WO2024053119A1 - 精密位置決め装置及び光学装置 - Google Patents

精密位置決め装置及び光学装置 Download PDF

Info

Publication number
WO2024053119A1
WO2024053119A1 PCT/JP2022/038840 JP2022038840W WO2024053119A1 WO 2024053119 A1 WO2024053119 A1 WO 2024053119A1 JP 2022038840 W JP2022038840 W JP 2022038840W WO 2024053119 A1 WO2024053119 A1 WO 2024053119A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
positioning device
optical element
precision positioning
electrical wiring
Prior art date
Application number
PCT/JP2022/038840
Other languages
English (en)
French (fr)
Inventor
仁 西野
Original Assignee
株式会社多摩川ホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社多摩川ホールディングス filed Critical 株式会社多摩川ホールディングス
Publication of WO2024053119A1 publication Critical patent/WO2024053119A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/198Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors with means for adjusting the mirror relative to its support

Definitions

  • the present invention relates to a precision positioning device and an optical device that can provide three-dimensional movability of optical elements.
  • the former is based on MEMS (Micro Electro Mechanical Systems), and for example, as described in Non-Patent Document 1, wafer-level optical elements, especially those with movability, are mainstream.
  • MEMS Micro Electro Mechanical Systems
  • wafer-level optical elements especially those with movability
  • they are manufactured at the wafer level, there are many two-dimensional structures, and when a spring mechanism is provided, a large displacement can be obtained by utilizing resonance characteristics, but static movement is difficult.
  • the optical waveguide is formed in the shape of a wafer, and the part where the light passes is made of a material such as SiN, which causes more loss than when passing through air, and there is also a large loss at the part where the light is introduced.
  • the solution is to increase the intensity of light, but when controlling weak light such as controlling photons, the effect of loss has a large impact on measurement. There was a problem that it caused
  • the present invention has been made based on such problems, and it is an object of the present invention to provide a precision positioning device that can also control weak-intensity light such as photons, and an optical device using the same. .
  • the precision positioning device of the present invention includes an optical element and a support part that supports the optical element, and the support part is electrically connected to a plurality of structures in which electrical wiring is arranged three-dimensionally and to the electrical wiring.
  • the optical element is configured to be able to rotate around a plurality of rotation axes and move in at least one direction of the rotation axes by joining a plurality of piezoelectric actuators that are be.
  • the optical device of the present invention includes a laser oscillator, a photodiode that receives laser light from the laser oscillator, a circuit board on which the laser oscillator and the photodiode are arranged, and a circuit board that is arranged on the circuit board and receives a laser beam from the laser oscillator. and at least one precision positioning device of the present invention disposed on the optical path.
  • an optical element by joining a plurality of structures in which electrical wiring is arranged three-dimensionally and a plurality of piezoelectric actuators electrically connected to the electrical wiring, an optical element can be connected to a plurality of rotation axes. Since it can be rotated around the center and moved in at least one direction of the rotation axis, microfabrication technology, especially mounting technology, can be used to create three-dimensional electrical wiring and structure. This makes it possible to control weak-intensity light such as photons. Furthermore, in addition to weak light, it is also possible to control high-intensity light, making it widely versatile. Furthermore, since it can be integrated on a circuit board, an electromechanical-optical control system can be realized, and the entire system can be miniaturized.
  • FIG. 1 is a diagram showing the configuration of a precision positioning device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a wiring configuration of the precision positioning device shown in FIG. 1.
  • FIG. These are coordinates representing the position of the precision positioning device shown in FIG. 1.
  • 2 is a diagram illustrating a manufacturing process of a mirror of the precision positioning device shown in FIG. 1.
  • FIG. FIG. 2 is a diagram illustrating a manufacturing process of the element-side first structure of the precision positioning device shown in FIG. 1.
  • FIG. FIG. 2 is a diagram illustrating a manufacturing process of a support-side first structure of the precision positioning device shown in FIG. 1.
  • FIG. FIG. 2 is a diagram illustrating a manufacturing process of a second structure of the precision positioning device shown in FIG. 1;
  • FIG. 2 is a diagram illustrating a manufacturing process for joining each structure of the precision positioning device shown in FIG. 1.
  • FIG. 2 is a diagram showing the configuration of an optical device using the precision positioning device shown in FIG. 1.
  • FIG. 2 is a diagram illustrating an example of how the precision positioning device shown in FIG. 1 is used. It is a figure showing the structure of modification 1 of the present invention. It is a figure showing other composition of modification 1 of the present invention. It is a figure explaining the usage example of the modification 1 of this invention. It is a figure showing the structure of modification 2 of the present invention.
  • FIG. 1 shows the overall configuration of a precision positioning device 1 according to a first embodiment of the present invention
  • FIG. 1(A) shows the configuration of the precision positioning device 1 viewed from above.
  • B) shows the configuration seen from direction I shown in FIG. 1(A)
  • FIG. 1(C) shows the configuration seen from direction II shown in FIG. 1(A).
  • FIG. 2 shows the wiring configuration of the precision positioning device 1.
  • 2(A) is a configuration of the element-side first structure 53 viewed from the optical element 2 side
  • FIG. 2(B) is a configuration of the optical element 2 viewed from the element-side first structure 53 side
  • FIG. (C) shows the structure of the first structure 53 on the element side viewed from the side of the first structure 54 on the support side
  • FIG. 2(D) shows the first structure 54 on the support side viewed from the side of the first structure 53 on the element side.
  • the configuration as seen, FIG. 2(E) is the configuration when the second structure 52 is viewed from the support side first structure 54
  • FIG. 2(F) is the configuration when the support side first structure 54 is viewed from the second structure 52.
  • FIG. 2(G) shows the configuration of the second structure 52 viewed from the opposite side of the second structure 52.
  • This precision positioning device 1 includes an optical element 2 and a support section 3 that supports the optical element 2, and can provide three-dimensional movability of the optical element 2.
  • the optical element 2 is, for example, each element constituting an optical device, such as a mirror, a lens, a prism, a filter, or a diffraction grating.
  • the size of the optical element 2 is, for example, preferably 20 mm or less, more preferably 10 mm or less, and even more preferably 100 ⁇ m or more and 10 mm or less. This is because it can be made smaller.
  • the size of the optical element 2 is, for example, the maximum length of the optical element 2. Note that in this embodiment, a case where a mirror is used as the optical element 2 will be specifically described as an example.
  • the mirror is made of a dielectric multilayer film such as SiO 2 or Ta 2 O 3 on one surface of an element substrate 21 made of a dielectric material such as silicon or ceramics such as silica glass, borosilicate glass, and low thermal expansion crystallized glass.
  • a reflective film 22 is formed, and an element side electrode portion 23 is formed on the other surface.
  • the support portion 3 includes a plurality of structures in which electrical wiring is arranged three-dimensionally, and a plurality of piezoelectric actuators electrically connected to the electrical wiring.
  • the support section 3 enables the optical element 2 to rotate around a plurality of rotation axes and rotates the optical element 2 in at least one direction of the rotation axis. It is configured so that it can be moved to
  • the support section 3 includes a first structure 51 and a second structure 52 as structures, and includes a plurality of first piezoelectric actuators 61 and a plurality of second piezoelectric actuators as piezoelectric actuators. 62.
  • the first piezoelectric actuator 61 is disposed between the first structure 51 and the optical element 2 .
  • the first piezoelectric actuators 61 are, for example, three or more, and are arranged so that the optical element 2 can be rotated about the X-axis and the Z-axis as rotation axes, and can be moved in the Y-axis direction.
  • the second piezoelectric actuator 62 is disposed between the first structure 51 and the second structure 52.
  • the second piezoelectric actuators 62 are, for example, three or more, and are arranged so as to be able to rotate the optical element 2 about the X-axis and the Y-axis as rotation axes, and to be movable in the Z-axis direction. .
  • the support section 3 allows the optical element 2 to rotate about the X-axis, Y-axis, and Z-axis as rotation axes, and to move in the Y-axis direction and the Z-axis direction. It is configured.
  • FIGS. 1 and 2 show a case in which four first piezoelectric actuators 61 and four second piezoelectric actuators 62 are provided. Moreover, in FIGS. 1 and 2, the first piezoelectric actuator 61 and the second piezoelectric actuator 62 are shown with a satin finish for clarity.
  • the first structure 51 is made of, for example, a ceramic such as silica glass, borosilicate glass, or low thermal expansion crystallized glass, or a dielectric material such as silicon.
  • the first structure 51 includes, for example, an element-side first structure 53 to which a first piezoelectric actuator 61 is bonded, and a support-side first structure to which a second piezoelectric actuator 62 is bonded and supports the element-side first structure 53. It has a structure 54.
  • the element-side first structure 53 has, for example, a surface perpendicular to the Y-axis, and the first piezoelectric actuator 61 is bonded to the surface perpendicular to the Y-axis.
  • the support-side first structure 54 has, for example, a surface perpendicular to the Z-axis, and the second piezoelectric actuator 62 is joined to the surface perpendicular to the Z-axis.
  • the second structure 52 is made of, for example, ceramics such as silica glass, borosilicate glass, and low thermal expansion crystallized glass, or a dielectric material such as silicon, and supports the first structure 51 .
  • the second structure 52 has, for example, a surface perpendicular to the Z-axis, and the second piezoelectric actuator 62 is joined to the surface perpendicular to the Z-axis.
  • the element-side first structure 53, the support-side first structure 54, and the second structure 52 are, for example, plate-shaped and have a pair of planes and four side surfaces.
  • the thickness of the element-side first structure 53, the support-side first structure 54, and the second structure 52 is preferably, for example, 0.1 mm or more and 5 mm or less.
  • the size of these planes is, for example, preferably 0.1 mm x 0.1 mm or more and 20 mm x 20 mm or less, more preferably 0.1 mm x 0.1 mm or more and 10 mm x 10 mm or less.
  • the element-side first structure 53 is disposed, for example, with one side surface facing the support-side first structure 54, and the first piezoelectric actuator 61 is bonded to one plane.
  • the element side first structure 53 is provided with a plurality of first electric wirings 41 as electric wirings from one plane to which the first piezoelectric actuator 61 is bonded to the side surface facing the support side first structure 54.
  • the corner between the one plane and the side surface where the first electrical wiring 41 is provided is chamfered at least in the area where the first electrical wiring 41 is provided. This is because the first electrical wiring 41 can be easily formed.
  • First electrode portions 42 are provided at both ends of the first electrical wiring 41, respectively.
  • One of the first electrical wiring lines 41 is electrically connected to the optical element 2 side of the first piezoelectric actuator 61 .
  • one first electrode portion 42 is electrically connected to the element-side electrode portion 23 of the optical element 2 by a connecting portion 63 made of a conductive polymer or the like.
  • the other first electrical wiring 41 is individually electrically connected to the element-side first structure 54 side of the first piezoelectric actuator 61 at one first electrode portion 42 . Thereby, the first electrical wiring 41 can apply voltage to the first piezoelectric actuator 61.
  • the support-side first structure 54 has, for example, the element-side first structure 53 disposed on one plane, and the second piezoelectric actuator 62 bonded to the other plane.
  • the support-side first structure 54 has a plurality of second electrical wirings extending from one plane where the element-side first structure 53 is disposed to the other plane to which the second piezoelectric actuator 62 is bonded via the side surface.
  • Electric wiring 43 is provided.
  • the corners between one plane where the second electrical wiring 43 is provided and the side surface and the corner between the side surface and the other plane are chamfered at least in the area where the second electrical wiring 43 is provided. It is preferable. This is because the second electrical wiring 43 can be easily formed.
  • the second electrical wiring 43 electrically connects the first electrical wiring 41 to a power source, and second electrode portions 44 are provided at both ends of the second electrical wiring 43, respectively.
  • One second electrode section 44 is individually electrically connected to the other first electrode section 42 of the first electrical wiring 41 .
  • a first structure-side electrode portion 55 that is electrically connected to each second piezoelectric actuator 62 is provided.
  • the second structure 52 has, for example, a second piezoelectric actuator 62 joined to one plane.
  • the second structure 52 is provided with a plurality of third electrical wirings 45 and a plurality of fourth electrical wirings 46 as electrical wiring from one plane to the other plane via the side surface.
  • the corner between one plane and the side surface where the third electrical wiring 45 or the fourth electrical wiring 46 is provided, and the corner between the side surface and the other plane are at least the third electrical wiring 45 or the fourth electrical wiring 46. It is preferable that the area where the groove is provided is chamfered. This is because the third electrical wiring 45 and the fourth electrical wiring 46 can be easily formed.
  • the third electrical wiring 45 electrically connects the first electrical wiring 41 to the power source via the second electrical wiring 43, and a third electrode portion 47 is provided at each end of the third electrical wiring 45. It is provided.
  • One third electrode section 47 is individually electrically connected to the other second electrode section 44 of the second electrical wiring 43 by a connecting section 64 made of a conductive polymer or the like.
  • the other third electrode section 47 is electrically connected to, for example, a circuit board (not shown) on which the precision positioning device 1 is disposed.
  • Fourth electrode portions 48 are provided at both ends of the fourth electrical wiring 46, respectively.
  • One of the fourth electrical wirings 46 is electrically connected to the side of the supporting first structure 54 of the second piezoelectric actuator 62, and one of the fourth electrical wirings 46 is connected to a conductive polymer or the like in one of the fourth electrode parts 48. It is electrically connected to the first structure side electrode part 55 by a connecting part 64 consisting of the following.
  • the other fourth electrical wiring 46 is individually electrically connected to the second structure 52 side of the second piezoelectric actuator 62 at one fourth electrode portion 48 . Thereby, the fourth electric wiring 46 can apply voltage to the second piezoelectric actuator 62.
  • the other fourth electrode section 48 is electrically connected to, for example, a circuit board (not shown) on which the precision positioning device 1 is disposed.
  • the electrode portion 23 and the first structure side electrode portion 55 are made of metal such as gold (Au) or aluminum (Al), for example.
  • the thickness of these is, for example, about 100 nm to 1000 nm.
  • an adhesion layer made of a metal such as titanium (Ti) or chromium (Cr) may be provided between these and the element-side first structure 53, the support-side first structure 54, or the second structure. You can also do this.
  • the thickness of the adhesive layer is, for example, about 1 nm to 20 nm.
  • the first electrode part 42 and the second electrode part 44 can be brought into contact with each other by soldering or welding glasses together using a YAG laser or the like, or can be brought into conduction through a conductive polymer. can.
  • the first piezoelectric actuator 61, the first electrode section 42, and the element-side electrode section 23, and the second piezoelectric actuator 62, the fourth electrode section 48, and the first structure-side electrode section 55 are joined by, for example, a conductive polymer. It is preferable. This is to provide mobility.
  • the first piezoelectric actuator 61 and the second piezoelectric actuator 62 are configured to expand and contract in the thickness direction, that is, in the voltage application direction, by adjusting the voltage, for example. Thereby, the thickness of the first piezoelectric actuator 61 and the second piezoelectric actuator 62 changes depending on the voltage, and the optical element 2 can be rotated about the X-axis, Y-axis, and Z-axis as rotation axes. It is designed to be movable in the Y-axis direction and the Z-axis direction.
  • the simultaneous transformation matrix 0 T 1 regarding the coordinate system 0 (reference coordinates) is expressed by Equation 1.
  • a simultaneous transformation matrix 1 T 2 regarding coordinate system 1 is expressed by Equation 2
  • a simultaneous transformation matrix 0 T 2 regarding rotation/movement of coordinate system 0 and coordinate system 1 viewed from the reference coordinate system is expressed by Equation 3.
  • This precision positioning device 1 can be manufactured, for example, as follows. 4 to 8 show the manufacturing process of the precision positioning device 1.
  • FIG. First for example, each component of the precision positioning device 1, that is, the mirror that is the optical element 2, the element-side first structure 53, the support-side first structure 54, and the second structure 52 are manufactured.
  • the mirror is manufactured by first cutting a substrate made of glass or the like into a predetermined size to form an element substrate 21 as shown in FIG.
  • a reflective film 22 made of a dielectric multilayer film is formed on one surface of the element substrate 21 by sputtering or the like, and then, as shown in FIG. 4(C), a metal film is formed on the other surface of the element substrate 21 by sputtering or the like.
  • An element-side electrode portion 23 is formed.
  • FIG. 5A a substrate 71 made of glass or the like is prepared, and the side surface of the first structure 53 on the element side is prepared as shown in FIGS.
  • a through hole 72 is formed by drilling or the like in correspondence to a position where the first electric wiring 41 is formed. At that time, it is preferable to form a countersunk hole in the through hole 72 and to chamfer the corners of one side and the side surface where the first electric wiring 41 is formed.
  • FIG. 5(C) shows the structure of FIG. 5(B) seen from one side
  • FIG. 5(B) shows the cross-sectional structure along the line III-III of FIG. 5(C).
  • a stencil mask 73 is formed on one surface of the substrate 71, with openings in which the first electric wiring 41 and the first electrode portion 42 are to be formed.
  • the first electrical wiring 41 and the first electrode portion 42 are formed by sputtering or the like, and the stencil mask 73 is removed.
  • the substrate 71 is cut into a predetermined size. At this time, one side surface is formed so as to cut through hole 72 .
  • the support-side first structure 54 can also be formed in the same manner as the element-side first structure 53.
  • a substrate 71 made of glass or the like is prepared, and through holes 72 are formed by drilling or the like in correspondence with the formation positions of the second electric wiring 43 on the side surface. At that time, it is preferable to form countersunk holes in the through holes 72 on both sides.
  • a stencil mask with openings in which the second electrical wiring 43 and the second electrode part 44 are to be formed is formed on one surface of the substrate 71, and the second electrical wiring is formed by sputtering or the like. Wiring 43 and second electrode section 44 are formed, and the stencil mask is removed.
  • openings are formed on the other surface of the substrate 71 to form regions for forming the second electrical wiring 43, the second electrode section 44, and the first structure-side electrode section 55.
  • a stencil mask is formed, and a second electrical wiring 43, a second electrode part 44, and a first structure-side electrode part 55 are formed by sputtering or the like, and the stencil mask is removed.
  • the substrate 71 is cut into a predetermined size. At this time, one side surface is formed so as to cut through hole 72 .
  • the second structure 52 can also be formed in the same manner as the element-side first structure 53.
  • a substrate 71 made of glass or the like is prepared, and the holes are penetrated by drilling or the like in correspondence with the formation positions of the third electric wiring 45 and the fourth electric wiring 46 on the side surface.
  • a hole 72 is formed. At that time, it is preferable to form countersunk holes in the through holes 72 on both sides.
  • formation regions for the third electrical wiring 45, fourth electrical wiring 46, third electrode section 47, and fourth electrode section 48 are formed on one surface of the substrate 71.
  • An open stencil mask is formed, a third electrical wiring 45, a fourth electrical wiring 46, a third electrode section 47, and a fourth electrode section 48 are formed by sputtering or the like, and the stencil mask is removed. Subsequently, for example, as shown in FIG. 7C, a third electrical wiring 45, a fourth electrical wiring 46, a third electrode section 47, and a fourth electrode section 48 are formed on the other surface of the substrate 71.
  • a stencil mask with open areas is formed, a third electrical wiring 45, a fourth electrical wiring 46, a third electrode section 47, and a fourth electrode section 48 are formed by sputtering or the like, and the stencil mask is removed. Thereafter, for example, as shown in FIG. 7(D), the substrate 71 is cut into a predetermined size. At that time, the two side surfaces are formed so as to cut the through hole 72.
  • the first piezoelectric actuator 61 is bonded to the first electrode portion 42 of the element-side first structure 53 using a conductive polymer, and The connecting portion 63 is joined.
  • the first piezoelectric actuator 61 and the element-side electrode part 23 are bonded using a conductive polymer, and the first electrode part 42 and the element-side electrode part 23 are bonded together. They are joined by a connecting portion 63 made of conductive polymer.
  • a connecting portion 64 made of a conductive polymer is bonded to the third electrode portion 47 of the second structure 52, and a connecting portion 64 made of a conductive polymer is further bonded to the fourth electrode portion 48.
  • the two piezoelectric actuators 62 are bonded together using a conductive polymer, and a connecting portion 65 made of a conductive polymer is also bonded.
  • the second piezoelectric actuator 62 and the first structure-side electrode section 55 are bonded using a conductive polymer, and the fourth electrode section 48 and the first structure-side electrode section 55 are bonded together using a conductive polymer.
  • the side electrode part 55 is joined by a connecting part 65 made of a conductive polymer, and the third electrode part 47 and the second electrode part 44 are joined by a connecting part 64 made of a conductive polymer. Thereafter, for example, the second electrode section 44 and the first electrode section 42 are brought into contact with each other by soldering or glass-to-glass welding using a YAG laser or the like to establish electrical continuity. Thereby, the precision positioning device 1 shown in FIG. 1 is obtained.
  • This precision positioning device 1 can be used for optical devices.
  • the optical element 2 is constituted by a mirror
  • the optical path of the laser beam can be adjusted by adjusting the direction in which the laser beam is reflected by the mirror.
  • a sample measurement system using a Mach-Zehnder interferometer will be described as an example.
  • FIG. 9 shows the configuration of a sample measurement system using a Mach-Zehnder interferometer.
  • This measurement system includes, for example, a laser oscillator 81, a photodiode 82 that receives the laser beam from the laser oscillator 81, a circuit board 83 on which the laser oscillator 81 and the photodiode 82 are disposed, and a circuit board 83 disposed on the circuit board 83. and two precision positioning devices 1 arranged on the optical path from the laser oscillator 81 to the photodiode 82.
  • the precision positioning device 1 has a mirror as an optical element 2.
  • a lens 84, a 1/2 ⁇ wavelength plate 85, and a half mirror 86 are arranged on the circuit board 83 in order from the laser oscillator 81 side.
  • a half mirror 87, a polarizing plate 88, and a lens 89 are arranged on the circuit board 83 in order from the other precision positioning device 1 side.
  • the position of the mirror of one precision positioning device 1 is such that the laser beam emitted from the laser oscillator 81 passes through the half mirror 86, is reflected by the mirror of one precision positioning device 1, is reflected by the half mirror 87, and is transmitted to the photodiode.
  • the beam is adjusted by the support part 3 of one of the precision positioning devices 1 so that it is incident on the beam 82 .
  • the position of the mirror of the other precision positioning device 1 is such that the laser beam emitted from the laser oscillator 81 is reflected by the half mirror 86, reflected by the mirror of the other precision positioning device 1, and passed through the half mirror 87.
  • the light is adjusted by the support portion 3 of the other precision positioning device 1 so that the light is incident on the photodiode 82 .
  • a sample M is placed between the half mirror 86 and one mirror of the precision positioning device 1, and the refractive index of the sample M is calculated from the optical path difference caused by the difference between the refractive index of the sample M and the refractive index of air. Measure.
  • the optical device may include at least one precision positioning device 1.
  • the precision positioning device 1 also supports BBM92 type quantum cryptography communication between the first earth station 91 and the second earth station 92 via the first artificial satellite 93, Alternatively, it can be used for precise positioning of the optical element 2 in quantum cryptographic communication using the BB84 method between the third earth station 94 and the second artificial satellite 95.
  • quantum cryptography communication using the BBM92 method two photons in a quantum entangled state are branched from the first artificial satellite 93 and sent to the first earth station 91 and the second earth station 92, respectively.
  • quantum cryptography communication using the BB84 method photons are sent from the third earth station 94 to the second artificial satellite 95.
  • the precision positioning device 1 of the present embodiment a plurality of structures in which electrical wiring is arranged three-dimensionally and a plurality of piezoelectric actuators electrically connected to the electrical wiring are joined together.
  • the optical element 2 can be rotated around a plurality of rotation axes and can be moved in at least one direction of the rotation axes. Therefore, it is possible to provide a three-dimensional electric wiring 4 and structure, and it is possible to control light of weak intensity such as photons. Furthermore, in addition to weak light, it is also possible to control high-intensity light, making it widely versatile.
  • an electromechanical-optical control system can be realized, and the entire system can be miniaturized.
  • the element-side first structure 53 is arranged relative to the support-side first structure 54 so that the side surface of the support-side first structure 54 and the surface of the reflective film 22 of the mirror are parallel to each other.
  • the surface of the reflective film 22 of the mirror is rotated by 45 degrees with respect to the side surface of the support-side first structure 54 about the Z-axis as the rotation axis, and the element is
  • the side first structure 53 may be arranged with respect to the support side first structure 54.
  • FIG. 11(A) shows the configuration of the precision positioning device 1 viewed from above
  • FIG. 11(B) shows the wiring configuration of the element-side surface of the support-side first structure 54.
  • FIG. 12(A) shows a configuration in which the surface of the reflective film 22 of the mirror is rotated by 45 degrees with respect to the side surface of the first supporting structure
  • FIG. 12(B) shows the surface of the reflective film 22 of the mirror
  • FIG. 12C shows the wiring configuration of the element-side surface of the support-side first structure 54.
  • each second electric Two second electrode portions 44 are provided on each wiring 43 .
  • the first arrangement position of the element-side first structure 53 is a position where the surface of the reflective film 22 of the mirror and the side surface of the support-side first structure are rotated by 45 degrees about the Z axis as the rotation axis.
  • the second arrangement position of the element-side first structure 53 is a position where the surface of the reflection film 22 of the mirror and the side surface of the support-side first structure 54 are arranged in parallel.
  • the first arrangement position and the second arrangement position are the central positions in the length direction along the reflective film 22 on the side surface where the first electrode part 42 is provided when the element-side first structure 53 is arranged. preferably coincides with the center position of the element-side surface of the support-side first structure 54.
  • FIG. 13 shows the optical path with arrows when the precision positioning device 1 is used for reflecting laser light.
  • the element-side first structure 53 is arranged at the first arrangement position, for example, as shown in FIG. 13(A)
  • the laser beam is reflected and the element-side first structure
  • the laser beam is reflected, for example, as shown in FIG. 13(B).
  • the arrangement position of the element-side first structure 53 can be arbitrarily selected between the first arrangement position and the second arrangement position, depending on the place where the precision positioning device 1 is arranged.
  • the first electrical wiring 41, the second electrical wiring 43, and the third electrical wiring are provided on the side surfaces of the element-side first structure 53, the support-side first structure 54, and the second structure 52.
  • 45, or when forming the fourth electrical wiring 46 a case has been described in which a through hole 72 is provided in the substrate 71, a metal film is formed on the inner wall of the through hole 72, and the metal film is cut through the through hole 72.
  • the first electrical wiring 41, the second electrical wiring 43, the third electrical wiring 45, and the fourth electrical wiring 46 may be provided on the side surface of the second structure 52.
  • FIG. 14 shows a configuration example of Modification 2.
  • the corners of one plane and side surface forming the first electric wiring 41 of the element-side first structure 53 be chamfered. Further, it is preferable that the corners between one plane and the side surface forming the second electric wiring 43 of the support-side first structure 54 and the corners between the side surface and the other plane are chamfered. Furthermore, the corner between one plane and the side surface forming the third electrical wiring 45 or the fourth electrical wiring 46 of the second structure 52, and the corner between the side surface and the other plane are chamfered. is preferred. This is because the first electrical wiring 41, the second electrical wiring, the third electrical wiring 45, and the fourth electrical wiring 46 can be easily formed.
  • Laser oscillator 82 ... Photodiode, 83 ... Circuit board, 84, 89 ... Lens, 85 ... 1/2 ⁇ wavelength plate, 86, 87 ...Half mirror, 88...Polarizing plate, 91...First earth station, 92...Second earth station, 93...First artificial satellite, 94...Third earth station, 95...Second artificial satellite

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

【課題】光子のような微弱な強度の光の制御も可能とすることができる精密位置決め装置及びそれを用いた光学装置を提供する。 【解決手段】精密位置決め装置1は、光学素子2と、光学素子2を支持する支持部3とを備えている。支持部3は、第1構造物51と第2構造物52とを有しており、第1構造物51と光学素子2との間に複数の第1圧電アクチュエータ61が配設され、第1構造物51と第2構造物52との間に複数の第2圧電アクチュエータ62が配設されている。これにより、支持部3は、光学素子2を、X軸、Y軸、及び、Z軸を回転軸として回動可能とすると共に、Y軸方向、及び、Z軸方向に移動可能とするように構成されている。

Description

精密位置決め装置及び光学装置
 本発明は、光学素子の可動性を3次元的に持たせることができる精密位置決め装置及び光学装置に関する。
 1960年代にレーザーが発明されて以来、光計測技術は著しく発展した。1970年代に半導体レーザーが発明されてからは小型の計測装置の研究開発が活発化し、1980年代には、半導体レーザーを内蔵した計測装置が実用化された。近年では、これまで高価で大型であった計測装置と同じ機能・性能を維持した状態で携帯可能とした計測装置の開発が活発化している。その手法は、大きく分けて、微細加工技術を用いたものと、光導波路を用いたものがある。
 前者は、MEMS(Micro Electro Mechanical Systems)によるもので、例えば、非特許文献1にあるように、ウエハレベルでの光学素子、特に可動性を持たせたものが主流となっている。しかしながら、ウエハレベルでの作製ゆえに、2次元的な構造物が多く、また、ばね機構を持たせる場合、共振特性を利用すると大きな変位を得られるが静的な可動が困難といった問題がある。
 後者は、光導波路がウエハ状に形成されており、光が通過するところは、SiN等の材料で、空気中を通過するよりも損失があり、また、光を導入するところでも大きな損失がある。例えば、非特許文献2のようにセンサの利用の場合は、光の強度を上げることで解決するが、光子を制御するような微弱な光を制御する場合は、損失の影響が計測に大きな影響を及ぼすという問題があった。
O. Solgaard, A. A. Godil, R. T. Howe, L. P. Lee, Y. Peter and H. Zappe, "Optical MEMS: From Micromirrors to Complex Systems," in Journal of Microelectromechanical Systems, vol. 23, no. 3, pp. 517-538, June 2014, doi: 10.1109/JMEMS.2014.2319266. Sepulveda, Borja, et al. "Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices." Journal of Optics A: Pure and Applied Optics 8.7 (2006): S561.
 このように、MEMS技術のみのアプローチだけ、もしくは、光導波路のアプローチによるだけでは、光子のような微弱な光の精密制御は困難であり、大型の光学システムの小型化と自動制御をすることが課題となっている。
 本発明は、このような問題に基づきなされたものであり、光子のような微弱な強度の光の制御も可能とすることができる精密位置決め装置及びそれを用いた光学装置を提供することにある。
 本発明の精密位置決め装置は、光学素子と、光学素子を支持する支持部とを備え、支持部は、電気配線が立体的に配設された複数の構造物と、電気配線に電気的に接続された複数の圧電アクチュエータとを接合することにより、光学素子を、複数の回転軸を中心として回動可能とすると共に、回転軸の少なくとも1つの方向に移動可能とするように構成されたものである。
 本発明の光学装置は、レーザー発振器と、レーザー発振器からのレーザー光を受光するフォトダイオードと、レーザー発振器及びフォトダイオードが配設された回路基板と、回路基板に配設され、レーザー発振器からフォトダイオードまでの光路上に配置された本発明の少なくとも1つの精密位置決め装置とを備えたものである。
 本発明によれば、電気配線が立体的に配設された複数の構造物と、電気配線に電気的に接続された複数の圧電アクチュエータとを接合することにより、光学素子を、複数の回転軸を中心として回動可能とすると共に、回転軸の少なくとも1つの方向に移動とするようにしたので、微細加工技術、特に、実装の技術を利用して、三次元な電気配線と構造を持たせることができ、光子のような微弱な強度の光の制御を可能とすることができる。また、微弱な光以外にも、高強度な光の制御も可能であり、広く汎用性を持たせることができる。更に、回路基板上に集積することができるので、電気機械光学制御システムを実現することができ、系全体での小型化を達成することができる。
本発明の一実施の形態に係る精密位置決め装置の構成を表す図である。 図1に示した精密位置決め装置の配線構成を表す図である。 図1に示した精密位置決め装置の位置を表す座標である。 図1に示した精密位置決め装置のミラーの製造工程を表す図である。 図1に示した精密位置決め装置の素子側第1構造物の製造工程を表す図である。 図1に示した精密位置決め装置の支持側第1構造物の製造工程を表す図である。 図1に示した精密位置決め装置の第2構造物の製造工程を表す図である。 図1に示した精密位置決め装置の各構造物を接合する製造工程を表す図である。 図1に示した精密位置決め装置を用いた光学装置の構成を表す図である。 図1に示した精密位置決め装置の利用例を説明する図である。 本発明の変形例1の構成を表す図である。 本発明の変形例1の他の構成を表す図である。 本発明の変形例1の利用例を説明する図である。 本発明の変形例2の構成を表す図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
(第1の実施の形態)
 図1は、本発明の第1の実施の形態に係る精密位置決め装置1の全体構成を表すものであり、図1(A)は精密位置決め装置1を上から見た構成を示し、図1(B)は図1(A)に示したI方向から見た構成を示し、図1(C)は図1(A)に示したII方向から見た構成を示している。図2は、精密位置決め装置1の配線構成を表すものである。図2(A)は素子側第1構造物53を光学素子2の側から見た構成、図2(B)は光学素子2を素子側第1構造物53の側から見た構成、図2(C)は素子側第1構造物53を支持側第1構造物54の側から見た構成、図2(D)は支持側第1構造物54を素子側第1構造物53の側から見た構成、図2(E)は第2構造物52を支持側第1構造物54の側から見た構成、図2(F)は支持側第1構造物54を第2構造物52の側から見た構成、図2(G)は第2構造物52を第2構造物52の反対側から見た構成を示している。
 この精密位置決め装置1は、光学素子2と、光学素子2を支持する支持部3とを備えており、光学素子2の可動性を3次元的に持たせることができるものである。光学素子2は、例えば、光学装置を構成する各要素であり、ミラー、レンズ、プリズム、フィルター、又は、回折格子等が挙げられる。光学素子2の大きさは、例えば、20mm以下であることが好ましく、10mm以下であればより好ましく、100μm以上10mm以下であれば更に好ましい。小型化することができるからである。光学素子2の大きさというのは、例えば、光学素子2の最大長さである。なお、本実施の形態では、光学素子2としてミラーを用いる場合を例に挙げて具体的に説明する。ミラーは、例えば、シリカガラス、ほう珪酸ガラス、低熱膨張結晶化ガラス等のセラミックスやシリコン等の誘電体よりなる素子基板21の一面に、SiOやTa等の誘電体多層膜よりなる反射膜22が形成され、他面に素子側電極部23が形成されている。
 支持部3は、電気配線が立体的に配設された複数の構造物と、電気配線に電気的に接続された複数の圧電アクチュエータとを有している。支持部3は、複数の構造物と、複数の圧電アクチュエータとを組み合わせて接合することにより、光学素子2を、複数の回転軸を中心として回動可能とすると共に、回転軸の少なくとも1つの方向に移動可能とするように構成されている。
 具体的には、例えば、支持部3は、構造物として第1構造物51と第2構造物52とを有しており、圧電アクチュエータとして複数の第1圧電アクチュエータ61と複数の第2圧電アクチュエータ62とを有している。第1圧電アクチュエータ61は、第1構造物51と光学素子2との間に配設されている。第1圧電アクチュエータ61は、例えば、3個以上であり、光学素子2について、X軸及びZ軸を回転軸として回動可能とすると共に、Y軸方向に移動可能とするように配置されている。第2圧電アクチュエータ62は、第1構造物51と第2構造物52との間に配設されている。第2圧電アクチュエータ62は、例えば、3個以上であり、光学素子2について、X軸及びY軸を回転軸として回動可能とすると共に、Z軸方向に移動可能とするように配置されている。
 これにより、支持部3は、光学素子2を、X軸、Y軸、及び、Z軸を回転軸として回動可能とすると共に、Y軸方向、及び、Z軸方向に移動可能とするように構成されている。なお、図1,2では、第1圧電アクチュエータ61及び第2圧電アクチュエータ62をそれぞれ4個配設した場合を示している。また、図1,2では、わかりやすくするために、第1圧電アクチュエータ61及び第2圧電アクチュエータ62に梨地を付して示している。
 第1構造物51は、例えば、シリカガラス、ほう珪酸ガラス、低熱膨張結晶化ガラス等のセラミックスやシリコン等の誘電体により構成されている。第1構造物51は、例えば、第1圧電アクチュエータ61が接合された素子側第1構造物53と、第2圧電アクチュエータ62が接合され、素子側第1構造物53を支持する支持側第1構造物54とを有している。素子側第1構造物53は、例えば、Y軸に対して垂直な面を有しており、このY軸に対して垂直な面に第1圧電アクチュエータ61が接合されている。支持側第1構造物54は、例えば、Z軸に対して垂直な面を有しており、このZ軸に対して垂直な面に第2圧電アクチュエータ62が接合されている。第2構造物52は、例えば、シリカガラス、ほう珪酸ガラス、低熱膨張結晶化ガラス等のセラミックスやシリコン等の誘電体により構成されており、第1構造物51を支持するものである。第2構造物52は、例えば、Z軸に対して垂直な面を有しており、このZ軸に対して垂直な面に第2圧電アクチュエータ62が接合されている。
 素子側第1構造物53、支持側第1構造物54、及び、第2構造物52は、例えば、板状であり、一対の平面及び4つの側面を有している。素子側第1構造物53、支持側第1構造物54、及び、第2構造物52の厚みは、例えば、0.1mm以上5mm以下であることが好ましい。これらの平面の大きさは、例えば、0.1mm×0.1mm以上、20mm×20mm以下であることが好ましく、0.1mm×0.1mm以上、10mm×10mm以下であればより好ましい。
 素子側第1構造物53は、例えば、支持側第1構造物54に対して1つの側面を対向させて配設されており、一方の平面に第1圧電アクチュエータ61が接合されている。素子側第1構造物53には、第1圧電アクチュエータ61が接合された一方の平面から支持側第1構造物54と対向する側面にかけて、電気配線として複数の第1電気配線41が設けられている。第1電気配線41が設けられた一方の平面と側面との角部は、少なくとも第1電気配線41が設けられている領域において、面取りされていることが好ましい。第1電気配線41を容易に形成することができるからである。
 第1電気配線41の両端には第1電極部42がそれぞれ設けられている。第1電気配線41のうち1つは、第1圧電アクチュエータ61の光学素子2の側と電気的に接続されるものである。例えば、一方の第1電極部42において、導電性ポリマー等よりなる接続部63により光学素子2の素子側電極部23と電気的に接続されている。他の第1電気配線41は、一方の第1電極部42において、第1圧電アクチュエータ61の素子側第1構造物54の側と個別に電気的に接続されている。これにより、第1電気配線41は、第1圧電アクチュエータ61に電圧を印加することができるようになっている。
 支持側第1構造物54は、例えば、一方の平面に素子側第1構造物53が配設され、他方の平面に第2圧電アクチュエータ62が接合されている。支持側第1構造物54には、素子側第1構造物53が配設された一方の平面から側面を介し第2圧電アクチュエータ62が接合された他方の平面にかけて、電気配線として複数の第2電気配線43が設けられている。第2電気配線43が設けられた一方の平面と側面との角部、及び、側面と他方の平面との角部は、少なくとも第2電気配線43が設けられている領域において、面取りされていることが好ましい。第2電気配線43を容易に形成することができるからである。第2電気配線43は、第1電気配線41を電源に対して電気的に接続するものであり、第2電気配線43の両端には第2電極部44がそれぞれ設けられている。一方の第2電極部44は、第1電気配線41の他方の第1電極部42に対して個別に電気的に接続されている。また、支持側第1構造物54の他方の平面には、各第2圧電アクチュエータ62と電気的に接続される第1構造物側電極部55が設けられている。
 第2構造物52は、例えば、一方の平面に第2圧電アクチュエータ62が接合されている。第2構造物52には、一方の平面から側面を介し他方の平面にかけて、電気配線として複数の第3電気配線45及び複数の第4電気配線46が設けられている。第3電気配線45又は第4電気配線46が設けられた一方の平面と側面との角部、及び、側面と他方の平面との角部は、少なくとも第3電気配線45又は第4電気配線46が設けられている領域において、面取りされていることが好ましい。第3電気配線45及び第4電気配線46を容易に形成することができるからである。
 第3電気配線45は、第2電気配線43を介して第1電気配線41を電源に対して電気的に接続するものであり、第3電気配線45の両端には第3電極部47がそれぞれ設けられている。一方の第3電極部47は、第2電気配線43の他方の第2電極部44と、導電性ポリマー等よりなる接続部64により個別に電気的に接続されている。他方の第3電極部47は、例えば、精密位置決め装置1を配設する図示しない回路基板等に対して電気的に接続される。
 第4電気配線46の両端には第4電極部48がそれぞれ設けられている。第4電気配線46のうち1つは、第2圧電アクチュエータ62の支持側第1構造物54の側と電気的に接続されるものであり、一方の第4電極部48において、導電性ポリマー等よりなる接続部64により第1構造物側電極部55と電気的に接続されている。他の第4電気配線46は、一方の第4電極部48において、第2圧電アクチュエータ62の第2構造物52の側と個別に電気的に接続されている。これにより、第4電気配線46は、第2圧電アクチュエータ62に電圧を印加することができるようになっている。他方の第4電極部48は、例えば、精密位置決め装置1を配設する図示しない回路基板等に対して電気的に接続される。
 第1電気配線41、第1電極部42、第2電気配線43、第2電極部44、第3電気配線45、第4電気配線46、第3電極部47、第4電極部48、素子側電極部23、及び、第1構造物側電極部55は、例えば、金(Au)又はアルミニウム(Al)等の金属により構成されている。これらの厚みは、例えば、100nmから1000nm程度である。なお、これらと素子側第1構造物53、支持側第1構造物54、又は、第2構造物との間に、チタン(Ti)又はクロム(Cr)等の金属よりなる密着層を設けるようにしてもよい。密着層の厚みは、例えば、1nmから20nm程度である。第1電極部42と第2電極部44とは、例えば、はんだ又は、YAGレーザー等を用いたガラス同士の溶接により電極間を接触させ導通させる、もしくは、導電性ポリマーを介して導通させることができる。
 第1圧電アクチュエータ61と第1電極部42及び素子側電極部23、並びに、第2圧電アクチュエータ62と第4電極部48及び第1構造物側電極部55は、例えば、導電性ポリマーにより接合することが好ましい。可動性を持たせるためである。第1圧電アクチュエータ61及び第2圧電アクチュエータ62は、例えば、電圧を調整することにより、厚み方向、すなわち電圧の印加方向に伸縮するように構成されている。これにより、電圧に応じて第1圧電アクチュエータ61及び第2圧電アクチュエータ62の厚みが変化し、光学素子2を、X軸、Y軸、及び、Z軸を回転軸として回動可能とすると共に、Y軸方向、及び、Z軸方向に移動可能とするようになっている。
 例えば、図3に示したように、精密位置決め装置1の位置を距離lだけ離れた2つの座標系で表すと、座標系0(基準座標)に関する同時変換行列は式1で表され、座標系1に関する同時変換行列は式2で表され、基準座標系から見た座標系0、座標系1の回転/移動に関する同時変換行列は式3で表される。各同時変換行列をかけることで、光学素子2のX軸、Y軸、及び、Z軸を回転軸とした回動と、Y軸方向、及び、Z軸方向の移動とを電気的に制御することができるようになっている。
Figure JPOXMLDOC01-appb-M000001
 この精密位置決め装置1は、例えば、次にようにして製造することができる。図4から図8は精密位置決め装置1の製造工程を表すものである。まず、例えば、精密位置決め装置1の各構成部材、すなわち、光学素子2であるミラー、素子側第1構造物53、支持側第1構造物54、及び、第2構造物52をそれぞれ作製する。ミラーは、例えば、まず、図4(A)に示したように、ガラス等よりなる基板を所定の大きさに切断して素子基板21を形成し、次いで、図4(B)に示したように、素子基板21の一面にスパッタ等により誘電体多層膜よりなる反射膜22を形成し、続いて、図4(C)に示したように、素子基板21の他面にスパッタ等により金属膜よりなる素子側電極部23を形成する。
 素子側第1構造物53は、例えば、まず、図5(A)に示したように、ガラス等よりなる基板71を用意し、図5(B)(C)に示したように、側面の第1電気配線41の形成位置に対応してドリル加工等により貫通孔72を形成する。その際、貫通孔72に皿ザグリ穴を形成し、第1電気配線41を形成する一面と側面との角部を面取りすることが好ましい。なお、図5(C)は図5(B)を一面側から見た構成であり、図5(B)は図5(C)のIII-III線に沿った断面構成を示している。次いで、例えば、図5(D)に示したように、基板71の一面に、第1電気配線41及び第1電極部42の形成領域を開口したステンシルマスク73を形成する。続いて、例えば、図5(E)に示したように、スパッタリング等により第1電気配線41及び第1電極部42を形成し、ステンシルマスク73を除去する。その後、例えば、図5(F)に示したように、基板71を所定の大きさに切断する。その際、1つの側面は、貫通孔72を切断するように形成する。
 支持側第1構造物54も素子側第1構造物53と同様にして形成することができる。例えば、まず、図6(A)に示したように、ガラス等よりなる基板71を用意し、側面の第2電気配線43の形成位置に対応してドリル加工等により貫通孔72を形成する。その際、両面において貫通孔72に皿ザグリ穴を形成することが好ましい。次いで、例えば、図6(B)に示したように、基板71の一面に、第2電気配線43及び第2電極部44の形成領域を開口したステンシルマスクを形成し、スパッタリング等により第2電気配線43及び第2電極部44を形成し、ステンシルマスクを除去する。続いて、例えば、図6(C)に示したように、基板71の他面に、第2電気配線43、第2電極部44、及び、第1構造物側電極部55の形成領域を開口したステンシルマスクを形成し、スパッタリング等により第2電気配線43、第2電極部44及び、第1構造物側電極部55を形成し、ステンシルマスクを除去する。その後、例えば、図6(D)に示したように、基板71を所定の大きさに切断する。その際、1つの側面は、貫通孔72を切断するように形成する。
 第2構造物52も素子側第1構造物53と同様にして形成することができる。例えば、まず、図7(A)に示したように、ガラス等よりなる基板71を用意し、側面の第3電気配線45及び第4電気配線46の形成位置に対応してドリル加工等により貫通孔72を形成する。その際、両面において貫通孔72に皿ザグリ穴を形成することが好ましい。次いで、例えば、図7(B)に示したように、基板71の一面に、第3電気配線45、第4電気配線46、第3電極部47、及び、第4電極部48の形成領域を開口したステンシルマスクを形成し、スパッタリング等により第3電気配線45、第4電気配線46、第3電極部47、及び、第4電極部48を形成し、ステンシルマスクを除去する。続いて、例えば、図7(C)に示したように、基板71の他面に、第3電気配線45、第4電気配線46、第3電極部47、及び、第4電極部48の形成領域を開口したステンシルマスクを形成し、スパッタリング等により第3電気配線45、第4電気配線46、第3電極部47、及び、第4電極部48を形成し、ステンシルマスクを除去する。その後、例えば、図7(D)に示したように、基板71を所定の大きさに切断する。その際、2つの側面は、貫通孔72を切断するように形成する。
 次に、例えば、図8(A)に示したように、素子側第1構造物53の第1電極部42に、第1圧電アクチュエータ61を導電性ポリマーにより接合すると共に、導電性ポリマーよりなる接続部63を接合する。続いて、例えば、図8(B)に示したように、第1圧電アクチュエータ61と素子側電極部23とを導電性ポリマーにより接合すると共に、第1電極部42と素子側電極部23とを導電性ポリマーよりなる接続部63により接合する。次いで、例えば、図8(C)に示したように、第2構造物52の第3電極部47に、導電性ポリマーよりなる接続部64を接合し、更に、第4電極部48に、第2圧電アクチュエータ62を導電性ポリマーにより接合すると共に、導電性ポリマーよりなる接続部65を接合する。続いて、例えば、図8(D)に示したように、第2圧電アクチュエータ62と第1構造物側電極部55とを導電性ポリマーにより接合すると共に、第4電極部48と第1構造物側電極部55とを導電性ポリマーよりなる接続部65により接合し、また、第3電極部47と第2電極部44とを導電性ポリマーよりなる接続部64により接合する。その後、例えば、第2電極部44と第1電極部42とをはんだ又は、YAGレーザー等を用いたガラス同士の溶接により電極間を接触させて導通させる。これにより、図1に示した精密位置決め装置1が得られる。
 この精密位置決め装置1は、光学装置に用いることができる。例えば、光学素子2をミラーにより構成すれば、ミラーによりレーザー光の反射方向を調整することにより、レーザー光の光路を調整することができる。光学装置として、例えば、マッハツェンダー干渉計による試料の測定系を例に挙げて説明する。
 図9は、マッハツェンダー干渉計による試料の測定系の構成を表すものである。この測定系は、例えば、レーザー発振器81と、レーザー発振器81からのレーザー光を受光するフォトダイオード82と、レーザー発振器81及びフォトダイオード82が配設された回路基板83と、回路基板83に配設され、レーザー発振器81からフォトダイオード82までの光路上に配置された2個の精密位置決め装置1とを備えている。精密位置決め装置1は、光学素子2としてミラーを有している。レーザー発振器81と一方の精密位置決め装置1との間の光路上には、レーザー発振器81の側から順に、レンズ84、1/2λ波長板85、ハーフミラー86が回路基板83上に配設されている。他方の精密位置決め装置1とフォトダイオード82との間の光路上には、他方の精密位置決め装置1の側から順に、ハーフミラー87、偏光板88、レンズ89が回路基板83上に配設されている。
 一方の精密位置決め装置1のミラーの位置は、レーザー発振器81から発信されたレーザー光がハーフミラー86を通過し、一方の精密位置決め装置1のミラーで反射され、ハーフミラー87で反射されてフォトダイオード82に入射するように、一方の精密位置決め装置1の支持部3により調整される。また、他方の精密位置決め装置1のミラーの位置は、レーザー発振器81から発信されたレーザー光がハーフミラー86で反射され、他方の精密位置決め装置1のミラーで反射され、ハーフミラー87を通過してフォトダイオード82に入射するように、他方の精密位置決め装置1の支持部3により調整される。この計測系では、ハーフミラー86と一方の精密位置決め装置1のミラーとの間に試料Mを配置し、試料Mの屈折率と空気の屈折率との差による光路差から試料Mの屈折率を測定する。
 なお、本実施の形態では、マッハツェンダー干渉計による試料の測定系として、2個の精密位置決め装置1を備える場合について説明したが、光学装置としては、少なくとも1つの精密位置決め装置1を備えていればよい。
 また、この精密位置決め装置1は、例えば、図10に示したように、第1地球局91と第2地球局92との間の第1人工衛星93を介したBBM92方式の量子暗号通信や、又は、第3地球局94と第2人工衛星95との間のBB84方式の量子暗号通信において、光学素子2の精密位置決めに用いることができる。BBM92方式の量子暗号通信では、第1人工衛星93から量子もつれ状態にあった2光子を分岐して第1地球局91と第2地球局92にそれぞれ光子を送る。BB84方式の量子暗号通信では、第3地球局94から第2人工衛星95へ光子を送る。
 このように、本実施の形態の精密位置決め装置1によれば、電気配線が立体的に配設された複数の構造物と、電気配線に電気的に接続された複数の圧電アクチュエータとを接合することにより、光学素子2を、複数の回転軸を中心として回動可能とすると共に、回転軸の少なくとも1つの方向に移動とするようにしたので、微細加工技術、特に、実装の技術を応用して、三次元な電気配線4と構造を持たせることができ、光子のような微弱な強度の光の制御を可能とすることができる。また、微弱な光以外にも、高強度な光の制御も可能であり、広く汎用性を持たせることができる。更に、回路基板の上に集積することができるので、電気機械光学制御システムを実現することができ、系全体での小型化を達成することができる。
 第1の実施の形態では、支持側第1構造物54の側面とミラーの反射膜22の面とを平行にして素子側第1構造物53を支持側第1構造物54に対して配設する場合について示したが、例えば、図11に示したように、支持側第1構造物54の側面に対してミラーの反射膜22の面をZ軸を回転軸として45°回転させて、素子側第1構造物53を支持側第1構造物54に対して配設するようにしてもよい。図11(A)は精密位置決め装置1を上から見た構成、図11(B)は支持側第1構造物54の素子側の面の配線構成を示している。
 また、例えば、図12に示したように、支持側第1構造物54の素子側の面に、素子側第1構造物53の配設位置を2つ設け、ミラーの反射膜22の面を支持側第1構造物の側面に対してZ軸を回転軸として45°回転させる場合と、ミラーの反射膜22の面を支持側第1構造物54の側面と平行にする場合のどちらかを選択して配設することができるようにしてもよい。図12(A)はミラーの反射膜22の面を支持側第1構造物の側面に対して45°回転させて配設した場合の構成、図12(B)はミラーの反射膜22の面を支持側第1構造物54の側面と平行にして配設した場合の構成、図12(C)は支持側第1構造物54の素子側の面の配線構成を示している。
 この変形例では、例えば、図12(C)に示したように、支持側第1構造物54の素子側の面において、素子側第1構造物53の向きに対応して、各第2電気配線43に2つの第2電極部44がそれぞれ設けられている。素子側第1構造物53の第1配設位置は、ミラーの反射膜22の面と支持側第1構造物の側面とをZ軸を回転軸として45°回転させて配設する位置であり、素子側第1構造物53の第2配設位置は、ミラーの反射膜22の面と支持側第1構造物54の側面とを平行にして配設する位置である。第1配設位置及び第2配設位置は、素子側第1構造物53を配設したときに、第1電極部42が設けられた側面の反射膜22に沿った長さ方向の中心位置が、支持側第1構造物54の素子側の面の中心位置と一致していることが好ましい。
 図13は、精密位置決め装置1をレーザー光の反射に利用する場合の光路を矢印で示したものである。第1配設位置に素子側第1構造物53を配設した場合には、例えば、図13(A)に示したようにレーザー光を反射し、第2配設位置に素子側第1構造物53を配設した場合には、例えば、図13(B)に示したようにレーザー光を反射する。このように、精密位置決め装置1を配設する場所に応じて、素子側第1構造物53の配設位置を第1配設位置と第2配設位置とで任意に選択することができる。
(変形例2)
 第1の実施の形態では、素子側第1構造物53、支持側第1構造物54、及び、第2構造物52の側面に第1電気配線41、第2電気配線43、第3電気配線45、又は、第4電気配線46を形成する際に、基板71に貫通孔72を設け、その内壁に金属膜を形成し、貫通孔72を通るように切断する場合について説明したが、基板71を所定の大きさに切断したのちに、第2構造物52の側面に第1電気配線41、第2電気配線43、第3電気配線45、第4電気配線46を設けるようにしてもよい。図14に変形例2の構成例を示す。変形例2では、例えば、素子側第1構造物53の第1電気配線41を形成する一方の平面と側面との角部は面取りされていることが好ましい。また、支持側第1構造物54の第2電気配線43を形成する一方の平面と側面との角部、及び、側面と他方の平面との角部は、面取りされていることが好ましい。更に、第2構造物52の第3電気配線45又は第4電気配線46を形成する一方の平面と側面との角部、及び、側面と他方の平面との角部は、面取りされていることが好ましい。第1電気配線41、第2電気配線、第3電気配線45及び第4電気配線46を容易に形成することができるからである。
 以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態及に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、各構成要素について具体的に説明したが、他の構成要素を備えていてもよい。また、各構成要素の説明は一例を示したものであり、異なっていてもよい。
 1…精密位置決め装置、2…光学素子、3…支持部、21…素子基板、22…反射膜、23…素子側電極部、41…第1電気配線、42…第1電極部、43…第2電気配線、44…第2電極部、45…第3電気配線、46…第4電気配線、47…第3電極部、48…第4電極部、51…第1構造物、52…第2構造物、53…素子側第1構造物、54…支持側第1構造物、55…第1構造物側電極部、61…第1圧電アクチュエータ、62…第2圧電アクチュエータ、63,64,65…接続部、71…基板、72…貫通孔、73…ステンシルマスク、81…レーザー発振器、82…フォトダイオード、83…回路基板、84,89…レンズ、85…1/2λ波長板、86,87…ハーフミラー、88…偏光板、91…第1地球局、92…第2地球局、93…第1人工衛星、94…第3地球局、95…第2人工衛星

Claims (6)

  1.  光学素子と、前記光学素子を支持する支持部とを備え、
     前記支持部は、電気配線が立体的に配設された複数の構造物と、前記電気配線に電気的に接続された複数の圧電アクチュエータとを接合することにより、前記光学素子を、複数の回転軸を中心として回動可能とすると共に、前記回転軸の少なくとも1つの方向に移動可能とするように構成された
     ことを特徴とする精密位置決め装置。
  2.  前記支持部は、前記光学素子を、X軸、Y軸、及び、Z軸を回転軸として回動可能とすると共に、Y軸方向、及び、Z軸方向に移動可能とするように構成された
     ことを特徴とする請求項1記載の精密位置決め装置。
  3.  前記支持部は、前記構造物として第1構造物と第2構造物とを有すると共に、前記圧電アクチュエータとして複数の第1圧電アクチュエータと複数の第2圧電アクチュエータとを有し、
     前記第1圧電アクチュエータは、前記第1構造物と前記光学素子との間に配設され、前記光学素子について、X軸及びZ軸を回転軸として回動可能とすると共に、Y軸方向に移動可能とするように配置され、
     前記第2圧電アクチュエータは、前記第1構造物と前記第2構造物との間に配設され、前記光学素子について、X軸及びY軸を回転軸として回動可能とすると共に、Z軸方向に移動可能とするように配置された
     ことを特徴とする請求項1記載の精密位置決め装置。
  4.  前記光学素子はミラーであることを特徴とする請求項1記載の精密位置決め装置。
  5.  前記ミラーによりレーザー光の反射方向を調整することにより、レーザー光の光路を調整することを特徴とする請求項4記載の精密位置決め装置。
  6.  レーザー発振器と、
     前記レーザー発振器からのレーザー光を受光するフォトダイオードと、
     前記レーザー発振器及び前記フォトダイオードが配設された回路基板と、
     前記回路基板に配設され、前記レーザー発振器から前記フォトダイオードまでの光路上に配置された請求項1に記載された少なくとも1つの精密位置決め装置と
     を備えたことを特徴とする光学装置。

     
PCT/JP2022/038840 2022-09-07 2022-10-19 精密位置決め装置及び光学装置 WO2024053119A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022141818 2022-09-07
JP2022-141818 2022-09-07

Publications (1)

Publication Number Publication Date
WO2024053119A1 true WO2024053119A1 (ja) 2024-03-14

Family

ID=90192235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038840 WO2024053119A1 (ja) 2022-09-07 2022-10-19 精密位置決め装置及び光学装置

Country Status (1)

Country Link
WO (1) WO2024053119A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509787A (ja) * 1992-05-08 1995-10-26 ニュー・フォーカス・インコーポレーテッド 精密部品位置決め装置
JP2014154698A (ja) * 2013-02-08 2014-08-25 Nikon Corp 光学装置、照明装置、露光装置、デバイス製造方法、及び光学素子の保持方法
US20210075180A1 (en) * 2018-07-23 2021-03-11 IonQ, Inc. Laser cavity optical alignment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509787A (ja) * 1992-05-08 1995-10-26 ニュー・フォーカス・インコーポレーテッド 精密部品位置決め装置
JP2014154698A (ja) * 2013-02-08 2014-08-25 Nikon Corp 光学装置、照明装置、露光装置、デバイス製造方法、及び光学素子の保持方法
US20210075180A1 (en) * 2018-07-23 2021-03-11 IonQ, Inc. Laser cavity optical alignment

Similar Documents

Publication Publication Date Title
JP3405528B2 (ja) 光学装置
Motamedi et al. Micro-opto-electro-mechanical devices and on-chip optical processing
USRE39833E1 (en) Thermally actuated spectroscopic optical switch
US20220301738A1 (en) Optical resonator device with crossed cavities for optically trapping atoms, and applications thereof in an optical atomic clock, a quantum simulator or a quantum computer
JP2001507469A (ja) ハイブリッドオプティカル多軸ビームステアリング装置
Chu et al. Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch
Koh et al. A piezoelectric-driven three-dimensional MEMS VOA using attenuation mechanism with combination of rotational and translational effects
WO2013091401A1 (zh) 一种波长选择开关中波长漂移的补偿方法及其装置
US20060261032A1 (en) Integrated optical MEMS devices
Syms et al. Optical MEMS for telecoms
US6377718B1 (en) Micromechanical phase-shifting gate optical modulator
CN109298504B (zh) 微机电光学波长参考标准具
JP2003241120A (ja) 光デバイス
WO2024053119A1 (ja) 精密位置決め装置及び光学装置
Koh et al. Design and characterization of a 3D MEMS VOA driven by hybrid electromagnetic and electrothermal actuation mechanisms
Hedsten et al. MEMS-based VCSEL beam steering using replicated polymer diffractive lens
Fernandez et al. Modular MEMS design and fabrication for an 80 x 80 transparent optical cross-connect switch
Tanguy et al. A 2-axis MEMS scanning micromirror with a 45 auto-positioning mechanism for endoscopic probe
Jang et al. Characterization of a single-crystal silicon micromirror array for maskless UV lithography in biochip applications
Knoernschild et al. Investigation of optical power tolerance for MEMS mirrors
Moore et al. Silicon technology for optical MEMS
JP2003121766A (ja) 光部品の製造方法及び光スイッチ
US6993219B2 (en) Waveguide/MEMS switch
JP4559744B2 (ja) 櫛歯型アクチュエータおよび光制御素子
Sun et al. Design, simulation, fabrication, and characterization of a digital variable optical attenuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958197

Country of ref document: EP

Kind code of ref document: A1