WO2024053159A1 - ゲル形成用材料及びゲル組成物 - Google Patents

ゲル形成用材料及びゲル組成物 Download PDF

Info

Publication number
WO2024053159A1
WO2024053159A1 PCT/JP2023/017055 JP2023017055W WO2024053159A1 WO 2024053159 A1 WO2024053159 A1 WO 2024053159A1 JP 2023017055 W JP2023017055 W JP 2023017055W WO 2024053159 A1 WO2024053159 A1 WO 2024053159A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
gel
hyaluronic acid
less
Prior art date
Application number
PCT/JP2023/017055
Other languages
English (en)
French (fr)
Inventor
俊一 藤川
Original Assignee
キユーピー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キユーピー株式会社 filed Critical キユーピー株式会社
Publication of WO2024053159A1 publication Critical patent/WO2024053159A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin

Definitions

  • the present invention relates to gel-forming materials and gel compositions.
  • a material that gels in situ can be used as a medical material that can be administered by injection into the body, making minimally invasive treatment possible. It is attracting attention in the field. In addition to materials that gel in situ gelling relatively quickly in response to changes in temperature, pH, and chemistry, biocompatibility and safety are also important issues.
  • hyaluronic acid has excellent biocompatibility and safety for the human body.
  • As a composition for obtaining a hydrogel using hyaluronic acid for example, US Pat.
  • a composition comprising a polymer is disclosed, wherein the concentration C T of the hydrogel-forming polymer in the composition is at most about 5 mg/ml.
  • the hydrogel obtained using the composition disclosed in Patent Document 1 requires 10 hours or more to gel, and is not suitable as a gel-forming material that gels in situ.
  • the present invention provides a gel-forming material and a gel composition that can be gelled in a short time using hyaluronic acid.
  • Such gel-forming materials and gel compositions are suitable for medical materials that need to be administered into a living body by injection and gelled in situ.
  • One aspect of the present invention is to provide a gel-forming material that can form a gel in a short time and a gel composition obtained using the gel-forming material.
  • One aspect of the present invention is to provide novel in situ gel-forming materials.
  • the present inventors have prepared at least one component A selected from the group consisting of modified hyaluronic acid having a thiol group and its salt, and at least one component A selected from the group consisting of modified hyaluronic acid having a maleimide group and its salt.
  • a gel-forming material comprising seed component B can solve the above problems, and further, a gel composition containing hyaluronic acid can be obtained in a short time within several tens of minutes (for example, within 30 minutes). They discovered this and completed the present invention.
  • the present invention relates to the following inventions, for example.
  • a gel-forming material comprising: [2] The gel-forming material according to [1], wherein the thiol group modification rate of the component A is 5% or more and 50% or less. [3] The gel-forming material according to [1] or [2], wherein the component A has an average molecular weight of 10,000 or more and 600,000 or less.
  • a gel composition comprising: the thiol group and the maleimide group bonded to each other.
  • a gel-forming material that can form a gel in a short time and a gel composition obtained using the gel-forming material.
  • a novel in situ gel-forming material can also be provided.
  • the present invention comprises at least one component A selected from the group consisting of modified hyaluronic acid having a thiol group and its salt, and at least one component A selected from the group consisting of modified hyaluronic acid having a maleimide group and its salt.
  • the present invention is characterized in that it provides a gel-forming material comprising component B.
  • the gel-forming material of the present invention can be gelled in a short time of one hour or less, and can be suitably used for medical materials that need to be gelled in situ.
  • the present invention comprises at least one component A selected from the group consisting of modified hyaluronic acid having a thiol group and its salt, and at least one component A selected from the group consisting of modified hyaluronic acid having a maleimide group and its salt.
  • the present invention is characterized in that it provides a gel composition containing component B, in which a thiol group and a maleimide group are bonded.
  • gel-forming material refers to a material containing one or more components that can form a gel composition by reacting with other components. A gel composition that forms within one hour from the time of initiation.
  • the gel-forming material of the present invention includes at least one component A selected from the group consisting of modified hyaluronic acid having a thiol group and its salt, which will be described later, and modified hyaluronic acid having a maleimide group and its salt. It contains at least one component B.
  • the gel-forming material of the present invention can form a gel in a short period of time, such as within one hour, and is therefore suitably used as an in-situ gel-forming material.
  • An "in situ gel-forming material” is a gel-forming material that is capable of forming a gel at a desired location.
  • the gel-forming material of the present invention can be sterilized in a state before gel formation (for example, in a solution state). Therefore, sterilization after gelation is not necessarily required, and it is possible to form a gel by administering a sterilized gel-forming material to a desired location in a living body.
  • Component A is a compound or a salt thereof in which a thiol group (-SH) is introduced into at least a portion of hyaluronic acid.
  • the gel-forming material may contain one or more types of component A.
  • Component A is a compound or a salt thereof in which at least a part of the functional groups contained in some disaccharide units among the repeating disaccharide units constituting hyaluronic acid are substituted with a functional group containing a thiol group. It's good.
  • Component A consists of the hydroxyl group at the C4 position and the hydroxyl group at the C6 position of N-acetylglucosamine that constitutes hyaluronic acid, and the hydroxyl group at the C2 position, the hydroxyl group at the C3 position, and the hydroxyl group at the C6 position of glucuronic acid that constitutes hyaluronic acid.
  • Component A may be, for example, a compound represented by the following formula (1) or a salt thereof.
  • R 1 represents a functional group containing -OH or a thiol group
  • R 2 to R 5 independently represent a hydrogen atom or a functional group containing a thiol group.
  • n represents a number from 1 to 7,500.
  • R 1 to R 5 is a functional group containing a thiol group.
  • 1 to 4, 1 to 3, or 1 to 2 of R 1 to R 5 may be a functional group containing a thiol group, and any one of R 1 to R 5 may be a functional group containing a thiol group. It may be a functional group containing
  • R 1 may be a functional group containing a thiol group, and R 2 to R 5 may all be hydrogen atoms.
  • Component A may be, for example, a compound represented by the following formula (1a) or a salt thereof.
  • R 1 and n have the same meanings as R 1 and n in formula (1), respectively.
  • the functional group containing a thiol group may be a group represented by formula (I): -X 1 -Z 1 -SH.
  • Z 1 represents a divalent group, and is a group that connects X 1 and SH.
  • Z 1 may be, for example, a divalent hydrocarbon group.
  • the divalent hydrocarbon group may be linear or branched.
  • the number of carbon atoms in the divalent hydrocarbon group may be, for example, 1 or more, 2 or more, 10 or less, 8 or less, 6 or less, 4 or less, or 3 or less.
  • the divalent hydrocarbon group may be, for example, an alkylene group.
  • Z 1 may be an alkylene group having 2 or more carbon atoms. When Z 1 is an alkylene group having 2 or more carbon atoms, the resulting gel composition has better elasticity. When Z 1 is an alkylene group having 3 or less carbon atoms, the solubility in water or PBS is better.
  • X 1 may be -NH- or -O-.
  • the functional group containing a thiol group may be -NH-CH 2 -CH 2 -SH or -O-CH 2 -CH 2 -SH.
  • the salt of modified hyaluronic acid having a thiol group may be a pharmaceutically acceptable salt.
  • the salts of modified hyaluronic acid having a thiol group include sodium salts, potassium salts, ammonium salts, and the like.
  • the average molecular weight of component A is 1,500,000 or less, 1,400,000 or less, 1,300,000 or less, 1,200,000 or less, 1, It may be 100,000 or less, or 1,000,000 or less.
  • the solubility in solvents such as water and PBS becomes even more excellent.
  • the average molecular weight of component A is 800,000 or less, 700,000 or less, 600,000 or less, 500,000 or less, 400,000 or less, 300,000 or less, or 200,000 or less.
  • the average molecular weight of component A is 10,000 or more, 20,000 or more, 30,000 or more, 40,000 or more, 50,000 or more, 60,000 or more, 70 ,000 or more, or 80,000 or more.
  • the average molecular weight of component A is preferably 100,000 or more from the viewpoint of obtaining an elastic gel composition.
  • the average molecular weight of component A is 10,000 or more and 1,500,000 or less, 80,000 or more and 1,000,000 or less, or 100,000 or more and 1,500,000 or less, or 100,000 or more and 1,500,000 or less, or 100,000 or more and 1,500,000 or less, or 100,000 or more and 1,500,000 or less, or ,000 or more and 800,000 or less.
  • the average molecular weight of component A is preferably 10,000 or more and 600,000 or less, and 100,000 or more and 300,000 or less, from the viewpoint of further improving the solubility in solvents such as water and PBS. It is more preferable.
  • the average molecular weight can be measured by the following method. First, a calibration curve is created from the retention times of a plurality of (purified) hyaluronic acids (reference substances) whose molecular weights are known by liquid chromatography analysis using a gel filtration column. Similarly, the molecular weight of the modified hyaluronic acid to be measured can be determined by liquid chromatography analysis of the modified hyaluronic acid and the molecular weight determined using the prepared calibration curve.
  • a 2690 separation module manufactured by Nippon Waters is used as a liquid chromatography analyzer.
  • a 996 photodiode array manufactured by Nippon Waters Co., Ltd. is used as a photodiode array.
  • As columns, one TSK guard column PWXL (manufactured by Tosoh Corporation) and two TSK gel GMPW (manufactured by Tosoh Corporation) are connected in series in the order shown.
  • the column temperature was 40°C
  • the measurement wavelength was 210 nm
  • the flow rate was 0.8 mL/min
  • the sample injection volume was 20 ⁇ L
  • the analysis time was 40 minutes
  • the mobile phase was 0.003 mol/L phosphate buffer - 0.15 mol/L. NaCl (pH 7.0) conditions are used. Other details of the test conditions may be as described in the Examples below.
  • the thiol group modification rate of component A refers to the number of thiol groups contained in each disaccharide unit that constitutes hyaluronic acid, and specifically, the thiol group modification rate is defined as 100%. In this case, it refers to the ratio (%) of the number of thiol groups contained per unit to the unit.
  • the term "disaccharide unit constituting hyaluronic acid” refers to one unit composed of disaccharides (glucuronic acid and N-acetylglucosamine) bonded adjacent to each other, constituting hyaluronic acid.
  • the thiol group modification rate of component A can be measured using 1 H-NMR. Specific examples of the method for preparing the sample for measurement and the method for measurement are as described in the Examples described below.
  • the thiol group modification rate of component A is 1% or more, 2% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8% or more, 9%. or more, or 10% or more.
  • the thiol group modification rate of component A is 5% or more, the gel-forming ability will be even better even if the concentration of modified hyaluronic acid in the gel-forming material is as low as less than 1%.
  • the thiol group modification rate of component A is 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, or 50% or less, from the viewpoint of solubility in solvents such as water and PBS. It may be. When the thiol group modification rate of component A is 50% or less, the solubility in solvents such as water and PBS becomes even more excellent.
  • the thiol group modification rate of component A is preferably 1% or more and 80% or less, or 5% or more and 50% or less, or 6% or more and 45 % or less is more preferable.
  • component A may be in liquid or solid (for example powder) form.
  • the gel-forming material may include a solution containing component A and a solvent, or a powder containing component A.
  • the solvent include water, buffer solution, and the like.
  • the buffer include phosphate buffer.
  • the solvent may be a phosphate buffer, since a gel can be easily obtained in a shorter time.
  • the content of component A may be 0.1 mg or more, 0.5 mg or more, 1 mg or more, or 1.5 mg or more per 1 mL of solvent from the viewpoint of gel-forming ability. It may be 25 mg or less, 15 mg or less, 10 mg or less, 7.5 mg or less, or 5 mg or less.
  • Component A is, for example, a reaction in which hyaluronic acid and raw material compound A are reacted in a reaction solution containing hyaluronic acid and raw material compound A containing a thiol group and a group that can react with a functional group in hyaluronic acid. It can be obtained by a method including step A.
  • the method for producing component A may further include a post-treatment step A in which the reactant obtained in the reaction step A is post-treated.
  • the starting compound A may be a compound represented by formula (Ia): X 2 -Z 1 -SH or a salt thereof.
  • Z 1 in formula (Ia) may be the same group as Z 1 in formula (I).
  • X 2 represents a group capable of reacting with a functional group in hyaluronic acid. Examples of groups that can react with functional groups in hyaluronic acid include amino groups (-NH 2 ).
  • the amount of raw material compound A to be used is appropriately adjusted depending on the desired thiol group modification rate and the like.
  • raw material compound A examples include cysteamine (NH 2 -CH 2 -CH 2 -SH), 2-hydroxyethanethiol (HO-CH 2 -CH 2 -SH), and thioglycolic acid (HOOC-CH 2 -SH). , 2-chloroethanethiol (Cl-CH 2 -CH 2 -SH), or disulfide compounds thereof.
  • the reaction solution may contain a solvent.
  • the solvent include water and a mixture of water and a water-soluble organic solvent such as ethanol.
  • the reaction solution may contain a condensing agent.
  • the condensing agent include carbodiimide condensing agents.
  • the carbodiimide condensing agent include 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl).
  • the reaction solution may further contain a condensation aid in addition to the condensation agent. Examples of the condensation aid include 1-hydroxybenzotriazole (HOBT).
  • Post-processing step A As the post-treatment step A, for example, a step of precipitating component A or its precursor, a step of washing component A or its precursor, a step of reacting the precursor of component A with a reducing agent, etc. may be performed.
  • An example of a method for precipitating component A or its precursor is a method of mixing an organic solvent such as ethanol with the reaction solution obtained after reaction step A.
  • Examples of the method for washing component A or its precursor include a method of washing a precipitate containing component A or its precursor with an aqueous ethanol solution or the like.
  • the reducing agent include tris(2-carboxyethyl)phosphine (TCEP), dithiothreitol, and mercaptoethanol.
  • Component B is hyaluronic acid or a salt thereof in which a maleimide group represented by the following formula has been introduced into at least a part of the hyaluronic acid.
  • the gel-forming material may contain one or more types of component B.
  • Component B is a compound or a salt thereof in which at least a part of the functional groups contained in some disaccharide units among the repeating disaccharide units constituting hyaluronic acid are substituted with a functional group containing a maleimide group. It's good.
  • Component B is a hydroxyl group at the C4 position and a hydroxyl group at the C6 position of N-acetylglucosamine that constitutes hyaluronic acid, and a hydroxyl group at the C2 position, a hydroxyl group at the C3 position, and a hydroxyl group at the C6 position of glucuronic acid that constitutes hyaluronic acid.
  • Component B may be, for example, a compound represented by the following formula (2) or a salt thereof.
  • R 6 represents a functional group containing -OH or a maleimide group
  • R 7 to R 10 independently represent a hydrogen atom or a functional group containing a maleimide group.
  • m represents a number from 1 to 7,500.
  • R 6 to R 10 is a functional group containing a maleimide group.
  • 1 to 4, 1 to 3, or 1 to 2 of R 6 to R 10 may be a functional group containing a maleimide group, and any one of R 6 to R 10 may be a functional group containing a maleimide group. It may be a functional group containing
  • R 6 may be a functional group containing a maleimide group
  • each of R 7 to R 10 may be a hydrogen atom.
  • Component B may be, for example, a compound represented by the following formula (2a) or a salt thereof.
  • R 6 and m have the same meanings as R 6 and m in formula (2), respectively.
  • the functional group containing a maleimide group may be a group represented by formula (II): -X 2 -Z 2 -Y. Y represents a maleimide group.
  • Z 2 represents a divalent group, and is a group that connects X 2 and Y.
  • Z 2 may be, for example, a divalent hydrocarbon group.
  • the divalent hydrocarbon group may be linear or branched.
  • the number of carbon atoms in the divalent hydrocarbon group may be, for example, 1 or more, or 2 or more, and 10 or less, 8 or less, 6 or less, 4 or less, or 3 or less.
  • the divalent hydrocarbon group may be, for example, an alkylene group.
  • Z 2 may be an alkylene group having 2 or more carbon atoms. When Z 2 is an alkylene group having 2 or more carbon atoms, the resulting gel composition has better elasticity. When Z 2 is an alkylene group having 3 or less carbon atoms, it has better solubility in solvents such as water and PBS.
  • X 2 may be -NH- or -O-.
  • the functional group containing a maleimide group is -NH-CH 2 -CH 2 -Y, -NH-CH 2 -Y, -NH-CH 2 -CH 2 -CH 2 -Y, or It may be -O-CH 2 -CH 2 -Y.
  • the salt of modified hyaluronic acid having a maleimide group may be a pharmaceutically acceptable salt.
  • the salts of modified hyaluronic acid having a maleimide group include sodium salts, potassium salts, ammonium salts, and the like.
  • the average molecular weight of component B is 100,000 or less, 90,000 or less, 80,000 or less, 70,000 or less, 60,000 or less, or 50,000 or less from the viewpoint of solubility in solvents such as water and PBS. It may be. When the average molecular weight of component B is 50,000 or less, the solubility in solvents such as water and PBS becomes even more excellent.
  • the average molecular weight of component B is preferably 10,000 or less from the viewpoint of solubility in solvents such as water and PBS.
  • the average molecular weight of component B may be 2,000 or more, 3,000 or more, 5,000 or more, 6,000 or more, 7,000 or more, or 8,000 or more from the viewpoint of gel-forming ability.
  • the average molecular weight of component B is 8,000 or more, the gel-forming ability becomes even more excellent even if the concentration of modified hyaluronic acid in the gel-forming material is as low as less than 1%.
  • the average molecular weight of component B is from 2,000 to 100,000, from 8,000 to 50,000, from 9,000 to 30, from the viewpoint of better solubility in solvents such as water and PBS. 000 or less, and preferably 5,000 or more and 20,000 or less.
  • the average molecular weight of component B can be measured in the same manner as the average molecular weight of component A.
  • the maleimide group modification rate of component B refers to the number of maleimide groups contained per unit, with the disaccharide unit constituting hyaluronic acid as one unit, and specifically, the maleimide group modification rate is defined as 100%. Refers to the ratio (%) of the number of maleimide groups contained per unit to the unit in the case.
  • the maleimide group modification rate of component B can be measured using 1 H-NMR. Specific examples of the method for preparing the sample for measurement and the method for measurement are as described in the Examples described below.
  • the maleimide group modification rate of component B is 1% or more, 2% or more, 3% or more, 4% or more, 5% or more, 8% or more, 10% or more, or 12% or more. good.
  • the maleimide group modification rate of component B is 5% or more, the gel-forming ability will be even better even if the concentration of modified hyaluronic acid in the gel-forming material is as low as less than 1%.
  • the maleimide group modification rate of component B is preferably 15% or more from the viewpoint of further improving the ability to form a gel in a short time.
  • the maleimide group modification rate of component B may be 80% or less, 70% or less, 60% or less, or 50% or less in terms of solubility in solvents such as water and PBS. When the maleimide group modification rate of component B is 50% or less, the solubility in solvents such as water and PBS becomes even more excellent.
  • the maleimide group modification rate of component B is preferably 30% or less, more preferably 20% or less, from the viewpoint of solubility in solvents such as water and PBS.
  • the maleimide group modification rate of component B is 1% or more and 80% or less, 5% or more and 50% or less, or 10% or more and 45% or less, from the viewpoint of further improving the solubility in solvents such as water and PBS. It's good.
  • the maleimide group modification rate of component B is preferably 1% or more and 30% or less from the viewpoint of further improving the solubility in solvents such as water and PBS. From the viewpoint of achieving even better results, the content is more preferably 15% or more and 25% or less.
  • component B may be in liquid or solid form (for example powder form).
  • the gel-forming material may include a solution containing component B and a solvent, or a powder containing component B.
  • the solvent include water, buffer solution, and the like.
  • the buffer include phosphate buffer.
  • the solvent may be a phosphate buffer, since a gel can be easily obtained in a shorter time.
  • the content of component B may be 0.1 mg or more, 1 mg or more, or 1.5 mg or more, and 25 mg or less, 15 mg or less per 1 mL of solvent. , 10 mg or less, 7.5 mg or less, or 5 mg or less.
  • Component B is, for example, a reaction in which hyaluronic acid and raw material compound B are reacted in a reaction solution containing hyaluronic acid and raw material compound B containing a maleimide group and a group that can react with a functional group in hyaluronic acid. It can be obtained by a method including step B.
  • the method for producing component B may further include a post-treatment step B in which the reactant obtained in the reaction step B is post-treated.
  • the starting compound B may be a compound represented by formula (IIa): X 2 -Z 2 -Y or a salt thereof.
  • Z 2 in formula (IIa) may be the same group as Z 2 in formula (II).
  • X 2 represents a group capable of reacting with a functional group in hyaluronic acid. Examples of groups that can react with functional groups in hyaluronic acid include amino groups (-NH 2 ).
  • the amount of raw material compound B to be used is appropriately adjusted depending on the desired maleimide group modification rate and the like.
  • raw material compound B examples include N-(2-aminoethyl)maleimide or a salt thereof (e.g., hydrochloride), N-(2-hydroxyethyl)maleimide, 2-maleimidoacetic acid, and N-(2-chloroethyl)maleimide. Can be mentioned.
  • solvent and reactant in reaction step B As the solvent and reactant in reaction step B, the solvents and reactants exemplified in reaction step A can be used.
  • Post-treatment step B includes a step of precipitating component B, a step of washing component B, and the like.
  • a method for precipitating component B for example, a method of mixing an organic solvent such as ethanol with the reaction solution obtained after reaction step B can be mentioned.
  • a method for washing component B includes a method of washing a precipitate containing component B with an aqueous ethanol solution or the like.
  • the gel-forming material may further contain a drug.
  • the drug may be a water soluble drug. Examples of drugs include peptides, proteins, and genes.
  • the gel-forming material may include component A, component B, and other components that do not correspond to drugs.
  • examples of other components include water, ethanol, phosphates, inorganic salts such as sodium chloride, potassium chloride, and the like.
  • a gel is formed by mixing component A and component B, which are gel-forming materials of the present invention.
  • Methods for gelling include mixing a solution containing component A and a solution containing component B, mixing a powder containing component B into a solution containing component A, and mixing component A into a solution containing component B. Examples include a method of mixing powders containing the same.
  • the gelling method is preferably a method of mixing a solution containing component A and a solution containing component B from the viewpoint of suppressing the formation of lumps during gel formation.
  • the ratio of the mass of component B to the mass of component A is 0.01 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0 It may be .09 or more, or 0.1 or more, and may be 10.0 or less, 9.0 or less, 8.0 or less, 7.0 or less, 6.0 or less, or 5.0 or less.
  • the temperature at which the gel-forming material is gelled (gelling temperature) may be 0°C or higher, 10°C or higher, or 15°C or higher, and may be 40°C or lower or 35°C or lower, and may be at room temperature. It's good. In this specification, room temperature means 23°C.
  • a method for administering the gel-forming material includes administration by injection.
  • a syringe is used that includes a syringe body that can separately accommodate a first component containing at least component A and a second component containing at least component B, and a syringe needle. It can be done by When using the syringe, the first component and the second component are mixed immediately before administration into a living body (inside the needle of the syringe), and a gel composition is formed at the site of administration.
  • the in situ gel-forming material of one embodiment includes component A described above.
  • the in situ gel-forming material containing component A is capable of in situ gel formation by reaction with component B described above.
  • the in situ gel-forming material of one embodiment includes component B described above.
  • the in situ gel-forming material containing component B can form a gel in situ by reaction with component A described above.
  • the gel composition includes component A and component B, in which a thiol group and a maleimide group are bonded. That is, the gel composition includes a partial structure represented by the following formula (II) formed by a reaction between a thiol group and a maleimide group. Since the gel composition is formed from component A and component B, it has biocompatibility.
  • the gel composition may include the drug and other ingredients described above. It is not excluded that the gel composition contains impurities that are inevitably included during preparation.
  • the gel composition can be obtained by a method including the step of gelling the gel-forming material described above.
  • the gelling step can be performed, for example, by a method including mixing the above-mentioned component A and the above-mentioned component B.
  • the conditions for gelling may be as described above.
  • the gel composition can be used as a local sustained release material for drugs, an anti-adhesion material, a hemostatic material (for example, a hemostatic material for endoscopic surgery), a wound dressing material, a scaffold material for cell culture, a dermal filler material, and Examples include joint injection materials.
  • the sustained release formulation includes a first component containing component A, a second component containing component B, and a drug.
  • the drug may be included in either or both of the first component and the second component.
  • the other components mentioned above may be included in either or both of the first component and the second component.
  • the sustained release formulation contains the first component and the second component in an unmixed state.
  • ⁇ Use of component A and/or component B for producing gel-forming material> there is provided the use (application) of component A and component B for the production of a gel-forming material.
  • component A for the production of a gel-forming material in situ
  • component B for the production of a gel-forming material in situ.
  • the embodiments of the gel-forming materials described above can be applied without limit.
  • component A and component B are provided for use in gel formation.
  • component A used for in situ gel formation there is provided component A used for in situ gel formation and component B used for in situ gel formation.
  • the embodiments of the gel-forming materials described above can be applied without limit.
  • Example 1 ⁇ Method for producing modified hyaluronic acid having a thiol group> 0.5 g of hyaluronic acid (Hiavest (S) LF-P manufactured by Kewpie Corporation, average molecular weight of approximately 300,000) was dissolved in 50 mL of pure water to obtain a hyaluronic acid solution. To the hyaluronic acid solution, 106 mg of 1-hydroxybenzotriazole (HOBT), 120 mg of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC/HCl), and 141 mg of cystamine dihydrochloride were added. The reaction was carried out in the evening.
  • HOBT 1-hydroxybenzotriazole
  • EDC/HCl 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
  • cystamine dihydrochloride 141 mg
  • Example 2 ⁇ Method for producing modified hyaluronic acid having a thiol group> A hyaluronic acid solution was obtained by dissolving 0.5 g of hyaluronic acid (Hiavest (S) LF-P manufactured by Kewpie Corporation, average molecular weight of approximately 300,000) in 50 mL of pure water. To the hyaluronic acid solution, 53 mg of 1-hydroxybenzotriazole (HOBT), 60 mg of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC/HCl), and 71 mg of cystamine dihydrochloride were added. The reaction was carried out in the evening.
  • HOBT 1-hydroxybenzotriazole
  • EDC/HCl 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
  • cystamine dihydrochloride 71 mg
  • Example 3 ⁇ Method for producing modified hyaluronic acid having a maleimide group> 0.474 g of hyaluronic acid (Hyalooligo manufactured by Kewpie Corporation, average molecular weight 6000) was dissolved in 25 mL of pure water to obtain a hyaluronic acid solution.
  • hyaluronic acid solution 211 mg of 1-hydroxybenzotriazole (HOBT), 240 mg of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC/HCl), and N-(2-aminoethyl)maleimide hydrochloride. 221 mg was added and reacted overnight.
  • HOBT 1-hydroxybenzotriazole
  • EDC/HCl 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
  • N-(2-aminoethyl)maleimide hydrochloride 221 mg was
  • modified hyaluronic acid having a maleimide group (modified HA containing a maleimide group).
  • Examples 4 to 11 ⁇ Method for producing modified hyaluronic acid having a thiol group> Same as Example 1 or Example 2 except that the average molecular weight of hyaluronic acid (raw material HA) used as a raw material and the amounts of HOBT, EDC/HCl, and cystamine dihydrochloride were changed to the conditions shown in Table 1. Thus, thiol group-containing modified HA of Examples 4 to 11 was produced.
  • the raw material HA used in the production of Examples 4 to 11 having an average molecular weight of 300,000, 1,600,000, 800,000, 80,000, 10,000, and 6,000, respectively, is the following hyaluronic acid.
  • Examples 12 to 15 ⁇ Method for producing modified hyaluronic acid having a maleimide group> The procedure was carried out in the same manner as in Example 3, except that the average molecular weight of hyaluronic acid (raw material HA) used as a raw material and the amounts of HOBT, EDC/HCl, and cystamine dihydrochloride were changed to the conditions shown in Table 2. Modified HA containing maleimide groups of Examples 12 to 15 were produced.
  • the raw material HA having an average molecular weight of 10,000 and 6,000, respectively, used in the production of Examples 12 to 15 is the following hyaluronic acid.
  • sample preparation 7 mg of the sample and 1 mg of the internal standard sodium 4,4-dimethyl-4-silapentane sulfonate (DSS) were dissolved in 0.7 mL of heavy water, transferred to an NMR sample tube, and capped.
  • DSS sodium 4,4-dimethyl-4-silapentane sulfonate
  • Thiol group modification rate (%) (integral value of proton peak originating from 2.7 ppm CH 2 / 2) / (integral value of proton peak originating from 2.0 ppm CH 3 / 3) ⁇ 100
  • Gel compositions were produced by mixing the thiol group-containing modified HA aqueous solutions of Examples 1, 2, and 4 to 11 and the maleimide group-containing modified HA aqueous solutions of Examples 3 and 12 to 15.
  • the amount of thiol group-containing modified HA shown in Table 3 was dissolved in phosphate buffered saline (PBS) or water to obtain a thiol group-containing modified HA aqueous solution.
  • PBS phosphate buffered saline
  • the amount of modified HA containing a maleimide group shown in Table 3 was dissolved in PBS or water to obtain an aqueous solution of modified HA containing a maleimide group.
  • Test Example 25 the maleimide group-containing modified HA was used as a powder without being dissolved in PBS or water.
  • Test Examples 1 to 9, 12 to 23, and 25 when the maleimide group-containing modified HA aqueous solution or the maleimide group-containing modified HA powder was dropped into the thiol group-containing modified HA aqueous solution, it immediately gelled. In this case, gelation proceeded immediately after mixing the thiol group-containing modified HA aqueous solution and the maleimide group-containing modified HA aqueous solution.
  • the temperature at the time of mixing means the temperature at which the thiol group-containing modified HA aqueous solution and the maleimide group-containing modified HA aqueous solution or the maleimide group-containing modified HA powder are mixed.
  • the room temperature shown in Table 3 is 23°C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本発明の一側面は、チオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Aと、マレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Bと、を備える、ゲル形成用材料に関する。

Description

ゲル形成用材料及びゲル組成物
 本発明は、ゲル形成用材料及びゲル組成物に関する。
 留置されたその場で(in situ)ゲル化する材料は、体内への注射による投与が可能な医療材料として用いることができるため、低侵襲の治療が可能になるとして、薬物担体及び組織工学の分野で注目されている。in situでゲル化する材料は、温度、pH、化学物質の変化に応答して比較的短時間でゲル化することに加え、生体適合性および安全性も重要な課題である。
 種々のゲル形成材料の中でも、ヒアルロン酸は生体適合性及び人体への安全性に優れている。ヒアルロン酸を用いたヒドロゲルを得る組成物として、例えば、特許文献1には、ウベローデ粘度計によって測定される、少なくとも3dL/gの固有粘度[η]を組成物中で有する1つ以上のヒドロゲル形成ポリマーを含む組成物であって、前記組成物中の前記ヒドロゲル形成ポリマーの濃度Cが多くとも約5mg/mlである、組成物が開示されている。
 しかしながら、特許文献1に開示されている組成物を用いて得られるヒドロゲルはゲル化に10時間以上を要するものであり、in situでゲル化するゲル形成材料としては適さない。
特表2020-534427号公報
 本発明は、ヒアルロン酸を用い、短時間でゲル化可能なゲル形成材料及びゲル組成物を提供する。このようなゲル形成材料及びゲル組成物は注射によって生体内に投与しin situでゲル化させることが必要な医療材料に好適である。
 本発明の一側面は、短時間でのゲル形成が可能なゲル形成用材料及び当該ゲル形成用材料を用いて得られるゲル組成物を提供することを目的とする。本発明の一側面は、新規なin situでのゲル形成用材料を提供することを目的とする。
 本発明者らは、チオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Aと、マレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Bと、を備える、ゲル形成用材料が、上記課題を解決できること、さらに、数十分以内(例えば、30分以内)の短時間でヒアルロン酸を含有するゲル組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、例えば、以下の各発明に関する。
[1]
 チオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Aと、マレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Bと、を備える、ゲル形成用材料。
[2]
 前記成分Aのチオール基修飾率が、5%以上50%以下である、[1]に記載のゲル形成用材料。
[3]
 前記成分Aの平均分子量が、10,000以上600,000以下である、[1]又は[2]に記載のゲル形成用材料。
[4]
 前記成分Bのマレイミド基修飾率が、1%以上30%以下である、[1]~[3]のいずれかに記載のゲル形成用材料。
[5]
 チオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種を含む、in situでのゲル形成用材料。
[6]
 マレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種を含む、in situでのゲル形成用材料。
[7]
 チオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Aと、マレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Bとを含み、前記チオール基と前記マレイミド基とが結合している、ゲル組成物。
 本発明によれば、短時間でのゲル形成が可能なゲル形成用材料及び当該ゲル形成用材料を用いて得られるゲル組成物を提供することができる。本発明によれば新規なin situでのゲル形成用材料を提供することもできる。
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
<本発明の特徴>
(ゲル形成用材料)
 本発明は、チオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Aと、マレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Bと、を備える、ゲル形成用材料を提供することに特徴を有する。本発明のゲル形成材料は、1時間以内の短時間でゲル化可能であり、in situでゲル化させることが必要な医療材料に好適に用いることができる。
(ゲル組成物)
 本発明は、チオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Aと、マレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Bと、を含み、チオール基とマレイミド基とが結合している、ゲル組成物を提供することに特徴を有する。
<ゲル形成用材料>
 本明細書における「ゲル形成用材料」は、他の成分との反応によってゲル組成物を形成し得る成分を1種又は2種以上含む材料であり、本発明においては、他の成分との反応開始時点から1時間以内でゲル組成物を形成するものをいう。本発明のゲル形成材料は、後述するチオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分A、及びマレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Bを含むものである。
<in situでのゲル形成>
 本発明のゲル形成用材料は、1時間以内という短時間でゲル形成が可能であるため、in situでのゲル形成用材料として好適に用いられる。「in situでのゲル形成用材料」は、目的とする場所でのゲル形成が可能なゲル形成材料である。
 本発明のゲル形成用材料は、ゲル形成前の状態(例えば溶液の状態)で滅菌を行うことができる。したがって、ゲル化後の状態での滅菌が必ずしも必要とされず、滅菌されたゲル形成用材料を生体の目的とする場所に投与してゲル形成することが可能である。
<チオール基を有する修飾ヒアルロン酸及びその塩>
 成分Aは、ヒアルロン酸の少なくとも一部にチオール基(-SH)が導入されている化合物又はその塩である。ゲル形成用材料は、成分Aを1種又は2種以上含んでいてもよい。
(成分Aの構造1)
 成分Aは、ヒアルロン酸を構成する二糖単位の繰り返し単位のうち、一部の二糖単位に含まれる官能基の少なくとも一部がチオール基を含む官能基に置換されている化合物又はその塩であってよい。成分Aは、ヒアルロン酸を構成するN-アセチルグルコサミンのC4位のヒドロキシ基及びC6位のヒドロキシ基、並びに、ヒアルロン酸を構成するグルクロン酸のC2位のヒドロキシ基、C3位のヒドロキシ基及びC6位のカルボキシ基中の-OHからなる群より選択される少なくとも一つの基が、チオール基を含む官能基に置換されている化合物又はその塩であってよい。
(成分Aの構造2)
 成分Aは、例えば、下記式(1)で表される化合物又はその塩であってよい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは、-OH又はチオール基を含む官能基を示し、R~Rは独立して、水素原子、又はチオール基を含む官能基を示す。nは1以上7,500以下の数を示す。
(式(1)におけるチオール基を含む官能基の数及び置換位置)
 式(1)において、R~Rのうち少なくとも一つは、チオール基を含む官能基である。式(1)において、R~Rのうち1~4、1~3又は1~2がチオール基を含む官能基であってよく、R~Rのうちいずれか1つがチオール基を含む官能基であってよい。式(1)において、Rがチオール基を含む官能基であり、かつ、R~Rがいずれも水素原子であってよい。
(成分Aの構造3)
 成分Aは、例えば、下記式(1a)で表される化合物又はその塩であってよい。
Figure JPOXMLDOC01-appb-C000002
 式(1a)中、R及びnはそれぞれ式(1)におけるR及びnと同義である。
(チオール基を含む官能基の構造)
 チオール基を含む官能基は、式(I):-X-Z-SHで表される基であってよい。
(式(I)におけるZの構造)
 Zは2価の基を示し、XとSHとを連結する基である。Zは例えば2価の炭化水素基であってよい。2価の炭化水素基は、直鎖状又は分岐状であってよい。2価の炭化水素基の炭素数は、例えば、1以上、又は2以上であってよく、10以下、8以下、6以下、4以下、又は3以下であってよい。2価の炭化水素基は、例えば、アルキレン基であってよい。Zは炭素数2以上のアルキレン基であってよい。Zが炭素数2以上のアルキレン基である場合、得られるゲル組成物の弾力性がより優れたものとなる。Zは炭素数3以下のアルキレン基である場合、水やPBSへの溶解性がより優れたものとなる。
(式(I)におけるXの構造)
 Xは、結合箇所がRの場合、-NH-又は-O-であってよい。Xは、結合箇所がR~Rの場合、-(C=O)-、又は単結合であってよい。
(チオール基を含む官能基の具体例)
 チオール基を含む官能基は、結合箇所がRの場合、-NH-CH-CH-SH、又は-O-CH-CH-SHであってよい。チオール基を含む官能基は、結合箇所がR~Rの場合、-(C=O)-CH-SH、又は-CH-CH-SHであってよい。
(チオール基を有する修飾ヒアルロン酸の塩)
 チオール基を有する修飾ヒアルロン酸の塩は、薬学的に許容される塩であってよい。チオール基を有する修飾ヒアルロン酸の塩としては、例えば、ナトリウム塩、カリウム塩、アンモニウム塩等が挙げられる。
(成分Aの平均分子量の好適な上限値)
 成分Aの平均分子量は、水やPBS等の溶媒に対する溶解性の観点から、1,500,000以下、1,400,000以下、1,300,000以下、1,200,000以下、1,100,000以下、又は1,000,000以下であってよい。成分Aの平均分子量が1,000,000以下である場合、水やPBS等の溶媒に対する溶解性がより一層優れたものとなる。成分Aの平均分子量は、水やPBS等の溶媒に対する溶解性の観点から、800,000以下、700,000以下、600,000以下、500,000以下、400,000以下、300,000以下、又は200,000以下であることが好ましい。
(成分Aの平均分子量の好適な下限値)
 成分Aの平均分子量は、弾力性のあるゲル組成物を得る観点から、10,000以上、20,000以上、30,000以上、40,000以上、50,000以上、60,000以上、70,000以上、又は80,000以上であってよい。成分Aの平均分子量が80,000以上である場合、得られるゲル組成物の弾力性がより一層優れたものとなる。成分Aの平均分子量は、弾力性のあるゲル組成物を得る観点から、100,000以上であることが好ましい。
(成分Aの平均分子量の好適な数値範囲)
 成分Aの平均分子量は、水やPBS等の溶媒に対する溶解性が更に優れたものとなる観点から、10,000以上1,500,000以下、80,000以上1,000,000以下、又は100,000以上800,000以下であってよい。成分Aの平均分子量は、水やPBS等の溶媒に対する溶解性が更に優れたものとなる観点から、10,000以上600,000以下であることが好ましく、100,000以上300,000以下であることがより好ましい。
(平均分子量の測定方法)
 平均分子量は、以下の方法にて測定することができる。
 まず、ゲル濾過カラムを用いて、分子量が既知である複数の(精製)ヒアルロン酸(基準物質)を液体クロマトグラフィー分析することで、それらの保持時間より検量線を作成する。同様に、測定対象である修飾ヒアルロン酸を液体クロマトグラフィー分析し、作製した検量線を用いて分子量を求めることで、修飾ヒアルロン酸の分子量を求めることができる。
(平均分子量の測定装置及び測定条件)
 液体クロマトグラフィー分析装置として日本ウォーターズ社製2690セパレーションモジュールを用いる。フォトダイオードアレイとして日本ウォーターズ社製996フォトダイオードアレイとして用いる。カラムとして、TSKガードカラムPWXL(東ソー株式会社製)を1本、TSKゲルGMPW(東ソー株式会社製)を2本、記載の順に直列に接続したものを用いる。平均分子量の測定においては、カラム温度40℃、測定波長210nm、流速0.8mL/分、試料注入量20μL、分析時間40分、移動相0.003mol/Lリン酸緩衝液-0.15mol/L NaCl(pH7.0)の条件が用いられる。その他試験条件の詳細は後述する実施例に記載のとおりであってよい。
(チオール基修飾率の定義)
 成分Aのチオール基修飾率は、ヒアルロン酸を構成する2糖単位を1単位とし、当該1単位あたりに含まれるチオール基の数を意味し、具体的には、当該1単位を100%とした場合の、該1単位に対する、該1単位あたりに含まれるチオール基の数の割合(%)をいう。本明細書において「ヒアルロン酸を構成する2糖単位」とは、ヒアルロン酸を構成する、隣り合って結合する2糖(グルクロン酸及びN-アセチルグルコサミン)で構成される1単位をいう。
(チオール基修飾率の測定方法)
 成分Aのチオール基修飾率は、H-NMRを用いて測定することができる。測定用サンプルの調製方法及び測定方法の具体例は、後述する実施例に記載のとおりである。
(チオール基修飾率の好適な下限値)
 成分Aのチオール基修飾率は、ゲル形成能の観点から、1%以上、2%以上、3%以上、4%以上、5%以上、6%以上、7%以上、8%以上、9%以上、又は10%以上であってよい。成分Aのチオール基修飾率が5%以上である場合、ゲル形成材料中の修飾ヒアルロン酸の濃度が1%未満の低濃度であってもゲル形成能がより一層優れたものとなる。
(チオール基修飾率の好適な上限値)
 成分Aのチオール基修飾率は、水やPBS等の溶媒に対する溶解性の観点から、80%以下、75%以下、70%以下、65%以下、60%以下、55%以下、又は50%以下であってよい。成分Aのチオール基修飾率が50%以下である場合、水やPBS等の溶媒に対する溶解性がより一層優れたものとなる。
(チオール基修飾率の好適な数値範囲)
 成分Aのチオール基修飾率は、短時間でのゲル形成能が更に優れたものとなる観点から、1%以上80%以下であることが好ましく、5%以上50%以下、又は6%以上45%以下であることがより好ましい。
(成分Aの形態)
 ゲル形成用材料において成分Aは液状又は固体状(例えば粉末状)であってよい。ゲル形成用材料は、成分A及び溶媒を含む溶液、又は、成分Aを含む粉末を含んでいてよい。溶媒としては、水、緩衝液等が挙げられる。緩衝液としては、リン酸緩衝液等が挙げられる。溶媒はより短時間でゲルが得られ易いことからリン酸緩衝液であってよい。
(成分Aを含む溶液)
 成分Aを含む溶液において、成分Aの含有量は、ゲル形成能の観点から、溶媒1mLに対して、0.1mg以上、0.5mg以上、1mg以上、又は1.5mg以上であってよく、25mg以下、15mg以下、10mg以下、7.5mg以下、又は5mg以下であってよい。
(成分Aの製造方法)
 成分Aは、例えば、ヒアルロン酸と、ヒアルロン酸中の官能基と反応し得る基及びチオール基を含む原料化合物Aと、を含有する反応液中で、ヒアルロン酸と原料化合物Aとを反応させる反応工程Aを含む方法によって得ることができる。成分Aを製造する方法は、反応工程Aによって得られる反応物の後処理を行う後処理工程Aを更に含んでいてもよい。
(原料化合物A)
 原料化合物Aは、式(Ia):X-Z-SHで表される化合物又はその塩であってよい。式(Ia)におけるZは、式(I)におけるZと同様の基であってよい。式(Ia)中、Xはヒアルロン酸中の官能基と反応し得る基を示す。ヒアルロン酸中の官能基と反応し得る基としては、例えば、アミノ基(-NH)が挙げられる。原料化合物Aの使用量は、目的とするチオール基修飾率等に応じて適宜調整される。
(原料化合物Aの具体例)
 原料化合物Aとしては、例えば、システアミン(NH-CH-CH-SH)、2-ヒドロキシエタンチオール(HO-CH-CH-SH)、チオグリコール酸(HOOC-CH-SH)、2-クロロエタンチオール(Cl-CH-CH-SH)、又はこれらのジスルフィド化合物が挙げられる。
(反応工程Aにおける溶媒)
 反応液は、溶媒を含んでいてよい。溶媒としては、水、又は、エタノール等の水溶性有機溶媒と水との混合液が挙げられる。
(反応工程Aにおける反応剤)
 反応液は、縮合剤を含んでいてよい。縮合剤としては、例えば、カルボジイミド系縮合剤が挙げられる。カルボジイミド系縮合剤としては、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)が挙げられる。反応液は縮合剤に加えて縮合補助剤を更に含んでいてよい。縮合補助剤としては、例えば、1-ヒドロキシベンゾトリアゾール(HOBT)が挙げられる。
(後処理工程A)
 後処理工程Aとして、例えば、成分A又はその前駆体を沈殿させる工程、成分A又はその前駆体を洗浄する工程、成分Aの前駆体を還元剤と反応させる工程等が行われてよい。成分A又はその前駆体を沈殿させる方法としては、例えば、反応工程Aの後に得られる反応液に、エタノール等の有機溶媒を混合する方法が挙げられる。成分A又はその前駆体を洗浄する方法としては、成分A又はその前駆体を含む沈殿物をエタノール水溶液等で洗浄する方法が挙げられる。成分Aの前駆体を還元剤と反応させる際の還元剤としては、トリス(2-カルボキシエチル)ホスフィン(TCEP)、ジチオスレイトール、メルカプトエタノールが挙げられる。
<マレイミド基を有する修飾ヒアルロン酸及びその塩>
 成分Bは、ヒアルロン酸の少なくとも一部に下記式で表されるマレイミド基が導入されているヒアルロン酸又はその塩である。ゲル形成用材料は、成分Bを1種又は2種以上含んでいてもよい。
Figure JPOXMLDOC01-appb-C000003
(成分Bの構造1)
 成分Bは、ヒアルロン酸を構成する二糖単位の繰り返し単位のうち、一部の二糖単位に含まれる官能基の少なくとも一部がマレイミド基を含む官能基に置換されている化合物又はその塩であってよい。成分Bは、ヒアルロン酸を構成するN-アセチルグルコサミンのC4位のヒドロキシ基及びC6位のヒドロキシ基、並びに、ヒアルロン酸を構成するグルクロン酸のC2位のヒドロキシ基、C3位のヒドロキシ基及びC6位のカルボキシ基中の-OHからなる群より選択される少なくとも一つの基が、マレイミド基を含む官能基に置換されている化合物又はその塩であってよい。
(成分Bの構造2)
 成分Bは、例えば、下記式(2)で表される化合物又はその塩であってよい。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、Rは-OH又はマレイミド基を含む官能基を示し、R~R10は独立して、水素原子、又はマレイミド基を含む官能基を示す。mは1以上7,500以下の数を示す。
(マレイミド基を含む官能基の数及び置換位置)
 式(2)において、R~R10のうち少なくとも一つがマレイミド基を含む官能基である。式(2)において、R~R10のうち1~4、1~3又は1~2がマレイミド基を含む官能基であってよく、R~R10のうちいずれか1つがマレイミド基を含む官能基であってよい。式(2)において、Rがマレイミド基を含む官能基であり、かつ、R~R10がいずれも水素原子であってよい。
(成分Bの構造3)
 成分Bは、例えば、下記式(2a)で表される化合物又はその塩であってよい。
Figure JPOXMLDOC01-appb-C000005
 式(2a)中、R及びmはそれぞれ式(2)におけるR及びmと同義である。
(マレイミド基を含む官能基の構造)
 マレイミド基を含む官能基は、式(II):-X-Z-Yで表される基であってよい。Yはマレイミド基を示す。
(式(II)におけるZの構造)
 Zは2価の基を示し、XとYとを連結する基である。Zは例えば2価の炭化水素基であってよい。2価の炭化水素基は、直鎖状又は分岐状であってよい。2価の炭化水素基の炭素数は、例えば、1以上、又は2以上であってよく、10以下、8以下、6以下、4以下、又は3以下であってよい。2価の炭化水素基は、例えば、アルキレン基であってよい。Zは炭素数2以上のアルキレン基であってよい。Zが炭素数2以上のアルキレン基である場合、得られるゲル組成物の弾力性がより優れたものとなる。Zは炭素数3以下のアルキレン基である場合、水やPBS等の溶媒に対する溶解性がより優れたものとなる。
(式(II)におけるXの構造)
 Xは、結合箇所がRの場合、-NH-、又は-O-であってよい。Xは、結合箇所がR~R10の場合、-(C=O)-、又は単結合であってよい。
(マレイミド基を含む官能基の具体例)
 マレイミド基を含む官能基は、結合箇所がRの場合、-NH-CH-CH-Y、-NH-CH-Y、-NH-CH-CH-CH-Y、又は-O-CH-CH-Yであってよい。マレイミド基を含む官能基は、結合箇所がR~R10の場合、-(C=O)-CH-Y、又は-CH-CH-Yであってよい。
(マレイミド基を有する修飾ヒアルロン酸の塩)
 マレイミド基を有する修飾ヒアルロン酸の塩は、薬学的に許容される塩であってよい。マレイミド基を有する修飾ヒアルロン酸の塩としては、例えば、ナトリウム塩、カリウム塩、アンモニウム塩等が挙げられる。
(成分Bの平均分子量の好適な上限値)
 成分Bの平均分子量は、水やPBS等の溶媒に対する溶解性の観点から、100,000以下、90,000以下、80,000以下、70,000以下、60,000以下、又は50,000以下であってよい。成分Bの平均分子量が50,000以下である場合、水やPBS等の溶媒に対する溶解性がより一層優れたものとなる。成分Bの平均分子量は、水やPBS等の溶媒に対する溶解性の観点から、10,000以下であることが好ましい。
(成分Bの平均分子量の好適な下限値)
 成分Bの平均分子量は、ゲル形成能の観点から、2,000以上、3,000以上、5,000以上、6,000以上、7,000以上、又は8,000以上であってよい。成分Bの平均分子量が8,000以上である場合、ゲル形成材料中の修飾ヒアルロン酸の濃度が1%未満の低濃度であってもゲル形成能がより一層優れたものとなる。
(成分Bの平均分子量の好適な数値範囲1)
 成分Bの平均分子量は、水やPBS等の溶媒に対する溶解性が更に優れたものとなる観点から、2,000以上100,000以下、8,000以上50,000以下、9,000以上30,000以下であってよく、5,000以上20,000以下であることが好ましい。
(成分Bの平均分子量の測定方法)
 成分Bの平均分子量は、成分Aの平均分子量と同様にして測定することができる。
(マレイミド基修飾率の定義)
 成分Bのマレイミド基修飾率は、ヒアルロン酸を構成する2糖単位を1単位とし、当該1単位あたりに含まれるマレイミド基の数を意味し、具体的には、当該1単位を100%とした場合の、該1単位に対する、該1単位あたりに含まれるマレイミド基の数の割合(%)をいう。
(マレイミド基修飾率の測定方法)
 成分Bのマレイミド基修飾率は、H-NMRを用いて測定することができる。測定用サンプルの調製方法及び測定方法の具体例は、後述する実施例に記載のとおりである。
(マレイミド基修飾率の好適な下限値)
 成分Bのマレイミド基修飾率は、ゲル形成能の観点から、1%以上、2%以上、3%以上、4%以上、5%以上、8%以上、10%以上又は12%以上であってよい。成分Bのマレイミド基修飾率が5%以上である場合、ゲル形成材料中の修飾ヒアルロン酸の濃度が1%未満の低濃度であってもゲル形成能がより一層優れたものとなる。成分Bのマレイミド基修飾率は、短時間でのゲル形成能が更に優れたものとなる観点から、15%以上であることが好ましい。
(マレイミド基修飾率の好適な上限値)
 成分Bのマレイミド基修飾率は、水やPBS等の溶媒に対する溶解性の点から、80%以下、70%以下、60%以下、又は50%以下であってよい。成分Bのマレイミド基修飾率が50%以下である場合、水やPBS等の溶媒に対する溶解性がより一層優れたものとなる。成分Bのマレイミド基修飾率は、水やPBS等の溶媒に対する溶解性の点から、30%以下であることが好ましく、20%以下であることがより好ましい。
(マレイミド基修飾率の好適な数値範囲)
 成分Bのマレイミド基修飾率は、水やPBS等の溶媒に対する溶解性が更に優れたものとなる観点から、1%以上80%以下、5%以上50%以下、又は10%以上45%以下であってよい。成分Bのマレイミド基修飾率は、水やPBS等の溶媒に対する溶解性が更に優れたものとなる観点から、1%以上30%以下であることが好ましく、水やPBS等の溶媒に対する溶解性が更に優れたものとなる観点から、15%以上25%以下であることがより好ましい。
(成分Bの形態)
 ゲル形成用材料において成分Bは液状又は固体状(例えば粉末状)であってよい。ゲル形成用材料は、成分B及び溶媒を含む溶液、又は、成分Bを含む粉末を含んでいてよい。溶媒としては、水、緩衝液等が挙げられる。緩衝液としては、リン酸緩衝液等が挙げられる。溶媒はより短時間でゲルが得られ易いことからリン酸緩衝液であってよい。
(成分Bを含む溶液)
 成分Bを含む溶液において、ゲル形成能の観点から、成分Bの含有量は、溶媒1mLに対して、0.1mg以上、1mg以上、又は1.5mg以上であってよく、25mg以下、15mg以下、10mg以下、7.5mg以下、又は5mg以下であってよい。
(成分Bの製造方法)
 成分Bは、例えば、ヒアルロン酸と、ヒアルロン酸中の官能基と反応し得る基及びマレイミド基とを含む原料化合物Bとを含有する反応液中で、ヒアルロン酸と原料化合物Bとを反応させる反応工程Bを含む方法によって得ることができる。成分Bを製造する方法は、反応工程Bによって得られる反応物の後処理を行う後処理工程Bを更に含んでいてもよい。
(原料化合物B)
 原料化合物Bは、式(IIa):X-Z-Yで表される化合物又はその塩であってよい。式(IIa)におけるZは、式(II)におけるZと同様の基であってよい。式(IIa)中、Xはヒアルロン酸中の官能基と反応し得る基を示す。ヒアルロン酸中の官能基と反応し得る基としては、例えば、アミノ基(-NH)が挙げられる。原料化合物Bの使用量は、目的とするマレイミド基修飾率等に応じて適宜調整される。
(原料化合物Bの具体例)
 原料化合物Bとしては、例えば、N-(2-アミノエチル)マレイミド又はその塩(例えば塩酸塩)、N-(2-ヒドロキシエチル)マレイミド、2-マレイミド酢酸、N-(2-クロロエチル)マレイミドが挙げられる。
(反応工程Bにおける溶媒及び反応剤)
 反応工程Bにおける溶媒及び反応剤としては、反応工程Aで例示した溶媒及び反応剤を用いることができる。
(後処理工程B)
 後処理工程Bは、成分Bを沈殿させる工程、成分Bを洗浄する工程等が挙げられる。成分Bを沈殿させる方法としては、例えば、反応工程Bの後に得られる反応液に、エタノール等の有機溶媒を混合する方法が挙げられる。成分Bを洗浄する方法としては、成分Bを含む沈殿物をエタノール水溶液等で洗浄する方法が挙げられる。
<薬物>
 ゲル形成用材料は、薬物を更に含んでいてもよい。薬物は、水溶性薬物であってよい。薬物としては例えばペプチド、タンパク質及び遺伝子が挙げられる。
<その他の成分>
 ゲル形成用材料は、成分A、成分B及び薬物に該当しないその他の成分を含んでいてよい。その他の成分としては、例えば、水、エタノール、リン酸塩、塩化ナトリウム、塩化カリウム等の無機塩が挙げられる。
<ゲル形成用材料のゲル化方法>
 本発明のゲル形成用材料である成分A及び成分Bを混合することによってゲルが形成する。ゲル化させる方法としては、成分Aを含む溶液と、成分Bを含む溶液とを混合する方法、成分Aを含む溶液に成分Bを含む粉末を混合する方法、成分Bを含む溶液に成分Aを含む粉末を混合する方法等が挙げられる。ゲル化させる方法は、ゲル形成時のダマ発生を抑制する観点から、成分Aを含む溶液と、成分Bを含む溶液とを混合する方法であることが好ましい。
(成分Bの成分Aに対する質量比)
 成分Aの質量に対する成分Bの質量の比(成分Bの質量/成分Aの質量)は、0.01以上、0.05以上、0.06以上、0.07以上、0.08以上、0.09以上、又は0.1以上であってよく、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、又は5.0以下であってよい。
(ゲル化の温度条件)
 ゲル形成用材料をゲル化させる際の温度(ゲル化温度)は、0℃以上、10℃以上、又は15℃以上であってよく、40℃以下、又は35℃以下であってよく、室温であってよい。本明細書において、室温とは、23℃を意味する。
<ゲル形成用材料の投与方法>
 ゲル形成用材料の投与方法としては、注射による投与が挙げられる。ゲル形成用材料を注射によって生体内に投与する場合、成分Aを少なくとも含む第1成分及び成分Bを少なくとも含む第2成分を分離して収容可能な注射器本体と、注射針とを備える注射器を用いて行うことができる。当該注射器を用いる場合、生体内への投与直前(注射器の注射針内)において第1成分及び第2成分が混合され、投与された場所においてゲル組成物が形成される。
<生体適合性を有するゲル形成>
 ゲル形成用材料は、成分Aと、成分Bとの反応によってゲル組成物を形成するため、生体適合性を有するゲル組成物の形成が可能である。
<in situでのゲル形成用材料1>
 一実施形態のin situでのゲル形成用材料は、上述した成分Aを含む。成分Aを含むin situでのゲル形成用材料は、上述した成分Bとの反応によって、in situでのゲル形成が可能である。
<in situでのゲル形成用材料2>
 一実施形態のin situでのゲル形成用材料は、上述した成分Bを含む。成分Bを含むin situでのゲル形成用材料は、上述した成分Aとの反応によって、in situでのゲル形成が可能である。
<ゲル組成物>
 ゲル組成物は、成分Aと、成分Bと、を含み、チオール基とマレイミド基とが結合している。すなわち、ゲル組成物は、チオール基とマレイミド基との反応によって形成される下記式(II)で表される部分構造を含む。ゲル組成物は、成分Aと、成分Bとから形成されることから、生体適合性を有している。
Figure JPOXMLDOC01-appb-C000006
(ゲル組成物の態様)
 ゲル組成物の具体的態様は上述したゲル形成用材料の具体的態様を適用することができる。ゲル組成物は、上述した薬物及びその他の成分を含んでいてよい。ゲル組成物は、調製に伴い不可避的に含まれる不純物を含むことを排除しない。
<ゲル組成物の製造方法>
 ゲル組成物は、上述したゲル形成用材料をゲル化させる工程を含む方法によって得ることができる。ゲル化させる工程は、例えば、上述した成分Aと、上述した成分Bと、を混合することを含む方法によって行うことができる。ゲル化させる際の条件は上述したとおりであってよい。
<ゲル組成物の用途>
 ゲル組成物の用途としては、薬物の局所での徐放材、癒着防止材、止血材(例えば、内視鏡手術用の止血材)、創傷被覆材、細胞培養の足場材、皮膚充填材及び関節注射材等が挙げられる。
<徐放性製剤>
 徐放性製剤は、成分Aを含む第1成分と、成分Bを含む第2成分と、薬物とを含む。薬物は、第1成分及び第2成分のいずれか一方又は両方に含まれていてよい。上述した他の成分が、第1成分及び第2成分のいずれか一方又は両方に含まれていてもよい。徐放性製剤は、第1成分及び第2成分を混合前の状態で含有する。第1成分及び第2成分を生体に投与する直前又は投与するとともに混合することで、生体の目的とする部位において、薬物を含むゲル組成物が形成される。目的とする部位が生体内である場合、薬物を含むゲル組成物は、生体内で加水分解等を受け、ゲル組成物が崩壊することによって薬物が徐々に放出する。
<ゲル形成用材料の製造のための成分A及び/又は成分Bの使用>
 本発明の一実施形態として、ゲル形成用材料の製造のための、成分A及び成分Bの使用(応用)が提供される。本発明の一実施形態として、in situでのゲル形成用材料の製造のための成分Aの使用、及び、in situでのゲル形成用材料の製造のための成分Bの使用が提供される。これらの実施形態において、上述したゲル形成用材料の態様を際限なく適用することができる。
<ゲル形成に使用される、成分A及び/又は成分B>
 本発明の一実施形態として、ゲル形成に使用される、成分A及び成分Bが提供される。本発明の一実施形態として、in situでのゲル形成に使用される成分A、及び、in situでのゲル形成に使用される成分Bが提供される。これらの実施形態において、上述したゲル形成用材料の態様を際限なく適用することができる。
 以下、実施例等に基づいて、本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
[実施例1]
<チオール基を有する修飾ヒアルロン酸の製造方法>
 ヒアルロン酸(キユーピー株式会社製ヒアベスト(S)LF-P、平均分子量約30万)0.5gを純水50mLに溶解させ、ヒアルロン酸溶液を得た。当該ヒアルロン酸溶液に、1-ヒドロキシベンゾトリアゾール(HOBT)106mg、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)120mg、及びシスタミン二塩酸塩141mgを添加し、一晩反応させた。得られた反応液に、エタノール150mLをゆっくり添加し、修飾ヒアルロン酸を沈殿させ、80%エタノール50mLで3回洗浄して、チオール基を有する修飾ヒアルロン酸の前駆体を得た。得られた前駆体0.5gを純水50mLに溶解させ、トリス(2-カルボキシエチル)ホスフィン(TCEP)180mgを加えて、一晩反応させた。得られた反応液に、エタノール150mLをゆっくり添加し、修飾ヒアルロン酸を沈殿させ、80%エタノール100mLで3回洗浄して、チオール基を有する修飾ヒアルロン酸(チオール基含有修飾HA)を得た。
[実施例2]
<チオール基を有する修飾ヒアルロン酸の製造方法>
 ヒアルロン酸(キユーピー株式会社製ヒアベスト(S)LF-P、平均分子量約30万)0.5gを純水50mLに溶解させてヒアルロン酸溶液を得た。当該ヒアルロン酸溶液に、1-ヒドロキシベンゾトリアゾール(HOBT)53mg、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)60mg、及びシスタミン二塩酸塩71mgを添加し、一晩反応させた。得られた反応液に、エタノール150mLをゆっくり添加し、修飾ヒアルロン酸を沈殿させ、80%エタノール50mLで3回洗浄して、チオール基を有する修飾ヒアルロン酸の前駆体を得た。得られた前駆体0.25gを純水25mLに溶解させ、トリス(2-カルボキシエチル)ホスフィン(TCEP)180mgを加えて、一晩反応させた。得られた反応液に、エタノール75mLをゆっくり添加し、修飾ヒアルロン酸を沈殿させ、80%エタノール50mLで3回洗浄して、チオール基を有する修飾ヒアルロン酸(チオール基含有修飾HA)を得た。
[実施例3]
<マレイミド基を有する修飾ヒアルロン酸の製造方法>
 ヒアルロン酸(キユーピー株式会社製ヒアロオリゴ、平均分子量6000)0.474gを純水25mLに溶解させ、ヒアルロン酸溶液を得た。ヒアルロン酸溶液に、1-ヒドロキシベンゾトリアゾール(HOBT)211mg、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)240mg、及びN-(2-アミノエチル)マレイミド塩酸塩221mgを添加し、一晩反応させた。得られた反応液にエタノール100mLをゆっくり添加し、修飾ヒアルロン酸を沈殿させ、85%エタノール50mLで3回洗浄して、マレイミド基を有する修飾ヒアルロン酸(マレイミド基含有修飾HA)を得た。
[実施例4~11]
<チオール基を有する修飾ヒアルロン酸の製造方法>
 原料として使用したヒアルロン酸(原料HA)の平均分子量、並びに、HOBT、EDC・HCl及びシスタミン二塩酸塩それぞれの量を表1に示す条件に変更したこと以外は実施例1又は実施例2と同様にして、実施例4~11のチオール基含有修飾HAを製造した。
Figure JPOXMLDOC01-appb-T000007
 実施例4~11の製造で使用した平均分子量がそれぞれ30万、160万、80万、8万、1万及び6000である原料HAは次に示すヒアルロン酸である。
平均分子量30万 :キユーピー株式会社製ヒアベスト(S)LF-P
平均分子量160万:キユーピー株式会社製ヒアルロンサンHA-LQH
平均分子量80万 :キユーピー株式会社製ヒアベスト(J)
平均分子量8万  :キユーピー株式会社製ヒアルロンサンHA-LQL
平均分子量1万  :キユーピー株式会社製ヒアルロンサンHA-LF5-A
平均分子量6000:キユーピー株式会社製ヒアロオリゴ
[実施例12~15]
<マレイミド基を有する修飾ヒアルロン酸の製造方法>
 原料として使用したヒアルロン酸(原料HA)の平均分子量、並びに、HOBT、EDC・HCl及びシスタミン二塩酸塩それぞれの量を表2に示す条件に変更したこと以外は実施例3と同様にして、実施例12~15のマレイミド基含有修飾HAを製造した。
Figure JPOXMLDOC01-appb-T000008
 実施例12~15の製造において使用した平均分子量がそれぞれ1万及び6000である原料HAは次に示すヒアルロン酸である。
平均分子量1万  :キユーピー株式会社製ヒアルロンサンHA-LF5-A
平均分子量6000:キユーピー株式会社製ヒアロオリゴ
<修飾率の測定>
(試料調製)
 試料7mgと内部標準物質4,4-ジメチル-4-シラペンタンスルホン酸ナトリウム(DSS)1mgを重水0.7mLに溶かし、NMR試料管に移し入れ、キャップした。
(測定条件)
装置:VarianNMRsystem400NB型(バリアンテクノロジーズジャパンリミテッド)
観測周波数:400MHz
温度:30℃
基準:DSS(0ppm)
積算回数:64回
(解析方法)
 H-NMRスペクトルのヒアルロン酸のN-アセチル基(2.0ppm)のCHに由来するピーク、及び、システアミン(2.7ppm)のCHに由来するプロトンのピーク、マレイミド(6.9ppm)の-CH=CH-に由来するプロトンのピークを積分した。積分値から下記の式より、修飾率を求めた。
 チオール基修飾率(%)=(2.7ppmのCHに由来するプロトンのピークの積分値/2)/(2.0ppmのCHに由来するプロトンのピークの積分値/3)×100
 マレイミド基修飾率(%)=(6.9ppmの-CH=CH-に由来するプロトンのピークの積分値/2)/(2.0ppmのCHに由来するプロトンのピークの積分値/3)×100
<平均分子量の測定方法>
 チオール基含有修飾HA又はマレイミド基含有修飾HAを移動相に濃度0.1%に溶解し、以下の液体クロマトグラフィー分析にて相対的に平均分子量を測定した。基準物質としては平均分子量が既知である複数の(精製)ヒアルロン酸を用いて、それらの保持時間より検量線を作成し、チオール基含有修飾HA又はマレイミド基含有修飾HAの平均分子量を算出した。
 カラム        :TSKガードカラムPWXL + TSKゲルGMPW×2
 カラム温度      :40℃
 測定波長       :210nm
 流速         :0.8mL/分
 試料注入量      :20μL
 分析時間       :40分
 移動相        :0.003mol/L リン酸緩衝液-0.15mol/L NaCl(pH7.0)
 フォトダイオードアレイ:日本ウォーターズ社製、996フォトダイオードアレイ
 HPLCシステム   :日本ウォーターズ社製、2690セパレーションモジュール
[試験例]
<ゲル組成物の製造方法>
 実施例1、2及び4~11のチオール基含有修飾HA水溶液と、実施例3及び12~15のマレイミド基含有修飾HA水溶液と、を混合する方法でゲル組成物の製造を行った。表3に示した量のチオール基含有修飾HAをリン酸緩衝生理食塩水(PBS)又は水に溶解させて、チオール基含有修飾HA水溶液を得た。表3に示した量のマレイミド基含有修飾HAをPBS又は水に溶解させて、マレイミド基含有修飾HA水溶液を得た。試験例25ではマレイミド基含有修飾HAをPBS又は水に溶解させずに粉末のまま用いた。試験例1~9、12~23及び25ではマレイミド基含有修飾HA水溶液、又は、マレイミド基含有修飾HAの粉末を、チオール基含有修飾HA水溶液に滴下したところ、即時にゲル化した。この場合のゲル化はチオール基含有修飾HA水溶液と、マレイミド基含有修飾HA水溶液との混合後直ちに進行した。混合時の温度は、チオール基含有修飾HA水溶液と、マレイミド基含有修飾HA水溶液、又は、マレイミド基含有修飾HAの粉末と、を混合する際の両者の温度を意味する。表3に示す室温は23℃である。
Figure JPOXMLDOC01-appb-T000009

Claims (7)

  1.  チオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Aと、
     マレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Bと、を備える、ゲル形成用材料。
  2.  前記成分Aのチオール基修飾率が、5%以上50%以下である、請求項1に記載のゲル形成用材料。
  3.  前記成分Aの平均分子量が、10,000以上600,000以下である、請求項1又は2に記載のゲル形成用材料。
  4.  前記成分Bのマレイミド基修飾率が、1%以上30%以下である、請求項1又は2に記載のゲル形成用材料。
  5.  チオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種を含む、in situでのゲル形成用材料。
  6.  マレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種を含む、in situでのゲル形成用材料。
  7.  チオール基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Aと、
     マレイミド基を有する修飾ヒアルロン酸及びその塩からなる群より選択される少なくとも1種の成分Bとを含み、
     前記チオール基と前記マレイミド基とが結合している、ゲル組成物。
PCT/JP2023/017055 2022-09-07 2023-05-01 ゲル形成用材料及びゲル組成物 WO2024053159A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-141930 2022-09-07
JP2022141930 2022-09-07

Publications (1)

Publication Number Publication Date
WO2024053159A1 true WO2024053159A1 (ja) 2024-03-14

Family

ID=90192202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017055 WO2024053159A1 (ja) 2022-09-07 2023-05-01 ゲル形成用材料及びゲル組成物

Country Status (1)

Country Link
WO (1) WO2024053159A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111588913A (zh) * 2020-05-15 2020-08-28 四川大学 一种自交联透明质酸及其复合胶原蛋白类的水凝胶注射剂及其应用
WO2021213467A1 (en) * 2020-04-23 2021-10-28 Pleryon Therapeutics (Shenzhen) Limited Biocompatible material and methods for making and using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021213467A1 (en) * 2020-04-23 2021-10-28 Pleryon Therapeutics (Shenzhen) Limited Biocompatible material and methods for making and using the same
CN111588913A (zh) * 2020-05-15 2020-08-28 四川大学 一种自交联透明质酸及其复合胶原蛋白类的水凝胶注射剂及其应用

Similar Documents

Publication Publication Date Title
ES2666694T3 (es) Polímeros a base de ciclodextrina para el suministro de los agentes terapéuticos enlazados covalentemente a ellos
US7348424B2 (en) Polysaccharide containing phosphorylcholine group and process for producing the same
WO2016040489A1 (en) Functionalized zwitterionic and mixed charge polymers, related hydrogels, and methds for their use
KR20040040782A (ko) 신규한 헥사-암 폴리에틸렌글리콜과 유도체 및 그의합성방법
WO2010070775A1 (ja) 超高強度インジェクタブルハイドロゲル及びその製造方法
HU224697B1 (en) Photocured cross-linked-hyaluronic acid gel and method of preparation thereof
KR101294451B1 (ko) 셀룰로오스 유도체
JP2010519183A (ja) 生理溶液の溶出のためのタンパク質の沈殿を用いる重合
US20190015559A1 (en) Gel material for ophthalmic treatment use
KR101818705B1 (ko) 약물이 충전된 히알루론산 가교물 하이드로겔 및 이의 이용
US20230355833A1 (en) Radiopaque polymers
WO2022092043A1 (ja) 会合性高分子材料
WO2015020206A1 (ja) 組織膨隆材
CN118027246A (zh) 透明质酸衍生物、药物组合物和透明质酸衍生物-药物结合体
US9962469B2 (en) Adhesion-preventing preparation comprising composition comprising polycationic triblock copolymer and polyanionic polymer
EP2042538A1 (en) Amphiphilic copolymers and compositions containing such polymers
RU2415876C1 (ru) Сополимеры на основе n-винилпирролидона
WO2014041231A1 (es) Hidrogel útil como soporte inyectable para aplicación en terapia celular y como sistema de liberación controlada de fármacos
WO2024053159A1 (ja) ゲル形成用材料及びゲル組成物
EP3101064B1 (en) Diamine crosslinking agent, acidic polysaccharide crosslinked body, and medical material
US8153759B2 (en) Depsipeptide containing lactic acid residue
WO2024062713A1 (ja) ゲル形成用材料及びゲル組成物
US20170340774A1 (en) Polethylene glycol hydrogel injection
CA3035288A1 (en) Combination, especially for treating a cartilage defect
KR20180135013A (ko) 히알루론산 콘쥬게이트 및 이들의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862708

Country of ref document: EP

Kind code of ref document: A1