exchange cavity 212 from the fluid inlet pipe 213, and can flow out of the heat exchange cavity 212 from the fluid outlet pipe 214, so that the circulating heat exchange medium can be used to exchange heat with the battery cells 110.
  • the battery frame 232 includes an outer frame 2323 with a cavity and an inner frame 2324 located in the cavity of the outer frame 2323 .
  • the inner frame 2324 and the corresponding first heat exchange part 210 surround An electrical cavity 2321 is set up.
  • the outer frame 2323, the inner frame 2324 and the corresponding first heat exchange part 210 define an air collecting cavity 2322 connected with the exhaust space 2311.
  • the outer frame 2323 is provided with a pressure relief component 233, which is The pressure component 233 is configured to enable the gas collection chamber 2322 to communicate with the external environment through the pressure relief component 233 when the gas pressure in the gas collection chamber 2322 reaches a preset pressure value.
  • the emissions ejected from the pressure relief mechanism 111 of the battery cell 110 flow into the exhaust space 2311 through the heat exchange holes 2101, and can exchange heat with the heat exchange medium released into the exhaust space 2311, and are mixed through heat exchange.
  • the gas can be discharged into the gas collection chamber 2322 through the exhaust space 2311 for centralized treatment.
  • the gas pressure in the gas collecting chamber 2322 reaches the preset pressure value, the gas collecting chamber 2322 is connected to the external environment through the pressure relief component 233, and the pressure relief component 233 can be used to relieve the pressure, thereby improving the reliability and safety of the battery 10. sex.
  • the gas collecting cavity 2322 surrounds the electrical cavity 2321
  • the first heat exchange part 210 is provided with a plurality of exhaust ports spaced along the circumferential direction of the electrical cavity 2321 . 211, each exhaust port 211 is connected with the exhaust space 2311 and the air collection chamber 2322 respectively.
  • Exhaust port 211 refers to the mouth that is connected to the exhaust space 2311 and the air collection chamber 2322 and penetrates the first heat exchange part 210.
  • the shape of the exhaust port 211 is not specifically limited, as long as it can be connected with the exhaust gas respectively.
  • the shape of the space 2311 and the air collection chamber 2322 is sufficient.
  • the use of multiple exhaust ports 211 can improve the efficiency of the mixed gas flowing into the gas collecting cavity 2322 and improve the thermal management efficiency.
  • the battery 10 includes a battery cell 110 and the above-mentioned case assembly 200.
  • the case assembly 200 has an electrical cavity 2321, and the battery cell 110 is accommodated in the electrical cavity 2321.” It may also include: the thermal management component 201 is configured as a case assembly. In the middle beam of 200 , there are multiple electrical cavities 2321 distributed on both sides of the thermal management component 201 .
  • the electrical cavity 2321 can be connected with the exhaust space 2311, so that the emissions from the battery cells 110 can flow into the exhaust space 2311, and then heat exchange is performed on this part of the emissions through the second heat exchange part 220.
  • the box assembly 200 is generally H-shaped, that is, the box assembly 200 has double openings at the top and bottom, and defines two electrical cavities 2321. The openings are provided on the sides of the two electrical cavities 2321 away from each other, so that the battery cells 110 can be placed. in the electrical cavity 2321.
  • the thermal management component 201 includes two first heat exchange parts 210 spaced apart along the thickness direction of the first heat exchange part 210.
  • the box assembly 200 includes two first heat exchange parts 210 that are connected to the first heat exchange parts 210 in one-to-one correspondence and located in the thermal management frame. Between the two battery frames 232 on opposite sides of the body 231 , each first heat exchange part 210 and the corresponding battery frame 232 define an electrical cavity 2321 .
  • Two heat exchange parts 210 and a thermal management frame 231 surround an exhaust space 2311.
  • a battery module 100 can be disposed in each electrical cavity 2321, and each battery module 100 includes at least one battery cell 110.
  • the thermal management component 201 is configured as a middle beam of the box assembly 200" can be It is understood that a thermal management component 201 is provided between two adjacent battery modules 100 .
  • one thermal management component 201 can be used to thermally manage the battery cells 110 of the two battery modules 100 and the emissions from the battery cells 100 , and the overall structure of the battery 10 is more compact.
  • the battery cell 110 includes a pressure relief mechanism 111 , and the pressure relief mechanism 111 is disposed toward the receiving portion 240 .
  • pressure relief mechanism 111 can be an explosion-proof valve or other components that can release the emissions (gas) ejected from the battery cell 110 to the electrical cavity 2321 when the battery cell 110 undergoes thermal runaway. There is no specific limitation here.
  • the emissions ejected by the pressure relief mechanism 111 of the battery cell 110 can better flow into the exhaust space 2311 through the receiving portion 240 .
  • the pressure relief mechanisms 111 of the multiple battery cells 110 are configured to work together with the multiple receiving parts 240 .
  • the emissions ejected by the pressure relief mechanism 111 of the battery cell 110 can flow into the exhaust space 2311 through the corresponding receiving portion 240 .
  • each battery module 100 includes a plurality of battery cells 110 .
  • the receiving portion 240 is provided with a plurality of vent holes 241 corresponding to the battery cells 110 .
  • Each vent hole 241 is connected to the electrical cavity 2321 respectively. It is connected with the exhaust space 2311.
  • the emissions from the battery cells 110 can reach the exhaust space 2311 through the corresponding vent holes 241 .
  • the receiving portion 240 is provided on the side of the first heat exchange portion 210 away from the battery cells 110 .
  • the first heat exchange portion 210 is provided with a plurality of heat exchange holes 2101 corresponding to the battery cells 110 one-to-one.
  • the pressure relief mechanisms 111 of the multiple battery cells 110 in the same electrical cavity 2321 correspond to the multiple heat exchange holes 2101 of the adjacent first heat exchange part 210.
  • Multiple batteries in the same electrical cavity 2321 The pressure relief mechanism 111 of the unit 110 also corresponds to the plurality of ventilation holes 241 on the receiving part 240.
  • the emissions from the battery cell 110 can flow into the exhaust space 2311 through the corresponding heat exchange holes 2101 and the corresponding vent holes 241 on the receiving part 240, so as to be sprayed and released into the exhaust gas.
  • the heat exchange medium in the space 2311 exchanges heat with this part of the emissions, thereby greatly reducing the temperature of the emissions ejected from the battery cells 110, preventing the internal temperature of the battery 10 from being too high, and greatly reducing the energy consumption of the battery 10. Security risks.
  • the battery 10 includes at least two battery modules 100.
  • Each battery module 100 includes at least one battery cell 110 disposed in a corresponding electrical cavity 2321.
  • the pressure relief mechanism 111 of the battery cell 110 faces the thermal management component 201 located between the two adjacent battery modules 100, and the two adjacent battery modules 100
  • the corresponding electrical cavities 2321 of the battery module 100 are all connected with the exhaust space 2311 of the thermal management frame 231 of the thermal management component 201 .
  • the thermal management component 201 can be used to exchange heat for the air flow injected into the exhaust space 2311 by the battery cell 110. In this way, one thermal management component 201 can be used to The battery module 100 performs thermal management to effectively prevent the internal temperature of the battery 10 from being too high, and at the same time, it can also improve the space utilization of the battery 10.
  • the pressure relief mechanisms 111 of all battery cells 110 face the thermal management component 201 located between the two adjacent battery modules 100 .
  • the interface piece 221 of the thermal management component 201 can spray the heat exchange medium into the exhaust space 2311, and the heat exchange medium sprayed by the interface piece 221 into the exhaust space 2311 can flow into the exhaust space 2311. Heat exchange occurs with the emissions inside, and the heat exchange medium and the emissions (gas) can be discharged out of the exhaust space 2311 together for centralized treatment.
  • the thermal management component 201 can be used to perform thermal management on the two battery modules 100 , effectively preventing the internal temperature of the battery 10 from being too high, and at the same time, improving the space utilization of the battery 10 .
  • the receiving portion 240 is disposed in the exhaust space 2311 , and the receiving portion 240 blocks the pressure relief of two adjacent battery cells 110 in two adjacent battery modules 100 . Between the mechanisms 111, the receiving part 240 has a receiving cavity 242 for receiving the emissions from the battery cells 110, and vent holes 241 respectively connected to the electrical cavity 2321 and the exhaust space 2311.
  • the above-mentioned “receiving part 240” refers to a component that can be placed between the pressure relief mechanisms 111 of two adjacent battery cells 110 to prevent the pressure relief mechanisms 111 of the two adjacent battery cells 110 from being ejected.
  • the receiving portion 240 may be an integral component extending along the arrangement direction of the multiple battery cells 110 .
  • Multiple receiving portions 240 may also be provided. The multiple receiving portions 240 are arranged at intervals along the arrangement direction of the multiple battery cells 110 of the same battery module 100 , and the multiple receiving portions 240 are integrated with the pressure relief mechanisms 111 of the battery cells 110 .
  • each receiving portion 240 blocks the pressure relief mechanism 111 of the corresponding battery cell 110 to prevent emissions ejected from the pressure relief mechanisms 111 of two adjacent battery cells 110 from facing each other.
  • the receiving portion 240 can also be other components that can prevent the emissions ejected from the pressure relief mechanisms 111 of two adjacent battery cells 110 from facing each other, and there is no specific limitation here.
  • the receiving portion 240 can prevent the emissions ejected from the pressure relief mechanisms 111 of two adjacent battery cells 110 from opposing each other, and the emissions ejected from the pressure relief mechanisms 111 of the battery cells 110 can pass through the vent holes 241 flows into the exhaust space 2311 so that the heat exchange medium sprayed into the exhaust space 2311 exchanges heat with this part of the emissions, thereby greatly reducing the temperature of the emissions ejected from the battery cells 110 and preventing the battery 10 from The internal temperature is too high, which greatly reduces the safety risks of the battery 10.
  • the emissions sprayed from the pressure relief mechanism 111 of the battery cell 110 flow into the exhaust space 2311 through the heat exchange hole 2101, the receiving cavity 242 and the ventilation hole 241, and can interact with the exchange gas sprayed into the exhaust space 2311.
  • the heat medium undergoes heat exchange, and the heat-exchanged mixed gas can be discharged into the gas collection chamber 2322 through the exhaust space 2311 for centralized processing.
  • the gas pressure in the gas collecting chamber 2322 reaches the preset pressure value, the gas collecting chamber 2322 is connected to the external environment through the pressure relief component 233, and the pressure relief component 233 can be used to relieve the pressure, thereby improving the reliability and safety of the battery 10. .
  • the receiving part 240 and the first heat exchange part 210 define a receiving cavity 242 with an opening on one side, and the opening of the receiving cavity 242 passes through the heat exchange hole 2101 of the first heat exchange part 210 Connected to the electrical cavity 2321, a vent hole 241 connected to the exhaust space 2311 is provided on the side of the receiving cavity 242 away from the opening.
  • the emissions ejected from the pressure relief mechanism 111 of the battery cell 110 flow into the exhaust space 2311 through the heat exchange hole 2101, the receiving cavity 242 and the ventilation hole 241, and can interact with the exchange gas released into the exhaust space 2311.
  • the heat medium exchanges heat, and the heat-exchanged mixed gas can be discharged through the exhaust space 2311 for centralized treatment.
  • the thermal management component 201 can be used to greatly reduce the temperature of the emissions ejected from the battery cell 110, thereby avoiding the risk of The internal temperature of the battery 10 is too high, which greatly reduces the safety risks of the battery 10 .
  • vent holes 241 are arranged in a staggered position with the pressure relief mechanism 111 of the adjacent battery cell 110 .
  • Each battery module 100 includes a plurality of battery cells 110 spaced apart along the third direction F 3 .
  • the receiving portion 240 is provided with battery cells in the adjacent electrical cavity 2321 .
  • the vent holes 241 and the corresponding pressure relief mechanisms 111 of the battery cells 110 are arranged in a staggered manner along the third direction F 3 .
  • vent holes 241 and the pressure relief mechanisms 111 of the corresponding battery cells 110 are disposed in a staggered manner along the third direction F3 , when the emissions flow into the exhaust space 2311 through the vent holes 241, the emissions can be curved. By flowing into the exhaust space 2311, the emissions ejected from the pressure relief mechanisms 111 of two adjacent battery cells 110 can be well avoided from opposing each other.
  • the thermal management component 201 includes two receiving parts 240 located in the exhaust space 2311 , and the two first heat exchange parts 210 and the two receiving parts 240 of the thermal management component 201 are one by one.
  • the receiving part 240 and the corresponding first heat exchange part 210 define a receiving cavity 242 with an opening on one side.
  • the opening of the receiving cavity 242 is connected to the electrical cavity 2321 through the heat exchange hole 2101 of the corresponding first heat exchange part 210
  • a ventilation hole 241 connected with the exhaust space 2311 is provided on the side of the receiving cavity 242 away from the opening.
  • the ventilation holes 241 on two adjacent receiving parts 240 are arranged in a staggered manner along the third direction F 3 , and both are aligned with the pressure relief mechanism 111 of the corresponding battery cell 110 along the third direction. F 3 is misplaced.
  • the ventilation holes 241 on the receiving part 240 and the pressure relief mechanisms 111 of the corresponding battery cells 110 are arranged in a staggered manner along the third direction F3 , which can better prevent the pressure relief mechanisms of the two adjacent battery cells 110 from being released.
  • the emissions ejected from 111 are opposite to each other.
  • the ventilation holes 241 on the two receiving parts 240 are staggered along the third direction F3 , it is possible to avoid exhaust gas from flowing in through the ventilation holes 241 on the two receiving parts 240. Emissions in space 2311 collide and disturb each other.
  • each battery module 100 includes a plurality of battery cells 110 spaced apart along the third direction F 3
  • the second heat exchange part 220 is provided with a plurality of interface members spaced apart along the third direction F 3 221.
  • the outlet 2211 of each interface piece 221 is arranged along the second direction F2 , and all interface pieces 221 on the same second heat exchange part 220 and the pressure relief mechanisms 111 of all battery cells 110 of the adjacent battery module 100 In one-to-one correspondence, the second direction F 2 and the third direction F 3 are set at an angle.
  • the second direction F 2 and the third direction F 3 are perpendicular to each other.
  • the third direction F 3 can be parallel to the length direction of the battery 10 .
  • the second direction F 2 can be parallel to the width direction of the battery 10 . Of course, it can also be the third direction F 2 .
  • the direction F 3 may be parallel to the width direction of the battery 10
  • the second direction F 2 may be parallel to the length direction of the battery 10 .
  • the outlet 2211 of the interface piece 221 is arranged at an angle with the central axis of the corresponding pressure relief mechanism 111 of the battery cell 110 .
  • the corresponding interface piece 221 can spray the heat exchange medium into the exhaust space 2311. Due to the central axis of the outlet 2211 of the interface piece 221 and the corresponding pressure relief mechanism 111 of the battery cell 110 Arranged at an angle, the heat exchange medium sprayed from the outlet 2211 of the interface piece 221 will not spray toward the pressure relief mechanism 111, and can well intersect with the emissions sprayed from the pressure relief mechanism 111 in the exhaust space 2311 , which can not only prevent the internal temperature of the battery 10 from being too high, but also avoid disturbances in the two airflows, which can effectively reduce safety risks.
  • the pressure relief mechanism 111 of the battery cell 110 is bent and pointed toward the corresponding interface piece 221 .
  • the exhaust ejected from the pressure relief mechanism 111 can flow to the interface member 221 along a curved path, and meet with the heat exchange medium ejected from the outlet 2211 of the corresponding interface member 221 in the exhaust space 2311 , can reduce the flow rate of the emissions ejected by the pressure relief mechanism 111 and further avoid disturbance between the two airflows.
  • the thermal management component 201 includes two second heat exchange parts 220 spaced apart along the second direction F2 , and the pressure relief mechanism 111 of the battery cell 110 of the battery module 100 is in the adjacent thermal management component 201.
  • the orthographic projection above is located between the two second heat exchange parts 220 of the thermal management component 201 , and each second heat exchange part 220 is provided with a plurality of interface pieces 221 .
  • the two second heat exchange parts 220 are located on opposite sides of the pressure relief mechanism 111 of the battery cell 110 along the second direction F 2 , where the second direction F 2 may be parallel to the width direction of the battery cell 110 .
  • the emissions ejected from the pressure relief mechanism 111 of the battery cell 110 can flow into the exhaust space 2311 and the two second heat exchange parts 220 can be utilized.
  • the interface piece 221 sprays the heat exchange medium into the exhaust space 2311, which can improve the heat exchange effect and reduce safety risks more effectively.
  • a battery 10 provided by an embodiment of the present application includes a plurality of battery cells 110 and the above-mentioned thermal management component 201.
  • the battery 10 includes two battery modules 100 and a case assembly 200, and the case assembly includes a thermal management component 201 and a thermal management frame 231.
  • the thermal management component 201 is disposed between the two battery modules 100,
  • the thermal management component 201 includes two first heat exchange parts 210 and a second heat exchange part 220 that correspond to the battery module 100 one-to-one.
  • the box assembly 200 includes two battery frames 232 .
  • the two battery frames 232 are connected to opposite sides of the thermal management frame 231 along the thickness direction of the first heat exchange part 210 .
  • the thermal management frame 231 is connected to the two first heat exchangers 231 .
  • the heat exchange part 210 surrounds an exhaust space 2311.
  • the first heat exchange part 210 and the adjacent battery frame 232 define an electrical cavity 2321 for accommodating the corresponding battery module 100.
  • the first heat exchange part 210 There are heat exchange holes 2101 connected with the electrical cavity 2321 and the exhaust space 2311 respectively.
  • the second heat exchange part 220 is located in the exhaust space 2311.
  • the second heat exchange part 220 is provided with an interface piece 221.
  • the interface piece 221 It is configured to spray the heat exchange medium into the exhaust space 2311 when the battery cell 110 undergoes thermal runaway.
  • the heat exchange holes 2101 on the first heat exchange part 210 and the corresponding pressure relief mechanism 111 of the battery cell 110 One correspondence.
  • the first heat exchange part 210 can be in contact with the battery cells 110 of the battery module 100 to perform heat exchange with the battery cells 110 . If the battery cell 110 undergoes thermal runaway, the emissions ejected from the battery cell 110 flow into the exhaust space 2311 through the heat exchange holes 2101. This part of the emissions can exchange heat with the side walls of the heat exchange holes 2101 to prevent the exhaust gas from flowing into the exhaust space 2311. The emissions undergo primary cooling treatment. Since the interface piece 221 is configured to spray the heat exchange medium into the exhaust space 2311 when the battery cell 110 undergoes thermal runaway, the interface piece 221 can spray the heat exchange medium into the exhaust space 2311.
  • the interface piece 221 The heat exchange medium sprayed into the exhaust space 2311 can exchange heat with the emissions flowing into the exhaust space 2311 to perform a secondary cooling process on the emissions.
  • the heat exchange medium and the secondary cooling-processed emissions can be discharged out of the exhaust space 2311 together for centralized treatment.
  • the thermal management component 201 can be used to treat the battery cells 110 and battery cells of the two battery modules 100
  • the emissions ejected by 110 are thermally managed to prevent the internal temperature of the battery 10 from being too high, thereby greatly reducing the safety hazards of the battery 10 .
  • An electrical device provided by an embodiment of the present application includes the above-mentioned battery 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及一种热管理部件(201)、箱体组件(200)、电池(10)和用电装置,热管理部件(201)用于电池(10),电池(10)包括电池单体(110),热管理部件(201)包括第一换热部(210)和第二换热部(220),所述第一换热部(210)用于与所述电池单体(110)进行热交换,所述第二换热部(220)用于与所述电池单体(110)的排放物进行热交换,如此,可利用热管理部件(201)的第一换热部(210)与电池单体(110)进行热交换,也可利用第二换热部(220)与电池单体(110)的排放物进行热交换,避免因电池单体(110)热失控产生的失控气体的温度过高而增加电池(10)的内部温度,可提高电池(10)的安全性,并降低电池(10)的安全隐患。

Description

热管理部件、箱体组件、电池和用电装置 技术领域
本申请涉及电池技术领域,特别是涉及热管理部件、箱体组件、电池和用电装置。
背景技术
相关技术中,通常会借助于热管理部件(如水冷板)对电池的电池单体进行热管理,然而,传统的电池的安全隐患较大。
发明内容
基于此,有必要针对传统的电池的安全隐患较大的问题,提供一种热管理部件、箱体组件、电池和用电装置。
第一方面,本申请提供了一种热管理部件,用于电池,电池包括电池单体,其中,热管理部件包括第一换热部和第二换热部,第一换热部用于与电池单体进行热交换,第二换热部用于与电池单体的排放物进行热交换。
本申请的技术方案中,可利用热管理部件的第一换热部与电池单体进行热交换,也可利用第二换热部与电池单体的排放物进行热交换,避免因电池单体热失控产生的失控气体的温度过高而增加电池的内部温度,可提高电池的安全性,并降低电池的安全隐患。
在其中一个实施例中,热管理部件包括排气空间,排气空间用于接收或引导电池单体的排放物,且排气空间被构造为能够允许电池单体的排放物与第二换热部进行热交换。由此,电池单体的排放物经由排气空间接收或引导,并能够与第二换热部进行热交换,可有效实现对电池单体的排放物的热管理,避免因电池单体热失控产生的失控气体的温度过高而增加电池的内部温度。
在其中一个实施例中,第二换热部包括接口件和容纳腔,容纳腔用于容纳换热介质,接口件用于连通容纳腔和排气空间,以使换热介质能够经由接口件到达排气空间。可利用接口件将容纳腔内的换热介质释放到排气空间,以便该换热介质能够与排气空间内接收或引导电池单体的排放物进行热交换。
在其中一个实施例中,接口件的进口连接于容纳腔,接口件的出口朝向排气空间内。容纳腔内的换热介质可经由接口件的进口和接口件的出口释放至排气空间内,以便与排气空间内接收或引导电池单体的排放物进行热交换。
在其中一个实施例中,排气空间沿第一方向延伸,接口件的出口方向相交于第一方向。如此,进入排气空间的排放物能够沿第一方向流动,并能够很好地与从接口件的出口释放的 换热介质交汇,以使进入排气空间的排放物能够更好地与这部分换热介质进行热交换,可提高热交换的效果。
在其中一个实施例中,热管理部件还包括接收部,接收部用于对应于电池单体设置,以使电池单体的排放物经由接收部到达排气空间,接口件的出口方向和接收部的接收方向相交设置。电池单体的排放物能够经由接收部到达排气空间,到达排气空间的排放物可与到达排气空间的换热介质进行热交换,以降低电池内部的温度,提高电池的安全性。另外,从接口件的出口喷出的换热介质不会朝向电池单体释放,可避免两股气流对喷而产生扰动,且这部分换热介质能很好地与电池单体的排放物在排气空间内交汇,既能避免电池的内部温度过高,又能有效降低安全隐患。
在其中一个实施例中,热管理部件包括沿第二方向相邻设置的两个接口件;沿第二方向,接收部设置于相邻的两个接口件之间。由此,两个接口件均能够向排气空间内释放换热介质,且电池单体的排放物能流入排气空间内,并与释放至排气空间内的换热介质发生热交换,可提高热交换的效率。
在其中一个实施例中,第二换热部上设有沿第三方向间隔设置的多个接口件,多个接口件中每一个的出口均沿第二方向设置,且同一第二换热部上的多个接口件与多个接收部一一对应;第二方向与第三方向相交设置。由此,容纳腔内的换热介质可通过多个接口件更快地释放至排气空间内,电池单体的排放物经由接收部到达排气空间,由于接口件的出口方向和接收部的接收方向相交设置,既可使这部分排放物与换热介质能很好地与在排气空间内交汇,又能避免两股气流产生扰动,可避免电池的内部温度过高的同时,还可有效降低安全隐患。
在其中一个实施例中,接口件包括连接通道和开关部,连接通道被配置为在开关部开启后能够连通容纳腔和排气空间。电池单体发生热失控时,开关部开启,容纳腔内的换热介质能够经由连通通道到达排气空间内,以与排气空间内的排放物进行热交换。
在其中一个实施例中,开关部被配置为热熔结构、电致开关或薄弱结构。
在其中一个实施例中,热管理部件包括热管理框体,热管理框体和第一换热部围设出排气空间;第二换热部设于排气空间内,以与电池单体的排放物进行热交换。当电池单体发生热失控时,电池单体的排放物能够流入排气空间内,且排气空间内的第二换热部能够很好地与这部分排放物进行热交换。
在其中一个实施例中,热管理部件包括排气件,排气件用于形成排气空间,第一换热部、第二换热部和排气件为层叠设置。便于第二换热部释放的换热介质与排放至排气空间内的排放物进行热交换,同时,层叠设置的结构也能很好地降低热管理部件的整体体积。
在其中一个实施例中,第一换热部和排气件分别位于第二换热部的两侧。可使电池单体沿层叠方向延伸并设于热管理部件的一侧,使得第一换热部能够与电池单体进行热交换, 且第二换热部的容纳腔内的换热介质能够通过接口件到达排气空间,并与电池单体的排放物进行热交换。
在其中一个实施例中,排气件位于第一换热部和第二换热部之间。可将电池单体设置于第一换热部背离排气件的一侧,能够更好地节省电池单体和热管理部件的占地面积。
在其中一个实施例中,第二换热部为两个并层叠设置,两个第二换热部之间界定出排气空间,至少一个第二换热部朝向排气空间的表面设置有接口件。两个第二换热部的至少之一通过接口件向排气空间内释放换热介质,以与电池单体的排放物进行热交换。
在其中一个实施例中,第一换热部为两个并分别设置于两个第二换热部的外表面。可将电池单体设于两个第一换热部之间,且电池单体位于排气空间沿垂直于第二换热部的层叠方向的一侧。两个第一换热部同时与电池单体进行热交换,两个第二换热部的至少之一通过接口件向排气空间内释放换热介质,以与电池单体的排放物进行热交换。
第二方面,本申请还提供了一种箱体组件,包括上述的热管理部件。
在其中一个实施例中,热管理部件包括排气件,排气件用于形成排气空间,第一换热部、第二换热部和排气件为层叠设置。热管理部件被配置为箱体组件的顶部结构、底部结构、边梁或中部梁中的至少一者。由此,能够很好地利用热管理部件对电池单体和电池单体的排放物进行换热。
在其中一个实施例中,第二换热部为两个并层叠设置,两个第二换热部之间界定出排气空间,至少一个第二换热部朝向排气空间的表面设置有接口件。热管理部件被配置为箱体组件的中部梁。便于利用一个热管理部件同时对热管理部件两侧的电池单体和电池单体的排放物进行热管理。
第三方面,本申请还提供了一种电池,电池包括电池单体和上述的箱体组件,箱体组件具有电气腔,电池单体容纳于电气腔中。电气腔能够与排气空间相连通,以便排气空间能够接收或引导电池单体的排放物。
在其中一个实施例中,电气腔位于热管理部件的一侧。以便排气空间能够接收或引导电池单体的排放物,使得热管理部件的第二换热部能够很好地与电池单体的排放物进行换热,另外,热管理部件的第一换热部也能够很好地与电池单体进行换热。
在其中一个实施例中,热管理部件被配置为箱体组件的中部梁,电气腔为多个且分布于热管理部件的两侧。由此,可在每一电气腔内设置电池单体,可利用一个热管理部件对两侧的电池单体和电池单体的排放物进行热管理,且电池的整体结构更为紧凑。
第四方面,本申请还提供了一种电池,电池包括多个电池单体和上述的热管理部件。
在其中一个实施例中,箱体组件为上述的热管理部件,热管理部件还包括接收部,接收部用于对应于电池单体设置,以使电池单体的排放物经由接收部到达排气空间,接口件的出口方向和接收部的接收方向相交设置。电池单体包括泄压机构,泄压机构朝向接收部设置。 由此,电池单体的泄压机构喷出的排放物能更好地通过接收部流入排气空间内。
在其中一个实施例中,电池单体为多个,接收部也为多个,多个电池单体的泄压机构被配置为与多个接收部一一对应。由此,电池单体的泄压机构喷出的排放物能通过对应的接收部流入排气空间内。
第五方面,本申请还提供了一种用电装置,用电装置包括上述的电池。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1示出了本申请一实施例的一种车辆的结构示意图;
图2示出了本申请一实施例中的电池的结构示意图;
图3示出了本申请一实施例中的电池的侧剖视图(第一视角);
图4示出了图3的A处的放大示意图;
图5示出了本申请一实施例中的电池的侧剖视图(第二视角);
图6示出了图5的B处的放大示意图;
图7示出了本申请一实施例中的热管理部件201和接收部的结构示意图;
图8示出了本申请一实施例中的热管理部件201和接收部的俯视图;
图9示出了本申请一实施例中的电池的局部结构示意图;
图10示出了本申请一实施例中的第一换热部的结构示意图;
图11示出了本申请一实施例中的热管理板的结构示意图。
1、车辆;10、电池;100、电池模块;110、电池单体;111、泄压机构;200、箱体组件;201、热管理部件;210、第一换热部;2101、换热孔;211、排气口;2111、第一排气口;2112、第二排气口;212、换热腔;213、流体进管;214、流体出管;215、热管理板;220、第二换热部;221、接口件;2211、出口;222、容纳腔;231、热管理框体;231、热管理框体;2311、排气空间;232、电池框体;2321、电气腔;2322、集气腔;2323、外框;2324、内框;233、泄压部件;240、接收部;241、通气孔;242、接收腔;20、控制器;30、马达。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨 在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
电池包括电池,电池中,通常会借助于热管理部件(如水冷板)对电池的电池单体进行热管理,然而,传统的电池的安全隐患较大。
本申请的发明人经过研究发现,传统的电池的安全隐患较大的原因在于:传统的电池中,没有对电池单体热失控时产生的失控气体进行降温处理,导致因电池单体热失控产生的失控气体的温度过高而增加了电池的内部温度,进而导致传统的电池存在极大的安全隐患。
为了解决传统的电池的安全隐患较大的问题,本申请的发明人经过深入研究,设计了一种热管理部件,该热管理部件既可对电池单体进行热管理,又能对电池单体热失控时产生的排放物进行热管理,避免电池的内部温度过高,可有效降低电池的安全隐患。
本申请实施例公开的热管理部件、箱体组件、电池单体/电池可以但不限用于车辆、 船舶或飞行器等用电装置中。用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。可以使用具备本申请公开的电池单体/电池等组成该用电装置的电源系统,这样,便于为用电装置提供电力驱动。
请参照图1,图1为本申请一些实施例提供的车辆1的结构示意图。车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部设置有电池10,电池10可以设置在车辆1的底部或头部或尾部。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源。车辆1还可以包括控制器20和马达30,控制器20用来控制电池10为马达30供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在一些实施例中,电池10不仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2示出了本申请一实施例中的电池10的结构示意图。
请参阅图2,并结合参阅3,本申请一实施例提供的热管理部件201,用于电池10。其中,电池10包括电池单体110,热管理部件201包括第一换热部210和第二换热部220,第一换热部210用于与电池单体110进行热交换,第二换热部220用于与电池单体110的排放物进行热交换。
第一换热部210是指能够对电池单体110进行热管理的部件,第一换热部210可以具有一个用于容纳换热介质的换热腔212,以利用该换热腔212对电池单体110进行热管理;也可以具有用于容纳换热介质且与电池单体110一一对应的换热腔212,以利用换热腔212内的换热介质对对应的电池单体110进行热管理;在此不作具体限制。
第一换热部210可以与电池单体110直接接触或间接接触,以与电池单体110进行热交换。
第二换热部210可设置于电池单体110的一侧,并能够与电池单体110的排放物进行热交换,比如将电池单体110的排放物收集在一个空间内,并利用该空间的侧壁与电池单体110的排放物进行热交换。再比如将电池单体110的排放物收集在一个空间内,第二换热部210能够向该空间内释放换热介质,以与电池单体110的排放物进行热交换。本申请不局限于此。
电池单体110的排放物可以是从电池单体110的泄压机构111喷出的高温物质,高温物质包括气体和气体携带的固体物。
由此,可利用热管理部件201的第一换热部210与电池单体110进行热交换,也可利用第二换热部220与电池单体110的排放物进行热交换,避免因电池单体120热失控产生的 失控气体的温度过高而增加电池10的内部温度,可提高电池10的安全性。
在一些实施例中,请参阅图3及图4,热管理部件201包括排气空间2311,排气空间2311用于接收或引导电池单体110的排放物,且排气空间2311被构造为能够允许电池单体110的排放物与第二换热部220进行热交换。
第二换热部220可以独立于排气空间2311,比如设置于排气空间2311外。第二换热部220也可以位于排气空间2311内,以便利用第二换热部220对排气空间2311内接收或引导的电池单体110的排放物进行热交换。
上述“第二换热部220”可以是其内设有换热介质且设有接口件221的部件,以能够在电池单体110发生热失控时向排气空间2311内释放换热介质,以与排放物进行热交换。“第二换热部220”也可以是其他能够借助于接口件221在电池单体110发生热失控时向排气空间2311内释放换热介质的部件,“第二换热部220”也可以是能够与电池单体110的排放物直接接触而进行换热的部件,在此不作具体限制。
由此,电池单体110的排放物经由排气空间2311接收或引导,并能够与第二换热部220进行热交换,可有效实现对电池单体110的排放物的热管理,避免因电池单体120热失控产生的失控气体的温度过高而增加电池10的内部温度。
在一些实施例中,请参阅图4,第二换热部220包括接口件221和容纳腔222,容纳腔222用于容纳换热介质,接口件用于连通容纳腔222和排气空间2311,以使换热介质能够经由接口件到达排气空间211。
接口件221可以是分别与容纳腔222和排气空间2311相连通的喷嘴,也可以是分别与容纳腔222和排气空间2311相连通的管道,也可以是其他能够用于连通容纳腔222和排气空间2311的部件,不局限于此。
上述接口件221可以包括能够在电池单体110发生热失控时热熔形成开裂部的部件(比如在接口件221的出口2211堵设包含受热熔融的部件),也可以包括能够在电池单体110发生热失控时因受热膨胀而形成开裂部的部件(比如在接口件221的出口2211堵设包含受热膨胀材料的部件),也可以在能够在接口件221的出口设置能够在电池单体110发生热失控时处于打开状态的电致开关。也可以是其他能够响应于电池单体110发生热失控而向排气空间2311内释放换热介质的形式,在此不作具体限制。
可利用接口件221将容纳腔222内的换热介质释放到排气空间211,以便该换热介质能够与排气空间2311内接收或引导电池单体110的排放物进行热交换。
在一些实施例中,接口件221被配置为能够在电池单体110发生热失控时向排气空间2311内喷淋雾状换热介质,接口件221喷淋至排气空间2311内的雾状换热介质能够更好地与流入排气空间2311内的排放物发生热交换,且该雾状换热介质能够更好地与排放物一起排出排气空间2311外,以进行集中处理。
在一些实施例中,接口件221的进口连接于容纳腔222,接口件221的出口2211朝向排气空间2311内。
可以理解的是,容纳腔222内的换热介质可经由接口件221的进口和接口件221的出口2211释放至排气空间2311内。比如接口件为喷嘴,可以将容纳腔222内的换热介质喷淋至排气空间2311内,以便与排气空间2311内接收或引导电池单体110的排放物进行热交换。
在一些实施例中,排气空间2311沿第一方向F 1延伸,接口件221的出口方向相交于第一方向。
排气空间2311沿第一方向F 1延伸可以是与排气空间2311相连通的排气口211位于排气空间2311沿第一方向F 1的一侧,也可以是与排气空间2311相连通的排气口211位于排气空间2311沿第一方向F 1的相对两侧,也可以是其他能够引导流入排气空间2311的排放物沿第一方向F 1流动的方式,在此不作具体限制。
如此,进入排气空间2311的排放物能够沿第一方向F 1流动,并能够很好地与从接口件221的出口释放的换热介质交汇,以使进入排气空间2311的排放物能够更好地与这部分换热介质进行热交换,可提高热交换的效果。
在一些实施例中,热管理部件201还包括接收部240,接收部240用于对应于电池单体110设置,以使电池单体110的排放物经由接收部240到达排气空间2311,接口件221的出口方向和接收部240的接收方向相交设置。
“接收部240用于对应于电池单体110设置”可以是接收部240与电池单体110一一对应,也可以是一个接收部240对应多个电池单体110,在此不作具体限制。
接收部240可以具有能够接收电池单体110的排放物且与排气空间2311相连通的腔或孔,接收部240也可以包括下述的热熔结构、薄弱结构或电致开关等,以便在电池单体110发生热失控时使电池单体的排放物能够经由接收部240到达排气空间2311。在此不作具体限制。
由此,电池单体110的排放物能够经由接收部240到达排气空间2311,到达排气空间2311的排放物可与到达排气空间2311的换热介质进行热交换,以降低电池10内部的温度,提高电池10的安全性。另外,从接口件221的出口2211喷出的换热介质不会朝向电池单体110释放,可避免两股气流对喷而产生扰动,且这部分换热介质能很好地与电池单体110的排放物在排气空间2311内交汇,既能避免电池10的内部温度过高,又能有效降低安全隐患。
在一些实施例中,请参阅图3及图4,热管理部件201包括沿第二方向F 2相邻设置的两个接口件221,沿第二方向F 2,接收部240设置于相邻的两个接口件221之间。
“热管理部件201包括沿第二方向F 2相邻设置的两个接口件221”可以是热管理部件201包括沿第二方向F 2间隔设置的两个第二换热部220,各第二换热部200上设有接口件221,两个第二换热部200中相邻的两个接口件221沿第二方向F 2相对设置。也可以是一个第二换 热部220包括沿第二方向F 2相邻设置的两个接口件221。在此不作具体限制。
由此,两个接口件221均能够向排气空间2311内释放换热介质,且电池单体110的排放物能流入排气空间2311内,并与释放至排气空间2311内的换热介质发生热交换,可提高热交换的效率。另外,经过热交换的混合气体能经由排气空间2311排出,以进行集中处理,如此,能利用热管理部件201对电池单体110的排放物进行热管理,避免电池10的内部温度过高,极大地减小了电池10的安全隐患。
在一些实施例中,请参阅图5及图6,第二换热部220上设有沿第三方向F 3间隔设置的多个接口件221,多个接口件221中每一个的出口2211均沿第二方向F 2设置,且同一第二换热部220上的多个接口件221与多个接收部240一一对应,第二方向F 2与第三方向F 3相交设置。
第三方向F 3可以平行于上述的第一方向F 1,也可以与上述的第一方向F 1相交设置,在此不作具体限制。示例性地,图5给出了第三方向F 3平行于上述的第一方向F 1的示例。
由此,容纳腔222内的换热介质可通过多个接口件221更快地释放至排气空间2311内,电池单体110的排放物经由接收部240到达排气空间2311,由于接口件221的出口方向和接收部240的接收方向相交设置,既可使这部分排放物与换热介质能很好地与在排气空间2311内交汇,又能避免两股气流产生扰动,可避免电池10的内部温度过高的同时,还可有效降低安全隐患。
在一些实施例中,接口件221包括连通通道和开关部,连接通道被配置为在开关部开启后能够连通容纳腔222和排气空间2311。
电池单体110发生热失控时,开关部开启,容纳腔222内的换热介质能够经由连通通道到达排气空间2311内,以与排气空间2311内的排放物进行热交换。
连通通道分别与接口件221的进口和接口件221的出口2211相连通,可以在接口件221的出口2211设置开关部,也可以在接口件221的进口设置开关部,也可以在连通通道上设置开关部,在此不作具体限制。
在一些实施例中,开关部被配置为热熔结构、电致开关或薄弱结构,也可以配置为可与烟气反应的化学材料结构。
开关部可以为堵设于连通通道或接口件221的出口2211的有热熔结构,热熔结构被构造为能够在排气空间2311内的气体的温度达到预设温度时熔融而形成开裂部,以使出口2211能够通过开裂部与排气空间2311相连通。
上述“热熔结构”是指能够在排气空间2311内的气体的温度达到预设温度时熔融的部件,热熔结构的材质可以是温敏材料,也可以是其他能够在排气空间2311内的气体的温度达到预设温度时熔融的材质,在此不作具体限制。预设温度可以设置为60-100℃。
当电池单体110发生热失控时,电池单体110的排放物能够流入排气空间2311内, 使得位于排气空间2311内的出口2211的热熔结构能够在达到预设温度时熔融而形成开裂部,进而使接口件221内的换热介质通过该开裂部喷淋至排气空间2311内,以使电池单体110喷出的高温物质的温度得以下降,避免电池10的内部温度过高,减小了电池10的安全隐患。
在另一些实施例中,开关部为电致开关,比如设置于接口件221的出口2211上的电池开关,电致开关被配置为能够在电池单体110发生热失控时处于打开状态。
当电池单体110发生热失控时,电池单体110的排放物能够流入排气空间2311内,使得位于排气空间2311内的出口2211上的电致开关能够处于打开状态,进而使接口件221内的换热介质通过出口2211流入至排气空间2311内,以使电池单体110的排放物的温度得以下降,避免电池10的内部温度过高,减小了电池10的安全隐患。
在一些实施例中,请参阅图3及图4,热管理部件201包括热管理框体231,热管理框体231和第一换热部210围设出排气空间2311,第二换热部220设于排气空间2311内,以与电池单体110的排放物进行热交换。
如此,当电池单体110发生热失控时,电池单体110的排放物能够流入排气空间2311内,且排气空间2311内的第二换热部220能够很好地与这部分排放物进行热交换。
在另一些实施例中(图中未示出),热管理部件201包括排气件,排气件用于形成排气空间2311,第一换热部210、第二换热部220和排气件为层叠设置。
“第一换热部210、第二换热部220和排气件为层叠设置”可以是第一换热部210、第二换热部220和排气件中其中一者放置于其余两者之间,比如第一换热部210和排气件分别位于第二换热部220的两侧,再比如排气件位于第一换热部210和第二换热部220之间,在此不作具体限制。
比如,在一些实施例中(图中未示出),可以将热管理部件201设置于电池单体110的一侧,排气件位于第一换热部210和第二换热部220之间,且电池单体110设置于第一换热部210背离排气件的一侧,能够更好地节省电池单体110和热管理部件201的占地面积,也方便利用第一换热部210对电池单体进行热管理,可在第一换热部210设置与排气空间2311连通的换热孔2101,由此,第二换热部220的容纳腔222内的换热介质能够通过接口件221到达排气空间2311,电池单体110的排放物经由第一换热部210的换热孔2101能够流入排气空间2311内,并与排气空间2311内的换热介质发生热交换,以降低电池单体110的排放物的温度,提高电池10的安全性。
再比如,在另一些实施例中(图中未示出),热管理部件201包括依次层叠设置的第一换热部210、第二换热部220和排气件,也就是说,第一换热部210和排气件分别位于第二换热部220的两侧,可使电池单体110沿层叠方向延伸并设于热管理部件201的一侧,使得第一换热部210能够与电池单体110进行热交换,且第二换热部220的容纳腔222内的换热介质能够通过接口件221到达排气空间2311,并与电池单体110的排放物进行热交换。
在还有一些实施例中(图中未示出),第二换热部220为两个并层叠设置,两个第二换热部220之间界定出排气空间2311,至少一个第二换热部211朝向排气空间2311的表面设置有接口件221。
两个第二换热部210的至少之一通过接口件221向排气空间2311内释放换热介质,以与电池单体110的排放物进行热交换。
在本实施例中(图中未示出),第一换热部210为两个并分别设置于两个第二换热部220的外表面。
可以是电池单体110位于两个第一换热部210之间,且电池单体110位于排气空间2311沿垂直于第二换热部220的层叠方向的一侧。如此,两个第一换热部210同时与电池单体110进行热交换,两个第二换热部210的至少之一通过接口件221向排气空间2311内释放换热介质,以与电池单体110的排放物进行热交换。
本申请一实施例提供的箱体组件200,包括上述的热管理部件201。
在一些实施例中,热管理部件201包括上述排气件,排气件用于形成排气空间2311,第一换热部210、第二换热部220和排气件为层叠设置。热管理部件201被配置为箱体组件200的顶部结构、底部结构、边梁或中部梁中的至少一者。
热管理部件201被配置为箱体组件200的顶部结构、底部结构、边梁或中部梁中的至少一者,热管理部件201可以为的顶部结构、底部结构、边梁或中部梁中的至少一者,比如,热管理部件201可以为箱体组件200的顶部结构,将电池单体110设于箱体组件200的顶部结构的一侧,如此,可利用热管理部件201对一侧的电池单体110和电池单体的排放物进行换热。当然,热管理部件201可以为的底部结构、边梁或中部梁,可以结合管理部件201为箱体组件200的顶部结构进行对应理解,在此就不再赘述。图1给出了热管理部件201被配置为箱体组件200的中部梁的示例。
在一些实施例中,第二换热部220为两个并层叠设置,两个第二换热部220之间界定出排气空间2311,至少一个第二换热部220朝向排气空间2311的表面设置有接口件221,热管理部件201被配置为箱体组件200的中部梁。
箱体组件200的中部梁可以为横梁或纵梁,横梁或纵梁沿其厚度方向的两侧都有电池单体110分布。
可在箱体组件200的中部梁的顶侧或底侧设置电池单体110,由此,至少一个第二换热部210的接口件221向排气空间2311内释放换热介质,能够与电池单体110的排放物进行热交换。
在一些实施例中,本申请一实施例提供的电池10,电池10包括电池单体110和上述的箱体组件200,箱体组件200具有电气腔2321,电池单体110容纳于电气腔2321中。
电气腔2321能够与排气空间2311相连通,以便排气空间2311能够接收或引导电池 单体110的排放物。
“电气腔2321能够与排气空间2311相连通”可以是电气腔2321通过箱体组件200上的孔与排气空间2311相连通,也可以是箱体组件200上设有上述的热熔结构、薄弱结构或电致开关等,以便在电池单体110发生热失控时使电气腔2321与排气空间2311相连通。本申请不局限于此。
由此,能够利用箱体组件200的热管理部件201对箱体组件200内的电池单体110和电池单体110的排放物进行热管理。
“电池10包括电池单体110和上述的箱体组件200,箱体组件200具有电气腔2321,电池单体110容纳于电气腔2321中”可以包括:电气腔2321位于热管理部件201的一侧。
电气腔2321能够与排气空间2311相连通,以便排气空间2311能够接收或引导电池单体110的排放物,使得热管理部件201的第二换热部220能够很好地与电池单体110的排放物进行换热,另外,热管理部件201的第一换热部210也能够很好地与电池单体110进行换热。
“电池10包括电池单体110和上述的箱体组件200,箱体组件200具有电气腔2321,电池单体110容纳于电气腔2321中”也可以包括:电气腔2321位于热管理部件201的一侧,电气腔2321能够与排气空间2311相连通,且热管理部件201被配置为箱体组件200的顶部结构、底部结构、边梁或中部梁中的至少一者。
热管理部件201被配置为箱体组件200的顶部结构、底部结构、边梁或中部梁中的至少一者,热管理部件201可以为的顶部结构、底部结构、边梁或中部梁中的至少一者,比如,热管理部件201可以为箱体组件200的顶部结构,箱体组件200围设出电气腔2321,电池单体110容纳于电气腔2321中,可以理解的是,热管理部件201相当于电气腔2321的顶壁,如此,可利用热管理部件201对一侧的电气腔2321的电池单体110和电池单体的排放物进行换热。当然,热管理部件201可以为的底部结构、边梁或中部梁,可以结合管理部件201为箱体组件200的顶部结构进行对应理解,在此就不再赘述。图1给出了热管理部件201被配置为箱体组件200的中部梁的示例。
由此,能够很好地利用热管理部件201对一侧的电气腔2321内的电池单体110和电池单体的排放物进行换热。
在一些实施例中,如图2所示,箱体组件200包括热管理部件201和电池框体232,如图3所示,电池框体232和热管理部件201的热管理框体2311均连接于第一换热部210且沿第一换热部210的厚度方向相连,第一换热部210与热管理框体231围设出排气空间2311,第一换热部210与电池框体232围设出用于容置电池单体110的电气腔2321,第一换热部210上设有分别与电气腔2321和排气空间2311相连通的换热孔2101(如图4所示)。
该电池10使用时,若电池单体110发生热失控时,则会向电气腔2321内喷出排放物, 在这部分排放物经过第一换热部210的换热孔2101而流入排气空间2311的过程中,这部分排放物能够与换热孔2101的内壁发生热交换,以对排放物进行一次降温处理。第二换热部220可与流入排气空间2311内的排放物发生热交换,以对排放物进行二次降温处理。如此,能利用热管理部件201使电池单体110喷出的排放物的温度大大地下降,避免电池10的内部温度过高,极大地减小了电池10的安全隐患。
在一些实施例中,请参阅图7及图8,第一换热部210包括层叠设置的两个热管理板215,两个热管理板215之间界定出至少一换热腔212,其中一热管理板215上设有分别与换热腔212相连通的流体进管213和流体出管214,从流体进管213流入换热腔212内的流体用于与电池单体110进行换热。
换热腔212用于容纳换热介质,以与电池单体110进行换热,换热腔212可以为一个,也可以是两个热管理板之间界定出与电池单体110一一对应的多个换热腔212,在此不作具体限制。
换热介质可以从流体进管213流入换热腔212,并能够从流体出管214流出换热腔212外,以便利用循环的换热介质与电池单体110进行换热。
在一些实施例中,请参阅图3,电池框体232包括具有空腔的外框2323和位于外框2323的空腔内的内框2324,内框2324和对应的第一换热部210围设出电气腔2321,外框2323、内框2324和对应的第一换热部210围设出与排气空间2311相连通的集气腔2322,外框2323上设有泄压部件233,泄压部件233被配置为能够在集气腔2322内的气体压力达到预设压力值时使集气腔2322通过泄压部件233与外界环境相连通。
从电池单体110的泄压机构111喷出的排放物经由换热孔2101流入排气空间2311内,并能够与释放至排气空间2311内的换热介质发生热交换,经过热交换的混合气体能经由排气空间2311排至集气腔2322内,以进行集中处理。当集气腔2322内的的气体压力达到预设压力值时,集气腔2322通过泄压部件233与外界环境相连通,可以利用泄压部件233进行泄压,提高电池10的可靠性和安全性。
在一些实施例中,请参阅图3,集气腔2322围绕于电气腔2321,请参阅图9,第一换热部210上设有沿电气腔2321的周向间隔布设的多个排气口211,每一排气口211分别与排气空间2311和集气腔2322相连通。
“排气口211”是指分别与排气空间2311和集气腔2322相连通且贯穿第一换热部210的口部,排气口211的形状不作具体限制,只要是能够分别与排气空间2311和集气腔2322相连通的形状即可。
利用多个排气口211,可以提高混合气体流入集气腔2322的效率,提高热管理效率。
“电池10包括电池单体110和上述的箱体组件200,箱体组件200具有电气腔2321,电池单体110容纳于电气腔2321中”还可以包括:热管理部件201被配置为箱体组件200的 中部梁,电气腔2321为多个且分布于热管理部件201的两侧。
电气腔2321能够与排气空间2311相连通,以便电池单体110的排放物能够流入排气空间2311内,进而通过第二换热部220对这部分排放物进行热交换。
箱体组件200大致呈H型,即箱体组件200呈上下双开口,并界定出两个电气腔2321,两个电气腔2321远离彼此的一侧设有该开口,可将电池单体110放置于电气腔2321内。比如,热管理部件201包括沿第一换热部210的厚度方向间隔设置的两个第一换热部210,箱体组件200包括与第一换热部210一一对应相连且位于热管理框体231的相对两侧的两个电池框体232,每一第一换热部210与对应的电池框体232界定出一电气腔2321。两个换热部210和一个热管理框体231围设出排气空间2311。
如图3所示,可在每一电气腔2321内设置一电池模块100,每一电池模块100包括至少一电池单体110,“热管理部件201被配置为箱体组件200的中部梁”可理解为相邻的两个电池模块100之间设有一热管理部件201。
由此,可利用一个热管理部件201对两个电池模块100的电池单体110和电池单体100的排放物进行热管理,且电池10的整体结构更为紧凑。
请参阅图4,电池单体110包括泄压机构111,泄压机构111朝向接收部240设置。
上述“泄压机构111”可以是防爆阀,也可以是其他能够在电池单体110发生热失控时使之喷射的排放物(气体)释放至电气腔2321的部件,在此不作具体限制。
由此,电池单体110的泄压机构111喷出的排放物能更好地通过接收部240流入排气空间2311内。
在一些实施例中(图中未示出),电池单体110为多个,接收部240也为多个,多个电池单体110的泄压机构111被配置为与多个接收部240一一对应。
由此,电池单体110的泄压机构111喷出的排放物能通过对应的接收部240流入排气空间2311内。
在另一些实施例中,每一电池模块100包括多个电池单体110,接收部240上设有与电池单体110一一对应的多个通气孔241,每一通气孔241分别与电气腔2321和排气空间2311相连通。
由此,可使电池单体110的排放物经由对应的通气孔241到达排气空间2311。
在本实施例中,接收部240设于第一换热部210背离电池单体110的一侧,第一换热部210上设有与电池单体110一一对应的多个换热孔2101,如此,同一电气腔2321内的多个电池单体110的泄压机构111与相邻的第一换热部210的多个换热孔2101一一对应,同一电气腔2321内的多个电池单体110的泄压机构111也与接收部240上的多个通气孔241一一对应。
由此,电池单体110发生热失控时,电池单体110的排放物能够通过对应的换热孔 2101及接收部240上对应的通气孔241流入排气空间2311内,以便喷释放至排气空间2311内的换热介质与这部分排放物发生热交换,进而使电池单体110喷出的排放物的温度大大地下降,避免电池10的内部温度过高,极大地减小了电池10的安全隐患。
在一些实施例中,电池10包括至少两个电池模块100,每一电池模块100包括设于对应的电气腔2321内的至少一电池单体110,相邻的两个电池模块100之间设有一热管理部件201,相邻的两个电池模块100中,电池单体110的泄压机构111朝向位于该相邻的两个电池模块100之间的热管理部件201,且该相邻的两个电池模块100的对应的电气腔2321均与该热管理部件201的热管理框体231的排气空间2311相连通。
任一电池模块100的电池单体110发生热失控时,能利用热管理部件201对电池单体110喷射至排气空间2311内的气流进行换热,如此,能利用一热管理部件201对两个电池模块100进行热管理,有效避免电池10的内部温度过高,同时,还能提高电池10的空间利用率。
在本实施例中,相邻的两个电池模块100中,全部电池单体110的泄压机构111均朝向位于该相邻的两个电池模块100之间的热管理部件201。
在本实施例中,热管理部件201的接口件221均能够向排气空间2311内喷淋换热介质,接口件221喷淋至排气空间2311内的换热介质能够与流入排气空间2311内的排放物发生热交换,且该换热介质和排放物(气体)能够一起排出排气空间2311外,以进行集中处理,如此,能利用热管理部件201对两个电池模块100进行热管理,有效避免电池10的内部温度过高,同时,还能提高电池10的空间利用率。
在一些实施例中,请参阅图4,接收部240设于排气空间2311内,且接收部240挡设于相邻的两个电池模块100中相邻的两个电池单体110的泄压机构111之间,接收部240具有接收电池单体110的排放物的接收腔242,以及分别与电气腔2321和排气空间2311相连通的通气孔241。
上述“接收部240”是指能够挡设于相邻的两个电池单体110的泄压机构111之间的部件,以防止相邻的两个电池单体110的泄压机构111喷出的排放物发生对喷,若电池模块100的电池单体110设置有多个,接收部240可以为沿多个电池单体110的排布方向延伸的一个整体部件。接收部240也可以设置多个,多个接收部240沿同一电池模块100的多个电池单体110的排布方向间隔设置,且多个接收部240与电池单体110的泄压机构111一一对应,每一接收部240挡设于对应的电池单体110的泄压机构111,以避免相邻的两个电池单体110的泄压机构111喷出的排放物发生对喷。当然,接收部240也可以是其他能够防止相邻的两个电池单体110的泄压机构111喷出的排放物发生对喷的部件,在此不作具体限制。
利用接收部240,可防止相邻的两个电池单体110的泄压机构111喷出的排放物发生对喷,且电池单体110的泄压机构111喷出的排放物能通过通气孔241流入排气空间2311内, 以便喷释放至排气空间2311内的换热介质与这部分排放物发生热交换,进而使电池单体110喷出的排放物的温度大大地下降,避免电池10的内部温度过高,极大地减小了电池10的安全隐患。
另外,从电池单体110的泄压机构111喷出的排放物经由换热孔2101、接收腔242和通气孔241流入排气空间2311内,并能够与喷淋至排气空间2311内的换热介质发生热交换,经过热交换的混合气体能经由排气空间2311排至集气腔2322内,以进行集中处理。当集气腔2322内的气体压力达到预设压力值时,集气腔2322通过泄压部件233与外界环境相连通,可以利用泄压部件233进行泄压,提高电池10的可靠性和安全性。
在一些实施例中,请参阅图4,接收部240与第一换热部210围设出一侧具有开口的接收腔242,接收腔242的开口通过第一换热部210的换热孔2101与电气腔2321相连通,接收腔242远离该开口的一侧设有与排气空间2311相连通的通气孔241。
由此,从电池单体110的泄压机构111喷出的排放物经由换热孔2101、接收腔242和通气孔241流入排气空间2311内,并能够与释放至排气空间2311内的换热介质发生热交换,经过热交换的混合气体能经由排气空间2311排出,以进行集中处理,如此,能利用热管理部件201使电池单体110喷出的排放物的温度大大地下降,避免电池10的内部温度过高,极大地减小了电池10的安全隐患。
在一些实施例中,通气孔241与相邻的电池单体110的泄压机构111错位布设。
能更好地避免相邻的两个电池单体110的泄压机构111喷出的排放物发生对喷,且能使排放物呈弯折状流入排气空间2311内,以降低排放物的流速,提高电池10的安全性。
在一些实施例中,请参阅图6,每一电池模块100包括沿第三方向F 3间隔布设的多个电池单体110,接收部240上设有与相邻的电气腔2321内的电池单体110一一对应的多个通气孔241,通气孔241与对应的电池单体110的泄压机构111沿第三方向F 3错位布设。
由于通气孔241与对应的电池单体110的泄压机构111沿第三方向F 3错位布设,在排放物通过通气孔241流入排气空间2311内的过程中,排放物能呈弯折状地流向排气空间2311内,能很好地避免相邻的两个电池单体110的泄压机构111喷出的排放物发生对喷。
在一些实施例中,请参阅图4,热管理部件201包括位于排气空间2311内的两个接收部240,热管理部件201的两个第一换热部210与两个接收部240一一对应,接收部240与对应的第一换热部210围设出一侧具有开口的接收腔242,接收腔242的开口通过对应的第一换热部210的换热孔2101与电气腔2321相连通,接收腔242远离该开口的一侧设有与排气空间2311相连通的通气孔241。
在一些实施中,请参阅图11,相邻的两个接收部240上的通气孔241沿第三方向F 3错位布设,且均与对应的电池单体110的泄压机构111沿第三方向F 3错位布设。
一方面,接收部240上的通气孔241与对应的电池单体110的泄压机构111沿第三方 向F 3错位布设,能更好地防止相邻的两个电池单体110的泄压机构111喷出的排放物发生对喷,另一方面,由于两个接收部240上的通气孔241沿第三方向F 3错位布设,能够避免通过两个接收部240上的通气孔241流入排气空间2311内的排放物彼此发生对喷和扰动。
在一些实施例中,每一电池模块100包括沿第三方向F 3间隔布设的多个电池单体110,第二换热部220上设有沿第三方向F 3间隔设置的多个接口件221,每一接口件221的出口2211沿第二方向F 2设置,且同一第二换热部220上的全部接口件221与相邻的电池模块100的全部电池单体110的泄压机构111一一对应,第二方向F 2与第三方向F 3呈角度设置。
第二方向F 2与第三方向F 3彼此垂直,第三方向F 3可平行于电池10的长度方向,第二方向F 2可平行于电池10的宽度方向,当然,也可以是,第三方向F 3可平行于电池10的宽度方向,第二方向F 2可平行于电池10的长度方向。
由于同一第二换热部220上的全部接口件221与相邻的电池模块100的全部电池单体110的泄压机构111一一对应,使得当电池单体110发生热失控时,排放物会通过电池单体110的泄压机构111流入电气腔2321内,进而能够流入排气空间2311内位于对应的接口件221处,以便对应的接口件221能够在电池单体110发生热失控时向排气空间2311内释放换热介质,如此,接口件221能够及时地响应于对应的发生热失控的电池单体110,能更好地避免电池10的内部温度过高,减小了电池10的安全隐患。
接口件221的出口2211和对应的电池单体110的泄压机构111的中心轴线呈角度设置。
在电池单体110发生热失控时,对应的接口件221能够向排气空间2311内喷淋换热介质,由于接口件221的出口2211与对应的电池单体110的泄压机构111的中心轴线呈角度设置,从接口件221的出口2211喷出的换热介质不会朝向泄压机构111喷淋,且能很好地与从泄压机构111喷出的排放物在排气空间2311内交汇,既能避免电池10的内部温度过高,又能避免两股气流产生扰动,能有效降低安全隐患。
在一些实施例中,电池单体110的泄压机构111呈弯折状指向对应的接口件221。
如此设置,可使从泄压机构111喷出的排放物能够沿弯折状的路径流向接口件221,并与对应的接口件221的出口2211喷出的换热介质在排气空间2311内交汇,能降低泄压机构111喷出的排放物的流速,进一步避免两股气流产生扰动。
在一些实施例中,热管理部件201包括沿第二方向F 2间隔设置的两个第二换热部220,电池模块100的电池单体110的泄压机构111在相邻的热管理部件201上的正投影位于该热管理部件201的两个第二换热部220之间,每一第二换热部220设有多个接口件221。
可以理解,两个第二换热部220位于电池单体110的泄压机构111沿第二方向F 2的相对两侧,其中,第二方向F 2可平行于电池单体110的宽度方向。
如此设置,在电池模块100的电池单体110发生热失控时,从电池单体110的泄压机 构111喷出的排放物可流入排气空间2311内,可利用两个第二换热部220的接口件221向排气空间2311内喷淋换热介质,可提高换热效果,能更有效地降低安全隐患。
在另一些实施例中,本申请一实施例提供的电池10,包括多个电池单体110和上述的热管理部件201。
在一些实施例中,电池10包括两个电池模块100和箱体组件200,且箱体组件包括热管理部件201和热管理框体231,热管理部件201设于两个电池模块100之间,热管理部件201包括与电池模块100一一对应的两个第一换热部210,以及第二换热部220。箱体组件200包括两个电池框体232,两个电池框体232连接于热管理框体231沿第一换热部210的厚度方向的相对两侧,热管理框体231与两个第一换热部210围设出排气空间2311,第一换热部210与相邻的电池框体232围设出用于容置对应的电池模块100的电气腔2321,且第一换热部210上设有分别与电气腔2321和排气空间2311相连通的换热孔2101,第二换热部220设于排气空间2311内,第二换热部220设有接口件221,接口件221被配置为能够在电池单体110发生热失控时向排气空间2311内喷淋换热介质,第一换热部210上的换热孔2101和对应的电池单体110的泄压机构111一一对应。
该电池10使用时,第一换热部210能够与电池模块100的电池单体110接触,以与电池单体110进行热交换。若电池单体110发生热失控时,电池单体110喷射出的排放物经由换热孔2101流入排气空间2311内,这部分排放物能够与换热孔2101的侧壁发生热交换,以对排放物进行一次降温处理。由于接口件221被配置为能够在电池单体110发生热失控时向排气空间2311内喷淋换热介质,那么,接口件221能够向排气空间2311内喷淋换热介质,接口件221喷淋至排气空间2311内的换热介质能够与流入排气空间2311内的排放物发生热交换,以对排放物进行二次降温处理。该换热介质和经过二次降温处理的排放物能够一起排出排气空间2311外,以进行集中处理,如此,能利用热管理部件201对两个电池模块100的电池单体110和电池单体110喷出的排放物进行热管理,避免电池10的内部温度过高,极大地减小了电池10的安全隐患。
本申请一实施例提供的用电装置,包括上述的电池10。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (26)

  1. 一种热管理部件,用于电池(10),所述电池(10)包括电池单体(110),其中,所述热管理部件(201)包括:
    第一换热部(210)和第二换热部(220),所述第一换热部(210)用于与所述电池单体(110)进行热交换,所述第二换热部(220)用于与所述电池单体(110)的排放物进行热交换。
  2. 根据权利要求1所述的热管理部件,其中,所述热管理部件(201)包括排气空间(2311),所述排气空间(2311)用于接收或引导所述电池单体(110)的排放物,且所述排气空间(2311)被构造为能够允许所述电池单体(110)的排放物与所述第二换热部(220)进行热交换。
  3. 根据权利要求2所述的热管理部件,其中,所述第二换热部(220)包括接口件(221)和容纳腔(222);
    所述容纳腔(222)用于容纳换热介质;
    所述接口件(221)用于连通所述容纳腔(222)和所述排气空间(2311),以使所述换热介质能够经由所述接口件(221)到达所述排气空间(2311)。
  4. 根据权利要求3所述的热管理部件,其中,所述接口件(221)的进口连接于所述容纳腔(222),所述接口件(221)的出口(2211)朝向所述排气空间(2311)内。
  5. 根据权利要求4所述的热管理部件,其中,所述排气空间(2311)沿第一方向延伸,所述接口件(221)的出口方向相交于所述第一方向。
  6. 根据权利要求4所述的热管理部件,其中,所述热管理部件(201)还包括接收部(240),所述接收部(240)用于对应于所述电池单体(110)设置,以使所述电池单体(110)的排放物经由所述接收部(240)到达所述排气空间(2311),所述接口件(221)的出口方向和所述接收部(240)的接收方向相交设置。
  7. 根据权利要求6所述的热管理部件,其中,所述热管理部件(201)包括沿第二方向相邻设置的两个所述接口件(221);
    沿所述第二方向,所述接收部(240)设置于相邻的两个所述接口件(221)之间。
  8. 根据权利要求6所述的热管理部件,其中,所述第二换热部(220)上设有沿第三方向间隔设置的多个所述接口件(221),多个所述接口件(221)中每一个的出口(2211)均沿第二方向设置,且同一所述第二换热部(220)上的多个所述接口件(221)与多个所述接收部(240)一一对应;
    所述第二方向与所述第三方向相交设置。
  9. 根据权利要求3-8中任一项所述的热管理部件,其中,所述接口件(221)包括连接 通道和开关部,所述连接通道被配置为在所述开关部开启后能够连通所述容纳腔(222)和所述排气空间(2311)。
  10. 根据权利要求9所述的热管理部件,其中,所述开关部被配置为热熔结构、电致开关或薄弱结构。
  11. 根据权利要求2-10中任一项所述的热管理部件,其中,所述热管理部件(201)包括热管理框体(231),所述热管理框体(231)和所述第一换热部(210)围设出所述排气空间(2311);
    所述第二换热部(220)设于所述排气空间(2311)内,以与所述电池单体(110)的排放物进行热交换。
  12. 根据权利要求3-10中任一项所述的热管理部件,其中,所述热管理部件(201)包括排气件,所述排气件用于形成所述排气空间(2311),所述第一换热部(210)、所述第二换热部(220)和所述排气件为层叠设置。
  13. 根据权利要求12所述的热管理部件,其中,所述第一换热部(210)和所述排气件分别位于所述第二换热部(220)的两侧。
  14. 根据权利要求12所述的热管理部件,其中,所述排气件位于所述第一换热部(210)和所述第二换热部(220)之间。
  15. 根据权利要求3-11中任一项所述的热管理部件,其中,所述第二换热部(220)为两个并层叠设置,两个所述第二换热部(220)之间界定出所述排气空间(2311),至少一个所述第二换热部(220)朝向所述排气空间(2311)的表面设置有所述接口件(221)。
  16. 根据权利要求15所述的热管理部件,其中,所述第一换热部(210)为两个并分别设置于两个所述第二换热部(220)的外表面。
  17. 一种箱体组件,其中,所述箱体组件(200)包括如权利要求1-16中任一项所述的热管理部件(201)。
  18. 根据权利要求17所述的箱体组件,其中,所述热管理部件(201)为如权利要求12-13中任一项所述的热管理部件(201),所述热管理部件(201)被配置为所述箱体组件(200)的顶部结构、底部结构、边梁或中部梁中的至少一者。
  19. 根据权利要求17所述的箱体组件,其中,所述热管理部件(201)为如权利要求15-16中任一项所述的热管理部件(201),所述热管理部件(201)被配置为所述箱体组件(200)的中部梁。
  20. 一种电池,其中,所述电池(10)包括电池单体(110)和如权利要求17-19中任一项所述的箱体组件(200),所述箱体组件(200)具有电气腔(2321),所述电池单体(110)容纳于所述电气腔(2321)中。
  21. 根据权利要求20所述的电池,其中,所述箱体组件(200)为如权利要求17-18中 任一项所述的箱体组件(200),所述电气腔(2321)位于所述热管理部件(201)的一侧。
  22. 根据权利要求20所述的电池,其中,所述箱体组件(200)为如权利要求19所述的箱体组件(200),所述电气腔(2321)为多个且分布于所述热管理部件(201)的两侧。
  23. 一种电池,其中,所述电池包括多个电池单体(110)和如权利要求1-16中任一项所述的热管理部件(201)。
  24. 根据权利要求20-23中任一项所述的电池,其中,所述箱体组件(200)为如权利要求6-16中任一项所述的热管理部件(201),所述电池单体(110)包括泄压机构(111),所述泄压机构(111)朝向所述接收部(240)设置。
  25. 根据权利要求24所述的电池,其中,所述电池单体(110)为多个,所述接收部(240)也为多个,多个所述电池单体(110)的泄压机构(111)被配置为与多个所述接收部(240)一一对应。
  26. 一种用电装置,其中,所述用电装置包括如权利要求20-25中任一项所述的电池(10)。
PCT/CN2022/119067 2022-09-15 2022-09-15 热管理部件、箱体组件、电池和用电装置 WO2024055247A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119067 WO2024055247A1 (zh) 2022-09-15 2022-09-15 热管理部件、箱体组件、电池和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119067 WO2024055247A1 (zh) 2022-09-15 2022-09-15 热管理部件、箱体组件、电池和用电装置

Publications (1)

Publication Number Publication Date
WO2024055247A1 true WO2024055247A1 (zh) 2024-03-21

Family

ID=90273930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119067 WO2024055247A1 (zh) 2022-09-15 2022-09-15 热管理部件、箱体组件、电池和用电装置

Country Status (1)

Country Link
WO (1) WO2024055247A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734821A (zh) * 2004-08-10 2006-02-15 三洋电机株式会社 燃料电池系统
CN103474599A (zh) * 2013-09-15 2013-12-25 宁德新能源科技有限公司 具有理想安全性能的锂离子电池和电池包
CN203983375U (zh) * 2014-06-03 2014-12-03 宁德新能源科技有限公司 安全阀及包含该安全阀的电池及电池模组
CN106605315A (zh) * 2015-02-25 2017-04-26 松下知识产权经营株式会社 电池模块
US20210313650A1 (en) * 2018-08-23 2021-10-07 Panasonic Intellectual Property Management Co., Ltd. Battery module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734821A (zh) * 2004-08-10 2006-02-15 三洋电机株式会社 燃料电池系统
CN103474599A (zh) * 2013-09-15 2013-12-25 宁德新能源科技有限公司 具有理想安全性能的锂离子电池和电池包
CN203983375U (zh) * 2014-06-03 2014-12-03 宁德新能源科技有限公司 安全阀及包含该安全阀的电池及电池模组
CN106605315A (zh) * 2015-02-25 2017-04-26 松下知识产权经营株式会社 电池模块
US20210313650A1 (en) * 2018-08-23 2021-10-07 Panasonic Intellectual Property Management Co., Ltd. Battery module

Similar Documents

Publication Publication Date Title
WO2022083022A1 (zh) 箱体、电池及装置
WO2022143132A1 (zh) 电池箱体和电池包
CN112103443B (zh) 箱体、电池、用电设备及电池的制造方法
CN209104233U (zh) 一种电池包的喷淋管路组件及电池包
WO2022143042A1 (zh) 用于车辆的电池包以及车辆
WO2022099661A1 (zh) 箱体、电池、用电设备及电池的制造方法
WO2024021856A1 (zh) 电池冷却结构、电池包及电动交通工具
WO2023005462A1 (zh) 电池和用电装置
WO2023273887A1 (zh) 一种电池包下箱体、电池包及车辆
WO2023142968A1 (zh) 电池和用电装置
WO2023202024A1 (zh) 动力电池及电动车辆
WO2024055247A1 (zh) 热管理部件、箱体组件、电池和用电装置
WO2024104020A1 (zh) 电池箱体、电池及用电装置
WO2024088136A1 (zh) 电池、储能装置以及用电设备
CN214013020U (zh) 水冷板及电池模组
WO2022134123A1 (zh) 阀、电池、用电设备、阀的制造设备和方法
CN213466577U (zh) 换热板、电池箱及车辆
WO2023141878A1 (zh) 电池、用电装置及电池的制造方法和制造设备
WO2023240407A1 (zh) 热管理部件、热管理系统、电池及用电装置
CN216161895U (zh) 导流模块、电池包以及车辆
EP4009435B1 (en) Battery, power consuming apparatus and method and apparatus for producing battery
CN221229851U (zh) 电池包堆叠体及换电系统
WO2023155147A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024188125A1 (zh) 电池箱、电池包及储能集装箱
CN221613995U (zh) 一种电池包及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958440

Country of ref document: EP

Kind code of ref document: A1