WO2024051785A1 - 自移动设备、自移动设备的控制方法及割草控制装置 - Google Patents

自移动设备、自移动设备的控制方法及割草控制装置 Download PDF

Info

Publication number
WO2024051785A1
WO2024051785A1 PCT/CN2023/117515 CN2023117515W WO2024051785A1 WO 2024051785 A1 WO2024051785 A1 WO 2024051785A1 CN 2023117515 W CN2023117515 W CN 2023117515W WO 2024051785 A1 WO2024051785 A1 WO 2024051785A1
Authority
WO
WIPO (PCT)
Prior art keywords
grass
fuselage
indentations
moving
indentation
Prior art date
Application number
PCT/CN2023/117515
Other languages
English (en)
French (fr)
Inventor
连洪奎
杜江
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2024051785A1 publication Critical patent/WO2024051785A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/40Control within particular dimensions
    • G05D1/43Control of position or course in two dimensions

Definitions

  • the present invention relates to the technical field of self-moving equipment, and in particular to a self-moving equipment and a control method thereof, a lawn mowing control device, a computer device, a storage medium and a computer program product.
  • the lawn of a football field usually has stripes of alternating colors of different shades in order to be beautiful and relieve the visual fatigue of spectators and players.
  • professionals will use special rollers to roll the lawn to create different indentations and compact the lawn. Since the grass falls in different directions in different directions, The resulting indentation will have a visual effect of different shades of color after being reflected by light.
  • chemical, biological and other methods will be used to treat the lawn to obtain stripes with dark and light colors at intervals, such as applying special fertilizers or spraying greening agents to the lawn. Different contents of nitrogen fertilizers and potassium fertilizers can change the color of the lawn.
  • the present invention aims at the problem of wasting human resources or economic costs in the existing technology, and provides an autonomous mobile device and its control method, as well as a control device, to improve the problem of wasting human resources or economic costs in the existing technology. .
  • a self-moving device in a first aspect, can move on grass.
  • the self-moving device includes:
  • a grass-pressing mechanism is installed on the fuselage.
  • the grass-pressing mechanism includes a grass-pressing assembly located on one side of the fuselage and a grass-pressing assembly located on the other side of the fuselage. It is used when the self-moving equipment When moving on the grass, an indentation on one side of the fuselage and an indentation on the other side of the fuselage are produced on the grass.
  • the indentation on one side of the fuselage and the indentation on the other side of the fuselage are The width of the marks is equal;
  • a controller installed on the fuselage, controls the movement of the self-moving device within the working area on the grass;
  • the self-moving device In a single traversal move, the self-moving device is controlled to move along multiple parallel paths with equal spacing.
  • the path spacing between adjacent paths of the single traverse move is B, and the phase distance of the single traverse move is
  • the directions of adjacent paths are opposite, so that the grass pressing mechanism produces indentations in the first direction and indentations in the second direction on the grass;
  • the paths of different single traversal moves in the N traversal moves do not overlap and are parallel to each other; after the N traversal moves, the adjacent paths formed by the N traversal moves have opposite directions, and the N traversal moves form
  • the path distance B is determined so that the lawn pressing mechanism produces a plurality of indentations in the first direction and indentations in the second direction on the grass.
  • the indentations in the first direction and the indentations in the second direction are The marks are adjacent and spaced apart.
  • the self-moving device includes a moving component installed on the fuselage for driving the fuselage to move.
  • the moving component includes a moving wheel located on one side of the fuselage and a moving wheel located on the side of the fuselage. A moving wheel on the other side of the fuselage; the grass pressing assembly includes the moving wheel.
  • the path spacing B is determined based on the outer span D of the indentation located on one side of the fuselage and the indentation located on the other side of the fuselage, and the width d of the single-sided indentation;
  • the path spacing B, the outer span D, and the width d of the single-side indentation satisfy: 4/5xN(D-2d) ⁇ B ⁇ 6/5xN(D-2d).
  • the path spacing B, the outer span D, and the width d of the single-side indentation satisfy: B ⁇ N(D-2d), d ⁇ D/4, and N(2d-40mm) ⁇ B ⁇ N (2d+20mm), so that among the multiple indentations produced by the grass pressing mechanism, the distance R1 between two adjacent indentations in different directions satisfies: 0mm ⁇ R1 ⁇ 40mm, and the distance R1 between two adjacent indentations in the same direction satisfies: The spacing R2 between adjacent indentations satisfies: R2 ⁇ 0mm.
  • the path spacing B, the outer span D and the width d of the single-side indentation satisfy: B>N(D-2d), d ⁇ D/4, and N(2d-40mm) ⁇ B ⁇ N(2d+20)mm, so that among the multiple indentations produced by the grass pressing mechanism, the distance R2 between two adjacent indentations in the same direction satisfies: 0mm ⁇ R2 ⁇ 40mm, and the distance R2 between two adjacent indentations in different directions The distance R1 between adjacent indentations satisfies: -40mm ⁇ R1 ⁇ 40mm.
  • the self-mobile device is an automatic lawn mower.
  • the automatic lawn mower further includes a cutting assembly installed on the body for cutting grass on the lawn, and the center of the cutting assembly Located on the longitudinal axis of the fuselage; the cutting width M perpendicular to the longitudinal axis of the cutting assembly and the path spacing B satisfy: NM ⁇ B.
  • the moving wheel located on one side of the fuselage and the moving wheel located on the other side of the fuselage both include a moving wheel located at the front of the fuselage and a moving wheel located at the rear of the fuselage;
  • the distance X between the moving wheel located at the front of the fuselage and the moving wheel located at the rear of the fuselage located on the same side of the fuselage along the direction perpendicular to the traveling direction of the moving component satisfies: X ⁇ 40mm.
  • the mobile device traverses the working area on the grass in an arcuate path or a zigzag path.
  • a method for controlling a self-moving device in a second aspect, can move on the grass.
  • the self-moving device includes:
  • a grass-pressing mechanism is installed on the fuselage.
  • the grass-pressing mechanism includes a grass-pressing assembly located on one side of the fuselage and a grass-pressing assembly located on the other side of the fuselage. It is used when the self-moving equipment When moving on the grass, an indentation on one side of the fuselage and an indentation on the other side of the fuselage are produced on the grass.
  • the indentation on one side of the fuselage and the indentation on the other side of the fuselage are The width of the marks is equal;
  • a controller installed on the fuselage, controls the movement of the self-moving device within the working area on the grass;
  • the self-moving device In a single traversal move, the self-moving device is controlled to move along multiple parallel paths with equal spacing.
  • the path spacing between adjacent paths of the single traverse move is B, and the phase distance of the single traverse move is
  • the directions of adjacent paths are opposite, so that the grass pressing mechanism produces indentations in the first direction and indentations in the second direction on the grass;
  • the paths of different single traversal moves in N traversal moves do not overlap and are parallel to each other; after N traversal moves, the adjacent paths formed by the N traversal moves have opposite directions, and the N traversal moves form
  • the path spacing B is determined so that the lawn pressing mechanism produces a plurality of indentations in the first direction and a plurality of second indentations on the grass.
  • the indentations in the first direction and the indentations in the second direction are adjacent and arranged at intervals.
  • the grass pressing mechanism includes a grass pressing assembly located on one side of the fuselage and a grass pressing assembly located on the other side of the fuselage;
  • the self-moving device includes a moving assembly installed on the The fuselage is used to drive the fuselage to move.
  • the moving assembly includes a moving wheel located on one side of the fuselage and a moving wheel located on the other side of the fuselage.
  • the grass pressing assembly includes the moving wheel. .
  • the path spacing B is determined based on the outer span D of the indentation located on one side of the fuselage and the indentation located on the other side of the fuselage, and the width d of the single-sided indentation;
  • the path spacing B, the outer span D, and the width d of the single-side indentation satisfy: 4/5xN(D-2d) ⁇ B ⁇ 6/5xN(D-2d).
  • the self-mobile device is an automatic lawn mower.
  • the automatic lawn mower further includes a cutting assembly installed on the body for cutting grass on the lawn, and the center of the cutting assembly Located on the longitudinal axis of the fuselage; the cutting width M perpendicular to the longitudinal axis of the cutting assembly and the path spacing B satisfy: NM ⁇ B.
  • a moving assembly is installed on the fuselage and used to drive the fuselage to move.
  • the moving assembly includes a moving wheel located on one side of the fuselage and a moving wheel located on the other side of the fuselage; the grass pressing assembly includes The moving wheel.
  • the methods include:
  • the path spacing B is configured such that among the four indentations in the first direction produced by the two adjacent paths in the first traveling direction of the moving wheel, the two indentations in the first direction located in the middle are The indentations are adjacent. Among the four indentations in the second direction produced by the two adjacent paths of the moving wheel in the second direction of travel, the two indentations in the second direction located in the middle are adjacent. And the two adjacent indentations in the first direction are adjacent to the two adjacent indentations in the second direction.
  • the self-moving device when the self-moving device is an automatic lawn mower, the automatic lawn mower further includes a cutting assembly, and the cutting assembly is disposed between the moving wheels on both sides of the fuselage.
  • the cutting assembly When the lawn mower moves along the path in the first direction of travel or moves along the path in the second direction of travel, the cutting assembly performs a cutting task.
  • the method includes: obtaining different task instructions from the mobile device, and controlling the path spacing B so that in step d, two adjacent indentations generated by the moving wheel are The spacing between the bar indentations varies.
  • the method includes: obtaining the path spacing B from the preconfigured configuration parameters of the self-mobile device; the path spacing B is based on the outer span D, single-side span of the self-mobile device. The width d of the indentation is determined.
  • the method includes: obtaining the outer span D of the self-moving device and the width d of the single-sided indentation; according to the outer span D of the self-moving device and the width d of the single-sided indentation , determine the path distance B.
  • the method includes: controlling the path spacing B so that the path spacing B, the outer span D, and the width d of the single-side indentation satisfy: 4/5x(D-2d) ⁇ B ⁇ 6/5x(D-2d).
  • the method includes: controlling the path spacing B so that among the multiple indentations generated by the moving wheel in step d, the grass under the indentations falls in two phases along different traveling directions.
  • the spacing R1 between adjacent indentations satisfies: 0mm ⁇ R1 ⁇ 40mm
  • the spacing R2 between two adjacent indentations where the grass under the indentation falls along the same direction of travel satisfies: R2 ⁇ 0mm
  • the outer span D and the width d of the unilateral indentation satisfy: B ⁇ D-2d, d ⁇ D/4, and 2d-40mm ⁇ B ⁇ 2d+20mm.
  • the method includes: controlling the path spacing B so that among the multiple indentations generated by the moving wheel in step d, the grass under the indentations falls along two phases in the same direction of travel.
  • the spacing R2 between adjacent indentations satisfies: 0mm ⁇ R2 ⁇ 40mm
  • the spacing R1 between two adjacent indentations where the grass under the indentation falls along different directions of travel satisfies: -40mm ⁇ R1 ⁇ 40mm
  • the path spacing B , the outer span D and the width d of the unilateral indentation satisfy: B>D-2d, d ⁇ D/4, and 2d-40mm ⁇ B ⁇ 2d+20mm.
  • the method includes: the moving wheel located on one side of the fuselage and the moving wheel located on the other side of the fuselage both include a moving wheel located at the front of the fuselage and a moving wheel located at the rear of the fuselage.
  • Moving wheel the distance X between the outside of the moving wheel located at the front of the fuselage and the inside of the moving wheel located at the rear of the fuselage along the direction perpendicular to the traveling direction of the moving assembly on the same side of the fuselage satisfies: X ⁇ 40mm.
  • a self-mobile device where the self-mobile device includes:
  • a moving assembly is installed on the fuselage and used to drive the fuselage to move.
  • the moving assembly includes a moving wheel located on one side of the fuselage and a moving wheel located on the other side of the fuselage;
  • the grass pressing assembly includes The moving wheel;
  • a controller installed on the fuselage, controls the movement of the self-moving device within the working area on the grass;
  • the controller configuration is:
  • the self-moving device In a single traversal move, the self-moving device is controlled to move along multiple parallel paths with equal spacing.
  • the path spacing between adjacent paths of the single traverse move is B, and the phase distance of the single traverse move is
  • the directions of adjacent paths are opposite, so that the grass pressing mechanism produces indentations in the first direction and indentations in the second direction on the grass;
  • the paths of different single traversal moves in the N traversal moves do not overlap and are parallel to each other; after the N traversal moves, the adjacent paths formed by the N traversal moves have opposite directions, and the N traversal moves form
  • the path distance B is determined so that the lawn pressing mechanism produces a plurality of indentations in the first direction and indentations in the second direction on the grass.
  • the indentations in the first direction and the indentations in the second direction are The marks are adjacent and arranged at intervals; the path spacing B is determined based on the outer span D of the automatic lawn mower and the width d of the single-side indentation.
  • the width d of the side indentation satisfies: 4/5xN(D-2d) ⁇ B ⁇ 6/5xN(D-2d).
  • the self-moving device is an automatic lawn mower
  • the automatic lawn mower further includes a cutting component installed on the body for performing cutting tasks; when the mobile component moves along the first
  • the controller controls the cutting assembly to perform a cutting task, and the cutting assembly is located between the moving wheels on both sides of the fuselage.
  • the path spacing B, the outer span D and the width d of the single-side indentation satisfy: B ⁇ N(D-2d), d ⁇ D/4, and N(2d-40mm) ⁇ B ⁇ N(2d+20mm).
  • the path spacing B, the outer span D and the width d of the single-side indentation satisfy: B>N(D-2d), d ⁇ D/4, and N(2d-40mm) ⁇ B ⁇ N(2d+20mm).
  • the moving wheel located on one side of the fuselage and the moving wheel located on the other side of the fuselage both include a moving wheel located at the front of the fuselage and a moving wheel located at the rear of the fuselage;
  • the distance X between the outside of the moving wheel located at the front of the fuselage and the inside of the moving wheel located at the rear of the fuselage on the same side of the fuselage along the direction perpendicular to the traveling direction of the moving assembly satisfies: X ⁇ 40mm.
  • a moving assembly is installed on the fuselage and used to drive the fuselage to move.
  • the moving assembly includes a moving wheel located on one side of the fuselage and a moving wheel located on the other side of the fuselage;
  • the grass pressing assembly includes The moving wheel;
  • a controller configured to perform the following steps when the automatic lawn mower is located in the work area:
  • Control the self-moving device to move along a second path with a second traveling direction.
  • the second path is offset by a path distance B relative to the first path.
  • the second traveling direction is different from the first traveling direction.
  • the moving wheels located on both sides of the fuselage produce two second indentations on the grass, and the grass under the second indentations falls along the second direction of travel;
  • the path spacing B is configured such that among the four indentations in the first direction produced by the two adjacent paths in the first traveling direction of the moving wheel, the two indentations in the first direction located in the middle are The indentations are adjacent. Among the four indentations in the second direction produced by the two adjacent paths of the moving wheel in the second direction of travel, the two indentations in the second direction located in the middle are adjacent. And the two adjacent indentations in the first direction are adjacent to the two adjacent indentations in the second direction.
  • a configuration parameter acquisition module configured to obtain the configuration parameters of the automatic lawn mower when the automatic lawn mower is located in the working area
  • a storage module that stores the configuration parameters; the configuration parameters include path spacing B;
  • the device is used to perform the following steps when the automatic lawn mower is located in the working area:
  • the configuration parameter acquisition module acquires the path distance B from the storage module
  • Control the automatic lawn mower to move along a second path with a second direction of travel.
  • the second path is offset by a path spacing B relative to the first path.
  • the second direction of travel is different from the first path.
  • the direction of travel is opposite.
  • the moving wheels located on both sides of the fuselage produce two indentations in the second direction on the grass.
  • the grass under the indentations in the second direction falls along the second direction of travel. ;
  • the fourth path is offset by a path spacing B relative to the third path.
  • the lawn mower is located on both sides of the fuselage.
  • the moving wheels produce two indentations in the second direction on the grass;
  • the path spacing B is configured such that among the four indentations in the first direction produced by the two adjacent paths in the first direction of travel of the moving wheel of the automatic lawn mower, the two indentations located in the middle are The indentations in the first direction are adjacent to each other.
  • the moving wheels of the automatic lawn mower are located in the middle two.
  • the strips have adjacent indentations in the second direction, and the two adjacent indentations in the first direction are adjacent to the two adjacent indentations in the second direction.
  • a computer device including a memory and a processor.
  • the memory stores a computer program.
  • the processor executes the computer program, the method steps of the automatic lawn mower and the lawn mowing control device are implemented.
  • An eighth aspect provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the method steps of the above-mentioned automatic lawn mower and lawn mowing control device are implemented.
  • a ninth aspect provides a computer program product, including a computer program, characterized in that when the computer program is executed by a processor, the method steps of the above-mentioned automatic lawn mower and lawn mowing control device are implemented.
  • Figure 1 is a schematic side view of a mobile device in some embodiments.
  • Figure 2 is a top view of a mobile device in some embodiments.
  • Figure 3 is a schematic diagram of a single traversal path of a work area from a mobile device in some embodiments.
  • Figure 4 is a schematic diagram of a path from a mobile device that traverses the work area N times in some embodiments.
  • Figure 5 is a schematic diagram of indentations formed after the mobile device traverses the work area N times in some embodiments.
  • Figure 6 shows a control method of a mobile device in some embodiments.
  • Figure 7 is a schematic diagram of step S100 in some embodiments.
  • Figure 8 is a schematic diagram of step S110 in some embodiments.
  • Figure 9 is a schematic diagram of step S120 in some embodiments.
  • Figure 10 is a schematic diagram of step S130 in some embodiments.
  • Figure 11 is a schematic diagram of controlling the movement of a mobile component at a certain path distance from a mobile device in some embodiments.
  • Figure 12 is a schematic diagram of controlling the movement of a mobile component with another path spacing from a mobile device in some embodiments.
  • Figure 13 is a schematic diagram of controlling the movement of a mobile component with another path spacing from a mobile device in some embodiments.
  • Figure 14 is a schematic diagram of controlling the movement of a mobile component with another path spacing from a mobile device in some embodiments.
  • Figure 15 is a schematic diagram of stripes formed by mowing the grass in a traveling direction with a certain angle to the lawn boundary in some embodiments.
  • Figure 16 is a schematic structural diagram of an automatic lawn mower in some embodiments.
  • Figure 17 is a schematic structural diagram of a lawn mowing control device in some embodiments.
  • Figure 18 is a schematic structural diagram of an automatic lawn mower in some embodiments.
  • the self-moving equipment may be an automatic lawn mower, an automatic lawn press, an automatic sprinkler, etc.
  • the self-moving device includes: a fuselage 101; a grass-pressing mechanism 102, which is installed on the fuselage 101 and includes a grass-pressing component located on one side of the fuselage; On the other side of the grass pressing assembly, when the mobile device moves on the grass, the grass pressing mechanism 102 crushes the grass on the grass, causing the grass to fall in the direction of movement of the mobile device, thereby creating an indentation on one side of the fuselage.
  • the width of the indentation on one side of the fuselage 101 is equal to the indentation on the other side of the fuselage 101, and the width difference between the indentations on both sides of the fuselage 101 is less than the threshold.
  • the threshold is 40mm.
  • the width difference of the indentations on both sides of the fuselage 101 is less than 40mm, in terms of visual effect, the width of the indentations on both sides is equivalent, and at this time, the indentations on both sides are considered widths are equal.
  • the autonomous mobile device further includes a moving component 103, which is installed on the body 101 and used to drive the body 101 to move.
  • the grass pressing mechanism 102 includes a moving component 103.
  • the moving component 103 drives the body 101 to move while crushing the grass on the grass to produce indentations.
  • the moving assembly 103 includes a moving wheel 1031 and a moving wheel 1032 located on one side of the fuselage 101.
  • the moving assembly 103 also includes a moving wheel 1033 and a moving wheel 1034 located on the other side of the fuselage 101.
  • the grass pressing assembly of 103 includes moving wheels 1031 and 1032 located on one side of the fuselage 101, and moving wheels 1033 and 1034 located on the other side of the fuselage 101.
  • the moving wheels 1031 and 1033 located at the front of the fuselage are driven wheels
  • the moving wheels 1032 and 1034 located at the rear of the fuselage are driving wheels.
  • the sizes of the moving wheels 1032 and 1034 are larger than those of the moving wheels 1031 and 1034.
  • Moving wheel 1033 In other embodiments (not shown), the moving wheels 1031 and 1033 located at the front of the fuselage can also be driving wheels, and the moving wheels 1032 and 1034 located at the rear of the fuselage can also be driven wheels.
  • the sizes of the moving wheels 1032 and 1034 may also be smaller than the moving wheels 1031 and 1033 .
  • the moving wheels 1031, 1033, 1032, and 1034 may all be driving wheels, and their sizes may be the same or different.
  • the moving assembly 103 may also be composed of three moving wheels, such as two driving wheels located at the rear of the fuselage 101 and disposed on both sides of the fuselage 101 and one located in front of the fuselage 101 . It is composed of a driven wheel located in the middle part of the fuselage 101. In some embodiments (not shown), the moving assembly 103 may also include more than four moving wheels.
  • the lawn pressing mechanism 102 is entirely composed of a moving assembly 103, which can not only carry
  • the automatic mobile device can also crush the grass on the lawn to create indentations without the need for additional grass-pressing structures.
  • the structure is simple and the cost is lower.
  • the grass pressing mechanism 102 can also be an additional structure other than the moving component 103, or be composed of the moving component 103 and an additional structure, which is not limited in this application.
  • the grass pressing mechanism 102 crushes the grass, which will cause the crushed grass in the working area to fall along the direction of travel of the mobile device, thereby leaving indentations on the grass.
  • the crushed grass in the working area will fall in different directions. Since the grass falls in different directions, the indentations produced in different directions will be reflected by light. It will create the visual effect of stripes of different shades of color.
  • the mobile device travels in two opposite directions in the working area, it will leave darker stripes and lighter stripes on the grass. The darker stripes correspond to indentations after reflection of light. The visual effect of darker color appears, and the visual effect of lighter color appears after the reflection of light corresponding to the stripes with lighter color.
  • the self-mobile device also includes a controller 104 (not shown), which is installed on the body 101.
  • the controller 104 plans the movement path of the self-mobile device and controls the movement of the self-mobile device within the working area on the grass.
  • the working area can be a whole block.
  • the grassland defined by physical boundaries or virtual boundaries can also be a certain local area on the grassland, which is not limited by this application.
  • the controller 104 controls the mobile device to traverse the working area on the grass N times, where N is an odd number greater than or equal to 1.
  • the controller 104 controls the mobile device to move along multiple parallel and equally spaced paths.
  • the path distance between adjacent paths in a single traversal movement is B, and the single traversal movement
  • the adjacent paths of movement are in opposite directions, so that the grass pressing mechanism 103 produces indentations in the first direction and indentations in the second direction on the grass, thereby forming two stripes with different colors in visual effects.
  • the controller 104 controls the self-mobile device to traverse and move N times in the work area.
  • the self-mobile device first moves from one side of the work area along multiple parallel paths with a path spacing of B and adjacent paths in opposite directions. to the other side, and then move from the other side of the work area to one side of the work area along multiple parallel paths with path spacing B and adjacent paths in opposite directions, or along multiple parallel paths with spacing B
  • the path that is B and the adjacent paths have opposite directions moves from one side of the work area to the other side, and so on, until the mobile device traverses the work area N times.
  • the paths of different single traversal moves in the above N traversal moves do not overlap, and the paths are parallel to each other.
  • the controller 104 needs to determine the value of the path distance B so that the grass pressing mechanism 103 produces a plurality of indentations in the first direction and indentations in the second direction on the grass.
  • the indentations in the first direction and the indentations in the second direction are The indentations are adjacent and spaced apart.
  • the indentation in the first direction corresponds to the first color stripe
  • the indentation in the second direction corresponds to the second color stripe, so that first color stripes and second color stripes arranged at alternating intervals can be obtained.
  • the self-moving device traverses and moves in the work area three times. In a single traversal move, the self-moving device moves along multiple parallel paths with a spacing of B and adjacent ones. Multiple paths move in opposite directions.
  • the arrow represents the moving direction of the mobile device
  • the dotted line with arrows represents the path of the first traversal movement of the mobile device
  • the solid line with arrows represents the path of the second traversal movement of the mobile device.
  • the dotted line represents the path moved since the third traversal of the mobile device.
  • the paths of different traversal moves among the three traversal moves do not overlap, but are parallel to each other.
  • Figure 5 shows a plurality of indentations in the first direction and indentations in the second direction formed by the grass pressing mechanism 102 after the mobile device traverses the working area along the three traversal paths shown in Figure 4.
  • the indentations in the first direction and The indentations in the second direction are arranged at intervals.
  • the indentation in the first direction corresponds to the first color stripe
  • the indentation in the second direction corresponds to the second color stripe.
  • the first color stripe and the second color stripe arranged alternately are obtained.
  • controller 104 controls the mobile device to perform the following steps:
  • the grass pressing assembly is composed entirely of the moving assembly 103 without additional structure.
  • the moving wheels 1031 and 1032 located on one side of the fuselage 101 roll over the grass to produce an indentation. That is, indentation 1.
  • the moving wheels 1033 and 1034 located on the other side of the fuselage 101 roll the grass to produce another indentation, that is, indentation 2.
  • the indentation produced by the self-mobile device moving along the path in the first direction of travel is regarded as the indentation in the first direction.
  • the self-mobile device Every time the self-mobile device moves along the path in the first direction of travel, the self-mobile device is located on the machine.
  • the moving wheels on both sides of the body 101 will produce two indentations in the first direction, namely indentation 1 and indentation 2.
  • the grass under the indentations in the first direction will fall along the first direction of travel.
  • the first traveling direction may be any direction relative to the working area of the mobile device.
  • the first traveling direction may be a direction parallel or perpendicular to a certain boundary of the football field.
  • the path in the first traveling direction is A straight line segment parallel or perpendicular to a certain boundary of the football field.
  • control the mobile device to move along a second path with a second traveling direction, the second path is offset by a path distance B relative to the first path, and the second traveling direction is opposite to the first traveling direction.
  • the self-mobile device corresponding to the movement of the self-mobile device along the path in the first direction of travel, during the movement of the self-mobile device along the second path (i.e., path 2) in the second direction of travel, it is located on one side of the fuselage 101
  • the moving wheels 1031 and 1032 of the fuselage 101 roll over the grass to produce an indentation, namely indentation 4.
  • the moving wheels 1033 and 1034 located on the other side of the fuselage 101 roll over the grass to produce another indentation, namely indentation 3.
  • the indentation produced by the self-mobile device moving along the path in the second direction of travel is regarded as the indentation in the second direction.
  • the self-mobile device Every time the self-mobile device moves along the path in the second direction of travel, the self-mobile device is located on the machine.
  • the moving wheels on both sides of the body 101 will produce two indentations in the second direction, namely indentation 3 and indentation 4.
  • the grass under the indentations in the second direction will fall along the second direction of travel.
  • the grass with the two indentations in the first direction produced by the mobile component 103 falls along the first direction of travel.
  • the moving component 103 The grass that produces two indentations in the second direction falls along the second direction of travel, and the first direction of travel is opposite to the second direction of travel. Therefore, the indentations in the first direction and the indentations in the second direction are reflected by light. This will create the visual effect of darker stripes and lighter stripes.
  • the stripes corresponding to the indentations in the first direction are regarded as the first color stripes
  • the stripes corresponding to the indentations in the second direction are regarded as the second color stripes.
  • first color stripes and second color stripes the difference comes from the visual effects of different shades formed by the reflection of light caused by the indentations produced when the moving component 103 travels in two opposite directions.
  • Indentation 1 and indentation 2 correspond to the first color stripes
  • indentations 3 and 4 correspond to the second color stripes.
  • the second traveling direction can also be any direction opposite to the first traveling direction relative to the working area of the mobile device, As shown in Figure 15 shows that the first traveling direction and the second traveling direction may be directions with a certain angle with the lawn boundary.
  • the working area of the mobile device is a regular rectangular football field.
  • the path in the first traveling direction is parallel to or perpendicular to a certain boundary of the football field.
  • step S120 when step S120 is executed, the mobile device generates two indentations in the first direction again, namely indentation 5 and indentation 6 , and the stripes formed are stripes of the first color.
  • step S130 when step S130 is executed, the mobile device generates two indentations in the second direction again, namely indentation 7 and indentation 8 , and the stripes formed are second color stripes.
  • steps S100-S130 When the mobile device is controlled to repeatedly execute steps S100-S130 in the work area, multiple indentations in the first direction and indentations in the second direction can be generated as shown in Figure 11, that is, multiple first color stripes, first color stripes, and second indentations. Two color stripes.
  • This application does not limit the transition path from the mobile device from the end point of path 1 to the starting point of path 2, that is, it does not limit the transition path from the mobile device from the end point of the previous path to the starting point of the next path.
  • the end point of the previous path or the starting point of the next path of the self-mobile device can be a point on the boundary of the work area. After the self-mobile device reaches the point on the boundary, the traveling direction can be adjusted to follow the work area. The boundary travels to the starting point of the next path, that is, the above-mentioned transition path can be a certain section on the boundary of the work area.
  • the end point of the previous path or the starting point of the next path from the mobile device can also be a point within the working area or a point outside the working area.
  • the above-mentioned transition path is not limited to a certain section on the boundary of the working area. , the transition path can also be located within or outside the work area boundary, or span inside or outside the work area boundary.
  • the self-mobile device traverses the grass in a bow-shaped path, and the self-mobile device moves from the end point of the previous path to the starting point of the next path through a short-side transition path.
  • the mobile device traverses the grass in a backward path, and the directions of adjacent backward paths are opposite. That is, if the direction of the previous backward path is counterclockwise, then the direction of the next backward path is counterclockwise. is clockwise.
  • the path distance B needs to be controlled so that the moving component 103 can locate the two first-direction indentations in the middle among the four first-direction indentations generated by the two adjacent paths in the first traveling direction.
  • the indentations are adjacent.
  • the two indentations in the second direction located in the middle are adjacent and adjacent.
  • the two indentations in the first direction are adjacent to the two adjacent indentations in the second direction.
  • the four indentations generated by the adjacent path 1 and path 3 from the mobile device in the first direction of travel namely indentation 1, indentation 2, indentation 5, and indentation 6, are located in the middle
  • the two indentations, namely indentation 2 and indentation 5, are adjacent.
  • the four indentations generated by the adjacent path 2 and path 5 of the mobile device in the second traveling direction namely indentation 3, indentation 4, indentation 7, and indentation 8 are located in the middle
  • the two indentations, namely indentation 4 and indentation 7, are adjacent.
  • the two adjacent paths in this application mean that there is no third path between the two adjacent paths.
  • the areas where the body 101 of the mobile device travels under the two adjacent paths can be separated by a certain distance. Either they are right next to each other without any spacing, or they partially overlap.
  • Two adjacent indentations in this application means that there is no third indentation between the two adjacent indentations.
  • the two adjacent indentations can be separated by a certain distance, or just next to each other without any spacing, or Partially overlapping. In this way, the indentations in the first direction and the indentations in the second direction are adjacent and arranged at intervals.
  • the first color stripes formed by the two adjacent indentations 2 and 5 in the first direction are different from the two adjacent indentations 4 and 4 in the second direction.
  • the second color stripe formed by the indentation 7 is adjacent.
  • a plurality of adjacent first color stripes and second color stripes can be generated, that is, the first color stripes are alternately distributed with dark and light colors as shown in Figure 11.
  • Color stripes and second color effects can be used to create a beautiful appearance or relieve visual fatigue.
  • the first color stripes and the second color stripes are alternately distributed, which is not only beautiful, but also can alleviate the visual fatigue of people who need to stare at the lawn for a long time, such as players, referees, spectators, etc. on the football field.
  • the grass pressing mechanism 102 can also generate multiple indentations in the first direction and indentations in the second direction, and the indentations in the first direction and the indentations in the second direction are similar. Neighboring and spaced apart.
  • the automatic lawn mower when the mobile device is an automatic lawn mower, as shown in Figures 1 and 2, the automatic lawn mower further includes a cutting component 105, which is installed on the body 101, along the path along the first traveling direction. While moving or moving along a path in the second direction of travel, the cutting assembly 105 performs the cutting task. In this way, the automatic lawn mower traverses the work area, not only forming dark and light color stripes distributed at intervals, but also performing lawn mowing tasks, saving human resources and economic costs.
  • a cutting component 105 which is installed on the body 101, along the path along the first traveling direction. While moving or moving along a path in the second direction of travel, the cutting assembly 105 performs the cutting task. In this way, the automatic lawn mower traverses the work area, not only forming dark and light color stripes distributed at intervals, but also performing lawn mowing tasks, saving human resources and economic costs.
  • the center of the cutting assembly 105 is located on the longitudinal axis of the fuselage 101, and the cutting width M of the cutting assembly 105 perpendicular to the longitudinal axis, and the path spacing B satisfy NM ⁇ B, also That is, M ⁇ B/N, that is, M ⁇ B'.
  • B' is the path distance between two adjacent paths among the paths experienced by the self-mobile device after N traversals.
  • the longitudinal axis of the fuselage 101 coincides with the path. Therefore, if the cutting assembly 105 is located on the longitudinal axis of the fuselage 101, and M ⁇ B', then the mobile device can also cut the grass in the middle of the two adjacent paths while traversing the two adjacent paths, and No leaks.
  • the mobile device can have 1, 2 or 3 cutting components, as long as the cutting centers of all its cutting components are located on the longitudinal axis of the fuselage 101. And its cutting model M satisfies NM ⁇ B, then while the mobile device traverses two adjacent paths, it can cut the grass in the middle of the two adjacent paths cleanly without missing grass.
  • the path spacing B can be adjusted according to the task instructions received from the mobile device to adapt to two adjacent indentations among the multiple indentations generated by the grass pressing mechanism 102 under different tasks.
  • the spacing between them is different.
  • the task instructions to be received by the self-mobile device can be pre-stored and set in the self-mobile device, and the user operates the corresponding button or operation panel on the self-mobile device to trigger the task instructions; the task instructions can also be obtained by the user through an external device such as Mobile apps, computers, etc. are sent to mobile devices.
  • the distance between two adjacent indentations can be a value greater than or equal to zero, or a value less than zero.
  • a distance greater than zero indicates that there is a gap between two adjacent indentations, a distance equal to zero indicates that there is no gap between two adjacent indentations and they are close together, and a distance less than zero indicates that the two adjacent indentations partially overlap.
  • the path spacing B is one of the configuration parameters preconfigured within the self-mobile device or configured within an external device communicating with the self-mobile device, and the path spacing B is generated according to the grass pressing mechanism 102 of the self-mobile device.
  • the outer span D of the indentation located on one side of the fuselage 101 and the indentation located on the other side of the fuselage 101 are determined by the width d of the single-sided indentation.
  • the outer span D is equal to the moving component 103 of the self-moving device moving in a certain direction of travel. The distance between the two indentations that are furthest apart from each other in the direction of travel of the mobile device.
  • the outer span D It refers to the distance between the two outermost moving wheels (such as moving wheel 1032 and moving wheel 1034) located on the body 101 of the mobile device, and the outside of moving wheel 1032 to the outside of another moving wheel 1034.
  • the width d of a single-sided indentation is equal to the width of a single indentation produced by the mobile device 103 when the mobile device moves along a certain direction of travel. From one perspective, when the mobile assembly 103 is located on one side of the fuselage 101, all the moving wheel widths can leave obvious indentations on the lawn.
  • the width d of the single-side indentation refers to It is the moving wheel located on the same side of the fuselage 101 (such as the moving wheel 1031, the moving wheel 1032, or the moving wheel 1033, the moving wheel 1034), the distance from the inside of the moving wheel 1031 to the outside of the moving wheel 1032, or the distance from the inside of the moving wheel 1033 to the moving wheel
  • the distance between the outside of 1034, under normal circumstances, the former is equal to the latter. If some moving wheels of the mobile equipment do not produce indentations when moving in the work area, or some moving wheels only produce indentations on part of the wheel width that is in contact with the ground, or the indentations are not obvious and can be ignored in terms of visual effects.
  • the outer span D is only equal to the two indentations produced by the mobile device 103 when the mobile device moves along a certain direction of travel.
  • the two indentations are the farthest boundaries in the direction of travel of the self-mobile device.
  • the width d of the single-sided indentation is only equal to the width of a single indentation produced by the mobile device 103 when the mobile device moves along a certain direction of travel.
  • the moving wheels 1031 and 1033 of the self-mobile device located at the front of the fuselage 101 are driven wheels, and the moving wheels 1032 and 1034 located at the rear of the fuselage 101 are driving wheels.
  • the visual effect of the indentation produced by the driven wheel moving on the lawn is not obvious and can be ignored, that is, the first color stripe and the second color stripe distributed at alternating intervals in the above-mentioned working area.
  • the visual effect of the color stripes mainly relies on the indentations produced by the two driving wheels at the rear of the mobile device, namely the moving wheel 1032 and the moving wheel 1034 .
  • the outer span D is equal to the two indentations produced by the moving wheels 1032 and 1034 of the mobile device when it moves along a certain direction of travel.
  • the two indentations are parallel to the direction of travel of the mobile device.
  • the distance between the farthest boundaries; if all wheel widths of the moving wheel 1032 and the moving wheel 1034 can leave obvious indentations under the lawn, the outer span D is also equal to the outside of the moving wheel 1032 to the outside of the other moving wheel 1034 distance.
  • the width d of the single-sided indentation is equal to the width of a single indentation produced by the moving wheels 1032 and 1034 when the mobile device moves along a certain direction of travel; if all the wheel widths of the moving wheels 1032 and 1034 can An obvious indentation is left under the lawn, and the wheel width on one side is also equal to the wheel width of the moving wheel 1032 or the wheel width of the moving wheel 1034 (generally, the wheel widths of the two are equal).
  • the self-moving equipment includes two driving wheels located at the rear of the fuselage 101 and both sides of the fuselage 101, and a driven wheel located in the middle of the front of the fuselage 101.
  • a driven wheel located in the middle of the front of the fuselage 101.
  • the outer span D is equal to the two indentations produced by the driving wheel of the mobile device when it moves along a certain direction of travel.
  • the two indentations are parallel to the farthest boundary parallel to the direction of travel of the mobile device. the distance between them; if all wheel widths of the two driving wheels can leave obvious indentations under the lawn, the outer span D is also equal to the distance from the outside of one driving wheel to the outside of the other driving wheel.
  • the single-sided wheel width is equal to the width of a single indentation produced by the driving wheels of the mobile device when it moves in a certain direction of travel; if all the wheel widths of the driving wheels can leave obvious indentations under the lawn, the single-sided wheel width
  • the width is also equal to the wheel width of the driving wheel (generally, the wheel width of the two driving wheels is equal).
  • the width of each wheel of a self-moving equipment and its relative position relationship are determined during the production and manufacturing stage, that is, the external
  • the side span D and the width d of the single-side indentation can be determined during the manufacturing stage of the mobile equipment. Therefore, they can be calculated based on the determined outer span D and the width d of the single-side indentation before the mobile equipment is shipped from the factory.
  • the path distance B is pre-stored in the self-mobile device as one of the configuration parameters of the self-mobile device or in an external device communicating with the self-mobile device.
  • the stored path spacing B can either be a fixed value, or different values corresponding to different spacings between two adjacent indentations among the multiple indentations generated by the moving component 103.
  • the user can adjust the path distance B by himself. Before the mobile device performs a specific task, it selects different stripe visual effects or stripe visual effects corresponding to different path spacing B according to the task needs or the user's own preference settings.
  • the mobile device can obtain the outer span D and the width d of the single-sided indentation before leaving the factory, and then according to the relationship between the path spacing B, the outer span D, and the width d of the single-sided indentation.
  • the numerical value or numerical range of the path spacing B is calculated using the formula.
  • the method of obtaining the outer span D and the width d of the single-side indentation from the mobile device can be manually input by the relevant personnel, or the corresponding sensor data can be automatically obtained from the mobile device.
  • the mobile device can also obtain the outer span D and the width d of the single-sided indentation after it is shipped from the factory, and then calculate the distance between the path spacing B, the outer span D, and the width d of the single-sided indentation. Calculate the numerical value or numerical range of the path spacing B from the relational expression.
  • the method of obtaining the outer span D and the width d of the single-side indentation from the mobile device can be manually input by the user, or the corresponding sensor data can be automatically obtained from the mobile device. .
  • the user inputs or selects a specific stripe visual effect
  • the mobile device calculates the corresponding path spacing based on the obtained outer span D, the width d of the single-side indentation, and the stripe visual effect set by the user. B, and control the mobile device to move within the work area according to the path spacing B to obtain the striped visual effect expected by the user.
  • B N(D-2d), D/4 ⁇ d ⁇ D/3
  • the distance between two adjacent indentations among the multiple indentations generated by the grass pressing mechanism 102 is less than or equal to zero, which includes two situations: the first one, there is no gap between the two adjacent indentations and they are close to each other. together, that is, the distance is zero, as shown in Figure 11; second, the two adjacent indentations partially overlap, that is, the distance is less than zero, as shown in Figure 11.
  • step S100 is executed.
  • the moving component 103 When the mobile device moves along path 1 in the first traveling direction, the moving component 103 generates two indentations in the first direction, namely indentation 1 and indentation 2; step S110 is executed.
  • the grass-pressing mechanism 102 Since the mobile device moves along the path 2 in the second direction of travel, the grass-pressing mechanism 102 generates two indentations in the second direction, namely indentations 3 and 4, where the gap between the adjacent indentations 2 and 3 is The distance is zero; step S120 is executed, and the grass pressing mechanism 102 generates two indentations in the first direction, namely indentation 5 and indentation 6. The distance between adjacent indentations 4 and 5 is zero.
  • step S130 is executed, and the grass pressing mechanism 102 generates two indentations in the second direction, namely indentation 7 and indentation 8, in which the adjacent indentation 4 , the spacing between indentations 7 is zero, and the spacing between adjacent indentations 6 and 7 is also zero. That is, in some embodiments, among the four indentations produced by the two adjacent paths in the same direction of travel, the two indentations located in the middle are adjacent and the distance is zero, that is, the grass pressing mechanism 102 The two adjacent indentations in the first direction in the middle produced by the two adjacent paths of the mechanism 102 in the first direction of travel are adjacent and the spacing is zero.
  • the adjacent indentations of the grass pressing mechanism 102 in the second direction of travel are The two indentations in the middle of the second direction generated by the two paths are adjacent and the distance is zero; when the two adjacent paths in the first direction of travel and the two adjacent paths in the second direction of travel When arranged alternately, two adjacent indentations in the first direction are adjacent to two adjacent indentations in the second direction with zero spacing.
  • steps S100-S130 are repeatedly executed, the visual effect of alternating first color stripes and second color stripes with no gap distribution and uniform width can be obtained, and the uniform stripe width W is equal to the path spacing B'.
  • step S100 is executed.
  • the grass pressing mechanism 102 When the mobile device moves along path 1 in the first direction of travel, the grass pressing mechanism 102 generates two indentations in the first direction, namely indentation 1 and indentation 2; step S110 is executed.
  • the grass pressing mechanism 102 since the mobile device moves along path 2 in the second direction of travel, the grass pressing mechanism 102 generates two indentations in the second direction, namely indentation 3 and indentation 4, where the gap between adjacent indentations 2 and indentation 3 The spacing is zero;
  • step S120 when step S120 is executed, the grass-pressing mechanism 102 generates two indentations in the first direction, namely indentations 5 and 6, where the spacing between adjacent indentations 4 and 5 is zero.
  • step S130 is executed, and the grass-pressing mechanism 102 generates two indentations in the second direction.
  • Indentation 7 and indentation 8 the distance R2 between adjacent indentations 4 and 7 satisfies: R2 ⁇ 0mm, and the distance between adjacent indentations 6 and 7 is also zero.
  • the two indentations located in the middle are adjacent and the distance R2 satisfies: R2 ⁇ 0mm , that is, the two indentations in the middle partially overlap, that is, the two indentations in the middle in the first direction generated by the two adjacent paths of the grass pressing mechanism 102 in the first direction of travel are adjacent and spaced apart R2 satisfies: R2 ⁇ 0mm.
  • the two adjacent indentations in the second direction produced by the two adjacent paths of the grass pressing mechanism 102 in the second direction of travel are adjacent and the spacing R2 satisfies: R2 ⁇ 0mm; when When the two adjacent paths in the first direction of travel and the two adjacent paths in the second direction of travel are alternately arranged, the two adjacent indentations in the first direction are the same as the two adjacent indentations in the second direction.
  • the indentations are adjacent and the spacing is zero.
  • steps S100-S130 are repeatedly executed, the visual effect of alternating first color stripes and second color stripes with no gap distribution and uniform width can be obtained, and the uniform stripe width W is equal to the path spacing B'.
  • the distance between two adjacent indentations among the multiple indentations generated by the grass pressing mechanism 102 is equal to zero or less than zero.
  • the visual effect of the second color stripe, and the uniform stripe width W is equal to the path spacing B'.
  • the working area can present the visual effect of alternating first color stripes and second color stripes with no gaps and uniform width. Furthermore, since the stripe width W is equal to the path spacing B', when the grass pressing mechanism 2 When the grass-pressing component is a mobile component 103, when designing the wheel outer span width and single-side wheel width of the mobile device, the designer can determine the value range of the path spacing B according to the user's demand for the stripe width W, and then work backwards. The value range of wheel outer span width and single-side wheel width. In addition, the user can also set the selected path spacing B according to the preferred stripe width W. Therefore, the above solution can not only make the lawn beautiful, relieve visual fatigue, save human resources and economic costs, but also simplify the design work of designers and facilitate users' selection and settings.
  • the distance B is controlled so that the distance B, the outer span D and the width d of the single-side indentation satisfy: B ⁇ N(D-2d), d ⁇ D/4, and N(2d-40mm) ⁇ B ⁇ N (2d+20mm), among the multiple indentations produced by the grass pressing mechanism 102, the distance R1 between two adjacent indentations where the grass under the indentation falls along different traveling directions satisfies: 0 ⁇ R1 ⁇ 40mm, the distance R2 between two adjacent indentations that make the grass fall in the same direction of travel satisfies: R2 ⁇ 0mm.
  • steps S100-S130 are repeatedly executed.
  • the working area still exhibits alternating first color stripes and second color stripes distributed without gaps and with uniform width.
  • the stripe width W 160 mm.
  • the path spacing B' in order to satisfy B' ⁇ D-2d, d ⁇ D/4, and (2d-40mm) ⁇ B' ⁇ (2d+20mm), the path spacing B', outer span D, and single-side pressure
  • the designer can still design the stripe width W according to the user's demand for the stripe width W when designing the wheel outer span width and single-side wheel width of the mobile device. Determine the value range of the path spacing B', and then infer the value range of the wheel outer span width and single-side wheel width.
  • the user can also set the selected path spacing B' according to the preferred stripe width W.
  • N is an odd number greater than 1, that is, B ⁇ N(D-2d), d ⁇ D/4, and N(2d-40mm) ⁇ B ⁇ N(2d+20mm)
  • B' ⁇ D-2d, d ⁇ D/4, and (2d-40mm) ⁇ B' ⁇ (2d+20mm so when the mobile device is within the working area with a path distance B After N traversal moves, the work area can still obtain the above technical effects.
  • the path spacing B is controlled so that the path spacing B, the outer span D and the width d of the single-sided indentation satisfy: B>N(D-2d), d ⁇ D/4, and N(2d- 40mm) ⁇ B ⁇ N(2d+20)mm, can make the distance R2 between two adjacent indentations in which the grass under the indentations falls along the same direction of travel among the multiple indentations produced by the grass pressing mechanism 102. Satisfies: 0 ⁇ R2 ⁇ 40mm. The distance R1 between two adjacent indentations where the grass under the indentation falls along different directions of travel satisfies: -40mm ⁇ R1 ⁇ 40mm.
  • the visual effect of the overlapping part is the same as that of the area that is not rolled by the grass-pressing mechanism 102, that is, when the grass-pressing mechanism 102 is pressed
  • the two adjacent indentations formed by the grass mechanism 102 moving in different directions of travel have overlapping portions, there will be a gap between the two adjacent indentations in terms of visual effect.
  • the working area can obtain the first color stripe and the second color stripe with alternating small gaps and uniform width, and since the absolute values of the spacing R1 and the spacing R2 are controlled between 0 and 40mm, the gaps are small and visually Effectively, the working area still presents alternating first color stripes and second color stripes distributed without gaps and with uniform width.
  • steps S100-S130 are repeatedly executed.
  • the visual effect is negligible, and between two adjacent indentations formed in the same direction of travel, since the grass under the two indentations has the same lodging direction, the final appearance is still the same color stripes.
  • the working area still exhibits alternating first color stripes and second color stripes distributed without gaps and with uniform width.
  • the stripe width W is 200 mm.
  • the path spacing B', the outer span D, and the width d of the single-side indentation are Some values and the stripe width W and spacing R1, R2 presented in the working area. It should be noted that the values in Table 3 are not based on the path spacing B', the outer span D, and the width d of the single-side indentation. The limitation of the value is only for the purpose of illustrating the path spacing B', outer span D, and single-side indentation that satisfy B'>D-2d, d ⁇ D/4, and 2d-40mm ⁇ B' ⁇ 2d+20mm. The width d can achieve the above technical effects, where all values in Table 3 are in mm.
  • the designer can still determine the path spacing B according to the user's demand for the stripe width W when designing the wheel outer span width and single-side wheel width of the mobile device. ' value range, thus inferring the value range of the wheel outer span width and single-side wheel width.
  • the user can also set the selected path spacing B' according to the preferred stripe width W.
  • N is an odd number greater than 1, that is, B>N(D-2d), d ⁇ D/4, and N(2d-40mm) ⁇ B ⁇ N(2d+20mm)
  • B'>D-2d, d ⁇ D/4, and (2d-40mm) ⁇ B' ⁇ (2d+20mm so when the mobile device is within the working area with a path distance B After N traversal moves, the work area can still obtain the above technical effects.
  • the spacing between two adjacent indentations is not limited, nor is it limited whether the stripe widths of stripes of different shades of color presented in the working area are uniform.
  • the path spacing B, the outer span D, The width d of the unilateral indentation does not need to satisfy the relational expressions in Table 1, Table 2, and Table 3 above, and the working area can eventually present the visual effect of alternatingly spaced first color stripes and second color stripes.
  • the control path spacing B satisfies: 4/5xN(D-2d) ⁇ B ⁇ 6/5xN(D-2d).
  • the grass pressing assembly of the grass pressing mechanism 102 when the grass pressing assembly of the grass pressing mechanism 102 is composed of the moving assembly 103, in order to make the stripes finally formed in the working area more beautiful, as shown in Figure 2, it is also necessary to control the movement of the same side of the fuselage 101.
  • the distance X between the outside of the wheel 1031 and the inside of the moving wheel 1032 (or the outside of the moving wheel 1033 and the inside of the moving wheel 1034) perpendicular to the traveling direction of the moving assembly 103 because if the distance between the two is too large, the visual effect , there will be a large gap in the middle of each indentation produced by the movement of the moving component 103. Excessive gap will affect the aesthetics of the final stripes.
  • the above-mentioned distance X is controlled to ⁇ 40 mm, so that the gap in the middle of the indentation can be ignored in terms of visual effect.
  • This application also provides a control method for a self-mobile device.
  • the control method includes: controlling the self-mobile device to traverse and move N times within the working area on the grass, where N is an odd number greater than or equal to 1.
  • N is an odd number greater than or equal to 1.
  • the mobile device in a single traversal move, the mobile device is controlled to move along multiple parallel and equally spaced paths.
  • the path distance between adjacent paths in a single traversal move is B
  • the phase distance of the single traversal move is B.
  • the directions of the adjacent paths are opposite, so that the grass pressing mechanism 102 produces indentations in the first direction and indentations in the second direction on the grass.
  • the paths of different single traversal movements in the N traversal movements of the mobile device do not overlap and are parallel to each other.
  • the path spacing B is determined so that the grass pressing mechanism 102 produces multiple indentations in the first direction and indentations in the second direction on the grass, and the indentations in the first direction and the indentations in the second direction are adjacent to each other. , and arranged at intervals.
  • FIG 16 is a schematic structural diagram of an automatic lawn mower 100 in some embodiments.
  • the automatic lawn mower 100 includes: a body 101; and a cutting component 105, which is installed on the body 101 and used to perform cutting tasks.
  • the automatic lawn mower 100 also includes: a moving component 103, which is installed on the fuselage 101 and used to drive the fuselage 101 to move.
  • the moving component 103 includes a moving wheel located on one side of the fuselage 101. 1031.
  • the moving wheel 1032 also includes the moving wheel 1033 and the moving wheel 1034 located on the other side of the fuselage 101; the controller 104 is used to control the path of the moving component 103 along the first traveling direction and the second traveling direction in the working area. The paths move alternately.
  • the path in the first traveling direction and the path in the second traveling direction are basically parallel and in opposite directions.
  • the path distance B between the adjacent paths in the first traveling direction and the adjacent paths in the second traveling direction is determined based on the outer span D of the automatic lawn mower 100 and the width d of the single-side indentation.
  • the controller 104 controls the cutting assembly 105 to perform the cutting task while the moving assembly 103 moves along a path in the first direction of travel or moves along a path in the second direction of travel.
  • the automatic lawn mower 100 traverses the work area and can not only form dark and light color stripes distributed at intervals, but also perform lawn mowing tasks, saving human resources and economic costs.
  • the path spacing B, the outer span D, and the width d of the single-side indentation satisfy: 4/5xN(D-2d) ⁇ B ⁇ 6/5xN(D-2d).
  • the controller 104 controls the moving component 103 to move at a certain path pitch B within the above range, the working area can present a more beautiful visual effect of alternately spaced first color stripes and second color stripes.
  • the controller 104 controls the moving component 103 to move with a certain path distance B within the above range, the distance R between two adjacent indentations among the multiple indentations generated by the moving component 103 can be made less than or equal to zero, that is, the work can be performed.
  • the area obtains the visual effect of alternating first color stripes and second color stripes distributed without gaps and with uniform width, and the uniform stripe width W is equal to the path spacing B'.
  • the path spacing B, the outer span D and the width d of the single-side indentation satisfy: B ⁇ N(D-2d), d ⁇ D/4, and N(2d-40mm) ⁇ B ⁇ N (2d+20mm).
  • the controller 104 controls the moving component 103 to move with a certain path spacing B within the above range, it can cause the grass under the indentation to fall between two adjacent indentations in different directions of travel among the multiple indentations generated by the moving component 103.
  • the spacing R1 between two adjacent indentations satisfies: 0mm ⁇ R1 ⁇ 40mm
  • the spacing R2 between two adjacent indentations where the grass under the indentation falls along the same direction of travel satisfies: R2 ⁇ 0mm, which can make the working area obtain alternating small spacing distribution and width.
  • the path spacing B, the outer span D and the width d of the single-side indentation satisfy: B>N(D-2d), d ⁇ D/4, and N(2d-40mm) ⁇ B ⁇ N (2d+20)mm.
  • the controller 104 controls the moving component 103 to move with a certain path distance B within the above range, it can make the grass under the indentation fall along the same direction of travel among the multiple indentations produced by the moving component 103.
  • the spacing R2 satisfies: 0mm ⁇ R2 ⁇ 40mm.
  • the spacing R1 between two adjacent indentations where the grass under the indentation falls along different directions of travel satisfies: -40mm ⁇ R1 ⁇ 40mm, so that the working area can obtain alternating small spacing distribution and
  • the first color stripe and the second color stripe are of uniform width, and since the absolute values of the spacing R1 and the spacing R2 are both less than or equal to 40mm, the gaps are small.
  • the work area still presents an alternating gap-free distribution and a uniform width of the third color stripe.
  • the automatic lawn mower 100 is located between the outside of the moving wheel 1031 and the inside of the moving wheel 1032 (or the outside of the moving wheel 1033 to the inside of the moving wheel 1034) on the same side of the body 101 along a direction perpendicular to the traveling direction of the moving assembly 103.
  • Spacing Preferably, the above-mentioned distance X is controlled to ⁇ 40 mm, so that the gap in the middle of the indentation can be ignored in terms of visual effect.
  • the controller 104 of the automatic lawn mower 100 performs steps S100-S130 as shown in FIG. 6 .
  • the indentations are adjacent.
  • the four indentations generated by the adjacent path 1 and path 3 of the automatic lawn mower 100 in the first traveling direction are indentation 1, indentation 2, indentation 5, and indentation 6.
  • the two indentations located in the middle, namely indentation 2 and indentation 5, are adjacent.
  • the four indentations generated by the adjacent paths 2 and 5 of the automatic lawn mower 100 in the second traveling direction are indentation 3, indentation 4, indentation 7, and indentation 8.
  • the two indentations located in the middle, namely indentation 4 and indentation 7, are adjacent.
  • the controller 104 also needs to control the path spacing B so that when the two adjacent paths in the first traveling direction (such as path 1 and path 3 shown in Figure 10) are the same as those in the second traveling direction,
  • the above-mentioned two adjacent paths One indentation (such as indentation 2 and indentation 5) is adjacent to the two adjacent second indentations (corresponding to indentation 4 and indentation 7). That is, as shown in Figure 10, the first color stripes formed by two adjacent first indentations, indentations 2 and 5, are formed by the two adjacent second indentations, indentations 4 and 7.
  • the second color stripes are adjacent.
  • first color stripes and second color stripes can be generated, that is, the alternation of dark and light as shown in Figure 11
  • the first color stripes and the second color effect are distributed to achieve beauty or relieve visual fatigue.
  • the first color stripes and the second color stripes are alternately distributed, which is not only beautiful, but also can alleviate the visual fatigue of people who need to stare at the lawn for a long time, such as players, referees, spectators, etc. on the football field.
  • the above-mentioned path spacing B is calculated and determined based on the outer span D of the automatic lawn mower 100 and the width d of the single-side indentation.
  • the width of each wheel of the automatic lawn mower 100 and its relative position relationship are determined in the production and manufacturing stage, that is, the outer span D and the width d of the single-side indentation can be determined in the production and manufacturing stage of the automatic lawn mower 100 Therefore, before the automatic lawn mower 100 is shipped from the factory, the path distance B can be calculated based on the determined outer span D and the width d of the single-side indentation, and it can be pre-stored as one of the configuration parameters of the automatic lawn mower 100 Within the automatic lawn mower 100 or in an external device.
  • the stored path distance B may be a fixed value, or may be a different value corresponding to different spacings between two adjacent indentations among the multiple indentations generated by the moving component 103 .
  • the user Before the automatic lawn mower 100 performs a specific task, the user can choose to set corresponding parameters according to the task needs or the user's own preferences, so that the control module 104 obtains different path offsets B to control the movement of the mobile component 103, obtaining Corresponding striped visual effect.
  • the automatic lawn mower 100 can obtain the outer span D and the width d of the single-sided indentation before leaving the factory, and then calculate the distance between the paths B, the outer span D, and the width d of the single-sided indentation. Calculate the numerical value or numerical range of the path spacing B using the relational expression.
  • the method for the automatic lawn mower 100 to obtain the outer span D and the width d of the single-side indentation can be manually input by the relevant personnel, or the automatic lawn mower 100 can automatically Get the corresponding sensor data. In other embodiments, the automatic lawn mower 100 can also obtain the outer span D and the width d of the single-side indentation after being shipped from the factory.
  • the numerical value or numerical range of the path spacing B is calculated based on the relationship between the path spacing B, the outer span D, and the width d of the single-sided indentation.
  • the automatic lawn mower 100 obtains the outer span D and the width of the single-sided indentation d.
  • the width d can be input manually by the user, or the automatic lawn mower 100 can automatically obtain the corresponding sensor data.
  • the user can input or select a specific stripe visual effect, and the automatic lawn mower 100 calculates the corresponding stripe visual effect based on the acquired outer span D, the unilateral indentation width d, and the stripe visual effect set by the user.
  • the controller 104 obtains the path spacing B and controls the moving component 103 to move within the working area according to the path spacing B to obtain the stripe visual effect desired by the user.
  • FIG 17 is a schematic structural diagram of a lawn mowing control device 200 in some embodiments.
  • the lawn mowing control device 200 includes: a configuration parameter acquisition module 201 configured to obtain the configuration parameters of the automatic lawn mower 100 when the automatic lawn mower 100 is located in the working area; a storage module 202 to store the configuration parameters of the automatic lawn mower 100 Configuration parameters, including path spacing B.
  • the lawn mowing control device 200 is used when the automatic lawn mower 100 is located in the working area.
  • first color stripes and second color stripes can be generated, that is, as shown in Figure 11.
  • the first color stripes and the second color effect are alternately distributed to achieve beauty or relieve visual fatigue.
  • the first color stripes and the second color stripes are alternately distributed, which is not only beautiful, but also can alleviate the visual fatigue of people who need to stare at the lawn for a long time, such as players, referees, spectators, etc. on the football field.
  • FIG 18 is a schematic structural diagram of another automatic lawn mower provided in some embodiments.
  • the automatic lawn mower 300 includes: a memory 1001, a processor 1002, and a computer stored in the memory 1001 and capable of running on the processor 1002. program.
  • the processor 1002 executes the program, the self-mobile device work plan scheduling method provided in the above embodiment is implemented.
  • the automatic lawn mower 300 also includes: a communication interface 1003 for communication between the memory 1001 and the processor 1002.
  • Memory 1001 is used to store computer programs that can run on the processor 1002.
  • the memory 1001 may include high-speed RAM memory, and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 1002 is configured to implement the mobile device work plan scheduling method described in the above embodiment when executing the program. If the memory 1001, the processor 1002 and the communication interface 1003 are implemented independently, the communication interface 1003, the memory 1001 and the processor 1002 can be connected to each other through a bus and complete communication with each other.
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc. .
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 15, but it does not mean that there is only one bus or one type of bus.
  • the memory 1001, the processor 1002 and the communication interface 1003 are integrated on one chip, the memory 1001, the processor 1002 and the communication interface 1003 can communicate with each other through the internal interface.
  • the processor 1002 may be a central processing unit (Central Processing Unit, referred to as CPU for short), or an application specific integrated circuit (Application Specific Integrated Circuit, referred to as ASIC), or one or more processors configured to implement embodiments of the present invention. integrated circuit.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • the present invention also provides a computer device, including a memory and a processor.
  • the memory stores a computer program.
  • the processor executes the computer program stored in the memory to implement the method steps of the automatic lawn mower 100 and the lawn mowing control device 200 as described above.
  • the invention also provides a computer-readable storage medium on which a computer program is stored, and the computer program is processed When the processor is executed, the method steps of the automatic lawn mower 100 and the lawn mowing control device 200 as described above are implemented.
  • the present invention also provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the computer program is executed by a processor, the method steps of the automatic lawn mower 100 and the lawn mowing control device 200 are implemented as described above.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Non-exhaustive list of computer readable media include the following: electrical connections with one or more wires (electronic device), portable computer disk cartridges (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, and subsequently edited, interpreted, or otherwise suitable as necessary. process to obtain the program electronically and then store it in computer memory.
  • various parts of the present invention may be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented in hardware, as in another embodiment, it can be implemented by any one of the following technologies known in the art or their combination: discrete logic gate circuits with logic functions for implementing data signals; Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • each functional unit in various embodiments of the present invention can be integrated into a processing module, or each unit can exist physically alone, or two or more units can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated modules are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer. computer-readable storage media.
  • the storage media mentioned above can be read-only memory, magnetic disks or optical disks, etc.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Harvester Elements (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

本发明涉及一种自移动设备,包括:机身;压草机构,包括位于机身一侧的压草组件与位于机身另一侧的压草组件,压草机构可在草地上产生位于机身一侧的压痕与位于机身另一侧的压痕,两侧压痕的宽度相等;控制器,配置为:控制自移动设备在草地上的工作区域内遍历移动N次,N为大于等于1的奇数;在单次遍历移动中,控制自移动设备沿着多条平行、间距相等的路径移动,单次遍历移动的相邻路径的路径间距为B,且方向相反,以使压草机构在草地上产生第一方向的压痕和第二方向的压痕;N次遍历移动中的不同次单次遍历移动的路径不重合,且相互平行;在N次遍历移动后,N次遍历移动形成的相邻路径的方向相反,相邻路径的路径间距为B',B'=B/N。

Description

自移动设备、自移动设备的控制方法及割草控制装置 技术领域
本发明涉及一种自移动设备技术领域,特别涉及一种自移动设备及其控制方法、割草控制装置、计算机设备、存储介质和计算机程序产品。
背景技术
足球场的草坪,为了美观以及缓解观众和球员的视觉疲劳,通常会呈现颜色深浅不一交替分布的条纹。为实现草坪颜色深浅间隔分布,通常在每场足球比赛前,都会有专业人士用专用的压辊碾压草坪以产生不同的压痕,将草坪碾压密实,由于不同方向下草的倒伏方向不同,产生的压痕经光的反射后就会出现颜色深浅不一的视觉效果。除此以外,还会采用化学、生物等方法对草坪进行处理,以获得颜色深浅间隔分布的条纹,如给草坪施用专用肥料或喷增绿剂,不同含量的氮肥和钾肥能够改变草坪颜色。
现有技术中,无论是采用机械剪草机挂上压辊按压草坪,还是其他的化学、生物方法,都需要除草坪日常修剪工作以外的额外的人力资源及或经济成本。
发明内容
基于此,本发明针对现有技术存在的浪费人力资源或经济成本的问题,提供一种自移动设备及其控制方法,以及一种控制装置,以改善现有技术浪费人力资源或经济成本的问题。
第一方面,提供一种自移动设备,所述自移动设备可在草地上移动,所述自移动设备包括:
机身;
压草机构,安装于所述机身,所述压草机构包括位于所述机身一侧的压草组件与位于所述机身另一侧的压草组件,用于当所述自移动设备在草地上移动时,在草地上产生位于机身一侧的压痕与位于机身另一侧的压痕,所述位于机身一侧的压痕与所述位于机身另一侧的压痕的宽度相等;
控制器,安装于所述机身,控制所述自移动设备在草地上的工作区域内移动;
其特征在于,所述控制器配置为:
控制所述自移动设备在草地上的工作区域内遍历移动N次,N为大于等于1的奇数;
在单次遍历移动中,控制所述自移动设备沿着多条平行、间距相等的路径移动,所述单次遍历移动的相邻路径的路径间距为B,且所述单次遍历移动的相邻路径的方向相反,以使所述压草机构在草地上产生第一方向的压痕和第二方向的压痕;
N次遍历移动中的不同次单次遍历移动的路径不重合,且相互平行;在N次遍历移动后,所述N次遍历移动形成的相邻路径的方向相反,所述N次遍历移动形成的相邻路径的路径间距为B',B'=B/N;
确定所述路径间距B,以使所述压草机构在草地上产生多条第一方向的压痕和第二方向的压痕,所述第一方向的压痕和所述第二方向的压痕相邻,且间隔排布。
在一些实施例中,所述自移动设备包括移动组件,安装于所述机身,用于带动所述机身移动,所述移动组件包括位于所述机身一侧的移动轮与位于所述机身另一侧的移动轮;所述压草组件包括所述移动轮。
在一些实施例中,所述路径间距B是根据所述位于机身一侧的压痕与位于机身另一侧的压痕的外侧跨距D、单侧压痕的宽d确定的;所述路径间距B、外侧跨距D、单侧压痕的宽d满足:4/5ⅹN(D-2d)≤B≤6/5ⅹN(D-2d)。
在一些实施例中,所述路径间距B、外侧跨距D、单侧压痕的宽d满足:B=N(D-2d),D/4≤d<D/3,使所述压草机构产生的多条压痕中的相邻的两条压痕之间的间距小于等于零。
在一些实施例中,所述路径间距B、外侧跨距D、单侧压痕的宽d满足:B<N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20mm),使所述压草机构产生的多条压痕中,不同方向下的两条相邻压痕之间的间距R1满足:0mm≤R1≤40mm,同一方向下的两条相邻压痕的间距R2满足:R2≤0mm。
在一些实施例中,所述路径间距B、外侧跨距D和单侧压痕的宽d满足:B>N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20)mm,使所述压草机构产生的多条压痕中,同一方向下的两条相邻压痕的间距R2满足:0mm≤R2≤40mm,不同方向下的两条相邻压痕的间距R1满足:-40mm≤R1≤40mm。
在一些实施例中,所述自移动设备为自动割草机,所述自动割草机还包括切割组件,安装于所述机身,用于切割草地上的草,且所述切割组件的中心位于所述机身的纵轴线上;所述切割组件的垂直于所述纵轴线的切割宽度M、和所述路径间距B满足:NM≥B。
在一些实施例中,所述位于机身一侧的移动轮与所述位于机身另一侧的移动轮都包括位于机身前部的移动轮与位于机身后部的移动轮;所述位于机身同一侧的位于机身前部的移动轮与所述位于机身后部的移动轮之间沿垂直于所述移动组件行进方向的间距X满足:X≤40mm。
在一些实施例中,所述自移动设备以弓字路径,或回字路径在草地上的工作区域内遍历移动。
第二方面,提供一种自移动设备的控制方法,所述自移动设备可在草地上移动,所述自移动设备包括:
机身;
压草机构,安装于所述机身,所述压草机构包括位于所述机身一侧的压草组件与位于所述机身另一侧的压草组件,用于当所述自移动设备在草地上移动时,在草地上产生位于机身一侧的压痕与位于机身另一侧的压痕,所述位于机身一侧的压痕与所述位于机身另一侧的压痕的宽度相等;
控制器,安装于所述机身,控制所述自移动设备在草地上的工作区域内移动;
其特征在于,所述控制方法:
控制所述自移动设备在草地上的工作区域内遍历移动N次,N为大于等于1的奇数;
在单次遍历移动中,控制所述自移动设备沿着多条平行、间距相等的路径移动,所述单次遍历移动的相邻路径的路径间距为B,且所述单次遍历移动的相邻路径的方向相反,以使所述压草机构在草地上产生第一方向的压痕和第二方向的压痕;
N次遍历移动中的不同次单次遍历移动的路径不重合,且相互平行;在N次遍历移动后,所述N次遍历移动形成的相邻路径的方向相反,所述N次遍历移动形成的相邻路径的路径间距为B',B'=B/N;
确定所述路径间距B,以使所述压草机构在草地上产生多条第一方向的压痕和第二 方向的压痕,所述第一方向的压痕和所述第二方向的压痕相邻,且间隔排布。
在一些实施例中,所述压草机构包括位于所述机身一侧的压草组件与位于所述机身另一侧的压草组件;所述自移动设备包括移动组件,安装于所述机身,用于带动所述机身移动,所述移动组件包括位于所述机身一侧的移动轮与位于所述机身另一侧的移动轮;所述压草组件包括所述移动轮。
在一些实施例中,所述路径间距B是根据所述位于机身一侧的压痕与位于机身另一侧的压痕的外侧跨距D、单侧压痕的宽d确定的;所述路径间距B、外侧跨距D、单侧压痕的宽d满足:4/5ⅹN(D-2d)≤B≤6/5ⅹN(D-2d)。
在一些实施例中,所述自移动设备为自动割草机,所述自动割草机还包括切割组件,安装于所述机身,用于切割草地上的草,且所述切割组件的中心位于所述机身的纵轴线上;所述切割组件的垂直于所述纵轴线的切割宽度M、和所述路径间距B满足:NM≥B。
第三方面,当且N=1时,提供一种自移动设备的控制方法,所述自移动设备包括:
机身;
移动组件,安装于所述机身,用于带动所述机身移动,所述移动组件包括位于机身一侧的移动轮,与位于机身另一侧的移动轮;所述压草组件包括所述移动轮。
所述方法包括:
a、控制所述自移动设备沿具有第一行进方向的第一路径移动,在移动中,位于机身两侧的移动轮在草地上产生两条第一方向的压痕,所述第一方向的压痕下的草沿所述第一行进方向倒伏;
b、控制所述自移动设备沿具有第二行进方向的第二路径移动,所述第二路径相对所述第一路径偏移一个路径间距B,所述第二方向与所述第一行进方向相反,在移动中,所述位于机身两侧的移动轮在草地上产生两条第二方向的压痕,所述第二方向的压痕下的草沿所述第二行进方向倒伏;
c、控制所述自移动设备沿具有第一行进方向的第三路径移动,所述第三路径相对所述第二路径偏移一个路径间距B,在移动中,位于机身两侧的移动轮在草地上产生两条第一方向的压痕;
d、控制所述自移动设备沿具有第二行进方向的第四路径移动,所述第四路径相对所述第三路径偏移一个路径间距B,在移动中,所述位于机身两侧的移动轮在草地上产生两条第二压痕;
其中,所述路径间距B配置为:所述移动轮在所述第一行进方向下的相邻的两条路径所产生的四条第一方向的压痕中,位于中部的两条第一方向的压痕相邻,所述移动轮在所述第二行进方向下的相邻的两条路径所产生的四条第二方向的压痕中,位于中部的两条第二方向的压痕相邻,且所述相邻的两条第一方向的压痕与所述相邻的两条第二方向的压痕相邻。
在一些实施例中,所述自移动设备为自动割草机时,所述自动割草机还包括切割组件,所述切割组件设置于所述机身两侧的移动轮之间,所述自动割草机沿所述第一行进方向下的路径移动或沿所述第二行进方向下的路径移动时,所述切割组件执行切割任务。
在一些实施例中,所述方法包括:所述自移动设备获取不同的任务指令,控制路径间距B,使所述步骤d中,所述移动轮产生的多条压痕中的相邻的两条压痕之间的间距不同。
在一些实施例中,所述方法包括:从所述自移动设备预先配置的配置参数内获取所述路径间距B;所述路径间距B是根据所述自移动设备的外侧跨距D、单侧压痕的宽d确定的。
在一些实施例中,所述方法包括:获取所述自移动设备的外侧跨距D和单侧压痕的宽d;根据所述自移动设备的外侧跨距D、单侧压痕的宽d,确定所述路径间距B。
在一些实施例中,所述方法包括:控制所述路径间距B,使所述路径间距B、外侧跨距D、单侧压痕的宽d满足:4/5ⅹ(D-2d)≤B≤6/5ⅹ(D-2d)。
在一些实施例中,所述方法包括:控制所述路径间距B,使所述步骤d中,所述移动轮产生的多条压痕中的相邻的两条压痕之间的间距小于等于零;其中,所述路径间距B、外侧跨距D和单侧压痕的宽d满足:B=D-2d,D/4≤d<D/3。
在一些实施例中,所述方法包括:控制所述路径间距B,使所述步骤d中所述移动轮产生的多条压痕中,压痕下的草沿不同行进方向倒伏的两条相邻压痕之间的间距R1满足:0mm≤R1≤40mm,压痕下的草沿相同行进方向倒伏的两条相邻压痕的间距R2满足:R2≤0mm;其中,所述路径间距B、外侧跨距D和单侧压痕的宽d满足:B<D-2d,d≥D/4,且2d-40mm≤B≤2d+20mm。
在一些实施例中,所述方法包括:控制所述路径间距B,使所述步骤d中所述移动轮产生的多条压痕中,压痕下的草沿相同行进方向倒伏的两条相邻压痕的间距R2满足:0mm≤R2≤40mm,压痕下的草沿不同行进方向倒伏的两条相邻压痕的间距R1满足:-40mm≤R1≤40mm;其中,所述路径间距B、外侧跨距D和单侧压痕的宽d满足:B>D-2d,d≥D/4,且2d-40mm≤B≤2d+20mm。
在一些实施例中,所述方法包括:所述位于机身一侧的移动轮与所述位于机身另一侧的移动轮都包括位于机身前部的移动轮与位于机身后部的移动轮;所述位于机身同一侧的位于机身前部的移动轮的外侧与所述位于机身后部的移动轮的内侧之间沿垂直于所述移动组件行进方向的间距X满足:X≤40mm。
第四方面,提供一种自移动设备,所述自移动设备包括:
机身;
移动组件,安装于所述机身,用于带动所述机身移动,所述移动组件包括位于机身一侧的移动轮,与位于机身另一侧的移动轮;所述压草组件包括所述移动轮;
控制器,安装于所述机身,控制所述自移动设备在草地上的工作区域内移动;
所述控制器配置为:
控制所述自移动设备在草地上的工作区域内遍历移动N次,N为大于等于1的奇数;
在单次遍历移动中,控制所述自移动设备沿着多条平行、间距相等的路径移动,所述单次遍历移动的相邻路径的路径间距为B,且所述单次遍历移动的相邻路径的方向相反,以使所述压草机构在草地上产生第一方向的压痕和第二方向的压痕;
N次遍历移动中的不同次单次遍历移动的路径不重合,且相互平行;在N次遍历移动后,所述N次遍历移动形成的相邻路径的方向相反,所述N次遍历移动形成的相邻路径的路径间距为B',B'=B/N;
确定所述路径间距B,以使所述压草机构在草地上产生多条第一方向的压痕和第二方向的压痕,所述第一方向的压痕和所述第二方向的压痕相邻,且间隔排布;所述路径间距B是根据所述自动割草机的外侧跨距D、单侧压痕的宽d确定的,所述路径间距B、外侧跨距D、单侧压痕的宽d满足:4/5ⅹN(D-2d)≤B≤6/5ⅹN(D-2d)。
在一些实施例中,所述自移动设备为自动割草机,所述自动割草机还包括切割组件,安装于所述机身,用于执行切割任务;当所述移动组件沿所述第一行进方向的路径和所述第二行进方向的路径交替移动时,所述控制器控制所述切割组件执行切割任务,所述切割组件位于所述机身两侧的移动轮之间。
在一些实施例中,所述路径间距B、外侧跨距D和单侧压痕的宽d满足:B=N(D-2d),D/4≤d<D/3。
在一些实施例中,所述路径间距B、外侧跨距D和单侧压痕的宽d满足:B<N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20mm)。
在一些实施例中,所述路径间距B、外侧跨距D和单侧压痕的宽d满足:B>N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20mm)。
在一些实施例中,所述位于机身一侧的移动轮与所述位于机身另一侧的移动轮都包括位于机身前部的移动轮与位于机身后部的移动轮;所述位于机身同一侧的位于机身前部的移动轮的外侧与所述位于机身后部的移动轮的内侧之间沿垂直于所述移动组件行进方向的间距X满足:X≤40mm。
第五方面,当N=1时,提供一种自移动设备,所述自移动设备包括:
机身;
移动组件,安装于所述机身,用于带动所述机身移动,所述移动组件包括位于机身一侧的移动轮,与位于机身另一侧的移动轮;所述压草组件包括所述移动轮;
控制器,用于当所述自动割草机位于工作区域内时,执行以下步骤:
g、控制所述自移动设备沿具有第一行进方向的第一路径移动,在移动中,位于机身两侧的移动轮在草地上产生两条第一压痕,所述第一压痕下的草沿所述第一行进方向倒伏;
h、控制所述自移动设备沿具有第二行进方向的第二路径移动,所述第二路径相对所述第一路径偏移一个路径间距B,所述第二行进方向与所述第一行进方向相反,在移动中,所述位于机身两侧的移动轮在草地上产生两条第二压痕,所述第二压痕下的草沿所述第二行进方向倒伏;
j、控制所述自移动设备沿具有第一行进方向的第三路径移动,所述第三路径相对所述第二路径偏移一个路径间距B,在移动中,位于机身两侧的移动轮在草地上产生两条第一压痕;
k、控制所述自移动设备沿具有第二行进方向的第四路径移动,所述第四路径相对所述第三路径偏移一个路径间距B,在移动中,所述位于机身两侧的移动轮在草地上产生两条第二压痕;
其中,所述路径间距B配置为:所述移动轮在所述第一行进方向下的相邻的两条路径所产生的四条第一方向的压痕中,位于中部的两条第一方向的压痕相邻,所述移动轮在所述第二行进方向下的相邻的两条路径所产生的四条第二方向的压痕中,位于中部的两条第二方向的压痕相邻,且所述相邻的两条第一方向的压痕与所述相邻的两条第二方向的压痕相邻。
第六方面,当所述自移动设备为自动割草机,且N=1时,提供一种割草控制装置,所述装置包括:
配置参数获取模块,被配置为执行当自动割草机位于工作区域内时,获取所述自动割草机的配置参数;
存储模块,存储所述配置参数;所述配置参数包括路径间距B;
所述装置用于当所述自动割草机位于工作区域内时,执行以下步骤:
t、所述配置参数获取模块从所述存储模块获取所述路径间距B;
y、控制所述自动割草机沿具有第一行进方向的第一路径移动,在移动中,位于机身两侧的移动轮在草地上产生两条第一方向的压痕,所述第一方向的压痕下的草沿所述第一行进方向倒伏;
u、控制所述自动割草机沿具有第二行进方向的第二路径移动,所述第二路径相对所述第一路径偏移一个路径间距B,所述第二行进方向与所述第一行进方向相反,在移动中,所述位于机身两侧的移动轮在草地上产生两条第二方向的压痕,所述第二方向的压痕下的草沿所述第二行进方向倒伏;
i、控制所述自动割草机沿具有第一行进方向的第三路径移动,所述第三路径相对所述第二路径偏移一个路径间距B,在移动中,位于机身两侧的移动轮在草地上产生两条第一方向的压痕;
o、控制所述自动割草机沿具有第二行进方向的第四路径移动,所述第四路径相对所述第三路径偏移一个路径间距B,在移动中,所述位于机身两侧的移动轮在草地上产生两条第二方向的压痕;
其中,所述路径间距B配置为:所述自动割草机的移动轮在所述第一行进方向下的相邻的两条路径所产生的四条第一方向的压痕中,位于中部的两条第一方向的压痕相邻,所述自动割草机的移动轮在所述第二行进方向下的相邻的两条路径所产生的四条第二方向的压痕中,位于中部的两条第二方向压痕相邻,且所述相邻的两条第一方向压痕与所述相邻的两条第二方向压痕相邻。
第七方面,提供一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述自动割草机及割草控制装置的方法步骤。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述自动割草机及割草控制装置的方法步骤。
第九方面,提供一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现上述自动割草机及割草控制装置的方法步骤。
附图说明
图1为一些实施例中的自移动设备的侧面示意图。
图2为一些实施例中的自移动设备的俯视图。
图3为一些实施例中自移动设备单次遍历工作区域的路径的示意图。
图4为一些实施例中自移动设备N次遍历工作区域的路径的示意图。
图5为一些实施例中自移动设备N次遍历工作区域后形成的压痕的示意图。
图6为一些实施例中的自移动设备的控制方法。
图7为一些实施例中执行步骤S100的示意图
图8为一些实施例中执行步骤S110的示意图
图9为一些实施例中执行步骤S120的示意图
图10为一些实施例中执行步骤S130的示意图
图11为一些实施例中自移动设备以某一路径间距控制移动组件移动的示意图。
图12为一些实施例中自移动设备以另一路径间距控制移动组件移动的示意图。
图13为一些实施例中自移动设备以另一路径间距控制移动组件移动的示意图。
图14为一些实施例中自移动设备以另一路径间距控制移动组件移动的示意图。
图15为一些实施例中自移动设备以与草坪边界具有某一夹角的行进方向进行割草而形成的条纹示意图。
图16为一些实施例中的自动割草机的结构示意图。
图17为一些实施例中的割草控制装置的结构示意图。
图18为一些实施例中的自动割草机的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请不限定自移动设备的具体类型,例如,自移动设备可以是自动割草机、自动压草机、自动洒水机等。
本申请提供的一种自移动设备如图1所示,该自移动设备包括:机身101;压草机构102,安装于机身101,包括位于机身一侧的压草组件和位于机身另一侧的压草组件,当自移动设备在草地上移动时候,压草机构102碾压草地上的草,使得草朝向自移动设备的移动方向倒伏,从而产生位于机身一侧的压痕与位于机身另一侧的压痕,且该位于机身101一侧的压痕与位于机身101另一侧的压痕的宽度相等,机身101两侧的压痕的宽度差小于阈值,都认为这两侧压痕的宽度是相等的。在一些实施例中,该阈值为40mm,当位于机身101两侧的压痕的宽度差小于40mm,在视觉效果上,两侧压痕的宽度是相当的,此时认为这两侧压痕的宽度相等。本申请并不限定压草机构102的具体结构,只要压草机构102能够碾压草地在草地上产生压痕即可。
在一些实施例中,如图2所示,自移动设备还包括移动组件103,安装于机身101,用于带动机身101移动。特别地,压草机构102包括移动组件103,移动组件103带动机身101移动的同时,碾压草地上的草从而产生压痕。如图2所示,移动组件103包括位于机身101一侧的移动轮1031、移动轮1032,移动组件103还包括位于机身101另一侧的移动轮1033、移动轮1034,因此压草机构103的压草组件包括位于机身101一侧的移动轮1031、1032,以及位于机身101另一侧的移动轮1033、1034。其中,位于机身前部的移动轮1031、移动轮1033为从动轮,位于机身后部的移动轮1032、移动轮1034为驱动轮,移动轮1032、移动轮1034的尺寸大于移动轮1031、移动轮1033。在另外一些实施例中(未图示),位于机身前部的移动轮1031、移动轮1033也可以是驱动轮,位于机身后部的移动轮1032、移动轮1034也可以是从动轮,移动轮1032、移动轮1034的尺寸也可以小于移动轮1031、移动轮1033。在另外一些实施例中(未图示),移动轮1031、移动轮1033、移动轮1032、移动轮1034可以都是驱动轮,其尺寸可以相同,也可以不同。
在一些实施例中(未图示),移动组件103也可以由三个移动轮组成,比如由位于机身101后部的设置在机身101两侧的两个驱动轮和位于机身101前部并设置在机身101中部的一个从动轮组成。在一些实施例中(未图示),移动组件103也可以包括四个以上的移动轮。
在一些实施例中,压草机构102完全由移动组件103构成,移动组件103不仅能带 动自移动设备移动,还可以碾压草地上的草产生压痕,而不需要设置额外的压草结构,结构简单而且成本更低。
当然,压草机构102也可以是除移动组件103以外的额外的结构,或者由移动组件103和额外的结构组成,本申请不作限定。
自移动设备在工作区域内移动时,压草机构102碾压草地,会使工作区域内的被碾压过的草沿自移动设备行进方向倒伏,进而在草地上留下压痕。当自移动设备沿不同的行进方向行进时,工作区域内被碾压过的草则会沿不同的行进方向倒伏,由于草的倒伏方向不同,不同方向下产生的压痕经光的反射后就会形成颜色深浅不一的条纹的视觉效果。当自移动设备在工作区域内沿两个相反的行进方向行进时,则会在草地上留下颜色较深的条纹和颜色较浅的条纹,颜色较深的条纹对应压痕经光的反射后出现颜色较深的视觉效果,颜色较浅的条纹对应压痕经光的反射后出现颜色较浅的视觉效果。
自移动设备还包括控制器104(未图示),安装于机身101,控制器104规划自移动设备的移动路径,控制自移动设备在草地上的工作区域内移动,工作区域可以是整块由物理边界或虚拟边界限定的草地,也可以是草地上某一局部区域,本申请不作限制。控制器104控制自移动设备在草地上的工作区域内遍历移动N次,N为大于等于1的奇数。
如图3所示,在单次遍历移动中,控制器104控制自移动设备沿着多条平行、间距相等的路径移动,单次遍历移动的相邻路径的路径间距为B,且单次遍历移动的相邻路径的方向相反,以使压草机构103在草地上产生第一方向的压痕和第二方向的压痕,从而形成视觉效果上颜色深浅不同的两种条纹。
控制器104控制自移动设备在工作区域内遍历移动N次指,自移动设备在工作区域内先沿着多条平行、路径间距为B且相邻路径的方向相反的路径从工作区域一侧移动到另一侧,再沿着多条平行、路径间距为B且相邻路径的方向相反的路径从工作区域另一侧移动到工作区域的一侧,或者是再沿着多条平行、路径间距为B且相邻路径的方向相反的路径从工作区域的一侧移动到另一侧,如此往复移动,直至自移动设备在工作区域内遍历移动N次。且上述N次遍历移动中的不同次单次遍历移动的路径不重合,且路径相互平行。在N次遍历后,所形成的自移动设备经过的路径,其相邻路径的方向相反,且该相邻路径的路径间距为B',B'=B/N。控制器104需确定路径间距B的取值,以使压草机构103在草地上产生多条第一方向的压痕和第二方向的压痕,该第一方向的压痕和第二方向的压痕相邻,且间隔排布。其中第一方向的压痕对应第一颜色条纹,第二方向的压痕对应第二颜色条纹,即可获得交替间隔排布的第一颜色条纹和第二颜色条纹。
如图4所示,为当N=3时的一个示例,自移动设备在工作区域内3次遍历移动,单次遍历移动中,自移动设备沿着多条平行、路径间距为B且相邻路径的方向相反的多条路径移动。如图4所示,箭头代表自移动设备的移动方向,带箭头的虚线代表自移动设备第一次遍历移动的路径,带箭头的实线代表自移动设备第二次遍历移动的路径,带箭头的点划线代表自移动设备第三次遍历移动的路径。三次遍历移动中的不同次遍历移动的路径不重合,但相互平行。自移动设备在三次遍历后,所形成的相邻路径的方向相反,且该相邻路径的路径间距为B',B'=B/3。本申请并不限定自移动设备每次遍历移动的起点和终点,作为一种示例,如图4所示,自移动设备可以先沿第一次遍历移动路径从左到右在工作区域内遍历移动,接着再沿第二次遍历移动路径从右到左在工作区域内遍历移动,然后再沿第三次遍历移动路径从左到右在工作区域内遍历移动,以使最终自移动设备经过的路径中,相邻路径的方向相反,且该相邻路径的路径间距为B',B'=B/3。
图5是自移动设备沿着图4所示的三次遍历路径遍历工作区域后压草机构102形成的多条第一方向的压痕和第二方向的压痕,该第一方向的压痕和第二方向的压痕间隔排布。其中第一方向的压痕对应第一颜色条纹,第二方向的压痕对应第二颜色条纹,最终获得交替间隔排布的第一颜色条纹和第二颜色条纹。
下面结合N=1的示例,具体描述上述间隔排布的第一方向的压痕和第二方向的压痕是如何形成的。N=1时,自移动设备只遍历一次工作区域,且B'=B/N=B。
如图6所示,控制器104控制自移动设备执行如下步骤:
S100,控制自移动设备沿第一行进方向的第一路径移动。
在该示例中,压草组件完全由移动组件103构成而无额外的结构。如图7所示,自移动设备沿第一行进方向的第一路径(即路径1)移动的过程中,位于机身101一侧的移动轮1031、移动轮1032碾压草地产生一条压痕,即压痕1,同时位于机身101另一侧的移动轮1033、1034碾压草地产生另一条压痕,即压痕2。本申请中将自移动设备沿第一行进方向下的路径移动所产生的压痕作为第一方向的压痕,因此自移动设备每沿第一行进方向下的路径移动一次,自移动设备位于机身101两侧的移动轮则会产生两条第一方向的压痕,即压痕1、压痕2,第一方向的压痕下的草沿第一行进方向倒伏。
本申请并不限定自移动设备的第一行进方向,第一行进方向可以是相对自移动设备的工作区域的任意方向。在一些实施例中,比如自移动设备的工作区域是规则的矩形足球场,第一行进方向可以是平行于或垂直于足球场某一边界的方向,对应地,第一行进方向下的路径则为平行于或垂直于足球场某一边界的直线线段。
S110,控制自移动设备沿具有第二行进方向的第二路径移动,第二路径相对第一路径偏移路径间距B,第二行进方向与第一行进方向相反。
如图8所示,与自移动设备沿第一行进方向下的路径移动相对应,自移动设备沿第二行进方向的第二路径(即路径2)移动的过程中,位于机身101一侧的移动轮1031、移动轮1032碾压草地产生一条压痕,即压痕4,同时位于机身101另一侧的移动轮1033、1034碾压草地产生另一条压痕,即压痕3。本申请中将自移动设备沿第二行进方向下的路径移动所产生的压痕作为第二方向的压痕,因此自移动设备每沿第二行进方向下的路径移动一次,自移动设备位于机身101两侧的移动轮则会产生两条第二方向的压痕,即压痕3、压痕4,第二方向的压痕下的草沿第二行进方向倒伏。
由于自移动设备在第一行进方向下移动时,移动组件103产生的两条第一方向的压痕的草沿第一行进方向倒伏,自移动设备在第二行进方向下移动时,移动组件103产生的两条第二方向的压痕的草沿第二行进方向倒伏,并且第一行进方向与第二行进方向相反,因此第一方向的压痕、第二方向的压痕经光的反射后就会形成颜色较深的条纹和颜色较浅的条纹的视觉效果。本申请中将第一方向的压痕对应的条纹作为第一颜色条纹,将第二方向的压痕对应的条纹作为第二颜色条纹,应该注意的是,所谓第一颜色条纹、第二颜色条纹,其差异来自于移动组件103沿两个相反的行进方向行进时产生的压痕经光的反射而形成的深浅不一的视觉效果。压痕1、压痕2对应第一颜色条纹,压痕3、压痕4对应第二颜色条纹。
如图8所示,由于第二行进方向下的路径是由第一行进方向下的路径偏移路径间距B所得,且第二行进方向与第一行进方向相反,因此本申请在不限定自移动设备的第一行进方向,第一行进方向可以是相对自移动设备的工作区域的任意方向时,第二行进方向也可以是与第一行进方向相反的相对自移动设备的工作区域的任意方向,如图15所 示,第一行进方向、第二行进方向可以是与草坪边界具有一定夹角的方向。在一些实施例中,比如自移动设备的工作区域是规则的矩形足球场,如果第一行进方向是平行于或垂直于足球场某一边界的方向,第一行进方向下的路径为平行于或垂直于足球场某一边界的直线线段,那么第二行进方向也是平行于或垂直于足球场某一边界的方向,第二行进方向下的路径为平行于或垂直于足球场某一边界的直线线段。
S120,控制移动设备沿具有第一行进方向的第三路径移动,第三路径相对第二路径偏移路径间距B。
S130,控制自移动设备沿具有第二行进方向的第四路径移动,第四路径相对第三路径偏移路径间距B。
如图9所示,当执行步骤S120时,自移动设备再次产生两条第一方向的压痕,即压痕5、压痕6,形成的条纹为第一颜色条纹。如图10所示,当执行步骤S130时,自移动设备再次产生两条第二方向的压痕,即压痕7、压痕8,形成的条纹为第二颜色条纹。当控制自移动设备在工作区域内反复执行步骤S100-S130,即可产生如图11所示的多条第一方向的压痕、第二方向的压痕,即多条第一颜色条纹、第二颜色条纹。
本申请不限定自移动设备从路径1的终点到路径2的起点的过渡路径,即不限定自移动设备从上一路径的终点到下一路径的起点的过渡路径。在一些实施例中,自移动设备上一路径的终点或下一路径的起点可以是工作区域边界上的一点,当自移动设备到达该边界上的点后,可以转向调整行进方向以沿工作区域边界行进到下一路径的起点,即上述过渡路径可以是工作区域边界上的某一段。在另外一些实施例中,自移动设备上一路径的终点或下一路径的起点也可以是工作区域内的一点,或工作区域外的一点,上述过渡路径不限定为工作区域边界上的某一段,过渡路径也可以位于工作区域边界内或工作区域边界外,或跨越工作区域边界内外。在一些实施例中,自移动设备以弓字路径在草地上遍历移动,自移动设备通过短边过渡路径从上一路径的终点移动到下一路径的起点。在另外一些实施例中,自移动设备以回字路径在草地上遍历移动,相邻回字路径的方向相反,即若上一条回字路径的方向为逆时针,则下一条回字路径的方向为顺时针。
在上述S100-S130中,需要控制路径间距B,以使移动组件103在第一行进方向下相邻的两条路径所产生的四条第一方向的压痕中,位于中部的两条第一方向的压痕相邻,移动组件103在第二行进方向下相邻的两条路径所产生的四条第二方向的压痕中,位于中部的两条第二方向的压痕相邻,且相邻的两条第一方向的压痕与相邻的两条第二方向的压痕相邻。如图10所示,自移动设备在第一行进方向下的相邻的路径1和路径3,其产生的四条压痕即压痕1、压痕2、压痕5、压痕6,位于中部的两条压痕即压痕2、压痕5相邻。如图10所示,自移动设备在第二行进方向下的相邻的路径2和路径5,其产生的四条压痕即压痕3、压痕4、压痕7、压痕8,位于中部的两条压痕即压痕4、压痕7相邻。本申请中相邻的两条路径是指,相邻的两条路径之间没有第三条路径,自移动设备的机身101在相邻的两条路径下行驶过的区域可以间隔一定距离,或无间距紧挨在一起,或部分重叠。本申请中相邻的两条压痕是指,相邻的两条压痕之间没有第三条压痕,相邻的两条压痕可以间隔一定距离,或无间距仅挨在一起,或部分重叠。如此最终形成第一方向的压痕和第二方向的压痕相邻,且间隔排布。
在上述S100-S130中,还需要控制路径间距B使得当第一行进方向下的相邻的两条路径(例如图10所示的路径1、路径3)与第二行进方向下的相邻的两条路径交替排布时(对应图10所示的路径2、路径4,即路径1—路径4在第一行进方向和第二行进方 向交替排布),上述相邻的两条第一方向的压痕(比如压痕2、压痕5),与上述相邻的两条第二方向的压痕(对应压痕4、压痕7)相邻。也即,如图10所示,相邻的两条第一方向的压痕压痕2、压痕5形成的第一颜色条纹,与相邻的两条第二方向的压痕压痕4、压痕7形成的第二颜色条纹相邻。当控制自动割草机100在工作区域内反复执行步骤S100-S130,即可产生多条相邻的第一颜色条纹、第二颜色条纹,也即如图11所示的深浅交替分布的第一颜色条纹、第二颜色效果,以起到美观或缓解视觉疲劳的效果。第一颜色条纹、第二颜色条纹交替间隔分布,不仅美观,也可以缓解需要长期注视草坪的人员的视觉疲劳,比如足球场上的球员、裁判、观众等。
当N为大于1的奇数时,由于自移动设备在工作区域内N次遍历移动后经过的路径,与自移动设备在N=1时经过的路径,其路径间距都是相当的(当单次遍历中路径间距B扩大了N倍,最终经历的所有路径的路径间距B'=B/N),并且最终都形成了相邻路径的方向相反且相互平行的路径,因此当N为大于1的奇数时,自移动设备遍历N次后,压草机构102也能产生多条第一方向的压痕和第二方向的压痕,且该第一方向的压痕和第二方向的压痕相邻,且间隔排布。
在一些实施例中,自移动设备为自动割草机时,如图1、图2所示,自动割草机还包括切割组件105,安装于机身101,在沿第一行进方向下的路径移动或沿第二行进方向下的路径移动的同时,切割组件105执行切割任务。这样自动割草机遍历工作区域,不仅可以形成间隔分布的深、浅颜色条纹,还可以执行割草任务,节省了人力资源和经济成本。
在一些实施例中,如图2所示,切割组件105的中心位于机身101的的纵轴线上,且切割组件105垂直于纵轴线的切割宽度M,和路径间距B满足NM≥B,也即M≥B/N,即M≥B'。由上述可知,B'为N次遍历后,自移动设备经历的路径中,相邻两条路径的路径间距,当自移动设备经过某一路径时,机身101的纵轴线和路径重合。因此,若切割组件105位于机身101的纵轴线上,且M≥B',那么自移动设备遍历相邻两条路径的同时,也能将该相邻两条路径中间的草切割干净,而无漏草。
本申请并不限定自移动设备的切割组件的个数,例如,自移动设备可以有1个、2个或3个切割组件,只要其所有切割组件的切割中心位于机身101的纵轴线上,且其切割款M满足NM≥B,那么自移动设备遍历相邻两条路径的同时,就能将相邻两条路径中间的草切割干净无漏草。
在一些实施例中,路径间距B是可以根据自移动设备接收到的任务指令进行调整的,以适应不同任务下要求压草机构102所产生的多条压痕中的相邻的两条压痕之间的间距不同。其中,自移动设备待接收的任务指令可以预先存储设置在自移动设备内,待用户操作自移动设备上相应的按钮或操作面板以触发该任务指令;该任务指令也可以是用户通过外部设备如手机APP、计算机等发送给自移动设备的。相邻的两条压痕之间的间距可以是大于等于零的数值,也可以是小于零的数值。间距大于零说明相邻的两条压痕之间具有间隙,间距等于零说明相邻的两条压痕之间无间隙紧挨在一起,间距小于零说明相邻的两条压痕部分重叠。
在一些实施例中,路径间距B是预先配置在自移动设备内或配置在与自移动设备通信的外部设备内的配置参数之一,并且路径间距B是根据自移动设备的压草机构102产生的位于机身101一侧的压痕与位于机身101另一侧的压痕的外侧跨距D和单侧压痕的宽d确定的。
在一些实施例中,当压草机构102的压草组件为自移动设备的移动组件103时,如图7所示,外侧跨距D等于自移动设备沿某一行进方向移动,其移动组件103产生的两条压痕,该两条压痕在自移动设备的行进方向下的相距最远的两条边界之间的距离。从另一个角度而言,当移动组件103位于机身101的最外侧的两个移动轮的所有轮宽都能在草坪上留下明显的压痕,则如图2所示,外侧跨距D指的是位于自移动设备的机身101的最外侧的两个移动轮(如移动轮1032、移动轮1034),移动轮1032外侧到另一个移动轮1034外侧的距离。如图7所示,单侧压痕的宽d等于自移动设备沿某一行进方向移动,其移动组件103产生的单条压痕的宽度。从一个角度而言,当移动组件103位于机身101一侧的移动的所有轮宽都能在草坪上留下明显的压痕,则如图2所示,单侧压痕的宽d指的是位于机身101同一侧的移动轮(如移动轮1031、移动轮1032,或移动轮1033、移动轮1034),移动轮1031内侧到移动轮1032外侧的距离,或移动轮1033内侧到移动轮1034外侧之间的距离,一般情况下,前者等于后者。如果自移动设备的某些移动轮在工作区域移动时不会产生压痕,或者某些移动轮只有部分与地面接触的轮宽产生压痕,或压痕不明显、在视觉效果上可忽略不计时,此时外侧跨距D仅等于自移动设备沿某一行进方向移动,其移动组件103产生的两条压痕,该两条压痕在自移动设备的行进方向下的相距最远的边界之间的距离,单侧压痕的宽d仅等于自移动设备沿某一行进方向移动,其移动组件103产生的单条压痕的宽度。
在一些实施例中,自移动设备位于机身101前部的移动轮1031、移动轮1033为从动轮,位于机身101后部的移动轮1032、移动轮1034为驱动轮,由现有技术可知,当从动轮的质量较轻时,从动轮在草坪上移动所产生的压痕在视觉效果上不明显,可忽略不计,也即上述工作区域呈现的交替间隔分布的第一颜色条纹、第二颜色条纹的视觉效果主要依靠自移动设备后部的两个驱动轮即移动轮1032、移动轮1034产生的压痕。此时外侧跨距D等于自移动设备沿某一行进方向移动,其移动轮1032、移动轮1034产生的两条压痕,该两条压痕在平行于于自移动设备的行进方向下的相距最远的边界之间的距离;若移动轮1032、移动轮1034的所有轮宽都能在草坪下留下明显的压痕,外侧跨距D也等于移动轮1032外侧到另一个移动轮1034外侧的距离。此时单侧压痕的宽d等于自移动设备沿某一行进方向移动,其移动轮1032、移动轮1034产生的单条压痕的宽度;若移动轮1032、移动轮1034的所有轮宽都能在草坪下留下明显的压痕,单侧轮宽也等于移动轮1032的轮宽或移动轮1034的轮宽(一般情况下,两者的轮宽相等)。
在一些实施例中提供的自移动设备,其包括位于机身101后部及机身101两侧的两个驱动轮,和位于机身101前部中间位置的一个从动轮,当位于机身101前部中间位置的从动轮的质量较轻时,该从动轮在草坪上移动所产生的压痕在视觉效果上不明显,可忽略不计,也即上述工作区域呈现的交替间隔分布的第一颜色条纹、第二颜色条纹的视觉效果主要依靠自移动设备后部的两个驱动轮产生的压痕。此时外侧跨距D等于自移动设备沿某一行进方向移动,其驱动轮产生的两条压痕,该两条压痕在平行于于自移动设备的行进方向下的相距最远的边界之间的距离;若两个驱动轮的所有轮宽都能在草坪下留下明显的压痕,外侧跨距D也等于一个驱动轮外侧到另一个驱动轮外侧的距离。此时单侧轮宽等于自移动设备沿某一行进方向移动,其驱动轮产生的单条压痕的宽度;若驱动轮的所有轮宽都能在草坪下留下明显的压痕,单侧轮宽也等于驱动轮的轮宽(一般情况下,两个驱动轮的轮宽相等)。
一般情况下,自移动设备各个轮宽及其相对位置关系在生产制造阶段即确定,即外 侧跨距D、单侧压痕的宽d在自移动设备的生产制造阶段即可确定,因此可在自移动设备出厂销售之前,根据确定的外侧跨距D、单侧压痕的宽d计算出路径间距B,将其作为自移动设备的配置参数之一预先存储在自移动设备内或与自移动设备通信的外部设备内。存储的路径间距B既可以是固定的某一数值,也可以是对应移动组件103所产生的多条压痕中的相邻的两条压痕之间的不同间距的不同数值,用户可在自移动设备执行某一特定任务前,根据任务需要或用户自身的喜好设置选择不同的条纹视觉效果或不同的路径间距B对应的条纹视觉效果。
在一些实施例中,自移动设备可以在出厂销售之前获取外侧跨距D、单侧压痕的宽d,然后根据路径间距B、外侧跨距D、单侧压痕的宽d之间的关系式计算出路径间距B的数值或数值范围,自移动设备获取外侧跨距D、单侧压痕的宽d的方式可以由相关人员手动输入,也可以是自移动设备自动获取相应的传感器数据。在另外一些实施例中,自移动设备也可以在出厂销售之后获取外侧跨距D、单侧压痕的宽d,然后根据路径间距B、外侧跨距D、单侧压痕的宽d之间的关系式计算出路径间距B的数值或数值范围,自移动设备获取外侧跨距D、单侧压痕的宽d的方式可以由用户手动输入,也可以是自移动设备自动获取相应的传感器数据。在一些实施例中,用户输入或选择某一特定的条纹视觉效果,自移动设备根据获取的外侧跨距D、单侧压痕的宽d以及用户设置的条纹视觉效果,计算出对应的路径间距B,并控制自移动设备按照该路径间距B在工作区域内移动,以获得用户期望的条纹视觉效果。
在一些实施例中,控制路径间距B,使得路径间距B、外侧跨距D以及单侧压痕的宽d满足:B=N(D-2d),D/4≤d<D/3,可以使压草机构102产生的多条压痕中的相邻的两条压痕之间的间距小于等于零,其包括两种情形:第一种,相邻的两条压痕之间无间隙紧挨在一起,即间距为零,如图11所示;第二种,相邻的两条压痕部分重叠,即间距小于零,如图11所示。
下面结合N=1的示例,具体描述上述压痕是如何形成的。N=1时,自移动设备只遍历一次工作区域,且B'=B/N=B,也即B'=D-2d,D/4≤d<D/3。
如图11所示,执行步骤S100,自移动设备在第一行进方向下沿路径1移动时,移动组件103产生两条第一方向的压痕即压痕1、压痕2;执行步骤S110,自移动设备在第二行进方向下沿路径2移动,压草机构102产生两条第二方向的压痕即压痕3、压痕4,其中相邻的压痕2和压痕3之间的间距为零;执行步骤S120,压草机构102产生两条第一方向的压痕即压痕5、压痕6,其中相邻的压痕4、压痕5之间的间距为零,相邻的压痕2、压痕5之间的间距也为零;执行步骤S 130,压草机构102产生两条第二方向的压痕即压痕7、压痕8,其中相邻的压痕4、压痕7之间的间距为零,相邻的压痕6、压痕7之间的间距也为零。也即,在一些实施例中,压草机构102在相同行进方向下的相邻的两条路径所产生的四条压痕中,位于中部的两条压痕相邻且间距为零,即压草机构102在第一行进方向下的相邻的两条路径所产生的位于中部的两条第一方向的压痕相邻且间距为零,压草机构102在第二行进方向下的相邻的两条路径所产生的位于中部的两条第二方向的压痕相邻且间距为零;当第一行进方向下的相邻的两条路径与第二行进方向下的相邻的两条路径交替排布时,相邻的两条第一方向的压痕与相邻的两条第二方向的压痕相邻且间距为零。当反复执行步骤S100-S130,即可获得交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹的视觉效果,并且均匀的条纹宽度W等于路径间距B'。
如图12所示,执行步骤S100,自移动设备在第一行进方向下沿路径1移动时,压草机构102产生两条第一方向的压痕即压痕1、压痕2;执行步骤S110,自移动设备在第二行进方向下沿路径2移动,压草机构102产生两条第二方向的压痕即压痕3、压痕4,其中相邻的压痕2、压痕3之间的间距为零;执行步骤S120,压草机构102产生两条第一方向的压痕即压痕5、压痕6,其中相邻的压痕4、压痕5之间的间距为零,相邻的压痕2、压痕5之间的间距R2满足:R2<0mm,即压痕2、压痕5部分重叠;执行步骤S130,压草机构102产生两条第二方向的压痕即压痕7、压痕8,其中相邻的压痕4、压痕7之间的间距R2满足:R2<0mm,相邻的压痕6、压痕7之间的间距也为零。也即,在一些实施例中,压草机构102在相同行进方向下的相邻的两条路径所产生的四条压痕中,位于中部的两条压痕相邻且间距R2满足:R2<0mm,也即位于中部的这两条压痕部分重叠,即压草机构102在第一行进方向下的相邻的两条路径所产生的位于中部的两条第一方向的压痕相邻且间距R2满足:R2<0mm,压草机构102在第二行进方向下的相邻的两条路径所产生的位于中部的两条第二方向的压痕相邻且间距R2满足:R2<0mm;当第一行进方向下的相邻的两条路径与第二行进方向下的相邻的两条路径交替排布时,相邻的两条第一方向的压痕与相邻的两条第二方向的压痕相邻且间距为零。尽管相同行进方向下相邻的两条路径所产生的位于中部的两条压痕部分重叠,但是由于其行进方向相同,压痕下草倒伏的方向相同,最终呈现的仍然是一种颜色的条纹视觉效果,即第一颜色条纹或第二颜色条纹。因此当反复执行步骤S100-S130,即可获得交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹的视觉效果,并且均匀的条纹宽度W等于路径间距B'。如图11、图12所示,在这些实施例中,压草机构102产生的多条压痕中的相邻两条压痕之间的间距无论是等于零,还是小于零,当路径间距B'、外侧跨距D以及单侧压痕的宽d满足B'=D-2d,外侧跨距D、单侧轮压痕的宽d满足D/4≤d<D/3时,控制自移动设备按照满足上述关系式的路径间距B'反复执行步骤S100-S130,即可使工作区域获得交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹的视觉效果,并且均匀的条纹宽度W等于路径间距B'。
如表1所示,为满足B'=D-2d且D/4≤d<D/3的路径间距B'、外侧跨距D、单侧压痕的宽d的一些取值及工作区域呈现的条纹宽度W。需要说明的是,表1中的数值并非对路径间距B'、外侧跨距D、单侧压痕的宽d取值的限定,只是为了示例性说明满足B'=D-2d、D/4≤d<D/3的路径间距B'、外侧跨距D、单侧压痕的宽d能够达到上述技术效果,其中表1中的所有数值单位为mm。
表1 B'=D-2d、D/4≤d<D/3
当N为大于1的奇数时,即B=N(D-2d)且D/4≤d<D/3,由于,B'=B/N,此时仍然满足关系式,B'=D-2d且D/4≤d<D/3,因此当自移动设备以路径间距B在工作区域内N次遍历移动后,仍然能够使工作区域获得交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹的视觉效果,并且均匀的条纹宽度W等于路径间距B'。
可知采用上述方案,可以使工作区域呈现交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹的视觉效果,进一步地,由于条纹宽度W等于路径间距B',当压草机构2的压草组件为移动组件103时,设计人员在设计自移动设备的轮外侧跨距宽、单侧轮宽时,可根据用户对条纹宽度W的需求确定路径间距B的取值范围,从而倒推轮外侧跨距宽、单侧轮宽的取值范围。除此以外,用户也可根据偏好的条纹宽度W设置选定路径间距B。因此上述方案不仅可以使草坪美观、缓解视觉疲劳、节省人力资源及经济成本,还可以简化设计人员的设计工作,方便用户的选择设置。
在一些实施例中,控制间距B,使间距B、外侧跨距D和单侧压痕的宽d满足:B<N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20mm),可以使压草机构102产生的多条压痕中,压痕下的草沿不同行进方向倒伏的两条相邻压痕之间的间距R1满足:0≤R1≤40mm,使草沿相同行进方向倒伏的两条相邻压痕之间的间距R2满足:R2≤0mm。通过实验可知,由于不同行进方向倒伏的两条相邻压痕之间的间距R1被控制在0~40mm内,间距R1较小,当工作区域足够大时,比如标准的足球场(长90~120m,宽45~90m),该间距在视觉效果上接近于零,即可忽略不计。当路径间距B、外侧跨距D、单侧压痕的宽d满足B<N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20mm)时,可使工作区域获得交替小间距分布(R1=0~40mm)且宽度均匀的第一颜色条纹、第二颜色条纹,且由于间距R2≤0mm,间距R1被控制在0~40mm,间隙较小,在视觉效果上,工作区域仍然呈现交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹。
下面结合N=1的示例,具体描述上述压痕是如何形成的。N=1时,自移动设备只遍历一次工作区域,且B'=B/N=B,也即B'<D-2d,d≥D/4,且(2d-40mm)≤B'≤(2d+20mm)。
下面结合图13对上述方案进行说明。在图13所示的实施例中,路径间距B'=180mm,外侧跨距D=400mm,单侧压痕的宽d=100mm,满足B'<D-2d,d≥D/4,且2d-40mm≤B'≤2d+20mm。自移动设备在移动过程中,反复执行步骤S100-S130,压草机构102产生的多条压痕中,在不同行进方向下形成的相邻的两条压痕之间具有小间距(间距R1=20mm),在视觉效果上可以忽略不计。而在相同行进方向下形成的相邻的两条压痕之间部分重叠(R2=-40mm),由于该两条压痕下的草的倒伏方向相同,因此最终呈现的仍然是同一颜色的条纹。因此在视觉效果上,工作区域仍然呈现交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹,在此实施例中,条纹宽度W=160mm。
如表2所示,为满足B'<D-2d,d≥D/4,且(2d-40mm)≤B'≤(2d+20mm)的路径间距B'、外侧跨距D、单侧压痕的宽d的一些取值及工作区域呈现的条纹宽度W以及间距R1、间距R2。需要说明的是,表2中的数值并非对路径间距B'、外侧跨距D、单侧压痕的宽d取值的限定,只是为了示例性说明满足B'<D-2d,d≥D/4,且(2d-40mm)≤B'≤(2d+20mm)的路径间距B'、外侧跨距D、单侧压痕的宽d能够达到上述技术效果,其中表2中的所有数值单位为mm。
表2 B'<D-2d,d≥D/4,且(2d-40mm)≤B'≤(2d+20mm)
由表2总结可得,路径间距B'、间距R1、条纹宽度W之间满足:W=B'-R1。由于R1=0~40mm,在视觉效果上可以忽略不计,因此W≈B'。当压草机构102的压草组件由自移动设备的移动组件103构成时,设计人员在设计自移动设备的轮外侧跨距宽、单侧轮宽时,仍然可以根据用户对条纹宽度W的需求确定路径间距B'的取值范围,从而倒推轮外侧跨距宽、单侧轮宽的取值范围。除此以外,用户也可根据偏好的条纹宽度W设置选定路径间距B'。
当N为大于1的奇数时,即B<N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20mm),由于,B'=B/N,此时仍然满足关系式,B'<D-2d,d≥D/4,且(2d-40mm)≤B'≤(2d+20mm),因此当自移动设备以路径间距B在工作区域内N次遍历移动后,仍然能够使工作区域获得上述技术效果。
在一些实施例中,控制路径间距B,使路径间距B、外侧跨距D和单侧压痕的宽d满足:B>N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20)mm,,可以使压草机构102产生的多条压痕中,压痕下的草沿相同行进方向倒伏的两条相邻压痕之间的间距R2满足:0≤R2≤40mm,压痕下的草沿不同行进方向倒伏的两条相邻压痕之间的间距R1满足:-40mm≤R1≤40mm。应当注意的是,当-40mm≤R1≤0mm时,即压草机构102沿不同行进方向下移动形成的两条相邻压痕具有重叠部分,且重叠部分被压草机构102沿第一行进方向碾压一次,也被压草机构102沿第二行进方向碾压一次,在视觉效果上,该重叠部分的视觉效果与未被压草机构102碾压的区域的视觉效果相同,也即当压草机构102沿不同行进方向移动形成的两条相邻的压痕具有重叠部分时,在视觉效果上,该两条相邻的压痕之间具有间距。通过实验可知,由于间距R1、间距R2的绝对值都被控制在0~40mm内,间距较小,当工作区域足够大时,比如标准的足球场(长90~120m,宽45~90m),间距R1、间距R2在视觉效果上接近于零,即可忽略不计。当路径间距B、外侧跨距D、单侧压痕的宽d满足B>N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20)mm,时,即可使工作区域获得交替小间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹,且由于间距R1、间距R2的绝对值被控制在0~40mm,间隙较小,在视觉效果上,工作区域仍然呈现交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹。
下面结合N=1的示例,具体描述上述压痕是如何形成的。N=1时,自移动设备只遍历一次工作区域,且B'=B/N=B,也即B'>D-2d,d≥D/4,且(2d-40mm)≤B'≤(2d+20mm)。
下面结合图14对上述方案进行说明。在图14所示的实施例中,路径间距B'=220mm,外侧跨距D=400mm,单侧压痕的宽d=100mm,满足B'>D-2d,d≥D/4,且2d-40mm≤B'≤2d+20mm。自移动设备在移动过程中,反复执行步骤S100-S130,压草机构102产生的多条压痕中,在相同行进方向下形成的相邻的两条压痕之间具有间距R2(R2=40mm),在视觉效果上可以忽略不计,而在相同行进方向下形成的相邻的两条压痕之间,由于该两条压痕下的草的倒伏方向相同,因此最终呈现的仍然是同一颜色的条纹。自移动设备在移动过程中,压草机构102产生的多条压痕中,在不同行进方向下形成的相邻的两条压痕之间具有间距R1(R1=20mm),在视觉效果上可以忽略不计。因此在视觉效果上,工作区域仍然呈现交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹,在此实施例中,条纹宽度W为200mm。
如表3所示,为满足B'>D-2d,d≥D/4,且2d-40mm≤B'≤2d+20mm的路径间距B'、外侧跨距D、单侧压痕的宽d的一些取值及工作区域呈现的条纹宽度W以及间距R1、R2。需要说明的是,表3中的数值并非对路径间距B'、外侧跨距D、单侧压痕的宽d取 值的限定,只是为了示例性说明满足B'>D-2d,d≥D/4,且2d-40mm≤B'≤2d+20mm的路径间距B'、外侧跨距D、单侧压痕的宽d能够达到上述技术效果,其中表3中的所有数值单位为mm。
表3 B'>D-2d,d≥D/4,且2d-40mm≤B'≤2d+20mm
由表3总结可得,路径间距B'、间距R1、条纹宽度W之间满足:W=B'-│R1│。由于│R1│=0~40mm,在视觉效果上可以忽略不计,因此W≈B'。当压草机构102的压草组件由移动组件103构成时,设计人员在设计自移动设备的轮外侧跨距宽、单侧轮宽时,仍然可以根据用户对条纹宽度W的需求确定路径间距B'的取值范围,从而倒推轮外侧跨距宽、单侧轮宽的取值范围。除此以外,用户也可根据偏好的条纹宽度W设置选定路径间距B'。
当N为大于1的奇数时,即B>N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20mm),由于,B'=B/N,此时仍然满足关系式,B'>D-2d,d≥D/4,且(2d-40mm)≤B'≤(2d+20mm),因此当自移动设备以路径间距B在工作区域内N次遍历移动后,仍然能够使工作区域获得上述技术效果。
在一些实施例中,不限定相邻的两条压痕之间的间距,也不限定工作区域呈现的颜色深浅不一的条纹的条纹宽度是否均匀,此时路径间距B、外侧跨距D、单侧压痕的宽d也可以不满足上述表1、表2、表3的关系式,工作区域最终也能呈现交替间隔分布的第一颜色条纹、第二颜色条纹的视觉效果。优选地,控制路径间距B满足:4/5ⅹN(D-2d)≤B≤6/5ⅹN(D-2d)。
在一些实施例中,当压草机构102的压草组件由移动组件103构成时,为了使得工作区域最终形成的条纹更加美观,如图2所示,还需要控制位于机身101同一侧的移动轮1031的外侧到移动轮1032的内侧(或移动轮1033的外侧到移动轮1034的内侧)之间沿垂直于移动组件103行进方向的间距X,因为如果两者间距过大,在视觉效果上,移动组件103移动所产生的每条压痕中部则会出现较大的间隙,间隙过大会影响最终形成的条纹的美观性。优选地,控制上述间距X≤40mm,这样在视觉效果上,压痕中间的间隙则可以忽略不计。
本申请还提供了一种自移动设备的控制方法,该控制方法包括:控制自移动设备在草地上的工作区域内遍历移动N次,N为大于等于1的奇数。如图3所示,在单次遍历移动中,控制自移动设备沿着多条平行、间距相等的路径移动,单次遍历移动的相邻路径的路径间距为B,且单次遍历移动的相邻路径的方向相反,以使压草机构102在草地上产生第一方向的压痕和第二方向的压痕。如图4所示,自移动设备N次遍历移动中的不同次单次遍历移动的路径不重合,且相互平行。在N次遍历移动后,所述N次遍历移动形成的相邻路径的方向相反,所述N次遍历移动形成的相邻路径的路径间距为B',B'=B/N。确定路径间距B,以使压草机构102在草地上产生多条第一方向的压痕和第二方向的压痕,所述第一方向的压痕和所述第二方向的压痕相邻,且间隔排布。
图16为一些实施例中的自动割草机100的结构示意图。自动割草机100包括:机身101;切割组件105,安装于机身101,用于执行切割任务。如图16所示,自动割草机100还包括:移动组件103,安装于机身101,用于带动机身101移动,结合图2可知,移动组件103包括位于机身101一侧的移动轮1031、移动轮1032,还包括位于机身101另一侧的移动轮1033、移动轮1034;控制器104,用于控制移动组件103在工作区域内沿第一行进方向的路径和第二行进方向的路径交替移动,如图11所示,第一行进方向的路径和第二行进方向的路径基本平行且方向相反。其中,相邻的第一行进方向的路径与第二行进方向的路径的路径间距B是根据自动割草机100的外侧跨距D、单侧压痕的宽d确定的。
在一些实施例中,移动组件103在沿第一行进方向下的路径移动或沿第二行进方向下的路径移动的同时,控制器104控制切割组件105执行切割任务。这样自动割草机100遍历工作区域,不仅可以形成间隔分布的深、浅颜色条纹,还可以执行割草任务,节省了人力资源和经济成本。
在一些实施例中,路径间距B、外侧跨距D、单侧压痕的宽d满足:4/5ⅹN(D-2d)≤B≤6/5ⅹN(D-2d)。控制器104控制移动组件103以上述范围内某一路径间距B移动时,可以使工作区域呈现较为美观的交替间隔分布的第一颜色条纹、第二颜色条纹的视觉效果。
在一些实施例中,路径间距B、外侧跨距D和单侧压痕的宽d满足:B=N(D-2d),D/4≤d<D/3。控制器104控制移动组件103以上述范围内某一路径间距B移动时,可以使移动组件103产生的多条压痕中的相邻两条压痕之间的间距R小于等于零,即可使工作区域获得交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹的视觉效果,并且均匀的条纹宽度W等于路径间距B'。
在一些实施例中,路径间距B、外侧跨距D和单侧压痕的宽d满足:B<N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20mm)。控制器104控制移动组件103以上述范围内某一路径间距B移动时,可以使移动组件103产生的多条压痕中,压痕下的草沿不同行进方向倒伏的两条相邻压痕之间的间距R1满足:0mm≤R1≤40mm,压痕下的草沿相同行进方向倒伏的两条相邻压痕的间距R2满足:R2≤0mm,即可使工作区域获得交替小间距分布且宽度均匀的第一颜色条纹、第二颜色条纹,且由于间距R2≤0mm,间距R1被控制在0~40mm,间隙较小,在视觉效果上,工作区域仍然呈现交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹,并且路径偏移量B、间距R1、条纹宽度W之间满足:W=B'-R1。
在一些实施例中,路径间距B、外侧跨距D和单侧压痕的宽d满足:B>N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20)mm。控制器104控制移动组件103以上述范围内某一路径间距B移动时,可以使移动组件103产生的多条压痕中,压痕下的草沿相同行进方向倒伏的两条相邻压痕的间距R2满足:0mm≤R2≤40mm,压痕下的草沿不同行进方向倒伏的两条相邻压痕的间距R1满足:-40mm≤R1≤40mm,即可使工作区域获得交替小间距分布且宽度均匀的第一颜色条纹、第二颜色条纹,且由于间距R1、间距R2的绝对值都小于等于40mm,间隙较小,在视觉效果上,工作区域仍然呈现交替无间隙分布且宽度均匀的第一颜色条纹、第二颜色条纹,并且路径偏移量B、间距R1、条纹宽度W之间满足:W=B'-│R1│。
在一些实施例中,为了使得工作区域最终形成的条纹更加美观,如图2所示,还需 要控制自动割草机100位于机身101同一侧的移动轮1031的外侧到移动轮1032的内侧(或移动轮1033的外侧到移动轮1034的内侧)之间沿垂直于移动组件103行进方向的间距X,因为如果两者间距过大,在视觉效果上,移动组件103移动所产生的每条压痕中部则会出现较大的间隙,间隙过大会影响最终形成的条纹的美观性。优选地,控制上述间距X≤40mm,这样在视觉效果上,压痕中间的间隙则可以忽略不计。
在一些实施例中,当N=1时,自动割草机100的控制器104执行如图6所示的步骤S100-S130。在上述控制方法中,控制器104需要控制路径间距B(B=B'),以使移动组件103在相同行进方向下的相邻的两条路径所产生的四条压痕中,位于中部的两条压痕相邻。如图10所示,自动割草机100在第一行进方向下的相邻的路径1和路径3,其产生的四条压痕即压痕1、压痕2、压痕5、压痕6,位于中部的两条压痕即压痕2、压痕5相邻。如图10所示,自动割草机100在第二行进方向下的相邻的路径2和路径5,其产生的四条压痕即压痕3、压痕4、压痕7、压痕8,位于中部的两条压痕即压痕4、压痕7相邻。
在上述控制方法中,控制器104还需要控制路径间距B使得当第一行进方向下的相邻的两条路径(例如图10所示的路径1、路径3)与第二行进方向下的相邻的两条路径交替排布时(对应图10所示的路径2、路径4,即路径1—路径4在第一行进方向和第二行进方向交替排布),上述相邻的两条第一压痕(比如压痕2、压痕5),与上述相邻的两条第二压痕(对应压痕4、压痕7)相邻。也即,如图10所示,相邻的两条第一压痕压痕2、压痕5形成的第一颜色条纹,与相邻的两条第二压痕压痕4、压痕7形成的第二颜色条纹相邻。
当控制器104控制自动割草机100在工作区域内反复执行步骤S 100-S130,即可产生多条相邻的第一颜色条纹、第二颜色条纹,也即如图11所示的深浅交替分布的第一颜色条纹、第二颜色效果,以起到美观或缓解视觉疲劳的效果。第一颜色条纹、第二颜色条纹交替间隔分布,不仅美观,也可以缓解需要长期注视草坪的人员的视觉疲劳,比如足球场上的球员、裁判、观众等。
上述路径间距B是根据自动割草机100的外侧跨距D和单侧压痕的宽d计算确定的。
一般情况下,自动割草机100的各个轮宽及其相对位置关系在生产制造阶段即确定,即外侧跨距D、单侧压痕的宽d在自动割草机100的生产制造阶段即可确定,因此可在自动割草机100出厂销售之前,根据确定的外侧跨距D、单侧压痕的宽d计算出路径间距B,将其作为自动割草机100的配置参数之一预先存储在自动割草机100内或外部设备中。存储的路径间距B既可以是固定的某一数值,也可以是对应移动组件103所产生的多条压痕中的相邻的两条压痕之间的不同间距的不同数值。用户可在自动割草机100执行某一特定任务前,根据任务需要或用户自身的喜好选择设置相应参数,从而使得控制模块104获取不同的路径偏移量B以控制移动组件103的移动,获取对应的条纹视觉效果。
在一些实施例中,自动割草机100可以在出厂销售之前获取外侧跨距D、单侧压痕的宽d,然后根据路径间距B、外侧跨距D、单侧压痕的宽d之间的关系式计算出路径间距B的数值或数值范围,自动割草机100获取外侧跨距D、单侧压痕的宽d的方式可以由相关人员手动输入,也可以是自动割草机100自动获取相应的传感器数据。在另外一些实施例中,自动割草机100也可以在出厂销售之后获取外侧跨距D、单侧压痕的宽d, 然后根据路径间距B、外侧跨距D、单侧压痕的宽d之间的关系式计算出路径间距B的数值或数值范围,自动割草机100获取外侧跨距D、单侧压痕的宽d的方式可以由用户手动输入,也可以是自动割草机100自动获取相应的传感器数据。在一些实施例中,用户可以输入或选择某一特定的条纹视觉效果,自动割草机100根据获取的外侧跨距D、单侧压痕宽d以及用户设置的条纹视觉效果,计算出对应的路径间距B,控制器104获取到该路径间距B,并控制移动组件103按照该路径间距B在工作区域内移动,以获得用户期望的条纹视觉效果。
图17为一些实施例中的割草控制装置200的结构示意图。割草控制装置200包括:配置参数获取模块201,被配置为执行当自动割草机100位于工作区域内时,获取自动割草机100的配置参数;存储模块202,存储自动割草机100的配置参数,其中,包括路径间距B。割草控制装置200用于当自动割草机100位于工作区域内时,当N=1时,配置参数获取模块201从从存储模块202获取路径间距B,再执行步骤S100-S130。
当割草控制装置200控制自动割草机100在工作区域内反复执行步骤S100-S130,即可产生多条相邻的第一颜色条纹、第二颜色条纹,也即如图11所示的深浅交替分布的第一颜色条纹、第二颜色效果,以起到美观或缓解视觉疲劳的效果。第一颜色条纹、第二颜色条纹交替间隔分布,不仅美观,也可以缓解需要长期注视草坪的人员的视觉疲劳,比如足球场上的球员、裁判、观众等。
图18为一些实施例中提供的另一种自动割草机的结构示意图,该自动割草机300包括:存储器1001、处理器1002及存储在存储器1001上并可在处理器1002上运行的计算机程序。处理器1002执行所述程序时实现上述实施例中提供的自移动设备工作计划调度方法。
进一步地,该自动割草机300还包括:通信接口1003,用于存储器1001和处理器1002之间的通信。存储器1001,用于存放可在处理器1002上运行的计算机程序。存储器1001可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器1002,用于执行所述程序时实现上述实施例所述的自移动设备工作计划调度方法。如果存储器1001、处理器1002和通信接口1003独立实现,则通信接口1003、存储器1001和处理器1002可以通过总线相互连接并完成相互间的通信。所述总线可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended IndustryStandard Architecture,简称为EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选地,在具体实现上,如果存储器1001、处理器1002及通信接口1003,集成在一块芯片上实现,则存储器1001、处理器1002及通信接口1003可以通过内部接口完成相互间的通信。处理器1002可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
本发明还提供一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行存储器存储的计算机程序以实现如上所述的自动割草机100、割草控制装置200的方法步骤。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处 理器执行时实现如上所述的自动割草机100、割草控制装置200的方法步骤。
本发明还提供一种计算机程序产品,包括计算机程序该计算机程序被处理器执行时实现如上所述的自动割草机100、割草控制装置200的方法步骤。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计 算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种自移动设备,所述自移动设备可在草地上移动,所述自移动设备包括:
    机身;
    压草机构,安装于所述机身,所述压草机构包括位于所述机身一侧的压草组件与位于所述机身另一侧的压草组件,用于当所述自移动设备在草地上移动时,在草地上产生位于机身一侧的压痕与位于机身另一侧的压痕,所述位于机身一侧的压痕与所述位于机身另一侧的压痕的宽度相等;
    控制器,安装于所述机身,控制所述自移动设备在草地上的工作区域内移动;
    其特征在于,所述控制器配置为:
    控制所述自移动设备在草地上的工作区域内遍历移动N次,N为大于等于1的奇数;
    在单次遍历移动中,控制所述自移动设备沿着多条平行、间距相等的路径移动,所述单次遍历移动的相邻路径的路径间距为B,且所述单次遍历移动的相邻路径的方向相反,以使所述压草机构在草地上产生第一方向的压痕和第二方向的压痕;
    N次遍历移动中的不同次单次遍历移动的路径不重合,且相互平行;在N次遍历移动后,所述N次遍历移动形成的相邻路径的方向相反,所述N次遍历移动形成的相邻路径的路径间距为B',B'=B/N;
    确定所述路径间距B,以使所述压草机构在草地上产生多条第一方向的压痕和第二方向的压痕,所述第一方向的压痕和所述第二方向的压痕相邻,且间隔排布。
  2. 根据权利要求1所述的自移动设备,其特征在于,所述自移动设备包括移动组件,安装于所述机身,用于带动所述机身移动,所述移动组件包括位于所述机身一侧的移动轮与位于所述机身另一侧的移动轮;所述压草组件包括所述移动轮。
  3. 根据权利要求1或2所述的自移动设备,其特征在于,所述路径间距B是根据所述位于机身一侧的压痕与位于机身另一侧的压痕的外侧跨距D、单侧压痕的宽d确定的;所述路径间距B、外侧跨距D、单侧压痕的宽d满足:4/5ⅹN(D-2d)≤B≤6/5ⅹN(D-2d)。
  4. 根据权利要求3所述的自移动设备,其特征在于,所述路径间距B、外侧跨距D、单侧压痕的宽d满足:B=N(D-2d),D/4≤d<D/3,使所述压草机构产生的多条压痕中的相邻的两条压痕之间的间距小于等于零。
  5. 根据权利要求3所述的自移动设备,其特征在于,所述路径间距B、外侧跨距D、单侧压痕的宽d满足:B<N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20mm),使所述压草机构产生的多条压痕中,不同方向下的两条相邻压痕之间的间距R1满足:0mm≤R1≤40mm,同一方向下的两条相邻压痕的间距R2满足:R2≤0mm
  6. 根据权利要求3所述的自移动设备,其特征在于,所述路径间距B、外侧跨距D和单侧压痕的宽d满足:B>N(D-2d),d≥D/4,且N(2d-40mm)≤B≤N(2d+20)mm,使所述压草机构产生的多条压痕中,同一方向下的两条相邻压痕的间距R2满足:0mm≤R2≤40mm,不同方向下的两条相邻压痕的间距R1满足:-40mm≤R1≤40mm。
  7. 根据权利要求3—6任一权利要求所述的自移动设备,其特征在于,所述自移动设备 为自动割草机,所述自动割草机还包括切割组件,安装于所述机身,用于切割草地上的草,且所述切割组件的中心位于所述机身的纵轴线上;所述切割组件的垂直于所述纵轴线的切割宽度M、和所述路径间距B满足:NM≥B。
  8. 根据权利要求2所述的自移动设备,其特征在于,所述位于机身一侧的移动轮与所述位于机身另一侧的移动轮都包括位于机身前部的移动轮与位于机身后部的移动轮;所述位于机身同一侧的位于机身前部的移动轮与所述位于机身后部的移动轮之间沿垂直于所述移动组件行进方向的间距X满足:X≤40mm。
  9. 根据权利要求1所述的自移动设备,其特征在于,所述自移动设备以弓字路径,或回字路径在草地上的工作区域内遍历移动。
  10. 一种自移动设备的控制方法,所述自移动设备可在草地上移动,所述自移动设备包括:
    机身;
    压草机构,安装于所述机身,所述压草机构包括位于所述机身一侧的压草组件与位于所述机身另一侧的压草组件,用于当所述自移动设备在草地上移动时,在草地上产生位于机身一侧的压痕与位于机身另一侧的压痕,所述位于机身一侧的压痕与所述位于机身另一侧的压痕的宽度相等;
    控制器,安装于所述机身,控制所述自移动设备在草地上的工作区域内移动;
    其特征在于,所述控制方法包括:
    控制所述自移动设备在草地上的工作区域内遍历移动N次,N为大于等于1的奇数;
    在单次遍历移动中,控制所述自移动设备沿着多条平行、间距相等的路径移动,所述单次遍历移动的相邻路径的路径间距为B,且所述单次遍历移动的相邻路径的方向相反,以使所述压草机构在草地上产生第一方向的压痕和第二方向的压痕;
    N次遍历移动中的不同次单次遍历移动的路径不重合,且相互平行;在N次遍历移动后,所述N次遍历移动形成的相邻路径的方向相反,所述N次遍历移动形成的相邻路径的路径间距为B',B'=B/N;
    确定所述路径间距B,以使所述压草机构在草地上产生多条第一方向的压痕和第二方向的压痕,所述第一方向的压痕和所述第二方向的压痕相邻,且间隔排布。
  11. 根据权利要求10所述的方法,其特征在于,所述压草机构包括位于所述机身一侧的压草组件与位于所述机身另一侧的压草组件;所述自移动设备包括移动组件,安装于所述机身,用于带动所述机身移动,所述移动组件包括位于所述机身一侧的移动轮与位于所述机身另一侧的移动轮;所述压草组件包括所述移动轮。
  12. 根据权利要求11所述的方法,其特征在于,其特征在于,所述路径间距B是根据所述位于机身一侧的压痕与位于机身另一侧的压痕的外侧跨距D、单侧压痕的宽d确定的;所述路径间距B、外侧跨距D、单侧压痕的宽d满足:4/5ⅹN(D-2d)≤B≤6/5ⅹN(D-2d)。
  13. 根据权利要求12所述的方法,其特征在于,所述自移动设备为自动割草机,所述自动割草机还包括切割组件,安装于所述机身,用于切割草地上的草,且所述切割组件的中心位于所述机身的纵轴线上;所述切割组件的垂直于所述纵轴线的切割宽度M、和所述路径间距B满足:NM≥B。
PCT/CN2023/117515 2022-09-07 2023-09-07 自移动设备、自移动设备的控制方法及割草控制装置 WO2024051785A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211092721.0 2022-09-07
CN202211092721 2022-09-07
CN202310182475.6 2023-03-01
CN202310182475.6A CN117678412A (zh) 2022-09-07 2023-03-01 自动割草机、自动割草机的控制方法及割草控制装置

Publications (1)

Publication Number Publication Date
WO2024051785A1 true WO2024051785A1 (zh) 2024-03-14

Family

ID=90127223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117515 WO2024051785A1 (zh) 2022-09-07 2023-09-07 自移动设备、自移动设备的控制方法及割草控制装置

Country Status (2)

Country Link
CN (1) CN117678412A (zh)
WO (1) WO2024051785A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102353A (zh) * 1993-07-28 1995-05-10 汉尼斯·雅克伯 在草地上作标志的方法和所使用的设备
US20040233242A1 (en) * 2003-05-20 2004-11-25 Eastman Kodak Company Large area marking device and method for printing
US20090055004A1 (en) * 2007-08-21 2009-02-26 Davis Pete J Method and Apparatus for Creating Visual Effects on Grass
CN205101898U (zh) * 2015-11-05 2016-03-23 北京顺鑫绿洲锦绣园林工程有限公司 一种园林草坪图案生成装置
CN109189062A (zh) * 2018-08-18 2019-01-11 上海七桥机器人有限公司 形成草坪图案的方法及使用其的割草系统
CN113156924A (zh) * 2020-01-07 2021-07-23 苏州宝时得电动工具有限公司 自移动设备的控制方法
CN113311830A (zh) * 2016-06-03 2021-08-27 苏州宝时得电动工具有限公司 自动行走设备及目标区域识别方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102353A (zh) * 1993-07-28 1995-05-10 汉尼斯·雅克伯 在草地上作标志的方法和所使用的设备
US20040233242A1 (en) * 2003-05-20 2004-11-25 Eastman Kodak Company Large area marking device and method for printing
US20090055004A1 (en) * 2007-08-21 2009-02-26 Davis Pete J Method and Apparatus for Creating Visual Effects on Grass
CN205101898U (zh) * 2015-11-05 2016-03-23 北京顺鑫绿洲锦绣园林工程有限公司 一种园林草坪图案生成装置
CN113311830A (zh) * 2016-06-03 2021-08-27 苏州宝时得电动工具有限公司 自动行走设备及目标区域识别方法
CN109189062A (zh) * 2018-08-18 2019-01-11 上海七桥机器人有限公司 形成草坪图案的方法及使用其的割草系统
CN113156924A (zh) * 2020-01-07 2021-07-23 苏州宝时得电动工具有限公司 自移动设备的控制方法

Also Published As

Publication number Publication date
CN117678412A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
USD924978S1 (en) Game controller
EP3376933B1 (de) Robotergestützte bearbeitung einer oberfläche mittels eines roboters
JP6626879B2 (ja) 床面を処理するための方法、及び床処理装置
JP6558868B2 (ja) 組立プロセスにおけるタスク割り当ての動的制御を行うシステム及び方法
Sabelhaus et al. Using continuous-curvature paths to generate feasible headland turn manoeuvres
US20190136464A1 (en) Concrete texturing machine
WO2024051785A1 (zh) 自移动设备、自移动设备的控制方法及割草控制装置
CN110132215B (zh) 农机作业幅宽自动获取方法和农机作业面积获取方法
JP2018187923A (ja) カラー3dプリンティング方法及び3dプリンティング機器
DE102009009818A1 (de) Verfahren zur Erzeugung von Referenzfahrspuren für landwirtschaftliche Fahrzeuge
CN109798124A (zh) 适用于地层由硬岩改软土的盾构刀盘改造方法
CN110338723A (zh) 智能机器人的拖地方法和芯片及拖地机器人
CN111595355A (zh) 一种无人碾压机群路径规划方法
JP2019154393A (ja) 圃場作業車両の走行経路設定装置、圃場作業車両、圃場作業車両の走行経路設定方法および走行経路設定用プログラム
CN110531779A (zh) 一种无人机仿人协同飞行控制器及其实现方法
TWI516327B (zh) 用於控制雷射圖案成形裝置之階段的方法
JP7408686B2 (ja) 自律清掃ロボットのための調節可能パラメータ
CN117941981A (zh) 清洁方法、清洁机器人及计算机可读存储介质
CN109910908A (zh) 一种驾驶参考线处理方法、装置、车辆及服务器
CN108501364A (zh) 一种3dp变图幅宽度的错位打印方法
US9764560B2 (en) Liquid ejecting apparatus and transport amount adjusting method
CN203482814U (zh) 面条辊切装置
JP3746087B2 (ja) 麺線切出し装置
DK2798929T3 (en) A method for automatically parameterizing a control unit of work processes in an agricultural machine, corresponding computer program control unit and agricultural machine
GB2613020A (en) A method of, and apparatus and system for, determining regions for an additive manufacturing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862479

Country of ref document: EP

Kind code of ref document: A1