WO2024052960A1 - Magnetocalorific material bed and magnetic refrigeration device - Google Patents

Magnetocalorific material bed and magnetic refrigeration device Download PDF

Info

Publication number
WO2024052960A1
WO2024052960A1 PCT/JP2022/033279 JP2022033279W WO2024052960A1 WO 2024052960 A1 WO2024052960 A1 WO 2024052960A1 JP 2022033279 W JP2022033279 W JP 2022033279W WO 2024052960 A1 WO2024052960 A1 WO 2024052960A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetocaloric material
magnetocaloric
flow path
heat storage
temperature
Prior art date
Application number
PCT/JP2022/033279
Other languages
French (fr)
Japanese (ja)
Inventor
俊圭 鈴木
有理子 西村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/033279 priority Critical patent/WO2024052960A1/en
Publication of WO2024052960A1 publication Critical patent/WO2024052960A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials

Definitions

  • the present disclosure relates to magnetocaloric material beds and magnetic refrigeration devices.
  • a magnetic refrigeration device is a refrigeration system that utilizes the phenomenon that when a magnetic field is applied to a magnetic body, the magnetic body generates heat, and when the magnetic field is removed, the magnetic body absorbs heat (hereinafter referred to as "magnetocaloric effect"). It is known that magnetocaloric materials used as magnetic materials in magnetic refrigeration devices exhibit the largest magnetocaloric effect near the Curie point, where the entropy change is large.
  • magnetocaloric materials with different characteristics filled in a magnetocaloric container are arranged in a cascade from the low temperature side to the high temperature side, thereby increasing the temperature difference between both ends and improving the cooling performance.
  • an element is arranged so as to form a cascade in which the Curie temperature increases from a low temperature end to a high temperature end, and an element with a relatively low fluid resistance is higher than an element with a relatively high fluid resistance.
  • a magnetocaloric effect element and a magnetocaloric cycle device located on the high temperature side are disclosed.
  • the above-mentioned magnetocaloric effect element and magnetocaloric cycle device realize a magnetocaloric cycle device with high refrigerating capacity by arranging each magnetocaloric element in a cascade and operating at a temperature with a large amount of heat absorption and heat absorption. On the other hand, it takes time for each magnetocaloric element to reach its Curie temperature when starting up the device, such as at the initial stage of startup or when restarting the device.
  • the present disclosure has been made in order to solve the above-mentioned problems, and the magnetocaloric material quickly reaches close to the Curie temperature at the beginning of operation of the magnetic refrigeration equipment, such as at the initial startup stage or at the time of restarting, so that it can be efficiently
  • the objective is to obtain a magnetocaloric material bed and a magnetic refrigeration device that can exhibit refrigeration capacity.
  • the magnetocaloric material bed according to the present disclosure has a flow path in which a heat exchange fluid flows back and forth between one end and the other end, and heat exchanges with the heat exchange fluid such that the Curie temperature increases in order from one end to the other end.
  • a plurality of types of magnetocaloric materials are provided in the flow path, and a plurality of types of heat storage materials are provided in the flow path such that the phase transition temperature increases in order from one end to the other.
  • a heat storage material having a phase transition temperature higher than the Curie temperature of the magnetocaloric material is provided in the flow path provided with the magnetocaloric material having a low Curie temperature, and a magnetocaloric material having a Curie temperature higher than the operating environment temperature is provided.
  • a heat storage material having a phase transition temperature lower than the Curie temperature of the magnetocaloric material is provided in the flow path.
  • a heat storage material having a phase transition temperature higher than the Curie temperature of the magnetocaloric material is provided in the channel provided with the magnetocaloric material having a Curie temperature lower than the operating environment temperature
  • a heat storage material whose phase transition temperature is lower than the Curie temperature of the magnetocaloric material is provided in the flow path containing the magnetocaloric material whose Curie temperature is higher than the operating environment temperature, so that each This has the effect of allowing the magnetocaloric material to quickly reach the Curie temperature and improving operational efficiency.
  • FIG. 1 is a schematic diagram of a magnetic refrigeration device according to a first embodiment.
  • FIG. 2 is a sectional view taken along the line AA in FIG. 1 of the magnetocaloric material bed according to the first embodiment.
  • FIG. 2 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material.
  • FIG. 3 is a diagram showing a temperature change of the magnetocaloric material at the other end side of the magnetocaloric material bed according to the first embodiment.
  • FIG. 2 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material.
  • FIG. 2 is a cross-sectional view of a heat storage material covered with a capsule provided in a flow path of a magnetocaloric material bed according to a first embodiment.
  • FIG. 2 is a diagram in which a magnetocaloric material is provided so as to straddle one end side and the other end side in the channel of the magnetocaloric material bed according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material.
  • FIG. 2 is a diagram in which a magnetocaloric material is provided so as to straddle one end side and the other end side in the channel of the magnetocaloric material bed according to the first embodiment.
  • FIG. 3 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material.
  • FIG. 7 is a cross-sectional view of a heat storage material covered with a magnetocaloric material capsule provided in a flow path of a magnetocaloric material bed according to a second embodiment.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1 of the magnetocaloric material bed according to Embodiment 3;
  • FIG. 1 is a schematic diagram of a magnetic refrigeration device according to a first embodiment.
  • FIG. 2 is a sectional view taken along the line AA shown in FIG. 1 of the magnetocaloric material bed according to the first embodiment.
  • FIG. 3 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed according to the first embodiment.
  • FIG. 4 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed and the phase transition temperature of the heat storage material according to the first embodiment.
  • FIG. 1 is a schematic diagram of a magnetic refrigeration device according to a first embodiment.
  • FIG. 2 is a sectional view taken along the line AA shown in FIG. 1 of the magnetocaloric material bed according to the first embodiment.
  • FIG. 3 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed according to the first embodiment
  • FIG. 5 is a diagram showing a temperature change of the magnetocaloric material at the other end side of the magnetocaloric material bed according to the first embodiment.
  • FIG. 6 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed according to the first embodiment.
  • FIG. 7 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed and the phase transition temperature of the heat storage material according to the first embodiment.
  • FIG. 8 is a sectional view of a heat storage material covered with a capsule provided in a flow path of a magnetocaloric material bed according to the first embodiment.
  • FIG. 9 is a diagram in which the magnetocaloric material is provided so as to straddle the low temperature side and the high temperature side in the flow path of the magnetocaloric material bed according to the first embodiment.
  • FIG. 10 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material.
  • FIG. 11 is a diagram in which the magnetocaloric material is provided so as to straddle the low temperature side and the high temperature side in the flow path of the magnetocaloric material bed according to the first embodiment.
  • FIG. 12 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material.
  • the magnetic refrigeration device 1 includes a low-temperature side heat exchanger 2, a high-temperature side heat exchanger 3, a fan 4, a pump 5, a magnetic field modulator 6, a water tube 7, and a magnetocaloric material bed 10.
  • the magnetocaloric material bed 10 will be described in detail later.
  • the magnetic refrigeration device 1 is a heat pump system that makes one of the channels 20 of the magnetocaloric material bed 10 high temperature and the other channel 20 low temperature. Therefore, the channel 20 of the magnetocaloric material bed 10 has a high temperature side that is a high temperature region and a low temperature side that is a low temperature region. Further, the position with the highest temperature on the high temperature side is defined as the high temperature end, and the position with the lowest temperature on the low temperature side is defined as the low temperature end. That is, in the flow path 20, the high temperature end and the low temperature end refer to the vicinity of the outlet when the heat exchange fluid 9 is transported from the flow path 20 to the water tube 7.
  • the low temperature side heat exchanger 2 is connected to the low temperature end of the flow path 20 of the magnetocaloric material bed 10 via the water pipe 7. Further, a cooled medium flow path (not shown) is connected to the low temperature side heat exchanger 2, and is supplied from the low temperature end of the flow path 20 of the magnetocaloric material bed 10 to the low temperature side heat exchanger 2 via the water pipe 7.
  • the heated heat exchange fluid 9 exchanges heat with the medium to be cooled flowing through the medium flow path. That is, the heat exchange fluid 9 supplied to the low temperature side heat exchanger 2 exchanges heat with the medium to be cooled and absorbs heat.
  • the medium to be cooled here refers to a liquid such as water.
  • the heat exchange fluid 9 is a fluid flowing through the flow paths 20 of the low temperature side heat exchanger 2, the high temperature side heat exchanger 3, the water tubes 7, and the magnetocaloric material bed 10, and is It reciprocates between the high temperature side heat exchanger 3 and the high temperature side heat exchanger 3.
  • water, brine, etc. may be used as the heat exchange fluid 9.
  • the high temperature side heat exchanger 3 is connected to the high temperature end of the flow path 20 of the magnetocaloric material bed 10 via the water pipe 7. Therefore, the low temperature side heat exchanger 2 and the high temperature side heat exchanger 3 are connected to sandwich the magnetocaloric material bed 10 via the water pipe 7. As shown in FIG. 1, the heat exchange fluid 9 is supplied to the high temperature side heat exchanger 3 from the high temperature end of the flow path 20 of the magnetocaloric material bed 10 via the water pipe 7.
  • a fan 4 is provided for exchanging heat between the air and the air. That is, the heat exchange fluid 9 supplied to the high temperature side heat exchanger 3 exchanges heat with air to exhaust heat, and the heat exchanged air is transported by the fan 4.
  • the heat exchange fluid 9 supplied to the low temperature side heat exchanger 2 exchanges heat with a medium to be cooled such as water
  • the present invention is not limited to this.
  • the medium to be cooled is air
  • the heat exchange fluid 9 supplied to the low temperature side heat exchanger 2 exchanges heat with the air, and the air with which the heat exchange has been performed is transported using the fan 4.
  • the heat exchange fluid 9 supplied to the high temperature side heat exchanger 3 may exchange heat with a liquid such as water.
  • the partner with which the heat exchange fluid 9 performs heat exchange can be changed depending on the application.
  • the pump 5 is a reciprocating pump configured to be able to transport the heat exchange fluid 9 between the low temperature side heat exchanger 2 and the high temperature side heat exchanger 3 so as to reciprocate via the magnetocaloric material bed 10. . That is, the pump 5 transports the heat exchange fluid 9 repeatedly between the low-temperature side heat exchanger 2, the magnetocaloric material bed 10, and the high-temperature side heat exchanger 3.
  • FIG. 1 shows a pump 5 connected via a water pipe 7 between the low-temperature side heat exchanger 2 and the high-temperature side heat exchanger 3 on the side opposite to the magnetocaloric material bed 10, the pump The connection position of No. 5 is not limited to this.
  • a connection may be made between the magnetocaloric material bed 10 and the low temperature side heat exchanger 2 or between the magnetocaloric material bed 10 and the high temperature side heat exchanger 3 via the water pipe 7.
  • the temperature difference between the high-temperature end and the low-temperature end of the flow path 20 of the magnetocaloric material bed 10 becomes small. It is desirable to connect the exchanger 2 and the high temperature side heat exchanger 3 via water pipes 7.
  • the magnetic field modulators 6 are provided facing each other so as to sandwich the entire side surface of the magnetocaloric material bed 10. Further, the magnetic field modulator 6 is configured to be able to vary the magnetic field applied to the magnetocaloric material 21 provided in the flow path 20 of the magnetocaloric material bed 10.
  • the magnetic field modulation device 6 may be of any type as long as it can apply and remove a magnetic field to and from the magnetocaloric material 21 provided in the channel 20 of the magnetocaloric material bed 10.
  • the magnetocaloric material bed 10 is fixed, and the magnetic field is varied by moving the permanent magnet closer to or away from the magnetocaloric material bed 10.
  • the permanent magnet may be fixed and the magnetic field may be varied by moving the magnetocaloric material bed 10 closer to or away from the permanent magnet.
  • the magnetic field modulator 6 using a permanent magnet
  • the magnetic force of the permanent magnet will weaken and a sufficient magnetic field cannot be applied. It is preferable to provide it close to the magnetic field modulator 6.
  • the magnetic field modulation device 6 using an electromagnet, it is excited by passing a current, and demagnetized by stopping it, thereby imparting fluctuations in the magnetic field to the magnetocaloric material 21.
  • the magnetic field modulator 6 since the magnetic field can be varied by flowing or stopping the current, the magnetic field modulator 6 does not need to be installed close to the magnetocaloric material bed 10, and if the magnetic field can be applied to and removed from the magnetocaloric material 21, the magnetic field modulator 6 can be installed at any location. , the installation method does not matter.
  • the water pipe 7 is connected between the low temperature side heat exchanger 2 and the magnetocaloric material bed 10, between the high temperature side heat exchanger 3 and the magnetocaloric material bed 10, between the low temperature side heat exchanger 2 and the pump 5, and between the high temperature side heat exchanger 2 and the magnetocaloric material bed 10.
  • This piping is provided between the side heat exchanger 3 and the pump 5 and transports the heat exchange fluid 9. Note that the shape of the water tube 7 is not limited to that shown in FIG. 1, and may be changed as appropriate.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a sectional view taken along the line AA shown in FIG. 1 of a modified example of the magnetocaloric material bed 10.
  • the magnetocaloric material bed 10 includes a flow path 20 formed by the flange 12 and the bed wall 11.
  • the flange 12 is provided at the low temperature end and high temperature end of the flow path 20 and connects the water pipe 7 and the flow path 20. Note that although FIG. 2 shows the magnetocaloric material bed 10 to which the water pipe 7 is connected via the flange 12, this is merely an example, and the water pipe 7 and the flow path 20 may be directly connected without using the flange 12. It's okay.
  • the flow path 20 is formed by the bed wall 11 and is a waterway through which the heat exchange fluid 9 flows.
  • the flow path 20 has a low temperature end at one end and a high temperature end at the other end, and the heat exchange fluid 9 supplied from the low temperature side heat exchanger 2 via the water pipe 7 flows from one end of the flow path 20 to the other end. It flows.
  • the heat exchange fluid 9 supplied from the high temperature side heat exchanger 3 via the water pipe 7 flows from the other end of the flow path 20 toward one end. That is, the heat exchange fluid 9 flows back and forth between one end and the other end of the flow path 20 by the pump 5 .
  • a magnetocaloric material 21 that exchanges heat with the heat exchange fluid 9 is provided within the flow path 20 .
  • the magnetocaloric material 21 is provided in the flow path 20 such that the Curie temperature thereof increases from one end of the flow path 20 to the other end.
  • the Curie temperature is the temperature at which a magnetic material loses its magnetic force.
  • the magnetocaloric material 21 As shown in FIG. 2, four different types of magnetocaloric materials 21a, 21b, 21c, and 21d are provided in the flow path 20. Further, the magnetocaloric material 21 is composed of a plurality of grains, and a plurality of types of magnetocaloric materials 21 each composed of a plurality of grains are provided in the channel 20.
  • the Curie temperature of the magnetocaloric material 21 is set as magnetocaloric materials 21a, 21b, 21c, and 21d in descending order of Curie temperature.
  • the magnetocaloric material 21 is provided with a magnetocaloric material 21a at one end of the channel 20, and whose Curie temperature increases toward the other end. is provided. That is, the magnetocaloric materials 21 are provided in the channel 20 in the order of magnetocaloric materials 21a, 21b, 21c, and 21d from one end of the channel 20 to the other end.
  • cascade arrangement arranging the magnetocaloric material 21 having a high Curie temperature from the low-temperature end to the high-temperature end of the flow path 20 is called cascade arrangement.
  • an example was shown in which four types of magnetocaloric materials 21a, 21b, 21c, and 21d are arranged in a cascade as shown in FIG.
  • the number of types does not matter as long as they are provided in a cascade arrangement.
  • the temperature difference between one end and the other end of the flow path 20 can be increased. It can increase efficiency.
  • the magnetocaloric materials 21 are laid out in the flow path 20 so that adjacent magnetocaloric materials 21 of different types do not mix with each other due to the flow of the heat exchange fluid 9.
  • the mesh 13 may be provided to separate adjacent magnetocaloric materials 21 of different types.
  • FIG. 3 is a cross-sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed 10.
  • the magnetocaloric materials 21 arranged in a cascade in the flow path 20 are partitioned by a mesh 13 so that different types of magnetocaloric materials 21 do not mix.
  • the mesh 13 may be of any type as long as it is made of a material and has a shape that allows the heat exchange fluid 9 to pass through but does not allow the magnetocaloric material 21 to pass through.
  • the mesh 13 does not necessarily need to be provided in the flow path 20 when the magnetocaloric material 21 is provided in the flow path 20 without being mixed by the flow of the heat exchange fluid 9.
  • the mesh 13 may be provided between the water pipe 7 and the flow path 20 at the low temperature end and high temperature end of the flow path 20.
  • the mesh 13 may be provided between the water pipe 7 and the flow path 20 at the low temperature end and high temperature end of the flow path 20.
  • a spacer is provided between the flange 12 and the mesh 13 to fix the mesh 13. It is better to do this.
  • the magnetocaloric material 21 is preferably a magnetic material that exhibits a high magnetocaloric effect at room temperature, such as a mixture of manganese, iron, phosphorus, and germanium, or a gadolinium-based material or alloy.
  • FIG. 4 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material 21 provided in the channel 20 of the magnetocaloric material bed 10 and the phase transition temperature of the heat storage material 22 according to the first embodiment.
  • FIG. 5 is a diagram showing a temperature change of the magnetocaloric material 21 at the other end side of the magnetocaloric material bed 10 according to the first embodiment.
  • FIG. 6 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed 10 according to the first embodiment.
  • FIG. 7 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material 21 provided in the channel 20 of the magnetocaloric material bed 10 and the phase transition temperature of the heat storage material 22 according to the first embodiment.
  • the magnetocaloric material 21 is provided in the channel 20 of the magnetocaloric material bed 10 so that the Curie temperature increases from one end of the channel 20 to the other end. Further, a plurality of types of heat storage materials 22 are provided within the flow path 20.
  • the heat storage material 22 is provided in the flow path 20 such that the phase transition temperature increases in order from one end of the flow path 20 to the other end. Further, the heat storage material 22 provided on one end side has a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 provided on the one end side, and the heat storage material 22 provided on the other end side has a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 provided on the other end side. The phase transition temperature is lower than the Curie temperature of the magnetocaloric material 21.
  • the phase transition temperature is the temperature at which phase transition occurs.
  • the magnetocaloric material 21 is provided with magnetocaloric materials 21a, 21b, 21c, and 21d in order from one end of the flow path 20.
  • the heat storage material 22 is provided with a heat storage material 22b on one end side and a heat storage material 22c on the other end side.
  • FIG. 4 is a graph showing the relationship between the Curie temperature of the magnetocaloric material 21 and the phase transition temperature of the heat storage material 22.
  • the operating environment temperature shown in FIG. 4 refers to the temperature of the environment in which the magnetocaloric material bed 10 is installed.
  • the magnetocaloric material bed 10 when the magnetocaloric material bed 10 is installed outside, it refers to the temperature of the outside air, and when it is installed indoors, it refers to the indoor temperature.
  • the heat storage material 22b provided on one end side has a phase transition temperature higher than the Curie temperature of the magnetocaloric materials 21a and 21b provided on the one end side.
  • the heat storage material 22c provided on the other end side has a phase transition temperature lower than the Curie temperature of the magnetocaloric materials 21c and 21d provided on the other end side.
  • the phase transition temperature of the heat storage material 22, that is, the heat storage material 22c provided on the other end side of the flow path 20 is higher than the operating environment temperature
  • the phase transition temperature of the heat storage material 22, that is, the heat storage material 22b provided on the one end side is higher than the operating environment temperature. Lower than the operating environment temperature.
  • the phase transition temperature of the heat storage material 22c provided on the other end side of the flow path 20 is higher than the phase transition temperature of the heat storage material 22b provided on the one end side.
  • FIG. 5 is a diagram showing the temperature change of the magnetocaloric material 21 on the other end side of the flow path 20.
  • the vertical axis shows temperature
  • the horizontal axis shows time.
  • Thick solid lines and dotted lines show temperature changes with heat storage material 22 in the flow path 20
  • thin solid lines and dotted lines show temperature changes without heat storage material 22 in the flow path 20.
  • K1 is the phase transition temperature
  • K2 is the Curie temperature
  • t0 when the magnetic refrigeration system 1 is stopped
  • t1 is when the magnetic refrigeration system 1 is restarted
  • T1 and T2 are the temperature from the time of restart until the Curie temperature is reached. refers to time.
  • the solid line shows the temperature change of the magnetocaloric material 21 when the magnetic refrigeration system 1 is restarted
  • the dotted line shows the temperature change after the magnetic refrigeration system 1 is stopped without restarting.
  • the temperature of the magnetocaloric material 21 decreases due to heat radiation to the outside immediately after the operation is stopped.
  • the heat storage material 22 is provided in the flow path 20
  • the temperature change of the magnetocaloric material 21 is gradual.
  • the temperature change of the magnetocaloric material 21 after the magnetic refrigeration device 1 is stopped varies greatly depending on whether or not the heat storage material 22 is provided in the flow path 20, and the Curie temperature K2 of the magnetocaloric material 21 after restarting
  • the arrival time is shorter for the magnetocaloric material 21 in which the heat storage material 22 is provided in the flow path 20 than in the magnetocaloric material 21 in which the heat storage material 22 is not provided in the flow path 20 (T2 ⁇ T1) .
  • T2 ⁇ T1 the temperature change of the magnetocaloric material 21 after the magnetic refrigeration device 1 is stopped
  • the heat storage material 22 provided on one end side has a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 provided on the one end side, and the heat storage material provided on the other end side 22 is a heat storage material 22 whose phase transition temperature is lower than the Curie temperature of the magnetocaloric material 21 provided on the other end side. Changes can be made smaller. Furthermore, after the magnetic refrigeration device 1 is restarted, the temperature of the magnetocaloric material 21 can quickly reach the Curie temperature.
  • FIG. 6 is an example of a magnetocaloric material bed 10 in which four types of heat storage materials 22a, 22b, 22c, and 22d having different phase transition temperatures are provided in the flow path 20.
  • the heat storage materials 22 are provided in the flow path 20 in correspondence to the different types of magnetocaloric materials 21. That is, on one end side of the flow path 20, a heat storage material 22a is provided in the flow path 20 in which the magnetocaloric material 21a is provided, and a heat storage material 22b is provided in the flow path 20 in which the magnetocaloric material 21b is provided.
  • a heat storage material 22c is provided in the channel 20 in which the magnetocaloric material 21c is provided, and a heat storage material 22d is provided in the channel 20 in which the magnetocaloric material 21d is provided. is provided. In this way, within the flow path 20, the magnetocaloric material 21 and the heat storage material 22 are arranged as a pair.
  • FIG. 7 shows the relationship between the Curie temperature of the magnetocaloric material 21 provided in the flow path 20 and the phase transition temperature of the heat storage material 22.
  • a heat storage material 22a having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21a is provided in the flow path 20 in which the magnetocaloric material 21a is provided, and the Curie temperature of the magnetocaloric material 21b is A heat storage material 22b having a phase transition temperature higher than the temperature is provided in the flow path 20 in which the magnetocaloric material 21b is provided.
  • a heat storage material 22c having a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21c is provided in the flow path 20 in which the magnetocaloric material 21c is provided.
  • a heat storage material 22d having a phase transition temperature lower than the Curie temperature of the heat storage material 21d is provided in the flow path 20 in which the magnetocaloric material 21d is provided.
  • the phase transition temperature of the heat storage materials 22a and 22b provided at one end of the flow path 20 is lower than the operating environment temperature
  • the phase transition temperature of the heat storage materials 22c and 22d provided at the other end of the flow path 20 is lower than the operating environment temperature. Higher than the operating environment temperature. In this way, the heat storage material 22 is provided in the flow path 20 corresponding to each magnetocaloric material 21.
  • the plurality of types of heat storage materials 22 provided in the flow path 20 are arranged in the flow path 20 such that the phase transition temperature increases in order from one end to the other end corresponding to each magnetocaloric material 21. It is provided.
  • the heat storage material 22 provided in the flow path 20 has a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 provided at one end, and the heat storage material 22 provided at one end has a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 provided at the other end.
  • the provided heat storage material 22 has a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21 provided on the other end side.
  • the magnetic refrigeration system 1 equipped with the magnetocaloric material bed 10 shown in FIG. After the refrigeration device 1 is stopped, the temperature change in the magnetocaloric material 21 can be reduced. Furthermore, after the magnetic refrigeration device 1 is restarted, the temperature of the magnetocaloric material 21 can quickly reach the Curie temperature. This improves operating efficiency and saves energy.
  • a latent heat storage material for the heat storage material 22 provided in the flow path 20.
  • saturated hydrocarbons fatty acids such as stearic acid or palmitic acid, low melting point metals such as potassium and sodium or their alloys, sugar alcohols such as erythritol and threitol, sodium acetate trihydrate and sodium thiosulfate pentahydrate.
  • Hydrated salts such as, molten salts such as calcium chloride or lithium chloride, clathrate hydrates such as tetrabutylammonium bromide, and water can be used.
  • These latent heat storage materials can store a large amount of heat by absorbing and releasing large amounts of latent heat during phase transition from solid to liquid and from liquid to solid.
  • these latent heat storage materials when used as the heat storage material 22, they become liquid at temperatures above their melting point, so if the latent heat storage materials are directly provided as the heat storage material 22 in the channel 20 of the magnetocaloric material bed 10, the temperature will rise and the temperature will increase. The heat storage material 22 will melt. After the melted heat storage material 22 moves through the flow path 20 together with the heat exchange fluid 9, the temperature decreases and solidifies, potentially clogging the water pipe 7, resulting in a decrease in refrigeration performance due to a decrease in flow rate, and a risk of failure. It becomes a factor.
  • the heat storage material 22 is preferably covered with a capsule 23 as shown in FIG.
  • the capsule 23 is made of, for example, melamine, acrylic, urethane, silica, or the like. In this way, by covering the heat storage material 22 with the capsule 23, when the heat storage material 22 melts and becomes liquid, it will not mix with the heat exchange fluid 9, so it will solidify and block the water pipe 7. prevent that.
  • the heat storage material 22 it is preferable to use a latent heat storage material such as vanadium oxide, which stores heat during phase transition from solid to solid.
  • a latent heat storage material such as vanadium oxide, which stores heat during phase transition from solid to solid.
  • the magnetocaloric material 21 provided in the channel 20 of the magnetocaloric material bed 10 When the magnetocaloric material 21 provided in the channel 20 of the magnetocaloric material bed 10 is excited by the magnetic field modulation device 6, the magnetocaloric material 21 generates heat due to the magnetocaloric effect. The heat of the magnetocaloric material 21 is thermally transferred to the heat exchange fluid 9 adjacent to the magnetocaloric material 21 .
  • the heat exchange fluid 9 in the water pipe 7, the low temperature side heat exchanger 2 and the magnetocaloric material bed 10 is transferred from the low temperature side heat exchanger 2 side to the high temperature side heat exchanger 3 via the magnetocaloric material bed 10.
  • the heat of the magnetocaloric material 21 is carried to the hot side heat exchanger 3 by the heat exchange fluid 9.
  • the heat exchange fluid 9 carried to the high-temperature side heat exchanger 3 is cooled by exchanging heat with air, and its temperature decreases.
  • the magnetocaloric material 21 provided in the flow path 20 of the magnetocaloric material bed 10 is demagnetized by the magnetic field modulation device 6, the magnetocaloric material 21 generates cold heat due to the magnetocaloric effect.
  • the cold heat of the magnetocaloric material 21 is thermally transferred to the heat exchange fluid 9 adjacent to the magnetocaloric material 21 .
  • the pump 5 moves the heat exchange fluid 9 in the water pipe 7, the high temperature side heat exchanger 3 and the magnetocaloric material bed 10 from the high temperature side heat exchanger 3 side to the low temperature side heat exchanger 2 via the magnetocaloric material bed 10.
  • the cold heat of the magnetocaloric material 21 is carried to the low temperature side heat exchanger 2 by the heat exchange fluid 9.
  • the heat exchange fluid 9 carried to the low-temperature side heat exchanger 2 exchanges heat with the medium to be cooled flowing through the medium to be cooled channel, and its temperature increases.
  • the magnetocaloric material bed 10 shown in this embodiment includes a plurality of types of magnetocaloric materials 21 provided in the flow path 20 so that the Curie temperature increases in order from one end to the other end, and a magnetocaloric material bed 10 of the present embodiment.
  • a plurality of types of heat storage materials 22 are provided in the flow path 20 so that the phase transition temperature becomes higher in order.
  • a heat storage material 22 having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 is provided in the flow path 20 in which the magnetocaloric material 21 having a Curie temperature lower than the operating environment temperature is provided.
  • a heat storage material 22 having a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21 is provided in the channel 20 in which the magnetocaloric material 21 is provided with the magnetocaloric material 21 having a Curie temperature higher than the operating environment temperature.
  • the magnetocaloric material 21 and heat storage material 22 provided in the flow path 20 of the magnetocaloric material bed 10 the magnetocaloric material 21 is provided in the flow path 20 in a larger amount than the heat storage material 22.
  • a magnetocaloric material bed 10 is shown.
  • the ratio of the magnetocaloric material 21 and the heat storage material 22 is not particularly limited, and may be changed as appropriate depending on the required specifications. For example, when it is required to increase the temperature difference between one end and the other end of the flow path 20, the proportion of the heat storage material 22 is decreased and the proportion of the magnetocaloric material 21 is increased.
  • the magnetic refrigeration apparatus 1 when the magnetic refrigeration apparatus 1 is frequently stopped and restarted, it is required that the temperature of the magnetocaloric material 21 quickly reach the Curie temperature.
  • the ratio occupied by the heat storage material 22 is made higher than that of the magnetocaloric material bed 10 when a large temperature difference is required. In this way, by changing the proportion of the heat storage material 22 in the flow path 20 of the magnetocaloric material bed 10 depending on the intended use, it is possible to obtain a magnetocaloric material bed 10 suitable for the required specifications.
  • a magnetocaloric material bed 10 in which four types of magnetocaloric materials 21a, 21b, 21c, and 21d are provided in the flow path 20 so that the Curie temperature increases in order from one end to the other end. showed that.
  • the magnetocaloric material bed 10 has a configuration in which two types of magnetocaloric materials 21a and 21b are provided in the channel 20 at one end and two types are provided at the other end, that is, magnetocaloric materials 21a and 21b are provided at one end, and magnetocaloric materials 21c and 21d are provided at the other end.
  • the magnetocaloric material bed 10 in which the magnetocaloric material 21 is provided so as to straddle one end side and the other end side will also be described.
  • FIG. 9 is a sectional view taken along the line AA shown in FIG. 1 of the magnetocaloric material bed 10 in which the magnetocaloric material 21 is provided so as to straddle one end side and the other end side.
  • FIG. 10 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material 21 provided in the flow path 20 and the phase transition temperature of the heat storage material 22.
  • FIG. 11 is a sectional view taken along the line AA shown in FIG.
  • FIG. 12 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material 21 provided in the flow path 20 and the phase transition temperature of the heat storage material 22.
  • a magnetocaloric material 21b is provided in the flow path 20 spanning from one end side to the other end side.
  • a heat storage material 22b is provided in the flow path 20 in which the magnetocaloric material 21b is provided. That is, as shown in FIG. 10, when the magnetocaloric material 21b whose Curie temperature is lower than the operating environment temperature is provided so as to straddle both one end side and the other end side, the magnetocaloric material 21b on the one end side A heat storage material 22b having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21b is provided in the flow path 20 in which the material 21b is provided.
  • a heat storage material 22b is also provided in the channel 20 in which the magnetocaloric material 21b is provided at the other end.
  • the phase transition temperature is higher than the Curie temperature of the magnetocaloric material 21.
  • a heat storage material 22 is provided.
  • a magnetocaloric material 21c is provided in the flow path 20 spanning from one end side to the other end side.
  • a heat storage material 22c is provided in the channel 20 in which the magnetocaloric material 21c is provided. That is, as shown in FIG. 12, when the magnetocaloric material 21c whose Curie temperature is lower than the operating environment temperature is provided so as to straddle both one end side and the other end side, the magnetic field at the other end side A heat storage material 22c having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21c is provided in the flow path 20 in which the caloric material 21c is provided.
  • a heat storage material 22c is also provided in the channel 20 in which the magnetocaloric material 21c is provided at one end.
  • the magnetocaloric material 21 has a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21.
  • a heat storage material 22 is provided.
  • the magnetocaloric material bed 10 has a structure in which the magnetocaloric material 21 is provided in the channel 20 so as to span both one end side and the other end side,
  • the magnetocaloric material 21 In the channel 20 in which the magnetocaloric material 21 is provided, different types of heat storage materials 22 are not provided at one end and the other end, but the same type of heat storage materials 22 are provided.
  • FIG. 13 is a sectional view of a heat storage material covered with a magnetocaloric material capsule of a magnetocaloric material bed according to the second embodiment.
  • the heat storage material 22 is shown covered with a capsule 23 so that it does not melt, mix with the heat exchange fluid 9, and move within the flow path 20.
  • a magnetocaloric material bed 10a is shown in which a heat storage material 22 is covered with a magnetocaloric material capsule 24 formed of a magnetocaloric material 21 and provided in a flow path 20 of the magnetocaloric material bed 10a.
  • the other configurations are the same as those in Embodiment 1, and the same components as in Embodiment 1 are given the same numbers and their explanations will be omitted.
  • the magnetocaloric material bed 10a includes a plurality of types of magnetocaloric materials 21 provided in a flow path 20 such that the Curie temperature increases in order from one end to the other end, and a phase transition from one end to the other end.
  • a plurality of types of heat storage materials 22 are provided in the flow path 20 so that the temperature increases in sequence.
  • a heat storage material 22 having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 is provided in the flow path 20 in which the magnetocaloric material 21 having a Curie temperature lower than the operating environment temperature is provided.
  • a heat storage material 22 having a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21 is provided in the channel 20 in which the magnetocaloric material 21 is provided with the magnetocaloric material 21 having a Curie temperature higher than the operating environment temperature.
  • the heat storage material 22 according to this embodiment is covered with a magnetocaloric material capsule 24 formed of the magnetocaloric material 21, as shown in FIG.
  • the magnetocaloric material 21 that forms the magnetocaloric material capsule 24 is a magnetocaloric material 21 that is adjacent to the heat storage material 22 in the flow path 20 .
  • the magnetocaloric material 21a adjacent to the heat storage material 22a is used as the magnetocaloric material 21 forming the magnetocaloric material capsule 24 that covers the heat storage material 22a.
  • the heat storage material 22 is covered with the magnetocaloric material capsule 24 formed of the magnetocaloric material 21, and is provided in the flow path 20 of the magnetocaloric material bed 10a. ing.
  • the capsule made of a material different from that of the magnetocaloric material 21 and the volume within the channel 20 of the magnetocaloric material bed 10a can be effectively utilized. Therefore, the amount of magnetocaloric material 21 can be increased, and a high magnetic refrigeration effect can be obtained.
  • FIG. 14 is a sectional view of a magnetocaloric material bed according to the third embodiment.
  • Embodiment 1 showed the magnetocaloric material bed 10 in which the heat storage material 22 was provided in the flow path 20 of the magnetocaloric material bed 10.
  • a magnetocaloric material bed 10b is shown in which a heat storage material 22 is provided on a bed wall 11a that forms a flow path 20a.
  • the other configurations are the same as those in Embodiment 1, and the same configurations as in Embodiment 1 are given the same numbers and descriptions thereof will be omitted.
  • the magnetocaloric material bed 10b has a plurality of types of magnetocaloric materials 21 provided in the flow path 20a such that the Curie temperature increases in order from one end to the other end, and a phase transition from one end to the other end.
  • a plurality of types of heat storage materials 22 are provided in the flow path 20a so that the temperature increases in sequence.
  • a heat storage material 22 having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 is provided in the flow path 20a in which the magnetocaloric material 21 whose Curie temperature is lower than the operating environment temperature is provided.
  • a heat storage material 22 having a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21 is provided in the flow path 20a in which the magnetocaloric material 21 is provided with the magnetocaloric material 21 having a Curie temperature higher than the operating environment temperature.
  • a heat storage material 22 is provided on the bed wall 11a of the flow path 20a.
  • four types of heat storage materials 22a, 22b, 22c, and 22d are arranged in the flow path 20a in the order of heat storage materials 22a, 22b, 22c, and 22d from the low temperature end to the high temperature end. It is provided on the bed wall 11a of the bed 20a. That is, the position where the heat storage material 22 is provided differs from the magnetocaloric material bed 10 shown in Embodiment 1.
  • the heat storage material 22 on the bed wall 11a of the flow path 20a in this manner, the heat capacity within the flow path 20a of the magnetocaloric material bed 10b can be increased.
  • rapid temperature changes in the magnetocaloric material 21 can be suppressed, and the time required for the magnetocaloric material 21 to reach the Curie temperature when restarted can be shortened. Capacity starts up faster, operating efficiency improves, and energy is saved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

The present invention obtains a magnetocalorific material bed in which a heat-storing member is provided to a flow path within which a plurality of types of magnetocalorific materials are provided so that the Curie temperatures thereof sequentially increase from one end toward the other end, thereby making it possible to cause the magnetocalorific materials to swiftly reach the respective Curie temperatures when a device is started up, and making it possible to improve the operation efficiency. This magnetocalorific material bed (10) comprises: a flow path (20) through which a heat exchange fluid (9) flows in a circulatory manner between one end and the other end; a plurality of types of magnetocalorific materials (21) that are provided within the flow path (20) such that the Curie temperatures of the magnetocalorific materials (21) sequentially increase from the one end to the other end, the magnetocalorific materials (21) undergoing heat exchange with the heat exchange fluid (9); and a plurality of types of heat-storing members (22) that are provided to the flow path (20) so that the phase transition temperatures of the heat-storing members (22) sequentially increase from the one end to the other end.

Description

磁気熱量材料ベッドおよび磁気冷凍装置Magnetocaloric material beds and magnetic refrigeration equipment
 本開示は、磁気熱量材料ベッドおよび磁気冷凍装置に関する。 The present disclosure relates to magnetocaloric material beds and magnetic refrigeration devices.
 磁気冷凍装置は、磁性体に磁界を付与すると磁性体が発熱し、磁界を除去すると磁性体が吸熱する現象(以下、「磁気熱量効果」と記載)を利用した冷凍システムである。磁気冷凍装置の磁性体として用いられる磁気熱量材料は、エントロピー変化の大きいキュリー点付近において最も大きな磁気熱量効果を示すことが知られている。 A magnetic refrigeration device is a refrigeration system that utilizes the phenomenon that when a magnetic field is applied to a magnetic body, the magnetic body generates heat, and when the magnetic field is removed, the magnetic body absorbs heat (hereinafter referred to as "magnetocaloric effect"). It is known that magnetocaloric materials used as magnetic materials in magnetic refrigeration devices exhibit the largest magnetocaloric effect near the Curie point, where the entropy change is large.
 従来技術では、磁気熱容器に充填された特性の異なる磁気熱量材料を、低温側から高温側にカスケード配置することにより、両端温度差の拡大、冷却性能の向上が図られている。例えば、特許文献1には、低温端から高温端に向けてキュリー温度が上昇するカスケードとなるように配置され、相対的に流体的抵抗が低い素子は、相対的に流体的抵抗が高い素子より高温側に位置された磁気熱量効果素子および磁気熱サイクル装置が開示されている。 In the conventional technology, magnetocaloric materials with different characteristics filled in a magnetocaloric container are arranged in a cascade from the low temperature side to the high temperature side, thereby increasing the temperature difference between both ends and improving the cooling performance. For example, in Patent Document 1, an element is arranged so as to form a cascade in which the Curie temperature increases from a low temperature end to a high temperature end, and an element with a relatively low fluid resistance is higher than an element with a relatively high fluid resistance. A magnetocaloric effect element and a magnetocaloric cycle device located on the high temperature side are disclosed.
特開2020-077745号公報JP2020-077745A
 上記磁気熱量効果素子および磁気熱サイクル装置は、各磁気熱量素子をカスケード配置し、吸発熱量の大きい温度で動作することにより冷凍能力の高い磁気熱サイクル装置を実現している。一方で、起動初期時、再稼働時など装置を立ち上げる際に各磁気熱量素子がキュリー温度に達するまで時間を要する。 The above-mentioned magnetocaloric effect element and magnetocaloric cycle device realize a magnetocaloric cycle device with high refrigerating capacity by arranging each magnetocaloric element in a cascade and operating at a temperature with a large amount of heat absorption and heat absorption. On the other hand, it takes time for each magnetocaloric element to reach its Curie temperature when starting up the device, such as at the initial stage of startup or when restarting the device.
 本開示は上述のような課題を解決するためになされたものであり、起動初期時、再稼働時など磁気冷凍装置の運転開始時に、磁気熱量材料が速やかにキュリー温度近くに到達し、効率良く冷凍能力を発揮することのできる磁気熱量材料ベッドおよび磁気冷凍装置を得ることを目的としている。 The present disclosure has been made in order to solve the above-mentioned problems, and the magnetocaloric material quickly reaches close to the Curie temperature at the beginning of operation of the magnetic refrigeration equipment, such as at the initial startup stage or at the time of restarting, so that it can be efficiently The objective is to obtain a magnetocaloric material bed and a magnetic refrigeration device that can exhibit refrigeration capacity.
 本開示にかかる磁気熱量材料ベッドは、一端と他端との間を熱交換流体が往復して流れる流路と、熱交換流体と熱交換し、一端から他端へキュリー温度が順に高くなるように流路内に設けられた複数種の磁気熱量材料と、一端から他端へ相転移温度が順に高くなるように流路に設けられた複数種の蓄熱材と、を備え、動作環境温度よりもキュリー温度が低い磁気熱量材料が設けられた流路には磁気熱量材料のキュリー温度よりも相転移温度が高い蓄熱材が設けられ、動作環境温度よりもキュリー温度が高い磁気熱量材料が設けられた流路には磁気熱量材料のキュリー温度よりも相転移温度が低い蓄熱材が設けられている。 The magnetocaloric material bed according to the present disclosure has a flow path in which a heat exchange fluid flows back and forth between one end and the other end, and heat exchanges with the heat exchange fluid such that the Curie temperature increases in order from one end to the other end. A plurality of types of magnetocaloric materials are provided in the flow path, and a plurality of types of heat storage materials are provided in the flow path such that the phase transition temperature increases in order from one end to the other. A heat storage material having a phase transition temperature higher than the Curie temperature of the magnetocaloric material is provided in the flow path provided with the magnetocaloric material having a low Curie temperature, and a magnetocaloric material having a Curie temperature higher than the operating environment temperature is provided. A heat storage material having a phase transition temperature lower than the Curie temperature of the magnetocaloric material is provided in the flow path.
 本開示の磁気熱量材料ベッドによれば、動作環境温度よりもキュリー温度が低い磁気熱量材料が設けられた流路には磁気熱量材料のキュリー温度よりも相転移温度が高い蓄熱材が設けられ、動作環境温度よりもキュリー温度が高い磁気熱量材料が設けられた流路には磁気熱量材料のキュリー温度よりも相転移温度が低い蓄熱材が設けられていることにより、装置を立ち上げる際に各磁気熱量材料をキュリー温度に速やかに到達させることができ、運転効率が向上するという効果を有する。 According to the magnetocaloric material bed of the present disclosure, a heat storage material having a phase transition temperature higher than the Curie temperature of the magnetocaloric material is provided in the channel provided with the magnetocaloric material having a Curie temperature lower than the operating environment temperature, A heat storage material whose phase transition temperature is lower than the Curie temperature of the magnetocaloric material is provided in the flow path containing the magnetocaloric material whose Curie temperature is higher than the operating environment temperature, so that each This has the effect of allowing the magnetocaloric material to quickly reach the Curie temperature and improving operational efficiency.
実施の形態1にかかる磁気冷凍装置の概略図である。1 is a schematic diagram of a magnetic refrigeration device according to a first embodiment. 実施の形態1にかかる磁気熱量材料ベッドの図1に示すA-A断面図である。FIG. 2 is a sectional view taken along the line AA in FIG. 1 of the magnetocaloric material bed according to the first embodiment. 実施の形態1にかかる磁気熱量材料ベッドの変形例の図1に示すA-A断面図である。FIG. 2 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed according to the first embodiment. 実施の形態1にかかる磁気熱量材料ベッドの流路内に設けられた磁気熱量材料のキュリー温度と蓄熱材の相転移温度との関係を示す図である。FIG. 3 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material. 実施の形態1にかかる磁気熱量材料ベッドの他端側における磁気熱量材料の温度変化を示す図である。FIG. 3 is a diagram showing a temperature change of the magnetocaloric material at the other end side of the magnetocaloric material bed according to the first embodiment. 実施の形態1にかかる磁気熱量材料ベッドの変形例の図1に示すA-A断面図である。FIG. 2 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed according to the first embodiment. 実施の形態1にかかる磁気熱量材料ベッドの流路内に設けられた磁気熱量材料のキュリー温度と蓄熱材の相転移温度との関係を示す図である。FIG. 3 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material. 実施の形態1にかかる磁気熱量材料ベッドの流路内に設けられたカプセルに覆われた蓄熱材の断面図である。FIG. 2 is a cross-sectional view of a heat storage material covered with a capsule provided in a flow path of a magnetocaloric material bed according to a first embodiment. 実施の形態1にかかる磁気熱量材料ベッドの流路内において、一端側と他端側とを跨ぐように磁気熱量材料が設けられた図である。FIG. 2 is a diagram in which a magnetocaloric material is provided so as to straddle one end side and the other end side in the channel of the magnetocaloric material bed according to the first embodiment. 実施の形態1にかかる磁気熱量材料ベッドの流路内に設けられた磁気熱量材料のキュリー温度と蓄熱材の相転移温度との関係を示す図である。FIG. 3 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material. 実施の形態1にかかる磁気熱量材料ベッドの流路内において、一端側と他端側とを跨ぐように磁気熱量材料が設けられた図である。FIG. 2 is a diagram in which a magnetocaloric material is provided so as to straddle one end side and the other end side in the channel of the magnetocaloric material bed according to the first embodiment. 実施の形態1にかかる磁気熱量材料ベッドの流路内に設けられた磁気熱量材料のキュリー温度と蓄熱材の相転移温度との関係を示す図である。FIG. 3 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material. 実施の形態2にかかる磁気熱量材料ベッドの流路内に設けられた磁気熱量材料カプセルに覆われた蓄熱材の断面図である。FIG. 7 is a cross-sectional view of a heat storage material covered with a magnetocaloric material capsule provided in a flow path of a magnetocaloric material bed according to a second embodiment. 実施の形態3にかかる磁気熱量材料ベッドの図1に示すA-A断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 1 of the magnetocaloric material bed according to Embodiment 3;
 以下に、実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態は例示である。また、各実施の形態は、適宜組み合わせて実行することができる。 Hereinafter, embodiments will be described in detail based on the drawings. Note that the embodiment described below is an example. Moreover, each embodiment can be executed in combination as appropriate.
 実施の形態1.
 図1は、実施の形態1にかかる磁気冷凍装置の概略図である。図2は、実施の形態1にかかる磁気熱量材料ベッドの図1に示すA-A断面図である。図3は、実施の形態1にかかる磁気熱量材料ベッドの変形例の図1に示すA-A断面図である。図4は、実施の形態1にかかる磁気熱量材料ベッドの流路内に設けられた磁気熱量材料のキュリー温度と蓄熱材の相転移温度との関係を示す図である。図5は、実施の形態1にかかる磁気熱量材料ベッドの他端側における磁気熱量材料の温度変化を示す図である。図6は、実施の形態1にかかる磁気熱量材料ベッドの変形例の図1に示すA-A断面図である。図7は、実施の形態1にかかる磁気熱量材料ベッドの流路内に設けられた磁気熱量材料のキュリー温度と蓄熱材の相転移温度との関係を示す図である。図8は、実施の形態1にかかる磁気熱量材料ベッドの流路内に設けられたカプセルに覆われた蓄熱材の断面図である。図9は、実施の形態1にかかる磁気熱量材料ベッドの流路内において、低温側と高温側とを跨ぐように磁気熱量材料が設けられた図である。図10は、実施の形態1にかかる磁気熱量材料ベッドの流路内に設けられた磁気熱量材料のキュリー温度と蓄熱材の相転移温度との関係を示す図である。図11は、実施の形態1にかかる磁気熱量材料ベッドの流路内において、低温側と高温側とを跨ぐように磁気熱量材料が設けられた図である。図12は、実施の形態1にかかる磁気熱量材料ベッドの流路内に設けられた磁気熱量材料のキュリー温度と蓄熱材の相転移温度との関係を示す図である。
Embodiment 1.
FIG. 1 is a schematic diagram of a magnetic refrigeration device according to a first embodiment. FIG. 2 is a sectional view taken along the line AA shown in FIG. 1 of the magnetocaloric material bed according to the first embodiment. FIG. 3 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed according to the first embodiment. FIG. 4 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed and the phase transition temperature of the heat storage material according to the first embodiment. FIG. 5 is a diagram showing a temperature change of the magnetocaloric material at the other end side of the magnetocaloric material bed according to the first embodiment. FIG. 6 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed according to the first embodiment. FIG. 7 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed and the phase transition temperature of the heat storage material according to the first embodiment. FIG. 8 is a sectional view of a heat storage material covered with a capsule provided in a flow path of a magnetocaloric material bed according to the first embodiment. FIG. 9 is a diagram in which the magnetocaloric material is provided so as to straddle the low temperature side and the high temperature side in the flow path of the magnetocaloric material bed according to the first embodiment. FIG. 10 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material. FIG. 11 is a diagram in which the magnetocaloric material is provided so as to straddle the low temperature side and the high temperature side in the flow path of the magnetocaloric material bed according to the first embodiment. FIG. 12 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material provided in the flow path of the magnetocaloric material bed according to the first embodiment and the phase transition temperature of the heat storage material.
 図1に示すように磁気冷凍装置1は、低温側熱交換器2、高温側熱交換器3、ファン4、ポンプ5、磁場変調装置6、水管7および磁気熱量材料ベッド10を備えている。磁気熱量材料ベッド10については、詳細を後述する。 As shown in FIG. 1, the magnetic refrigeration device 1 includes a low-temperature side heat exchanger 2, a high-temperature side heat exchanger 3, a fan 4, a pump 5, a magnetic field modulator 6, a water tube 7, and a magnetocaloric material bed 10. The magnetocaloric material bed 10 will be described in detail later.
 ここで、磁気冷凍装置1は、磁気熱量材料ベッド10の流路20の一方を高温にし、流路20の他方を低温にするヒートポンプシステムである。そのため、磁気熱量材料ベッド10の流路20は、高温域である高温側と低温域である低温側とを有している。また、高温側において最も温度の高い位置を高温端、低温側において最も温度の低い位置を低温端とする。すなわち、流路20において高温端および低温端は、流路20から水管7へと熱交換流体9が輸送される際の出口付近を指す。 Here, the magnetic refrigeration device 1 is a heat pump system that makes one of the channels 20 of the magnetocaloric material bed 10 high temperature and the other channel 20 low temperature. Therefore, the channel 20 of the magnetocaloric material bed 10 has a high temperature side that is a high temperature region and a low temperature side that is a low temperature region. Further, the position with the highest temperature on the high temperature side is defined as the high temperature end, and the position with the lowest temperature on the low temperature side is defined as the low temperature end. That is, in the flow path 20, the high temperature end and the low temperature end refer to the vicinity of the outlet when the heat exchange fluid 9 is transported from the flow path 20 to the water tube 7.
 低温側熱交換器2は、磁気熱量材料ベッド10の流路20の低温端と水管7を介して接続されている。また、低温側熱交換器2には、図示を省略する被冷却媒体流路が接続され、磁気熱量材料ベッド10の流路20の低温端から水管7を介して低温側熱交換器2に供給された熱交換流体9は、被冷却媒体流路を流れる被冷却媒体と熱交換をする。すなわち、低温側熱交換器2に供給された熱交換流体9は、被冷却媒体と熱交換し吸熱する。なお、ここでいう被冷却媒体とは水などの液体を指す。 The low temperature side heat exchanger 2 is connected to the low temperature end of the flow path 20 of the magnetocaloric material bed 10 via the water pipe 7. Further, a cooled medium flow path (not shown) is connected to the low temperature side heat exchanger 2, and is supplied from the low temperature end of the flow path 20 of the magnetocaloric material bed 10 to the low temperature side heat exchanger 2 via the water pipe 7. The heated heat exchange fluid 9 exchanges heat with the medium to be cooled flowing through the medium flow path. That is, the heat exchange fluid 9 supplied to the low temperature side heat exchanger 2 exchanges heat with the medium to be cooled and absorbs heat. Note that the medium to be cooled here refers to a liquid such as water.
 ここで、熱交換流体9とは、低温側熱交換器2、高温側熱交換器3、水管7および磁気熱量材料ベッド10の流路20内を流れる流体であり、低温側熱交換器2と高温側熱交換器3との間を往復する。熱交換流体9は、例えば水、ブラインなどを用いるとよい。 Here, the heat exchange fluid 9 is a fluid flowing through the flow paths 20 of the low temperature side heat exchanger 2, the high temperature side heat exchanger 3, the water tubes 7, and the magnetocaloric material bed 10, and is It reciprocates between the high temperature side heat exchanger 3 and the high temperature side heat exchanger 3. For example, water, brine, etc. may be used as the heat exchange fluid 9.
 高温側熱交換器3は、磁気熱量材料ベッド10の流路20の高温端と水管7を介して接続されている。したがって、低温側熱交換器2と高温側熱交換器3とは、磁気熱量材料ベッド10を水管7を介して挟むように接続されている。また、図1に示すように、高温側熱交換器3には、磁気熱量材料ベッド10の流路20の高温端から水管7を介して高温側熱交換器3に供給された熱交換流体9と空気とが熱交換を行うファン4が設けられている。すなわち、高温側熱交換器3に供給された熱交換流体9は、空気と熱交換を行い排熱し、熱交換した空気はファン4により輸送される。 The high temperature side heat exchanger 3 is connected to the high temperature end of the flow path 20 of the magnetocaloric material bed 10 via the water pipe 7. Therefore, the low temperature side heat exchanger 2 and the high temperature side heat exchanger 3 are connected to sandwich the magnetocaloric material bed 10 via the water pipe 7. As shown in FIG. 1, the heat exchange fluid 9 is supplied to the high temperature side heat exchanger 3 from the high temperature end of the flow path 20 of the magnetocaloric material bed 10 via the water pipe 7. A fan 4 is provided for exchanging heat between the air and the air. That is, the heat exchange fluid 9 supplied to the high temperature side heat exchanger 3 exchanges heat with air to exhaust heat, and the heat exchanged air is transported by the fan 4.
 ここで、低温側熱交換器2に供給された熱交換流体9は水などの被冷却媒体と熱交換を行う例を示したがこれに限らない。例えば、被冷却媒体が空気の場合、低温側熱交換器2に供給された熱交換流体9は空気と熱交換を行い、熱交換を行った空気はファン4を用いて輸送される。同様に、高温側熱交換器3に供給された熱交換流体9は、水などの液体と熱交換を行ってもよい。つまり、用途に応じて熱交換流体9の熱交換を行う相手を変更することができる。 Here, an example has been shown in which the heat exchange fluid 9 supplied to the low temperature side heat exchanger 2 exchanges heat with a medium to be cooled such as water, but the present invention is not limited to this. For example, when the medium to be cooled is air, the heat exchange fluid 9 supplied to the low temperature side heat exchanger 2 exchanges heat with the air, and the air with which the heat exchange has been performed is transported using the fan 4. Similarly, the heat exchange fluid 9 supplied to the high temperature side heat exchanger 3 may exchange heat with a liquid such as water. In other words, the partner with which the heat exchange fluid 9 performs heat exchange can be changed depending on the application.
 ポンプ5は、低温側熱交換器2と高温側熱交換器3との間において、磁気熱量材料ベッド10を経由して往復するように熱交換流体9を輸送可能に構成された往復ポンプである。すなわち、ポンプ5は低温側熱交換器2、磁気熱量材料ベッド10および高温側熱交換器3との間を繰り返し往復するように熱交換流体9を輸送する。 The pump 5 is a reciprocating pump configured to be able to transport the heat exchange fluid 9 between the low temperature side heat exchanger 2 and the high temperature side heat exchanger 3 so as to reciprocate via the magnetocaloric material bed 10. . That is, the pump 5 transports the heat exchange fluid 9 repeatedly between the low-temperature side heat exchanger 2, the magnetocaloric material bed 10, and the high-temperature side heat exchanger 3.
 なお、図1には磁気熱量材料ベッド10とは反対側において、低温側熱交換器2と高温側熱交換器3との間に水管7を介して接続されたポンプ5を示したが、ポンプ5の接続位置はこれに限らない。例えば、磁気熱量材料ベッド10と低温側熱交換器2との間または磁気熱量材料ベッド10と高温側熱交換器3との間において水管7を介して接続してもよい。ただし、この場合、ポンプ5の熱容量により、磁気熱量材料ベッド10の流路20の高温端と低温端との温度差が小さくなってしまうため、磁気熱量材料ベッド10とは反対側の低温側熱交換器2と高温側熱交換器3との間に水管7を介して接続することが望ましい。 Note that although FIG. 1 shows a pump 5 connected via a water pipe 7 between the low-temperature side heat exchanger 2 and the high-temperature side heat exchanger 3 on the side opposite to the magnetocaloric material bed 10, the pump The connection position of No. 5 is not limited to this. For example, a connection may be made between the magnetocaloric material bed 10 and the low temperature side heat exchanger 2 or between the magnetocaloric material bed 10 and the high temperature side heat exchanger 3 via the water pipe 7. However, in this case, due to the heat capacity of the pump 5, the temperature difference between the high-temperature end and the low-temperature end of the flow path 20 of the magnetocaloric material bed 10 becomes small. It is desirable to connect the exchanger 2 and the high temperature side heat exchanger 3 via water pipes 7.
 磁場変調装置6は、図1に示すように磁気熱量材料ベッド10の側面全体を挟むように対向して設けられている。また、磁場変調装置6は、磁気熱量材料ベッド10の流路20内に設けられた磁気熱量材料21に印加する磁界を変動可能に構成されている。 As shown in FIG. 1, the magnetic field modulators 6 are provided facing each other so as to sandwich the entire side surface of the magnetocaloric material bed 10. Further, the magnetic field modulator 6 is configured to be able to vary the magnetic field applied to the magnetocaloric material 21 provided in the flow path 20 of the magnetocaloric material bed 10.
 磁場変調装置6は、磁気熱量材料ベッド10の流路20内に設けられた磁気熱量材料21に磁界を印加および除去できる構成であれば方式を問わない。例えば、永久磁石を用いた磁場変調装置6の場合、磁気熱量材料ベッド10を固定し、永久磁石を磁気熱量材料ベッド10へ近づけるあるいは離すことにより磁界を変動させる。または、永久磁石を固定し、磁気熱量材料ベッド10を永久磁石へ近づけるあるいは離すことにより磁界を変動させてもよい。ただし、永久磁石を用いた磁場変調装置6の場合、磁気熱量材料ベッド10から磁場変調装置6が離れていると永久磁石の磁力が弱まり、磁界を十分に印加できないため、磁気熱量材料ベッド10と磁場変調装置6とは近接して設けるとよい。 The magnetic field modulation device 6 may be of any type as long as it can apply and remove a magnetic field to and from the magnetocaloric material 21 provided in the channel 20 of the magnetocaloric material bed 10. For example, in the case of the magnetic field modulation device 6 using a permanent magnet, the magnetocaloric material bed 10 is fixed, and the magnetic field is varied by moving the permanent magnet closer to or away from the magnetocaloric material bed 10. Alternatively, the permanent magnet may be fixed and the magnetic field may be varied by moving the magnetocaloric material bed 10 closer to or away from the permanent magnet. However, in the case of the magnetic field modulator 6 using a permanent magnet, if the magnetic field modulator 6 is far from the magnetocaloric material bed 10, the magnetic force of the permanent magnet will weaken and a sufficient magnetic field cannot be applied. It is preferable to provide it close to the magnetic field modulator 6.
 また、電磁石を用いた磁場変調装置6の場合、電流を流すことにより励磁し、停止することにより消磁して磁気熱量材料21に磁界の変動を与える。この場合、磁界の変動は電流を流すまたは停止することにより行えるため、磁場変調装置6は磁気熱量材料ベッド10に近接して設ける必要はなく、磁気熱量材料21に磁界を印加および除去できれば設置位置、設置方法などは問わない。 Furthermore, in the case of the magnetic field modulation device 6 using an electromagnet, it is excited by passing a current, and demagnetized by stopping it, thereby imparting fluctuations in the magnetic field to the magnetocaloric material 21. In this case, since the magnetic field can be varied by flowing or stopping the current, the magnetic field modulator 6 does not need to be installed close to the magnetocaloric material bed 10, and if the magnetic field can be applied to and removed from the magnetocaloric material 21, the magnetic field modulator 6 can be installed at any location. , the installation method does not matter.
 水管7は、低温側熱交換器2と磁気熱量材料ベッド10との間、高温側熱交換器3と磁気熱量材料ベッド10との間、低温側熱交換器2とポンプ5との間および高温側熱交換器3とポンプ5との間に設けられ、熱交換流体9を輸送する配管である。なお、水管7の形状は図1に示す限りではなく、適宜変更してもよい。 The water pipe 7 is connected between the low temperature side heat exchanger 2 and the magnetocaloric material bed 10, between the high temperature side heat exchanger 3 and the magnetocaloric material bed 10, between the low temperature side heat exchanger 2 and the pump 5, and between the high temperature side heat exchanger 2 and the magnetocaloric material bed 10. This piping is provided between the side heat exchanger 3 and the pump 5 and transports the heat exchange fluid 9. Note that the shape of the water tube 7 is not limited to that shown in FIG. 1, and may be changed as appropriate.
 磁気熱量材料ベッド10について図2および図3を用いて説明をする。図2は図1のA-A断面図である。図3は磁気熱量材料ベッド10の変形例の図1に示すA-A断面図である。図2に示すように磁気熱量材料ベッド10は、フランジ12およびベッド壁11により形成された流路20を備えている。 The magnetocaloric material bed 10 will be explained using FIGS. 2 and 3. FIG. 2 is a sectional view taken along line AA in FIG. FIG. 3 is a sectional view taken along the line AA shown in FIG. 1 of a modified example of the magnetocaloric material bed 10. As shown in FIG. 2, the magnetocaloric material bed 10 includes a flow path 20 formed by the flange 12 and the bed wall 11.
 フランジ12は、流路20の低温端および高温端に設けられ、水管7と流路20とを接続する。なお、図2にはフランジ12を介して水管7が接続された磁気熱量材料ベッド10を示したが一例にすぎず、フランジ12を用いずに水管7と流路20とを直接接続するようにしてもよい。 The flange 12 is provided at the low temperature end and high temperature end of the flow path 20 and connects the water pipe 7 and the flow path 20. Note that although FIG. 2 shows the magnetocaloric material bed 10 to which the water pipe 7 is connected via the flange 12, this is merely an example, and the water pipe 7 and the flow path 20 may be directly connected without using the flange 12. It's okay.
 流路20は、ベッド壁11により形成され、熱交換流体9が流れる水路である。流路20は、一端に低温端、他端に高温端を有し、低温側熱交換器2から水管7を介して供給された熱交換流体9は、流路20の一端から他端へ向かって流れる。同様に、高温側熱交換器3から水管7を介して供給された熱交換流体9は、流路20の他端から一端へ向かって流れる。すなわち、熱交換流体9はポンプ5によって、流路20の一端と他端との間を往復して流れる。 The flow path 20 is formed by the bed wall 11 and is a waterway through which the heat exchange fluid 9 flows. The flow path 20 has a low temperature end at one end and a high temperature end at the other end, and the heat exchange fluid 9 supplied from the low temperature side heat exchanger 2 via the water pipe 7 flows from one end of the flow path 20 to the other end. It flows. Similarly, the heat exchange fluid 9 supplied from the high temperature side heat exchanger 3 via the water pipe 7 flows from the other end of the flow path 20 toward one end. That is, the heat exchange fluid 9 flows back and forth between one end and the other end of the flow path 20 by the pump 5 .
 また、流路20内には、熱交換流体9と熱交換を行う磁気熱量材料21が設けられている。磁気熱量材料21は、流路20の一端から他端に向けてキュリー温度が順に高くなるように流路20内に設けられている。ここで、キュリー温度とは磁性体が磁力を失う温度のことである。 Additionally, a magnetocaloric material 21 that exchanges heat with the heat exchange fluid 9 is provided within the flow path 20 . The magnetocaloric material 21 is provided in the flow path 20 such that the Curie temperature thereof increases from one end of the flow path 20 to the other end. Here, the Curie temperature is the temperature at which a magnetic material loses its magnetic force.
 次に、流路20内に設けられた磁気熱量材料21について、図2を用いて詳細を説明する。図2に示すように、流路20内には種類の異なる4種の磁気熱量材料21a、21b、21cおよび21dが設けられている。また、磁気熱量材料21は複数の粒により構成され、流路20内には複数の粒により構成された磁気熱量材料21が複数種設けられている。ここで、磁気熱量材料21のキュリー温度は、キュリー温度が低い順に磁気熱量材料21a、21b、21c、21dとする。 Next, details of the magnetocaloric material 21 provided in the flow path 20 will be explained using FIG. 2. As shown in FIG. 2, four different types of magnetocaloric materials 21a, 21b, 21c, and 21d are provided in the flow path 20. Further, the magnetocaloric material 21 is composed of a plurality of grains, and a plurality of types of magnetocaloric materials 21 each composed of a plurality of grains are provided in the channel 20. Here, the Curie temperature of the magnetocaloric material 21 is set as magnetocaloric materials 21a, 21b, 21c, and 21d in descending order of Curie temperature.
 本実施の形態における磁気熱量材料ベッド10の流路20内において、磁気熱量材料21は、流路20の一端に磁気熱量材料21aが設けられ、他端に向かうにつれてキュリー温度が高い磁気熱量材料21が設けられる。すなわち、磁気熱量材料21は流路20において、流路20の一端から他端に向けて磁気熱量材料21a、21b、21c、21dという順に流路20内に設けられている。 In the channel 20 of the magnetocaloric material bed 10 in this embodiment, the magnetocaloric material 21 is provided with a magnetocaloric material 21a at one end of the channel 20, and whose Curie temperature increases toward the other end. is provided. That is, the magnetocaloric materials 21 are provided in the channel 20 in the order of magnetocaloric materials 21a, 21b, 21c, and 21d from one end of the channel 20 to the other end.
 なお、流路20の低温端から高温端に向けてキュリー温度の高い磁気熱量材料21を配置することをカスケード配置という。本実施の形態では、図2に示すように4種の磁気熱量材料21a、21b、21cおよび21dがカスケード配置された例を示したが、流路20内において、複数種の磁気熱量材料21がカスケード配置して設けられていれば種類数は問わない。ただし、流路20内に設けられた磁気熱量材料21の種類が多いほど、流路20の一端と他端との温度差を大きくすることができるため、磁気冷凍装置1の発揮する冷凍能力の効率を上げることができる。 Note that arranging the magnetocaloric material 21 having a high Curie temperature from the low-temperature end to the high-temperature end of the flow path 20 is called cascade arrangement. In this embodiment, an example was shown in which four types of magnetocaloric materials 21a, 21b, 21c, and 21d are arranged in a cascade as shown in FIG. The number of types does not matter as long as they are provided in a cascade arrangement. However, as the number of types of magnetocaloric materials 21 provided in the flow path 20 increases, the temperature difference between one end and the other end of the flow path 20 can be increased. It can increase efficiency.
 また、流路20内において磁気熱量材料21は、熱交換流体9の流れによって互いに隣り合う種類の異なる磁気熱量材料21同士が混ざり合うことのないように、敷き詰められている。ただし、熱交換流体9が流路20内を長時間繰り返し往復した場合、熱交換流体9の流れによって磁気熱量材料21が混在することもある。そのため、熱交換流体9の流れによって磁気熱量材料21が混ざり合うことのないように、互いに隣り合う種類の異なる磁気熱量材料21同士を区画するようにメッシュ13を設けてもよい。 In addition, the magnetocaloric materials 21 are laid out in the flow path 20 so that adjacent magnetocaloric materials 21 of different types do not mix with each other due to the flow of the heat exchange fluid 9. However, when the heat exchange fluid 9 repeatedly reciprocates within the channel 20 for a long time, the magnetocaloric material 21 may be mixed in due to the flow of the heat exchange fluid 9. Therefore, in order to prevent the magnetocaloric materials 21 from mixing due to the flow of the heat exchange fluid 9, the mesh 13 may be provided to separate adjacent magnetocaloric materials 21 of different types.
 図3は、磁気熱量材料ベッド10の変形例の図1に示すA-A断面図である。図3に示すように、流路20内においてカスケード配置された磁気熱量材料21は、種類の異なる磁気熱量材料21が混ざり合うことのないようにメッシュ13によって区画して設けられている。なお、メッシュ13については、熱交換流体9が通過可能かつ磁気熱量材料21が通過不可な素材、形状であれば種類は問わない。また、メッシュ13は、磁気熱量材料21が熱交換流体9の流れによって混ざり合うことなく流路20内に設けられている場合には、必ずしも流路20内に設ける必要はない。 FIG. 3 is a cross-sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed 10. As shown in FIG. 3, the magnetocaloric materials 21 arranged in a cascade in the flow path 20 are partitioned by a mesh 13 so that different types of magnetocaloric materials 21 do not mix. Note that the mesh 13 may be of any type as long as it is made of a material and has a shape that allows the heat exchange fluid 9 to pass through but does not allow the magnetocaloric material 21 to pass through. Moreover, the mesh 13 does not necessarily need to be provided in the flow path 20 when the magnetocaloric material 21 is provided in the flow path 20 without being mixed by the flow of the heat exchange fluid 9.
 さらに図示を省略するが、メッシュ13は流路20の低温端および高温端において、水管7と流路20との間に設けてもよい。このように、水管7と流路20との間にメッシュ13を設けることにより水管7へ磁気熱量材料21が流出するのを防ぐことができる。なお、流路20の低温端および高温端において、水管7と流路20との間にメッシュ13を設ける場合には、例えばフランジ12とメッシュ13との間にスペーサーを設けてメッシュ13を固定するようにするとよい。 Furthermore, although not shown, the mesh 13 may be provided between the water pipe 7 and the flow path 20 at the low temperature end and high temperature end of the flow path 20. In this way, by providing the mesh 13 between the water pipe 7 and the flow path 20, it is possible to prevent the magnetocaloric material 21 from flowing out into the water pipe 7. Note that when the mesh 13 is provided between the water pipe 7 and the flow path 20 at the low temperature end and high temperature end of the flow path 20, for example, a spacer is provided between the flange 12 and the mesh 13 to fix the mesh 13. It is better to do this.
 ここで、磁気熱量材料ベッド10の流路20内に設けられている磁気熱量材料21は、励磁により電子スピンが磁場方向に揃うと、磁気エントロピーが減少し、熱を放出することによって発熱する。一方で、消磁により電子スピンが乱雑になると、磁気エントロピーが増加し、熱を吸収する。そのため、磁気熱量材料21は、マンガン、鉄、リンおよびゲルマニウムなどの混合物、ガドリニウム系の材料および合金など、常温域において高い磁気熱量効果を発揮する磁性体を用いるとよい。 Here, when the magnetocaloric material 21 provided in the flow path 20 of the magnetocaloric material bed 10 is excited and the electron spins are aligned in the direction of the magnetic field, the magnetic entropy decreases and heat is emitted, thereby generating heat. On the other hand, when electron spins become disordered due to demagnetization, magnetic entropy increases and heat is absorbed. Therefore, the magnetocaloric material 21 is preferably a magnetic material that exhibits a high magnetocaloric effect at room temperature, such as a mixture of manganese, iron, phosphorus, and germanium, or a gadolinium-based material or alloy.
 次に、流路20内に設けられた蓄熱材22について、図2から図7を用いて説明をする。図4は実施の形態1にかかる磁気熱量材料ベッド10の流路20内に設けられた磁気熱量材料21のキュリー温度と蓄熱材22の相転移温度との関係を示す図である。図5は実施の形態1にかかる磁気熱量材料ベッド10の他端側における磁気熱量材料21の温度変化を示す図である。図6は実施の形態1にかかる磁気熱量材料ベッド10の変形例の図1に示すA-A断面図である。図7は実施の形態1にかかる磁気熱量材料ベッド10の流路20内に設けられた磁気熱量材料21のキュリー温度と蓄熱材22の相転移温度との関係を示す図である。 Next, the heat storage material 22 provided in the flow path 20 will be explained using FIGS. 2 to 7. FIG. 4 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material 21 provided in the channel 20 of the magnetocaloric material bed 10 and the phase transition temperature of the heat storage material 22 according to the first embodiment. FIG. 5 is a diagram showing a temperature change of the magnetocaloric material 21 at the other end side of the magnetocaloric material bed 10 according to the first embodiment. FIG. 6 is a sectional view taken along the line AA shown in FIG. 1 of a modification of the magnetocaloric material bed 10 according to the first embodiment. FIG. 7 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material 21 provided in the channel 20 of the magnetocaloric material bed 10 and the phase transition temperature of the heat storage material 22 according to the first embodiment.
 図2および図3に示すように、磁気熱量材料ベッド10の流路20には流路20の一端から他端に向かうにつれてキュリー温度が順に高くなるように磁気熱量材料21が設けられている。また、蓄熱材22は流路20内に複数種設けられている。 As shown in FIGS. 2 and 3, the magnetocaloric material 21 is provided in the channel 20 of the magnetocaloric material bed 10 so that the Curie temperature increases from one end of the channel 20 to the other end. Further, a plurality of types of heat storage materials 22 are provided within the flow path 20.
 蓄熱材22は、流路20の一端から他端に向けて相転移温度が順に高くなるように流路20内に設けられている。また、一端側に設けられた蓄熱材22は一端側に設けられた磁気熱量材料21のキュリー温度よりも相転移温度が高く、他端側に設けられた蓄熱材22は他端側に設けられた磁気熱量材料21のキュリー温度よりも相転移温度が低い。ここで、相転移温度とは相転移が生じる温度のことである。 The heat storage material 22 is provided in the flow path 20 such that the phase transition temperature increases in order from one end of the flow path 20 to the other end. Further, the heat storage material 22 provided on one end side has a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 provided on the one end side, and the heat storage material 22 provided on the other end side has a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 provided on the other end side. The phase transition temperature is lower than the Curie temperature of the magnetocaloric material 21. Here, the phase transition temperature is the temperature at which phase transition occurs.
 図2および図4を用いて説明をする。図2に示すように、磁気熱量材料21は流路20の一端から順に磁気熱量材料21a、21b、21c、21dが設けられている。そして、蓄熱材22は一端側に蓄熱材22b、他端側に蓄熱材22cが設けられている。 This will be explained using FIGS. 2 and 4. As shown in FIG. 2, the magnetocaloric material 21 is provided with magnetocaloric materials 21a, 21b, 21c, and 21d in order from one end of the flow path 20. The heat storage material 22 is provided with a heat storage material 22b on one end side and a heat storage material 22c on the other end side.
 さらに、図4は、磁気熱量材料21のキュリー温度と蓄熱材22の相転移温度との関係を示したグラフである。ここで、図4に示す動作環境温度とは、磁気熱量材料ベッド10が設置された環境の温度を指す。例えば、磁気熱量材料ベッド10を外に設置する場合は外気の温度、室内に設置する場合は室内温度を指す。 Further, FIG. 4 is a graph showing the relationship between the Curie temperature of the magnetocaloric material 21 and the phase transition temperature of the heat storage material 22. Here, the operating environment temperature shown in FIG. 4 refers to the temperature of the environment in which the magnetocaloric material bed 10 is installed. For example, when the magnetocaloric material bed 10 is installed outside, it refers to the temperature of the outside air, and when it is installed indoors, it refers to the indoor temperature.
 図4に示すように、一端側に設けられた蓄熱材22bは一端側に設けられた磁気熱量材料21a、21bのキュリー温度よりも相転移温度が高い。一方で、他端側に設けられた蓄熱材22cは他端側に設けられた磁気熱量材料21c、21dのキュリー温度よりも相転移温度が低い。また、流路20の他端側に設けられた蓄熱材22すなわち蓄熱材22cの相転移温度は動作環境温度よりも高く、一端側に設けられた蓄熱材22すなわち蓄熱材22bの相転移温度は動作環境温度よりも低い。さらに、流路20の他端側に設けられた蓄熱材22cの相転移温度は、一端側に設けられた蓄熱材22bの相転移温度よりも高い。 As shown in FIG. 4, the heat storage material 22b provided on one end side has a phase transition temperature higher than the Curie temperature of the magnetocaloric materials 21a and 21b provided on the one end side. On the other hand, the heat storage material 22c provided on the other end side has a phase transition temperature lower than the Curie temperature of the magnetocaloric materials 21c and 21d provided on the other end side. Further, the phase transition temperature of the heat storage material 22, that is, the heat storage material 22c provided on the other end side of the flow path 20 is higher than the operating environment temperature, and the phase transition temperature of the heat storage material 22, that is, the heat storage material 22b provided on the one end side is higher than the operating environment temperature. Lower than the operating environment temperature. Furthermore, the phase transition temperature of the heat storage material 22c provided on the other end side of the flow path 20 is higher than the phase transition temperature of the heat storage material 22b provided on the one end side.
 図5は、流路20の他端側における磁気熱量材料21の温度変化を示す図である。縦軸は温度、横軸は時間を示し、太い実線および点線が流路20内に蓄熱材22有り、細い実線および点線が流路20内に蓄熱材22無しの温度変化を示している。また、K1は相転移温度、K2はキュリー温度、t0は磁気冷凍装置1の運転停止時、t1は磁気冷凍装置1の再稼働時、T1およびT2は再稼働時からキュリー温度へ到達するまでの時間を指す。なお、実線は、磁気冷凍装置1を再稼働した際の磁気熱量材料21の温度変化、点線は、再稼働せずに磁気冷凍装置1の運転停止後の温度変化を示している。 FIG. 5 is a diagram showing the temperature change of the magnetocaloric material 21 on the other end side of the flow path 20. The vertical axis shows temperature, and the horizontal axis shows time. Thick solid lines and dotted lines show temperature changes with heat storage material 22 in the flow path 20, and thin solid lines and dotted lines show temperature changes without heat storage material 22 in the flow path 20. In addition, K1 is the phase transition temperature, K2 is the Curie temperature, t0 is when the magnetic refrigeration system 1 is stopped, t1 is when the magnetic refrigeration system 1 is restarted, and T1 and T2 are the temperature from the time of restart until the Curie temperature is reached. refers to time. Note that the solid line shows the temperature change of the magnetocaloric material 21 when the magnetic refrigeration system 1 is restarted, and the dotted line shows the temperature change after the magnetic refrigeration system 1 is stopped without restarting.
 図5に示すように、磁気熱量材料21のキュリー温度K2は動作環境温度よりも高いため、運転停止直後から外部への放熱により、磁気熱量材料21の温度が低下する。一方、流路20内に蓄熱材22が設けられている場合、運転停止後に蓄熱材22から磁気熱量材料21に熱が移動するため、流路20内に蓄熱材22が設けられていない場合に比べて、磁気熱量材料21の温度変化は緩やかとなる。すなわち、磁気冷凍装置1を停止後の磁気熱量材料21の温度変化は、流路20内に蓄熱材22を設けるか否かによって大きく差が現れ、再稼働後の磁気熱量材料21のキュリー温度K2への到達時間は、蓄熱材22が流路20内に設けられていない磁気熱量材料21より、流路20内に蓄熱材22が設けられている磁気熱量材料21のほうが短い(T2<T1)。このことは、説明を省略するが低温端側においても同様であり、蓄熱材22が流路20内に設けられていない磁気熱量材料21より流路20内に蓄熱材22が設けられた磁気熱量材料21のほうが磁気冷凍装置1を再稼働後のキュリー温度への到達時間は短い。 As shown in FIG. 5, since the Curie temperature K2 of the magnetocaloric material 21 is higher than the operating environment temperature, the temperature of the magnetocaloric material 21 decreases due to heat radiation to the outside immediately after the operation is stopped. On the other hand, when the heat storage material 22 is provided in the flow path 20, heat transfers from the heat storage material 22 to the magnetocaloric material 21 after the operation is stopped. In comparison, the temperature change of the magnetocaloric material 21 is gradual. That is, the temperature change of the magnetocaloric material 21 after the magnetic refrigeration device 1 is stopped varies greatly depending on whether or not the heat storage material 22 is provided in the flow path 20, and the Curie temperature K2 of the magnetocaloric material 21 after restarting The arrival time is shorter for the magnetocaloric material 21 in which the heat storage material 22 is provided in the flow path 20 than in the magnetocaloric material 21 in which the heat storage material 22 is not provided in the flow path 20 (T2<T1) . Although the explanation is omitted, this is the same on the low temperature end side, and the magnetocaloric material 21 where the heat storage material 22 is provided in the flow path 20 is higher than the magnetocaloric material 21 where the heat storage material 22 is not provided in the flow path 20. Material 21 takes a shorter time to reach the Curie temperature after the magnetic refrigeration device 1 is restarted.
 以上より、磁気熱量材料ベッド10は、一端側に設けられた蓄熱材22は一端側に設けられた磁気熱量材料21のキュリー温度よりも相転移温度が高く、他端側に設けられた蓄熱材22は他端側に設けられた磁気熱量材料21のキュリー温度よりも相転移温度が低い蓄熱材22を流路20内に設けることにより、磁気冷凍装置1の停止後、磁気熱量材料21の温度変化を小さくすることができる。また、磁気冷凍装置1の再稼働後、速やかにキュリー温度へ磁気熱量材料21の温度を到達させることができる。 As described above, in the magnetocaloric material bed 10, the heat storage material 22 provided on one end side has a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 provided on the one end side, and the heat storage material provided on the other end side 22 is a heat storage material 22 whose phase transition temperature is lower than the Curie temperature of the magnetocaloric material 21 provided on the other end side. Changes can be made smaller. Furthermore, after the magnetic refrigeration device 1 is restarted, the temperature of the magnetocaloric material 21 can quickly reach the Curie temperature.
 また、図6は流路20内において相転移温度の異なる4種の蓄熱材22a、22b、22cおよび22dが設けられた磁気熱量材料ベッド10の例である。図6に示すように、流路20内において蓄熱材22は、種類の異なる各々の磁気熱量材料21に対応して設けられている。すなわち、流路20の一端側において、磁気熱量材料21aが設けられた流路20内には蓄熱材22aが設けられ、磁気熱量材料21bが設けられた流路20内には蓄熱材22bが設けられている。流路20の他端側においても同様に、磁気熱量材料21cが設けられた流路20内には蓄熱材22cが設けられ、磁気熱量材料21dが設けられた流路20内には蓄熱材22dが設けられている。このように、流路20内において、磁気熱量材料21と蓄熱材22とは対になって配置されている。 Further, FIG. 6 is an example of a magnetocaloric material bed 10 in which four types of heat storage materials 22a, 22b, 22c, and 22d having different phase transition temperatures are provided in the flow path 20. As shown in FIG. 6, the heat storage materials 22 are provided in the flow path 20 in correspondence to the different types of magnetocaloric materials 21. That is, on one end side of the flow path 20, a heat storage material 22a is provided in the flow path 20 in which the magnetocaloric material 21a is provided, and a heat storage material 22b is provided in the flow path 20 in which the magnetocaloric material 21b is provided. It is being Similarly, on the other end side of the channel 20, a heat storage material 22c is provided in the channel 20 in which the magnetocaloric material 21c is provided, and a heat storage material 22d is provided in the channel 20 in which the magnetocaloric material 21d is provided. is provided. In this way, within the flow path 20, the magnetocaloric material 21 and the heat storage material 22 are arranged as a pair.
 また、図7は流路20内に設けられた磁気熱量材料21のキュリー温度と蓄熱材22の相転移温度との関係を示す。流路20の一端側においては、磁気熱量材料21aのキュリー温度よりも相転移温度が高い蓄熱材22aが、磁気熱量材料21aが設けられた流路20内に設けられ、磁気熱量材料21bのキュリー温度よりも相転移温度が高い蓄熱材22bが、磁気熱量材料21bが設けられた流路20内に設けられている。一方、流路20の他端側においては、磁気熱量材料21cのキュリー温度よりも相転移温度が低い蓄熱材22cが、磁気熱量材料21cが設けられた流路20内に設けられ、磁気熱量材料21dのキュリー温度よりも相転移温度が低い蓄熱材22dが、磁気熱量材料21dが設けられた流路20内に設けられている。また、流路20の一端側に設けられた蓄熱材22a、22bの相転移温度は動作環境温度よりも低く、流路20の他端側に設けられた蓄熱材22c、22dの相転移温度は動作環境温度よりも高い。このように、蓄熱材22は各々の磁気熱量材料21に対応して流路20内に設けられている。 Further, FIG. 7 shows the relationship between the Curie temperature of the magnetocaloric material 21 provided in the flow path 20 and the phase transition temperature of the heat storage material 22. On one end side of the flow path 20, a heat storage material 22a having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21a is provided in the flow path 20 in which the magnetocaloric material 21a is provided, and the Curie temperature of the magnetocaloric material 21b is A heat storage material 22b having a phase transition temperature higher than the temperature is provided in the flow path 20 in which the magnetocaloric material 21b is provided. On the other hand, on the other end side of the flow path 20, a heat storage material 22c having a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21c is provided in the flow path 20 in which the magnetocaloric material 21c is provided. A heat storage material 22d having a phase transition temperature lower than the Curie temperature of the heat storage material 21d is provided in the flow path 20 in which the magnetocaloric material 21d is provided. Further, the phase transition temperature of the heat storage materials 22a and 22b provided at one end of the flow path 20 is lower than the operating environment temperature, and the phase transition temperature of the heat storage materials 22c and 22d provided at the other end of the flow path 20 is lower than the operating environment temperature. Higher than the operating environment temperature. In this way, the heat storage material 22 is provided in the flow path 20 corresponding to each magnetocaloric material 21.
 以上より、流路20内に設けられた複数種の蓄熱材22は、各々の磁気熱量材料21に対応して一端から他端に向けて相転移温度が順に高くなるように流路20内に設けられている。また、流路20内に設けられた蓄熱材22は、一端側に設けられた蓄熱材22は一端側に設けられた磁気熱量材料21のキュリー温度よりも相転移温度が高く、他端側に設けられた蓄熱材22は他端側に設けられた磁気熱量材料21のキュリー温度よりも相転移温度が低い。このように流路20内に設けられた磁気熱量材料21の種類に対応するように蓄熱材22を設けることにより、図2に示した磁気熱量材料ベッド10を備える磁気冷凍装置1よりも、磁気冷凍装置1の停止後、磁気熱量材料21の温度変化を小さくすることができる。また、磁気冷凍装置1の再稼働後、速やかにキュリー温度へ磁気熱量材料21の温度を到達させることができる。そのため、運転効率が向上し、省エネになる。 As described above, the plurality of types of heat storage materials 22 provided in the flow path 20 are arranged in the flow path 20 such that the phase transition temperature increases in order from one end to the other end corresponding to each magnetocaloric material 21. It is provided. In addition, the heat storage material 22 provided in the flow path 20 has a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 provided at one end, and the heat storage material 22 provided at one end has a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 provided at the other end. The provided heat storage material 22 has a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21 provided on the other end side. By providing the heat storage material 22 in a manner corresponding to the type of the magnetocaloric material 21 provided in the flow path 20, the magnetic refrigeration system 1 equipped with the magnetocaloric material bed 10 shown in FIG. After the refrigeration device 1 is stopped, the temperature change in the magnetocaloric material 21 can be reduced. Furthermore, after the magnetic refrigeration device 1 is restarted, the temperature of the magnetocaloric material 21 can quickly reach the Curie temperature. This improves operating efficiency and saves energy.
 ここで、流路20内に設けられた蓄熱材22には、潜熱蓄熱材を用いるとよい。例えば、飽和炭化水素、ステアリン酸またはパルミチン酸などの脂肪酸、カリウム、ナトリウムなどの低融点金属またはそれらの合金、エリスリトールおよびスレイトールなどの糖アルコール、酢酸ナトリウム3水和物やチオ硫酸ナトリウム5水和物などの水和塩、塩化カルシウムまたは塩化リチウムなどの溶融塩、テトラブチルアンモニウムブロマイドなどの包接水和物および水などを用いることができる。これらの潜熱蓄熱材は、固体から液体、液体から固体に相転移するときに、大きな潜熱を吸放熱することにより多くの熱を蓄えることができる。 Here, it is preferable to use a latent heat storage material for the heat storage material 22 provided in the flow path 20. For example, saturated hydrocarbons, fatty acids such as stearic acid or palmitic acid, low melting point metals such as potassium and sodium or their alloys, sugar alcohols such as erythritol and threitol, sodium acetate trihydrate and sodium thiosulfate pentahydrate. Hydrated salts such as, molten salts such as calcium chloride or lithium chloride, clathrate hydrates such as tetrabutylammonium bromide, and water can be used. These latent heat storage materials can store a large amount of heat by absorbing and releasing large amounts of latent heat during phase transition from solid to liquid and from liquid to solid.
 一方、これらの潜熱蓄熱材を蓄熱材22として用いた場合、融点以上では液体になるため、潜熱蓄熱材をそのまま蓄熱材22として磁気熱量材料ベッド10の流路20内に設けると、温度上昇とともに蓄熱材22が融解してしまう。融解した蓄熱材22は熱交換流体9と共に流路20内を移動後、温度が下がって凝固することによって、水管7を閉塞してしまう可能性があり、流量低下による冷凍性能の低下、故障の要因となる。 On the other hand, when these latent heat storage materials are used as the heat storage material 22, they become liquid at temperatures above their melting point, so if the latent heat storage materials are directly provided as the heat storage material 22 in the channel 20 of the magnetocaloric material bed 10, the temperature will rise and the temperature will increase. The heat storage material 22 will melt. After the melted heat storage material 22 moves through the flow path 20 together with the heat exchange fluid 9, the temperature decreases and solidifies, potentially clogging the water pipe 7, resulting in a decrease in refrigeration performance due to a decrease in flow rate, and a risk of failure. It becomes a factor.
 そのため、蓄熱材22が融解して流路20内を移動することのないように、蓄熱材22は図8に示すようなカプセル23で覆うとよい。ここでカプセル23の素材は、例えばメラミン、アクリル、ウレタンおよびシリカなどを用いる。このように、蓄熱材22をカプセル23で覆うことによって、蓄熱材22が融解して液体になった際に、熱交換流体9と混ざることがないため、凝固して水管7を閉塞してしまうことを防ぐ。 Therefore, in order to prevent the heat storage material 22 from melting and moving within the flow path 20, the heat storage material 22 is preferably covered with a capsule 23 as shown in FIG. Here, the capsule 23 is made of, for example, melamine, acrylic, urethane, silica, or the like. In this way, by covering the heat storage material 22 with the capsule 23, when the heat storage material 22 melts and becomes liquid, it will not mix with the heat exchange fluid 9, so it will solidify and block the water pipe 7. prevent that.
 また、蓄熱材22には、例えばバナジウム酸化物などの固体から固体への相転移時に熱を蓄える潜熱蓄熱材を用いるとよい。このような潜熱蓄熱材を蓄熱材22として流路20内に設ける場合、蓄熱材22が融解して熱交換流体9と混ざることがないため、カプセル23で覆う必要がなく、体積当たりの蓄熱量を大きくすることができる。 Further, as the heat storage material 22, it is preferable to use a latent heat storage material such as vanadium oxide, which stores heat during phase transition from solid to solid. When such a latent heat storage material is provided as the heat storage material 22 in the flow path 20, the heat storage material 22 does not melt and mix with the heat exchange fluid 9, so there is no need to cover it with the capsule 23, and the amount of heat storage per volume is reduced. can be made larger.
 次に、磁気冷凍装置1の動作原理について説明をする。 Next, the operating principle of the magnetic refrigeration device 1 will be explained.
 磁場変調装置6により磁気熱量材料ベッド10の流路20内に設けられた磁気熱量材料21が励磁されると、磁気熱量材料21は磁気熱量効果により温熱を生じる。磁気熱量材料21の温熱は、磁気熱量材料21に隣接した熱交換流体9に熱伝導する。 When the magnetocaloric material 21 provided in the channel 20 of the magnetocaloric material bed 10 is excited by the magnetic field modulation device 6, the magnetocaloric material 21 generates heat due to the magnetocaloric effect. The heat of the magnetocaloric material 21 is thermally transferred to the heat exchange fluid 9 adjacent to the magnetocaloric material 21 .
 ポンプ5によって、水管7、低温側熱交換器2および磁気熱量材料ベッド10内の熱交換流体9が、低温側熱交換器2側から磁気熱量材料ベッド10を経由して高温側熱交換器3側へ輸送されることにより、磁気熱量材料21の温熱は、熱交換流体9によって高温側熱交換器3へ運ばれる。高温側熱交換器3へ運ばれた熱交換流体9は、空気と熱交換を行うことにより冷却され温度が低下する。 By the pump 5, the heat exchange fluid 9 in the water pipe 7, the low temperature side heat exchanger 2 and the magnetocaloric material bed 10 is transferred from the low temperature side heat exchanger 2 side to the high temperature side heat exchanger 3 via the magnetocaloric material bed 10. By being transported to the side, the heat of the magnetocaloric material 21 is carried to the hot side heat exchanger 3 by the heat exchange fluid 9. The heat exchange fluid 9 carried to the high-temperature side heat exchanger 3 is cooled by exchanging heat with air, and its temperature decreases.
 次に、磁場変調装置6により磁気熱量材料ベッド10の流路20内に設けられた磁気熱量材料21が消磁されると、磁気熱量材料21は磁気熱量効果により冷熱を生じる。磁気熱量材料21の冷熱は、磁気熱量材料21に隣接した熱交換流体9に熱伝導する。 Next, when the magnetocaloric material 21 provided in the flow path 20 of the magnetocaloric material bed 10 is demagnetized by the magnetic field modulation device 6, the magnetocaloric material 21 generates cold heat due to the magnetocaloric effect. The cold heat of the magnetocaloric material 21 is thermally transferred to the heat exchange fluid 9 adjacent to the magnetocaloric material 21 .
 ポンプ5によって、水管7、高温側熱交換器3および磁気熱量材料ベッド10内の熱交換流体9が、高温側熱交換器3側から磁気熱量材料ベッド10を経由して低温側熱交換器2側へ輸送されることにより、磁気熱量材料21の冷熱は、熱交換流体9によって低温側熱交換器2へ運ばれる。低温側熱交換器2へ運ばれた熱交換流体9は、被冷却媒体流路を流れる被冷却媒体と熱交換し温度が上昇する。 The pump 5 moves the heat exchange fluid 9 in the water pipe 7, the high temperature side heat exchanger 3 and the magnetocaloric material bed 10 from the high temperature side heat exchanger 3 side to the low temperature side heat exchanger 2 via the magnetocaloric material bed 10. By being transported to the side, the cold heat of the magnetocaloric material 21 is carried to the low temperature side heat exchanger 2 by the heat exchange fluid 9. The heat exchange fluid 9 carried to the low-temperature side heat exchanger 2 exchanges heat with the medium to be cooled flowing through the medium to be cooled channel, and its temperature increases.
 このように、上記の工程が繰り返されることにより、低温側熱交換器2へ冷熱を運び、高温側熱交換器3へ温熱を運ぶ磁気冷凍サイクルが実現する。 In this way, by repeating the above steps, a magnetic refrigeration cycle is realized that transports cold heat to the low-temperature side heat exchanger 2 and transports warm heat to the high-temperature side heat exchanger 3.
 以上より、本実施の形態に示す磁気熱量材料ベッド10は、一端から他端へキュリー温度が順に高くなるように流路20内に設けられた複数種の磁気熱量材料21と、一端から他端へ相転移温度が順に高くなるように流路20内に設けられた複数種の蓄熱材22と、を備えている。そして、流路20内において、動作環境温度よりもキュリー温度が低い磁気熱量材料21が設けられた流路20内には磁気熱量材料21のキュリー温度よりも相転移温度が高い蓄熱材22が設けられ、動作環境温度よりもキュリー温度が高い磁気熱量材料21が設けられた流路20内には磁気熱量材料21のキュリー温度よりも相転移温度が低い蓄熱材22が設けられている。この構成により、磁気冷凍装置1の初期起動時、再稼働時など装置を立ち上げる際に各磁気熱量材料21をキュリー温度に速やかに到達させることができ、運転効率が向上する。 As described above, the magnetocaloric material bed 10 shown in this embodiment includes a plurality of types of magnetocaloric materials 21 provided in the flow path 20 so that the Curie temperature increases in order from one end to the other end, and a magnetocaloric material bed 10 of the present embodiment. A plurality of types of heat storage materials 22 are provided in the flow path 20 so that the phase transition temperature becomes higher in order. In the flow path 20, a heat storage material 22 having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 is provided in the flow path 20 in which the magnetocaloric material 21 having a Curie temperature lower than the operating environment temperature is provided. A heat storage material 22 having a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21 is provided in the channel 20 in which the magnetocaloric material 21 is provided with the magnetocaloric material 21 having a Curie temperature higher than the operating environment temperature. With this configuration, each magnetocaloric material 21 can quickly reach the Curie temperature when starting up the magnetic refrigeration device 1, such as when starting up the device, such as when restarting the device, and the operating efficiency is improved.
 なお、本実施の形態では、磁気熱量材料ベッド10の流路20内に設けられた磁気熱量材料21および蓄熱材22に関して、磁気熱量材料21が蓄熱材22に比べて多く流路20内に設けられた磁気熱量材料ベッド10を示した。ただし、磁気熱量材料21および蓄熱材22の割合は、特に限定されず、要求仕様によって適宜変更するとよい。例えば、流路20の一端と他端との温度差を大きくすることが求められている場合には、蓄熱材22の割合を低くし、磁気熱量材料21の割合を高くする。一方、磁気冷凍装置1を頻繁に運転停止、再稼働を行う場合、磁気熱量材料21の温度をキュリー温度に速やかに到達させることが求められる。このような場合には、温度差を大きくすることが求められている場合の磁気熱量材料ベッド10よりも蓄熱材22の占める割合を高くする。このように、使用する用途によって磁気熱量材料ベッド10の流路20内における蓄熱材22の占める割合を変更することにより、要求仕様に適した磁気熱量材料ベッド10を得ることができる。 Note that in this embodiment, regarding the magnetocaloric material 21 and heat storage material 22 provided in the flow path 20 of the magnetocaloric material bed 10, the magnetocaloric material 21 is provided in the flow path 20 in a larger amount than the heat storage material 22. A magnetocaloric material bed 10 is shown. However, the ratio of the magnetocaloric material 21 and the heat storage material 22 is not particularly limited, and may be changed as appropriate depending on the required specifications. For example, when it is required to increase the temperature difference between one end and the other end of the flow path 20, the proportion of the heat storage material 22 is decreased and the proportion of the magnetocaloric material 21 is increased. On the other hand, when the magnetic refrigeration apparatus 1 is frequently stopped and restarted, it is required that the temperature of the magnetocaloric material 21 quickly reach the Curie temperature. In such a case, the ratio occupied by the heat storage material 22 is made higher than that of the magnetocaloric material bed 10 when a large temperature difference is required. In this way, by changing the proportion of the heat storage material 22 in the flow path 20 of the magnetocaloric material bed 10 depending on the intended use, it is possible to obtain a magnetocaloric material bed 10 suitable for the required specifications.
 また、本実施の形態では、流路20内において4種の磁気熱量材料21a、21b、21cおよび21dが一端から他端に向けてキュリー温度が順に高くなるように設けられた磁気熱量材料ベッド10を示した。磁気熱量材料ベッド10は、一端側と他端側とで2種ずつすなわち一端側に磁気熱量材料21aおよび21b、他端側に磁気熱量材料21cおよび21dを流路20内に設けた構成を示したが、一端側と他端側とを跨ぐように磁気熱量材料21が設けられた磁気熱量材料ベッド10についても述べる。 In addition, in the present embodiment, a magnetocaloric material bed 10 in which four types of magnetocaloric materials 21a, 21b, 21c, and 21d are provided in the flow path 20 so that the Curie temperature increases in order from one end to the other end. showed that. The magnetocaloric material bed 10 has a configuration in which two types of magnetocaloric materials 21a and 21b are provided in the channel 20 at one end and two types are provided at the other end, that is, magnetocaloric materials 21a and 21b are provided at one end, and magnetocaloric materials 21c and 21d are provided at the other end. However, the magnetocaloric material bed 10 in which the magnetocaloric material 21 is provided so as to straddle one end side and the other end side will also be described.
 一端側と他端側とを跨ぐように磁気熱量材料21が設けられた磁気熱量材料ベッド10について図9から図12を用いて説明をする。図9は、一端側と他端側とを跨ぐように磁気熱量材料21が設けられた磁気熱量材料ベッド10の図1に示すA-A断面図である。図10は、流路20内に設けられた磁気熱量材料21のキュリー温度と蓄熱材22の相転移温度との関係を示す図である。図11は、一端側と他端側とを跨ぐように磁気熱量材料21が設けられた磁気熱量材料ベッド10の図1に示すA-A断面図である。図12は、流路20内に設けられた磁気熱量材料21のキュリー温度と蓄熱材22の相転移温度との関係を示す図である。 The magnetocaloric material bed 10 in which the magnetocaloric material 21 is provided so as to straddle one end side and the other end side will be explained using FIGS. 9 to 12. FIG. 9 is a sectional view taken along the line AA shown in FIG. 1 of the magnetocaloric material bed 10 in which the magnetocaloric material 21 is provided so as to straddle one end side and the other end side. FIG. 10 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material 21 provided in the flow path 20 and the phase transition temperature of the heat storage material 22. FIG. 11 is a sectional view taken along the line AA shown in FIG. 1 of the magnetocaloric material bed 10 in which the magnetocaloric material 21 is provided so as to straddle one end side and the other end side. FIG. 12 is a diagram showing the relationship between the Curie temperature of the magnetocaloric material 21 provided in the flow path 20 and the phase transition temperature of the heat storage material 22.
 図9に示すように、流路20内には磁気熱量材料21bが一端側から他端側に跨って設けられている。この場合、磁気熱量材料21bが設けられた流路20内には、蓄熱材22bを設ける。すなわち、図10に示すように、動作環境温度よりもキュリー温度が低い磁気熱量材料21bが、一端側と他端側との双方に跨るように設けられているような場合、一端側の磁気熱量材料21bが設けられた流路20内には、磁気熱量材料21bのキュリー温度よりも相転移温度の高い蓄熱材22bが設けられている。一方で他端側の磁気熱量材料21bが設けられた流路20内においても、蓄熱材22bが設けられている。つまり、一端側と他端側との双方に動作環境温度よりもキュリー温度が低い磁気熱量材料21が設けられた流路20内には、磁気熱量材料21のキュリー温度よりも相転移温度が高い蓄熱材22を設ける。 As shown in FIG. 9, a magnetocaloric material 21b is provided in the flow path 20 spanning from one end side to the other end side. In this case, a heat storage material 22b is provided in the flow path 20 in which the magnetocaloric material 21b is provided. That is, as shown in FIG. 10, when the magnetocaloric material 21b whose Curie temperature is lower than the operating environment temperature is provided so as to straddle both one end side and the other end side, the magnetocaloric material 21b on the one end side A heat storage material 22b having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21b is provided in the flow path 20 in which the material 21b is provided. On the other hand, a heat storage material 22b is also provided in the channel 20 in which the magnetocaloric material 21b is provided at the other end. In other words, in the flow path 20 in which the magnetocaloric material 21 having a Curie temperature lower than the operating environment temperature is provided on both one end side and the other end side, the phase transition temperature is higher than the Curie temperature of the magnetocaloric material 21. A heat storage material 22 is provided.
 図11に示すように、流路20内には磁気熱量材料21cが一端側から他端側に跨って設けられている。この場合、磁気熱量材料21cが設けられた流路20内には、蓄熱材22cを設ける。すなわち、図12に示すように、動作環境温度よりもキュリー温度が低い磁気熱量材料21cが、一端側と他端側との双方に跨るように設けられているような場合、他端側の磁気熱量材料21cが設けられた流路20内には、磁気熱量材料21cのキュリー温度よりも相転移温度の高い蓄熱材22cが設けられている。一方で一端側の磁気熱量材料21cが設けられた流路20内においても、蓄熱材22cが設けられている。つまり、一端側と他端側との双方に動作環境温度よりもキュリー温度が高い磁気熱量材料21が設けられた流路20内には、磁気熱量材料21のキュリー温度よりも相転移温度が低い蓄熱材22を設ける。 As shown in FIG. 11, a magnetocaloric material 21c is provided in the flow path 20 spanning from one end side to the other end side. In this case, a heat storage material 22c is provided in the channel 20 in which the magnetocaloric material 21c is provided. That is, as shown in FIG. 12, when the magnetocaloric material 21c whose Curie temperature is lower than the operating environment temperature is provided so as to straddle both one end side and the other end side, the magnetic field at the other end side A heat storage material 22c having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21c is provided in the flow path 20 in which the caloric material 21c is provided. On the other hand, a heat storage material 22c is also provided in the channel 20 in which the magnetocaloric material 21c is provided at one end. In other words, in the channel 20 in which the magnetocaloric material 21 is provided at both one end and the other end thereof, the magnetocaloric material 21 has a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21. A heat storage material 22 is provided.
 以上より、磁気熱量材料ベッド10が、一端側と他端側との双方に跨るように磁気熱量材料21を流路20内に設ける構成である場合、一端側と他端側との双方に跨るように磁気熱量材料21が設けられた流路20内には、一端側と他端側とで異種の蓄熱材22をそれぞれ設けるのではなく、同種の蓄熱材22を設ける。 From the above, when the magnetocaloric material bed 10 has a structure in which the magnetocaloric material 21 is provided in the channel 20 so as to span both one end side and the other end side, In the channel 20 in which the magnetocaloric material 21 is provided, different types of heat storage materials 22 are not provided at one end and the other end, but the same type of heat storage materials 22 are provided.
 実施の形態2.
 本実施の形態は図13を用いて説明をする。図13は実施の形態2にかかる磁気熱量材料ベッドの磁気熱量材料カプセルに覆われた蓄熱材の断面図である。
Embodiment 2.
This embodiment will be explained using FIG. 13. FIG. 13 is a sectional view of a heat storage material covered with a magnetocaloric material capsule of a magnetocaloric material bed according to the second embodiment.
 実施の形態1では、融解して熱交換流体9と混ざり合い、流路20内を移動することのないように、カプセル23に覆われた蓄熱材22を示した。本実施の形態では、磁気熱量材料21により形成された磁気熱量材料カプセル24に蓄熱材22が覆われ、磁気熱量材料ベッド10aの流路20内に設けられた磁気熱量材料ベッド10aを示す。それ以外の構成は実施の形態1と同様であり、実施の形態1と同じ構成には同じ番号を付し、説明は省略する。 In the first embodiment, the heat storage material 22 is shown covered with a capsule 23 so that it does not melt, mix with the heat exchange fluid 9, and move within the flow path 20. In this embodiment, a magnetocaloric material bed 10a is shown in which a heat storage material 22 is covered with a magnetocaloric material capsule 24 formed of a magnetocaloric material 21 and provided in a flow path 20 of the magnetocaloric material bed 10a. The other configurations are the same as those in Embodiment 1, and the same components as in Embodiment 1 are given the same numbers and their explanations will be omitted.
 本実施の形態にかかる磁気熱量材料ベッド10aは、一端から他端へキュリー温度が順に高くなるように流路20内に設けられた複数種の磁気熱量材料21と、一端から他端へ相転移温度が順に高くなるように流路20内に設けられた複数種の蓄熱材22と、を備えている。そして、流路20内において、動作環境温度よりもキュリー温度が低い磁気熱量材料21が設けられた流路20内には磁気熱量材料21のキュリー温度よりも相転移温度が高い蓄熱材22が設けられ、動作環境温度よりもキュリー温度が高い磁気熱量材料21が設けられた流路20内には磁気熱量材料21のキュリー温度よりも相転移温度が低い蓄熱材22が設けられている。これにより、磁気冷凍装置1の停止後、磁気熱量材料21の温度変化を小さくすることができる。また、磁気冷凍装置1の再稼働後、速やかにキュリー温度へ磁気熱量材料21の温度を到達させることができる。 The magnetocaloric material bed 10a according to the present embodiment includes a plurality of types of magnetocaloric materials 21 provided in a flow path 20 such that the Curie temperature increases in order from one end to the other end, and a phase transition from one end to the other end. A plurality of types of heat storage materials 22 are provided in the flow path 20 so that the temperature increases in sequence. In the flow path 20, a heat storage material 22 having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 is provided in the flow path 20 in which the magnetocaloric material 21 having a Curie temperature lower than the operating environment temperature is provided. A heat storage material 22 having a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21 is provided in the channel 20 in which the magnetocaloric material 21 is provided with the magnetocaloric material 21 having a Curie temperature higher than the operating environment temperature. Thereby, after the magnetic refrigeration device 1 is stopped, the temperature change of the magnetocaloric material 21 can be reduced. Furthermore, after the magnetic refrigeration device 1 is restarted, the temperature of the magnetocaloric material 21 can quickly reach the Curie temperature.
 また、本実施の形態にかかる蓄熱材22は、図13に示すように磁気熱量材料21により形成された磁気熱量材料カプセル24に覆われている。なお、磁気熱量材料カプセル24を形成する磁気熱量材料21は、流路20内において蓄熱材22と隣接する磁気熱量材料21を用いる。例えば、図6に示す蓄熱材22aの場合、蓄熱材22aを覆う磁気熱量材料カプセル24を形成する磁気熱量材料21は、蓄熱材22aと隣接する磁気熱量材料21aを用いる。 Furthermore, the heat storage material 22 according to this embodiment is covered with a magnetocaloric material capsule 24 formed of the magnetocaloric material 21, as shown in FIG. Note that the magnetocaloric material 21 that forms the magnetocaloric material capsule 24 is a magnetocaloric material 21 that is adjacent to the heat storage material 22 in the flow path 20 . For example, in the case of the heat storage material 22a shown in FIG. 6, the magnetocaloric material 21a adjacent to the heat storage material 22a is used as the magnetocaloric material 21 forming the magnetocaloric material capsule 24 that covers the heat storage material 22a.
 以上より、本実施の形態にかかる磁気熱量材料ベッド10aは、蓄熱材22が磁気熱量材料21により形成された磁気熱量材料カプセル24により覆われ、磁気熱量材料ベッド10aの流路20内に設けられている。この構成により、磁気熱量材料21とは異なる素材のカプセルを使用せずに済むようになり、磁気熱量材料ベッド10aの流路20内の容積を有効に利用することができる。そのため、磁気熱量材料21の量を増加させることができ、高い磁気冷凍効果を得ることができる。 As described above, in the magnetocaloric material bed 10a according to the present embodiment, the heat storage material 22 is covered with the magnetocaloric material capsule 24 formed of the magnetocaloric material 21, and is provided in the flow path 20 of the magnetocaloric material bed 10a. ing. With this configuration, it becomes unnecessary to use a capsule made of a material different from that of the magnetocaloric material 21, and the volume within the channel 20 of the magnetocaloric material bed 10a can be effectively utilized. Therefore, the amount of magnetocaloric material 21 can be increased, and a high magnetic refrigeration effect can be obtained.
 実施の形態3.
 本実施の形態は図14を用いて説明をする。図14は実施の形態3にかかる磁気熱量材料ベッドの断面図である。
Embodiment 3.
This embodiment will be explained using FIG. 14. FIG. 14 is a sectional view of a magnetocaloric material bed according to the third embodiment.
 実施の形態1は、磁気熱量材料ベッド10の流路20内に蓄熱材22が設けられた磁気熱量材料ベッド10を示した。本実施の形態では、流路20aを形成するベッド壁11aに蓄熱材22が設けられた磁気熱量材料ベッド10bを示す。それ以外の構成は実施の形態1と同様であり、実施の形態1と同じ構成には同じ番号を付し、説明は省略する。 Embodiment 1 showed the magnetocaloric material bed 10 in which the heat storage material 22 was provided in the flow path 20 of the magnetocaloric material bed 10. In this embodiment, a magnetocaloric material bed 10b is shown in which a heat storage material 22 is provided on a bed wall 11a that forms a flow path 20a. The other configurations are the same as those in Embodiment 1, and the same configurations as in Embodiment 1 are given the same numbers and descriptions thereof will be omitted.
 本実施の形態にかかる磁気熱量材料ベッド10bは、一端から他端へキュリー温度が順に高くなるように流路20a内に設けられた複数種の磁気熱量材料21と、一端から他端へ相転移温度が順に高くなるように流路20aに設けられた複数種の蓄熱材22と、を備えている。そして、流路20aにおいて、動作環境温度よりもキュリー温度が低い磁気熱量材料21が設けられた流路20aには磁気熱量材料21のキュリー温度よりも相転移温度が高い蓄熱材22が設けられ、動作環境温度よりもキュリー温度が高い磁気熱量材料21が設けられた流路20aには磁気熱量材料21のキュリー温度よりも相転移温度が低い蓄熱材22が設けられている。これにより、磁気冷凍装置1の停止後、磁気熱量材料21の温度変化を小さくすることができる。また、磁気冷凍装置1の再稼働後、速やかにキュリー温度へ磁気熱量材料21の温度を到達させることができる。 The magnetocaloric material bed 10b according to the present embodiment has a plurality of types of magnetocaloric materials 21 provided in the flow path 20a such that the Curie temperature increases in order from one end to the other end, and a phase transition from one end to the other end. A plurality of types of heat storage materials 22 are provided in the flow path 20a so that the temperature increases in sequence. In the flow path 20a, a heat storage material 22 having a phase transition temperature higher than the Curie temperature of the magnetocaloric material 21 is provided in the flow path 20a in which the magnetocaloric material 21 whose Curie temperature is lower than the operating environment temperature is provided. A heat storage material 22 having a phase transition temperature lower than the Curie temperature of the magnetocaloric material 21 is provided in the flow path 20a in which the magnetocaloric material 21 is provided with the magnetocaloric material 21 having a Curie temperature higher than the operating environment temperature. Thereby, after the magnetic refrigeration device 1 is stopped, the temperature change of the magnetocaloric material 21 can be reduced. Furthermore, after the magnetic refrigeration system 1 is restarted, the temperature of the magnetocaloric material 21 can quickly reach the Curie temperature.
 また、図14に示すように流路20aのベッド壁11aには蓄熱材22が設けられている。図14には例として、4種の蓄熱材22a、22b、22cおよび22dが、流路20aの低温端から高温端に向けて蓄熱材22a、22b、22c、22dという順に蓄熱材22が流路20aのベッド壁11aに設けられている。つまり、実施の形態1に示した磁気熱量材料ベッド10とは、蓄熱材22が設けられている位置が異なる。 Furthermore, as shown in FIG. 14, a heat storage material 22 is provided on the bed wall 11a of the flow path 20a. As an example, in FIG. 14, four types of heat storage materials 22a, 22b, 22c, and 22d are arranged in the flow path 20a in the order of heat storage materials 22a, 22b, 22c, and 22d from the low temperature end to the high temperature end. It is provided on the bed wall 11a of the bed 20a. That is, the position where the heat storage material 22 is provided differs from the magnetocaloric material bed 10 shown in Embodiment 1.
 このように、蓄熱材22が流路20aのベッド壁11aに設けられていることにより、磁気熱量材料ベッド10bの流路20a内の熱容量を大きくすることができる。また、磁気冷凍装置1を停止した後、磁気熱量材料21の急激な温度変化を抑制することができ、再稼働時に磁気熱量材料21をキュリー温度へ到達させる時間を短くすることができるため、冷凍能力の立ち上がりが早くなり、運転効率が向上し、省エネとなる。 By providing the heat storage material 22 on the bed wall 11a of the flow path 20a in this manner, the heat capacity within the flow path 20a of the magnetocaloric material bed 10b can be increased. In addition, after the magnetic refrigeration system 1 is stopped, rapid temperature changes in the magnetocaloric material 21 can be suppressed, and the time required for the magnetocaloric material 21 to reach the Curie temperature when restarted can be shortened. Capacity starts up faster, operating efficiency improves, and energy is saved.
 1 磁気冷凍装置、2 低温側熱交換器、3 高温側熱交換器、4 ファン、5 ポンプ、6 磁場変調装置、7 水管、9 熱交換流体、10、10a、10b 磁気熱量材料ベッド、11、11a ベッド壁、12 フランジ、13 メッシュ、20、20a 流路、21 磁気熱量材料、22 蓄熱材、23 カプセル、24 磁気熱量材料カプセル 1 magnetic refrigeration device, 2 low temperature side heat exchanger, 3 high temperature side heat exchanger, 4 fan, 5 pump, 6 magnetic field modulator, 7 water tube, 9 heat exchange fluid, 10, 10a, 10b magnetocaloric material bed, 11, 11a bed wall, 12 flange, 13 mesh, 20, 20a flow path, 21 magnetocaloric material, 22 heat storage material, 23 capsule, 24 magnetocaloric material capsule

Claims (9)

  1.  一端と他端との間を熱交換流体が往復して流れる流路と、
     前記熱交換流体と熱交換し、前記一端から前記他端へキュリー温度が順に高くなるように前記流路内に設けられた複数種の磁気熱量材料と、
     前記一端から前記他端へ相転移温度が順に高くなるように前記流路に設けられた複数種の蓄熱材と、
     を備え、
     動作環境温度よりも前記キュリー温度が低い前記磁気熱量材料が設けられた前記流路には前記磁気熱量材料の前記キュリー温度よりも前記相転移温度が高い前記蓄熱材が設けられ、前記動作環境温度よりも前記キュリー温度が高い前記磁気熱量材料が設けられた前記流路には前記磁気熱量材料の前記キュリー温度よりも前記相転移温度が低い前記蓄熱材が設けられていることを特徴とする磁気熱量材料ベッド。
    a flow path through which a heat exchange fluid flows back and forth between one end and the other end;
    a plurality of types of magnetocaloric materials provided in the flow path so as to exchange heat with the heat exchange fluid so that the Curie temperature increases in order from the one end to the other end;
    a plurality of types of heat storage materials provided in the flow path so that the phase transition temperature increases in order from the one end to the other end;
    Equipped with
    The heat storage material having a phase transition temperature higher than the Curie temperature of the magnetocaloric material is provided in the flow path in which the magnetocaloric material having the Curie temperature lower than the operating environment temperature is provided, and the operating environment temperature The heat storage material having a phase transition temperature lower than the Curie temperature of the magnetocaloric material is provided in the flow path in which the magnetocaloric material has a Curie temperature higher than that of the magnetocaloric material. Calorie material bed.
  2.  一端側に設けられた前記蓄熱材は前記一端側に設けられた前記磁気熱量材料の前記キュリー温度よりも前記相転移温度が高く、他端側に設けられた前記蓄熱材は前記他端側に設けられた前記磁気熱量材料の前記キュリー温度よりも前記相転移温度が低いことを特徴とする請求項1に記載の磁気熱量材料ベッド。 The heat storage material provided on one end side has the phase transition temperature higher than the Curie temperature of the magnetocaloric material provided on the one end side, and the heat storage material provided on the other end side has a higher phase transition temperature than the Curie temperature of the magnetocaloric material provided on the one end side. 2. The magnetocaloric material bed of claim 1, wherein the phase transition temperature is lower than the Curie temperature of the magnetocaloric material provided.
  3.  前記蓄熱材は、各々の前記磁気熱量材料に対応して設けられていることを特徴とする請求項1または2に記載の磁気熱量材料ベッド。 The magnetocaloric material bed according to claim 1 or 2, wherein the heat storage material is provided corresponding to each of the magnetocaloric materials.
  4.  前記蓄熱材は、前記流路内に設けられていることを特徴とする請求項1から3のいずれか一項に記載の磁気熱量材料ベッド。 The magnetocaloric material bed according to any one of claims 1 to 3, wherein the heat storage material is provided within the flow path.
  5.  前記蓄熱材は、前記流路を形成するベッド壁に設けられていることを特徴とする請求項1から4のいずれか一項に記載の磁気熱量材料ベッド。 The magnetocaloric material bed according to any one of claims 1 to 4, wherein the heat storage material is provided on a bed wall that forms the flow path.
  6.  前記蓄熱材は、カプセルに覆われていることを特徴とする請求項1から5のいずれか一項に記載の磁気熱量材料ベッド。 The magnetocaloric material bed according to any one of claims 1 to 5, wherein the heat storage material is covered with a capsule.
  7.  前記蓄熱材は、前記磁気熱量材料により形成された磁気熱量材料カプセルに覆われていることを特徴とする請求項1から6のいずれか一項に記載の磁気熱量材料ベッド。 The magnetocaloric material bed according to any one of claims 1 to 6, wherein the heat storage material is covered with a magnetocaloric material capsule formed of the magnetocaloric material.
  8.  前記蓄熱材は、固体から固体への相転移時に熱を蓄える潜熱蓄熱材であることを特徴とする請求項1から7のいずれか一項に記載の磁気熱量材料ベッド。 The magnetocaloric material bed according to any one of claims 1 to 7, wherein the heat storage material is a latent heat storage material that stores heat during phase transition from solid to solid.
  9.  請求項1から8のいずれか一項に記載の磁気熱量材料ベッドと、
     磁気熱量材料が設けられた流路を有する前記磁気熱量材料ベッドに印加する磁界を変動可能に構成された磁場変調装置と、
     前記磁気熱量材料ベッドに接続された高温側熱交換器と、
     前記高温側熱交換器と反対側の前記磁気熱量材料ベッドに接続された低温側熱交換器と、
     前記磁気熱量材料ベッドを経由して前記高温側熱交換器と前記低温側熱交換器との間を往復するように熱交換流体を輸送可能に構成されたポンプと、
     を備える磁気冷凍装置。
    A bed of magnetocaloric material according to any one of claims 1 to 8,
    a magnetic field modulation device configured to be able to vary the magnetic field applied to the magnetocaloric material bed having a flow path in which the magnetocaloric material is provided;
    a high temperature side heat exchanger connected to the magnetocaloric material bed;
    a cold side heat exchanger connected to the magnetocaloric material bed opposite the hot side heat exchanger;
    a pump configured to be able to transport a heat exchange fluid back and forth between the high temperature side heat exchanger and the low temperature side heat exchanger via the magnetocaloric material bed;
    A magnetic refrigeration device equipped with.
PCT/JP2022/033279 2022-09-05 2022-09-05 Magnetocalorific material bed and magnetic refrigeration device WO2024052960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033279 WO2024052960A1 (en) 2022-09-05 2022-09-05 Magnetocalorific material bed and magnetic refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/033279 WO2024052960A1 (en) 2022-09-05 2022-09-05 Magnetocalorific material bed and magnetic refrigeration device

Publications (1)

Publication Number Publication Date
WO2024052960A1 true WO2024052960A1 (en) 2024-03-14

Family

ID=90192371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033279 WO2024052960A1 (en) 2022-09-05 2022-09-05 Magnetocalorific material bed and magnetic refrigeration device

Country Status (1)

Country Link
WO (1) WO2024052960A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077032A (en) * 2003-09-02 2005-03-24 Denso Corp Heat exchanger device
JP2006240501A (en) * 2005-03-03 2006-09-14 Nissan Motor Co Ltd Cooling system for hybrid vehicle
JP2012237544A (en) * 2011-04-28 2012-12-06 Denso Corp Magnetic heat pump system, and air conditioner using the system
JP2014098495A (en) * 2012-11-13 2014-05-29 Toshiba Corp Magnetic refrigeration device and magnetic refrigeration system
JP2019066129A (en) * 2017-10-03 2019-04-25 株式会社デンソー Magnetocaloric effect element bed and magnetothermal cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077032A (en) * 2003-09-02 2005-03-24 Denso Corp Heat exchanger device
JP2006240501A (en) * 2005-03-03 2006-09-14 Nissan Motor Co Ltd Cooling system for hybrid vehicle
JP2012237544A (en) * 2011-04-28 2012-12-06 Denso Corp Magnetic heat pump system, and air conditioner using the system
JP2014098495A (en) * 2012-11-13 2014-05-29 Toshiba Corp Magnetic refrigeration device and magnetic refrigeration system
JP2019066129A (en) * 2017-10-03 2019-04-25 株式会社デンソー Magnetocaloric effect element bed and magnetothermal cycle device

Similar Documents

Publication Publication Date Title
JP4842327B2 (en) Magnetic refrigerator
JP2013256262A (en) Cold storage heat exchanger
KR100358338B1 (en) Driving method and apparatus of refrigeration system
JP2007271197A (en) Absorption type refrigerating device
CN105264324B (en) Cold-storage heat exchanger
WO2021241619A1 (en) Heat exchanger and refrigerator
JP2010223537A (en) Heat pump hot water supply system
JP2009300007A (en) Temperature control device
KR100647852B1 (en) Magnetic refrigerator
WO2024052960A1 (en) Magnetocalorific material bed and magnetic refrigeration device
KR100684527B1 (en) Magnetic heat-exchanging unit for magnetic refrigerator
JP2008082580A (en) Freezer
WO2014129621A1 (en) Heat exchanger and vehicle air conditioning device
CA1341564C (en) Heat pump energized by low-grade heat source
JP2010249356A (en) Refrigerating device
JP2008232534A (en) Vapor production system and vapor production method
KR101819522B1 (en) Magnetic cooling system
KR100728495B1 (en) magnetic heat-exchanging unit and magnetic refrigerator with the magnetic heat-exchanging unit
JP6289814B2 (en) Heat storage device and air conditioner
JP3316859B2 (en) Chemical heat storage system
JP2508308B2 (en) Adsorption refrigerator
JP3831529B2 (en) Ice heat storage unit of air conditioner
JP4767207B2 (en) Water heater
KR101819521B1 (en) Magnetic cooling system
JP2006200870A (en) Adsorber for adsorption type refrigerator and production method for the adsorber for adsorption type refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958041

Country of ref document: EP

Kind code of ref document: A1