WO2024053291A1 - 連続鋳造用のタンディッシュ、鋼の連続鋳造方法及び、ガス供給装置 - Google Patents

連続鋳造用のタンディッシュ、鋼の連続鋳造方法及び、ガス供給装置 Download PDF

Info

Publication number
WO2024053291A1
WO2024053291A1 PCT/JP2023/028183 JP2023028183W WO2024053291A1 WO 2024053291 A1 WO2024053291 A1 WO 2024053291A1 JP 2023028183 W JP2023028183 W JP 2023028183W WO 2024053291 A1 WO2024053291 A1 WO 2024053291A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuous casting
tundish
inert gas
gas supply
flow rate
Prior art date
Application number
PCT/JP2023/028183
Other languages
English (en)
French (fr)
Inventor
孝平 古米
則親 荒牧
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023572687A priority Critical patent/JPWO2024053291A1/ja
Publication of WO2024053291A1 publication Critical patent/WO2024053291A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal

Definitions

  • the present invention relates to a tundish for continuous casting, a method for continuous casting of steel, and a gas supply device.
  • Manufacturing of steel materials is carried out as follows. That is, the molten steel supplied from the ladle to the tundish is supplied to the mold and cast into a slab. The slab is formed into a predetermined shape by processing such as rolling to become a steel material.
  • inclusions such as Al 2 O 3 in the molten steel cause defects in the steel material, it is preferable to separate them from the molten steel before casting and remove them. Specifically, in the tundish, inclusions contained in molten steel are floated and separated.
  • a weir that separates a steel receiving area where molten steel is supplied to the tundish from a semi-stationary steel area where molten steel is discharged from a discharge port provided at the bottom.
  • Patent Document 2 in addition to the weir described in Patent Document 1 being provided on the tundish, a rib is provided on the steel semi-stationary region side that protrudes upward from the bottom of the tundish. ing. Therefore, even if the inclusion moves from the hole of the weir toward the steel quasi-stationary region, the direction of movement is changed upward by the rib. Thereby, inclusions can also be floated on the steel receiving area side.
  • Patent Document 3 in addition to the weir described in Patent Document 1 being provided in the tundish, inert gas is supplied upward from the bottom of the tundish to the steel quasi-stationary region side. things are being done. As a result, even if the inclusions move from the hole of the weir toward the steel quasi-stationary region, the inclusions are floated by the inert gas.
  • Japanese Unexamined Patent Publication No. 53-6231 Japanese Patent Application Publication No. 10-216909 Japanese Patent Application Publication No. 2011-143449
  • the present invention has been made in view of the above problems, and aims to provide a tundish for continuous casting, a method for continuous casting of steel, and a gas supply device that can improve the cleanliness of molten steel. .
  • the present invention has the following features.
  • a tundish for continuous casting having a storage part for storing supplied molten steel,
  • the accommodating section includes one or more molten steel outlets through which the molten steel flows out, and is arranged upstream of the molten steel from the one or more molten steel outlets, and includes an inert space in a space surrounded by the accommodating section.
  • a gas supply unit that supplies gas;
  • the gas supply section includes a porous section formed in a box shape having a bottom section and a wall section, and in which a plurality of pores are formed throughout; a support part that supports the porous part and is provided on the wall part of the gas supply part; and a support part that supports the porous part and is provided on the wall part of the gas supply part between the support part and the bottom part of the gas supply part. and a pipe for discharging the inert gas.
  • the gas supply section has a storage chamber surrounded by the porous section, the support section, the wall section of the gas supply section, and the bottom section of the gas supply section,
  • the accommodation section has one or more weirs separating the space surrounded by the accommodation section, and the gas supply section is provided adjacent to the weir. Tundish for continuous casting as described.
  • R Flow rate of inert gas per unit area of porous part [NL/(s ⁇ m 2 )] [7]
  • a gas supply device installed in a tundish for continuous casting and supplying an inert gas, formed into a box shape having a bottom and a wall, and a porous part in which multiple pores are formed throughout; a support part that supports the porous part and is provided on the wall part;
  • a gas supply device comprising: a pipe provided on the wall between the support part and the bottom part, and discharging the inert gas.
  • [8] comprising a storage chamber surrounded by the porous part, the support part, the wall part, and the bottom part,
  • the present invention by supplying inert gas through the porous portion, fine inert gas bubbles can be supplied to the molten steel injection region.
  • the volume ratio of inert gas in the molten steel can be increased, and inclusions contained in the molten steel poured into the tundish from the ladle can be efficiently floated. Thereby, the cleanliness of molten steel can be improved.
  • FIG. 2 is an explanatory diagram showing the configuration of a gas supply section in FIG. 1.
  • FIG. FIG. 4 is a top view of the gas supply section of FIG. 3; It is an explanatory view showing a mode where piping is installed. It is an explanatory view showing other aspects where piping is installed. It is a graph showing the relationship between the gas flow rate per unit area and the number density of inclusions. It is a graph showing the number density of inclusions in a conventional example and the present invention.
  • FIG. 1 is an explanatory diagram showing the configuration of a tundish for continuous casting.
  • FIG. 2 is an explanatory view showing a side surface of a tundish for continuous casting.
  • a tundish 100 for continuous casting is arranged between a ladle (not shown) in which molten steel MS is stored and a mold 40 in which the molten steel MS is cooled.
  • a tundish for continuous casting (hereinafter simply referred to as a tundish) 100 has a housing section 10 that is open at the top and shaped like a box with a bottom.
  • the accommodating portion 10 of the tundish 100 for continuous casting is formed into an inverted truncated cone shape in which the upper base is longer than the lower base. Therefore, the storage section 10 has a space 10a that stores the molten steel MS.
  • the accommodating portion 10 has a molten steel injection region AR1 into which molten steel MS is injected from the nozzle N1 of the ladle.
  • Molten steel injection region AR1 is formed along axis AX of nozzle N1.
  • the molten steel injection region AR1 is formed extending from the tip of the nozzle N1 to the axis AX of the nozzle N1.
  • the molten steel injection region AR1 is a region extending in the circumferential direction of the axis AX of the nozzle N1.
  • the accommodating portion 10 has one or more molten steel outlet ports 11 through which molten steel MS flows out into the mold. As shown in FIG. 1, in this embodiment, the molten steel outlet 11 is formed at one end and the other end in the left-right direction in the bottom 12 of the storage portion 10.
  • the housing section 10 has one or more weirs 20 that separate a space 10a surrounded by the housing section 10.
  • the weir 20 is provided to separate the molten steel injection region AR1 and the molten steel outlet 11.
  • Two weirs 20 are provided so as to separate each molten steel outlet 11 provided in the left-right direction of the storage portion 10 from the molten steel injection region AR1.
  • the weir 20 is, for example, formed into a plate shape.
  • the weir 20 has a through hole 21 that penetrates from the surface on the molten steel injection region AR1 side to the surface on the molten steel outlet 11 side on the bottom 12 side of the storage portion 10.
  • the storage section 10 has a gas supply section 30 that is disposed upstream of the molten steel MS from the molten steel outlet 11 and supplies an inert gas to the space 10a surrounded by the storage section 10.
  • the gas supply unit 30 functions as a gas supply device that supplies inert gas to the storage unit 10.
  • the gas supply section 30 is hollow and shaped like a box with a bottom.
  • the gas supply section 30 has a wall section 31 and a bottom section 32 provided at the lower end side of the wall section 31.
  • the wall portion 31 is erected from the bottom portion 32.
  • the bottom portion 32 is provided opposite to the bottom portion 12 of the accommodating portion 10 and in contact with the bottom portion 23 .
  • the gas supply section 30 is preferably provided in a region where the flow rate of the molten steel MS in the storage section 10 is high. Such an area includes, for example, the vicinity of the weir 20.
  • the gas supply unit 30 is provided adjacent to the weir 20 in the moving direction of the molten steel MS.
  • the gas supply unit 30 may be provided upstream of the weir 20 in the moving direction of the molten steel MS, or may be provided downstream of the weir 20. In this embodiment, the gas supply unit 30 is provided downstream of the weir 20 in the moving direction of the molten steel MS.
  • the gas supply unit 30 supplies inert gas upward to the space 10a of the storage unit 10.
  • the gas supply unit 30 supplies inert gas in the direction along the axis AX of the nozzle N1.
  • Each of the molten steel outlets 11 is provided with a nozzle N2 that connects the tundish 100 and the mold 40.
  • the molten steel MS is supplied from the molten steel outlet 11 to the mold 40 via the nozzle N2.
  • the molten steel MS is cooled in the mold 40 and becomes a slab 50.
  • FIG. 3 is an explanatory diagram showing the configuration of the gas supply section 30.
  • FIG. 4 shows the top surface of the gas supply unit 30.
  • the gas supply section 30 is formed into a hollow box shape having a wall section 31 and a bottom section 32. As shown in FIGS.
  • the gas supply section 30 includes a porous section 35 in which a plurality of pores 35a are formed throughout, and a support section 36 that supports the porous section 35. Further, the gas supply section 30 includes a pipe 37 that is provided on the wall section 31 between the porous section 35 and the bottom section 32 and that discharges an inert gas.
  • the porous portion 35 is made of a ceramic refractory.
  • refractories include those obtained by sintering one or more kinds of refractory inorganic particles such as alumina and silica mixed together. Note that, as the refractory, one mainly composed of alumina is particularly preferable.
  • the porous portion 35 can be produced by using spherical particles mainly made of alumina as aggregate and firing them at 1600° C. or higher.
  • the porous portion 35 can be manufactured, for example, by casting into a dense castable refractory.
  • the pores 35a of the porous portion 35 can be formed.
  • the pores 35a of the porous portion 35 are not particularly limited, but may be formed to have an average pore diameter of 10 to 40 ⁇ m, for example, as measured by mercury porosimetry.
  • the bubbles of the inert gas supplied from the porous portion 35 can be made finer.
  • the diameter of the bubbles is about 100 ⁇ m, but by supplying inert gas in this way, the diameter of the bubbles is reduced to 1/10 to 1/1 of the conventional method. It can be about 20.
  • the pores 25a of the porous portion 25 to 10 to 40 ⁇ m it becomes possible to appropriately control the flow rate of the inert gas.
  • the shape of the porous portion 35 is not particularly limited, it is formed into a plate shape in this embodiment. Specifically, as shown in FIG. 4, it is formed into a rectangular shape when viewed from above.
  • the support portion 36 is made of a ceramic refractory.
  • refractories include those obtained by sintering one or more kinds of refractory inorganic particles such as alumina and silica mixed together. Note that, as the refractory, one mainly composed of alumina is particularly preferable.
  • the support portion 36 is formed into a frame shape so as to be able to support the bottom edge of the porous portion 35.
  • the shape of the support portion 36 is not particularly limited, in this embodiment, it is formed into a frame shape that is rectangular when viewed from above.
  • the support portion 36 is provided on the wall portion 31.
  • the support portion 36 is fixed by fitting into a fitting recess (not shown) formed in the wall portion 31, for example.
  • the gas supply section 30 has a storage chamber 38 surrounded by a porous section 35, a support section 36, a wall section 31, and a bottom section 32.
  • a pipe 37 is provided in the wall portion 31 surrounding the storage chamber 38 .
  • the piping 37 is preferably fire resistant.
  • FIG. 5 shows how the piping 27 is installed.
  • the piping 27 is arranged along the wall 13 of the housing section 10.
  • the pipe 27 is covered with a covering material 60 having fire resistance.
  • a covering material 60 for example, a precast refractory can be used.
  • the covering material 60 may be a combination of a precast refractory and a patching material.
  • a precast refractory 61 is disposed as a covering material 60 disposed on the edge side of the housing portion 10.
  • a patching material 62 is disposed as a covering material 60 disposed on the bottom 12 side of the tundish 100.
  • FIG. 6 shows another embodiment in which the piping 27 is installed.
  • a pipe cover 63 is used instead of the precast refractory described in the example shown in FIG.
  • a plurality of pipe covers 63 may be used, and in the example shown in FIG. 6, four pipe covers 63 are connected along the axial direction of the pipe 27.
  • the piping 27 By configuring the piping 27 in this way, refractory construction can be easily performed. Moreover, the maintainability of the piping 27 can be improved more than when the piping 27 is inserted through the bottom 12 of the tundish 100. Further, since no processing is required for inserting the pipe 27 into the bottom 12 of the tundish 100, leakage of molten steel from the bottom 12 can be suppressed.
  • the pipe 37 is provided with an adjustment means 39 for adjusting the flow rate of the inert gas.
  • an adjustment means 39 for adjusting the flow rate of the inert gas.
  • a valve can be used.
  • the adjusting means 39 may be operated manually, or the opening degree may be adjusted by a control section (not shown).
  • the inert gas supplied from the pipe 37 is introduced into the storage chamber 38.
  • pressure from the inert gas is uniformly applied to the surface of the porous portion 35 facing the bottom 32.
  • the inert gas is supplied from the storage chamber 38 to the space 10a through the pores 35a of the porous portion 35.
  • the gas supply unit 30 can suppress variations in the manner in which the inert gas is supplied.
  • the inert gas is not particularly limited, but includes Ar, N2 , CO2, and the like.
  • inert gas is supplied to the porous portion 35 from the storage chamber 38.
  • the inert gas may be supplied to the porous portion 35 without going through the storage chamber 38.
  • an attachment (not shown) capable of covering the surface of the porous portion 35 on the bottom 32 side may be attached to the piping 37.
  • the tundish 100 is provided with the weir 20.
  • the gas supply section 30 be provided in a region where the flow rate of the molten steel MS is faster than in other regions.
  • An example of the region where the flow rate of the molten steel MS is high is the molten steel injection region AR1.
  • a step is first performed in which molten steel MS is supplied to the tundish 100 from a nozzle N1 connected to a ladle (not shown).
  • a step of removing inclusions contained in the molten steel MS is performed in the tundish 100.
  • a step of flowing out the molten steel MS from the molten steel outlet 11 of the tundish 100 into the mold 40 is performed.
  • a step of cooling the molten steel MS in the mold 40 to produce a slab is performed.
  • the step of removing inclusions contained in the molten steel MS in the tundish 100 includes the step of blowing inert gas at a flow rate that satisfies the following equation (1). 0.2 ⁇ R ⁇ 10.0 (1) R: Flow rate of inert gas per unit area of porous part [NL/(s ⁇ m 2 )]
  • the gas flow rate (R) per unit area of the porous portion 35 is preferably 0.2 to 10.0 NL/(s ⁇ m 2 ) supplied from the gas supply unit 30, and 2.0 to 10.0 NL/( More preferably, it is supplied in a size of s ⁇ m 2 ). Note that the gas flow rate (R) per unit area of the porous portion 35 can be adjusted by the adjusting means 39.
  • the tundish 100 of the present invention by supplying inert gas through the porous portion 35, fine inert gas bubbles can be supplied to the space 10a of the storage portion 10. As a result, the volume ratio of inert gas in the molten steel MS can be increased, and inclusions contained in the molten steel poured into the tundish 100 from the ladle can be efficiently floated.
  • the flow rate of the molten steel MS near the weir 20 is faster than in other areas. Therefore, by supplying the inert gas toward the space 10a of the housing section 10 from a position adjacent to the weir 20, it is possible to increase the frequency with which inert gas bubbles come into contact with each other. As a result, the inert gas bubbles can be made smaller. Thereby, the volume fraction of inert gas in the molten steel MS can be further increased. Moreover, by installing the gas supply unit 30 in the high flow rate region of the tundish 100 in this way, the inert gas bubbles can be made finer than conventional bubbles. Fine bubbles can further enhance the effect of floating inclusions.
  • the installation position of the gas supply section 30 can be easily changed. Therefore, by changing the installation position of the porous portion 35 according to the flow conditions of the molten steel in the tundish 100, it is possible to further promote the floating of the inclusions and further suppress the inclusion of the inclusions in the molten steel.
  • the tundish 100 of the present invention it is possible to increase the floating effect of inclusions. Further, since inclusions can be floated with a smaller flow rate of inert gas, it is possible to suppress slag entrainment in the tundish 100. In this way, according to the tundish 100 of the present invention, inclusions can be efficiently floated and inclusion of inclusions in molten steel can be suppressed, making it possible to manufacture highly clean steel. .
  • Test Example 1 Inclusion measurement test
  • 300 tons of molten steel was used, which had been subjected to oxygen blowing in a converter and RH vacuum degassing treatment. This molten steel was supplied from the ladle to the tundish.
  • the number of inclusions was measured by ultrasonic flaw detection on the slabs produced by continuous casting. Regarding inclusions, those with a size of 10 ⁇ m or more were measured. The number of inclusions per 1 m 2 of the measured slab was calculated as the density.
  • FIG. 7 shows the relationship between the flow rate (R) of inert gas per unit area of the porous part and the density of inclusions in the slab. As shown in FIG. 7, when the flow rate (R) of the inert gas is lower than 0.2, the density of inclusions is higher than under other conditions.
  • the density of inclusions is lower than under other conditions.
  • the density of inclusions is lower than under the condition where the inert gas is not supplied. Furthermore, under this condition, the density of inclusions is higher than under the condition where the flow rate (R) of the inert gas is 0.2 or less.
  • Test Example 2 Inclusion measurement test
  • Sample The same molten steel as in Test Example 1 was used.
  • invention example a gas supply device was provided, and the inert gas was supplied from the gas supply device toward the space of the storage section.
  • invention examples (Inventions 1 to 9) were carried out by changing the flow rate of the inert gas supplied from the gas supply section of the weir. The flow rates of each inert gas are shown in Table 1.
  • FIG. 8 shows the density of inclusions in Conventional Example 1 and Invention Examples 1 to 9. As shown in FIG. 8, it was found that the density of inclusions in the slab was significantly lower in Inventions 1 to 9 than in Conventional Example 1. In particular, in Inventions 1 to 6, since the flow rate (R) of the inert gas was 0.2 to 10.0, better results were obtained than Inventions 7 to 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

溶鋼の清浄度を高めることが可能な連続鋳造用のタンディッシュを提供する。連続鋳造用のタンディッシュは、供給された溶鋼を貯留する収容部を有する。前記収容部は、前記溶鋼を流出させる1又は複数の溶鋼流出口及び、前記1又は複数の溶鋼流出口よりも前記溶鋼の上流側に配置されかつ、前記収容部によって囲まれた空間に不活性ガスを供給するガス供給部と、を有する。前記ガス供給部は、底部及び壁部を有する箱状に形成されかつ、複数の細孔が全体に形成されているポーラス部と、前記ポーラス部を支持し、かつ前記ガス供給部の前記壁部に設けられている支持部と、前記支持部と前記ガス供給部の前記底部との間の前記ガス供給部の前記壁部に設けられかつ、前記不活性ガスを吐出する配管と、を含む。

Description

連続鋳造用のタンディッシュ、鋼の連続鋳造方法及び、ガス供給装置
 本発明は、連続鋳造用のタンディッシュ、鋼の連続鋳造方法及び、ガス供給装置に関する。
 鉄鋼材料の製造は次のようにして行われている。すなわち、取鍋からタンディッシュに供給された溶鋼は、鋳型に供給されて鋳造され鋳片となる。鋳片は、圧延等の処理によって所定の形状に成形され鉄鋼材料となる。
 溶鋼中のAl等の介在物は、鉄鋼材料の欠陥原因となるため、鋳造される前の溶鋼から分離して除去されることが好ましい。具体的には、タンディッシュにおいては、溶鋼中に含まれる介在物を浮上させて分離させることが行われている。
 このような溶鋼から介在物を除去する清浄技術は、高品質な鉄鋼材料の製造に不可欠であるため、その向上が求められている。従来においては、タンディッシュに溶鋼が供給される受鋼領域と、底部に設けられた排出口から溶鋼が排出される鋼準静止領域とを隔てる堰を設けることが行われている。
 例えば、特許文献1に記載の堰には、受鋼領域側の面から鋼準静止領域側の面まで貫通した孔が、タンディッシュの底部側において複数形成されている。したがって、溶鋼よりも比重が軽い介在物は、堰によって移動が制限される。また、溶鋼は、堰の孔を通ることにより受鋼領域側から鋼準静止領域側に移動する。
 また、特許文献2においては、特許文献1に記載された堰がタンディッシュに設けられていることに加えて、鋼準静止領域側にタンディッシュの底部から上方に向かって突出したリブが設けられている。したがって、堰の孔から介在物が鋼準静止領域側に移動したとしても、リブによってその移動方向が上方に変えられる。これにより、受鋼領域側においても介在物を浮上させることができる。
 また、特許文献3においては、特許文献1に記載された堰がタンディッシュに設けられていることに加えて、鋼準静止領域側にタンディッシュの底部から上方に向かって不活性ガスを供給することが行われている。これにより、堰の孔から介在物が鋼準静止領域側に移動したとしても、不活性ガスによって介在物を浮上させている。
特開昭53-6231号公報 特開平10-216909号公報 特開2011-143449号公報
 特許文献1のように堰をタンディッシュに設けた場合であっても、介在物が堰の孔を通過することがある。介在物が溶鋼の排出口から排出されると、鉄鋼材料の欠陥を招く恐れがある。
 また、特許文献2のようにリブによって介在物を浮上させることについては、より効果的に介在物を浮上させることが望まれており改善の余地がある。さらに、鋳造が終了した際には、リブと堰との間に溶綱が残るため、残鋼を処理するコストが高くなる問題がある。
 特許文献3のように不活性ガスを用いて介在物を浮上させる場合、十分な浮上効果を得るために、溶鋼における不活性ガスの体積率を高くしなければならない問題がある。溶鋼における不活性ガスの体積率を高くするために不活性ガスの流量を多くすると、溶鋼の表面に存在する介在物であるタンディッシュスラグが不活性ガスによって溶鋼に巻き込まれる恐れがある。溶鋼にタンディッシュスラグが巻き込まれると、溶鋼が汚染され、鉄鋼材料の欠陥を招く恐れがある。
 本発明は、上記問題に鑑みてなされたものであり、溶鋼の清浄度を高めることが可能な連続鋳造用のタンディッシュ、鋼の連続鋳造方法及び、ガス供給装置を提供することを目的とする。
 上記課題を解決するため、本発明は以下の特徴を有する。
 [1]
 供給された溶鋼を貯留する収容部を有する連続鋳造用のタンディッシュであって、
 前記収容部は、前記溶鋼を流出させる1又は複数の溶鋼流出口及び、前記1又は複数の溶鋼流出口よりも前記溶鋼の上流側に配置されかつ、前記収容部によって囲まれた空間に不活性ガスを供給するガス供給部と、を有し、
 前記ガス供給部は、底部及び壁部を有する箱状に形成されかつ、複数の細孔が全体に形成されているポーラス部と、
 前記ポーラス部を支持し、かつ前記ガス供給部の前記壁部に設けられている支持部と、前記支持部と前記ガス供給部の前記底部との間の前記ガス供給部の前記壁部に設けられかつ、前記不活性ガスを吐出する配管と、を含む、連続鋳造用のタンディッシュ。
 [2]
 前記ガス供給部は、前記ポーラス部、前記支持部、前記ガス供給部の前記壁部及び、前記ガス供給部の前記底部によって囲まれた収容室を有し、
 前記配管は、前記収容室を囲む前記ガス供給部の前記壁部に設けられている、[1]に記載の連続鋳造用のタンディッシュ。
 [3]
 前記収容部は、前記収容部によって囲まれた前記空間を隔てる1又は複数の堰を有し、前記ガス供給部は、前記堰に隣接して設けられている、[1]又は[2]に記載の連続鋳造用のタンディッシュ。
 [4]
 前記ガス供給部は、前記配管から供給される前記不活性ガスの流量を調整する調整手段を有する、[1]~[3]のいずれかに記載の連続鋳造用のタンディッシュ。
 [5]
 前記配管は、前記収容部の壁部に沿って配されかつ、耐火性を有する被覆材によって覆われている、[1]~[4]のいずれかに記載の連続鋳造用のタンディッシュ。
 [6]
 [1]~[5]のいずれかに記載の連続鋳造用のタンディッシュを用いた鋼の連続鋳造方法であって、
 下記(1)式を満たす流量で不活性ガスを吹き込む工程を含む、鋼の連続鋳造方法。
 0.2≦R≦10.0    (1)
 R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
 [7]
 連続鋳造用のタンディッシュに設置されかつ、不活性ガスを供給するガス供給装置であって、
 底部及び壁部を有する箱状に形成されかつ、
 複数の細孔が全体に形成されているポーラス部と、
 前記ポーラス部を支持しかつ、前記壁部に設けられている支持部と、
 前記支持部と前記底部との間の前記壁部に設けられかつ、前記不活性ガスを吐出する配管と、を含む、ガス供給装置。
 [8]
 前記ポーラス部、前記支持部、前記壁部及び、前記底部によって囲まれた収容室を有し、
 前記配管は、前記収容室を囲む前記壁部に設けられている、[7]に記載のガス供給装置。
 [9]
 前記配管から供給される前記不活性ガスの流量を調整する調整手段を有する、[7]又は[8]に記載のガス供給装置。
 本発明によれば、ポーラス部を介して不活性ガスを供給することにより、細かい不活性ガスの気泡を溶鋼注入領域に供給することができる。その結果、溶鋼における不活性ガスの体積率を高くすることができ、取鍋からタンディッシュに注入された溶鋼に含まれる介在物を効率的に浮上させることができる。これにより、溶鋼の清浄度を高めることができる。
連続鋳造用のタンディッシュの構成を示す説明図である。 連続鋳造用のタンディッシュの側面を示す説明図である。 図1のガス供給部の構成を示す説明図である。 図3のガス供給部の上面図である。 配管が設置されている態様を示す説明図である。 配管が設置されている他の態様を示す説明図である。 単位面積当たりのガス流量と、介在物の個数密度と、の関係を示すグラフである。 従来例及び本発明の介在物の個数密度を示すグラフである。
 図1は、連続鋳造用のタンディッシュの構成を示す説明図である。図2は、連続鋳造用のタンディッシュの側面を示す説明図である。図1に示すように、連続鋳造用のタンディッシュ100は、溶鋼MSが貯留されている取鍋(図示せず)と、溶鋼MSが冷却される鋳型40と、の間に配されている。
 図1及び2に示すように、連続鋳造用のタンディッシュ(以下、単にタンディッシュと称する)100は、上部が開口しかつ、有底の箱状に形成された収容部10を有する。連続鋳造用のタンディッシュ100の収容部10は、本実施形態においては、上底が下底よりも長く形成されている逆錐台状に形成されている。したがって、収容部10は、溶鋼MSを貯留する空間10aを有する。
 収容部10は、取鍋のノズルN1から溶鋼MSが注入される溶鋼注入領域AR1を有する。溶鋼注入領域AR1は、ノズルN1の軸AXに沿って形成されている。言い換えれば、溶鋼注入領域AR1は、ノズルN1の先端からノズルN1の軸AXに延びて形成されている。溶鋼注入領域AR1は、ノズルN1の軸AXの周方向に拡がりをもつ領域である。
 収容部10は、鋳型に溶鋼MSを流出させる1又は複数の溶鋼流出口11を有する。図1に示されているように、本実施形態において溶鋼流出口11は、収容部10の底部12において左右方向の一端側及び、他端側に形成されている。
 収容部10は、収容部10によって囲まれた空間10aを隔てる1又は複数の堰20を有する。本実施形態においては、堰20は、溶鋼注入領域AR1と溶鋼流出口11とを隔てるように設けられている。堰20は、収容部10の左右方向に設けられた各々の溶鋼流出口11と、溶鋼注入領域AR1と、を隔てるように、2つ設けられている。
 堰20は、例えば、板状に形成されている。堰20は、収容部10の底部12側において、溶鋼注入領域AR1側の面から溶鋼流出口11側の面にかけて貫通した貫通孔21を有する。
 収容部10は、溶鋼流出口11よりも溶鋼MSの上流側に配置されかつ、収容部10によって囲まれた空間10aに不活性ガスを供給するガス供給部30を有する。言い換えれば、ガス供給部30は、収容部10に不活性ガスを供給するガス供給装置として機能する。ガス供給部30は、中空でありかつ、有底の箱状に形成されている。
 ガス供給部30は、図2にも示すように、壁部31及び、壁部31の下端側に設けられている底部32を有する。言い換えれば、壁部31は、底部32から立設されている。また、底部32は、収容部10の底部12に対向しかつ、当該底部23に接して設けられている。
 ガス供給部30は、収容部10における溶鋼MSの流速が速い領域に設けられているとよい。このような領域としては、例えば、堰20の近傍が挙げられる。本実施形態においては、ガス供給部30は、溶鋼MSの移動方向において堰20に隣接して設けられている。ガス供給部30は、溶鋼MSの移動方向において堰20よりも上流側に設けられてもよいし、堰20よりも下流側に設けられてもよい。本実施形態においては、ガス供給部30は、溶鋼MSの移動方向において堰20よりも下流側に設けられている。
 ガス供給部30は、収容部10の空間10aの上方に向けて不活性ガスを供給する。本実施形態においては、ガス供給部30は、ノズルN1の軸AXに沿った方向に向けて不活性ガスを供給する。
 溶鋼流出口11の各々には、タンディッシュ100と鋳型40とを接続するノズルN2が設けられている。溶鋼MSは、溶鋼流出口11からノズルN2を介して鋳型40に供給される。溶鋼MSは、鋳型40で冷却されて鋳片50となる。
 図3は、ガス供給部30の構成を示す説明図である。図4は、ガス供給部30の上面を示している。図3及び4に示すように、ガス供給部30は、壁部31及び底部32を有する中空の箱状に形成されている。
 ガス供給部30は、複数の細孔35aが全体に形成されているポーラス部35と、ポーラス部35を支持する支持部36と、を含む。また、ガス供給部30は、ポーラス部35と底部32との間の壁部31に設けられかつ、不活性ガスを吐出する配管37を含む。
 ポーラス部35は、セラミックスである耐火物で形成されている。このような耐火物としては、例えば、アルミナ、シリカ等の耐火性を有する無機粒子から選択される1種又は2種以上を混合して焼結されたものが挙げられる。尚、耐火物としては、アルミナを主として構成されるものが特に好ましい。
 ポーラス部35は、アルミナを主とする球状粒子を骨材とし、それらを1600℃以上で焼成することで作製することができる。ポーラス部35は、例えば、緻密質キャスタブル耐火物へ鋳込み成形して製造することができる。
 球状粒子を骨材とすることにより、ポーラス部35の細孔35aを形成することができる。ポーラス部35の細孔35aは、特には限定されないが、例えば、水銀圧入法で測定されたその平均孔径を10~40μmに形成することができる。このように細孔35aを形成することで、ポーラス部35から供給される不活性ガスの気泡を細かくすることができる。すなわち、従来の方法で不活性ガスを供給した場合、その気泡の径は100μm程度であるが、このようにして不活性ガスを供給することにより、気泡の径を従来の1/10~1/20程度にすることができる。また、ポーラス部25の細孔25aを10~40μmとすることで、不活性ガスの流量を適切に制御することが可能となる。
 ポーラス部35の形状は、特には限定されないが、本実施形態においては板状に形成されている。具体的には、図4にも示すように、上面視が矩形に形成されている。
 支持部36は、セラミックスである耐火物で形成されている。このような耐火物としては、例えば、アルミナ、シリカ等の耐火性を有する無機粒子から選択される1種又は2種以上を混合して焼結されたものが挙げられる。尚、耐火物としては、アルミナを主として構成されるものが特に好ましい。
 支持部36は、ポーラス部35の底部の縁を支持可能に枠状に形成されている。支持部36の形状は、特には限定されないが、本実施形態においては、上面視が矩形の枠状に形成されている。支持部36は、壁部31に設けられている。支持部36は、例えば、壁部31に形成された嵌合凹部(図示せず)と嵌合することにより固定されている。
 ガス供給部30は、ポーラス部35、支持部36、壁部31及び、底部32によって囲まれた収容室38を有する。収容室38を囲む壁部31には、配管37が設けられている。
 配管37は、耐火性を有するようにするとよい。図5は、配管27が設置されている態様を示している。図5にも示すように、配管27は、収容部10の壁部13に沿って配されている。また、配管27は、耐火性を有する被覆材60によって覆われている。被覆材60としては、例えば、プレキャスト耐火物を挙げることができる。また、被覆材60は、プレキャスト耐火物及び、パッチング材を組み合わせて用いてもよい。図5に示す例においては、収容部10の縁側に配される被覆材60として、プレキャスト耐火物61が配されている。また、タンディッシュ100の底部12側に配される被覆材60として、パッチング材62が配されている。
 また、被覆材60としては、パイプカバーを用いてもよい。図6は、配管27が設置されている他の態様を示している。図6に示す例では、図5に示した例で説明したプレキャスト耐火物に代えて、パイプカバー63が用いられている。また、パイプカバー63は、複数用いられてもよく、図6に示す例では、4つのパイプカバー63が配管27の軸方向に沿って接続されている。
 このように配管27を構成することにより、容易に耐火物の施工を行うことができる。また、配管27をタンディッシュ100の底部12から挿通させた場合よりも、配管27のメンテナンス性を向上させることができる。また、タンディッシュ100の底部12に対して配管27を挿通するための加工を要しないため、当該底部12から溶鋼が漏れることを抑制することが可能となる。
 配管37には、不活性ガスの流量を調整する調整手段39が設けられていることが好ましい。調整手段39としては、バルブを用いることができる。また調整手段39は、手動で操作してもよいし、図示しない制御部によって開度が調整されるようにしてもよい。
 配管37から供給された不活性ガスは、収容室38に導入される。収容室38に不活性ガスが導入されると、ポーラス部35の底部32に対向する面に不活性ガスによる圧力が一様に加わる。その結果、不活性ガスは、収容室38からポーラス部35の細孔35aを介して空間10aに供給される。
 ガス供給部30は、このように不活性ガスを供給することにより、不活性ガスの供給態様のばらつきを抑制することができる。尚、不活性ガスとしては、特には限定されないが、Ar、N、CO等が挙げられる。
 尚、本実施形態においては、収容室38から不活性ガスをポーラス部35に供給するようにした。しかし、不活性ガスは、収容室38を介さずにポーラス部35に供給するようにしてもよい。例えば、ポーラス部35の底部32側の面を覆うことが可能なアタッチメント(図示せず)を配管37に取り付けて実施してもよい。
 また、本実施形態においては、タンディッシュ100に堰20が設けられている例を説明した。しかし、タンディッシュ100に堰20が設けられていない場合であっても、このようにガス供給部30を設けることにより、本実施形態と同様の効果を得ることができる。例えば、タンディッシュ100に堰20が設けられていない場合には、溶鋼MSの流速が他の領域よりも速い領域にガス供給部30が設けられていることが好ましい。溶鋼MSの流速が速い領域としては、例えば、溶鋼注入領域AR1が挙げられる。
 鋼の連続鋳造方法では、まず取鍋(図示せず)に接続されたノズルN1からタンディッシュ100に溶鋼MSが供給される工程が行われる。ついで、タンディッシュ100において溶鋼MSに含まれている介在物を除去する工程が行われる。さらに、タンディッシュ100の溶鋼流出口11から鋳型40に溶鋼MSを流出させる工程が行われる。さらにまた、鋳型40において溶鋼MSを冷却して鋳片を製造する工程が行われる。
 タンディッシュ100において溶鋼MSに含まれている介在物を除去する工程は、下記(1)式を満たす流量で不活性ガスを吹き込む工程を含む。
 0.2≦R≦10.0    (1)
R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
 ポーラス部35の単位面積当たりのガス流量(R)は、0.2~10.0NL/(s× m)でガス供給部30から供給されるとよく、2.0~10.0NL/(s×m)で供給されることがより好ましい。尚、ポーラス部35の単位面積当たりのガス流量(R)は、調整手段39によって調整することができる。
 ポーラス部35の単位面積当たりのガス流量(R)が0.2NL/(s×m)以上であることにより、溶鋼MS中の介在物の浮上を促進させることができる。
 ポーラス部35の単位面積当たりのガス流量(R)が10.0NL/(s×m)以下であることにより、タンディッシュスラグの巻き込みを防止することができる。
 以上のように、本発明のタンディッシュ100によれば、ポーラス部35を介して不活性ガスを供給することにより、細かい不活性ガスの気泡を収容部10の空間10aに供給することができる。その結果、溶鋼MSにおける不活性ガスの体積率を高くすることができ、取鍋からタンディッシュ100に注入された溶鋼に含まれる介在物を効率的に浮上させることができる。
 特に、堰20の近傍における溶鋼MSの流速は、他の領域よりも速い。このため、堰20に隣接した位置から収容部10の空間10aに向けて不活性ガスを供給することにより、不活性ガスの気泡同士が接触する頻度を高めることができる。その結果、不活性ガスの気泡をより小さくすることができる。これにより、溶鋼MSにおける不活性ガスの体積率をさらに高めることができる。また、このように、ガス供給部30がタンディッシュ100の高流速領域に設置されることにより、不活性ガスの気泡を従来の気泡よりも微細にすることができる。微細な気泡は、介在物の浮上効果をより高めることが可能となる。その結果、介在物の溶鋼への巻き込みを抑制することができる。さらに、ガス供給部30の設置位置は、容易に変更することができる。したがって、タンディッシュ100における溶鋼の流動条件に応じてポーラス部35の設置位置を変更することで、介在物の浮上をより促進させかつ、介在物の溶鋼への巻き込み抑制をより図ることができる。
 このため、本発明のタンディッシュ100によれば、介在物の浮上効果の増大を図ることができる。また、より少ない不活性ガスの流量で介在物を浮上させることができるため、タンディッシュ100におけるスラグ巻き込みの抑制を図ることができる。このように本発明のタンディッシュ100によれば、介在物を効率よく浮上させることができ、介在物の溶鋼への巻き込みを抑制することができるため高清浄度鋼を製造することが可能になる。
 (試験例1:介在物の計測試験)
 (試料)
 転炉での酸素吹錬及び、RH真空脱ガス処理が施された300トンの溶鋼を用いた。この溶鋼は、取鍋からタンディッシュに供給した。
 (連続鋳造)
 堰から吹き込む不活性ガスとしてArを用い連続鋳造を行った。具体的には、ポーラス部の単位面積当たりの不活性ガスの流量(R)を変えて、複数の試験を行った。(R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)])
 (介在物の個数測定)
 連続鋳造により作成したスラブについて、介在物の個数を超音波探傷により測定した。介在物については、10μm以上のものについて計測した。計測したスラブの1mあたりの介在物の個数を密度として算出した。
 図7に、ポーラス部の単位面積当たりの不活性ガスの流量(R)と、スラブ中の介在物の密度と、の関係を示す。図7に示されているように、不活性ガスの流量(R)が0.2よりも低い場合、介在物の密度が他の条件よりも高くなっている。
 不活性ガスの流量(R)が0.2~10.0である場合、介在物の密度が他の条件よりも低くなっている。不活性ガスの流量(R)が10.0を超える場合、不活性ガスの供給が行われない条件よりも介在物の密度が低くなっている。また、また当該条件では、不活性ガスの流量(R)が0.2以下の条件よりも介在物の密度が高くなっている。
 不活性ガスの流量(R)が0.2よりも低い場合では、当該条件においては、タンディッシュにおける介在物を浮上させる効果が十分に得られないと考えられる。このため当該条件では、介在物の密度が高くなっていると考えられる。
 また、不活性ガスの流量(R)が10.0を超える条件では、不活性ガスによってタンディッシュスラグ(介在物)が溶鋼に巻き込まれると考えられる。このため、当該条件では不活性ガスの流量(R)が0.2~10.0である場合よりも、介在物の密度が高くなっていると考えられる。
 (試験例2:介在物の計測試験)
 (試料)
 試験例1と同一の溶鋼を用いた。
 (連続鋳造)
 従来例(1)及び発明例(本発明1~9)のタンディッシュを用いて連続鋳造を行った。
  また、各々のタンディッシュに吹き込む不活性ガスとしてArを用いた。具体的には従来例1については、タンディッシュにガス供給装置を設けずに不活性ガスを収容部の空間に向けて供給した。
 また発明例については、ガス供給装置を設けて当該ガス供給装置から不活性ガスを収容部の空間に向けて供給した。発明例(本発明1~9)については、当該堰のガス供給部から供給される不活性ガスの流量を変えて実施した。各々の不活性ガスの流量については、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
 (介在物の個数測定)
 試験例1と同一の方法で行った。
 図8に、従来例1及び発明例1~9の介在物の密度を示す。図8に示すように、本発明1~9は、従来例1よりもスラブの介在物の密度が大幅に低いことがわかった。特に、本発明1~6は、不活性ガスの流量(R)が0.2~10.0であるため、本発明7~9よりも良好な結果が得られた。
 100 タンディッシュ
 10 収容部
 10a 空間
 11 溶鋼流出口
 20 堰
 30 ガス供給部(ガス供給装置)
 31 壁部
 32 底部
 35 ポーラス部
 36 支持部
 37 配管
 38 収容室
 39 調整手段
 AR1 溶鋼注入領域

Claims (20)

  1.  供給された溶鋼を貯留する収容部を有する連続鋳造用のタンディッシュであって、
     前記収容部は、前記溶鋼を流出させる1又は複数の溶鋼流出口及び、前記1又は複数の溶鋼流出口よりも前記溶鋼の上流側に配置されかつ、前記収容部によって囲まれた空間に不活性ガスを供給するガス供給部と、を有し、
     前記ガス供給部は、底部及び壁部を有する箱状に形成されかつ、複数の細孔が全体に形成されているポーラス部と、
     前記ポーラス部を支持し、かつ前記ガス供給部の前記壁部に設けられている支持部と、
     前記支持部と前記ガス供給部の前記底部との間の前記ガス供給部の前記壁部に設けられかつ、前記不活性ガスを吐出する配管と、を含む、連続鋳造用のタンディッシュ。
  2.  前記ガス供給部は、前記ポーラス部、前記支持部、前記ガス供給部の前記壁部及び、前記ガス供給部の前記底部によって囲まれた収容室を有し、
     前記配管は、前記収容室を囲む前記ガス供給部の前記壁部に設けられている、請求項1に記載の連続鋳造用のタンディッシュ。
  3.  前記収容部は、前記収容部によって囲まれた前記空間を隔てる1又は複数の堰を有し、前記ガス供給部は、前記堰に隣接して設けられている、請求項1又は2に記載の連続鋳造用のタンディッシュ。
  4.  前記ガス供給部は、前記配管から供給される前記不活性ガスの流量を調整する調整手段を有する、請求項1又は2に記載の連続鋳造用のタンディッシュ。
  5.  前記ガス供給部は、前記配管から供給される前記不活性ガスの流量を調整する調整手段を有する、請求項3に記載の連続鋳造用のタンディッシュ。
  6.  前記配管は、前記収容部の壁部に沿って配されかつ、耐火性を有する被覆材によって覆われている、請求項1又は2に記載の連続鋳造用のタンディッシュ。
  7.  前記配管は、前記収容部の壁部に沿って配されかつ、耐火性を有する被覆材によって覆われている、請求項3に記載の連続鋳造用のタンディッシュ。
  8.  前記配管は、前記収容部の壁部に沿って配されかつ、耐火性を有する被覆材によって覆われている、請求項4に記載の連続鋳造用のタンディッシュ。
  9.  前記配管は、前記収容部の壁部に沿って配されかつ、耐火性を有する被覆材によって覆われている、請求項5に記載の連続鋳造用のタンディッシュ。
  10.  請求項1又は2に記載の連続鋳造用のタンディッシュを用いた鋼の連続鋳造方法であって、
     下記(1)式を満たす流量で不活性ガスを吹き込む工程を含む、鋼の連続鋳造方法。
     0.2≦R≦10.0    (1)
     R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
  11.  請求項3に記載の連続鋳造用のタンディッシュを用いた鋼の連続鋳造方法であって、下記(1)式を満たす流量で不活性ガスを吹き込む工程を含む、鋼の連続鋳造方法。
     0.2≦R≦10.0    (1)
     R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
  12.  請求項4に記載の連続鋳造用のタンディッシュを用いた鋼の連続鋳造方法であって、下記(1)式を満たす流量で不活性ガスを吹き込む工程を含む、鋼の連続鋳造方法。
     0.2≦R≦10.0    (1)
     R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
  13.  請求項5に記載の連続鋳造用のタンディッシュを用いた鋼の連続鋳造方法であって、下記(1)式を満たす流量で不活性ガスを吹き込む工程を含む、鋼の連続鋳造方法。
     0.2≦R≦10.0    (1)
     R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
  14.  請求項6に記載の連続鋳造用のタンディッシュを用いた鋼の連続鋳造方法であって、下記(1)式を満たす流量で不活性ガスを吹き込む工程を含む、鋼の連続鋳造方法。
     0.2≦R≦10.0    (1)
     R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
  15.  請求項7に記載の連続鋳造用のタンディッシュを用いた鋼の連続鋳造方法であって、下記(1)式を満たす流量で不活性ガスを吹き込む工程を含む、鋼の連続鋳造方法。
     0.2≦R≦10.0    (1)
     R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
  16.  請求項8に記載の連続鋳造用のタンディッシュを用いた鋼の連続鋳造方法であって、下記(1)式を満たす流量で不活性ガスを吹き込む工程を含む、鋼の連続鋳造方法。
     0.2≦R≦10.0    (1)
     R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
  17.  請求項9に記載の連続鋳造用のタンディッシュを用いた鋼の連続鋳造方法であって、下記(1)式を満たす流量で不活性ガスを吹き込む工程を含む、鋼の連続鋳造方法。
     0.2≦R≦10.0    (1)
     R:ポーラス部の単位面積当たりの不活性ガスの流量[NL/(s×m)]
  18.  連続鋳造用のタンディッシュに設置されかつ、不活性ガスを供給するガス供給装置であって、
     底部及び壁部を有する箱状に形成されかつ、
     複数の細孔が全体に形成されているポーラス部と、
     前記ポーラス部を支持しかつ、前記壁部に設けられている支持部と、
     前記支持部と前記底部との間の前記壁部に設けられかつ、前記不活性ガスを吐出する配管と、を含む、ガス供給装置。
  19.  前記ポーラス部、前記支持部、前記壁部及び、前記底部によって囲まれた収容室を有し、
     前記配管は、前記収容室を囲む前記壁部に設けられている、請求項18に記載のガス供給装置。
  20.  前記配管から供給される前記不活性ガスの流量を調整する調整手段を有する、請求項18又は19に記載のガス供給装置。
PCT/JP2023/028183 2022-09-09 2023-08-01 連続鋳造用のタンディッシュ、鋼の連続鋳造方法及び、ガス供給装置 WO2024053291A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023572687A JPWO2024053291A1 (ja) 2022-09-09 2023-08-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-143847 2022-09-09
JP2022143847 2022-09-09

Publications (1)

Publication Number Publication Date
WO2024053291A1 true WO2024053291A1 (ja) 2024-03-14

Family

ID=90190914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028183 WO2024053291A1 (ja) 2022-09-09 2023-08-01 連続鋳造用のタンディッシュ、鋼の連続鋳造方法及び、ガス供給装置

Country Status (2)

Country Link
JP (1) JPWO2024053291A1 (ja)
WO (1) WO2024053291A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203109191U (zh) * 2013-03-15 2013-08-07 濮阳濮耐高温材料(集团)股份有限公司 一种带有吹气功能的中间包稳流器
WO2013190799A1 (ja) * 2012-06-18 2013-12-27 Jfeスチール株式会社 高清浄度鋼鋳片の製造方法及びタンディッシュ
JP2014124661A (ja) * 2012-12-26 2014-07-07 Kobe Steel Ltd 連続鋳造方法
US20210053111A1 (en) * 2019-08-19 2021-02-25 Harbisonwalker International, Inc. Diffusion article
CN113564309A (zh) * 2020-04-28 2021-10-29 宝山钢铁股份有限公司 一种具有吹氩去除钢水夹杂物功能的中间包

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190799A1 (ja) * 2012-06-18 2013-12-27 Jfeスチール株式会社 高清浄度鋼鋳片の製造方法及びタンディッシュ
JP2014124661A (ja) * 2012-12-26 2014-07-07 Kobe Steel Ltd 連続鋳造方法
CN203109191U (zh) * 2013-03-15 2013-08-07 濮阳濮耐高温材料(集团)股份有限公司 一种带有吹气功能的中间包稳流器
US20210053111A1 (en) * 2019-08-19 2021-02-25 Harbisonwalker International, Inc. Diffusion article
CN113564309A (zh) * 2020-04-28 2021-10-29 宝山钢铁股份有限公司 一种具有吹氩去除钢水夹杂物功能的中间包

Also Published As

Publication number Publication date
JPWO2024053291A1 (ja) 2024-03-14

Similar Documents

Publication Publication Date Title
JP4556804B2 (ja) 溶融金属の注入管および注入方法
GB2200311A (en) Molten metal discharging device
JP6515388B2 (ja) 連続鋳造用の上ノズル
WO2024053291A1 (ja) 連続鋳造用のタンディッシュ、鋼の連続鋳造方法及び、ガス供給装置
WO2024053290A1 (ja) 連続鋳造用のタンディッシュ、鋼の連続鋳造方法及び、堰
JP5082700B2 (ja) 鋼の連続鋳造方法
JP4240916B2 (ja) タンディッシュ上ノズル及び連続鋳造方法
KR20140129895A (ko) 연속주조용 턴디쉬
JP5510047B2 (ja) 連続鋳造方法および連続鋳造装置
JP2006231397A (ja) アルミキルド鋼の連続鋳造方法
KR101090927B1 (ko) 버블링플러그
GB2149699A (en) Method and apparatus for avoiding vortexing in a bottom pour vessel
JP7157387B2 (ja) タンディッシュ上ノズル
WO2023210201A1 (ja) タンディッシュおよびそれを用いた連続鋳造方法
JP2017177109A (ja) 連続鋳造開始時における溶鋼の注入開始方法
TWI770616B (zh) 鋼液分配器上噴嘴結構體及連續鑄造方法
KR101722951B1 (ko) 침지 노즐
KR102361362B1 (ko) 웰 블록, 주조 장치 및 방법
KR200267443Y1 (ko) 제강공정에서의용강중슬래그혼입저감구조
JP2022067579A (ja) ガス吹きノズル
JP2024085132A (ja) 連続鋳造方法及び取鍋用の注入ノズル
KR102209610B1 (ko) 노즐 장치
RU2185261C1 (ru) Промежуточный ковш для непрерывной разливки стали
CN117377541A (zh) 连续铸造用的塞棒
JP2000084647A (ja) タンディッシュ上ノズルのガス吹き込み方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023572687

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862834

Country of ref document: EP

Kind code of ref document: A1