KR100684527B1 - Magnetic heat-exchanging unit for magnetic refrigerator - Google Patents

Magnetic heat-exchanging unit for magnetic refrigerator Download PDF

Info

Publication number
KR100684527B1
KR100684527B1 KR1020050107307A KR20050107307A KR100684527B1 KR 100684527 B1 KR100684527 B1 KR 100684527B1 KR 1020050107307 A KR1020050107307 A KR 1020050107307A KR 20050107307 A KR20050107307 A KR 20050107307A KR 100684527 B1 KR100684527 B1 KR 100684527B1
Authority
KR
South Korea
Prior art keywords
magnetic
heat exchange
heat
magnetocaloric material
exchange unit
Prior art date
Application number
KR1020050107307A
Other languages
Korean (ko)
Inventor
신승훈
이동관
Original Assignee
주식회사 대우일렉트로닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대우일렉트로닉스 filed Critical 주식회사 대우일렉트로닉스
Priority to KR1020050107307A priority Critical patent/KR100684527B1/en
Priority to PCT/KR2006/004671 priority patent/WO2007055515A1/en
Priority to CNA2006800419697A priority patent/CN101305249A/en
Priority to EP06812506A priority patent/EP1957891A4/en
Priority to JP2008539932A priority patent/JP2009515136A/en
Application granted granted Critical
Publication of KR100684527B1 publication Critical patent/KR100684527B1/en
Priority to US12/118,297 priority patent/US20080236173A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

A magnetic heat exchange unit for a magnetic refrigerator is provided to hold magnetocaloric materials by magnets so as to prevent loss of the magnetocaloric materials and separate the magnetocaloric materials from heat transfer fluid for making flow of the heat transfer fluid without blocking an outlet. A magnetic heat exchange unit for a magnetic refrigerator includes a container formed with an inlet(16) and an outlet(17) and having a magnetic heat exchange chamber. Magnetocaloric materials such as Gd powder are included in the magnetocaloric chamber for passing flow of heat transfer fluid to carry out heat exchange therewith. A magnet(14) is coupled with the container or received in the magnetocaloric materials so as to apply attraction to the magnetocaloric materials. The inlet and the outlet are mounted with meshes to prevent loss of the magnetocaloric materials.

Description

자기냉동기용 자기열교환유닛{magnetic heat-exchanging unit for magnetic refrigerator}Magnetic heat-exchanging unit for magnetic refrigerator

도 1은 종래 회전 자석식 자기냉동기 내의 열전도유체 구성요소의 평면도. 1 is a plan view of a thermally conductive fluid component in a conventional rotating magnetic magnetic refrigerator.

도 2는 도 1의 자기열량재료를 포함하는 예시적인 자기열교환유닛의 평면도. FIG. 2 is a plan view of an exemplary magnetic heat exchange unit comprising the magnetocaloric material of FIG. 1. FIG.

도 3 및 도 4는 본 발명의 바람직한 실시예에 따른 자기열량재료를 포함하는 예시적인 자기열교환유닛의 내부 평면도 및 측면도. 3 and 4 are internal plan and side views of an exemplary magnetic heat exchange unit comprising a magnetocaloric material in accordance with a preferred embodiment of the present invention.

도 5는 본 발명의 바람직한 실시예에 따른 자기냉동기의 구성요소의 사시도. 5 is a perspective view of the components of the magnetic refrigerator in accordance with the preferred embodiment of the present invention.

도 6은 도 5의 정면도. 6 is a front view of FIG. 5;

도 7은 도 5에 사용되는 자기열교환유닛의 단면도. 7 is a cross-sectional view of the magnetic heat exchange unit used in FIG.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

5,160,161 : 펌프 6,162 : 고온열교환기(실외기부)5,160,161: Pump 6,162: High temperature heat exchanger (outdoor unit)

12,163 : 저온열교환기(실내기부) 13 : 자기열교환유닛12,163: low temperature heat exchanger (indoor part) 13: magnetic heat exchange unit

14 : 자석 16,17 : 메쉬14 magnet 16,17 mesh

17aa,17ab : 제1열전도유체 17bb,17bc : 제2열전도유체 17aa, 17ab: first heat conducting fluid 17bb, 17bc: second heat conducting fluid

112 : 자기열량재료(Gd) 113,213 : 자기열교환유닛112: magnetocaloric material (Gd) 113,213: magnetic heat exchange unit

113a : 고온측 자기열교환유닛 113b : 저온측 자기열교환유닛113a: high temperature side magnetic heat exchange unit 113b: low temperature side magnetic heat exchange unit

115 : 장착통 116,117 : 메쉬115: mounting cylinder 116,117: mesh

118 : 회전판 130,131,132,133 : 파이프118: rotating plate 130,131,132,133: pipe

140 : 자석 144 : 모터140: magnet 144: motor

148 : 샤프트148: shaft

한국공개특허공보 제2004-0062989호Korean Unexamined Patent Publication No. 204-00604

미국특허공보 제6,668,560호U.S. Patent Publication Nos. 6,66,6,600

일본공표특허공보 특표2005-513393호Japanese Patent Publication No. 205-551333

본 발명은 자석이 설치된 자기냉동기용 자기열교환유닛에 관한 것이다. The present invention relates to a magnetic heat exchange unit for a magnetic refrigerator equipped with a magnet.

종래, 자기냉동기로서, 예컨대 위에서 기술된 공보들이 제안되어 있다. 도 1 및 도 2에 도시한 바와 같이, 종래 자기냉동기는 1번으로 투입된 열전도유체는 2번으로 흐르는 동안, 자장이 인가된 자기열량재료가 가진 자기발열효과에 의해 가열되어진 열을 열전도유체가 흡수하여 2번 출구를 통해 파이프로 빠져나가므로 자기열량재료를 냉각시킨다. 고온부는 3번파이프를 지나 분배기(4)를 통해 펌프(5)를 거쳐 실외기부(고온열교환기)(6)를 통과한 후 자기열교환실(7)로 투입된다. 7번파이프에서 고온부는 8번파이프와 9번파이프로 나뉘어 이동하며 10번에서 저온부로 만나 분배기(11)로 진행한다. 고온부가 7번에서 8번, 또한 9번에서 10번으로 이동할 때는 이미 고온부에 의해 차가워진 자기열량재료를 지나면서 냉각된다. 분배기 (11)를 통과한 저온부는 실내기부(저온열교환기)(12)를 지나 13, 14, 15번파이프로 이동하면서 똑같은 사이클이 지속된다. Conventionally, as the magnetic refrigerator, the publications described above have been proposed, for example. As shown in Fig. 1 and Fig. 2, the conventional magnetic cooler absorbs heat heated by the self-heating effect of the magnetic caloric material to which the magnetic field is applied while the thermal conductive fluid introduced into the first flows into the second. To the pipe through the outlet 2 to cool the magnetocaloric material. The high temperature part passes through the third pipe, passes through the pump 5 through the distributor 5, and passes through the outdoor unit part (high temperature heat exchanger) 6, and is then introduced into the magnetic heat exchange chamber 7. In the 7th pipe, the high temperature part is divided into the 8th pipe and the 9th pipe and moves to the low temperature part at 10 to proceed to the distributor 11. When the hot portion moves from 7 to 8 and from 9 to 10, it cools through the magnetocaloric material already cooled by the hot portion. The same cycle is continued while the low temperature portion passing through the distributor 11 moves to the 13, 14 and 15 pipes past the indoor base portion (low temperature heat exchanger) 12.

그런데, 종래 자기열교환유닛(13)은 도 2에서 도시한 바와 같이, 열전도유체의 흐름을 통과시키는 자기열량재료를 포함하는 자기열교환실을 갖는 용기로 구성되어 있다. By the way, the conventional magnetic heat exchange unit 13 is comprised by the container which has the magnetic heat exchange chamber containing the magnetocaloric material which passes the flow of a heat conductive fluid, as shown in FIG.

이 구성에 의하여, 열전도유체가 메쉬(16)로 들어와 자기열량재료를 지나쳐 반대편 메쉬(17)로 빠져나갈 때, 파우더형의 자기열량재료와 열전도유체의 분리가 메쉬(17)를 통하여 이루어짐으로써 자기열량재료가 유실된다. With this configuration, when the thermally conductive fluid enters the mesh 16 and passes through the magnetocaloric material and exits to the opposite mesh 17, separation of the powder-type magnetocaloric material and the thermally conductive fluid is achieved through the mesh 17. Calorie material is lost.

또한, 열전도유체 흐름의 세기에 따라 열전도유체 출구 메쉬(17)에 자기열량재료가 축적되어서 열전도유체 출구의 흐름을 방해한다. In addition, the magnetocaloric material accumulates in the thermally conductive fluid outlet mesh 17 according to the strength of the thermally conductive fluid flow, thereby preventing the flow of the thermally conductive fluid outlet.

본 발명은 전술한 문제를 해결하기 위하여 안출된 것으로, 자기열량재료의 유실을 방지하고 열전도유체의 흐름을 원활히 할 수 있는 자기냉동기용 자기열교환유닛을 제공함에 그 목적이 있다. The present invention has been made to solve the above-described problems, and an object thereof is to provide a magnetic heat exchange unit for a magnetic refrigerator that can prevent the loss of magnetic caloric material and facilitate the flow of the thermally conductive fluid.

전술한 목적을 달성하기 위한 본 발명의 자기냉동기용 자기열교환유닛은 입구와 출구 및 자기열교환실을 갖는 용기; 상기 자기열교환실에 포함되어 상기 열전도유체의 흐름을 통과시켜 열교환하는 자기열량재료; 상기 자기열량재료에 인력을 가하는 자석; 를 포함하여 이루어진다. A magnetic heat exchange unit for a magnetic refrigerator of the present invention for achieving the above object is a container having an inlet and an outlet and a magnetic heat exchange chamber; A magnetocaloric material that is included in the magnetic heat exchange chamber and heat exchanges through the flow of the heat conductive fluid; A magnet that applies attraction to the magnetocaloric material; It is made, including.

이 구성에 의하면, 자석이 자기열량재료를 잡아줌으로써, 자기열량재료의 유 실을 막아 열전도유체의 흐름을 원활히 할 수 있다. According to this configuration, the magnet grabs the magnetocaloric material, thereby preventing the loss of the magnetocaloric material and smoothly flowing the heat conducting fluid.

전술한 구성에서, 상기 자석은 용기에 결합되거나, 상기 자기열량재료의 내부에 있도록 구현할 수 있다. In the above configuration, the magnet can be implemented to be coupled to the container or to be inside the magnetocaloric material.

또한, 상기 입구와 출구에 메쉬가 더 설치되면, 자기열량재료의 유실을 확실히 방지할 수 있다. In addition, if the mesh is further provided at the inlet and the outlet, it is possible to reliably prevent the loss of the magnetocaloric material.

또한, 상기 자기열량재료는 가돌리늄(Gd)으로 구현하는 것이 바람직하다. In addition, the magnetocaloric material is preferably implemented by gadolinium (Gd).

이하, 본 발명의 바람직한 실시예를 첨부한 도면에 따라 설명하는데, 종래의 것과 동일한 부분에 대해서는 동일한 참조부호를 부여하고 상세한 설명은 생략한다. Best Mode for Carrying Out the Invention Preferred embodiments of the present invention will be described below with reference to the accompanying drawings, where like reference numerals are used to designate like parts, and detailed description thereof will be omitted.

도 3 및 도 4는 본 발명의 바람직한 실시예에 따른 자기열량재료를 포함하는 예시적인 자기열교환유닛의 내부 평면도 및 측면도이다. 3 and 4 are internal plan and side views of an exemplary magnetic heat exchange unit comprising a magnetocaloric material in accordance with a preferred embodiment of the present invention.

도 3 및 도 4에 도시한 바와 같이, 본 실시예의 자기냉동기용 자기열교환유닛(213)은 용기와, 상기 용기에 포함되는 자기열량재료와, 자기열량재료에 인력을 가하는 자석(14)으로 구성되어 있다. As shown in Fig. 3 and Fig. 4, the magnetic heat exchange unit 213 for a magnetic refrigerator according to the present embodiment is composed of a container, a magnetocaloric material contained in the container, and a magnet 14 for applying attraction force to the magnetocaloric material. It is.

용기의 내부에는 상기 자기열량재료를 포함하는 자기열교환실이 형성되고, 열전도유체의 흐름을 통과시키는 입구(16)와 출구(17)가 형성되어 있다. 이 입구(16)와 출구(17)에는 열전도유체를 유동시키는 파이프와 접속되게 된다. A magnetic heat exchange chamber including the magnetocaloric material is formed inside the container, and an inlet 16 and an outlet 17 through which a flow of the heat conducting fluid is passed are formed. The inlet 16 and the outlet 17 are connected to a pipe through which a thermally conductive fluid flows.

이 입구(16)와 출구(17)는 도 4에 도시한 바와 같이, 같은 평면상에 그리고 위쪽에 배치되는 것이, 자기열량재료의 유실 방지와 열전도유체의 원활한 흐름을 위해 바람직하다. This inlet 16 and outlet 17 are preferably arranged on the same plane and above, as shown in Fig. 4, for the purpose of preventing loss of magnetocaloric material and smooth flow of the heat conducting fluid.

자기열량재료는 자장이 인가될 때 온도가 변화는 특성을 가지는데, 이러한 특성이 우수한 재료로는 미세한 크기의 분말인 가돌리늄(Gd)이 있다. 이 가돌리늄은 열전도유체의 흐름에 대해 침투성이 우수한 공극을 가지고 있고, 열의 흡수 및 방출이 우수하다. The magnetocaloric material has a characteristic of changing temperature when a magnetic field is applied, and a material having excellent characteristics is gadolinium (Gd), which is a fine powder. This gadolinium has pores that are excellent in permeability to the flow of heat conducting fluid, and has excellent heat absorption and release.

상기 자석(14)은 용기에 결합되거나 자기열량재료 내부에 있도록 하는 것이 바람직하다. Preferably, the magnet 14 is coupled to the container or in the magnetocaloric material.

도 3 및 도 4에 도시한 바와 같이, 용기 부착형 자석인 경우, 용기의 외벽(또는 내벽)에 결합하여, 자기열량재료를 끌어당기도록 한다. 3 and 4, in the case of a container-attached magnet, it is coupled to the outer wall (or inner wall) of the container so as to attract the magnetocaloric material.

또한, 자기열량재료 내부에 자석을 심어, 덩어리 형태로 구현할 수 있다. In addition, a magnet may be planted in the magnetocaloric material to form a lump.

이와 같이, 자석(14)에 의해 자기열량재료는 뭉치는 효과가 생겨, 열전도유체의 흐름에 의해 유실을 막을 수 있다. In this way, the magnetocaloric material is agglomerated by the magnet 14, and the loss of heat can be prevented by the flow of the heat conductive fluid.

또한, 출구에 자기열량재료의 축적이 최대한 억제되어 열전도유체의 흐름을 원활히 행할 수 있다. In addition, the accumulation of the magnetocaloric material at the outlet is suppressed to the maximum, and the flow of the heat conductive fluid can be smoothly performed.

특히, 입구와 출구에 메쉬(16,17)를 더 설치하는 경우에는, 자기열량재료의 유실을 더욱더 억제시킬 수 있다. In particular, when the meshes 16 and 17 are further provided at the inlet and outlet, the loss of the magnetocaloric material can be further suppressed.

한편, 도 5는 본 발명의 바람직한 실시예에 따른 자기냉동기의 구성요소의 사시도이고, 도 6은 도 5의 정면도이고, 도 7은 도 5의 자기열교환유닛의 단면도이다. On the other hand, Figure 5 is a perspective view of the components of the magnetic refrigerator according to a preferred embodiment of the present invention, Figure 6 is a front view of Figure 5, Figure 7 is a cross-sectional view of the magnetic heat exchange unit of FIG.

도 5 및 도 6에 도시한 바와 같이, 본 실시예의 자기냉동기는 복수개의 자기열교환유닛(113)과, 상기 자기열교환유닛(113)이 원주방향을 따라 소정 간격마다 설치되는 회전판(118)과, 상기 회전판(118) 사이에 배치되며, 상기 자기열교환유닛(113)이 통과할 때 자장을 인가하여 온도를 상승시키는 자석(140)과, 상기 자기열교환유닛(113)의 고온측(113a)에 배치되는 고온열교환부재와, 상기 자기열교환유닛(113)의 저온측(113b)에 배치되는 저온열교환부재로 구성되어 있다. 5 and 6, the magnetic refrigerator of the present embodiment is a plurality of magnetic heat exchange unit 113, the rotary plate 118, the magnetic heat exchange unit 113 is installed at predetermined intervals along the circumferential direction, It is disposed between the rotating plate 118, the magnet 140 to increase the temperature by applying a magnetic field when the magnetic heat exchange unit 113 passes, and disposed on the high temperature side 113a of the magnetic heat exchange unit 113 And a low temperature heat exchange member disposed on the low temperature side 113b of the magnetic heat exchange unit 113.

상기 열전도유체는 상기 고온열교환부재에서 순환하는 제1열전도유체(17a)와, 상기 저온열교환부재에서 순환하는 제2열전도유체(17b)로 분리되어 사이클을 형성하게 된다. The heat conducting fluid is separated into a first heat conducting fluid 17a circulating in the high temperature heat exchange member and a second heat conducting fluid 17b circulating in the low temperature heat exchange member to form a cycle.

즉, 상기 고온열교환부재는 고온열교환기(162)와, 상기 고온열교환기(162)의 저온측 출구의 제1열전도유체(17aa)를 상기 고온측 자기열교환유닛(113a)으로 유동시키는 제1파이프(130)와, 상기 고온측 자기열교환유닛(113a)을 통과하면서 상기 자기열량재료(112)의 열을 흡수 가열된 제1열전도유체(17ab)를 상기 고온열교환기(162)의 고온측 입구로 유동시키는 제2파이프(131)로 구성되어 있다. That is, the high temperature heat exchange member includes a high temperature heat exchanger 162 and a first pipe for flowing the first heat conductive fluid 17aa at the low temperature side outlet of the high temperature heat exchanger 162 to the high temperature side magnetic heat exchange unit 113a. 130 and the first heat-conducting fluid 17ab that absorbs and heats the heat of the magnetocaloric material 112 while passing through the high temperature side magnetic heat exchange unit 113a to the high temperature side inlet of the high temperature heat exchanger 162. It consists of the 2nd pipe 131 which flows.

마찬가지로, 상기 저온열교환부재는 저온열교환기(163)와, 상기 저온열교환기(163)의 고온측 출구의 제2열전도유체(17bb)를 상기 저온측 자기열교환유닛(113b)으로 유동시키는 제3파이프(132)와, 상기 저온측 자기열교환유닛(113b)을 통과하면서 상기 자기열량재료(112)로 열을 방출 냉각된 제2열전도유체(17bc)를 상기 저온열교환기(163)의 저온측 입구로 유동시키는 제4파이프(133)로 구성되어 있다. Similarly, the low temperature heat exchange member includes a low temperature heat exchanger 163 and a third pipe for flowing the second heat conductive fluid 17bb of the high temperature side outlet of the low temperature heat exchanger 163 to the low temperature side magnetic heat exchange unit 113b. 132 and the second heat conducting fluid 17bc cooled by discharging heat to the magnetocaloric material 112 while passing through the low temperature side magnetic heat exchange unit 113b to the low temperature side inlet of the low temperature heat exchanger 163. It consists of the 4th pipe 133 made to flow.

상기 자기열교환유닛(113)은 열전도유체의 흐름을 통과시키는 자기열량재료(112)를 포함하는 구성이다. 이 자기열량재료(112)는 자장이 인가될 때 온도가 변화는 특성을 가지는데, 이러한 특성이 우수한 재료로는 가돌리늄(Gd)이 있다. 이 가돌리늄은 열전도유체의 흐름에 대해 침투성이 우수한 공극을 가지고 있고, 열의 흡수 및 방출이 우수하다. The magnetic heat exchange unit 113 is configured to include a magnetocaloric material 112 for passing the flow of the heat conducting fluid. The magnetocaloric material 112 has a characteristic that the temperature changes when a magnetic field is applied, and gadolinium (Gd) is an excellent material. This gadolinium has pores that are excellent in permeability to the flow of heat conducting fluid, and has excellent heat absorption and release.

회전판(118)은 그 중심에 결합된 샤프트(148)를 회전시키는 모터(144)에 의해 회전하게 된다. 이 회전판(118)의 원주방향에는 자기열량재료(112)가 소정간격마다 배치되어 있다. The rotating plate 118 is rotated by a motor 144 that rotates the shaft 148 coupled to the center thereof. In the circumferential direction of the rotating plate 118, the magnetocaloric material 112 is arranged at predetermined intervals.

즉, 회전판(118)에는 장착공이 원주방향을 따라 천공 설치되고, 이 장착공에는 도 7에 도시한 자기열교환유닛(113)이 장착되게 된다. That is, the mounting plate is drilled in the circumferential direction in the rotating plate 118, and the magnetic heat exchange unit 113 shown in FIG. 7 is mounted in the mounting hole.

자기열교환유닛(113)은 상기 장착공에 장착되는 장착통(115)과, 상기 장착통(115)의 양단에 설치되는 메쉬(116,117)와, 상기 메쉬(116,117) 사이의 장착통(115) 내에 포함되는 상기 자기열량재료(112)로 구성되어 있다. 이 구성에 의해, 회전하는 회전판(118)에 장착하기 용이하다. The magnetic heat exchange unit 113 includes a mounting cylinder 115 mounted to the mounting hole, meshes 116 and 117 installed at both ends of the mounting cylinder 115, and a mounting cylinder 115 between the meshes 116 and 117. The magnetocaloric material 112 is included. By this structure, it is easy to attach to the rotating rotating plate 118.

이 장착통(115)에 전술한 자석을 결합시키거나 자기열량재료(112)의 내부에 심거나 하여, 자기열량재료(112)의 유실을 막고 열전도유체의 흐름을 원활히 행할 수 있음은 당업자라면 자명하다 할 것이다. It will be apparent to those skilled in the art that the above-described magnets may be coupled to the mounting cylinder 115 or may be planted inside the magnetocaloric material 112 to prevent loss of the magnetocaloric material 112 and facilitate the flow of the heat conducting fluid. Will do.

자석(140)은 제1파이프(130)와 제2파이프(131)의 직전의 회전판(118) 상하에 고정 배치되어, 상기 자기열교환유닛(113)이 통과할 때 자장을 인가하여 온도를 상승시키는 구성이다. The magnet 140 is fixedly disposed above and below the rotating plate 118 immediately before the first pipe 130 and the second pipe 131, and applies a magnetic field to increase the temperature when the magnetic heat exchange unit 113 passes. Configuration.

이하, 본 실시예의 자기냉동기의 사이클을 설명하는데, 실외기부(162)와 열교환하는 대기온도와 실내기부(163)와 열교환하는 실내온도는 26℃로 하고, 자기열량재료의 특성을 실험한 결과, 평상시 자기열량재료가 자화되면 대기온도보다 3℃ 정도 올라가며, 또한 열전도유체로 냉각시키면 대기온도보다 3℃ 정도 내려가는 특징을 가만해서 숫자로 예를 들어 설명한다. Hereinafter, the cycle of the magnetic refrigerator according to the present embodiment will be described. The atmospheric temperature of heat exchange with the outdoor unit 162 and the indoor temperature of heat exchange with the indoor unit 163 are set to 26 ° C., and the characteristics of the magnetocaloric material are tested. When the magnetocaloric material is usually magnetized, the temperature rises about 3 ° C above the atmospheric temperature, and when cooled with a thermally conductive fluid, the temperature drops about 3 ° C below the atmospheric temperature.

도 3 및 도 4에 도시한 바와 같이, 모터(144)에 의해 회전판(118)이 회전하며 그에 따라 자기열교환유닛(113)들은 차례로 자석(140), 고온열교환부 및 저온열교환부을 통과한다.As shown in FIGS. 3 and 4, the rotating plate 118 is rotated by the motor 144, so that the magnetic heat exchange units 113 sequentially pass through the magnet 140, the high temperature heat exchanger, and the low temperature heat exchanger.

자석(140)을 통과한 자기열교환유닛(113a)은 자기열량재료(112)가 가진 자기발열효과로 뜨거워지고(29℃), 이 열은 자기열량재료(112)를 지나는 제1파이프(130)의 제1열전도유체(17aa)에 의해 26℃로 냉각됨과 동시에 제1열전도유체(17ab)는 29℃로 가열된다. 가열된 제1열전유체(17ab)는 제2파이프(131)를 통해 고온열교환기(162)를 통과하여 열을 방출하고, 26℃의 온도로 냉각된 제1열전도유체(17aa)는 제1파이프(130)를 통해 다시 자기열교환유닛(113)을 통과하는 사이클을 반복한다. The magnetic heat exchange unit 113a passing through the magnet 140 becomes hot due to the self-heating effect of the magnetocaloric material 112 (29 ° C.), and the heat passes through the magnetocaloric material 112 to the first pipe 130. The first heat conducting fluid 17aa is cooled to 26 ° C and the first heat conducting fluid 17ab is heated to 29 ° C. The heated first thermoelectric fluid 17ab passes through the high temperature heat exchanger 162 through the second pipe 131 to release heat, and the first heat conductive fluid 17aa cooled to a temperature of 26 ° C. is the first pipe. Repeat the cycle passing through the magnetic heat exchange unit 113 again through (130).

제1열전도유체에 의해 열을 빼앗긴 자기열량재료(26℃)는 저온열교환부로 이동하는 동안 온도는 23℃로 내려간다. 이 23℃의 자기열량재료(113b)는 제3파이프(132)의 제2열전도유체(17bb)(26℃)를 거치면서 잃었던 자신의 열을 26℃로 다시 회복한 반면에 그 제2열전도유체의 온도는 23℃로 내려간다. 냉각된 제2열전도유체(17bc)는 제4파이프(133)를 통해 저온열교환기(163)를 통과하여 차가운 공기(23℃)를 방출하고, 26℃의 온도로 가열된 제2열전도유체(17bb)는 제3파이프(132)를 통해 다시 자기열교환유닛(113)을 통과하는 사이클을 반복한다. The temperature of the magnetocaloric material (26 ° C) deprived of heat by the first heat conducting fluid is lowered to 23 ° C while moving to the low temperature heat exchange part. The 23 ° C magnetocaloric material 113b recovers its own heat lost through the second heat conducting fluid 17bb (26 ° C) of the third pipe 132 back to 26 ° C, while the second heat conducting fluid The temperature is lowered to 23 ℃. The cooled second heat conductive fluid 17bc passes through the low temperature heat exchanger 163 through the fourth pipe 133 to discharge cold air (23 ° C.), and is heated to a temperature of 26 ° C. (17bb). ) Repeats the cycle of passing through the magnetic heat exchange unit 113 again through the third pipe 132.

이때, 제2파이프(131)와 제4파이프(133)에는 각각 펌프(160,161)가 설치되 어, 제1열전도유체(17aa,17ab)와 제2열전도유체(17bb,17bc)를 추진하는 것이 바람직하다. At this time, it is preferable that the pumps 160 and 161 are installed in the second pipe 131 and the fourth pipe 133 to propel the first heat conductive fluids 17aa and 17ab and the second heat conductive fluids 17bb and 17bc. Do.

이와 같이, 열전도유체의 순환을 고온열교환부와 저온열교환부로 분리하여 2개의 사이클로 만들고 원형의 회전판(118)에 자기열량재료(112)를 장착하여 고온열교환부와 저온열교환부사이에서 회전시켜 열교환시킴으로써 자기냉동사이클의 구조를 크게 간단화시킬 수 있다. In this way, the circulation of the heat conducting fluid is separated into a high temperature heat exchange part and a low temperature heat exchange part, and two cycles are formed. The structure of the refrigeration cycle can be greatly simplified.

또한, 이러한 시스템에서는 대기온도의 열전도유체가 자기열량재료에 투입되므로 재료의 상태에 따라 열전도유체가 기존보다 더욱 가열되며 또한 더욱 냉각되기에 열교환의 효율을 높일 수 있다. In addition, in such a system, the thermally conductive fluid at the atmospheric temperature is introduced into the magnetocaloric material, so that the thermally conductive fluid is heated and cooled more, depending on the state of the material, thereby increasing the efficiency of heat exchange.

또한, 고온열교환부와 저온열교환부로 분리되어 있어, 제1열전도유체와 제2열전도유체의 양을 서로 다르게 유동시킬 수 있는 컨트롤이 가능하다. 따라서, 고온측 자기열교환유닛에 많은 양의 제1열전도유체를 흘려 보내 자기열량재료의 열을 빠른시간 안에 최대한 냉각시킬 수 있다. In addition, since the high temperature heat exchanger and the low temperature heat exchanger are separated, it is possible to control the flow of the first heat conducting fluid and the second heat conducting fluid differently. Therefore, a large amount of the first heat conducting fluid is flowed into the high temperature side magnetic heat exchange unit to cool the heat of the magnetocaloric material as quickly as possible.

본 발명의 자기냉동기용 자기열교환유닛은 전술한 실시예에 국한되지 않고 본 발명의 기술 사상이 허용하는 범위 내에서 다양하게 변형하여 실시할 수 있다. The magnetic heat exchange unit for a magnetic refrigerator of the present invention is not limited to the above-described embodiments, and may be variously modified and implemented within the range permitted by the technical idea of the present invention.

이상의 설명으로부터 명백하듯이, 본 발명의 자기냉동기용 자기열교환유닛에 의하면 다음과 같은 효과가 있다. As apparent from the above description, the magnetic heat exchange unit for a magnetic refrigerator of the present invention has the following effects.

자석으로 자기열량재료를 잡아줌으로써, 자기열량재료의 유실을 방지할 수 있고, 자기열량재료와 열전도유체를 원만히 분리할 수 있어 출구를 막지 않아 열전 도유체의 흐름을 원활히 할 수 있다. By holding the magnetocaloric material with a magnet, the loss of the magnetocaloric material can be prevented, and the magnetocaloric material and the heat conducting fluid can be separated smoothly, so that the flow of the heat conducting fluid can be smoothed without blocking the outlet.

또한, 용기의 입구와 출구에 메쉬를 설치함으로써, 자기열량재료가 유실되더라도 걸러내기 때문에 유실을 최대한 억제시킬 수 있다. In addition, by providing a mesh at the inlet and outlet of the container, even if the magnetocaloric material is lost, the loss can be suppressed as much as possible.

Claims (5)

입구와 출구 및 자기열교환실을 갖는 용기; A container having an inlet and an outlet and a magnetic heat exchange chamber; 상기 자기열교환실에 포함되어 상기 열전도유체의 흐름을 통과시켜 열교환하는 자기열량재료; A magnetocaloric material that is included in the magnetic heat exchange chamber and heat exchanges through the flow of the heat conductive fluid; 상기 자기열량재료에 인력을 가하는 자석; A magnet that applies attraction to the magnetocaloric material; 를 포함하여 이루어진 자기냉동기용 자기열교환유닛. Magnetic heat exchange unit for a magnetic refrigerator comprising a. 제1항에 있어서, The method of claim 1, 상기 자석은 용기에 결합되는 것을 특징으로 하는 자기냉동기용 자기열교환유닛. The magnet heat exchange unit for a magnetic refrigerator characterized in that the magnet is coupled to the container. 제1항에 있어서, The method of claim 1, 상기 자석은 상기 자기열량재료의 내부에 있는 것을 특징으로 하는 자기냉동기용 자기열교환유닛. And the magnet is inside the magnetocaloric material. 제1항 내지 제3항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3, 상기 입구와 출구에 메쉬가 더 설치되는 것을 특징으로 하는 자기냉동기용 자기열교환유닛. The magnetic heat exchange unit for a magnetic refrigerator characterized in that the mesh is further provided at the inlet and outlet. 제4항에 있어서, The method of claim 4, wherein 상기 자기열량재료는 가돌리늄(Gd)인 것을 특징으로 하는 자기냉동기용 자기열교환유닛. And the magnetocaloric material is gadolinium (Gd).
KR1020050107307A 2005-11-10 2005-11-10 Magnetic heat-exchanging unit for magnetic refrigerator KR100684527B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020050107307A KR100684527B1 (en) 2005-11-10 2005-11-10 Magnetic heat-exchanging unit for magnetic refrigerator
PCT/KR2006/004671 WO2007055515A1 (en) 2005-11-10 2006-11-09 Magnetic heat-exchanging unit for magnetic refrigerator
CNA2006800419697A CN101305249A (en) 2005-11-10 2006-11-09 Magnetic heat exchanging unit for magnetic refrigerator
EP06812506A EP1957891A4 (en) 2005-11-10 2006-11-09 Magnetic heat-exchanging unit for magnetic refrigerator
JP2008539932A JP2009515136A (en) 2005-11-10 2006-11-09 Magnetic heat exchange unit for magnetic refrigerator
US12/118,297 US20080236173A1 (en) 2005-11-10 2008-05-09 Magnetic heat exchanging unit for magnetic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050107307A KR100684527B1 (en) 2005-11-10 2005-11-10 Magnetic heat-exchanging unit for magnetic refrigerator

Publications (1)

Publication Number Publication Date
KR100684527B1 true KR100684527B1 (en) 2007-02-20

Family

ID=38023462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050107307A KR100684527B1 (en) 2005-11-10 2005-11-10 Magnetic heat-exchanging unit for magnetic refrigerator

Country Status (6)

Country Link
US (1) US20080236173A1 (en)
EP (1) EP1957891A4 (en)
JP (1) JP2009515136A (en)
KR (1) KR100684527B1 (en)
CN (1) CN101305249A (en)
WO (1) WO2007055515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866840B1 (en) * 2012-03-26 2018-06-14 삼성전자주식회사 Magnetic cooling apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739510B2 (en) * 2009-09-17 2017-08-22 Charles N. Hassen Flow-synchronous field motion refrigeration
JP5330526B2 (en) * 2009-09-30 2013-10-30 株式会社東芝 Magnetic material for magnetic refrigeration, magnetic refrigeration device and magnetic refrigeration system
CN102997485A (en) * 2011-09-09 2013-03-27 台达电子工业股份有限公司 Magnetic heat exchange unit
CN107131675B (en) * 2017-06-05 2020-09-25 青岛海尔智能技术研发有限公司 Processing method of heat pipe assembly with magnetic refrigeration function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447463A (en) * 1987-07-16 1989-02-21 Man Technologie Gmbh Electrostatic filter
JPH07259724A (en) * 1994-03-25 1995-10-09 Sharp Corp Thermo-drive motor
KR20040062989A (en) * 2001-12-12 2004-07-09 애스트로노틱스 코포레이션 오브 아메리카 Rotating magnet magnetic refrigerator
JP2004317040A (en) 2003-04-17 2004-11-11 Asmo Co Ltd Temperature regulating device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091361A (en) * 1990-07-03 1992-02-25 Hed Aharon Z Magnetic heat pumps using the inverse magnetocaloric effect
US5156003A (en) * 1990-11-08 1992-10-20 Koatsu Gas Kogyo Co., Ltd. Magnetic refrigerator
US5332029A (en) * 1992-01-08 1994-07-26 Kabushiki Kaisha Toshiba Regenerator
US5357756A (en) * 1993-09-23 1994-10-25 Martin Marietta Energy Systems, Inc. Bipolar pulse field for magnetic refrigeration
US5934078A (en) * 1998-02-03 1999-08-10 Astronautics Corporation Of America Reciprocating active magnetic regenerator refrigeration apparatus
JP4879449B2 (en) * 2000-08-09 2012-02-22 アストロノーティックス コーポレイション オブ アメリカ Rotating bed type magnetic refrigerator
JP2002195683A (en) * 2000-12-20 2002-07-10 Denso Corp Magnetic temperature regulating apparatus
JP4622179B2 (en) * 2001-07-16 2011-02-02 日立金属株式会社 Magnetic refrigeration work substance, regenerative heat exchanger and magnetic refrigeration equipment
US6739137B2 (en) * 2002-05-21 2004-05-25 Michael Andrew Minovitch Magnetic condensing system for cryogenic engines
CH695836A5 (en) * 2002-12-24 2006-09-15 Ecole D Ingenieurs Du Canton D Method and device for continuously generating cold and heat by magnetic effect.
US7168255B2 (en) * 2003-03-28 2007-01-30 Kabushiki Kaisha Toshiba Magnetic composite material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447463A (en) * 1987-07-16 1989-02-21 Man Technologie Gmbh Electrostatic filter
JPH07259724A (en) * 1994-03-25 1995-10-09 Sharp Corp Thermo-drive motor
KR20040062989A (en) * 2001-12-12 2004-07-09 애스트로노틱스 코포레이션 오브 아메리카 Rotating magnet magnetic refrigerator
JP2004317040A (en) 2003-04-17 2004-11-11 Asmo Co Ltd Temperature regulating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866840B1 (en) * 2012-03-26 2018-06-14 삼성전자주식회사 Magnetic cooling apparatus

Also Published As

Publication number Publication date
WO2007055515A1 (en) 2007-05-18
EP1957891A4 (en) 2008-12-17
JP2009515136A (en) 2009-04-09
EP1957891A1 (en) 2008-08-20
CN101305249A (en) 2008-11-12
US20080236173A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
KR100684521B1 (en) Magnetic refrigerator
KR100761666B1 (en) active magnetic refrigerator
US10451320B2 (en) Refrigerator appliance with water condensing features
CN100507406C (en) Rotating magnet magnetic refrigerator
US7481064B2 (en) Method and device for continuous generation of cold and heat by means of the magneto-calorific effect
CN112437859A (en) Magnetocaloric thermal diode assembly with rotary heat exchanger
JP4842327B2 (en) Magnetic refrigerator
JP2009524796A (en) Active magnetic refrigerator
KR100647854B1 (en) Magnetic refrigerator
KR20170055519A (en) Magnetic refrigeration system with unequal blows
KR100647852B1 (en) Magnetic refrigerator
EP1736719A1 (en) Continuously rotary magnetic refrigerator or heat pump
KR100684527B1 (en) Magnetic heat-exchanging unit for magnetic refrigerator
US10527325B2 (en) Refrigerator appliance
WO2013135048A1 (en) Heat exchanger and cabinet
US10551095B2 (en) Magneto-caloric thermal diode assembly
KR100716007B1 (en) Active magnetic refrigerator
CN102317710B (en) Magnetocaloric heat generator
KR100768006B1 (en) magnetic heat-exchanging unit and magnetic refrigerator with the magnetic heat-exchanging unit
KR100728495B1 (en) magnetic heat-exchanging unit and magnetic refrigerator with the magnetic heat-exchanging unit
JPH0814779A (en) Heat pipe
CN112424543B (en) Magnetocaloric thermal diode assembly with heat transfer fluid circuit
KR101819522B1 (en) Magnetic cooling system
JPH01111174A (en) Magnetic air conditioner
CN214065350U (en) Green type magnetic refrigeration heat transfer equipment based on magnetic heat effect

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130201

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140203

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee