WO2024054051A1 - 써멀 사이클러의 열블럭용 복합소재 및 이를 이용하여 제조되는 저 비열성 써멀 사이클러의 열블럭 - Google Patents

써멀 사이클러의 열블럭용 복합소재 및 이를 이용하여 제조되는 저 비열성 써멀 사이클러의 열블럭 Download PDF

Info

Publication number
WO2024054051A1
WO2024054051A1 PCT/KR2023/013381 KR2023013381W WO2024054051A1 WO 2024054051 A1 WO2024054051 A1 WO 2024054051A1 KR 2023013381 W KR2023013381 W KR 2023013381W WO 2024054051 A1 WO2024054051 A1 WO 2024054051A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
silver
tin
metal
block
Prior art date
Application number
PCT/KR2023/013381
Other languages
English (en)
French (fr)
Inventor
박한오
김재하
윤국진
Original Assignee
(주)바이오니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오니아 filed Critical (주)바이오니아
Publication of WO2024054051A1 publication Critical patent/WO2024054051A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials

Definitions

  • the present invention relates to a composite material for a thermal block of a thermal cycler, in detail a composite material for a thermal block of a thermal cycler with excellent thermal conductivity and low specific heat, and a thermal block of a low specific heat thermal cycler manufactured using the same. It's about.
  • thermoelectric properties is recognized as a very important field.
  • heat dissipation components for personal computers, light emitting diode (LED) heat sinks, and thermal block components for thermal cyclers is increasing.
  • thermal cyclers are the basic diagnostic equipment needed for genetic diagnosis. As its importance increases, heat transfer technology for high-speed diagnostics is receiving great attention.
  • the PCR reaction is a polymerase chain reaction developed by Mullis et al. in 1983. It is a DNA replication technology called (Polymerase Chain Reaction; PCR).
  • PCR is a method of continuously replicating template DNA using enzymes.
  • the PCR step is a melting step that unwinds the double-stranded template DNA to be copied into a single strand, and determines where the reaction will begin on the unraveled single strand.
  • An annealing step that combines dozens of base primers to help initiate the enzymatic reaction, and extension to create a complete double helix structure of DNA by duplicating the DNA from the position where the primer is attached. ) is divided into three stages.
  • PCR thermal cyclers use a thermal block capable of controlling temperature, and the thermal block is performed by controlling the temperature by periodically repeating temperature rise and fall changes at regular time intervals.
  • the core component of the PCR (Polymerase Chain Reaction) thermal cycler is the thermal block with excellent thermal properties. Due to the nature of PCR, the temperature rises and falls repeatedly, and at this time, high thermal conductivity and low specific heat characteristics are required for an excellent thermal block. Thermal blocks so far are made of aluminum metal, and in the case of high-speed PCR thermal cycler devices, silver metal is used.
  • thermo block manufactured using a composite material containing a mixture of tin powder with excellent specific heat properties and metal powder with excellent thermal conductivity has been provided.
  • the purpose of the present invention is to provide a composite material for a thermal block of a thermal cycler that has low specific heat properties and excellent thermal conductivity properties at the same time.
  • Another object of the present invention is to provide a thermal block of a low-specific heat thermal cycler that has excellent thermal conductivity characteristics and can significantly reduce the variation in temperature change rate when the temperature rises and falls.
  • Another object of the present invention is to provide a PCR thermal cycler that includes the above-described thermal block and can ensure reliability even in ultra-fast PCR reactions.
  • a composite material for a thermal block of a thermal cycler includes a powder metal that is a first metal or an alloy containing the first metal;
  • It includes a metal nanowire of a core-shell structure in which a shell containing a third metal is located on a core containing a second metal.
  • the first metal is tin
  • the alloy is tin-silver, tin-copper, tin-aluminum. , tin-bismuth, tin-antimony, tin-copper-bismuth, tin-silver-bismuth, tin-copper-antimony, tin-silver-antimony, tin-copper-silver, tin-copper-silver-antimony. , tin-copper-silver-bismuth.
  • the second metal may be copper
  • the third metal may be silver or gold.
  • the metal nanowire may be a silver-coated copper nanowire.
  • the metal nanowire has a peak intensity (I) of Ag 3d 5/2 of silver in the X-ray photoelectron spectroscopy spectrum. 1 ) and the peak intensity (I 2 ) of Cu 2p 3/2 of copper may satisfy Equation 1 below.
  • the diameter of the metal nanowire may be 100 to 500 nm, and the aspect ratio may be 5 to 100.
  • the ratio of the particle size of the powder metal (D p ): the diameter of the metal nanowire (D w ) ( D p / D w ) may be 1:0.0001 to 0.01.
  • the weight ratio of the powder metal to the metal nanowire may be 1:0.001 to 0.1.
  • the present invention provides a thermal block of a low specific heat thermal cycler manufactured by sintering, casting, rolling, or casting the above-described composite material.
  • the present invention also provides, according to another aspect, tin or a tin alloy; It provides a thermal block of a low specific heat thermal cycler including a silver-coated copper nanowire.
  • the weight ratio of the tin or tin alloy:silver coated copper nanowire may be 1:0.001 to 0.1.
  • the silver-coated copper nanowire has a peak intensity (I 1 ) of Ag 3d 5/2 of silver and Cu of copper in the X-ray photoelectron spectroscopy spectrum.
  • the peak intensity (I 2 ) of 2p 3/2 may satisfy Equation 1 below.
  • the thermal conductivity of the thermal block may be 70 to 100 W/(m K) at 21°C.
  • a PCR (Polymerase Chain Reaction) thermal cycler provided according to another aspect of the present invention includes a heating element; A heat block having one end in contact with one surface of the heating element and including an insertion hole at the other end located opposite to the one end, wherein the heat block is used for sintering and casting the above-described composite material. , It is characterized in that it is formed by rolling or casting.
  • the thermal block may satisfy Equation 2 below.
  • H a is the heating rate in a region of 0.1 to 0.3t, defined as region A, based on one end in contact with one side of the heating element in a thermal block with a height t
  • H b is region B. This is the heating rate in the defined 0.7t to 1.0t range.
  • the composite material for the thermal block of the thermal cycler of the present invention includes powder metal that is a first metal or an alloy containing the first metal; And a metal nanowire of a core-shell structure in which a shell containing a third metal is located on a core containing a second metal; thereby having low specific heat characteristics and at the same time significantly improving thermal conductivity characteristics.
  • the temperature when the temperature rises and falls in the thermal block, the temperature changes between a plurality of unit thermal blocks and/or in different areas within the unit thermal block. It has the advantage of significantly reducing speed deviation.
  • the PCR thermal cycler containing the above-described thermal block has the advantage of ensuring reliability even in ultra-fast PCR reactions.
  • Figure 1 is a diagram schematically showing a sintering, casting, rolling or casting process of a low specific heat composite material containing tin or tin alloy and silver-coated copper nanowires according to the present invention.
  • Figure 2 is a schematic diagram showing a three-dimensional view of a thermal block molding of a thermal cycler manufactured by sintering, casting, rolling, or casting a low specific heat composite material according to the present invention.
  • the numerical range used in this specification includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of lower limits. Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
  • a composite material for a thermal block of a thermal cycler includes powder metal that is a first metal or an alloy containing the first metal; and a metal nanowire of a core-shell structure in which a shell containing a third metal is located on a core containing a second metal.
  • PCR polymerase chain reaction
  • PCR is a reaction that uses enzymes to continuously clone a template gene through a melting step, annealing step, and extension step, and amplifies the amount of the gene by repeatedly performing the above-mentioned steps.
  • the denaturation step is usually performed at 95°C, and the annealing step and extension step are performed below 75°C.
  • the temperature of the gene sample in order to amplify the gene by repeatedly performing each step, the temperature of the gene sample must be repeatedly changed. It needs to be raised and lowered.
  • thermo cyclers are widely used as such devices.
  • PCR thermal cyclers use a thermal block capable of controlling temperature, and the thermal block is performed by controlling the temperature by periodically repeating temperature rise and fall changes at regular time intervals.
  • the thermal block requires excellent thermal conductivity characteristics and low specific heat characteristics, and is generally made of aluminum metal, and in the case of high-speed PCR thermal cycler devices, silver metal is used.
  • thermal blocks manufactured using a composite material mixed with tin powder and metal powder with excellent thermal conductivity have been provided.
  • the unit Due to the thermal conductivity characteristics of the thermal blocks there is a large difference in the temperature rise and fall rates between unit thermal blocks and/or in different areas within the unit thermal blocks, which reduces the reliability of the PCR thermal cycler when performing an ultra-fast PCR reaction. there is a problem.
  • the composite material for the thermal block of a thermal cycler has low specific heat characteristics as it includes powdered metal and metal nanowires with a core-shell structure.
  • the thermal conductivity characteristics be significantly improved, but it is also advantageous in terms of economic efficiency. Therefore, in the case of a thermal block manufactured using the above-mentioned composite material, it is economical and at the same time, temperature rise and fall changes in the thermal block may occur.
  • the PCR thermal cycler including the above-described thermal blocks allows for ultra-fast PCR reaction. It also has the advantage of securing reliability.
  • powdered metal and metal nanowires with a core-shell structure included in the composite material for the thermal block of the thermal cycler can be compression molded to manufacture the thermal block of the thermal cycler.
  • the flexible metal nanowire It is compressed to high density with powdered metal and at the same time forms a network between metal nanowires, providing a uniform thermal movement path within the thermal block, which not only significantly improves thermal conductivity characteristics, but also between unit thermal blocks and/ Alternatively, it is possible to significantly reduce the deviation of temperature rise and fall speeds in different areas within a unit heat block.
  • the first metal in a first metal or an alloy containing a first metal that is a powder metal, the first metal is tin, and the alloy is tin-silver, tin-copper, tin-aluminum, tin-bismuth, tin.
  • -It may be one or more types selected from the group consisting of bismuth.
  • tin or an alloy containing tin as a powder metal in the composite material for the thermal block of the thermal cycler, low specific heat characteristics can be imparted to the thermal block manufactured using the composite material.
  • the average particle diameter of the powder metal may be 40 to 200 ⁇ m, specifically 70 to 140 ⁇ m, and more specifically 80 to 120 ⁇ m.
  • the second metal included in the core may be a metal with superior thermal conductivity compared to the first metal, and as an advantageous example, it may have economical advantages in addition to thermal conductivity characteristics.
  • the second metal may be copper.
  • the third metal included in the shell is a metal that has a thermal conductivity similar to or equal to or higher than that of the second metal and at the same time satisfies the following equation 1: You can.
  • a similar or equivalent level or higher based on the thermal conductivity of the second metal may mean a level of at least 70%, 80%, 90%, or 100% or higher compared to the thermal conductivity of the second metal, and the upper limit is not limited.
  • Equation 1 C1 is the specific heat of the first metal, and C3 is the specific heat of the third metal.
  • the ratio (C1/C3) of the specific heat (C1) of the first metal and the specific heat (C3) of the third metal may be 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, and may be substantially 2 or less.
  • the third metal included in the shell of the metal nanowire has a thermal conductivity similar to or equal to or higher than that of the second metal, and at the same time satisfies the following equation 1, so that the above-described first metal or first metal It is included in the composite material for the thermal block of a thermal cycler along with powdered metal, which is an alloy containing metal, and the thermal block manufactured using the composite material can have significantly excellent thermal conductivity characteristics as well as low specific heat characteristics.
  • the third metal may be silver or gold.
  • the diameter of the metal nanowire of the core-shell structure may be 100 to 500 nm, specifically 150 to 500 nm, and more specifically 200 to 500 nm, and the aspect ratio of the metal nanowire may be 5 to 100, preferably 8 to 60, and more preferably 10 to 40.
  • the diameter and aspect ratio of the metal nanowire included in the thermal block composite material of the thermal cycle satisfies the above-mentioned range, it provides a stable and uniform thermal movement path within the thermal block when manufacturing the thermal block using it. can do.
  • the metal nanowire may be a silver-coated copper nanowire.
  • Silver-coated copper nanowire has low specific heat characteristics and excellent thermal conductivity characteristics, so it is included in the thermal block composite material of the thermal cycler along with the first metal or powder metal that is an alloy containing the first metal, and the composite material is used. This is advantageous for improving the thermal properties of the manufactured thermal block. In addition, the cost required to significantly improve thermal properties is not large, so it is good from an economical perspective.
  • the metal nanowire when the metal nanowire is a silver-coated copper nanowire, the metal nanowire has the peak intensity of Ag 3d 5/2 of silver (I 1 ) and the peak intensity of Cu 2p 3/2 of copper in the X-ray photoelectron spectroscopy spectrum. (I 2 ) may satisfy Equation 2 below.
  • metal nanowires that is, silver-coated copper nanowires
  • Equation 2 metal nanowires
  • the ratio (I 2 / I 1 ) of the peak intensity (I 1 ) of Ag 3d 5/2 of silver and the peak intensity ( I 2 ) of Cu 2p 3/2 of copper in the It may be 0.2 or less, preferably 0.1 or less, more preferably 0.05 or less, even more preferably 0.03 or less, and may be 0.001 or more.
  • the ratio (I 2 /I 1 ) between the peak intensity (I 1 ) of Ag 3d 5/2 of silver and the peak intensity ( I 2 ) of Cu 2p 3/2 of copper is greater than 0.2, core-shell Since the copper exposed to the outside of the metal nanowire structure may be oxidized and the oxidation stability of the metal nanowire may decrease, the peak intensity (I 1 ) of Ag 3d 5/2 of silver and Cu 2p 3 of copper in the X-ray photoelectron spectroscopy spectrum It is preferable that the ratio ( I 2 /I 1 ) of the peak intensity (I 2 ) of / 2 satisfies the above-mentioned range.
  • the thickness of the silver coating may be 5 to 40 nm, specifically 5 to 30 nm, more specifically 5 to 20 nm, and even more specifically 6 to 10 nm. It can be.
  • the shell thickness is less than 5 nm, the oxidation of copper contained in the core cannot be effectively suppressed, and if the shell thickness is more than 40 nm, the uniformity of the shell located on the core may decrease, resulting in the possibility of copper oxide being formed. , since it is not advantageous from an economic standpoint, it is better for the thickness of the shell to satisfy the above-mentioned range.
  • the ratio (D p / D w ) of the average particle diameter (D p ) of the powder metal contained in the composite material for thermal block of the thermal cycler: the diameter (D w ) of the metal nanowire is 1: 0.0001 to 1:0001. 0.01, specifically. 1: It may be 0.0005 to 0.005.
  • the ratio of the average particle diameter of the powder metal contained in the thermal block composite material of the thermal cycler to the diameter of the metal nanowire satisfies the above-mentioned range, improving the compactness of the thermal block when manufacturing the thermal block using the composite material. You can do it.
  • the composite material for the thermal block of the thermal cycler may contain 0.1 to 60% by weight, specifically 0.5 to 30% by weight, and more specifically 1 to 10% by weight of metal nanowires.
  • the weight ratio of powder metal:metal nanowire included in the composite material for thermal block of the thermal cycler is 1:0.001 to 0.5, advantageously 1:0.001 to 0.1, more advantageously 1:0.005 to 1:005. It may be 0.1, more advantageously 1:0.01 to 0.05.
  • a composite material for a thermal block of a thermal cycler can be manufactured by physically mixing powdered metal and metal nanowires.
  • the weight ratio of powder metal:metal nanowire is less than 0.001
  • the powder metal and metal nanowire are uniformly distributed. Although they can be mixed, there is a limit to improving thermal conductivity characteristics because there is a limit to the formation of a thermal movement path through the formation of a network of metal nanowires.
  • the weight ratio of powder metal:metal nanowire exceeds 0.5, the powder metal and metal nanowire are not mixed uniformly, which may lead to a decrease in thermal conductivity characteristics, and also an unnecessarily large amount of metal nanowire may be produced. Since this may reduce economic efficiency, it is recommended that the weight ratio of powder metal:metal nanowire included in the composite material for thermal block of the thermal cycler satisfies the above-mentioned range.
  • the composite material for the thermal block of the thermal cycler can be manufactured using a mixer that rotates powder metal and metal nanowires satisfying the above-mentioned weight ratio at high speed.
  • a mixer rotating at high speed may have a rotation speed of 150 to 1000 rpm, specifically 300 to 800 rpm, and more specifically 400 to 600 rpm.
  • the mixing process using a mixer rotating at high speed may be performed one or more times, two or more times, or three or more times, and the upper limit is not limited, but is substantially 10 times. Of course, it can be performed in less than one time.
  • the present invention provides a thermal block for a low specific heat thermal cycler manufactured by sintering, casting, or casting the composite material for the thermal block of the thermal cycler described above.
  • the present invention relates to tin or tin alloy; It provides a thermal block of a low specific heat thermal cycler including a silver-coated copper nanowire.
  • the tin alloy is similar to or identical to the alloy containing the above-described first metal, and detailed description is omitted.
  • the weight ratio of tin or tin alloy:silver coated copper nanowires is 1:0.001 to 0.5, advantageously 1:0.001 to 0.1, more advantageously 1:0.005 to 0.1, even more advantageously 1:0.001 to 0.1. It may be 0.01 to 0.05.
  • tin or tin alloy and silver-coated copper nanowires are included in the thermal block at the above-described weight ratio, a network between silver-coated copper nanowires can be formed to provide a uniform thermal movement path within the thermal block, and thus This has the advantage of significantly reducing the variation in temperature rise and fall rates between unit heat blocks and/or in different areas within a unit heat block.
  • the silver-coated copper nanowire has the peak intensity (I 1 ) of Ag 3d 5/2 of silver and the peak intensity (I 2 ) of Cu 2p 3/2 of copper in the X-ray photoelectron spectroscopy spectrum as shown in Equation 2 below: It may be satisfying.
  • the silver-coated copper nanowire satisfies Equation 2 above, it has excellent oxidation stability, which can be advantageous in maintaining the original electrical and thermal properties of the silver-coated copper nanowire.
  • the ratio (I 2 / I 1 ) of the peak intensity (I 1 ) of Ag 3d 5/2 of silver and the peak intensity ( I 2 ) of Cu 2p 3/2 of copper in the It may be 0.2 or less, preferably 0.1 or less, more preferably 0.05 or less, even more preferably 0.03 or less, and may be 0.001 or more.
  • the ratio (I 2 /I 1 ) between the peak intensity (I 1 ) of Ag 3d 5/2 of silver and the peak intensity ( I 2 ) of Cu 2p 3/2 of copper is greater than 0.2, silver-coated copper is used . Since the copper exposed to the outside of the nanowire may be oxidized and the oxidation stability of the silver-coated copper nanowire may decrease, the peak intensity (I 1 ) of Ag 3d 5/2 of silver and Cu 2p 3/ of copper in the X-ray photoelectron spectroscopy spectrum It is preferable that the ratio ( I 2 /I 1 ) of the peak intensity (I 2 ) of 2 satisfies the above-mentioned range.
  • the silver-coated copper nanowire is similar to or identical to the metal nanowire of the core-shell structure described above, and detailed descriptions of the diameter, aspect ratio, and thickness of the silver coating layer of the silver-coated copper nanowire are omitted.
  • the thermal conductivity of the thermal block of the low specific heat thermal cycler is 70 to 150 W/(m K), specifically 70 to 100 W/(m K), more specifically 70 to 80 W/(m K) at 21°C. It may be W/(m K).
  • the heat block of the low specific heat thermal cycler has a density of 5 to 20 g/mL, specifically 5 to 10 g/mL, and a heat capacity of 0.2 to 1 J/(g K), specifically 0.2 to 0.5. J/(g K), and may have physical properties such as a volumetric heat capacity of 1 to 2 J/(cm 3 K), specifically 1 to 1.8 J/(cm 3 K).
  • the thermal block of the low specific heat thermal cycler includes tin or tin alloy and silver-coated copper nanowire that satisfies Equation 2 above, and has the above-mentioned physical properties, so that the temperature rise and fall of the thermal block changes.
  • the temperature change rate deviation between a plurality of unit heat blocks and/or in different areas within a unit heat block can be significantly reduced.
  • the present invention includes a heating element; A heat block having one end in contact with one surface of the heating element and including an insertion hole at the other end located opposite to the one end, wherein the heat block is used for sintering and casting the above-described composite material.
  • a PCR Polymerase Chain Reaction
  • the PCR thermal cycler includes a thermal block formed using the above-described composite material that can significantly improve heat transfer efficiency, thereby improving gene amplification reaction efficiency and providing reliability for ultra-fast PCR reaction. There are advantages that can be secured.
  • the heating element may be a heat source that can transfer heat to the heat block and simultaneously perform a cooling function by contacting one end of the heat block with one surface of the heating element.
  • the heating element may be a Peltier element, and the Peltier element generates heat and cools in the same element while changing the direction of the current, and plays a cooling role on the lower surface of the Peltier element, and the upper surface is in contact with one end of the heat block. It generates fever.
  • a heat sink may be attached to the bottom of the Peltier element to improve cooling efficiency.
  • the thermal block may include an insertion hole at the other end located opposite to one end in contact with one surface of the heating element, and a reagent or sample container is input into the thermal block through the insertion hole to heat the heating element.
  • the inner surface of the block and the outer surface of the container come into surface contact, which can induce a temperature change in the reagent or sample.
  • the shape of the insertion hole may be the same as the outer shape of the reagent or sample container, and the present invention is not limited by the shape of the insertion hole.
  • the thermal block may satisfy Equation 3 below.
  • H a is the heating rate in a region of 0.1 to 0.3t, defined as region A, based on one end in contact with one side of the heating element in a thermal block with a height t
  • H b is region B. This is the heating rate in the defined 0.7t to 1.0t range.
  • the heating rate is the temperature measured based on the initial temperature for the time change ( ⁇ s) calculated by measuring the temperature in area A and area B after 15 seconds when raising to 95°C using a heating element. It may be the ratio ( ⁇ T / ⁇ s) of the change amount ( ⁇ T).
  • the difference in heating rate (H a - H b ) in areas A and B is ⁇ 0.5°C/sec or less, ⁇ 0.4°C/sec or less, ⁇ 0.3°C/sec or less, ⁇ 0.2°C/sec. It may be sec or less, and the lower limit is not limited, but may be substantially ⁇ 0.01 °C/sec or more, and more substantially ⁇ 0.05 °C/sec or more.
  • the difference in cooling rates between areas A and B may be similar to or identical to the difference in heating rates between areas A and B described above.
  • the cooling rate is based on the initial temperature over time ( ⁇ s) calculated by measuring the temperature in area A and area B after 15 seconds when lowering from 95°C to 25°C using a heating element. It may be the ratio ( ⁇ T / ⁇ s) of the measured temperature change ( ⁇ T).
  • the absolute value of the ramping rate of the PCR thermal cycler may be 3.0° C. or higher.
  • the rising and falling speeds of the PCR thermal cycler may be independently different.
  • the rise rate of the PCR thermal cycler may be 3.0 °C or higher, specifically 3.5 °C or higher, and more specifically 3.8 °C or higher.
  • the upper limit is not limited, but may be 10 °C or lower, substantially 8 °C or lower.
  • the falling speed of the PCR thermal cycler has a negative value. It has a negative value, but based on the absolute value, the fall rate of the PCR thermal cycler may be 3.0 °C or higher, specifically 3.05 °C or higher, and more specifically 3.08 °C or higher.
  • the upper limit is not limited, but is 8 °C or lower. , may be substantially 6°C or lower.
  • the PCR thermal cycler may include conventional components known in the art, such as a control device, an optical system, a fluorescence detection device, and an analysis device, in addition to the heating element and heat block described above.
  • a first silver nitrate solution was prepared by mixing 150 ml of water (ultrapure water) and 1.67 g of silver nitrate (AgNO 3 , Juntech), and a peristaltic pump (Peristaltic pump, Leadfluid, BT100L) was used. ) was added and reacted for about 15 minutes at a rate of 10 ml per minute.
  • the sample on which the first silver coating was completed was washed with 2L of water (ultrapure water) and dried to obtain a first silver-coated copper nanowire sample.
  • the sample with the primary silver coating completed and 1200 ml of water (ultrapure water) were placed in a 5L flask and stirred at 10,000 rpm using a homomixer (K-Corporation, Primix).
  • K-Corporation K-Corporation, Primix
  • 22.5 g of ethylenediaminetetraacetic acid disodium salt EDTA-2Na Dihydrate, Samjeon Pure Pharmaceutical Industry
  • EDTA-2Na Dihydrate ethylenediaminetetraacetic acid disodium salt
  • the separated metal nanowires were washed with 2L of water (ultrapure water) using filter paper and dried at room temperature for 24 hours to obtain thin and uniform copper nanowires coated with silver.
  • the length was measured to be 2.1 ⁇ 6.3um and the thickness was measured to be 191 ⁇ 450 nm.
  • the peak intensity (I 1 ) of Ag 3d 5/2 and Cu 2p 3/ calculated from the XPS spectrum obtained on the surface of the silver-coated copper nanowire through X-ray photoelectron spectroscopy (XPS, Thermo VG Scientific, Sigma Probe) As a result of comparing the peak intensity (I 2 ) of 2 , it was confirmed that I 2 /I 1 was 0.029.
  • Preparation Example 1 was carried out in the same manner as in Preparation Example 1, but the first silver coating reaction was not carried out.
  • a silver nitrate solution was prepared by adding 655 ml of water (ultrapure water) to 12.2 g of silver nitrate, followed by ammonia solution (NH 4 OH, Samjeon Pure Pharmaceutical). The same procedure was performed except that 4.34 ml was added to form a silver coating layer on the copper nanowire using only the second silver-ammonia complex solution.
  • Tin powder (average particle diameter: 100 ⁇ m) and silver-coated copper nanowires prepared in Preparation Example 1 were mixed at a ratio of 99.5:0.5 based on weight, and about 130 g of the mixture was placed in a high-speed flow mixer (HSFM-10-S, Ishin Machinery). and mixed twice for 10 minutes at 500 rpm.
  • HFM-10-S high-speed flow mixer
  • thermo block The processing process for manufacturing a molded product (thermal block) using a composite material containing tin powder and silver-coated copper nanowire is schematically shown in Figure 1.
  • the specimen containing the molded tin and silver-coated copper nanowires was measured and non-destructively tested using an ultrasonic flaw detector (SISTSCAN 500, Kyungdo Corporation). As a result, it was confirmed that the specimen containing the molded tin and silver-coated copper nanowires was melt-molded without pores or defects.
  • the melt temperature was 260°C and the molding time was 30 minutes.
  • the sintered molding was analyzed using a thermal diffusion measuring device (Xenon Flash Instrument LFA 447; NETZSCH), and the thermal analysis results are summarized in Table 1 below.
  • Example 2 The same procedure as Example 1 was carried out, except that the mixing ratio of tin powder and silver-coated copper nanowire was 99:1 (Example 2), 98.5:1.5 (Example 3), 98:2 (Example 4), and 97.5: The same procedure was performed except that the ratio was set to 2.5 (Example 5) and 97:3 (Example 6), and the thermal analysis results of each sintered molding are summarized in Table 1 below.
  • Non-destructive testing was conducted on the specimens. As a result of the non-destructive test of Example 3, it was confirmed that the specimen containing tin and silver-coated copper nanowires molded in the same manner as the results of Example 1 was melt-molded without pores or defects.
  • Example 3 The same procedure as in Example 3 was carried out, except that the silver-coated copper nanowire prepared in Preparation Example 2 was used, and the thermal analysis results of the sintered molded product are summarized in Table 1 below.
  • Example 3 The same procedure as in Example 3 was carried out, except that the tin powder and silver-coated copper nanowire were mixed using a mortar and pestle rather than a high-speed flow mixer, and the thermal analysis results of the sintered molding were as follows. It is summarized in Table 1.
  • Non-destructive test results of specimens molded using a mixture of tin powder and silver-coated copper nanowires mixed using a mortar and pestle were included. It was confirmed that pores or defects in the specimen exceeded the standard value.
  • Example 1 The same procedure as in Example 1 was performed except that tin powder was used alone, and the results of thermal analysis of the sintered molded product are summarized in Table 1 below.
  • Example 3 The same procedure as in Example 3 was performed except that a mixture of tin powder and silver powder was used, and the thermal analysis results of the sintered molded product are summarized in Table 1 below.
  • Example 3 had the best thermal conductivity properties, and in the case of specimens manufactured using a composite material mixed with tin powder and silver-coated copper nanowires, tin powder alone (Comparative Example 1) and It can be seen that all specimens have improved thermal conductivity characteristics compared to the specimens manufactured using a composite material mixed with tin powder and silver powder (Comparative Example 2).
  • Example 3 when comparing the thermal conductivity properties of Example 3 and Example 7, it was confirmed that the surface properties of the silver-coated copper nanowires included in the composite material affected the thermal conductivity properties.
  • the thermal conductivity characteristics of the molded product using the composite material of Example 3 which includes silver-coated copper nanowires in which the silver coating layer is formed uniformly and densely, are relatively poor in the silver-coated copper nanowires in which a portion of the copper is exposed because the silver is not coated evenly. It can be seen that the thermal conductivity characteristics of the molded product using the composite material of Example 7 including wire are superior to those of the molded product.
  • Moldings manufactured using a composite material that is a mixture of tin powder and silver-coated copper nanowire have little difference in heating and cooling rates between the area directly in contact with the heat source and the area located relatively away from the heat source. From this, it can be seen that the heat transfer efficiency of the molded product is significantly excellent, and by applying the molded product as a heat block of a PCR thermal cycler, the gene amplification reaction efficiency can be improved and reliability can be secured for ultra-fast PCR reaction. You can see that there is.
  • PCR thermal block of the form shown in Figure 5 was manufactured by casting at 260°C using the composite material of Example 3.
  • the prepared PCR thermoblock was mounted on a Real Time PCR equipment (ExiCycler; Bioneer) to measure thermal properties.
  • the average rise rate in the case of a PCR thermal cycler using a PCR thermal block manufactured using a composite material mixed with tin powder and silver-coated copper nanowire is higher than when using an aluminum PCR thermal block. It was confirmed that it was excellent at 28.2% and the average descent speed was 32.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Clinical Laboratory Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 써멀 사이클러의 열블럭용 복합소재에 관한 것으로, 상기 복합소재는 저 비열 특성을 구비함과 동시에 열전도도 특성이 현저히 향상되어 전술한 복합소재를 이용하여 제조된 열블럭의 경우, 상기 열블럭에 온도의 상승 및 하강 변화가 일어날 때 복수개의 단위 열블럭 간 및/또는 단위 열블럭 내의 서로 상이한 영역에서의 온도 변화 속도 편차를 현저히 줄일 수 있기 때문에 상기 열블럭을 포함하는 PCR 써멀 사이클러는 초고속 PCR 반응에도 신뢰성을 확보할 수 있다.

Description

써멀 사이클러의 열블럭용 복합소재 및 이를 이용하여 제조되는 저 비열성 써멀 사이클러의 열블럭
본 발명은 써멀 사이클러의 열블럭용 복합소재에 관한 것으로, 상세하게 열전도도가 우수하고 저 비열성인 써멀 사이클러의 열블럭용 복합소재 및 이를 이용하여 제조되는 저 비열성 써멀 사이클러의 열블럭에 관한 것이다.
최근에 산업이 발전하면서 방열 및 발열 전자제품이 많아지고 열전 특성이 우수한 소재에 대한 기술이 매우 중요한 분야로 인식되고 있다. 개인컴퓨터의 방열부품, 발광다이오드(LED) 방열체, 서멀 사이클러(Thermal Cycler)의 열블럭(Thermal Block)부품 분야에서 중요성이 커지고 있으며, 특히 써멀 사이클러는 유전자 진단에 필요한 기본 진단장비로 그 중요성이 증가하면서, 고속 진단을 위한 열전달체 기술이 크게 주목 받고 있다.
생명공학 분야, 특히 유전자 진단 분야에는 PCR(Polymerase Chain Reaction) 써멀 사이클러(Thermal Cycler)가 가장 중요한 장치인데, PCR 반응이란 1983년 뮬리스 등(Mullis et al.)에 의해 개발된 중합효소연쇄반응(Polymerase Chain Reaction; PCR)이라는 DNA 복제기술이다. PCR은 효소를 이용하여 주형 DNA를 계속 복제하는 방법으로, PCR 단계는 복제할 대상인 이중가닥 주형 DNA(Template DNA)를 단일가닥으로 풀어주는 변성(Melting)단계, 풀어진 단일가닥에 반응이 시작될 곳을 지정하고 효소반응이 시작되는 것을 도와주는 수십 베이스(base)의 프라이머(Primer)를 결합하는 어닐링(Annealing)단계, 그리고 프라이머가 붙은 위치로부터 DNA를 복제해서 완전한 이중 나선구조의 DNA를 만드는 연장(Extension)단계의 세 단계로 구분되어진다.
상기 세 단계를 진행하면 이론적으로 2배의 DNA 양이 증가하고, 이 과정을 반복적으로 n번 수행하면 DNA의 양은 이론적으로 2n배로 증가하게 된다.
일반적으로 PCR 써멀 사이클러는 온도조절이 가능한 열블럭(Thermal Block)이 사용되며, 상기 열블럭은 일정한 시간 간격에 따른 온도의 상승 및 하강 변화를 주기적으로 반복하여 온도를 조절하며 수행된다.
PCR(Polymerase Chain Reaction) 써멀 사이클러(Thermal Cycler)의 핵심 부품은 열적 특성이 우수한 열블럭(Thermal Block)이다. PCR의 특성에서 온도의 상승과 하강을 반복하게 되는데, 이 때 높은 열전도도와 낮은 비열 특성이 우수한 열블럭에 요구되어진다. 지금까지의 열블럭은 알루미늄 금속으로 제작되며, 고속 PCR 써멀 사이클러 장치의 경우 은(Silver) 금속이 사용되고 있다.
그러나 이러한 PCR 써멀 사이클러에 사용되는 알루미늄은 비열 성능이 떨어져서 고속의 PCR 반응이 어려운 것이 현재의 가장 큰 문제이다. 그리고 은(Silver)을 사용하는 방법은 은이 고가이기 때문에 경제성에서 문제가 생기게 된다. 따라서 상기의 문제점을 해소하기 위한 다양한 열전도체 소재에 대한 연구가 지속되고 있다.
이러한 문제를 해결하기 위해 비열 특성이 우수한 주석 분말과 열전도성이 우수한 금속분말이 혼합된 복합소재를 이용하여 제조된 열블럭이 제공된 바 있다.
그러나 복수개의 단위 열블럭이 구비된 PCR 써멀 사이클러에 있어 단위 열블럭의 열전도율 특성이 열위하여 단위 열블럭 간 또는 단위 열블럭 내의 서로 상이한 영역에서 온도의 상승 속도 및 하강 속도의 편차가 크게 나타나 초고속 PCR 반응을 진행할 경우 PCR 써멀 사이클러의 신뢰성이 저하되는 단점이 있다.
따라서, 비열 특성이 우수함과 동시에 열전도도 특성을 현저히 향상시킬 수 있는 써멀 사이클러의 열블럭을 제공할 수 있는 복합소재의 개발이 필요하다.
본 발명의 목적은 저 비열 특성을 구비함과 동시에 열전도도 특성이 우수한 써멀 사이클러의 열블럭용 복합소재를 제공하는 것이다.
본 발명의 다른 목적은 열전도도 특성이 우수함과 더불어 온도의 상승 및 하강 시 온도 변화 속도 편차를 현저히 줄일 수 있는 저 비열성 써멀 사이클러의 열블럭을 제공하는 것이다.
본 발명의 또 다른 목적은 전술한 열블럭을 포함하여 초고속 PCR 반응에도 신뢰성을 확보할 수 있는 PCR 써멀 사이클러를 제공하는 것이다.
본 발명의 일 양태에 따라 제공되는 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재는 제1금속 또는 제1금속을 포함하는 합금인 분말 금속; 및
제2금속을 포함하는 코어 상에 제3금속을 포함하는 쉘이 위치하는 코어-쉘 구조의 금속나노와이어;를 포함한다.
본 발명의 일 실시예에 따른 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재에 있어, 상기 제1금속은 주석이고, 상기 합금은 주석-은, 주석-구리, 주석-알루미늄, 주석-비스무스, 주석-안티모니, 주석-구리-비스무스, 주석-은-비스무스, 주석-구리-안티모니, 주석-은-안티모니, 주석-구리-은, 주석-구리-은-안티모니, 주석-구리-은-비스무스로부터 이루어진 군에서 선택되는 1종 이상일 수 있다.
본 발명의 일 실시예에 따른 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재에 있어, 상기 제2금속은 구리이고, 제3금속은 은 또는 금일 수 있다.
본 발명의 일 실시예에 따른 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재에 있어, 상기 금속나노와이어는 은 코팅 구리 나노와이어일 수 있다.
본 발명의 일 실시예에 따른 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재에 있어, 상기 금속나노와이는 X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)가 하기 식 1을 만족하는 것일 수 있다.
(식 1)
I2/I1 ≤ 0.2
본 발명의 일 실시예에 따른 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재에 있어, 상기 금속나노와이어의 직경은 100 내지 500 nm이며, 종횡비는 5 내지 100일 수 있다.
본 발명의 일 실시예에 따른 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재에 있어, 상기 분말 금속의 입경(Dp) : 금속나노와이어의 직경(Dw)의 비(Dp/ Dw)는 1 : 0.0001 내지 0.01일 수 있다.
본 발명의 일 실시예에 따른 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재에 있어, 상기 분말 금속 : 금속 나노와이어의 중량비는 1 : 0.001 내지 0.1일 수 있다.
본 발명은 다른 양태로 전술한 복합소재를 소결, 주물가공, 압연가공 또는 캐스팅(casting)하여 제조되는 저 비열성 써멀 사이클러의 열블럭을 제공한다.
본 발명은 또한, 다른 일 양태에 따라 주석 또는 주석 합금; 및 은 코팅 구리나노와이어;를 포함하는 저 비열성 써멀 사이클러의 열블럭을 제공한다.
본 발명의 일 실시예에 따른 저 비열성 써멀 사이클러의 열블럭에 있어, 상기 주석 또는 주석 합금 : 은 코팅 구리나노와이의 중량비는 1 : 0.001 내지 0.1일 수 있다.
본 발명의 일 실시예에 따른 저 비열성 써멀 사이클러의 열블럭에 있어, 상기 은 코팅 구리나노와이어는 X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)가 하기 식 1을 만족하는 것일 수 있다.
(식 1)
I2/I1 ≤ 0.2
본 발명의 일 실시예에 따른 저 비열성 써멀 사이클러의 열블럭에 있어, 상기 열블럭의 열전도도는 21℃에서 70 내지 100 W/(m K)일 수 있다.
본 발명의 또 다른 일 양태에 따라 제공되는 PCR (Polymerase Chain Reaction) 써멀 사이클러는 가열소자; 상기 가열 소자의 일 면에 일 단부가 접촉되고, 상기 일 단부에 대향하여 위치하는 다른 일 단부에 삽입공을 포함하는 열블럭;을 포함하되, 상기 열블럭은 전술한 복합소재를 소결, 주물가공, 압연가공 또는 캐스팅(casting) 하여 형성되는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 제공되는 PCR (Polymerase Chain Reaction) 써멀 사이클러에 있어, 상기 열블럭은 하기 식 2를 만족하는 것일 수 있다.
(식 2)
Ha - Hb ≤ ± 0.5 ℃/sec
식 2에서 Ha는 높이가 t인 열블럭에 있어, 가열 소자의 일 면과 접촉되는 일 단부를 기준으로 A영역으로 정의되는 0.1 내지 0.3t 영역에서의 가열 속도이고, Hb는 B영역으로 정의되는 0.7t 내지 1.0t 영역에서의 가열 속도이다.
본 발명의 써멀 사이클러의 열블럭용 복합소재는 제1금속 또는 제1금속을 포함하는 합금인 분말 금속; 및 제2금속을 포함하는 코어 상에 제3금속을 포함하는 쉘이 위치하는 코어-쉘 구조의 금속나노와이어;를 포함함에 따라 저 비열 특성을 구비함과 동시에 열전도도 특성을 현저히 향상시킬 수 있는 장점이 있다.
또한, 전술한 복합소재를 이용하여 제조된 열블럭의 경우, 상기 열블럭에 온도의 상승 및 하강 변화가 일어날 때, 복수개의 단위 열블럭 간 및/또는 단위 열블럭 내의 서로 상이한 영역에서의 온도 변화 속도 편차를 현저히 줄일 수 있는 장점이 있다.
나아가, 전술한 열블럭을 포함하는 PCR 써멀 사이클러는 초고속 PCR 반응에도 신뢰성을 확보할 수 있는 장점이 있다.
도 1은 본 발명에 따른 주석 또는 주석합금에 은 코팅 구리 나노 와이어를 포함하는 저 비열성 복합소재의 소결, 주물가공, 압연가공 또는 캐스팅 가공 공정을 개략적으로 도시한 도면이다.
도 2는 본 발명에 따른 저 비열성 복합소재를 소결, 주물가공, 압연가공 또는 캐스팅(casting) 하여 제조한 써멀 사이클러의 열블럭 성형물의 입체도면을 나타내는 모식도이다.
이하 실시예를 통해 본 발명에 따른 써멀 사이클러의 열블럭용 복합소재 및 이를 포함하는 저 비열성 써멀 사이클러의 열블럭에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 참조일 뿐 본 발명이 이에 제한되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고, 본 발명을 제한하는 것으로 의도되지 않는다.
또한, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 효과 및 구성에 대한 설명은 생략한다. 이하 명세서에서 특별한 언급 없이 사용된 단위는 중량을 기준으로 하며, 일 예로 % 또는 비의 단위는 중량% 또는 중량비를 의미한다.
또한 본 발명의 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도될 수 있다.
또한 본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함할 수 있다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치 범위 외의 값 역시 정의된 수치 범위에 포함된다.
본 발명의 일 구현예에 따른 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재는 제1금속 또는 제1금속을 포함하는 합금인 분말 금속; 및 제2금속을 포함하는 코어 상에 제3금속을 포함하는 쉘이 위치하는 코어-쉘 구조의 금속나노와이어;를 포함한다.
생명과학, 유전공학, 의학분야 등에서 연구개발 및 진단목적으로 중합효소연쇄반응(Polymerase Chain Reaction; PCR)에 의한 유전자 증폭기술은 광범위하게 활용되고 있다.
PCR은 효소를 이용하여 변성(Melting)단계, 어닐링(Annealing)단계 및 연장(Extension)단계를 거쳐 주형 유전자를 계속 복제하는데 전술한 단계를 반복적으로 수행하여 유전자의 양을 증폭시키는 반응이다.
이 때, 변성단계는 통상적으로 95℃에서 진행되고, 어닐링 단계 및 연장단계는 75 ℃ 이하에서 진행되는데, 전술한 바와 같이 각 단계를 반복적으로 수행하여 유전자를 증폭시키기 위해서는 유전자 샘플의 온도를 반복적으로 상승 및 하강시킬 필요가 있다.
유전자 증폭을 위해서는 유전자 샘플의 온도를 조절할 수 있는 장치가 필수적이고, 이러한 장치로 써멀 사이클러가 널리 이용되고 있다.
일반적으로 PCR 써멀 사이클러는 온도조절이 가능한 열블럭(Thermal Block)이 사용되며, 상기 열블럭은 일정한 시간 간격에 따른 온도의 상승 및 하강 변화를 주기적으로 반복하여 온도를 조절하며 수행된다. 이 때, 열블럭은 우수한 열전도도 특성과 낮은 비열 특성이 요구되는데, 일반적으로 알루미늄 금속으로 제조되며, 고속 PCR 써멀 사이클러 장치의 경우 은 금속이 사용되고 있다.
그러나, 알루미늄은 비열 특성이 열위하여 고속 PCR 반응에 이용하는데 한계가 있고, 은을 사용하는 방법은 경제적이지 못하여 그 사용에 제한이 있다.
이러한 문제를 해결하기 위해 종래는 주석 분말과 열전도성이 우수한 금속분말이 혼합된 복합소재를 이용하여 제조된 열블럭을 제공하고 있으나, 복수개의 단위 열블럭이 구비된 PCR 써멀 사이클러에 있어, 단위 열블럭의 열전도율 특성이 열위하여 단위 열블럭 간 및/또는 단위 열블럭 내의 서로 상이한 영역에서 온도의 상승 속도 및 하강 속도의 편차가 크게 나타나 초고속 PCR 반응을 진행할 경우 PCR 써멀 사이클러의 신뢰성이 저하되는 문제가 있다.
반면에, 본 발명의 일 구현예에 따른 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재는 분말 금속 및 코어-쉘 구조의 금속나노와이어를 포함함에 따라 저 비열 특성을 구비함과 동시에 열전도도 특성을 현저히 향상시킬 수 있을 뿐만 아니라 경제성 측면에서 유리하기 때문에 전술한 복합소재를 이용하여 제조된 열블럭의 경우, 경제성을 갖춤과 동시에 상기 열블럭에 온도의 상승 및 하강 변화가 일어날 때, 복수개의 단위 열블럭 간 및/또는 단위 열블럭 내의 서로 상이한 영역에서의 온도 변화 속도 편차를 현저히 줄일 수 있는 장점이 있고, 또한, 전술한 열블럭을 포함하는 PCR 써멀 사이클러는 초고속 PCR 반응에도 신뢰성을 확보할 수 있는 장점이 있다.
구체적으로, 써멀 사이클러의 열블럭용 복합소재에 포함되는 분말 금속 및 코어-쉘 구조의 금속나노와이는 써멀 사이클러의 열블럭을 제조하기 위해 압축 성형될 수 있는데, 이 때, 유연한 금속나노와이어는 분말 금속과 더불어 고밀도로 압축됨과 동시에 금속나노와이어 간 네트워크를 형성하여 열블럭 내에서 균일한 열적 이동 경로(path)를 제공하여 열전도도 특성을 현저히 향상시킬 수 있을뿐 아니라 단위 열블럭 간 및/또는 단위 열블럭 내의 서로 상이한 영역에서 온도의 상승 속도 및 하강 속도의 편차를 현저히 줄일 수 있는 것이다.
반면에, 종래와 같이 주석 분말과 열전도성이 우수한 금속분말이 혼합된 복합소재를 이용하여 열블럭 제조 시 열전도성이 우수한 금속분말을 균일하게 분산시키는데 한계가 있고, 이에 의해 블록 내에서 열적 이동 경로는 랜덤하게 형성될 수밖에 없기 때문에 단위 열블럭 간 및/또는 단위 열블럭 내의 서로 상이한 영역에서 온도의 상승 속도 및 하강 속도의 편차가 크게 나타나는 것이다.
일 실시예로, 분말 금속인 제1금속 또는 제1금속을 포함하는 합금에 있어, 상기 제1금속은 주석이고, 상기 합금은 주석-은, 주석-구리, 주석-알루미늄, 주석-비스무스, 주석-안티모니, 주석-구리-비스무스, 주석-은-비스무스, 주석-구리-안티모니, 주석-은-안티모니, 주석-구리-은, 주석-구리-은-안티모니, 주석-구리-은-비스무스로부터 이루어진 군에서 선택되는 1종 이상일 수 있다.
써멀 사이클러의 열블록용 복합소재에 분말 금속으로 주석 또는 상기 주석을 포함하는 합금을 사용함에 따라 상기 복합소재를 이용하여 제조되는 열블록의 저 비열 특성을 부여할 수 있다.
일 구체예로, 분말 금속의 평균입경은 40 내지 200 μm, 구체적으로 70 내지 140 μm, 보다 구체적으로 80 내지 120 μm일 수 있다.
일 실시예에 있어, 복합소재에 포함되는 코어-쉘 구조의 금속나노와이어에서 코어에 포함되는 제2금속은 제1금속 대비 열전도율이 우수한 금속일 수 있고, 유리한 일 예로, 열전도율 특성과 더불어 경제성을 고려하여 제2금속은 구리일 수 있다.
일 구체예로, 코어-쉘 구조의 금속나노와이어에서 쉘에 포함되는 제3금속은 제2금속의 열전도율을 기준으로 유사 내지 동등 이상 수준의 열전도율을 구비함과 동시에 하기 식 1을 만족하는 금속일 수 있다.
이 때, 제2금속의 열전도율을 기준으로 유사 내지 동등 이상 수준이라 함은 제2금속의 열전도율 대비 적어도 70% 이상, 80% 이상, 90% 이상, 100% 이상의 수준을 의미하는 것일 수 있고, 상한값은 제한되지 않는다.
(식 1)
0.6 ≤ C1/C3 ≤ 2
(식 1에서 C1은 제1금속의 비열(specific heat)이고, C3는 제3금속의 비열이다)
구체적 일 예로, 제1금속의 비열(C1)과 제3금속의 비열(C3)의 비(C1/C3)는 0.6 이상, 0.7 이상, 0.8 이상, 0.9 이상일 수 있고, 실질적으로 2 이하일 수 있다.
이와 같이, 금속나노와이어에서 쉘에 포함되는 제3금속이 제2금속의 열전도율을 기준으로 유사 내지 동등 이상 수준의 열전도율을 구비함과 동시에 하기 식 1을 만족함에 따라 전술한 제1금속 또는 제1금속을 포함하는 합금인 분말 금속과 함께 써멀 사이클러의 열블록용 복합소재에 포함되어 상기 복합 소재를 이용하여 제조된 열블럭이 저 비열 특성과 더불어 현저히 우수한 열전도도 특성을 가질 수 있는 것이다.
일 구체예로, 제3금속은 은 또는 금일 수 있다.
일 실시예로, 코어-쉘 구조의 금속 나노와이어의 직경은 100 내지 500 nm일 수 있고, 구체적으로 150 내지 500 nm일 수 있으며, 보다 구체적으로 200 내지 500 nm일 수 있고, 금속 나노와이어의 종횡비는 5 내지 100, 좋게는 8 내지 60, 보다 좋게는 10 내지 40일 수 있다.
써멀 사이클의 열블록용 복합소재에 포함되는 금속 나노와이어의 직경 및 종횡비가 전술한 범위를 만족함에 따라 이를 이용하여 열블럭 제조 시, 열블럭 내에서 안정적으로 균일한 열적 이동 경로(path)를 제공할 수 있다.
유리한 일 예로, 금속나노와이어는 은 코팅 구리나노와이어일 수 있다.
은 코팅 구리나노와이는 저 비열 특성과 더불어 우수한 열전도도 특성을 가져 제1금속 또는 제1금속을 포함하는 합금인 분말 금속과 함께 써멀 사이클러의 열블록용 복합소재에 포함되어 상기 복합 소재를 이용하여 제조된 열블럭의 열적 특성을 향상시키는데 유리하다. 또한, 열적 특성을 현저히 향상시키는데 소요되는 비용이 크지 않아 경제적인 측면에서도 좋다.
구체적 일 예로, 금속나노와이어가 은 코팅 구리나노와이어일 경우, 금속나노와이는 X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)가 하기 식 2를 만족하는 것일 수 있다.
(식 2)
I2/I1 ≤ 0.2
구리의 경우는 공기 중에 노출되었을 시, 쉽게 산화되어 구리산화물의 형성에 의해 전기적 및 열적 특성이 저하될 수 있으나, 전술한 바와 같이 금속나노와이어, 즉 은 코팅 구리나노와이어가 상기 식 2를 만족함에 따라 우수한 산화안정성을 가져 은 코팅 구리나노와이어 본연의 전기적 및 열적 특성을 유지하는데 유리할 수 있다.
구체적 일 예에 있어, X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)의 비(I2/I1)는 0.2 이하, 좋게는 0.1 이하, 보다 좋게는 0.05 이하, 보다 더 좋게는 0.03 이하일 수 있고, 0.001 이상 일 수 있다.
X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)의 비(I2/I1)가 0.2 초과이면 코어-쉘 구조의 금속 나노와이어에서 외부로 노출된 구리가 산화되어 금속 나노와이어의 산화안정성이 떨어질 수 있기 때문에 X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)의 비(I2/I1)는 전술한 범위를 만족하는 것이 바람직하다.
일 구체예로, 은 코팅, 즉 셀의 두께는 5 내지 40 nm일 수 있고, 구체적으로 5 내지 30 nm일 수 있으며, 보다 구체적으로 5 내지 20 nm일 수 있으며, 보다 더 구체적으로 6 내지 10 nm일 수 있다.
쉘의 두께가 5 nm 미만이면 코어에 포함된 구리의 산화를 효과적으로 억제할 수 없고, 쉘의 두께가 40 nm 이상이면 코어 상에 위치하는 쉘의 균일성이 떨어져 구리 산화물의 생성 가능성이 존재할 수 있으며, 경제적인 측면에서 유리하지 않기 때문에 쉘의 두께는 전술한 범위를 만족하는 것이 좋다.
일 구현예로, 써멀 사이클러의 열블록용 복합소재에 포함되는 분말 금속의 평균입경(Dp) : 금속나노와이어의 직경(Dw)의 비(Dp/ Dw)는 1 : 0.0001 내지 0.01, 구체적으로. 1 : 0.0005 내지 0.005 일 수 있다.
써멀 사이클러의 열블록용 복합소재에 포함되는 분말 금속의 평균입경 : 금속나노와이어의 직경의 비가 전술한 범위를 만족함에 따라 복합소재를 이용하여 열블럭 제조 시 열블럭의 치밀성(compactness)을 향상시킬 수 있다.
이 때, 써멀 사이클러의 열블록용 복합소재는 0.1 내지 60 중량%, 구체적으로 0.5 내지 30 중량%, 보다 구체적으로 1 내지 10 중량%의 금속나노와이어를 포함하는 것일 수 있다.
일 구현예에 있어, 써멀 사이클러의 열블록용 복합소재에 포함되는 분말 금속 : 금속 나노와이어의 중량비는 1 : 0.001 내지 0.5, 유리하게는 1 : 0.001 내지 0.1, 보다 유리하게는 1 : 0.005 내지 0.1, 보다 더 유리하게는 1 : 0.01 내지 0.05일 수 있다.
일 예로, 써멀 사이클러의 열블록용 복합소재는 분말 금속 및 금속 나노와이어를 물리적으로 혼합하여 제조될 수 있는데 분말 금속 : 금속 나노와이어의 중량비가 0.001 미만일 경우, 분말 금속 및 금속 나노와이어가 균일하게 혼합될 수 있으나 금속 나노와이어의 네트워트 형성을 통한 열적 이동 경로의 형성에 한계가 있기 때문에 열전도도 특성을 향상시키는데 제한이 있다. 또한, 분말 금속 : 금속 나노와이어의 중량비가 0.5를 초과할 경우는 분말 금속 및 금속 나노와이어의 혼합이 균일하게 이루어지지 않아 오히려 열전도도 특성이 저하될 수 있고, 또한 불필요하게 많은 양의 금속 나노와이어가 포함되어 경제성이 떨어질 수 있기 때문에 써멀 사이클러의 열블록용 복합소재에 포함되는 분말 금속 : 금속 나노와이어의 중량비는 전술한 범위를 만족하는 것이 좋다.
이 때, 써멀 사이클러의 열블록용 복합소재는 전술한 중량비를 만족하는 분말 금속 및 금속 나노와이어를 고속으로 회전하는 믹서기를 이용하여 제조될 수 있다. 일 예로, 고속으로 회전하는 믹서기는 회전 속도는 150 내지 1000 rpm, 구체적으로 300 내지 800 rpm, 보다 구체적으로 400 내지 600 rpm일 수 있다.
또한, 분말 금속 및 금속 나노와이어의 균일한 혼합을 위하여 고속으로 회전하는 믹서기를 이용한 혼합 공정은 1회 이상, 2회 이상 또는 3회 이상 수행될 수 있고, 상한 값이 제한되는 것은 아니나 실질적으로 10회 이하로 수행될 수 있음은 물론이다.
본 발명은 상술한 써멀 사이클러의 열블럭용 복합소재를 소결, 주물가공 또는 캐스팅(casting)하여 제조되는 저 비열성 써멀 사이클러의 열블럭을 제공한다.
또한, 본 발명은 주석 또는 주석 합금; 및 은 코팅 구리나노와이어;를 포함하는 저 비열성 써멀 사이클러의 열블럭을 제공한다.
여기서 주석 합금은 전술한 제1금속을 포함하는 합금과 유사 내지 동일한 것으로 상세한 설명은 생략한다.
일 구현예로, 주석 또는 주석 합금 : 은 코팅 구리나노와이어의 중량비는 1 : 0.001 내지 0.5, 유리하게는 1 : 0.001 내지 0.1, 보다 유리하게는 1 : 0.005 내지 0.1, 보다 더 유리하게는 1 : 0.01 내지 0.05일 수 있다.
열블럭에 주석 또는 주석 합금 및 은 코팅 구리나노와이어가 전술한 중량비로 포함됨에 따라 은 코팅 구리나노와이어 간 네트워크를 형성하여 열블럭 내에서 균일한 열적 이동 경로(path)를 제공할 수 있고, 이에 의해 단위 열블럭 간 및/또는 단위 열블럭 내의 서로 상이한 영역에서 온도의 상승 속도 및 하강 속도의 편차를 현저히 줄일 수 있는 장점이 있다.
일 실시예로, 은 코팅 구리나노와이어는 X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)가 하기 식 2를 만족하는 것일 수 있다.
(식 2)
I2/I1 ≤ 0.2
은 코팅 구리나노와이어가 상기 식 2를 만족함에 따라 우수한 산화안정성을 가져 은 코팅 구리나노와이어 본연의 전기적 및 열적 특성을 유지하는데 유리할 수 있다.
구체적 일 예에 있어, X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)의 비(I2/I1)는 0.2 이하, 좋게는 0.1 이하, 보다 좋게는 0.05 이하, 보다 더 좋게는 0.03 이하일 수 있고, 0.001 이상 일 수 있다.
X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)의 비(I2/I1)가 0.2 초과이면 은코팅 구리나노와이어에서 외부로 노출된 구리가 산화되어 은 코팅 구리나노와이어의 산화안정성이 떨어질 수 있기 때문에 X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)의 비(I2/I1)는 전술한 범위를 만족하는 것이 바람직하다.
이 때, 은 코팅 구리나노와이어는 전술한 코어-쉘 구조의 금속나노와이어와 유사 내지 동일한 것으로 은 코팅 구리나노와이어의 직경, 종횡비 및 은 코팅 층의 두께에 대한 상세한 설명은 생략한다.
일 구현예에 있어, 저 비열성 써멀 사이클러의 열블럭의 열전도도는 21℃에서 70 내지 150 W/(m K), 구체적으로 70 내지 100 W/(m K), 보다 구체적으로 70 내지 80 W/(m K)일 수 있다.
구체적 일 예로, 저 비열성 써멀 사이클러의 열블럭은 밀도가 5 내지 20 g/mL, 구체적으로 5 내지 10 g/mL이고, 열용량이 0.2 내지 1 J/(g K), 구체적으로 0.2 내지 0.5 J/(g K)이며, 부피 열용량이 1 내지 2 J/(cm3 K), 구체적으로 1 내지 1.8 J/(cm3 K)인 물성을 가지는 것일 수 있다.
이와 같이, 저 비열성 써멀 사이클러의 열블럭은 주석 또는 주석 합금 및 상기 식2를 만족하는 은 코팅 구리나노와이어를 포함하되, 전술한 물성을 가짐에 따라 열블럭의 온도 상승 및 하강 변화에 있어, 복수개의 단위 열블럭 간 및/또는 단위 열블럭 내의 서로 상이한 영역에서의 온도 변화 속도 편차를 현저히 줄일 수 있는 장점이 있다.
또한, 본 발명은 가열소자; 상기 가열 소자의 일 면에 일 단부가 접촉되고, 상기 일 단부에 대향하여 위치하는 다른 일 단부에 삽입공을 포함하는 열블럭;을 포함하되, 상기 열블럭은 상술한 복합소재를 소결, 주물가공, 압연가공 또는 캐스팅(casting)하여 형성되는 것인, PCR (Polymerase Chain Reaction) 써멀 사이클러를 제공한다.
본 발명의 일 구현예에 따른 PCR 써멀 사이클러는 열전달 효율을 현저히 향상시킬 수 있는 상술한 복합소재를 이용하여 형성된 열블럭을 포함함에 따라 유전자 증폭 반응 효율을 향상시킴과 동시에 초고속 PCR 반응에도 신뢰성을 확보할 수 있는 장점이 있다.
일 구체예로, 가열소자는 가열소자의 일 면에 열블럭의 일 단부가 접촉되어 열블럭으로 열을 전달함과 동시에 냉각 기능을 수행할 수 있는 열원일 수 있다.
구체적 일 예로, 가열소자는 펠티어 소자일 수 있고, 펠티어 소자는 전류방향을 전환하면서 동일 소자에서 발열과 냉각이 이루어지며, 펠티어 소자의 하면에서 냉각 역할을 하고, 열블럭의 일 단부와 접촉되는 상면에서 발열을 하게 된다.
이 때, 냉각 효율을 향상시키기 위해 펠티어 소자의 하면에 히트싱크가 부착될 수 있다.
일 구현예로, 열블럭은 가열소자의 일 면에 접촉되는 일 단부에 대향하여 위치하는 다른 일 단부에 삽입공을 포함할 수 있고, 삽입공을 통해 시약 또는 샘플 용기가 열블럭에 투입되어 열블럭의 내면과 용기의 외면이 면접촉되어 시약 또는 샘플의 온도 변화를 유도할 수 있다. 이 때, 삽입공의 형상은 시약 또는 샘플 용기의 외면 형상과 동일할 수 있고, 삽입공의 형상에 의해 본 발명이 제한되는 것은 아니다.
일 실시예로, 열블럭은 하기 식 3을 만족하는 것일 수 있다.
(식 3)
Ha - Hb ≤ ± 0.5 ℃/sec
식 3에서 Ha는 높이가 t인 열블럭에 있어, 가열 소자의 일 면과 접촉되는 일 단부를 기준으로 A영역으로 정의되는 0.1 내지 0.3t 영역에서의 가열 속도이고, Hb는 B영역으로 정의되는 0.7t 내지 1.0t 영역에서의 가열 속도이다.
이 때, 가열 속도는 가열 소자를 이용하여 95℃까지 상승시킬 시, 15초 이후에 A영역 및 B영역에서 각각 온도를 측정하여 산출된 시간 변화(Δs)에 대한 초기 온도를 기준으로 측정된 온도 변화량(ΔT)의 비(ΔT / Δs)일 수 있다.
일 구체예에 있어, A영역 및 B영역에서의 가열 속도의 차이(Ha - Hb)는 ± 0.5 ℃/sec이하, ± 0.4 ℃/sec이하, ± 0.3 ℃/sec이하, ± 0.2 ℃/sec이하일 수 있고, 하한 값이 제한되는 것은 아니나 실질적으로 ± 0.01 ℃/sec이상, 보다 실질적으로 ± 0.05 ℃/sec 이상일 수 있다.
열블럭이 상기 식 3을 만족함에 따라 유전자 증폭 반응 효율을 향상시킴과 동시에 초고속 PCR 반응에도 PCR 써멀 사이클러의 신뢰성을 확보할 수 있는 것이다.
또한, A영역 및 B영역에서의 냉각 속도(cooling rate)의 차이는 전술한 A영역 및 B영역에서의 가열 속도 차이와 유사 내지 동일할 수 있다. 이 때, 냉각 속도는 가열 소자를 이용하여 95℃에서 25℃ 까지 하강시킬 시, 15초 이후에 A영역 및 B영역에서 각각 온도를 측정하여 산출된 시간 변화(Δs)에 대한 초기 온도를 기준으로 측정된 온도 변화량(ΔT)의 비(ΔT / Δs)일 수 있다.
일 구현예로, PCR 써멀 사이클러의 상승 및 하강 속도(ramping rate)의 절대값은 3.0 ℃ 이상일 수 있다.
구체적으로 PCR 써멀 사이클러의 상승 속도 및 하강 속도는 각각 독립적으로 상이할 수 있다.
일 예로, PCR 써멀 사이클러의 상승속도는 3.0 ℃ 이상, 구체적으로 3.5 ℃ 이상, 보다 구체적으로 3.8 ℃ 이상일 수 있고, 상한 값이 제한되는 것을 아니나, 10 ℃이하, 실질적으로 8 ℃이하일 수 있다.
전술한 PCR 써멀 사이클러의 상승속도와 달리, PCR 써멀 사이클러의 하강속도는 음의 값을 갖는다. 음의 값을 가지되, 절대값을 기준으로 PCR 써멀 사이클러의 하강속도는 3.0 ℃ 이상, 구체적으로 3.05 ℃ 이상, 보다 구체적으로 3.08 ℃ 이상일 수 있고, 상한 값이 제한되는 것을 아니나, 8 ℃이하, 실질적으로 6 ℃이하일 수 있다.
또한, PCR 써멀 사이클러는 전술한 가열 소자 및 열블럭 외에 당업계에 공지된 통상의 구성 요소 예를 들면, 제어장치, 광학계, 형광검출장치, 분석장치 등을 포함할 수 있음은 물론이다.
이하, 실시예를 통해 본 발명에 따른 써멀 사이클러의 열블럭용 복합소재 및 이를 포함하는 열블럭에 대해 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
또한, 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.
(제조예 1)
5L 플라스크에 물(초순수) 1200ml와 상기 제조예에 의해 제조된 구리나노 와이어 15.0g을 첨가한 후 호모믹서(Homomixer, K-Corporation, Primix)를 이용하여 10,000rpm으로 교반하였다. 여기에 구리 나노와이어의 산화막을 제거하기 위해 에틸렌디아민 테트라아세트산 디나트륨 염(EDTA-2Na Dihydrate, 삼전순약공업) 22.5g을 물(초순수) 150ml에 용해시켜 넣어주고 3분 동안 10,000rpm으로 교반하였다. 여기에 환원제인 L-아스코빅 산(C6H8O6, 삼전순약공업) 13.1g을 물(초순수) 150ml에 용해시킨 후 첨가하고 다시 3분 동안 교반하였다.
산화막이 제거된 구리 나노와이어에 1차 은 코팅을 하기 위해 물(초순수) 150ml과 질산은(AgNO3, 준텍) 1.67g을 혼합하여 제1 질산은 용액을 제조하고, 연동 펌프(Peristaltic pump, Leadfluid, BT100L)을 이용하여 분당 10ml의 속도로 약 15분 동안 첨가하여 반응시켰다.
이후, 1차 은 코팅이 완료된 시료를 물(초순수) 2L로 세척하고 건조하여 1차 은 코팅 구리 나노와이어 시료를 수득하였다.
이어서 2차 은 코팅을 하기 위해 1차 은 코팅이 완료된 시료와 물(초순수) 1200ml를 5L 플라스크에 넣고 호모믹서(Homomixer, K-Corporation, Primix)를 이용하여 10,000rpm으로 교반하였다. 구리이온을 안정적으로 제거하기 위해 에틸렌디아민테트라아세트산 디나트륨 염(EDTA-2Na Dihydrate, 삼전순약공업) 22.5g을 물(초순수) 150ml에 용해시켜 넣어주고 3분 동안 10,000rpm으로 교반하였다.
환원제인 주석산나트륨칼륨 4수화물(KNaC4H4O6·4H2O) 21g을 물(초순수) 150ml에 용해시켜 넣어주고 다시 3분 동안 교반하였다. 2차 은 코팅을 하기 위해 질산은 4.23g에 물(초순수) 655ml를 넣어 질산은 용액을 제조 후 암모니아수(NH4OH, 삼전순약) 4.34ml를 첨가하여 제2 질산은-암모니아 착물 용액을 제조하였다. 제조된 제2 은-암모니아 착물 용액을 분당 10ml의 속도로 약 66분 동안 첨가하여 반응시켰다.
반응이 완료된 후, 여과지를 이용하여 분리된 금속 나노와이어를 물(초순수) 2L로 세척하고 상온에서 24시간 동안 건조하여 얇고 균일하게 은으로 코팅 구리 나노와이어를 수득하였다.
수득한 은 코팅된 구리 나노와이어의 길이 및 두께를 분석한 결과에서 길이는 2.1~6.3um, 두께는 191~450 nm로 측정되었다.
또한, 은 코팅 구리 나노와이어의 표면을 X선 광전자 분광법(XPS, Thermo VG Scientific, Sigma Probe)을 통해 수득한 XPS 스펙트럼으로부터 산출된 Ag 3d5/2의 피크 강도(I1)와 Cu 2p3/2의 피크 강도(I2)를 비교한 결과 I2/I1이 0.029 임을 확인하였다.
(제조예 2)
제조예 1과 동일하게 실시하되, 1차 은 코팅 반응은 실행하지 않고 2차 은 코팅을 하기 위해 질산은 12.2g에 물(초순수) 655ml를 넣어 질산은 용액을 제조 후 암모니아수 (NH4OH, 삼전순약) 4.34ml를 첨가하여 제2 은-암모니아 착물 용액만을 사용하여 구리 나노와이어에 은 코팅층을 형성시킨 것을 제외하고 동일하게 실시하였다.
이 때, XPS 스펙트럼으로부터 산출된 Ag 3d5/2의 피크 강도(I1)와 Cu 2p3/2의 피크 강도(I2)를 비교한 결과 I2/I1이 0.41 임을 확인하였다.
(실시예 1)
주석 분말(평균입경 100μm) 및 제조예 1에서 제조된 은 코팅 구리나노와이어를 중량 기준으로 99.5 : 0.5의 비율로 혼합하여 약 130g의 혼합물을 고속유동믹서(HSFM-10-S, 이신기계)에 넣고 500rpm으로 10분간 2회 혼합하였다.
흑연(graphite)으로 되어 있는 몰드(내부 중심 직경 40.0 mm)에서 상하부 펀지 사이에 상기에서 혼합한 혼합물(복합소재) 약 130g을 넣고, 고온 프레스 장치(D1P-20J; 대흥과학)에 혼합물이 들어 있는 몰드를 수직 가압 구조의 프레스 사이에 장착한 후, 유압실린더로 가압하고 260℃에서 용융 성형하였다.
주석 분말 및 은 코팅 구리나노와이어를 포함하는 복합소재를 이용하여 성형물(열블럭)을 제조하는 가공 공정을 도 1에 개략적으로 나타내었다.
상기 성형된 주석 및 은 코팅 구리 나노 와이어를 포함하는 시편을 초음파 탐상기 (SISTSCAN 500, 경도양행(주))로 측정하여 비파괴 검사하였다. 그 결과 성형된 주석 및 은 코팅 구리 나노 와이어를 포함하는 시편에 기공이나 결함이 없이 용융 성형된 것을 확인하였다.
상기 성형에서 용융온도는 260℃유지시간 30분의 조건으로 성형하였다. 소결한 성형물을 열확산 측정장비(Xenon Flash Instrument LFA 447; NETZSCH)를 사용하여 분석하였고, 열분석 결과는 하기 표 1에 정리하였다.
(실시예 2 내지 실시예 6)
실시예 1과 동일하게 실시하되, 주석 분말 : 은 코팅 구리나노와이어의 혼합 비율을 99 : 1 (실시예 2), 98.5 : 1.5 (실시예 3), 98 : 2 (실시예 4), 97.5 : 2.5 (실시예 5), 97 : 3 (실시예 6)이 되도록 한 것을 제외하고는 동일하게 실시하였고, 각각의 소결한 성형물의 열분석 결과는 하기 표 1에 정리하였으며, 실시예 3의 성형된 시편에 대한 비파괴 검사를 실시하였다. 실시예 3의 비파괴 검사 결과 실시예 1의 결과와 동일하게 성형된 주석 및 은 코팅 구리 나노 와이어를 포함하는 시편에 기공이나 결함이 없이 용융 성형된 것을 확인하였다.
(실시예 7)
실시예 3과 동일하게 실시하되, 제조예 2에서 제조된 은 코팅 구리나노와이어를 사용한 것을 제외하고는 동일하게 실시하였고, 소결한 성형물의 열분석 결과는 하기 표 1에 정리하였다.
(실시예 8)
실시예 3과 동일하게 실시하되, 주석 분말 및 은 코팅 구리나노와이어를 고속유동믹서를 사용하지 않고 막자사발을 사용하여 혼합하는 것을 제외하고는 동일하게 실시하였고, 소결한 성형물의 열분석 결과는 하기 표 1에 정리하였다.
주석 분말 및 은 코팅 구리나노와이어를 막자사발을 사용하여 혼합된 혼합물을 이용하여 성형된 시편의 비파괴 검사결과, 실시예 1 및 실시예 3의 결과와 달리 성형된 주석 및 은 코팅 구리 나노 와이어를 포함하는 시편에 기공이나 결함이 기준치 이상으로 발생되었음을 확인하였다.
(비교예 1)
실시예 1과 동일하게 실시하되, 주석 분말을 단독으로 사용한 것을 제외하고는 동일하게 실시하였고, 소결한 성형물의 열분석 결과는 하기 표 1에 정리하였다.
(비교예 2)
실시예 3과 동일하게 실시하되, 주석 분말 및 은 분말을 혼합하여 사용한 것을 제외하고는 동일하게 실시하였고, 소결한 성형물의 열분석 결과는 하기 표 1에 정리하였다.
Figure PCTKR2023013381-appb-img-000001
표 1를 참조하면, 실시예 3의 열전도도 특성이 가장 우수한 것이 관찰되었고, 주석 분말 및 은 코팅 구리나노와이어가 혼합된 복합소재를 이용하여 제조된 시편의 경우 주석 분말 단독(비교예 1) 및 주석 분말과 은 분말이 혼합된 복합소재(비교예 2)를 이용하여 제조된 시편 대비 모두 향상된 열전도도 특성을 갖는 것을 알 수 있다.
또한, 실시예 3과 실시예 7의 열전도도 특성을 비교하면, 복합소재에 포함되는 은 코팅 구리나노와이어의 표면 특성이 열전도도 특성에 영향을 미치는 것을 확인하였다.
구체적으로, XPS 스펙트럼으로부터 산출된 Ag 3d5/2의 피크 강도(I1)와 Cu 2p3/2의 피크 강도(I2)의 비(I2/I1)를 근거하여 구리 나노와이어 상에 위치하는 은 코팅층이 균일하고 치밀하게 형성된 은 코팅 구리나노와이어를 포함하는 실시예 3의 복합소재를 이용한 성형물의 열전도도 특성이 상대적으로 은이 고르게 코팅되지 않아 구리의 일 부분이 노출된 은 코팅 구리나노와이어를 포함하는 실시예 7의 복합소재를 이용한 성형물의 열전도도 특성 대비 우수한 것을 알 수 있다.
(실험예) 열전달 특성 확인
제조된 시편의 열전달 특성을 확인하기 위해 펠티어 소자 상에 실시예 1, 실시예 3, 실시예 7 및 비교예 1 내지 비교예 2의 성형물을 부착하여 열전달 특성을 확인하였다.
이 때, 펠티어 소자에 전압을 인가하여 성형물을 95℃까지 상승시켰고, 펠티어 소자에 접촉되는 성형물의 접촉면을 기준으로 성형물의 전체 높이 t에서 0.2t 부분(A 영역) 및 0.8t 부분(B 영역)의 온도를 동시에 측정하되, 전압 인가 전 및 15초 이후에 각각 측정하였다. 각각의 영역에서 15초 동안의 온도 변화량을 가열 속도로 하여 각각의 성형물에 대하여 열전달 특성을 비교하였고 그 결과를 하기 표 2에 정리하였다.
Figure PCTKR2023013381-appb-img-000002
표 2를 참조하면, 실시예 1, 실시예 3 및 실시예 7의 경우는 펠티어 소자에 부착된 성형물의 접착면 부근의 영역(A 영역)과 상대적으로 접착면과 이격되어 위치하는 영역(B 영역)간의 가열 속도 편차가 거의 없는 것이 관찰된 반면에, 비교예 1 내지 비교예 2의 경우는 각각의 영역에서 가열 속도 편차가 0.6 ℃이상으로 크게 나타나는 것이 관찰되었다.
또한, 펠티어 소자의 전류방향을 전환하여 전술한 가열 속도와 동일한 방식으로 95℃에서 25℃까지 온도 변화를 주었을 때 냉각 속도를 산출하여 비교한 결과 거의 유사한 결과가 나타남을 확인하였다.
주석 분말과 은 코팅 구리나노와이어가 혼합된 복합소재를 이용하여 제조된 성형물은 직접적으로 열원과 접촉되는 부위의 영역과 상대적으로 열원으로부터 이격되어 위치하는 영역에서의 가열 속도 및 냉각 속도 편차가 거의 없음을 알 수 있는데, 이로부터 상기 성형물의 열전달 효율이 현저히 우수함을 알 수 있고, 성형물을 PCR 써멀 사이클러의 열블럭으로 적용하여 유전자 증폭 반응 효율을 향상시킴과 동시에 초고속 PCR 반응에도 신뢰성을 확보할 수 있음을 알 수 있다.
추가적으로, 실시예 3의 복합소재를 사용하여 260℃에서 캐스팅 가공으로 도면 5에 도시한 형태의 PCR 열블럭을 제조하였다. 제조된 PCR 열블럭을 Real Time PCR 장비(ExiCycler; Bioneer)에 장착하여 열적 특성을 측정하였다.
이 때, PCR 반응 온도가 95 ℃이므로 25 ℃에서 95 ℃까지 온도를 상승시키고, 95 ℃에서 25 ℃까지 하강시키며 PCR 사이클러의 상승 및 하강속도를 기존의 알루미늄 PCR 열블럭이 적용된 것과 각각 3회 비교 측정하였고, 그 분석 결과를 하기 표 3에 정리하였다.
Figure PCTKR2023013381-appb-img-000003
상기 표 3에서도 확인할 수 있듯이, 알루미늄 PCR 열블럭을 사용하였을 때 보다 주석 분말 및 은 코팅 구리나노와이어가 혼합된 복합소재를 사용하여 제조된 PCR 열블럭을 적용한 PCR 써멀 사이클러의 경우 평균 상승 속도는 28.2%, 평균 하강속도 32.3%로 우수한 것을 확인할 수 있었다.
이상과 같이 특정된 사항들과 한정된 실시예를 통해 본 발명이 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.

Claims (15)

  1. 제1금속 또는 제1금속을 포함하는 합금인 분말 금속; 및
    제2금속을 포함하는 코어 상에 제3금속을 포함하는 쉘이 위치하는 코어-쉘 구조의 금속나노와이어;를 포함하는 써멀 사이클러(Thermal cycler)의 열블럭(Thermal block)용 복합소재.
  2. 제1항에 있어서,
    상기 제1금속은 주석이고, 상기 합금은 주석-은, 주석-구리, 주석-알루미늄, 주석-비스무스, 주석-안티모니, 주석-구리-비스무스, 주석-은-비스무스, 주석-구리-안티모니, 주석-은-안티모니, 주석-구리-은, 주석-구리-은-안티모니, 주석-구리-은-비스무스로부터 이루어진 군에서 선택되는 1종 이상인 써멀 사이클러의 열블럭용 복합소재.
  3. 제1항에 있어서,
    상기 제2금속은 구리이고, 제3금속은 은 또는 금인 써멀 사이클러의 열블럭용 복합소재.
  4. 제3항에 있어서,
    상기 금속나노와이어는 은 코팅 구리 나노와이어인 써멀 사이클러의 열블럭용 복합소재.
  5. 제4항에 있어서,
    상기 금속나노와이는 X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)가 하기 식 1을 만족하는 것인, 써멀 사이클러의 열블럭용 복합소재.
    (식 1)
    I2/I1 ≤ 0.2
  6. 제1항에 있어서,
    상기 금속나노와이어의 직경은 100 내지 500 nm이며, 종횡비는 5 내지 100인 써멀 사이클러의 열블럭용 복합소재.
  7. 제1항에 있어서,
    상기 분말 금속의 입경(Dp) : 금속나노와이어의 직경(Dw)의 비(Dp/ Dw)는 1 : 0.0001 내지 0.01인 써멀 사이클러의 열블럭용 복합소재.
  8. 제1항에 있어서,
    상기 분말 금속 : 금속 나노와이어의 중량비는 1 : 0.001 내지 0.1인 써멀 사이클러의 열블럭용 복합소재.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 복합소재를 소결, 주물가공, 압연가공 또는 캐스팅(casting)하여 제조되는 저 비열성 써멀 사이클러의 열블럭.
  10. 주석 또는 주석 합금; 및
    은 코팅 구리나노와이어;를 포함하는 저 비열성 써멀 사이클러의 열블럭.
  11. 제10항에 있어서,
    상기 주석 또는 주석 합금 : 은 코팅 구리나노와이의 중량비는 1 : 0.001 내지 0.1인 저 비열성 써멀 사이클러의 열블럭.
  12. 제10항에 있어서,
    상기 은 코팅 구리나노와이어는 X선 광전자 분광 스펙트럼에서 은의 Ag 3d5/2의 피크 강도(I1)와 구리의 Cu 2p3/2의 피크 강도(I2)가 하기 식 1을 만족하는 것인, 써멀 사이클러의 열블럭.
    (식 1)
    I2/I1 ≤ 0.2
  13. 제10항에 있어서,
    상기 열블럭의 열전도도는 21℃에서 70 내지 100 W/(m K)인 저 비열성 써멀 사이클러의 열블럭.
  14. 가열소자;
    상기 가열 소자의 일 면에 일 단부가 접촉되고, 상기 일 단부에 대향하여 위치하는 다른 일 단부에 삽입공을 포함하는 열블럭;을 포함하되,
    상기 열블럭은 제1항 내지 제8항 중 어느 한 항에 따른 복합소재를 소결, 주물가공, 압연가공 또는 캐스팅(casting) 하여 형성되는 것인, PCR (Polymerase Chain Reaction) 써멀 사이클러.
  15. 제14항에 있어서,
    상기 열블럭은 하기 식 2를 만족하는 것인, PCR 써멀 사이클러.
    (식 2)
    Ha - Hb ≤ ± 0.5 ℃/sec
    (식 2에서 Ha는 높이가 t인 열블럭에 있어, 가열 소자의 일 면과 접촉되는 일 단부를 기준으로 A영역으로 정의되는 0.1 내지 0.3t 영역에서의 가열 속도이고, Hb는 B영역으로 정의되는 0.7t 내지 1.0t 영역에서의 가열 속도이다)
PCT/KR2023/013381 2022-09-08 2023-09-07 써멀 사이클러의 열블럭용 복합소재 및 이를 이용하여 제조되는 저 비열성 써멀 사이클러의 열블럭 WO2024054051A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220114146A KR20240035103A (ko) 2022-09-08 2022-09-08 써멀 사이클러의 열블럭용 복합소재 및 이를 이용하여 제조되는 저 비열성 써멀 사이클러의 열블럭
KR10-2022-0114146 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024054051A1 true WO2024054051A1 (ko) 2024-03-14

Family

ID=90191625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013381 WO2024054051A1 (ko) 2022-09-08 2023-09-07 써멀 사이클러의 열블럭용 복합소재 및 이를 이용하여 제조되는 저 비열성 써멀 사이클러의 열블럭

Country Status (2)

Country Link
KR (1) KR20240035103A (ko)
WO (1) WO2024054051A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080003649A1 (en) * 2006-05-17 2008-01-03 California Institute Of Technology Thermal cycling system
US20110159547A1 (en) * 2009-12-29 2011-06-30 National Applied Research Laboratories Polymerase chain reacton method, polymerase chain reacton droplet device, and polymerase chain reacton droplet device array
KR20150145892A (ko) * 2014-06-19 2015-12-31 (주)바이오니아 은 코팅 구리 나노 와이어 및 이의 제조 방법
KR20180133720A (ko) * 2017-06-07 2018-12-17 건국대학교 산학협력단 금속 나노입자 도입된 템플릿 입자를 포함하는 표적 물질 검출용 조성물 및 이를 이용하는 검출방법
WO2021260436A1 (en) * 2020-06-26 2021-12-30 Bjs Ip Ltd Ultra-fast pcr thermocycler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101343891B1 (ko) 2010-08-17 2013-12-20 (주)바이오니아 써멀 사이클러용 저 비열성 복합 소재

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080003649A1 (en) * 2006-05-17 2008-01-03 California Institute Of Technology Thermal cycling system
US20110159547A1 (en) * 2009-12-29 2011-06-30 National Applied Research Laboratories Polymerase chain reacton method, polymerase chain reacton droplet device, and polymerase chain reacton droplet device array
KR20150145892A (ko) * 2014-06-19 2015-12-31 (주)바이오니아 은 코팅 구리 나노 와이어 및 이의 제조 방법
KR20180133720A (ko) * 2017-06-07 2018-12-17 건국대학교 산학협력단 금속 나노입자 도입된 템플릿 입자를 포함하는 표적 물질 검출용 조성물 및 이를 이용하는 검출방법
WO2021260436A1 (en) * 2020-06-26 2021-12-30 Bjs Ip Ltd Ultra-fast pcr thermocycler

Also Published As

Publication number Publication date
KR20240035103A (ko) 2024-03-15

Similar Documents

Publication Publication Date Title
US5242867A (en) Composition for making multilayer ceramic substrates and dielectric materials with low firing temperature
Vest Conduction mechanisms in thick film microcircuits
KR900002303B1 (ko) 절연페이스트 및 그 제조방법
JPH0112672B2 (ko)
CN103443866A (zh) 用于电子设备中的可烧结的银薄片粘合剂
JPH03257040A (ja) 結晶化可能な低誘電率低誘電体損組成物
Kuromitsu et al. Interaction between alumina and binary glasses
JPS6110056A (ja) ムライト・コージーライト複合セラミツク
WO2024054051A1 (ko) 써멀 사이클러의 열블럭용 복합소재 및 이를 이용하여 제조되는 저 비열성 써멀 사이클러의 열블럭
US6936343B1 (en) Ceramic substrate
CN110683837A (zh) 导热的低温共烧陶瓷材料及其制备方法
WO2015057019A1 (ko) 열전 재료 및 그 제조 방법
US10177069B2 (en) Heat-dissipating structure and semiconductor module using same
WO2015034318A1 (ko) 열전 재료
WO2018174394A1 (ko) 가스 센서 및 그 제조 방법
JP3469513B2 (ja) 露光装置およびそれに用いられる支持部材
Mohammadi et al. Copper like thermal conductivity and silicon like coefficient of thermal expansion copper graphene for high power IGBT by metal injection molding
Vayman et al. Study and Development of Low-Temperature Co-Fired Ceramics for High-Frequency Microwave Devices
WO2017209549A1 (ko) 열전 레그 및 이를 포함하는 열전 소자
JP2001302338A (ja) 複合セラミックスおよびその製造方法
KR930006336B1 (ko) 다결정질체의 제조방법
JP2000136967A (ja) 温度検知素子
JP5006490B2 (ja) 低熱膨張セラミックス及びその製造方法
WO2017069304A1 (ko) 열전 재료의 제조방법 및 이로부터 제조된 열전 재료
JPH02255571A (ja) 易加工性セラミックス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23863515

Country of ref document: EP

Kind code of ref document: A1