WO2024051857A1 - 一种基于平移差分的微结构线宽显微无损测量方法 - Google Patents

一种基于平移差分的微结构线宽显微无损测量方法 Download PDF

Info

Publication number
WO2024051857A1
WO2024051857A1 PCT/CN2023/120678 CN2023120678W WO2024051857A1 WO 2024051857 A1 WO2024051857 A1 WO 2024051857A1 CN 2023120678 W CN2023120678 W CN 2023120678W WO 2024051857 A1 WO2024051857 A1 WO 2024051857A1
Authority
WO
WIPO (PCT)
Prior art keywords
microscopic
microstructure
line width
measurement
differential
Prior art date
Application number
PCT/CN2023/120678
Other languages
English (en)
French (fr)
Inventor
高志山
马剑秋
袁群
孙一峰
霍霄
王书敏
张佳乐
范筱昕
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Priority to US18/681,461 priority Critical patent/US20240265520A1/en
Publication of WO2024051857A1 publication Critical patent/WO2024051857A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Definitions

  • the invention relates to the technical field of precision optical measurement engineering, and specifically relates to a microscopic non-destructive measurement method of microstructure line width based on translational differential, aiming at line width measurement of linear and trench microstructures.
  • the present invention is aimed at the measurement method of line width, and its scale covers the range of several microns to tens of microns, such as micro-electro-mechanical systems (Micro-Electro-Mechanical System, MEMS), printed circuit boards, etc.
  • MEMS Micro-Electro-Mechanical System
  • line width errors will cause the sensitivity and stability of MEMS devices to decrease, affecting product performance; in printed circuit boards, ensuring line width is the key to circuit connection reliability and impedance board impedance values to meet requirements. . Therefore, linewidth, as one of the key indicators of microstructure devices, needs to be measured with higher precision at the micron scale.
  • Non-contact methods mainly include scanning electron microscopy and optical measurement methods based on electron beam imaging.
  • the scanning electron microscope has high resolution, it is a scanning imaging and is slow and only suitable for offline measurement, and the electron beam bombardment can easily damage the sample.
  • Optical measurement methods mainly include confocal microscopy imaging, hyperfocal scanning, scatterometry, optical microscopy, etc. Among them, methods with higher accuracy, such as confocal microscopy, hyperfocal scanning, and scatterometry, have slow measurement speeds.
  • the microscopic imaging method can directly image the sample, with a large field of view, area measurement, fast speed, low cost, and can be detected online.
  • the step edge positioning is blurred, and the accuracy of direct measurement results is difficult to improve.
  • CN201910045878 line width.
  • the method disclosed in this patent requires setting a threshold. The selection of the threshold will be affected by uneven lighting and noise. Multiple scans are required to obtain the edge position on one side, and the measurement time is slow.
  • the purpose of the present invention is to provide a microscopic non-destructive measurement method of microstructure line width based on translational differential. It is used to solve the problem that the line width measurement accuracy in microscopic imaging is limited by the imaging diffraction limit and improve the line width measurement accuracy.
  • the present invention proposes a non-destructive microscopic measurement method of microstructure line width based on translational differential.
  • a high-precision displacement platform is used to move the sample to be measured, and one image is collected before and after the displacement.
  • For the microscopic image of the sample subtract the two images to obtain a differential image, derive the light intensity distribution function of the differential image, perform data fitting on the differential image, and use the high resolution of differential pulse positioning to obtain a high-precision sample line wide measurements.
  • a microscopic non-destructive measurement method of microstructure line width based on translational differential including the following steps:
  • Step 1 Collect microscopic images of the microstructure to be measured
  • Step 2 Translate the microstructure a small distance along the line width direction, and collect the microscopic image of the microstructure to be measured again;
  • Step 3 Subtract the light intensities of the two collected microscopic images to obtain a difference image.
  • Step 4 Use the Gaussian function as the target to perform data fitting on the light intensity data of the differential image, and use the extreme points of the Gaussian function to locate the exact position of the differential pulses on both sides;
  • Step 5 Obtain high-precision line width measurement results based on the precise positions of the extreme points on both sides.
  • microstructures to be tested include linear and trench structures, and their scales range from several microns to tens of microns.
  • the high-precision displacement platform is used to move the sample to be tested.
  • the movement direction is required to be along the line width of the sample.
  • the movement distance is required to be much smaller than the optical resolution limit of the imaging system. It is controlled at the nanometer level.
  • High-precision piezoelectric ceramic displacement stages can be used, but are not limited to them.
  • the displacer performs small displacements.
  • This invention does not directly obtain the line width results from the sample microscopic image, but uses translational differential to convert the line width measurement into differential pulse distance measurement, which is not limited by the microscopic imaging resolution and improves the line width measurement accuracy.
  • the translation difference method used in the present invention simultaneously subtracts the effects of uneven lighting and environmental system noise, thereby improving the accuracy of the measurement results.
  • This invention only needs to acquire two microscopic images, and the measurement speed is fast.
  • Figure 1 shows a microscopic non-destructive measurement method of microstructure line width based on translational differential disclosed by the present invention. Process diagram.
  • Figure 2 is a microscopic image of the microstructure to be measured collected in a microstructure line width microscopic non-destructive measurement method based on translational differential disclosed in the present invention.
  • Figure 3 is a schematic diagram of the light intensity distribution of the differential image in a microscopic non-destructive measurement method of microstructure line width based on translational differential disclosed in the present invention.
  • Figure 4 is a schematic diagram of obtaining the precise position of the step edges on both sides of the microstructure to be measured in step 4 of a microstructure line width microscopic non-destructive measurement method based on translational differential disclosed in the present invention.
  • a microscopic non-destructive measurement method of microstructure line width based on translational differential includes the following steps:
  • Step 1 Collect a microscopic image of the microstructure to be measured; the microscopic image of the microstructure to be measured is collected as shown in Figure 2.
  • Step 2 Translate the microstructure a small distance along the line width direction, and collect the microscopic image of the microstructure to be measured again.
  • the translation distance is required to be much smaller than the optical resolution limit of the imaging system, controlled at the nanometer level, and can be used but is not limited to piezoelectric.
  • High-precision displacement devices such as ceramic displacement stages perform small displacements;
  • Step 3 Subtract the two collected microscopic images to obtain a difference image.
  • (x,y) and (x',y') are the object plane and image plane coordinates respectively
  • O d (x, y) represents the object plane difference function
  • I d (x', y') represents the image plane difference
  • S(x',y') represents the impact of uneven illumination
  • PSF is the point spread function of the microscopic imaging system. Since the noise contained in the two images is basically the same, and the noises cancel each other out after subtraction, the differential image light intensity distribution formula does not consider the influence of noise.
  • the image plane differential light intensity distribution function is obtained by formula (1), which is the convolution of the object plane difference function and the point spread function of the microscopic imaging system. Regardless of the distribution outside the first dark ring of the Airy disk of the imaging system, the system point spread function can be represented by a Gaussian function.
  • the image plane differential light intensity distribution function has one positive and one negative Gaussian pulse at the step edge of the sample.
  • the Gaussian pulse has a unique extreme point. The distance between the two Gaussian pulses Equal to the linewidth of the sample.
  • the object surface difference function has a positive and a negative rectangular pulse at the sample step edge, the rectangular width is equal to the sample displacement distance, and the remaining positions are all 0; the image surface difference light intensity distribution function is the object surface
  • the difference function is obtained by the convolution of the system point spread function.
  • the Gaussian pulse has a unique extreme point. The distance between the two pulse extreme points is equal to the distance of the sample step edge. , that is, line width.
  • Step 4 Use the Gaussian function as the target to perform data fitting on the light intensity data of the differential image, and use the extreme points of the Gaussian function to locate the exact position of the differential pulses on both sides.
  • the above-mentioned data fitting of the differential image is because the collected light intensity image is discrete data, and direct differential results in less effective data, making it impossible to obtain the accurate position of the differential pulse extreme point.
  • the Gaussian function is used as the target to fit the discrete data of the difference image, and the Gaussian pulse curve obtained by fitting can accurately locate the location of the extreme point.
  • Step 5 Obtain high-precision line width measurement results based on the precise positions of the extreme points on both sides.
  • the present invention discloses a microscopic non-destructive measurement method of microstructure line width based on translational difference, which solves the problem that microstructure line width measurement by microscopic imaging method is limited by the imaging diffraction limit and has low measurement accuracy.
  • This invention does not directly obtain the line width results from the sample microscopic image, but uses translational differential to convert the line width measurement into differential pulse distance measurement, which is not limited by the microscopic imaging resolution and improves the line width measurement accuracy.
  • the translation difference method used in the present invention simultaneously subtracts the effects of uneven illumination and environmental system noise, thereby improving the accuracy of the measurement results.
  • the line width measurement method of the present invention retains the advantages of intuitive, fast and non-destructive measurement of the microscopic imaging method, and also breaks through the diffraction limit of microscopic imaging, while reducing the impact of uneven illumination and imaging system noise, and can improve the accuracy of line width measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种基于平移差分的微结构线宽显微无损测量方法,解决了显微成像法测量微结构线宽受限于成像衍射极限,测量精度低的问题。首先采集待测微结构的显微图像;接着将微结构沿线宽方向平移一段微小距离,再次采集待测微结构的显微图像;然后将两次采集的显微图像相减得到差分图像;再以高斯函数为目标对差分图像的光强数据进行数据拟合,以高斯函数极值点定位两侧差分脉冲的准确位置;最后根据两侧极值点的精确位置得到高精度的线宽测量结果。本发明的线宽测量方法保留显微成像法直观、快速、无损测量的优点,而且还突破了显微成像衍射极限,同时减少照明不均和成像系统噪声的影响,能够提高线宽测量精度。

Description

一种基于平移差分的微结构线宽显微无损测量方法 技术领域
本发明涉及精密光学测量工程技术领域,具体涉及一种基于平移差分的微结构线宽显微无损测量方法,针对线型和沟槽型微结构的线宽测量。
背景技术
随着微纳加工水平的不断发展,当前微结构日趋精细,对线型或沟槽型结构的线宽测量精度要求也随之提高。本发明针对线宽的测量方法,其尺度覆盖数微米至几十微米范围,如微电子机械系统(Micro-Electro-Mechanical System,MEMS)、印制电路板等。在微电子机械系统中,线宽误差将导致MEMS器件灵敏度下降,稳定性降低,影响产品性能;在印制电路板中,线宽的保证是电路连接可靠性、阻抗板阻抗值满足要求的关键。因此,线宽作为微结构器件的关键指标之一,在微米尺度需要对其进行更高精度的测量。
依据测量原理的不同,现有线宽测量方法可分为接触式和非接触式两类。接触式方法虽然分辨率高,但是需要接触待测样品可能划伤样品表面。非接触式方法主要包含基于电子束成像的扫描电子显微镜和光学测量法两类。其中扫描电子显微镜虽然具有很高的分辨率,但是属于扫描成像,速度慢,只适用于离线测量,且电子束流轰击很容易损坏样品。光学测量方法主要包括共焦显微成像法、过焦扫描法、散射度量术、光学显微成像法等。其中精度较高的方法如共焦显微成像法、过焦扫描法、散射度量术测量速度慢,有的方法需要提前建模仿真,依赖建模与实际测量的匹配度。与之相比,显微成像法对样品直观成像,视场大、面测量、速度快,并且成本低,可以在线检测。但是受到衍射极限的限制,阶跃边缘定位模糊,直接测量结果的精度难以提高。
CN201910045878.X公开了一种《线宽测量方法》,首先获取显示基板的图像,然后根据图像的灰度信息获取待测线路的相对两侧边缘的边缘位置,最后根据边缘位置获取待测线路的线宽。该专利公开的方法需要设定阈值,阈值的选取会受到照明不均和噪声影响,在获取一侧边缘位置时需要多次扫描,测量时间慢。
发明内容
本发明的目的在于提供一种基于平移差分的微结构线宽显微无损测量方法, 用以解决显微成像中线宽测量精度受限于成像衍射极限的问题,提高线宽测量精度。
为实现上述目的,本发明提出一种基于平移差分的微结构线宽显微无损测量方法,在传统显微成像法的基础上,使用高精度位移平台移动待测样品,位移前后各采集一幅样品的显微图像,将两幅图像相减得到差分图像,推导得出差分图像的光强分布函数,对差分图像进行数据拟合,利用差分脉冲定位分辨率高的特点获得高精度的样品线宽测量结果。
一种基于平移差分的微结构线宽显微无损测量方法,包括如下步骤:
步骤1、采集待测微结构的显微图像;
步骤2、将微结构沿线宽方向平移一段微小距离,再次采集待测微结构的显微图像;
步骤3、将两次采集的显微图像光强相减得到差分图像。
步骤4、以高斯函数为目标对差分图像的光强数据进行数据拟合,以高斯函数极值点定位两侧差分脉冲的准确位置;
步骤5、根据两侧极值点的精确位置得到高精度的线宽测量结果。
所述待测微结构包含线型和沟槽型结构,其尺度覆盖数微米至几十微米范围。
所述使用高精度位移平台移动待测样品,移动方向要求沿样品线宽方向,移动距离要求远小于成像系统光学分辨极限,控制在纳米级,可使用但不限于压电陶瓷位移台等高精度位移器进行微小位移。
本发明与现有技术相比,其显著优点在于:
(1)本发明没有直接从样品显微图像中获取线宽结果,而是使用平移差分将线宽测量转为差分脉冲距离测量,不受显微成像分辨率的限制,提高线宽测量精度。
(2)本发明使用的平移差分法,同时减去了照明不均和环境系统噪声带来的影响,提高测量结果的准确性。
(3)本发明只需获取两幅显微图像,测量速度快。
附图说明
图1为本发明公开的一种基于平移差分的微结构线宽显微无损测量方法的 流程示意图。
图2为本发明公开的一种基于平移差分的微结构线宽显微无损测量方法中采集的待测微结构的显微图像。
图3为本发明公开的一种基于平移差分的微结构线宽显微无损测量方法中差分图像光强分布示意图。
图4为本发明公开的一种基于平移差分的微结构线宽显微无损测量方法的步骤4中获取待测微结构两侧阶跃边缘的精确位置的示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明。
结合图1,一种基于平移差分的微结构线宽显微无损测量方法,包括以下步骤:
步骤1、采集待测微结构的显微图像;所述采集待测微结构的显微图像如图2所示。
步骤2、将微结构沿线宽方向平移一段微小距离,再次采集待测微结构的显微图像,所述平移距离要求远小于成像系统光学分辨极限,控制在纳米级,可使用但不限于压电陶瓷位移台等高精度位移器进行微小位移;
步骤3、将两次采集的显微图像相减得到差分图像。
所述差分图像的光强分布使用公式(1)表示:
其中,(x,y)和(x',y')分别是物面和像面坐标,Od(x,y)表示物面差分函数,Id(x',y')表示像面差分光强分布函数,S(x',y')代表照明不均产生的影响,PSF是显微成像系统点扩散函数。由于两幅图像包含的噪声基本相同,相减之后噪声互相抵消,所以差分图像光强分布公式不考虑噪声的影响。
所述像面差分光强分布函数由公式(1)得到,是物面差分函数与显微成像系统点扩散函数卷积所得。不考虑成像系统艾里斑第一暗环以外的分布情况,系统点扩散函数可以用高斯函数表示。当样品位移距离远小于显微成像系统分辨极限时,像面差分光强分布函数在样品阶跃边缘处具有一正一负的高斯脉冲,高斯脉冲具有唯一极值点,两处高斯脉冲的距离等于样品的线宽。
结合图3,所述物面差分函数在样品阶跃边缘处具有一正一负的矩形脉冲,矩形宽度等于样品位移距离,其余位置均为0;所述像面差分光强分布函数为物面差分函数于系统点扩散函数的卷积所得,在样品阶跃边缘处具有一正一负的高斯脉冲,高斯脉冲具有唯一极值点,两个脉冲极值点的距离等于样品阶跃边缘的距离,即线宽。
步骤4、以高斯函数为目标对差分图像的光强数据进行数据拟合,以高斯函数极值点定位两侧差分脉冲的准确位置。
结合图4,所述对差分图像进行数据拟合,是由于采集得到的光强图像是离散数据,直接差分导致有效数据少,无法得到差分脉冲极值点的准确位置。以高斯函数为目标对差分图像的离散数据进行拟合,拟合得到高斯脉冲曲线可以准确定位极值点的位置。
步骤5、根据两侧极值点的精确位置得到高精度的线宽测量结果。
综上所述,本发明公开了一种基于平移差分的微结构线宽显微无损测量方法,解决了显微成像法测量微结构线宽受限于成像衍射极限,测量精度低的问题。本发明没有直接从样品显微图像中获取线宽结果,而是使用平移差分将线宽测量转为差分脉冲距离测量,不受显微成像分辨率的限制,提高线宽测量精度。本发明使用的平移差分法,同时减去了照明不均和环境系统噪声带来的影响,提高测量结果的准确性。本发明的线宽测量方法保留显微成像法直观、快速、无损测量的优点,而且还突破了显微成像衍射极限,同时减少照明不均和成像系统噪声的影响,能够提高线宽测量精度。

Claims (6)

  1. 一种基于平移差分的微结构线宽显微无损测量方法,其特征在于,包括以下步骤:
    步骤1、采集待测微结构的显微图像;
    步骤2、将微结构沿线宽方向平移一段微小距离,再次采集待测微结构的显微图像;
    步骤3、将两次采集的显微图像光强相减得到差分图像;
    步骤4、以高斯函数为目标对差分图像的光强数据进行数据拟合,以高斯函数极值点定位两侧差分脉冲的准确位置;
    步骤5、根据两侧极值点的精确位置得到高精度的线宽测量结果。
  2. 根据权利要求1所述的一种基于平移差分的微结构线宽显微无损测量方法,其特征在于:所述待测微结构包含线型和沟槽型结构,其尺度覆盖数微米至几十微米范围。
  3. 根据权利要求2所述的一种基于平移差分的微结构线宽显微无损测量方法,其特征在于:所述将微结构沿线宽方向平移一段微小距离,平移距离要求远小于成像系统光学分辨极限,控制在纳米级。
  4. 根据权利要求3所述的一种基于平移差分的微结构线宽显微无损测量方法,其特征在于:所述差分图像能够表示成物方差分函数与系统点扩散函数卷积所得。
  5. 根据权利要求4所述的一种基于平移差分的微结构线宽显微无损测量方法,其特征在于:所述拟合目标高斯函数,为显微成像系统点扩散函数简化所得,只考虑艾里斑第一暗环以内的点扩散函数具有明显的高斯分布特点,且极值点位置与高斯函数极值点位置重合,使用高斯函数作为拟合目标简化计算。
  6. 根据权利要求1所述的一种基于平移差分的微结构线宽显微无损测量方法,其特征在于:所述高精度的样品线宽测量结果由拟合得到高斯脉冲曲线的极值点距离得到,极值点的定位分辨率远高于系统成像分辨率,且照明不均只影响脉冲的高度,不改变脉冲位置,两个脉冲极值点的距离等于样品阶跃边缘的距离,即线宽。
PCT/CN2023/120678 2022-09-22 2023-09-22 一种基于平移差分的微结构线宽显微无损测量方法 WO2024051857A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/681,461 US20240265520A1 (en) 2022-09-22 2023-09-22 Microscopic non-destructive measurement method of microstructure linewidth based on translation difference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211157718.2 2022-09-22
CN202211157718.2A CN115479544B (zh) 2022-09-22 2022-09-22 一种基于平移差分的微结构线宽显微无损测量方法

Publications (1)

Publication Number Publication Date
WO2024051857A1 true WO2024051857A1 (zh) 2024-03-14

Family

ID=84393856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120678 WO2024051857A1 (zh) 2022-09-22 2023-09-22 一种基于平移差分的微结构线宽显微无损测量方法

Country Status (3)

Country Link
US (1) US20240265520A1 (zh)
CN (1) CN115479544B (zh)
WO (1) WO2024051857A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115479544B (zh) * 2022-09-22 2023-11-10 南京理工大学 一种基于平移差分的微结构线宽显微无损测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292210A (ja) * 1996-04-26 1997-11-11 Olympus Optical Co Ltd ギャップ検査装置
JPH11119107A (ja) * 1997-10-16 1999-04-30 Olympus Optical Co Ltd 干渉顕微鏡装置
CN102300112A (zh) * 2010-06-24 2011-12-28 索尼公司 显示设备以及显示设备的控制方法
CN108955572A (zh) * 2018-05-21 2018-12-07 中国科学院光电技术研究所 一种用于微纳结构三维动态实时测量的差分式结构光照明显微测量方法
CN113567441A (zh) * 2021-09-27 2021-10-29 板石智能科技(武汉)有限公司 纳米量级物体探测方法、系统、设备及存储介质
CN115479544A (zh) * 2022-09-22 2022-12-16 南京理工大学 一种基于平移差分的微结构线宽显微无损测量方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108844492B (zh) * 2018-08-31 2020-04-03 苏州大学 一种基于光谱调制度深度编码的微结构形貌测量方法及其装置
CN109269438B (zh) * 2018-09-28 2020-07-10 中国科学院光电技术研究所 用于多层复杂微纳结构检测的结构光照明显微测量方法
CN111157226B (zh) * 2020-03-04 2024-07-23 山东理工大学 一种显微镜点扩散函数的测量方法和装置
CN111256616B (zh) * 2020-03-30 2024-08-20 阳宇春 计量级3d超景深显微系统及检测方法
CN112097645B (zh) * 2020-08-31 2021-12-10 南京理工大学 高深宽比微结构反射式干涉显微无损测量装置
CN113091634B (zh) * 2021-03-01 2022-09-13 南京理工大学 一种适用于白光扫描干涉的微观形貌快速测量方法
CN114659455B (zh) * 2022-02-24 2024-01-16 浙江工业大学 一种用于测量细丝直径的衍射条纹识别处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292210A (ja) * 1996-04-26 1997-11-11 Olympus Optical Co Ltd ギャップ検査装置
JPH11119107A (ja) * 1997-10-16 1999-04-30 Olympus Optical Co Ltd 干渉顕微鏡装置
CN102300112A (zh) * 2010-06-24 2011-12-28 索尼公司 显示设备以及显示设备的控制方法
CN108955572A (zh) * 2018-05-21 2018-12-07 中国科学院光电技术研究所 一种用于微纳结构三维动态实时测量的差分式结构光照明显微测量方法
CN113567441A (zh) * 2021-09-27 2021-10-29 板石智能科技(武汉)有限公司 纳米量级物体探测方法、系统、设备及存储介质
CN115479544A (zh) * 2022-09-22 2022-12-16 南京理工大学 一种基于平移差分的微结构线宽显微无损测量方法

Also Published As

Publication number Publication date
CN115479544B (zh) 2023-11-10
US20240265520A1 (en) 2024-08-08
CN115479544A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
JP3308081B2 (ja) 半導体ウエハー製造中のオーバーレイ位置ずれ測定方法
WO2024051857A1 (zh) 一种基于平移差分的微结构线宽显微无损测量方法
WO2020248345A1 (zh) 一种基于分治思想的疵病宽度实时溯源方法
CN115325963B (zh) 一种晶圆表面三维形貌测量装置及其测量方法
CN105180806A (zh) 基于显微视觉的跨尺度几何参数测量方法
CN111912835B (zh) 一种具备烧蚀量测量功能的libs装置及方法
CN111238383B (zh) 基于光谱共焦的胶体三维重建与厚度测量方法和系统
CN109141273B (zh) 一种基于dmd的高速运动目标形变测量系统及方法
Sun et al. A vision-based method for dimensional in situ measurement of cooling holes in aero-engines during laser beam drilling process
JP5913903B2 (ja) 形状検査方法およびその装置
CN110940267A (zh) 测量方法及其测量系统
TWI585550B (zh) Pre-alignment measuring devices and methods
CN110514110B (zh) 一种平台调平控制方法
CN1851522A (zh) 激光扫描共聚焦显微镜扫描畸变现象的全场校正方法
TWI521295B (zh) 斜軸式顯微自動對焦系統及方法
CN110091070B (zh) 电机垂直度的检测装置及检测方法
Danuser et al. Observing deformations of 20 nm with a low-numerical aperture light microscope
WO2023284320A1 (zh) 用于光热反射显微热成像的三维位移补偿方法及控制装置
CN115165889A (zh) 基于过焦扫描成像的样品特征分析方法及其装置
CN113847883B (zh) 适用于高深宽比结构三维形貌检测的干涉测量方法
US6552331B2 (en) Device and method for combining scanning and imaging methods in checking photomasks
Qiu et al. Three-dimensional information measurement and reconstruction for micro-hole array based on the modified shape from focus
CN109373905B (zh) 基于冗余光路的微尺度透明体离焦距离测量装置及方法
Wang et al. Research on TSOM detection method for subsurface defects of optical components
Harding More than Laser Gages-Available Today

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862550

Country of ref document: EP

Kind code of ref document: A1