WO2024053207A1 - 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 - Google Patents

熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 Download PDF

Info

Publication number
WO2024053207A1
WO2024053207A1 PCT/JP2023/023229 JP2023023229W WO2024053207A1 WO 2024053207 A1 WO2024053207 A1 WO 2024053207A1 JP 2023023229 W JP2023023229 W JP 2023023229W WO 2024053207 A1 WO2024053207 A1 WO 2024053207A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
hot
steel plate
less
content
Prior art date
Application number
PCT/JP2023/023229
Other languages
English (en)
French (fr)
Inventor
林太 佐藤
洋一 牧水
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2024053207A1 publication Critical patent/WO2024053207A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the present invention relates to a hot press steel plate, a hot press member, and a method for manufacturing a hot press member.
  • complex-shaped members used in automobiles include suspension members such as chassis and structural members for skeletons such as B-pillars.
  • Hot pressing is a forming method in which a steel plate is heated to an austenite temperature range, then press-formed at a high temperature, and at the same time is rapidly cooled by contact with a mold.
  • press forming is performed in a state where the strength of the material steel plate is relatively low, and the strength is increased by subsequent rapid cooling, so that it is possible to achieve both high strength and ensuring press formability.
  • Patent Document 1 proposes a steel plate for hot pressing that suppresses oxidation of the steel plate during heating by providing an aluminum plating layer on the surface of the steel plate containing 0.15 to 0.5% carbon. There is.
  • One problem is that it has low suitability for high-speed heating.
  • Methods for heating steel sheets for hot pressing include atmospheric furnace heating, direct current heating, induction heating, etc.
  • direct current heating and induction heating are superior in energy efficiency compared to atmosphere furnace heating. Carbon emissions can be reduced.
  • the steel plate for hot pressing can be heated at high speed, so productivity is improved.
  • liquid metal embrittlement cracking Another problem is liquid metal embrittlement cracking.
  • LME liquid metal embrittlement
  • hot pressing steel sheets are generally used in a painted state after hot pressing. Therefore, the hot-pressed steel plate that is finally obtained is also required to have excellent paint adhesion.
  • the present invention has been made in view of the above circumstances, and aims to provide a hot press steel plate and a hot press member that can satisfy the following requirements (1) to (3).
  • the present invention was completed based on solving the above problems, and the gist thereof is as follows.
  • a steel plate for hot pressing comprising a coating layer with a thickness of 0.5 to 6.0 ⁇ m provided on both sides of the base steel plate, A steel sheet for hot pressing, wherein the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 30% by mass.
  • the coating layer contains a total of 50% by mass or less of at least one selected from the group consisting of Al, Ti, V, Cr, Mn, Fe, Co, Mo, and W. steel plate for hot pressing.
  • a hot press member having a coating layer with a thickness of 0.5 to 6.0 ⁇ m provided on both sides of the base steel plate,
  • the hot press member wherein the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 30% by mass.
  • the coating layer contains a total of 50% by mass or less of at least one selected from the group consisting of Al, Ti, V, Cr, Mn, Fe, Co, Mo, and W. hot pressed parts.
  • an oxide layer containing one or both of Mn and Fe and having a thickness of 0.1 to 5 ⁇ m 7.
  • a method for producing a hot press member comprising hot pressing the hot press steel plate according to any one of 1 to 3 above to obtain a hot press member.
  • the hot press steel sheet of the present invention has excellent suitability for high-speed heating, and even when heated at high speed by direct current heating or induction heating, variations in the thickness of the coating layer are suppressed. Further, in the hot press steel sheet of the present invention, liquid metal embrittlement cracking during hot press forming is suppressed. Furthermore, the hot-pressed member obtained by hot-pressing the hot-pressed steel plate of the present invention has excellent paint adhesion.
  • the present invention is not limited to this embodiment.
  • the unit of content "%" in the composition of the coating layer and the steel plate represents “mass %” unless otherwise specified.
  • a hot press steel plate in an embodiment of the present invention includes a base steel plate and a coating layer with a thickness of 0.5 to 6.0 ⁇ m provided on both sides of the base steel plate.
  • the coating layer is made of Ni or a Ni-based alloy, and the Zn concentration in the coating layer is 0 to 30%.
  • the coating layer may be a coating layer made of Ni (Ni coating layer) or a coating layer made of a Ni-based alloy (Ni-based alloy coating layer).
  • Ni-based alloy refers to an alloy having a Ni content of 50% or more.
  • the coating layer of the present invention has a Ni content of 50% or more.
  • the surface layer of the steel sheet is oxidized by oxygen and water vapor in the atmosphere.
  • the steel sheet for hot pressing of the present invention has a Ni-based coating layer on the surface that has a high melting point and oxidation resistance, the coating layer does not melt during heating and a thick oxide layer is formed on the surface. You can prevent this from happening. As a result, excellent paint adhesion can be obtained.
  • the Ni content in the coating layer is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more.
  • the upper limit of the Ni content in the coating layer is not particularly limited, and may be 100%.
  • the Zn content in the coating layer is 30% or less, preferably 20% or less, more preferably 10% or less, even more preferably 5% or less.
  • the lower limit of the Zn content is set to 0%.
  • the chemical conversion coating formed in the chemical conversion treatment step which is a pre-painting treatment step, becomes denser and the coating adhesion is further improved. Therefore, the Zn content in the coating layer is preferably 0.5% or more, more preferably 1% or more, and still more preferably 2% or more.
  • the coating layer may optionally contain at least one selected from the group consisting of Al, Ti, V, Cr, Mn, Fe, Co, Mo, and W in a total amount of 50% or less. Even better oxidation resistance can be obtained by adding at least one of Al, Ti, V, Cr, Mn, Co, Mo, and W. Since these elements can be added arbitrarily, the lower limit of the total content may be 0%. However, in order to strengthen the oxidation resistance of the coating layer, the coating layer preferably contains 1% or more of these elements in total. Furthermore, when the coating layer is formed by electroplating, Fe eluted from the base steel plate into the plating bath may be incorporated into the coating layer.
  • the total content of the elements is 50% or less, preferably 40% or less, more preferably 30% or less, even more preferably 20% or less.
  • the Fe content in the coating layer is preferably 20% or less, more preferably 5% or less, and even more preferably 1% or less.
  • the coating layer has, in mass %, Zn: 0-30%, At least one selected from the group consisting of Al, Ti, V, Cr, Mn, Fe, Co, Mo, and W: 0 to 50% in total, The remainder has a component composition consisting of Ni and unavoidable impurities.
  • the preferred ranges for the content of each component described above are applied.
  • the Zn content is preferably 0.5% or more, more preferably 1% or more, and even more preferably 2% or more.
  • Thickness 0.5-6.0 ⁇ m Note that when the hot-pressed steel plate is heated, Ni in the coating layer and Fe in the base steel plate interdiffuse, and a Ni-based alloy layer with an increased Fe concentration is generated in the surface layer of the hot-pressed member. If the thickness of the coating layer of a steel plate for hot pressing is less than 0.5 ⁇ m, when heated at a high temperature exceeding 1000°C, Fe that has diffused and reached the surface layer will be oxidized, resulting in a thick and brittle Fe-containing oxide layer. is formed. The presence of thick and brittle Fe-containing oxides reduces paint adhesion. Therefore, the thickness of the coating layer is set to 0.5 ⁇ m or more.
  • the thickness of the coating layer is preferably 1.0 ⁇ m or more, more preferably 2.0 ⁇ m or more, since the thicker the coating layer remains after heating, the better the corrosion resistance can be obtained.
  • the thickness of the coating layer is 6.0 ⁇ m or less, preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less.
  • the steel plate for hot pressing of the present invention is provided with a coating layer on both sides thereof, the thickness of the coating layer on one side may be the same as the thickness of the coating layer on the other side, They may be different as long as the thickness of the coating layer on each surface satisfies the above conditions.
  • the base steel plate any steel plate can be used without particular limitation.
  • the base steel plate may be either a hot-rolled steel plate or a cold-rolled steel plate.
  • the base material steel plate has the following properties in mass%: C: 0.05-0.50%, Si: 0.1-1.0%, Mn: 0.5-3.0%, P: 0.1% or less, S: 0.01% or less, Contains Al: 0.10% or less, and N: 0.01% or less, It is preferable to use a steel plate having a composition in which the balance consists of Fe and unavoidable impurities. The reason why the above component composition is preferable will be explained below.
  • the C content in the base steel plate is preferably 0.05% or more, more preferably 0.10% or more.
  • the C content is preferably 0.50% or less, more preferably 0.45% or less, even more preferably 0.43% or less, and even more preferably 0.40% or less. Most preferred.
  • Si 0.1-1.0%
  • Si is an effective element for strengthening steel and obtaining good material quality.
  • the Si content is preferably 0.1% or more, more preferably 0.2% or more.
  • the Si content is preferably 1.0% or less, more preferably 0.4% or less, and even more preferably 0.3% or less.
  • Mn 0.5-3.0%
  • Mn is an element that contributes to improving the strength of steel sheets over a wide cooling rate range.
  • the Mn content is preferably 0.5% or more, more preferably 0.7% or more, and even more preferably 1.0% or more.
  • the Mn content is preferably 3.0% or less, more preferably 2.5% or less, even more preferably 2.0% or less, and 1.5% or less. Most preferred.
  • the P content is preferably 0.1% or less.
  • the lower limit of the P content is not particularly limited, but from the viewpoint of refining cost, the P content is preferably 0.01% or more.
  • S 0.01% or less S forms inclusions such as MnS, which causes deterioration of impact resistance and cracking along the metal flow of the welded part. Therefore, it is desirable to reduce the S content as much as possible, preferably 0.01% or less. Further, from the viewpoint of ensuring good stretch flangeability, the content is more preferably 0.005% or less, and even more preferably 0.001% or less. On the other hand, the lower limit of the S content is not particularly limited, but from the viewpoint of refining cost, the S content is preferably 0.0002% or more.
  • the Al content is preferably 0.10% or less, more preferably 0.07% or less, and even more preferably 0.04% or less.
  • the lower limit of the Al content is not particularly limited, but from the viewpoint of ensuring the effect as a deoxidizer, the Al content is preferably 0.01% or more.
  • the N content is preferably 0.01% or less.
  • the lower limit of the N content is not particularly limited, but from the viewpoint of refining cost, the N content is preferably 0.001% or more.
  • the composition of the base steel plate is as follows: Nb: 0.10% or less, Ti: 0.10% or less, B: 0.0002-0.010%, Cr: 0.1-0. 1.0%, and at least one selected from the group consisting of Sb: 0.003 to 0.10%.
  • Nb 0.10% or less
  • Nb is an effective element for strengthening steel, but if it is included in excess, rolling load increases. Therefore, when Nb is contained, the Nb content is set to 0.10% or less, preferably 0.06% or less, and more preferably 0.03% or less.
  • the lower limit of the Nb content is not particularly limited and may be 0%, but from the viewpoint of refining cost, it is preferably 0.005% or more.
  • Ti 0.10% or less Like Nb, Ti is also an effective element for strengthening steel. However, if Ti is included excessively, the shape fixability will be reduced. Therefore, when containing Ti, the Ti content is set to 0.10% or less, preferably 0.06% or less. On the other hand, the lower limit of the Ti content is not particularly limited and may be 0%, but from the viewpoint of refining cost, it is preferably 0.003% or more.
  • B 0.0002-0.010%
  • B is an element that has the effect of suppressing the production and growth of ferrite from austenite grain boundaries.
  • the B content is preferably 0.0002% or more, more preferably 0.0010% or more.
  • excessive B content significantly impairs moldability. Therefore, when B is contained, the amount of B is 0.010% or less, preferably 0.005% or less.
  • Cr 0.1-1.0% Cr is an element that improves hardenability and contributes to improving the strength of the steel plate.
  • the Cr content is set to 0.1% or more, preferably 0.2% or more in order to obtain the above effects.
  • the Cr content is set to 1.0% or less, preferably 0.5% or less, and more preferably 0.3% or less.
  • Sb 0.003-0.10%
  • Sb is an element that has the effect of suppressing decarburization of the surface layer during the annealing process when manufacturing the base steel plate.
  • the Sb content is set to 0.003% or more, preferably 0.005% or more in order to obtain the above effects.
  • the Sb content is higher than 0.10%, rolling load increases and productivity decreases. Therefore, when Sb is contained, the Sb content is set to 0.10% or less, preferably 0.05% or less, and more preferably 0.03% or less.
  • the base steel plate can typically be manufactured by rolling a steel slab obtained by casting.
  • As the steel slab it is preferable to use a steel slab having the above-mentioned composition.
  • hot slabs obtained by casting may be directly subjected to hot rolling (without reheating), and cold slabs whose temperature has been reduced after casting may be used. may be reheated and subjected to hot rolling. There is almost no difference in the properties of the steel sheets obtained when hot slab slabs are directly rolled and when cold slab slabs are rolled after being reheated.
  • the reheating temperature is not particularly limited, but is preferably in the range of 1000°C to 1300°C in consideration of productivity.
  • the hot rolling can be performed by either a normal hot rolling process or a continuous hot rolling process in which slabs are joined and rolled in finish rolling.
  • the rolling end temperature in hot rolling is not particularly limited, but from the viewpoint of productivity and plate thickness accuracy, it is preferably set to the Ar3 transformation point or higher.
  • the hot rolled steel sheet obtained by the above hot rolling is then cooled according to a conventional method.
  • the winding temperature at that time is preferably 550° C. or higher from the viewpoint of productivity. Furthermore, if the winding temperature is too high, the pickling properties will deteriorate, so the winding temperature is preferably 750° C. or lower. After the cooling, it is preferable to carry out pickling according to a conventional method.
  • cold rolling may be further performed according to a conventional method.
  • a coating layer is formed on the surface of the obtained steel plate.
  • the method of forming the coating layer is not particularly limited, and may be formed by any method such as plating, PVD, clad rolling, etc.
  • the plating include electroplating.
  • the PVD include vacuum evaporation, sputtering, and ion plating.
  • layers having a desired composition may be laminated on both sides of the base steel plate and then rolled.
  • the method for forming the coating layer is preferably selected depending on the composition of the coating layer to be formed.
  • the coating layer is a Ni layer, a Ni--Cr alloy layer, or a Ni--Zn alloy layer
  • the coating layer has a composition that is difficult to deposit from an aqueous solution, such as a Ni--Ti alloy, it is preferable to form the coating layer by PVD.
  • the conditions may be adjusted so that the coating layer on one side (front side) of the steel plate and the other side (back side) of the steel plate has the desired thickness.
  • the thickness of the coating layer on each surface can be adjusted by changing either or both of the current density and the current application time on each surface.
  • a hot press member in an embodiment of the present invention is a hot press member having a base steel plate and a coating layer with a thickness of 0.5 to 6.0 ⁇ m provided on both sides of the base steel plate.
  • the coating layer is made of Ni or a Ni-based alloy, and the Zn content in the coating layer is 0 to 30%.
  • the description of the base steel plate and coating layer in the hot press steel plate described above applies. That is, as the base steel plate of the hot press member, a steel plate similar to the base steel plate of the hot press steel plate described above can be used. Further, as the coating layer of the hot press member, a coating layer similar to the coating layer of the hot press steel plate described above can be used.
  • the Zn content in the coating layer of the hot press member is also preferably 0.5% or more, more preferably 1% or more, and even more preferably 2% or more.
  • the coating layer can also contain a total of 50% by mass or less of at least one selected from the group consisting of Al, Ti, V, Cr, Mn, Fe, Co, Mo, and W.
  • a hot press member in another embodiment of the present invention further has an oxide layer containing one or both of Mn and Fe and having a thickness of 0.1 to 5 ⁇ m on the coating layer. That is, the hot press member of the present embodiment includes a base steel plate, a coating layer with a thickness of 0.5 to 6.0 ⁇ m provided on both sides of the base steel plate, and a coating layer provided on the coating layer. and an oxide layer with a thickness of 0.1 to 5 ⁇ m.
  • the above oxide layer is formed when components contained in the coating layer or the base steel plate react with oxygen or water vapor in the atmosphere during the hot pressing process.
  • the composition and thickness of the oxide layer vary depending on heating conditions such as heating temperature, heating time, and atmosphere.
  • the thickness of the oxide layer exceeds 5 ⁇ m, the adhesion of the coating film decreases, and as a result, it becomes impossible to obtain sufficient corrosion resistance after coating. Therefore, when an oxide layer is present, the thickness of the oxide layer is 5 ⁇ m or less, preferably 3 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the thinner the oxide layer the better; however, in order to make the oxide layer less than 0.1 ⁇ m thick, the oxygen partial pressure must be extremely reduced. It is necessary to perform hot pressing in an atmosphere or to provide a process for removing oxides after hot pressing, which increases manufacturing costs. Therefore, the thickness of the oxide layer is preferably 0.1 ⁇ m or more.
  • the oxide layer contains one or both of Mn and Fe.
  • these components are eluted into the chemical conversion treatment solution in the chemical conversion treatment step.
  • the formation of the chemical conversion film is promoted, and even better paint adhesion can be obtained.
  • the total proportion of Mn and Fe to all metals contained in the oxide layer is set to 1 to 50 atomic %.
  • the thickness of the oxide layer can be measured by observing the cross section of the hot pressed member with a scanning electron microscope (SEM). More specifically, it can be measured by the method described in Examples.
  • SEM scanning electron microscope
  • the ratio of Mn and Fe to all metals contained in the oxide layer can be measured by measuring the cross section of the hot pressed member using an EPMA (electron beam probe microanalyzer). More specifically, it can be measured by the method described in Examples.
  • EPMA electron beam probe microanalyzer
  • a hot-pressed steel plate is hot-pressed to produce a hot-pressed member.
  • the method of hot pressing is not particularly limited, and can be carried out according to a conventional method.
  • a steel plate for hot pressing is heated to a predetermined heating temperature (heating step), and then the steel plate for hot pressing heated in the heating step is hot pressed (hot pressing step).
  • heating step heating step
  • hot pressing step hot pressing step
  • the heating temperature in the heating step is lower than the Ac3 transformation point of the base steel plate, the strength of the final hot pressed member will be low. Therefore, the heating temperature is preferably at least the Ac3 transformation point of the base steel plate, more preferably at least 860°C. On the other hand, if the heating temperature exceeds 1000° C., the oxide layer produced by oxidation of the base material or coating layer becomes excessively thick, which may deteriorate the paint adhesion of the resulting hot-pressed member. Therefore, the heating temperature is preferably 1000°C or lower, more preferably 960°C or lower, and even more preferably 920°C or lower. Note that the Ac3 transformation point of the base steel plate varies depending on the steel composition, but is determined by the Formaster test.
  • the temperature at which the heating is started is not particularly limited, but is generally room temperature.
  • the time required to raise the temperature from the start of heating until reaching the heating temperature is not particularly limited and can be set to any time.
  • the heating time exceeds 300 seconds, the time of exposure to high temperatures increases, and the oxide layer produced by oxidation of the base material and the plating layer becomes excessively thick. Therefore, from the viewpoint of suppressing the decrease in paint adhesion caused by oxides, the heating time is preferably 100 seconds or less, more preferably 80 seconds or less, and even more preferably 60 seconds or less. preferable.
  • the heating time is preferably 3 seconds or more, more preferably 4 seconds or more, and even more preferably 5 seconds or more.
  • the holding time is not particularly limited, and holding can be carried out for any desired length. However, if the holding time exceeds 100 seconds, the oxide layer produced by oxidation of the base material and coating layer becomes excessively thick, which may deteriorate the paint adhesion of the resulting hot-pressed member. Therefore, the holding time is preferably 100 seconds or less, more preferably 60 seconds or less, and even more preferably 20 seconds or less. On the other hand, the lower limit of the holding time is also not limited, but from the viewpoint of homogeneously austenitizing the base steel plate, it is preferably 1 second or more.
  • the atmosphere in the heating step is not particularly limited, and for example, heating can be performed under an atmospheric atmosphere or in an atmosphere into which the atmospheric air flows. From the viewpoint of reducing the amount of diffusible hydrogen remaining in the member after hot pressing, it is preferable that the dew point of the atmosphere is 10° C. or less. The lower limit of the dew point is also not particularly limited, but may be, for example, ⁇ 40° C. or higher.
  • the method of heating the hot press steel plate is not particularly limited, and any method can be used.
  • the heating can be performed, for example, by furnace heating, current heating, induction heating, high frequency heating, flame heating, or the like. Among these, it is preferable to use electrical heating, induction heating, or high-frequency heating, which can raise the temperature in a short time and has excellent energy efficiency.
  • the heating furnace any heating furnace such as an electric furnace or a gas furnace can be used.
  • the heated steel plate for hot pressing is hot pressed to form a hot pressed member.
  • the steel plate is cooled using a mold or a coolant such as water at the same time as or immediately after the working.
  • hot pressing conditions are not particularly limited.
  • pressing can be started at 600 to 800° C., which is a common hot pressing temperature range.
  • the hot pressing start temperature is preferably 600 to 1000°C.
  • a coating layer was formed on both sides of the base steel plate by the method shown in Tables 1 and 2. Each of the methods used is described below. For comparison, Comparative Example No. In No. 1, no coating layer was formed.
  • the coating layer was formed by electroplating under the following conditions. In each case, electrolysis was performed using the base steel plate as a cathode and the iridium oxide-coated titanium plate as an anode, and the thickness of the coating layer was adjusted by changing the current application time.
  • Ni plating/plating solution composition Nickel sulfate hexahydrate 240g/L Boric acid 30g/L ⁇ pH: 3.0 ⁇ Temperature: 50°C ⁇ Current density: 40A/dm 2
  • Ni-Fe alloy plating/plating solution composition Nickel sulfate hexahydrate 192g/L Iron sulfate heptahydrate 48g/L, Boric acid 30g/L ⁇ pH: 3.0 ⁇ Temperature: 50°C ⁇ Current density: 40A/dm 2
  • Ni-Co alloy plating/plating solution composition Nickel sulfate hexahydrate 180g/L Cobalt sulfate heptahydrate 60g/L Boric acid 30g/L ⁇ pH: 3.0, ⁇ Temperature: 50°C ⁇ Current density: 40A/dm 2
  • Ni-Mo alloy plating/plating solution composition Nickel sulfate hexahydrate 13g/L Sodium molybdate dihydrate 19g/L Citric acid 88g/L ⁇ pH: 3.5 ⁇ Temperature: 25°C ⁇ Current density: 10A/dm 2
  • Ni-W alloy plating/plating solution composition Nickel sulfate hexahydrate 13g/L Sodium tungstate dihydrate 30g/L Citric acid 88g/L ⁇ pH: 3.5 ⁇ Temperature: 25°C ⁇ Current density: 10A/ dm2
  • Ni-Zn alloy plating/plating solution composition Nickel sulfate hexahydrate 240g/L Zinc sulfate heptahydrate/pH: 2.0 ⁇ Temperature: 50°C ⁇ Current density: 40A/dm 2
  • concentration of zinc sulfate heptahydrate in the plating solution was adjusted so that the Zn content of the coating layer was the value shown in Tables 1 and 2.
  • Ni-Fe-Zn alloy plating A plating solution was used in which zinc sulfate heptahydrate was further added to the plating solution for the above (2) Ni-Fe alloy plating. The concentration of zinc sulfate heptahydrate in the plating solution was adjusted so that the Zn content of the coating layer was the value shown in Tables 1 and 2. Other conditions were the same as those for (2) Ni--Fe alloy plating.
  • Ni--Co--Zn alloy plating A plating solution in which zinc sulfate heptahydrate was further added to the plating solution for the above (3) Ni--Co alloy plating was used. The concentration of zinc sulfate heptahydrate in the plating solution was adjusted so that the Zn content of the coating layer was the value shown in Tables 1 and 2. Other conditions were the same as those for (3) Ni--Co alloy plating.
  • Ni-Mo-Zn alloy plating A plating solution in which zinc sulfate heptahydrate was further added to the plating solution for the Ni-Mo alloy plating in (4) above was used. The concentration of zinc sulfate heptahydrate in the plating solution was adjusted so that the Zn content of the coating layer was the value shown in Tables 1 and 2. Other conditions were the same as those for (4) Ni--Mo alloy plating.
  • Ni--W--Zn alloy plating A plating solution in which zinc sulfate heptahydrate was further added to the plating solution for the Ni--W alloy plating in (5) above was used. The concentration of zinc sulfate heptahydrate in the plating solution was adjusted so that the Zn content of the coating layer was the value shown in Tables 1 and 2. Other conditions were the same as those for (5) Ni--W alloy plating.
  • Zn plating/plating solution composition Zinc sulfate heptahydrate 240g/L ⁇ pH: 2.0 ⁇ Temperature: 50°C ⁇ Current density: 40A/dm 2
  • PVD The coating layer was formed by PVD by ion plating using a batch radio frequency (RF) excitation ion plating device manufactured by Showa Shinku Co., Ltd.
  • the temperature of the base steel plate was 400°C, the pressure was 3 Pa, and the bias voltage was -20V.
  • the composition of the coating layer was controlled by adjusting the composition of the metal used as the vapor deposition source. Further, the thickness of the coating layer was controlled by adjusting the deposition time.
  • invention example No. 1 is the same as the above-mentioned invention example No. except that a Ni-16%Cr-8%Fe-0.5%Zn alloy was used as the laminated alloy.
  • Invention example No. 14 was prepared using the same method as in Example No. Thirty hot pressing steel plates were produced. Similarly, using Ni-16%Cr-8%Fe-2%Zn alloy as the laminated alloy, Invention Example No. 46 steel plates for hot pressing were produced.
  • the coating layer was formed by hot-dip plating by immersing the base steel plate in a hot-dip plating bath for 1 second, and then wiping with N 2 gas.
  • the composition of the coating layer was controlled by adjusting the composition of the hot-dip plating bath used.
  • composition and thickness of the coating layer of the obtained hot press steel plate were measured using the following methods. The measurement results are shown in Tables 1 and 2.
  • Component composition of coating layer A cross-sectional sample of the hot press steel plate to be evaluated was prepared by shearing a 10 mm x 15 mm sample and embedding it in a conductive resin. The average composition of the coating layer from the outermost layer to the interface with the base material was measured by EPMA. The component composition of the coating layer was determined by averaging the measured values for three arbitrary samples.
  • the thickness of the coating layer of the hot press steel plate was measured by SEM observation using the cross-sectional sample.
  • the thickness of the coating layer was measured at 10 arbitrary locations within a field of view with a width of 100 ⁇ m or more.
  • the thickness of the coating layer was determined by averaging all the measured values for three arbitrary samples.
  • the above-mentioned steel plate for hot press was subjected to hot press. Specifically, a 200 mm x 1000 mm test piece was taken from the hot press steel plate, and the test piece was directly heated with a current-carrying resistance heating device. The heating was carried out under the following conditions: heating temperature: 950° C., heating time: 20 seconds, holding time: 5 seconds.
  • a hat-shaped hot press was performed at 2 spm (Strokes Per Minute) using a press device installed adjacent to the heating furnace.
  • the molding start temperature was 800°C.
  • the shape of the obtained hot-pressed member was such that the width of the flat portion of the upper surface was 70 mm, the length of the flat portion of the side surface was 30 mm, and the length of the flat portion of the lower surface was 25 mm.
  • the bending R of the mold was 7R for both shoulders on the upper surface and both shoulders on the lower surface.
  • composition and thickness of coating layer The composition and thickness of the coating layer of the obtained hot press member were measured in the same manner as the composition and thickness of the coating layer of the hot press steel plate described above.
  • the cross-sectional sample used for the measurement was prepared by the following procedure. First, the flat part of the top of the hot press member was cut out and sheared to obtain a 10 mm x 15 mm sample. Next, the sample was embedded in a conductive resin to obtain a cross-sectional sample. The measurement results are shown in Tables 3 and 4.
  • composition and thickness of the oxide layer in the hot press member were measured using the following methods. The measurement results are shown in Tables 3 and 4.
  • composition of oxide layer The composition of the oxide layer in the hot pressed member was measured by EPMA. In the measurement, point analysis was performed at ten arbitrary points within a field of view with a width of 100 ⁇ m or more using the cross-sectional sample. From the measurement results, the content (atomic %) of each metal element relative to all metal elements contained in the oxide layer was determined.
  • the thickness of the oxide layer in the hot pressed member was measured by SEM observation using the cross-sectional sample.
  • the thickness of the coating layer was measured at ten arbitrary locations within a field of view with a width of 100 ⁇ m or more, and the thickness of the oxide layer was determined by averaging all the measured values.
  • I max The maximum value of I among the three samples was defined as I max , and was used as an index of the variation in the thickness of the coating layer in the hot pressed member of that example. Judgment was made based on the following criteria using the obtained I max , and cases A and B were determined to be passed. The evaluation results are shown in Tables 3 and 4. A: Imax ⁇ 0.2 B: 0.2 ⁇ Imax ⁇ 0.5 C:I max >0.5
  • the steel sheets for hot pressing that meet the conditions of the present invention have suppressed variations in the thickness of the coating layer even when heated at high speeds, and therefore are heated at high speeds. It has high compatibility with Moreover, the steel plate for hot pressing that satisfies the conditions of the present invention was prevented from liquid metal embrittlement cracking during hot press forming. Furthermore, the hot-pressed member obtained by hot-pressing the hot-pressed steel plate of the present invention also had excellent paint adhesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

高速加熱への適合性に優れ、液体金属脆化割れが防止されており、かつ、熱間プレス後の塗装密着性に優れる熱間プレス用鋼板を提供する。母材鋼板と、前記母材鋼板の両面に設けられた厚さ0.5~6.0μmの被覆層とを含む、熱間プレス用鋼板であって、前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~30質量%である、熱間プレス用鋼板。

Description

熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法
 本発明は、熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法に関する。
 近年、自動車分野においては、車体強度の向上と軽量化という相反する要求を満たすために、部品の素材として高強度鋼板が用いられており、該高強度鋼板に求められる強度も年々高くなる傾向にある。
 しかし、一般的に、鋼板の強度を向上させるとプレス成形性が低下するため、複雑な部品形状を得ることは困難になる。自動車用途で複雑な形状の部材としては、例えば、シャシーなどの足回り部材やBピラーなどの骨格用構造部材などが挙げられる。
 このような背景から、冷間ではなく熱間で形成を行う、熱間プレス技術の適用が増加している。熱間プレスとは、鋼板をオーステナイト温度域まで加熱した後に、高温のままでプレス成形し、同時に金型との接触により急冷する成形方法である。熱間プレスでは、素材鋼板の強度が比較的低い状態でプレス成形が行われ、その後の急冷によって高強度化されるため、高強度化とプレス成形性の確保とを両立させることができる。
 しかし、熱間プレスでは、上述したように鋼板が高温に加熱されるため、鋼板表面が酸化してスケールが発生するという問題がある。そこで、Al系めっき層、Zn系めっき層、およびAl-Zn系めっき層などの被覆層を表面に備える鋼板を熱間プレス用鋼板として用いることが提案されている。
 例えば、特許文献1では、0.15~0.5%の炭素を含有する鋼板の表面にアルミニウムめっき層を設けることにより、加熱時の鋼板の酸化を抑制した熱間プレス用鋼板が提案されている。
特開2000-038640号公報
 しかし、特許文献1で提案されているような従来の熱間プレス用鋼板には以下に述べる問題があった。
 一つは、高速加熱への適合性が低いという問題である。熱間プレスを行うためには、熱間プレス用鋼板を予め加熱する必要がある。熱間プレス用鋼板を加熱する方法としては、例えば、雰囲気炉加熱、直接通電加熱、誘導加熱などがあり、中でも直接通電加熱と誘導加熱は、雰囲気炉加熱と比べてエネルギー効率に優れるため、二酸化炭素排出量を低減することができる。また、直接通電加熱と誘導加熱によれば、熱間プレス用鋼板を高速に加熱することができるため、生産性が向上する。
 したがって、熱間プレスの際には、直接通電加熱または誘導加熱により、熱間プレス用鋼板を高速で加熱することが望ましい。しかし、特許文献1で提案されているような従来のAl系めっき鋼板を直接通電加熱または誘導加熱で高速加熱すると、電流によって生じる磁場により、めっき金属が流動し、最終的に得られる熱間プレス部材におけるめっき層の膜厚にバラツキが生じる。そして、めっき層の膜厚のバラツキが大きいと、塗装後の外観品質や耐食性も圧下する。そのため、Al系めっき鋼板を熱間プレスする際には、加熱速度の遅い雰囲気炉加熱を用いざるを得なかった。このような事情から、高速加熱への適合性に優れた熱間プレス用鋼板が求められている。
 もう一つは、液体金属脆化割れの問題である。固体金属の表面に液体金属が接触した状態で引張応力が付与されると前記固体金属が脆化する。この現象を液体金属脆化(Liquid Metal Embrittlement、LME)という。熱間プレスにおいても、加熱によってめっき層に含まれる金属が溶融し、その状態でプレス成形が行われると、引張応力を受ける曲げ加工部で液体金属脆化割れが発生する。そのため、熱間プレス用鋼板には、液体金属脆化割れが生じにくいことも求められている。
 さらに、熱間プレス用鋼板は一般的に熱間プレスの後、塗装した状態で用いられる。そのため、熱間プレス用鋼板には、最終的に得られる熱間プレス部材が塗装密着性に優れることも求められる。
 本発明は、上記実情に鑑みてなされたものであり、下記(1)~(3)の要求を満足することができる熱間プレス用鋼板および熱間プレス部材を提供することを目的とする。
(1)高速加熱への適合性に優れていること。
(2)熱間プレス成形時に液体金属脆化割れが生じにくいこと。
(3)熱間プレス後の塗装密着性に優れること。
 本発明は、上記課題を解決するために基づいて完成されたものであり、その要旨は以下の通りである。
1.母材鋼板と、
 前記母材鋼板の両面に設けられた厚さ0.5~6.0μmの被覆層とを含む、熱間プレス用鋼板であって、
 前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~30質量%である、熱間プレス用鋼板。
2.前記被覆層におけるZn含有量が0.5~30質量%である、上記1に記載の熱間プレス用鋼板。
3.前記被覆層が、Al、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つを、合計で50質量%以下含有する、上記1または2に記載の熱間プレス用鋼板。
4.母材鋼板と、
 前記母材鋼板の両面に設けられた厚さ0.5~6.0μmの被覆層とを有する熱間プレス部材であって、
 前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~30質量%である、熱間プレス部材。
5.前記被覆層におけるZn含有量が0.5~30質量%である、上記4に記載の熱間プレス部材。
6.前記被覆層が、Al、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つを、合計で50質量%以下含有する、上記4または5に記載の熱間プレス部材。
7.さらに、前記被覆層の上に、MnおよびFeの一方または両方を含有し、厚さが0.1~5μmである酸化物層を有し、
 前記酸化物層に含まれる全金属元素に対するMnおよびFeの合計割合が、1~50原子%である、上記4~6のいずれか一項に記載の熱間プレス部材。
8.上記1~3のいずれか一項に記載の熱間プレス用鋼板を熱間プレスして熱間プレス部材とする、熱間プレス部材の製造方法。
 本発明によれば上記課題を解決することができる。すなわち、本発明の熱間プレス用鋼板は、高速加熱への適合性に優れており、直接通電加熱または誘導加熱により高速に加熱した場合でも、被覆層の膜厚のバラツキが抑制されている。また、本発明の熱間プレス用鋼板は、熱間プレス成形時の液体金属脆化割れが抑制されている。さらに、本発明の熱間プレス用鋼板を熱間プレスして得られる熱間プレス部材は、塗装密着性に優れている。
 以下、本発明を実施するための形態について具体的に説明する。なお、本発明はこの実施形態に限定されるものではない。また、被覆層および鋼板の成分組成における含有量の単位「%」は、とくに断らない限り「質量%」を表すものとする。
[熱間プレス用鋼板]
 本発明の一実施形態における熱間プレス用鋼板は、母材鋼板と、前記母材鋼板の両面に設けられた厚さ0.5~6.0μmの被覆層とを含む。そして、前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn濃度が0~30%である。
[[被覆層]]
 前記被覆層は、Niからなる被覆層(Ni被覆層)であってもよく、Ni基合金からなる被覆層(Ni基合金被覆層)であってもよい。ここで、「Ni基合金」とはNi含有量が50%以上である合金を指すものとする。言い換えると、本発明の被覆層はNi含有量が50%以上である被覆層である。
 熱間プレスに先立つ加熱工程において、鋼板の表層は雰囲気中の酸素や水蒸気による酸化を受ける。しかし、本発明の熱間プレス用鋼板は表面に高融点かつ耐酸化性を有するNi系被覆層を備えているため、加熱時に被覆層が溶融せず、かつ、表面に厚い酸化物層が形成されることを防止できる。そしてその結果、優れた塗装密着性を得ることができる。
 上記の効果を高めるという観点からは、前記被覆層におけるNi含有量は60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましい。一方、前記被覆層におけるNi含有量の上限はとくに限定されず、100%であってもよい。
Zn:0~30%
 前記被覆層が多量のZnを含有すると、耐酸化性が低下する。加えて、加熱によりZnが溶融し、熱間成形時に液体金属脆化割れが発生する。そのため、前記被覆層におけるZn含有量は30%以下、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下とする。一方、前記被覆層がZnを含有していなくても上記課題を解決することができる。そのため、Zn含有量の下限は0%とする。しかし、前記被覆層がZnを含有すると、塗装前処理工程である化成処理工程において形成される化成処理皮膜がより緻密になり、塗装密着性がさらに向上する。そのため、前記被覆層におけるZn含有量は、好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは2%以上とする。
 前記被覆層は、任意に、Al、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つを、合計で50%以下含有することができる。Al、Ti、V、Cr、Mn、Co、Mo、およびWの少なくとも1つを添加することにより、さらに優れた耐酸化性を得ることができる。これらの元素は、任意に添加し得る元素であるため、合計含有量の下限は0%であってよい。しかし、被覆層の耐酸化性を強化するために、被覆層はこれらの元素を合計で1%以上含有することが好ましい。また、前記被覆層を電気めっきにより形成する場合、母材鋼板からめっき浴中に溶出したFeが被覆層中に取り込まれる場合がある。しかし、これらの元素の含有量が過剰となると、相対的に被覆層におけるNi含有量が低下するため、被覆層の機能が損なわれる。そのため、前記元素の合計含有量は50%以下、好ましくは40%以下、より好ましくは30%以下、さらに好ましくは20%以下とする。なお、被覆層中のFe含有量は20%以下とすることが好ましく、5%以下とすることがより好ましく、1%以下とすることがさらに好ましい。
 本発明の一実施形態における被覆層は、質量%で、
 Zn:0~30%、
 Al、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つ:合計で0~50%含有し、
 残部がNiおよび不可避的不純物からなる成分組成を有する。
 上記実施形態においても、先に述べた各成分の含有量の好適範囲が適用される。例えば、塗装密着性をさらに向上させるという観点から、Zn含有量が0.5%以上であることが好ましく、1%以上であることがより好ましく、2%以上であることがさらに好ましい。
厚さ:0.5~6.0μm
 なお、上記熱間プレス用鋼板を加熱すると、被覆層中のNiと母材鋼板中のFeが相互拡散し、熱間プレス部材の表層にはFe濃度の上昇したNi基合金層が生じる。熱間プレス用鋼板の被覆層の厚さが0.5μm未満であると、1000℃を超えるような高温で加熱した場合、拡散し表層に到達したFeが酸化され、厚く脆いFe含有酸化物層が形成される。厚く脆いFe含有酸化物が存在すると、塗装密着性が低下する。そのため、被覆層の厚さは0.5μm以上とする。また、加熱後に被覆層が厚く残存するほど優れた耐食性を得られることから、被覆層の厚さは、1.0μm以上であることが好ましく、2.0μm以上であることがより好ましい。一方、被覆層の厚さが6.0μmを超えると、加熱後の表面凹凸が大きくなり、かえって塗装密着性が低下する。そのため、被覆層の厚さは6.0μm以下、好ましくは5.0μm以下、より好ましくは4.0μm以下とする。
 なお、本発明の熱間プレス用鋼板は、その両面に被覆層を備えているが、一方の面の被覆層の厚さは、他方の面の被覆層の厚さと同じであってもよく、異なっていてもよく、それぞれの面における被覆層の厚さが上記の条件を満たせばよい。
[[母材鋼板]]
 上記母材鋼板としては、特に限定されることなく任意の鋼板を用いることができる。前記母材鋼板は、熱延鋼板と冷延鋼板のいずれであってもよい。
 熱間プレス後に引張強度で980MPa級を超えるような熱間プレス部材を得るという観点からは、前記母材鋼板としては、質量%で、
 C :0.05~0.50%、
 Si:0.1~1.0%、
 Mn:0.5~3.0%、
 P :0.1%以下、
 S :0.01%以下、
 Al:0.10%以下、および
 N :0.01%以下を含有し、
 残部がFeおよび不可避的不純物からなる成分組成を有する鋼板を用いることが好ましい。前記成分組成が好ましい理由について、以下説明する。
C:0.05~0.50%
 Cを添加することにより、マルテンサイトなどの硬質な組織が形成され、鋼板の強度を高めることができる。980MPa級を超えるような高い強度を得るためには、母材鋼板におけるC含有量を0.05%以上とすることが好ましく、0.10%以上とすることがより好ましい。一方、C含有量が0.50%を超えるとスポット溶接部の靱性が低下する。そのため、C含有量は0.50%以下とすることが好ましく、0.45%以下とすることがより好ましく、0.43%以下とすることがさらに好ましく、0.40%以下とすることが最も好ましい。
Si:0.1~1.0%
 Siは、鋼を強化して良好な材質を得る上で有効な元素である。前記効果を得るためには、Si含有量を0.1%以上とすることが好ましく、0.2%以上とすることがより好ましい。一方、Si含有量が1.0%を超えるとフェライトが安定化されるため、焼き入れ性が低下する。そのため、Si含有量は1.0%以下とすることが好ましく、0.4%以下とすることがより好ましく、0.3%以下とすることがさらに好ましい。
Mn:0.5~3.0%
 Mnは、幅広い冷却速度範囲で鋼板の強度向上に寄与する元素である。前記効果を得るためには、Mn含有量を0.5%以上とすることが好ましく、0.7%以上とすることがより好ましく、1.0%以上とすることがさらに好ましい。一方、Mn含有量が3.0%を超えると、Mnの効果が飽和する。そのため、Mn含有量は3.0%以下とすることが好ましく、2.5%以下とすることがより好ましく、2.0%以下とすることがさらに好ましく、1.5%以下とすることが最も好ましい。
P:0.1%以下
 P含有量が0.1%より高いと、鋳造時にオーステナイト粒界へPが偏析して粒界脆化が生じる。そして、その結果、局部延性が低下して、鋼板の強度と延性のバランスが悪化する。そのため、P含有量は0.1%以下とすることが好ましい。一方、P含有量の下限は特に限定されないが、精錬コストの観点から、P含有量は0.01%以上とすることが好ましい。
S:0.01%以下
 Sは、MnSなどの介在物を形成し、耐衝撃性の劣化、および溶接部のメタルフローに沿った割れの原因となる。そのため、S含有量を極力低減することが望ましく、0.01%以下とすることが好ましい。また、良好な伸びフランジ性を確保するという観点からは、0.005%以下とすることがより好ましく、0.001%以下とすることがさらに好ましい。一方、S含有量の下限については特に限定されないが、精錬コストの観点から、S含有量は0.0002%以上とすることが好ましい。
Al:0.10%以下
 Al含有量が0.10%より高いと、鋼板のブランキング加工性および焼入れ性が低下する。そのため、Al含有量は0.10%以下とすることが好ましく、0.07%以下とすることがより好ましく、0.04%と以下とすることがさらに好ましい。一方、Al含有量の下限は特に限定されないが、脱酸剤としての効果を確保する観点からは、Al含有量を0.01%以上とすることが好ましい。
N:0.01%以下
 N含有量が0.01%より高いと、熱間圧延時や熱間プレス前の加熱時にAlNが形成され、鋼板のブランキング加工性および焼入れ性が低下する。そのため、N含有量は0.01%以下とすることが好ましい。一方、N含有量の下限は特に限定されないが、精錬コストの観点から、N含有量を0.001%以上とすることが好ましい。
 上記母材鋼板の成分組成は、特性の更なる改善のため、Nb:0.10%以下、Ti:0.10%以下、B:0.0002~0.010%、Cr:0.1~1.0%、Sb:0.003~0.10%からなる群より選択される少なくとも1つを、さらに任意に含有することができる。
Nb:0.10%以下
 Nbは鋼の強化に有効な元素であるが、過剰に含まれると圧延荷重が増大する。したがって、Nbを含有させる場合、Nb含有量を0.10%以下、好ましくは0.06%以下、より好ましくは0.03%以下とする。一方、Nb含有量の下限は特に限定されず、0%であってよいが、精錬コストの観点からは、0.005%以上とすることが好ましい。
Ti:0.10%以下
 TiもNbと同様に鋼の強化には有効な元素である。しかし、Tiが過剰に含まれると形状凍結性が低下する。そのため、Tiを含有させる場合、Ti含有量を0.10%以下、好ましくは0.06%以下とする。一方、Ti含有量の下限は特に限定されず、0%であってよいが、精錬コストの観点からは、0.003%以上とすることが好ましい。
B:0.0002~0.010%
 Bは、オーステナイト粒界からのフェライト生成および成長を抑制する作用を有する元素である。Bを含有させる場合、前記効果を得るために、B含有量を0.0002%以上とすることが好ましく、0.0010%以上とすることがより好ましい。一方、過剰なBの含有は成形性を大きく損なう。そのため、Bを含有させる場合、B量は0.010%以下、好ましくは0.005%以下とする。
Cr:0.1~1.0%
 Crは、焼き入れ性を向上させ、鋼板の強度向上に寄与する元素である。Crを添加する場合、前記効果を得るためにCr含有量を0.1%以上、好ましくは0.2%以上とする。一方、Crは高価であるため1.0%を超える添加は大幅なコストアップを招く。そのため、Crを含有させる場合、Cr含有量を1.0%以下、好ましくは0.5%以下、より好ましくは0.3%以下とする。
Sb:0.003~0.10%
 Sbは、母材鋼板を製造する際の焼鈍工程で、表層の脱炭を抑止する効果を有する元素である。Sbを含有させる場合、前記効果を得るためにSb含有量を0.003%以上、好ましくは0.005%以上とする。一方、Sb含有量が0.10%より高いと圧延荷重が増加し、生産性が低下する。そのため、Sbを含有させる場合、Sb含有量を0.10%以下、好ましくは0.05%以下、より好ましくは0.03%以下とする。
[熱間プレス用鋼板の製造方法]
 本発明の熱間プレス用鋼板は、とくに限定されることなく任意の方法で製造することができるが、以下に好適な製造条件について説明する。
 まず、母材鋼板を製造する。母材鋼板は、典型的には鋳造により得られた鋼スラブを圧延することにより製造することができる。前記鋼スラブとしては、上述した成分組成を有する鋼スラブを用いることが好ましい。
 圧延においては、鋳造により得られた熱片スラブ(hot slab)を直接(再加熱することなく)熱間圧延に供してもよく、また、鋳造後、温度が低下した冷片スラブ(cold slab)を再加熱して熱間圧延に供してもよい。熱片スラブを直接圧延した場合と、冷片スラブを再加熱した後に圧延した場合とで、得られる鋼板の特性の違いはほとんどない。熱間圧延前に冷片スラブを再加熱する場合、再加熱温度は特に限定されないが、生産性を考慮して1000℃から1300℃の範囲とすることが好ましい。
 前記熱間圧延は、通常の熱延工程、あるいは仕上圧延においてスラブを接合し圧延する連続化熱延工程(continuous hot rolling process)のどちらでも可能である。熱間圧延における圧延終了温度はとくに限定されないが、生産性や板厚精度の観点からはAr3変態点以上とすることが好ましい。
 上記熱間圧延により得られた熱延鋼板は、次に、常法に従って冷却される。その際の巻取温度は、生産性の観点からは550℃以上とすることが好ましい。また、巻取温度が高すぎる場合には酸洗性が劣化するため、巻取温度は750℃以下とすることが好ましい。前記冷却の後は、常法に従って酸洗を行うことが好ましい。
 母材鋼板として冷延鋼板を使用する場合には、上記酸洗の後、さらに常法に従って冷間圧延を行えばよい。
 次いで、得られた鋼板の表面に被覆層を形成する。被覆層の形成方法はとくに限定されることなく、めっき、PVD、クラッド圧延など、任意の方法により形成することができる。前記めっきとしては、例えば、電気めっきが挙げられる。前記PVDとしては、例えば、真空蒸着、スパッタリングやイオンプレーティングが挙げられる。また、クラッド圧延を用いる場合、母材鋼板の両面に、所望の組成を有する層を積層し、圧延すればよい。
 被覆層の形成方法は、形成する被覆層の組成に合わせて選択することが好ましい。例えば、被覆層がNi層、Ni-Cr合金層、またはNi-Zn合金層である場合、電気めっきにより成膜することが好ましいが、その他の方法でも問題なく成膜することができる。被覆層がNi-Ti合金のように、水溶液からの電析が困難な組成である場合には、PVDにより成膜することが好ましい。
 なお、いずれの方法により被覆層を形成する場合でも、鋼板の一方の面(表面)と、鋼板のもう一方の面(裏面)の被覆層が所望の厚さとなるように条件を調整すればよい。例えば、電気めっき法の場合、それぞれの面における電流密度と通電時間のいずれかまたは両方を変化させることで、各面における被覆層の厚さを調整することができる。
[熱間プレス部材]
 本発明の一実施形態における熱間プレス部材は、母材鋼板と、前記母材鋼板の両面に設けられた厚さ0.5~6.0μmの被覆層とを有する熱間プレス部材である。前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~30%である。
 上記母材鋼板および被覆層については、上述した熱間プレス用鋼板における母材鋼板および被覆層の説明が適用される。すなわち、熱間プレス部材の母材鋼板としては、上述した熱間プレス用鋼板の母材鋼板と同様の鋼板を用いることができる。また、熱間プレス部材の被覆層としては、上述した熱間プレス用鋼板の被覆層と同様の被覆層を用いることができる。例えば、前記熱間プレス部材の被覆層におけるZn含有量も、0.5%以上であることが好ましく、1%以上であることがより好ましく、2%以上であることがさらに好ましい。また、前記被覆層は、Al、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つを、合計で50質量%以下含有することもできる。
[酸化物層]
 本発明の他の実施形態における熱間プレス部材は、さらに、前記被覆層の上に、MnおよびFeの一方または両方を含有し、厚さが0.1~5μmである酸化物層を有する。すなわち、本実施形態の熱間プレス部材は、母材鋼板と、前記母材鋼板の両面に設けられた厚さ0.5~6.0μmの被覆層と、前記被覆層の上に設けられた厚さ0.1~5μmの酸化物層とを有する。
 上記酸化物層は、熱間プレス工程で被覆層または母材鋼板に含まれる成分が雰囲気中の酸素または水蒸気と反応することで形成される。前記酸化物層の組成と厚さは、加熱温度、加熱時間、雰囲気などの加熱条件により変化する。前記酸化物層の厚さが5μmを超えると塗膜密着性が低下し、その結果、十分な塗装後耐食性を得ることができなくなる。そのため、酸化物層が存在する場合、該酸化物層の厚さは5μm以下、好ましくは3μm以下、より好ましくは1μm以下とする。一方、塗膜密着性の観点からは、前記酸化物層の厚さは薄い方がよいが、酸化物層の厚さを0.1μm未満とするためには、酸素分圧を極端に下げた雰囲気の下で熱間プレスを行うか、熱間プレス後に酸化物を除去する工程を設ける必要があり、製造コストが増加する。そのため、酸化物層の厚さは0.1μm以上とすることが好ましい。
 上記酸化物層は、MnおよびFeの一方または両方を含有する。酸化物層がこれらの元素を含有することで、化成処理工程において化成処理液にこれらの成分が溶出する。そしてその結果、化成処理皮膜の形成が促進され、さらに優れた塗装密着性を得ることができる。前記効果を得るために、前記酸化物層に含まれる全金属に対するMnおよびFeの合計割合を、1~50原子%とする。
 酸化物層の厚さは、熱間プレス部材の断面を走査電子顕微鏡(SEM)で観察することにより測定することができる。より具体的には、実施例に記載した方法で測定することができる。
 なお、酸化物層に含まれる全金属に対するMnおよびFeの割合は、熱間プレス部材の断面をEPMA(電子線プローブマイクロアナライザ)により測定できる。より具体的には実施例に記載した方法で測定することができる。
[熱間プレス部材の製造方法]
 本発明の一実施形態においては、熱間プレス用鋼板を熱間プレスして熱間プレス部材を製造する。熱間プレスを行う方法はとくに限定されず、常法に従って行うことができる。典型的には、熱間プレス用鋼板を所定の加熱温度まで加熱し(加熱工程)、次いで、前記加熱工程で加熱された前記熱間プレス用鋼板を熱間プレスする(熱間プレス工程)。以下、好ましい熱間プレス条件について説明する。
 前記加熱工程における加熱温度が母材鋼板のAc3変態点より低いと、最終的な熱間プレス部材の強度が低くなる。そのため、前記加熱温度は母材鋼板のAc3変態点以上とすることが好ましく、860℃以上とすることがより好ましい。一方、前記加熱温度が1000℃を超えると、母材や被覆層が酸化して生じる酸化物層が過度に厚くなることにより、得られる熱間プレス部材の塗料密着性が劣化するおそれがある。そのため、前記加熱温度は1000℃以下とすることが好ましく、960℃以下とすることがより好ましく、920℃以下とすることがさらに好ましい。なお、母材鋼板のAc3変態点は鋼成分により異なるが、フォーマスタ試験により求められる。
 前記加熱を開始する温度はとくに限定されないが、一般的には室温である。
 加熱を開始してから前記加熱温度に到達するまでの昇温に要する時間(昇温時間)はとくに限定されることなく、任意の時間とすることができる。しかし、前記昇温時間が300秒を超えると、高温にさらされる時間が長くなるため、母材やめっき層が酸化して生じる酸化物層が過度に厚くなる。そのため、酸化物による塗料密着性の低下を抑制するという観点からは、前記昇温時間を100秒以下とすることが好ましく、80秒以下とすることがより好ましく、60秒以下とすることがさらに好ましい。一方、前記昇温時間が3秒未満であると、安定して昇温することが困難である。そのため、前記昇温時間は3秒以上とすることが好ましく、4秒以上とすることがより好ましく、5秒以上とすることがさらに好ましい。
 前記加熱温度に到達した後は、当該加熱温度に保持してもよい。前記保持を行う場合、保持時間はとくに限定されず、任意の長さの保持を行うことができる。しかし、保持時間が100秒を超えると、母材や被覆層が酸化して生じる酸化物層が過度に厚くなることにより、得られる熱間プレス部材の塗料密着性が劣化するおそれがある。そのため、保持時間は100秒以下とすることが好ましく、60秒以下とすることがより好ましく、20秒以下とすることがさらに好ましい。一方、保持時間の下限についても限定されないが、母材鋼板を均質にオーステナイト化させるという観点からは、1秒以上とすることが好ましい。
 前記加熱工程における雰囲気は特に限定されず、例えば、大気雰囲気下または大気が流入する雰囲気のもとで加熱を行うことができる。熱間プレス後の部材に残留する拡散性水素量を低減するという観点からは、前記雰囲気の露点を10℃以下とすることが好ましい。前記露点の下限についてもとくに限定されないが、例えば、-40℃以上であってよい。
 熱間プレス用鋼板を加熱する方法はとくに限定されず、任意の方法で加熱することができる。前記加熱は、例えば、炉加熱による加熱、通電加熱、誘導加熱、高周波加熱、火炎加熱などにより行うことができる。中でも、短時間で昇温可能でエネルギー効率に優れた通電加熱、誘導加熱、または高周波加熱を用いることが好ましい。前記加熱炉としては、電気炉やガス炉など、任意の加熱炉を用いることができる。
 次いで、加熱された熱間プレス用鋼板を熱間プレス加工して熱間プレス部材とする。前記熱間プレス加工においては、加工と同時または加工直後に金型や水などの冷媒を用いて鋼板を冷却する。本発明においては、熱間プレス条件は特に限定されない。例えば、一般的な熱間プレス温度範囲である600~800℃でプレスを開始する事が出来る。また、本発明の熱間プレス用鋼板は液体金属脆性のリスクを有さないことから、一般的な熱間プレスよりも高温で成形を実施することも可能である。そのため、熱間プレス開始温度は、600~1000℃とすることが好ましい。
 以下、本発明を実施例に基づいて具体的に説明する。
・熱間プレス用鋼板の作製
 母材鋼板として、質量%で、C:0.34%、Si:0.25%、Mn:1.20%、P:0.005%、S:0.001%、Al:0.03%、N:0.004%、Ti:0.02%、B:0.002%、Cr:0.18%、Sb:0.008%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、板厚1.4mmの冷延鋼板を用いた。前記母材鋼板のAc3変態点は783℃、Ar3変態点は706℃であった。
 上記母材鋼板の両面に、表1、2に示す方法で被覆層を形成した。使用した方法のそれぞれについて、以下に説明する。なお、比較のため、比較例No.1においては、被覆層の形成を行わなかった。
(電気めっき)
 電気めっき法による被覆層の形成は、以下の条件で実施した。なお、いずれの場合においても、母材鋼板をカソード、酸化イリジウム被覆チタン板をアノードとして電解を行い、通電時間を変化させることにより被覆層の厚さを調整した。
(1)Niめっき
・めっき液組成:
 硫酸ニッケル六水和物240g/L
 ホウ酸30g/L
・pH:3.0
・温度:50℃
・電流密度:40A/dm
(2)Ni-Fe合金めっき
・めっき液組成:
 硫酸ニッケル六水和物192g/L
 硫酸鉄七水和物48g/L、
 ホウ酸30g/L
・pH:3.0
・温度:50℃
・電流密度:40A/dm
(3)Ni-Co合金めっき
・めっき液組成:
 硫酸ニッケル六水和物180g/L
 硫酸コバルト七水和物60g/L
 ホウ酸30g/L
・pH:3.0、
・温度:50℃
・電流密度:40A/dm
(4)Ni-Mo合金めっき
・めっき液組成:
 硫酸ニッケル六水和物13g/L
 モリブデン酸ナトリウム二水和物19g/L
 クエン酸88g/L
・pH:3.5
・温度:25℃
・電流密度:10A/dm
(5)Ni-W合金めっき
・めっき液組成:
 硫酸ニッケル六水和物13g/L
 タングステン酸ナトリウム二水和物30g/L
 クエン酸88g/L
・pH:3.5
・温度:25℃
・電流密度:10A/dm
(6)Ni-Zn合金めっき
・めっき液組成:
 硫酸ニッケル六水和物240g/L
 硫酸亜鉛七水和物
・pH:2.0
・温度:50℃
・電流密度:40A/dm
上記Ni-Zn合金めっきにおいては、被覆層のZn含有量が表1、2に示した値となるように、めっき液中の硫酸亜鉛七水和物の濃度を調整した。
(7)Ni-Fe-Zn合金めっき
 上記(2)Ni-Fe合金めっきのめっき液に、さらに硫酸亜鉛七水和物を添加しためっき液を使用した。めっき液中の硫酸亜鉛七水和物の濃度は、被覆層のZn含有量が表1、2に示した値となるように調整した。その他の条件は、上記(2)Ni-Fe合金めっきと同様とした。
(8)Ni-Co-Zn合金めっき
 上記(3)Ni-Co合金めっきのめっき液に、さらに硫酸亜鉛七水和物を添加しためっき液を使用した。めっき液中の硫酸亜鉛七水和物の濃度は、被覆層のZn含有量が表1、2に示した値となるように調整した。その他の条件は、上記(3)Ni-Co合金めっきと同様とした。
(9)Ni-Mo-Zn合金めっき
 上記(4)Ni-Mo合金めっきのめっき液に、さらに硫酸亜鉛七水和物を添加しためっき液を使用した。めっき液中の硫酸亜鉛七水和物の濃度は、被覆層のZn含有量が表1、2に示した値となるように調整した。その他の条件は、上記(4)Ni-Mo合金めっきと同様とした。
(10)Ni-W-Zn合金めっき
 上記(5)Ni-W合金めっきのめっき液に、さらに硫酸亜鉛七水和物を添加しためっき液を使用した。めっき液中の硫酸亜鉛七水和物の濃度は、被覆層のZn含有量が表1、2に示した値となるように調整した。その他の条件は、上記(5)Ni-W合金めっきと同様とした。
(11)Znめっき
・めっき液組成:
 硫酸亜鉛七水和物240g/L
・pH:2.0
・温度:50℃
・電流密度:40A/dm
(PVD)
 PVDによる被覆層の形成は、昭和真空株式会社製のバッチ式高周波(RF)励起式イオンプレーティング装置を用い、イオンプレーティングにより実施した。母材鋼板の温度は400℃とし、圧力は3Pa、バイアス電圧は-20Vとした。被覆層の組成は、蒸着源として用いる金属の組成を調整することにより制御した。また、被覆層の厚さは、蒸着時間を調整することにより制御した。
(クラッド圧延)
 上記母材鋼板と同一の組成を有する、厚さ30mmの鋼スラブの両面に、厚さ300μmのNi-16%Cr-8%Fe合金(Alloy 600)を積層し、圧延することにより発明例No.14の熱間プレス用鋼板を作製した。
 さらに、積層する合金として、Ni-16%Cr-8%Fe-0.5%Zn合金を使用した点を除いて上記発明例No.14と同じ方法で、発明例No.30の熱間プレス用鋼板を作製した。同様に、積層する合金として、Ni-16%Cr-8%Fe-2%Zn合金を使用して、発明例No.46の熱間プレス用鋼板を作製した。
(溶融めっき)
 溶融めっき法による被覆層の形成は、母材鋼板を溶融めっき浴に1秒間浸漬し、その後Nガスワイピングを行うことにより実施した。被覆層の組成は、使用する溶融めっき浴の組成を調整することにより制御した。
 得られた熱間プレス用鋼板の被覆層の成分組成および厚さを、それぞれ以下の方法で測定した。測定結果を表1、2に示す。
(被覆層の成分組成)
 評価対象とする熱間プレス用鋼板を剪断加工して、10mm×15mmの試料を採取し、導電性樹脂に埋め込みことで、熱間プレス用鋼板の断面試料を作製した。EPMAにより、最表層から母材との界面にかけての被覆層の平均組成を測定した。任意の3試料での測定値を平均することで、被覆層の成分組成とした。
(被覆層の厚さ)
 熱間プレス用鋼板の被覆層の厚さは、前記断面試料を用いてSEM観察によって測定した。100μm以上の幅の視野内で、任意の10か所で被覆層の厚さを測定した。任意の3試料での全測定値を平均することで、被覆層の厚さとした。
・熱間プレス部材の作製
 次に、上記熱間プレス用鋼板を熱間プレスに供した。具体的には、前記熱間プレス用鋼板から200mm×1000mmの試験片を採取し、前記試験片を直接通電抵抗加熱装置により加熱した。前記加熱は、加熱温度:950℃、昇温時間20秒、保持時間:5秒の条件で実施した。
 次いで、前記加熱炉に隣接して設置されたプレス装置により、2spm(Strokes Per Minute)にて、ハット形状の熱間プレスを行った。成形開始温度は800℃とした。なお、得られた熱間プレス部材の形状は、上面の平坦部幅70mm、側面の平坦部長さ30mm、下面の平坦部長さ25mmとした。また、金型の曲げRは上面の両肩、下面の両肩いずれも7Rであった。
(被覆層の成分組成および厚さ)
 得られた熱間プレス部材の被覆層の成分組成および厚さを、それぞれ上述した熱間プレス用鋼板における被覆層の成分組成および厚さと同様の方法で測定した。前記測定に用いる断面試料は次の手順で作製した。まず、前記熱間プレス部材の頭頂の平坦部を切り出し、剪断加工して、10mm×15mmの試料を採取した。次いで、前記試料を導電性樹脂に埋め込むことで断面試料とした。測定結果を表3、4に示す。
 さらに、前記熱間プレス部材における酸化物層の組成および厚さを、それぞれ以下の方法で測定した。測定結果を表3、4に示す。
(酸化物層の組成)
 熱間プレス部材における酸化物層の成分組成をEPMAにより測定した。前記測定においては、上記断面試料を用い、100μm以上の幅の視野内で、任意の10点で点分析を行った。前記測定結果から、酸化物層に含まれる全金属元素に対する各金属元素の含有量(原子%)を求めた。
(酸化物層の厚さ)
 熱間プレス部材における酸化物層の厚さは、前記断面試料を用いてSEM観察によって測定した。100μm以上の幅の視野内で、任意の10か所で被覆層の厚さを測定し、全測定値を平均することで、酸化物層の厚さとした。
<高速加熱への適合性>
 熱間プレス用鋼板の高速加熱への適合性を評価するために、得られた熱間プレス部材における被覆層の厚さのバラツキを測定した。具体的には、まず、ハット形状の熱間プレス部材の幅方向(短辺方向)における断面を切り出し、樹脂に埋め込んだ。次いで、前記断面をSEMにより観察し、頭頂部のめっき厚さtおよび左右のフランジ部のめっき厚さt、tを得た。各実施例につき3つのサンプルで観察を行い、それぞれのサンプルについて下記(1)式で定義されるIの値を算出した。
I=|tC-(tR+tL)/2|/tC …(1)
 3サンプル中で最大のIの値をImaxとし、その実施例の熱間プレス部材における被覆層の厚さのバラツキの指標とした。得られたImaxを用いて以下の基準で判定を行い、AおよびBの場合を合格とした。評価結果を表3、4に示す。
A:Imax≦0.2
B:0.2<Imax≦0.5
C:Imax>0.5
<成形時LME割れ>
 熱間プレス成形時における液体金属脆化割れを評価するために、得られた熱間プレス部材におけるクラックを測定した。具体的には、まず、ハット形状の熱間プレス部材の上面の肩部を切り出し、樹脂に埋め込んだのち、3%ナイタールによりエッチングした。次いで、断面を観察し、肩部の表面から板厚内部に進展しているクラックの深さを測定した。各実施例につき、3つのサンプルで観察を行い、最も長いクラックの長さに基づいて以下の基準で判定を行い、A、B、およびCの場合を合格とした。評価結果を表3、4に示す。
A:最大クラック長さ=0mm
B:0mm<最大クラック長さ≦0.01mm
C:0.01mm<最大クラック長さ≦0.1mm
D:最大クラック長さ>0.1mm
<塗装密着性>
 得られた熱間プレス部材の電着塗装密着性を以下の手順で評価した。まず、熱間プレス部材の上面の平坦部から切り出した試験片に、リン酸亜鉛系化成処理および電着塗装を施して試料を作成した。次いで、JIS  K 5600-5-6(1999)に規定されたクロスカット法による付着性評価により、1mm幅碁盤目試験25マスの剥離試験を行って電着塗装密着性を評価した。レーティングで判定を行い、AおよびBの場合を合格とした。評価結果を表3、4に示す。
A:レーティング 5
B:レーティング 4
C:レーティング 3
D:レーティング 2以下
 表1~4に示した結果から分かるように、本発明の条件を満たす熱間プレス用鋼板は、高速で加熱を行った場合でも被覆層の厚さのバラツキが抑制されており、したがって高速加熱への高い適合性を有している。また、本発明の条件を満たす熱間プレス用鋼板は、熱間プレス成形時の液体金属脆化割れが防止されていた。さらに、本発明の熱間プレス用鋼板を熱間プレスして得られる熱間プレス部材は、塗装密着性にも優れていた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (8)

  1.  母材鋼板と、
     前記母材鋼板の両面に設けられた厚さ0.5~6.0μmの被覆層とを含む、熱間プレス用鋼板であって、
     前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~30質量%である、熱間プレス用鋼板。
  2.  前記被覆層におけるZn含有量が0.5~30質量%である、請求項1に記載の熱間プレス用鋼板。
  3.  前記被覆層が、Al、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つを、合計で50質量%以下含有する、請求項1または2に記載の熱間プレス用鋼板。
  4.  母材鋼板と、
     前記母材鋼板の両面に設けられた厚さ0.5~6.0μmの被覆層とを有する熱間プレス部材であって、
     前記被覆層は、NiまたはNi基合金からなり、前記被覆層におけるZn含有量が0~30質量%である、熱間プレス部材。
  5.  前記被覆層におけるZn含有量が0.5~30質量%である、請求項4に記載の熱間プレス部材。
  6.  前記被覆層が、Al、Ti、V、Cr、Mn、Fe、Co、Mo、およびWからなる群より選択される少なくとも1つを、合計で50質量%以下含有する、請求項4または5に記載の熱間プレス部材。
  7.  さらに、前記被覆層の上に、MnおよびFeの一方または両方を含有し、厚さが0.1~5μmである酸化物層を有し、
     前記酸化物層に含まれる全金属元素に対するMnおよびFeの合計割合が、1~50原子%である、請求項4~6のいずれか一項に記載の熱間プレス部材。
  8.  請求項1~3のいずれか一項に記載の熱間プレス用鋼板を熱間プレスして熱間プレス部材とする、熱間プレス部材の製造方法。
PCT/JP2023/023229 2022-09-05 2023-06-22 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法 WO2024053207A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022141044 2022-09-05
JP2022-141044 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024053207A1 true WO2024053207A1 (ja) 2024-03-14

Family

ID=90192317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023229 WO2024053207A1 (ja) 2022-09-05 2023-06-22 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法

Country Status (1)

Country Link
WO (1) WO2024053207A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122207A (ja) * 2009-12-11 2011-06-23 Jfe Steel Corp 熱間プレス部材およびその製造方法
JP2012197505A (ja) * 2011-03-10 2012-10-18 Jfe Steel Corp 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP2019518136A (ja) * 2016-04-29 2019-06-27 アルセロールミタル プレス焼入れ方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122207A (ja) * 2009-12-11 2011-06-23 Jfe Steel Corp 熱間プレス部材およびその製造方法
JP2012197505A (ja) * 2011-03-10 2012-10-18 Jfe Steel Corp 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP2019518136A (ja) * 2016-04-29 2019-06-27 アルセロールミタル プレス焼入れ方法

Similar Documents

Publication Publication Date Title
JP6501046B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
CA2684031C (en) High tensile-strength galvanized steel sheet and process for manufactutring high tensile-strength galvanized steel sheet
EP1207213B1 (en) High tensile cold-rolled steel sheet excellent in ductility and in strain aging hardening properties, and method for producing the same
CN102482753B (zh) 高强度热浸镀锌钢板及其制造方法
CN112805395B (zh) 热轧钢板及其制造方法
WO2010150919A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6540908B2 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6673534B2 (ja) 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
KR20190133754A (ko) 핫 스탬프 성형체
US20220275471A1 (en) High-strength thin steel sheet and method for manufacturing same
JP6897757B2 (ja) 表面処理鋼板
CN116694886A (zh) 薄钢板的制造方法和镀覆钢板的制造方法
CN116234933A (zh) 热压构件及其制造方法
JP7063430B1 (ja) 熱間プレス部材、塗装部材、熱間プレス用鋼板、および熱間プレス部材の製造方法ならびに塗装部材の製造方法
WO2022097737A1 (ja) 合金化亜鉛めっき鋼板,電着塗装鋼板,自動車部品,電着塗装鋼板の製造方法,及び合金化亜鉛めっき鋼板の製造方法
JP7255634B2 (ja) 熱間プレス部材およびその製造方法
WO2022158062A1 (ja) 熱間プレス部材、塗装部材、熱間プレス用鋼板、および熱間プレス部材の製造方法ならびに塗装部材の製造方法
WO2021230306A1 (ja) ホットスタンプ部材
WO2024053207A1 (ja) 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法
JP2004270006A (ja) 形状凍結性に優れた部品の製造方法
JP7338606B2 (ja) 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法
WO2023153099A1 (ja) 熱間プレス用鋼板、熱間プレス部材、および熱間プレス部材の製造方法
JP7173368B2 (ja) 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法
JP7243949B1 (ja) 熱間プレス部材
JP7243948B1 (ja) 熱間プレス部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862752

Country of ref document: EP

Kind code of ref document: A1