WO2024051714A1 - 远程控制旋转隔离开关 - Google Patents

远程控制旋转隔离开关 Download PDF

Info

Publication number
WO2024051714A1
WO2024051714A1 PCT/CN2023/117131 CN2023117131W WO2024051714A1 WO 2024051714 A1 WO2024051714 A1 WO 2024051714A1 CN 2023117131 W CN2023117131 W CN 2023117131W WO 2024051714 A1 WO2024051714 A1 WO 2024051714A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
turntable
locking
spring
storage mechanism
Prior art date
Application number
PCT/CN2023/117131
Other languages
English (en)
French (fr)
Inventor
顾哲
葛伟骏
周长青
蒋家鹏
Original Assignee
上海正泰智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海正泰智能科技有限公司 filed Critical 上海正泰智能科技有限公司
Publication of WO2024051714A1 publication Critical patent/WO2024051714A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • H01H19/02Details
    • H01H19/10Movable parts; Contacts mounted thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • H01H19/02Details
    • H01H19/10Movable parts; Contacts mounted thereon
    • H01H19/14Operating parts, e.g. turn knob
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/34Driving mechanisms, i.e. for transmitting driving force to the contacts using ratchet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/20Interlocking, locking, or latching mechanisms
    • H01H9/26Interlocking, locking, or latching mechanisms for interlocking two or more switches

Definitions

  • the invention relates to the field of low-voltage electrical appliances, and in particular to a remote control rotary isolation switch.
  • a rotary isolation switch usually includes a drive-connected operating device and a switch body.
  • the switch body includes a plurality of switch units that are stacked together and closed or opened synchronously under the drive of the operating device.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a remote control rotary isolation switch with good reliability.
  • a remote control rotary isolation switch which includes an operating device and a switch body; the switch body includes at least one switch unit, and the switch unit includes a movable contact assembly that is rotated and a static contact that cooperates with the movable contact assembly;
  • the operating device is drivingly connected to the movable contact assembly of the switch unit, and drives the movable contact assembly to rotate to close or disconnect with the static contact, thereby connecting or breaking the circuit;
  • the operating device includes an operating shaft arranged to rotate around its own axis, Real-time energy storage mechanism, delayed energy storage mechanism, locking mechanism and tripping mechanism, the locking mechanism includes a locking piece, and the tripping mechanism includes a tripper;
  • the remote control rotary isolation switch is in an open state and the delayed energy storage mechanism When in the energy release state, the operating shaft rotates from the opening position to the closing position and drives the operating device to switch to the closing state through the real-time energy storage mechanism.
  • the delayed energy storage mechanism drives the delayed energy storage mechanism to switch to the energy storage state and locks with the locking member.
  • the operating shaft rotates freely between the opening position and the closing position, and at the same time drives the remote control rotary isolation switch in the opening position.
  • the tripper acts after receiving the trip signal, drives the locking member and the delayed energy storage mechanism to unlock, and the delayed energy storage mechanism releases energy to drive and operate the axial opening position Rotate, and the operating shaft drives the real-time operating mechanism to drive the remote control rotary isolation switch to switch to the open state.
  • the delayed energy storage mechanism includes a turntable and a first energy storage spring.
  • the turntable is driven by the operating shaft to rotate from the energy release position to the energy storage position to store energy in the first energy storage spring.
  • the turntable is locked and matched with the locking member.
  • the delayed energy storage mechanism remains in the energy storage state;
  • the turntable is coaxially arranged with the operating shaft.
  • the turntable includes a turntable shaft hole and at least one turntable driven hole.
  • the turntable is rotated and sleeved on the operating shaft through the turntable shaft hole.
  • the turntable driven hole includes a first surface and a second driven hole. noodle;
  • the operating shaft includes a driving finger, which is arranged in the driven hole of the turntable;
  • the driving finger presses the first surface to rotate the turntable toward the energy storage position
  • the remote control rotary switch When the remote control rotary switch is in the closing state, there is an opening idle stroke between the second surface and the driving finger.
  • the delayed energy storage mechanism releases energy
  • the first energy storage spring releases energy and drives the turntable to rotate toward the energy release position.
  • the first side rotates toward the opening position through the drive finger driving operation axis.
  • the driven hole of the turntable is a sector-shaped hole arranged concentrically with the axis hole of the turntable, and the two ends of the sector-shaped hole in the circumferential direction are respectively provided with a first surface and a second surface.
  • the turntable further includes a turntable locking arm; one end of the locking member is rotated and the other end cooperates with the release, and the locking member includes a locking member locking portion disposed in its middle; the turntable is released by The position rotates to the energy storage position, and the turntable locking arm presses against the locking part of the locking part to rotate the locking part in the first direction to avoid the turntable locking arm. After the turntable locking arm passes over the locking part of the locking part, the locking part rotates in the second direction.
  • the tripper acts after receiving the tripping signal, and drives the locking member to Rotate in the first direction to release the limiting fit between the locking component and the turntable locking arm.
  • the first energy storage spring is a torsion spring, and the first energy storage spring, the turntable and the operating shaft are coaxially arranged;
  • the delay energy storage mechanism also includes a first bushing, and the first bushing rotates the sleeve It is provided on the operating shaft and is located between the first energy storage spring and the operating shaft.
  • the real-time energy storage mechanism includes a second energy storage spring, a sliding frame, a rotating frame, an output shaft and a housing base.
  • the output shaft rotates around its own axis and is mounted on the housing base.
  • the rotating frame is fixedly connected to the operating shaft.
  • Synchronous rotation the sliding frame rotates synchronously with the output shaft and is slidably arranged relative to the housing base and the output shaft.
  • the housing base includes two limiting grooves spaced apart along the rotation direction of the output shaft, namely the opening groove. and closing slot;
  • the sliding frame is limitedly matched with a limit groove, and the operating shaft drives the rotating frame to rotate so that the second energy storage spring stores energy to the rotating frame to cooperate with the sliding frame.
  • the operating shaft continues to rotate to drive the sliding frame relative to the housing through the rotating frame.
  • the base slides out of the limiting groove, and the second energy storage spring releases energy to drive the sliding frame to rotate and slide into another limiting groove.
  • the sliding frame drives the output shaft to rotate.
  • the second energy storage spring is a torsion spring
  • the second energy storage spring, the rotating frame, the output shaft and the operating shaft are coaxially arranged
  • the second energy storing spring, the rotating frame, the sliding frame and the output shaft are arranged in sequence; so
  • the real-time energy storage mechanism also includes a second bushing, which is rotatably sleeved on the operating shaft and inserted between the operating shaft and the second energy storage spring.
  • the operating device further includes a device housing, which includes a first space for accommodating a delayed energy storage mechanism and a second space for accommodating a real-time energy storage mechanism.
  • the first space and the second space are arranged along the
  • the operating shaft is axially distributed, and a partition plate is provided between the first space and the second space.
  • the partition plate is provided with a partition shaft hole for the operating shaft to pass through; one end of the operating shaft protrudes outside the device housing. For operation, the other end passes through the first space and the partition axis hole in sequence and is inserted into the second space.
  • the device housing includes a housing upper cover, a housing partition and a housing base arranged in sequence.
  • the housing upper cover and the housing partition are buckled together to form a first space.
  • the housing partition and the housing base are The second space is enclosed by buckling, and the housing partition includes a dividing plate.
  • the delay energy storage mechanism further includes a gasket, the gasket is arranged on the housing partition of the device housing, and the turntable of the delay energy storage mechanism is rotated and arranged on the gasket.
  • the gasket includes a gasket escape hole for the operating shaft to pass through, a gasket countersunk hole and a gasket opening provided on the side facing the turntable.
  • the inner diameter of the gasket countersunk hole is larger than the inner diameter of the gasket escape hole.
  • the opening of the gasket is connected with the countersunk hole of the gasket, and the driving key of the delayed energy storage mechanism enters the countersunk hole of the gasket through the opening of the gasket, is inserted into the operating shaft, and rotates in the countersunk hole of the gasket.
  • the first energy storage spring of the delay energy storage mechanism is a torsion spring, and its two ends are respectively a first spring fixed end and a first spring driven end, and the first spring fixed end is fixedly arranged on the housing partition.
  • the first driven end of the spring cooperates with the turntable of the delay energy storage mechanism;
  • the housing partition includes a turntable stop.
  • the turntable and the turntable stop cooperate in a limited manner, so that the turntable stops and the turntable stops. The turntable stops at the release position.
  • the turntable includes a turntable main board and a turntable locking arm and a turntable matching arm respectively provided on the turntable main board.
  • the turntable matching arm cooperates with the first spring fitting end; when the delay energy storage mechanism is in the energy storage state, the turntable The locking arm is locked and matched with the locking piece; when the delayed energy storage mechanism is in an energy release state, the turntable locking arm is limitedly matched with the turntable stop.
  • the delayed energy storage mechanism realizes the remote tripping and opening function, and does not affect the manual operation of the operating shaft to drive the operating device to open and close; the delayed energy storage mechanism releases energy, and through operation
  • the opening of the shaft drive operating device is beneficial to improving the working reliability and stability of the remote control rotary isolation switch.
  • the operating device has a reasonable layout, which is conducive to reducing the overall structural complexity of the operating device, facilitating assembly and installation, and improving the working reliability and stability of the operating device.
  • Figure 1 is a schematic diagram of the overall three-dimensional structure of the rotary isolation switch of the present invention.
  • Figure 2 is a schematic structural diagram of the disassembled operating device and switch body of the present invention.
  • FIG. 3 is a schematic structural diagram of the switch body of the present invention.
  • the switch body is composed of multiple switch units stacked;
  • Figure 4 is a schematic projection view of the time-delay energy storage mechanism, locking mechanism and tripping mechanism of the present invention.
  • the time-delay energy storage mechanism is in an energy release state;
  • Figure 5 is a schematic three-dimensional structural diagram of the delayed energy storage mechanism, locking mechanism and tripping mechanism of the present invention.
  • the delayed energy storage mechanism is in the process of switching from the energy release state to the energy storage state;
  • Figure 6 is a schematic projection view of the time-delay energy storage mechanism, locking mechanism and tripping mechanism of the present invention.
  • the time-delay energy storage mechanism is in an energy storage state;
  • Figure 7 is a schematic three-dimensional structural diagram of the time-delay energy storage mechanism, locking mechanism and tripping mechanism of the present invention.
  • the time-delay energy storage mechanism is in an energy storage state;
  • Figure 8 is a schematic three-dimensional structural diagram of the time-delay energy storage mechanism, locking mechanism and tripping mechanism of the present invention.
  • the tripping mechanism is in a non-tripped state;
  • Figure 9 is a schematic three-dimensional structural diagram of the time-delay energy storage mechanism and the tripping mechanism of the present invention.
  • the tripping mechanism is in the tripping state;
  • Figure 10 is a schematic three-dimensional structural diagram of the real-time energy storage mechanism of the present invention.
  • Figure 11 is a schematic diagram of the exploded structure of the real-time energy storage mechanism of the present invention.
  • Figure 12 is a schematic diagram of the assembly structure of the operating shaft, the first energy storage spring and the rotating frame of the present invention.
  • Figure 13 is a schematic diagram of the assembly structure of the sliding frame and the output shaft of the present invention.
  • Figure 14 is a schematic diagram of the assembly structure of the sliding frame and the output shaft of the present invention from another perspective;
  • Figure 15 is a schematic projection of the real-time energy storage mechanism of the present invention, with the operating shaft in the opening position;
  • Figure 16 is a schematic three-dimensional structural diagram of the real-time energy storage mechanism of the present invention.
  • the operating shaft is in the process of rotating from the opening position to the closing position, and the rotating frame and the sliding frame are initially contacted to limit the position;
  • FIG 17 is a schematic projection of the real-time energy storage mechanism of the present invention.
  • the operating shaft is in the process of rotating from the opening position to the closing position, and the sliding frame Come out from the opening slot;
  • Figure 18 is a schematic three-dimensional structural diagram of the real-time energy storage mechanism of the present invention, with the operating shaft in the closing position;
  • Figure 19a is a schematic exploded view of the delayed energy storage mechanism of the present invention.
  • Figure 19b is a schematic structural diagram of the delayed energy storage mechanism of the present invention, showing the cooperative relationship between the driving finger and the turntable;
  • Figure 20 is a schematic structural diagram of the gasket of the present invention.
  • Figure 21 is a schematic structural diagram of the turntable of the present invention.
  • Figure 22 is a schematic structural diagram of the first bushing of the present invention.
  • Figure 23 is a schematic cross-sectional structural view of the device housing of the present invention.
  • Figure 24 is a schematic exploded view of the device housing of the present invention.
  • Figure 25a is a schematic structural diagram of the housing panel of the present invention.
  • Figure 25b is a schematic structural diagram of the upper cover of the housing of the present invention.
  • Figure 25c is a schematic structural diagram of the housing partition of the present invention.
  • Figure 25d is a schematic structural diagram of the housing base of the present invention.
  • Figure 26a is a schematic structural diagram of the locking member of the present invention.
  • Figure 26b is a schematic diagram of the cooperation between the locking component and the turntable of the present invention.
  • Figure 27 is a schematic projection view of the switch unit of the present invention.
  • Figure 28 is an exploded structural schematic diagram of the switch unit of the present invention.
  • Figure 29 is a schematic structural diagram of the unit shell of the present invention.
  • Figure 30 is a schematic three-dimensional structural diagram of the moving contact shaft of the present invention.
  • Figure 31 is a schematic cross-sectional structural diagram of the moving contact shaft of the present invention.
  • Figure 32 is a schematic exploded view of the handle, handle connecting screw and operating shaft of the present invention.
  • Figure 33 is a schematic structural diagram of the handle of the present invention.
  • the present invention discloses an isolation switch, preferably a rotary isolation switch, and further preferably a remote control rotary switch, which includes a drivingly connected operating device 1 and a switch body 2.
  • the operating device 1 The drive switch body 2 connects or breaks the circuit. Furthermore, the operating device 1 and the switch body 2 are fixedly connected through a connecting piece.
  • the connector has an excellent Selected as a bolt, the bolt includes a screw rod 3 and a nut 114.
  • the screw rod 3 passes through the switch body 2 and is threadedly connected to the nut 114 fixed on the operating device 1.
  • the operating device 1 and the switch body 2 are connected in other ways, such as through rivets or buckles, ultrasonic welding or heat riveting.
  • the switch body 2 includes at least one switch unit.
  • the switch unit includes a rotatably arranged movable contact assembly 225 and a stationary contact 223 that cooperates with the movable contact assembly 225; the operation
  • the device 1 is drivingly connected to the movable contact assembly 225 of the switch unit, and drives the movable contact assembly 225 to rotate to close or disconnect with the stationary contact 223, thereby connecting or breaking the circuit.
  • the switch body 2 includes a plurality of stacked switch units, and the movable contact assemblies 225 of each switch unit are arranged to rotate in conjunction with each other.
  • the operating device 1 includes an operating shaft 1131 that is arranged to rotate around its own axis, a delayed energy storage mechanism, a real-time energy storage mechanism, a locking mechanism and a tripping mechanism; the operating shaft 1131 operates during opening Rotate between the position and the closing position to output the opening and closing operating force to the real-time energy storage mechanism; the real-time energy storage mechanism includes a second energy storage spring 1133, and the operating shaft 1131 is in transmission cooperation with the real-time energy storage mechanism for driving the second energy storage mechanism.
  • the energy storage spring 1133 first stores energy and then releases energy to drive the operating device 1 to quickly switch between the opening state and the closing state.
  • the operating device 1 drives the switch body 2 to quickly break or connect the circuit; the operating shaft 1131 is driven by the closing state.
  • the real-time energy storage mechanism drives the operating device 1 to switch to the opening state.
  • the real-time energy storage mechanism drives the operating device 1 to switch to the closing position.
  • the delay energy storage mechanism includes a first energy storage spring 126, and the delay energy storage mechanism has an energy storage state in which the first energy storage spring 126 stores energy and an energy release state in which the first energy storage spring 126 releases energy;
  • the locking mechanism is used to lock the delayed energy storage mechanism in the energy storage state;
  • the tripping mechanism is used to trigger the locking mechanism to unlock and cooperate with the delayed energy storage mechanism to release energy from the delayed energy storage mechanism.
  • the state switches to the energy release state to drive the operating device 1 to switch from the closing state to the opening state; when the operating shaft 1131 rotates from the opening position to the closing position, the delayed energy storage mechanism is driven to switch from the energy releasing state to the opening state.
  • Energy storage state, and the delay energy storage mechanism locks and cooperates with the locking mechanism to be locked in the energy storage state; when the delay energy storage mechanism is locked in the energy storage state by the locking mechanism, it avoids the operating shaft 1131, that is, the operation is performed at this time
  • the shaft 1131 rotates between the closing position and the opening position without affecting the state of the delayed energy storage mechanism.
  • the operating shaft 1131 rotates from the opening position to the closing position, and the real-time energy storage mechanism drives the operating device 1 to switch to In the closing state, the delay energy storage mechanism is driven to switch to the energy storage state and the delay energy storage mechanism locks with the locking mechanism to maintain the energy storage state; in the energy storage state, the delay energy storage mechanism operates the shaft 1131 Switch freely between the closing position and the opening position, that is to say, external force can be directly applied to the operating shaft 1131 to drive it to rotate between the opening position and the closing position to drive the operating device 1 between the opening state and the closing state.
  • the operating device 1 can be opened in two ways.
  • One way is to turn the operating shaft 1131 with external force to manually drive the operating device 1 to open, and the other way is to trip the operating device 1 through remote control.
  • the mechanism inputs a trip signal, and the action of the trip mechanism triggers the delayed energy storage mechanism to release energy.
  • the delayed energy storage mechanism drives the operating device 1 to open, thereby realizing remote opening control of the rotary isolation switch.
  • the locking mechanism includes a locking member 122, which is used to lock and cooperate with the delayed energy storage mechanism to lock it in an energy storage state;
  • the tripping mechanism includes a release 134, and the release 134 It is preferably a magnetic flux release, used to drive the locking member 122 to unlock and cooperate with the delayed energy storage mechanism; after the delayed energy storage mechanism is switched to the energy storage state, it locks and cooperates with the locking member 122 to maintain In the energy storage state; after the tripping mechanism receives the tripping signal, the tripper 134 operates to drive the locking member 122 to unlock the cooperation with the delayed energy storage mechanism.
  • the operating device 1 also includes a device housing, in which the delayed energy storage mechanism, the real-time energy storage mechanism, the locking mechanism and the tripping mechanism are all arranged.
  • the device housing includes a first space s1 and a second space s2 arranged along the axial direction of the operating shaft 1131, and a partition plate p is provided between the first space s1 and the second space s2.
  • the delayed energy storage mechanism is set in the first space s1
  • the real-time energy storage mechanism is set in the second space s2
  • the partition plate p is set with a partition shaft hole 1023 for the operating shaft 1131 to pass through, and the operating shaft 1131 is rotated and inserted In the first space s1 and the second space s2 and in cooperation with the delayed energy storage mechanism and the real-time energy storage mechanism respectively, one end of the operating shaft 1131 protrudes outside the device housing for operation, and the other end passes through the first space s1 and the first space s1 and the real-time energy storage mechanism respectively.
  • the partition plate p is inserted into the second space s2.
  • the device housing includes a housing upper cover 103, a housing partition 102 and a housing base 101 that are matched in sequence.
  • the housing upper cover 103 and the housing partition 102 are buckled together.
  • the first space s1 is formed.
  • the housing partition 102 and the housing base 101 are fastened together to form a second space s2.
  • the housing partition 102 includes a partition plate p.
  • the device housing also includes a housing panel 104.
  • the housing panel 104 and the housing partition plate 102 are respectively located on both sides of the housing upper cover 103.
  • the housing panel 104 and the housing The upper cover 103 is fixedly connected.
  • a panel clamping foot 1041 is provided on the side of the housing panel 104 facing the housing upper cover 103; as shown in Figure 25b, the housing upper cover 103 faces the housing panel 104.
  • the side of the housing panel 104 away from the housing upper cover 103 is provided with an arc-shaped convex surface with an arc cross-section.
  • the two ends of the arc-shaped convex surface in the length direction are respectively in contact with the shell.
  • Both ends of the body panel 104 are flush;
  • the side of the housing upper cover 103 facing the housing panel 104 is also provided with an upper cover axis column base, and the upper cover axis column is arranged on the upper cover axis column base, with an arc-shaped convex
  • Matching panel openings is a middle part of the rising surface for the shaft base of the upper cover to pass through and match it. Matching panel openings.
  • the housing panel 104 can also be connected to the housing upper cover 103 through screws, ultrasonic riveting, thermal riveting, etc.
  • the locking mechanism is preferably arranged in the first space s1.
  • the device housing further includes a third space s3 for accommodating the tripping mechanism.
  • the third space s3 and the second space s2 are arranged side by side along the radial direction of the operating shaft 1131 .
  • the operating device 1 also includes a handle 4. After operation, the end of the operating device 1131 away from the real-time energy storage mechanism is the operating shaft connection end, which is used for plug-in connection with the handle 4.
  • the connecting end of the operating shaft is provided with two operating shaft limiting surfaces 11313.
  • the two operating shaft limiting surfaces 11313 are parallel to the axial direction of the operating shaft 1131.
  • the two operating shaft limiting surfaces 11313 are distributed in a figure-eight shape; a handle connecting hole 41 is provided in the middle of the handle 4, and the shape of the handle connecting hole 41 matches the connecting end of the operating shaft.
  • the two operating shaft limiting surfaces 11313 are symmetrically arranged on both sides of the axial section of the operating shaft 1131 .
  • the operating device 1 also includes a handle connecting screw 5.
  • the handle connecting screw 5 passes through the handle 4 along the axial direction of the operating shaft 1131 and then is threadedly connected to the operating shaft screw hole 11315 at the connecting end of the operating shaft to raise the handle 4. Reliability of connection with operating shaft 1131.
  • the real-time energy storage mechanism when the operating shaft 1131 rotates between the closing position and the opening position to complete the closing and opening operations through the real-time energy storage mechanism, the real-time The energy storage mechanism all goes through the process of first storing energy and then releasing energy.
  • the switch body 2 preferably does not move.
  • the real-time energy storage mechanism releases energy, the switch body 2 is driven to switch between the closed and breaking states;
  • the real-time energy storage mechanism includes the second energy storage spring 1133 and the output shaft 111.
  • the energy storage and energy release process of the real-time energy storage mechanism is the energy storage and energy release process of the second energy storage spring 1133.
  • the second energy storage spring 1133 stores energy
  • the output shaft 111 does not rotate.
  • the second energy storage spring 1133 releases energy it drives the output shaft 111 to rotate, and the output shaft 111 drives the switch body 2 to close or break the circuit.
  • the real-time energy storage mechanism includes a second energy storage spring 1133, a rotating frame 1134 fixedly connected to the operating shaft 1131, a sliding frame 112, an output shaft 111 and a housing base 101; the operating shaft 1131 drives the rotating frame 1134 to rotate relative to the sliding frame 112 until it matches the sliding frame 112 and stores energy in the second energy storage spring 1133.
  • the sliding frame 112 has two locking positions and is connected to the housing base 101 in the two locking positions. The locking fit prevents the sliding frame 112 from rotating.
  • the operating shaft 1133 continues to rotate and drives the sliding frame 112 to slide relative to the housing base 101 at a locking position through the rotating frame 1134 to release the locking fit with the housing base 101.
  • the second energy storage The spring 1133 releases its energy to drive the sliding frame 112 to rotate and then slide into another locking position.
  • the sliding frame 112 drives the output shaft 111 to rotate.
  • the output shaft 111 is rotated around its own axis and is installed on the housing base 101.
  • the sliding frame 112 is rotated synchronously with the output shaft 111 and the sliding frame 112 is slidably installed relative to the housing base 101 and the output shaft 111.
  • the housing The base 101 includes two limit slots spaced apart along the rotation direction of the output shaft 111, namely opening slots 1012-13 and closing slots 1015-16; the sliding frame 112 is limited to a limit slot at a locking position.
  • the operating shaft 1131 drives the rotating frame 1134 to rotate relative to the sliding frame 112 until the rotating frame 1134 and the sliding frame 112 are limitedly matched.
  • the second energy storage spring 1133 is stored.
  • the operating shaft 1131 continues to rotate to be driven by the rotating frame 1134
  • the sliding frame 112 slides out of the limiting groove relative to the housing base 101, and the second energy storage spring 1133 releases its energy to drive the sliding frame 112 to rotate and slide into another limiting groove, so that the sliding frame 112 reaches another locking position.
  • the sliding frame 112 drives the output shaft 111 to rotate, and the output shaft 111 drives the switch body 2 to close or open the circuit.
  • the operating shaft 1131 rotates between the closing position and the opening position to switch the sliding frame 112 between the two limiting slots. Specifically, as shown in Figure 15, the operating shaft 1131 is located in the opening position and the sliding frame 112 is limitedly matched with the opening groove 1012-13. The external force causes the operating shaft 1131 to rotate clockwise, and the operating shaft 1131 drives the rotating frame 1134 to move relative to each other.
  • the second energy storage spring 1133 stores energy until the rotating frame 1134 and the sliding frame 112 are limitedly matched (for example, contact the limiting position), as shown in Figure 16; as shown in Figure 17, the operating shaft 1131 continues to rotate clockwise, and the rotating frame 1134 drives the sliding frame 112 to slide relative to the output shaft 111 to escape from the opening slot 1012-13.
  • the second energy storage spring 1133 begins to release energy and drives the sliding frame 112 to rotate clockwise and then slide. Enter the closing slot 1015-16, as shown in Figure 18.
  • the operating shaft 1131 is in the closing position and the sliding frame 112 is limitedly matched with the closing slot 1015-16.
  • the external force causes the operating shaft 1131 to rotate counterclockwise, and the operating shaft 1131 drives the rotating frame 1134 relative to the sliding frame.
  • 112 rotates while storing energy in the second energy storage spring 1133, until the rotating frame 1134 contacts and cooperates with the sliding frame 112; the operating shaft 1131 continues to rotate counterclockwise, and the rotating frame 1134 drives the sliding frame 112 relative to the output shaft 111 to follow the combination.
  • the second energy storage spring 1133 starts to release its energy and drives the sliding frame 112 to rotate counterclockwise and then slide into the gate opening slot 1012-13, as shown in Figure 15.
  • the operating shaft 1131 is fixedly connected to the rotating frame 1134, and the other end passes through the upper cover 103 of the housing and protrudes outside the device housing for operation.
  • the upper cover 103 includes an upper cover shaft, and an upper cover shaft hole 1031 is provided in the middle of the upper cover shaft for the operating shaft 1131 to pass through.
  • the operating shaft 1131 is provided with a sealing ring 1132, and the sealing ring 1132 is located between the inner wall of the upper cover shaft hole 1031 and the operating shaft 1131; the sealing ring 1132 is conducive to reducing the distance between the operating shaft 1131 and the upper cover.
  • the friction force of the cover shaft hole 1031 is used to realize the sealing of the upper cover shaft hole 1031.
  • the operating shaft 1131 is provided with an annular groove 11312 for accommodating the sealing ring 1132 .
  • the second energy storage spring 1133 is a torsion spring and is rotatably sleeved on the operating shaft 1131. Further, the second energy storage spring 1133, the rotating frame 1134, the output shaft 111 and the operating shaft 1131 are coaxially arranged, and the second energy storing spring 1133, the rotating frame 1134, the sliding frame 112 and the output shaft 111 are arranged in sequence; The sliding frame 112 slides in the radial direction of the output shaft 111 .
  • the second energy storage spring 1133 can also be other forms of springs, such as compression springs.
  • Two compression springs are symmetrically disposed at both radial ends of the rotating frame 1134 and are rotationally connected to them respectively. This structure will This results in an increase in the size of the real-time energy storage mechanism and takes up more installation space.
  • the real-time energy storage mechanism also includes a second bushing 1135.
  • the second bushing 1135 is rotatably sleeved on the operating shaft 1131 and inserted between the second energy storage spring 1133 and the operating shaft 1131. time, it can effectively prevent the second energy storage spring 1133 from locking when torsion, and can better fix the second energy storage spring 1133 to prevent it from deflecting, ensuring the reliable and stable operation of the real-time energy storage mechanism.
  • the second energy storage spring 1133 includes a second spring spiral body that is rotatably sleeved on the operating shaft 1131.
  • the two ends of the second spring spiral body are flush with the two ends of the second bushing 1135 or located on both sides of the second bushing 1135. between the ends, the second energy storage spring 1133 and the operating shaft 1131 are separated to the greatest extent, thereby preventing the second energy storage spring 1133 from locking the operating shaft 1131 and ensuring reliable operation of the real-time energy storage mechanism.
  • one end of the second bushing 1135 is against the rotating frame 1134, and the other end is against the limiting table on the operating shaft 1131; the second energy storage spring of the second bushing 1135 and the second energy storage spring 1133
  • One end of the spiral body is against the rotating frame 1134, and the other end of the second bushing 1135 protrudes outside the other end of the second energy storage spring spiral body or they are flush with each other.
  • the rotating frame 1134 is a U-shaped structure, which includes a rotating frame bottom plate 11340 and two rotating frame arms arranged oppositely; as shown in Figure 10-14, the sliding frame 112 is U-shaped. structure, which includes a sliding frame bottom plate 1120 and two sliding frame arms arranged oppositely; as shown in Figure 10-12, the two rotating frame arms are located between the two sliding frame arms, and the second energy storage spring 1133 includes a second spring The spiral body and two second spring elastic arms respectively connected to the second spring spiral body.
  • the two second spring elastic arms are preferably located on the same plane.
  • the rotating arm and the sliding arm are located on the same line connecting the two second spring elastic arms.
  • a rotating arm and a sliding arm are located side by side on the radial side of the operating shaft 1131 to cooperate with a second spring elastic arm of the second energy storage spring 1133, and the other rotating arm and the other sliding arm are located on the operating shaft 1131
  • the other radial side of the shaft 1131 cooperates with the other second spring elastic arm of the second energy storage spring 1133.
  • the second energy storage spring 1133 applies force to the sliding frame 112 to prevent it from coming out of the limiting groove.
  • the two rotary frame arms of the rotary frame 1134 are the closing rotary frame arm 11343 and the opening rotary frame arm 11344; as shown in Figures 10-11 and 13, the The two sliding frame arms of the sliding frame 112 are the closing sliding frame arm 1122c and the opening sliding frame arm 1122o.
  • the two ends of the second energy storage spring 1133 are respectively the first end of the second spring. 11331 and the second end of the second spring 11332; as shown in Figures 10-11, 14, and 18, the first end of the second spring 11331 and the second end of the second spring 11332 are located on the same side of the rotating arm and the sliding arm.
  • the first end 11331 of the second spring cooperates with the closing rotating arm 11343 and the closing sliding arm 1122c arranged side by side
  • the second end 11332 of the second spring cooperates with the opening rotating arm 11344 and the opening sliding arm 1122o arranged side by side.
  • the opening rotating frame arm 11344 moves away from the second end 11332 of the second spring.
  • the operating shaft 1131 continues to rotate and drives the sliding frame 112 to slide relative to the output shaft 111 through the rotating frame 1134 to escape from the opening slot 1012-13.
  • the second energy storage spring 1133 begins to release energy, and is resisted by the second end 11332 of the second spring. Press the opening sliding frame arm 1122o to rotate the sliding frame 112 until the sliding frame 112 slides into the closing groove 1015-16.
  • the second end of the second spring 11332 cooperates with the opening rotating clamp arm 11344 again, and the sliding frame 112 drives the output shaft at the same time.
  • the output shaft 111 drives the switch body 2 to close the circuit; as shown in Figures 18 and 15, when the operating shaft 1131 rotates from the closing position to the opening position (preferably counterclockwise), the operating shaft 1131 drives the rotating frame 1134 rotates, the opening rotating frame arm 11344 presses the second end of the second spring 1132 to cause the second energy storage spring 1133 to twist and store energy until the rotating frame 1134 contacts the opening sliding frame arm 1122o of the sliding frame 112, and at the same time the closing rotation
  • the frame arm 11343 moves away from the first end 11331 of the second spring, the operating shaft 113 continues to rotate and drives the sliding frame 112 to slide relative to the output shaft 111 through the rotating frame 1134 to disengage from the closing groove 1015-16, and the second energy storage spring 1133 starts The energy is released, and the first end of the second spring 11331 presses the closing sliding frame arm 1122c to cause the sliding frame 112 to rotate until the sliding frame 112 slides into the opening groove 1012-13, and the first end of the second spring
  • one end of the rotating frame bottom plate 11340 of the rotating frame 1134 is provided with a rotating frame driving part.
  • the rotating frame driving part presses the sliding frame arm of the sliding frame 112 to drive the sliding frame 112 relative to
  • the housing base 101 slides to escape from the limiting groove of the housing base 101 .
  • the housing base 101 also includes a transition arc surface 1014. Both ends of the transition arc surface 1014 are connected to the opening slot 1012-13 and the closing slot 1015-16 respectively.
  • the sliding frame 112 slides through the transition arc. Surface 1014 is used to switch between the opening slot 1012-13 and the closing slot 1015-16.
  • the sliding frame bottom plate 1120 of the sliding frame 112 includes a sliding frame limiting end 1123 provided at one end thereof, and the end surface of the sliding frame limiting end 1123 matches the transition arc surface 1014.
  • the arc surface of the sliding frame ensures that the sliding frame 112 slides smoothly into the corresponding limiting groove.
  • the opening slots 1012-13 include first opening slot side surfaces 1012 and second opening slot side surfaces 1013 that are relatively spaced apart
  • the closing slots 1015-16 include first opening slot side surfaces that are relatively spaced apart.
  • the closing slot side 1015 and the second closing slot side 1016, the second opening slot side 1013 and the first closing slot side 1015 are connected to both ends of the transition arc surface 1014 respectively.
  • the second opening slot side 1013 and The first closing slot side 1015 is symmetrically arranged and distributed in a figure-eight shape.
  • the distance between the second opening slot side 1013 and the end of the first closing slot side 1015 connected to the transition arc surface 1014 is smaller than the second opening slot side 1013 and the first closing slot side 1015 .
  • the first opening slot side 1012 and the second opening slot side 1013 are symmetrically arranged; the first closing slot side 1015 and the second closing slot side 1016 are symmetrically arranged.
  • the sliding frame bottom plate 1120 is provided with a sliding frame chute 1124
  • the output shaft 111 includes an output shaft driven part 1110
  • a sliding boss 1112 is provided on the side of the output shaft driven part 1110 facing the sliding frame bottom plate 1120.
  • the width of the sliding frame chute 1124 matches the width of the sliding boss 1112
  • the length of the sliding frame chute 1124 is greater than the length of the sliding boss 1112
  • the sliding frame bottom plate 1120 is sleeved on the sliding boss 1112 through the sliding frame chute 1124.
  • the sliding frame bottom plate 1120 slides along the radial direction of the output shaft 111 .
  • the output shaft 111 also includes an output shaft positioning hole 1113; as shown in Figure 12, one end of the operating shaft 1131 close to the output shaft 111 is rotated and inserted into the output shaft positioning hole 1113; The output shaft positioning hole 1113 cooperates with the operating shaft to ensure that the output shaft 111 and the operating shaft 1131 are coaxial.
  • the output shaft positioning hole 1113 includes a first hole section and a second hole section that are coaxially arranged and connected to each other. The inner diameter of the first hole section is greater than the inner diameter of the second hole section; as shown in Figure 12
  • the operating shaft 1131 includes an operating shaft positioning column 11311 disposed on one end thereof facing the output shaft 111.
  • the outer diameter of the operating shaft positioning column 11311 is smaller than the outer diameter of the operating shaft 1131.
  • the operating shaft positioning column 11311 passes through the first The hole section is then rotated and inserted into the second hole section, and the operating shaft 1131 is rotated and inserted into the first hole section.
  • the output shaft 111 also includes an output shaft driving part 1111.
  • One end of the output shaft driving part 111 is coaxially connected to the output shaft driven part 1110, and the other end is provided with a driving part connection hole 1114 for connecting to the switch body.
  • the moving contact assemblies of each switch unit in 2 are driven and connected.
  • the driving part connecting hole 1114 includes a square countersunk hole and cylindrical countersunk holes respectively provided at four vertex corners of the square countersunk hole, and the cylindrical countersunk holes are connected with the square countersunk hole.
  • the upper cover base 101 is provided with a base assembly groove 1010u, a base counterbore 1010m and a base shaft hole 1011d arranged in sequence.
  • the opening slots 1012-13 and the closing slots 1015-16 are both arranged in the base assembly slot.
  • the sliding frame 112 is slidably disposed in the base assembly groove 1010u
  • the base counterbore 1010m and the base shaft hole 1011d are coaxially disposed
  • the output shaft driven part 1110 and the output shaft driving part 111 of the output shaft 111 are respectively rotatably disposed in the base sink.
  • hole 1010m and base shaft hole 1011d are respectively rotatably disposed in the base sink.
  • the delayed energy storage mechanism is used to provide energy to the opening of the operating device, that is, the delayed energy storage mechanism provides energy to the opening of the operating device.
  • the operating shaft 1131 provides the driving force to drive it to rotate from the closing position to the opening position.
  • the delayed energy storage mechanism includes a first energy storage spring 126, and the operating shaft 1131 rotates from the opening position to the closing position to drive the operation.
  • the first energy storage spring 126 is driven to store energy, that is, the delay energy storage mechanism is driven to switch from the energy release state to the energy storage state.
  • the delay energy storage mechanism releases energy, also That is, the first energy storage spring 126 releases its energy to provide the operating shaft 1131 with a driving force to rotate from the closing position to the opening position.
  • the delayed energy storage mechanism releases energy to drive the operating shaft 1131 to rotate, and then the operating shaft 1131 drives the operating device 1 to switch to the opening state through the real-time energy storage mechanism, and the delayed energy storage mechanism drives the operation.
  • the transmission path when device 1 is opened is: delayed energy storage mechanism ⁇ operating shaft 1131 ⁇ real-time energy storage mechanism.
  • the overall operation device is simplified. structure, improves working stability and reliability. Whether it is manual operation or remote control, the rotary isolation switch in this embodiment needs to output the opening or closing operating force through the operating shaft 1131, and complete the opening or closing operation through the real-time energy storage mechanism.
  • the delayed energy storage mechanism includes a turntable 127 and a first energy storage spring 126.
  • the turntable 127 is driven by the operating shaft 1131 and rotates from the energy release position to the energy storage position to cause the first energy storage spring 126 to store energy. can, and the turntable 127 is locked in the energy storage position to keep the delayed energy storage mechanism in the energy storage state;
  • the operating shaft 1131 is in the closing position, that is, the operating device 1 is in the closing state, the turntable 127 and the operating shaft 1131
  • the external force drives the operating shaft 1131 to rotate.
  • the operating shaft 1131 rotates from the closing position to the opening position to switch the operating device 1 to the opening state. At the same time, it goes through the opening idle stroke relative to the turntable 127.
  • the turntable 127 locks and cooperates with the locking member 122 of the locking mechanism to lock the turntable 127 in the energy storage position.
  • the turntable 127 is coaxially arranged with the operating shaft 1131.
  • the turntable 127 includes a turntable main plate 1270.
  • the turntable main plate 1270 is provided with a turntable shaft hole 1271 and at least one turntable driven hole 1276.
  • the turntable 127 is rotated and sleeved on the operating shaft 1131 through the turntable shaft hole 1271.
  • the turntable driven hole 1276 includes a first surface 12761 and a second surface 12762; the delayed energy storage mechanism includes a device fixed on the operating shaft 1131 that rotates synchronously with it.
  • the driving finger is arranged in the driven hole 1276 of the turntable; the driving finger presses the first surface 12761 to rotate the turntable 127 to the energy storage position; as shown in Figure 19b, when the operating shaft 1131 is in the closing position, There is an opening idle stroke between the second surface 12762 and the driving finger.
  • the opening idle stroke is preferably a sector-shaped avoidance angle between the driving finger and the second surface 12762. At this time, the operating shaft 1131 rotates from the closing position to the opening position.
  • the operating shaft 1131 drives the driving finger to go through the opening idle stroke relative to the turntable 127, and the driving finger also moves relative to the turntable 127
  • the second surface 12762 rotates through the sector-shaped avoidance angle, and at the same time, a closing idle stroke is formed between the driving finger and the first surface 12761.
  • the operating shaft 1131 rotates from the opening position to the closing position, and the operating shaft 1131 drives the drive Refers to the closing idle stroke relative to the turntable 127, and the closing idle stroke is formed again between the driving finger and the second surface 12762. That is to say, the delayed energy storage mechanism is in the energy storage state (the turntable 127 is in the energy storage state).
  • the operating shaft 1131 can rotate freely between the closing position and the opening position relative to the turntable 127 without affecting the state of the delayed energy storage mechanism, that is, the delayed energy storage mechanism will remain in the energy storage state; so When the delayed energy storage mechanism releases energy, the first energy storage spring 126 releases energy and drives the turntable 127 to rotate toward the energy release position.
  • the first surface 12761 cooperates with the driving finger to drive the operating shaft 1131 to rotate toward the opening position.
  • the operating shaft 1131 is preferably The real-time energy storage mechanism drives the operating device 1 to switch to the open state.
  • the driving finger when the operating shaft 1131 drives the delayed energy storage mechanism to store energy, it presses against the first surface 12761 and drives the turntable 127 to rotate from the energy release position to the energy storage position; when the delayed energy storage mechanism releases energy, When enabled, the turntable 127 rotates from the energy storage position to the energy release position and presses the driving finger through the first surface 12761.
  • the driving finger drives the operating shaft 1131 to rotate from the closing position to the opening position.
  • the turntable driven hole 1276 is a sector-shaped hole arranged concentrically with the turntable shaft hole 1271 , and a first surface 12761 and a second surface 12762 are respectively provided at both ends of the sector-shaped hole in the circumferential direction.
  • the turntable 127 includes two sector-shaped holes, which are symmetrically arranged on both radial sides of the turntable shaft hole 1271;
  • the delay energy storage mechanism also includes a driving key 128, which operates along The radial direction of the shaft 1131 is inserted thereon and the two ends of the driving key 128 respectively protrude on both radial sides of the operating shaft 1131 as driving fingers, which are respectively arranged in two sector-shaped holes.
  • the radial inner ends of the two sector-shaped holes are connected with the turntable shaft hole 1271, and the three are integrated into a dumbbell-shaped structure; as shown in Figures 12 and 19a-19b, the operating shaft 1131 is provided with a drive shaft. Part 128 is inserted into the operating shaft socket 11314.
  • the opening idle stroke between the turntable 127 and the operating shaft 1131 can also be achieved in the following manner. Specifically: the operating shaft 1131 is provided with a sector-shaped groove, and the center of the sector-shaped groove coincides with the axis of the operating shaft 1131.
  • the two ends of the groove in the circumferential direction are respectively two driving surfaces, which are the first driving surface and the second driving surface respectively;
  • the turntable 127 includes a turntable driven finger arranged in the turntable shaft hole 1271, and the turntable driven finger is inserted into Placed in the sector-shaped groove; when the operating shaft 1131 rotates from the opening position to the closing position, the first driving surface presses the turntable and is driven to cause the turntable 127 to rotate from the energy release position to the energy storage position, and the turntable 127 is locked in the storage position. position, there is an opening idle stroke between the second driving surface and the driven finger of the turntable.
  • the operating shaft 1131 rotates from the closing position to the opening position, the operating shaft 1131 travels through the opening idle stroke relative to the turntable 127.
  • the operating shaft 1131 rotates from the opening position to the opening position, and the operating shaft 1131 travels through the closing idle stroke relative to the driven finger of the turntable. That is to say, when the delayed energy storage mechanism is in the energy storage state (the turntable 127 is in the energy storage position), the operating shaft 1131 can freely rotate between the closing position and the opening position to drive the operating device in the closing state and the opening position. Switch between open status.
  • the first energy storage spring 126 is a torsion spring that is rotatably sleeved on the operating shaft 1131.
  • the first energy storage spring 126, the turntable 127 and the operating shaft 1131 are coaxially arranged.
  • the two ends of the first energy storage spring 126 are respectively a fixed first spring fixed end 1261 and a first spring driven end 1262 that cooperates with the turntable 127.
  • the turntable 127 rotates toward the energy storage position to drive the first spring driven end 1262 to swing.
  • the first energy storage spring 126 is caused to twist and store energy.
  • the first energy storage spring 126 includes a first spring spiral body, a first spring fixed end 1261 and a first spring driven end 1262.
  • the first spring fixed end 1261 and the first spring driven end 1262 are respectively connected with the first spring driven end 1261 .
  • the spring spiral body is connected at both ends.
  • the first energy storage spring 126 is a linear compression spring, with one end rotatably mounted on the housing partition 102 of the device housing, and the other end rotatably connected to the turntable 127; the turntable 127 moves from the energy release position to the housing partition 102.
  • the rotation of the energy storage position causes the first energy storage spring 126 to be compressed and store energy.
  • the energy storage position of the turntable 127 is before the dead center position of the first energy storage spring 126.
  • the dead center position of the first energy storage spring 126 refers to the first energy storage spring 126.
  • the position of the first energy storage spring 126 when the geometric axis of the energy storage spring 126 and the axis of the turntable 127 are on the same straight line.
  • the first energy storage spring 126 can also be replaced by a torsion spring. Both ends of the torsion spring are rotatably connected to the housing partition 102 and the turntable 127 respectively. At this time, the dead center position of the first energy storage spring 126 refers to the torsion spring. The position of the first energy storage spring 126 when the two ends of the spring and the rotating disk 127 are on the same straight line. The above implementation method will increase the space occupied by the delay energy storage mechanism. Therefore, in this embodiment, the first energy storage spring 126 is preferably a torsion spring that is rotatably sleeved on the operating shaft 1131 .
  • the turntable 127 includes a turntable main plate 1270 and a turntable matching arm 1275-77.
  • One end of the first spring fixed end 1261 of the first energy storage spring 126 is fixed on the device housing.
  • the first spring driven end 1262 cooperates with the turntable matching arm 1275-77, and the turntable 127 pushes the first spring driven end 1262 to swing through the turntable matching arm 1275-77 to cause the first energy storage spring 126 to twist and store energy.
  • the turntable 127 is rotatably installed on the housing partition 102 of the device housing.
  • the housing partition 102 is provided with a turntable stop 1026 and a housing partition spring limiting groove 1025.
  • the first spring fixed end 1261 is fixed on In the spring limit groove 1025 of the housing partition, the turntable stop 1026 and the turntable matching arm 1275-77 limitly cooperate to limit the turntable 127 to the energy release position.
  • the housing partition spring limit groove 1025 is provided on the turntable stop 1026; the turntable matching arms 1275-77 include oppositely arranged turntable matching arm limiting side edges 1277 and turntable matching arm matching side edges 1275 , the limit side edge 1277 of the turntable matching arm cooperates with the turntable stop 1026, and the matching side edge 1275 of the turntable matching arm cooperates with the first spring driven end 1262.
  • the turntable matching arms 1275-77 are connected to the plane where the turntable main plate 1270 is located by bending. Further, the turntable matching arms 1275-77 rotate 1270 perpendicular to the turntable.
  • the delayed energy storage mechanism also includes a first bushing 124.
  • the first bushing 124 is rotatably sleeved on the operating shaft. 1131 and is inserted between the first energy storage spring 126 and the operating shaft 1131 to prevent the first energy storage spring 126 from locking the operating shaft 1131 when the first energy storage spring 126 is torsion and energy storage, and can better fix the first energy storage spring. 126, to prevent its deflection and ensure reliable and stable operation of the delayed energy storage mechanism; one end of the first bushing 124 offsets the turntable 127, limiting the turntable 127 between the first bushing 124 and the housing partition 102. Keeping the turntable 127 in a horizontal state (that is, perpendicular to the axial direction of the operating shaft 1131 ) prevents the turntable 127 from warping under the torsion torque of the first energy storage spring 126 .
  • the delayed energy storage mechanism also includes a gasket 121 provided on the housing partition 102 of the device housing; as shown in Figures 19a-19b and 23-24, the The first bushing 124 includes a first bushing head 1242 and a first bushing body 1241 that are coaxially arranged and connected to each other.
  • the outer diameter of the first bushing head 1242 is larger than the outer diameter of the first bushing body 1241 and larger than the first energy storage.
  • the outer diameter of the first spring spiral body of the spring 126, the first bushing body 1241 is inserted between the first spring spiral body and the operating shaft 1131, the gasket 121 is provided on the housing partition 102, the first energy storage spring 126, The turntable 127 and the gasket 121 are arranged in sequence between the housing upper cover 103 and the housing partition 102.
  • the first bushing head 1242 cooperates with the housing upper cover 103 to limit the axial movement of the first bushing 124 along the operating shaft 1131.
  • the first spring spiral body is located between the first bushing head 1242 and the turntable 127.
  • the turntable 127 is rotated and set on the gasket 121.
  • the gasket 121 protects the housing partition 102 to prevent the rotation of the turntable 127 from wearing the housing partition 102. Conducive to improving service life. Furthermore, one end of the first bushing body 1241 is connected to the first bushing head 1242, and the other end is provided with a plurality of sliding protrusions 1245. The sliding protrusions 1245 offset the turntable 127, which is beneficial to reducing the distance between the first bushing 124 and the first bushing head 1242.
  • the locking surface 1274 remains in a horizontal state to maintain a limited fit with the locking component locking surface 1223-0 of the locking component 122 in the horizontal direction;
  • the plurality of sliding protrusions 1245 are preferably along the circumference of the first bushing body 1241 Evenly distributed on the free end of the first bushing body 1241.
  • the gasket 121 is provided with a gasket escape hole 1211 for the operating shaft 1131 to pass through, a gasket countersunk hole 1212 provided on the side of the gasket 121 facing the turntable 127, and a gasket escape hole 1212 for the extension.
  • the inner diameter of the gasket countersunk hole 1212 is larger than the inner diameter of the gasket escape hole 1211 and smaller than the outer diameter of the turntable main plate 1270 of the turntable 127.
  • the gasket opening 1216 and the gasket The counterbore 1212 is connected, and the driving key 128 enters the gasket counterbore 1212 through the gasket opening 1216, is inserted into the operating shaft 1131, and swings in the gasket counterbore 1212; when assembling the operating device, first move the operating shaft 1131 Assembled with the real-time energy storage mechanism and then the delayed energy storage mechanism, the gasket opening 1216 facilitates the assembly of the driving key 128 and the operating shaft 1131, thereby improving assembly efficiency.
  • the gasket 121 also includes a first gasket slot 1214 and a second gasket slot 1215. The two gasket slots are respectively provided on two opposite sides of the gasket 121 and are respectively connected with the gasket 121.
  • the housing partition 102 of the device housing snap-fits.
  • the housing partition 102 is provided with a gasket installation groove 1021, and the bottom wall of the gasket installation groove 1021 is provided with a partition shaft hole 1023 for the operating shaft 1131 to pass through.
  • partition plate clamping stations respectively matched with the first gasket clamping slot 1214 and the second gasket clamping slot 1215, namely the first partition plate clamping station and the second partition plate clamping station.
  • the locking member 122 of the locking mechanism is rotated and includes a locking member main plate 1222 and a locking member locking portion 1223; the turntable 127 also includes a locking member arranged on the turntable.
  • the turntable locking arms 1273-74 on the main board 1270 (as an external structure that is limited to cooperate with the locking part 1223 of the locking part 122); when the turntable 127 is rotating from the energy release position to the energy storage position (i.e. When the turntable 127 drives the first energy storage spring 126 to store energy), the turntable locking arms 1273-74 press the locking part 1223 to cause the locking part 122 to rotate in the first direction to avoid the turntable locking arms 1273-74.
  • the locking part 122 rotates in the second direction to reset and cooperate with the turntable locking arm 1273-74 to limit the turntable 127 to the energy storage position to delay the delay.
  • the energy storage mechanism remains in the energy storage state; the first direction and the second direction are opposite to each other: the locking member 122 rotates in the first direction (unlocking direction) to avoid the turntable locking arms 1273-74 to lock the turntable.
  • the arms 1273-74 and the locking part 1223 of the latch are unlocked, and the first energy storage spring 126 releases energy to drive the turntable 127 to rotate from the energy storage position to the energy release position.
  • the locking part locking part 1223 is provided on the side edge of the locking part main plate 1222 facing the turntable 127 .
  • one end of the locking member 122 is a pivoting end of the locking member, and the other end is provided with a driven portion 1221 of the locking member.
  • the locking member 122 is rotated through the pivoting end of the locking member.
  • External force for example, the release device 134 of the release mechanism
  • the locking member driven part 1221 is bent and connected to the locking member main plate 1222, and the plane where the locking member driven part 1221 is located intersects with the locking member main plate 1222.
  • the plane of the locking component passive part 1221 is perpendicular to the plane of the locking component main plate 1222.
  • One end of the locking component main plate 1222 connected to the locking component passive part 1221 is connected to the locking component passive part 1221 Side edges flush.
  • the pivot end of the lock is provided with a lock shaft hole 1222-0; as shown in Figures 4-7 and 19a-19b, the locking mechanism also includes a shell fixed on the device housing.
  • the lock shaft 125 on the body partition 102, the lock 122 is rotated on the lock shaft 125 through the lock shaft hole 1222-0.
  • the locking element locking portion 1223 includes a locking element locking surface 1223-0.
  • the locking element locking surface 1223-0 is located on a line extending along the extension direction of the locking element main plate 1222 and passing through it.
  • the straight line L1 side of the rotation center O of the locking member 122 .
  • the locking member locking surface 1223-0 is located below the straight line L1, and the external structure cooperates with it from the side of the locking member locking surface 1223-0 to exert a force parallel to the straight line.
  • the force of L1 causes the locking member 122 to rotate in the locking direction; the locking direction and the unlocking direction are opposite to each other.
  • connection line between the rotation center O of the locking member 122 and the contact point between the turntable locking arm 1273-74 and the locking surface 1223-0 of the locking part is a straight line L2; the turntable locking arm 1273- 74
  • the force applied to the locking surface 1223-0 of the locking portion extends in the direction of the straight line L3, the straight line L3 is located below the straight line L2, and the straight line L2 is located below the straight line L1.
  • the locking part locking part 1223 includes a locking part guide surface 1223-1 and a locking part locking surface 1223-0, and the turntable locking arm 1273-74 presses the locking part
  • the guide surface 1223-1 causes the locking member 122 to rotate in the first direction
  • the turntable locking arm 1273-74 cooperates with the locking surface 1223-0 of the locking portion to lock the turntable 127 in the energy storage position.
  • the locking part locking part 1223 and the locking part main plate 1222 are coplanar.
  • the locking part locking part 1223 is provided on the side edge of the locking part main plate 1222 facing the turntable main plate 1270.
  • the locking part locking part 1223 is wedge-shaped. structure, its large-diameter end is connected to the main plate 1222 of the locking member, and the tip faces the main plate 1270 of the turntable.
  • the rotation plane of the turntable main plate 1270 is perpendicular to the operating axis 1131, and the plane of the turntable locking arms 1273-74 is parallel to the plane of the turntable main plate 1270.
  • the turntable locking arms 1273-74 are preferably aligned with the turntable main plate 1270. Coplanar.
  • the turntable locking arms 1273-74 include a locking arm matching part, which is a right-angled plate structure, with one right-angled side connected to the turntable main plate 1270, and the other right-angled side connected to the locking surface 1223-0 of the locking part. Limiting fit, the inclined surface matches the locking part guide surface 1223-1.
  • the turntable locking arms 1273-74 include a turntable locking arm mating surface 1273 and a turntable locking arm locking surface 1274.
  • the turntable locking arm mating surface 1273 is a chamfered bevel, which cooperates with the locking portion guide bevel 1223-1.
  • the locking arm locking surface 1274 cooperates with the locking portion locking surface 1223-0.
  • the locking member guide surface 1223-1 is an inclined plane, and the inclined surface is inclined from an end close to the pivoting end of the locking member in a direction away from the locking member main plate 1222.
  • the locking part locking part 1223 is not provided with the locking part guide surface 1223-1, and the turntable locking arm 1273-74 is provided with a locking arm guide surface.
  • the locking arm guide surface presses against the free end of the locking part 1223 of the locking component, causing the locking component 122 to rotate in the first direction to avoid the turntable locking arms 1273-74.
  • the locking component 122 is preferably an integrated structure.
  • the locking mechanism also includes a locking member reset element 123.
  • the locking member reset element 123 applies force to the locking member 122 to rotate the locking member 122 in the second direction. to reset.
  • the locking component main board 1222 includes a locking component reset part 1222-1 for cooperating with the locking component reset element 123.
  • the locking component reset part 1222-1 is forced by the locking component reset element 123 to cause the locking component 122 to Rotating in the locking direction, the locking member driven portion 1221 is acted upon by an external force to cause the locking member 122 to rotate in the unlocking direction.
  • the locking direction and the unlocking direction are opposite to each other. Further, as shown in Figure 26b, the locking direction is counterclockwise, and the unlocking direction is clockwise.
  • the locking member reset portion 1222-1 is provided on a portion of the locking member other than the pivoting end of the locking member.
  • the locking member reset part 1222-1 is a mainboard limiting groove provided on the locking member main plate 1222.
  • the mainboard limiting groove and the locking member locking portion 1223 are respectively located on a pair of sides of the locking member main plate 1222.
  • the main plate limiting groove and the locking part locking part 1223 are respectively provided on the upper and lower side edges of the locking part main plate 1222.
  • the locking component reset portion 1222-1 is a hole provided on the locking component main plate 1222, or a rib provided on one side or both sides of the locking component main plate 1222.
  • the locking member reset element 123 is a tension spring, one end of which is connected to the housing partition 102 of the device housing, and the other end is connected to the locking member 122.
  • the locking member 122 also includes a mainboard limiting groove 1222-1 provided on the mainboard 1222 of the locking member, and one end of the tension spring is hung in the mainboard limiting groove 1222-1; the mainboard limiting groove 1222 -1 and the locking component locking portion 1223 are respectively provided on a pair of opposite side edges of the locking component main plate 1222.
  • the locking member reset element 123 may also be a torsion spring.
  • the torsion spring is sleeved on the rotating shaft of the locking member 122 (for example, the locking shaft 125), and one end is fixed on the housing partition 102, and the other end is fixed on the housing partition 102. One end is matched with the main board 1222 of the lock fastener.
  • the main board 1222 of the locking component includes a first section, a second section and a third section of the mainboard that are connected in sequence and are coplanar.
  • One end of the first section of the mainboard is the pivot end of the locking component.
  • the other end is connected to one end of the second section of the mainboard, the other end of the second section of the mainboard is connected to one end of the third section of the mainboard, and the other end of the third section of the mainboard is bent and connected to the passive part 1221 of the locking member;
  • the width of the first section of the mainboard is greater than The width of the second section of the mainboard, one side edge of the first section of the mainboard and the second section of the mainboard are flush, the other side edge of the first section of the mainboard and the locking part 1223 protrude from the other side edge of the second section of the mainboard , the third section of the mainboard is offset relative to the second section of the mainboard toward the side where the fastener locking portion 1223 is located.
  • a first escape groove is provided between the first section of the main board and the locking part 1223 of the locking part.
  • the turntable locking arms 1273-74 of the turntable 127 first enter the first avoiding groove and then cooperate with the locking part 1223 of the locking part.
  • a second avoidance groove is provided between the third section of the main board and the locking member locking portion 1223, and the turntable locking arms 1273-74 enter the second relief groove after passing over the locking member locking portion 1223.
  • the upper edge of the first section of the mainboard and the second section of the mainboard are flush, and the lower edge of the first section of the mainboard and the locking part 1223 of the locking member protrude from the first section of the mainboard. below the lower lateral edge of segment 2;
  • the third section of the main board is entirely offset downward relative to the second section of the main board.
  • the switch unit includes a unit housing 221 and a movable contact assembly 225, a movable contact rotating shaft 222 and a static contact 223 provided in the unit housing 221.
  • the movable contact assembly 225 includes a contact The contact support and the movable contact arranged on the contact support are arranged in the unit housing 221 through the rotation of the movable contact rotating shaft 222.
  • Two sets of static contacts 223 are respectively arranged on both radial sides of the movable contact assembly 225. side and cooperate with both ends of the moving contact respectively.
  • the switch unit also includes an arc extinguishing chamber 224.
  • the two arc extinguishing chambers 224 are respectively arranged on both radial sides of the movable contact 225 and cooperate with the two sets of static contacts 223 respectively.
  • the movable contact rotating shafts 222 of adjacent switch units are connected to each other and rotate synchronously to achieve linkage of each switch unit.
  • a support shaft hole is provided in the middle of the contact support; as shown in Figure 30-31, the movable contact shaft 222 includes a shaft base 2221-22 and a shaft column 2223-24.
  • the contact shaft 222 is rotated and installed in the unit housing 221 through the shaft base 2221-22.
  • the shaft column 2223-24 is inserted into the support shaft hole and the two are limitedly matched to realize the contact support and the moving contact shaft 222. Rotate synchronously.
  • the rotating shaft column 2223-24 includes a rotating shaft column lower section 2223 and a rotating shaft column upper section 2224.
  • One end of the rotating shaft column lower section 2223 is connected to the rotating shaft base 2221-22, and the other end is connected to the rotating shaft column upper section 2224;
  • the lower section 2223 of the rotating shaft column is inserted into the support shaft hole of the contact support, and the upper section 2224 of the rotating shaft column and the rotating shaft base 2221-22 are respectively located on both sides of the contact support.
  • the lower section 2223 of the rotating shaft column and the upper section 2224 of the rotating shaft column are coaxially arranged and both are square columns.
  • the width of the lower section 2223 of the rotating shaft column is greater than the width of the upper section 2224 of the rotating shaft column.
  • the rotating shaft base 2221-22 includes an upper rotating shaft base section 2222 and a rotating shaft base lower section 2221.
  • One end of the rotating shaft base upper section 2222 is connected to the rotating shaft column 2223-24, and the other end is connected to the rotating shaft base lower section 2221.
  • the rotating shaft base The upper section 2222 and the lower section 2221 of the rotating shaft base are two cylinders arranged coaxially.
  • the outer diameter of the upper section 2222 of the rotating shaft base is larger than the outer diameter of the lower section 2221 of the rotating shaft base.
  • the bottom wall of the unit housing 221 is provided with a unit housing shaft hole 2211 and a unit housing counterbore 2212 that communicate with each other.
  • the inner diameter of the unit housing counterbore 2212 is larger than that of the unit housing shaft hole 2211.
  • Inner diameter, the inner diameter of the unit housing counterbore 2212 matches the outer diameter of the rotating shaft base upper section 2222, the inner diameter of the unit housing shaft hole 2211 matches the outer diameter of the rotating shaft base lower section 2221; the rotating shaft base lower section 2221 passes through the unit housing sink
  • the hole 2212 is rotatably disposed in the unit housing shaft hole 2211, and the upper section 2222 of the rotating shaft base is rotatably disposed in the unit housing counterbore 2212.
  • a rotating shaft base connection hole 2226 is provided in the middle of the rotating shaft base 2221-22; in the switch body 2, there are two adjacent moving contact rotating shafts 222 and a rotating shaft column 2223 of the moving contact rotating shaft 222.
  • the free end of -24 is inserted into the shaft base connection hole 2226 of another moving contact shaft 222 to achieve synchronous rotation of the two moving contact shafts.
  • the switch unit adjacent to the operating device 1 has a moving contact shaft.
  • the free end of the rotating shaft column 2223-24 of 222 is inserted into the driving part connection hole 1114 of the output shaft 111 of the real-time energy storage mechanism to realize the synchronous rotation of the moving contact rotating shaft 222 and the output shaft 111.
  • a first blind hole 2227 is provided on the bottom wall of the shaft base connection hole 2226, and a second blind hole 2228 is provided in the middle of the upper section 2222 of the shaft column 2221-22;
  • the switch unit also includes Polygonal metal connecting shaft, the cross-sectional shape of the polygonal metal connecting shaft matches the cross-sectional shape of the first blind hole 2227 and the second blind hole 2228;
  • two adjacent movable contact rotating shafts 222 are connected through the polygonal metal connecting shaft, One end of the metal connecting shaft is inserted into the first blind hole 2227 of one moving contact rotating shaft 222 to cooperate with its limiting position, and the other end is inserted into the second blind hole 2228 of another moving contact rotating shaft 222 to cooperate with its limiting position, thereby improving the adjacent moving contact.
  • the polygonal metal connecting shaft may be a regular polygonal metal cylinder or an irregular-shaped metal cylinder.
  • the first blind hole 2227 is located in the middle of the upper section 2224 of the rotating shaft column, and the second blind hole 2228 is located in the middle of the lower section 2223 of the rotating shaft column, with a partition plate between them.
  • the bottom wall of the unit housing 221 is also provided with a unit housing slot 2214 for assembling an arc ignition structure.
  • the unit housing slot 2214 is located outside the unit housing counterbore 2212 .
  • the unit housing 221 is also provided with a unit housing through hole 2215, and the screw 3 passes through the unit housing through hole 2215 to connect the unit housings 221 together. Further, the unit housing 221 is provided with two unit housing through holes 2215, which are respectively provided on both radial sides of the unit housing counterbore 2212.
  • the unit housing 221 of each switch unit is provided with an exhaust port corresponding to the arc extinguishing chamber 224, and the exhaust ports of adjacent unit housings 221 are staggered;
  • the switch units are divided into three types, the first middle switch unit 22, the second middle switch unit 23 and the tail switch unit 21.
  • the first middle switch unit 22 and the second middle switch unit 23 are arranged alternately. The difference between them is that: the exhaust port layout position of the unit housing 221 is different, the layout of each component in the unit housing 221 is adjusted accordingly, the tail end switch unit 21 is located at the end of the switch body 2 away from the operating device 1, the tail end switch unit 21
  • the unit housing shaft hole 2211 of the unit housing 221 is a blind hole.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanisms For Operating Contacts (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

一种远程控制旋转隔离开关,包括操作装置(1)和开关本体(2),开关本体(2)包括至少一个开关单元,开关单元包括动触头组件(225)以及静触头;操作装置(1)与开关单元的动触头组件(225)传动连接,驱动动触头组件(225)转动从而与静触头接触或分离,实现电路的接通或分断;操作装置(1)包括操作轴(1131)、实时储能机构、延时储能机构、锁定机构和脱扣机构,锁定机构包括锁扣件(122),脱扣机构包括脱扣器(134);脱扣器(134)收到脱扣信号后动作,驱动锁扣件(122)解除对延时储能机构的锁定,延时储能机构释能从而驱动操作轴(1131)向分闸位置转动,远程控制旋转隔离开关切换至分闸状态;该远程控制旋转隔离开关可靠性好。

Description

远程控制旋转隔离开关 技术领域
本发明涉及低压电器领域,具体涉及一种远程控制旋转隔离开关。
背景技术
旋转隔离开关通常包括驱动相连的操作装置和开关本体,开关本体包括多个堆叠在一起且在操作装置的驱动下同步闭合或分断的开关单元。随着旋转隔离开关的广泛应用,对旋转隔离开关提出了新的功能需求:即系统线路故障时,旋转隔离开关具备远程脱扣功能,而在故障清除可手动合闸,同时远程脱扣功能不影响隔离开关手动合分闸操作。
现有旋转隔离开关,其延时储能机构释能时,直接通过实时储能机构驱动分闸,造成旋转隔离开关结构复杂且稳定性差。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种远程控制旋转隔离开关,其可靠性好。
为实现上述目的,本发明采用了如下技术方案:
一种远程控制旋转隔离开关,其包括操作装置和开关本体;所述开关本体包括至少一个开关单元,开关单元包括转动设置的动触头组件以及与动触头组件配合的静触头;所述操作装置与开关单元的动触头组件驱动相连,驱动动触头组件转动而与静触头闭合或断开,从而接通或分断电路;所述操作装置包括绕自身轴线转动设置的操作轴、实时储能机构、延时储能机构、锁定机构和脱扣机构,锁定机构包括锁扣件,脱扣机构包括脱扣器;所述远程控制旋转隔离开关处于分闸状态且延时储能机构处于释能状态时,操作轴由分闸位置向合闸位置转动且通过实时储能机构驱动操作装置切换至合闸状态,同时驱动延时储能机构切换至储能状态且与锁扣件锁定配合使延时储能机构保持在储能状态;所述延时储能机构在储能状态下,操作轴在分闸位置与合闸位置之间自由转动,同时驱动远程控制旋转隔离开关在分闸状态和合闸状态之间自由切换;所述脱扣器收到脱扣信号后动作,驱动锁扣件与延时储能机构解除锁定,延时储能机构释能驱动操作轴向分闸位置转动,操作轴再驱动实时操作机构驱动远程控制旋转隔离开关切换至分闸状态。
优选的,所述延时储能机构包括转盘和第一储能弹簧,转盘受操作轴驱动由释能位置转动至储能位置使第一储能弹簧储能,转盘与锁扣件锁定配合使延时储能机构保持在储能状态;
所述远程控制旋转开关在合闸状态下,转盘与操作轴之间存在分闸空行程,外力驱动操作轴转动使其通过实时储能机构驱动远程控制旋转开关切换至分闸状态,同时相对于转盘走过分闸空行程。
优选的,所述转盘与操作轴同轴设置,转盘包括转盘轴孔和至少一个转盘受动孔,转盘通过转盘轴孔转动套设在操作轴上,转盘受动孔包括第一面和第二面;
所述操作轴包括驱动指,驱动指设置在转盘受动孔内;
所述驱动指抵压第一面使转盘向储能位置转动;
所述远程控制旋转开关处于合闸状态时,第二面与驱动指之间存在分闸空行程,延时储能机构释能时,第一储能弹簧释能驱动转盘向释能位置转动,第一面通过驱动指驱动操作轴向分闸位置转动。
优选的,所述转盘受动孔为与转盘轴孔同圆心设置的扇面形孔,扇面形孔的圆周方向上的两端分别设有第一面和第二面。
优选的,所述转盘还包括转盘锁定臂;所述锁扣件一端转动设置,另一端与脱扣器配合,锁扣件包括设置在其中部的锁扣件锁定部;所述转盘由释能位置向储能位置转动,转盘锁定臂抵压锁扣件锁定部使锁扣件向第一方向转动以避让转盘锁定臂,转盘锁定臂越过锁扣件锁定部后,锁扣件向第二方向转动复位,与转盘锁定臂限位配合将转盘锁定在储能位置;所述第一方向和第二方向互为反方向;所述脱扣器收到脱扣信号后动作,驱动锁扣件向第一方向转动,使锁扣件与转盘锁定臂解除限位配合。
优选的,所述第一储能弹簧为扭簧,所述第一储能弹簧、转盘和操作轴同轴设置;所述延时储能机构还包括第一衬套,第一衬套转动套设在操作轴上且位于第一储能弹簧和操作轴之间。
优选的,所述实时储能机构包括第二储能弹簧、滑动架、旋转架、输出轴和壳体底座,输出轴绕自身轴线转动设置在壳体底座上,旋转架与操作轴固定相连且同步转动,滑动架与输出轴同步转动设置且相对于壳体底座和输出轴滑动设置,壳体底座包括两个沿输出轴的转动方向间隔分布的限位槽,分别为分闸槽 和合闸槽;
所述滑动架与一个限位槽限位配合,操作轴带动旋转架转动使第二储能弹簧储能至旋转架与滑动架配合,操作轴继续转动以通过旋转架驱动滑动架相对于壳体底座滑动从该限位槽中脱出,第二储能弹簧释能驱动滑动架转动并滑入另一个限位槽内,同时滑动架带动输出轴转动。
优选的,所述第二储能弹簧为扭簧,第二储能弹簧、旋转架、输出轴和操作轴同轴设置,第二储能弹簧、旋转架、滑动架和输出轴依次设置;所述实时储能机构还包括第二衬套,第二衬套转动套设在操作轴上且插置在操作轴和第二储能弹簧之间。
优选的,所述操作装置还包括装置壳体,装置壳体包括用于容纳延时储能机构的第一空间和用于容纳实时储能机构的第二空间,第一空间和第二空间沿操作轴的轴向分布,第一空间和第二空间之间设有分隔板,分隔板设有供操作轴穿过的隔板轴孔;所述操作轴一端凸出在装置壳体外部供操作,另一端依次穿过第一空间和隔板轴孔插入第二空间内。
优选的,所述装置壳体包括依次设置的壳体上盖、壳体隔板和壳体底座,壳体上盖和壳体隔板扣合围成第一空间,壳体隔板和壳体底座扣合围成第二空间,壳体隔板包括分隔板。
优选的,所述延时储能机构还包括垫片,垫片设置在装置壳体的壳体隔板上,延时储能机构的转盘转动设置在垫片上。
优选的,所述垫片包括供操作轴穿过的垫片避让孔、设置在面向转盘一侧上的垫片沉孔以及垫片开口,垫片沉孔的内径大于垫片避让孔内径,垫片开口与垫片沉孔连通,延时储能机构的驱动键经由垫片开口进入垫片沉孔内插置在操作轴,在垫片沉孔内转动。
优选的,所述延时储能机构的第一储能弹簧为扭簧,其两端分别为第一弹簧固定端和第一弹簧受动端,第一弹簧固定端固定设置在壳体隔板上,第一弹簧受动端与延时储能机构的转盘配合;所述壳体隔板包括转盘挡台,延时储能机构在释能状态下,转盘与转盘挡台限位配合,使转盘停止在释能位置处。
优选的,所述转盘包括转盘主板以及分别设置在转盘主板上的转盘锁定臂和转盘配合臂,转盘配合臂与第一弹簧配合端配合;所述延时储能机构在储能状态下,转盘锁定臂与锁扣件锁定配合;所述延时储能机构在释能状态下,转盘锁定臂与转盘挡台限位配合。
本发明的远程控制旋转隔离开关,其延时储能机构实现了远程脱扣分闸功能,而且不影响手动操作操作轴驱动操作装置分合闸;所述延时储能机构释能,通过操作轴驱动操作装置分闸,有利于提高远程控制旋转隔离开关的工作可靠性和稳定性。
此外,所述操作装置布局合理,有利于降低操作装置的整体结构复杂性,便于装配和安装,提高了操作装置的工作可靠性和稳定性。
附图说明
图1是本发明旋转隔离开关的整体立体结构示意图;
图2是本发明拆分后的操作装置和开关本体的结构示意图;
图3是本发明开关本体的结构示意图,开关本体由多个开关单元堆叠而成;
图4是本发明延时储能机构、锁定机构和脱扣机构的投影示意图,延时储能机构处于释能状态;
图5是本发明延时储能机构、锁定机构和脱扣机构的立体结构示意图,延时储能机构处于由释能状态向储能状态切换过程中;
图6是本发明延时储能机构、锁定机构和脱扣机构的投影示意图,延时储能机构处于储能状态;
图7是本发明延时储能机构、锁定机构和脱扣机构的立体结构示意图,延时储能机构处于储能状态;
图8是本发明延时储能机构、锁扣机构和脱扣机构的立体结构示意图,脱扣机构处于未脱扣状态;
图9是本发明延时储能机构和脱扣机构的立体结构示意图,脱扣机构处于脱扣状态;
图10是本发明实时储能机构的立体结构示意图;
图11是本发明实时储能机构的分解结构示意图;
图12是本发明操作轴、第一储能弹簧和旋转架的装配结构示意图;
图13是本发明滑动架与输出轴的装配结构示意图;
图14是本发明滑动架与输出轴在另一视角下的装配结构示意图;
图15是本发明实时储能机构的投影示意图,操作轴在分闸位置;
图16是本发明实时储能机构的立体结构示意图,操作轴处于由分闸位置向合闸位置转动过程中,旋转架与滑动架初始接触限位;
图17是本发明实时储能机构的投影示意图,操作轴处于由分闸位置向合闸位置转动过程中,滑动架 从分闸槽中脱出;
图18是本发明实时储能机构的立体结构示意图,操作轴在合闸位置;
图19a是本发明延时储能机构的分解结构示意图;
图19b是本发明延时储能机构的结构示意图,示出了驱动指与转盘的配合关系;
图20是本发明垫片的结构示意图;
图21是本发明转盘的结构示意图;
图22是本发明第一衬套的结构示意图;
图23是本发明装置壳体的剖面结构示意图;
图24是本发明装置壳体的分解结构示意图;
图25a是本发明壳体面板的结构示意图;
图25b是本发明壳体上盖的结构示意图;
图25c是本发明壳体隔板的结构示意图;
图25d是本发明壳体底座的结构示意图;
图26a是本发明锁扣件的结构示意图;
图26b是本发明锁扣件与转盘的配合示意图;
图27是本发明开关单元的投影示意图;
图28是本发明开关单元的分解结构示意图;
图29是本发明单元壳体的结构示意图;
图30是本发明动触头转轴的立体结构示意图;
图31是本发明动触头转轴的剖面结构示意图;
图32是本发明手柄、手柄连接螺钉和操作轴的分解结构示意图;
图33是本发明手柄的结构示意图。
附图标记说明
第一空间s1;第二空间s2;分隔板p;操作装置1;壳体底座101;底座装配槽1010u;底座沉孔1010m;底座轴孔1011d;分闸槽1012-13;第一分闸槽侧面1012;第二分闸槽侧面1013;合闸槽1015-16;第一合闸槽侧面1015;第二合闸槽侧面1016;壳体隔板102;垫片安装槽1021;隔板轴孔1023;壳体隔板弹簧限位槽1025;转盘挡台1026;壳体上盖103;上盖轴孔1031;壳体面板104;输出轴111;输出轴受动部1110;输出轴驱动部1111;驱动部连接孔1114;滑动凸台1112;输出轴定位孔1113;滑动架112;滑动架底板1120;合闸滑动架臂1122c;分闸滑动架臂1122o;滑动架限位端1123;滑动架滑槽1124;操作轴1131;操作轴定位柱11311;环形槽11312;操作轴限位面11313;操作轴插孔11314;操作轴螺孔11315;旋转架1134;合闸旋转架臂11343;分闸旋转架臂11344;旋转架底板11340;密封圈1132;第二储能弹簧1133;第二弹簧第一端11331;第二弹簧第二端11332;第二衬套1135;螺母114;垫片121;垫片避让孔1211;垫片沉孔1212;第一垫片卡槽1214;第二垫片卡槽1215;垫片开口1216;锁扣件122;锁扣件主板1222;锁扣件复位部1222-1;锁扣件受动部1221;锁扣件锁定部1223;锁定部导引面1223-1;锁定部锁止面1223-0;锁扣件复位元件123;第一衬套124;第一衬套身1241;第一衬套头1242;滑动凸起1245;第一储能弹簧126;第一弹簧固定端1261;第一弹簧受动端1262;转盘127;转盘主板1270,转盘轴孔1271;转盘锁定臂1273-74;转盘配合臂1275-77;转盘配合臂配合侧缘1275;转盘配合臂限位侧缘1277;转盘受动孔1276;第一面12761;第二面12762;驱动键128;脱扣器134;开关本体2;单元壳体221;单元壳体轴孔2211;单元壳体沉孔2212;动触头转轴222;转轴底座2221-22;转轴底座下段2221;转轴底座上段2222;转轴立柱2223-24;转轴立柱下段2223;转轴立柱上段2224;转轴底座连接孔2226;第一盲孔2227;第二盲孔2228;静触头223;灭弧室224;动触头组件225;螺杆3;手柄4;手柄连接孔41;手柄连接螺钉5。
具体实施方式
以下结合说明书附图给出的实施例,进一步说明本发明的隔离开关的具体实施方式。本发明的隔离开关不限于以下实施例的描述。
如图1-2所示,本发明公开一种隔离开关,优选为一种旋转隔离开关,进一步优选为一种远程控制旋转开关,其包括驱动相连的操作装置1和开关本体2,操作装置1驱动开关本体2接通或分断电路。进一步的,所述操作装置1与开关本体2通过连接件固定相连。进一步的,如图2和10所示,所述连接件优 选为螺栓,螺栓包括螺杆3和螺母114,螺杆3穿过开关本体2后与固定在操作装置1上的螺母114螺纹连接。当然,也不排除操作装置1和开关本体2以其他方式连接,例如通过铆钉或卡扣或超声波焊接或热铆方式连接等。
如图1-3、图27所示,所述开关本体2包括至少一个开关单元,开关单元包括转动设置的动触头组件225以及与动触头组件225配合的静触头223;所述操作装置1与开关单元的动触头组件225驱动相连,驱动动触头组件225转动以与静触头223闭合或断开,从而接通或分断电路。进一步的,所述开关本体2包括多个层叠设置的开关单元,各开关单元的动触头组件225联动转动设置。
如图4-12所示,所述操作装置1包括绕自身轴线转动设置的操作轴1131、延时储能机构、实时储能机构、锁定机构和脱扣机构;所述操作轴1131在分闸位置和合闸位置之间转动以向实时储能机构输出分合闸操作力;所述实时储能机构包括第二储能弹簧1133,操作轴1131与实时储能机构传动配合,用于驱动第二储能弹簧1133先储能后释能,以驱动操作装置1在分闸状态与合闸状态之间快速切换,操作装置1驱动开关本体2快速分断或接通电路;所述操作轴1131由合闸位置转动到分闸位置时,通过实时储能机构驱动操作装置1切换至分闸状态,操作轴1131由分闸位置切换至合闸位置时,通过实时储能机构驱动操作装置1切换至合闸状态;所述延时储能机构包括第一储能弹簧126,延时储能机构具有第一储能弹簧126储能的储能状态和第一储能弹簧126释能的释能状态;所述锁定机构用于将延时储能机构锁定在储能状态;所述脱扣机构用于触发锁定机构与延时储能机构解除锁定配合,使延时储能机构释能,由储能状态向释能状态切换,以驱动操作装置1从合闸状态切换至分闸状态;所述操作轴1131由分闸位置转动至合闸位置时,驱动延时储能机构由释能状态切换至储能状态,且延时储能机构与锁定机构锁定配合使其被锁定在储能状态;所述延时储能机构被锁定机构锁定在储能状态时,避让操作轴1131,即此时操作轴1131在合闸位置和分闸位置之间转动而不会影响延时储能机构的状态。也就是说:所述操作装置1在分闸状态下且延时储能机构在释能状态下,操作轴1131由分闸位置转动至合闸位置,通过实时储能机构驱动操作装置1切换至合闸状态,同时驱动延时储能机构切换至储能状态且延时储能机构与锁定机构锁定配合以保持在储能状态;所述延时储能机构在储能状态下,操作轴1131在合闸位置和分闸位置之间自由切换,也就是说,可直接向操作轴1131施加外力驱动其在分闸位置和合闸位置之间转动以驱动操作装置1在分闸状态和合闸状态之间自由切换,而不会影响储能机构的状态;所述操作装置1在合闸状态下且延时储能机构在储能状态下,脱扣机构收到脱扣信号后,驱动锁定机构与延时储能机构解除锁定配合,延时储能机构释能并驱动操作装置1切换至分闸状态;所述操作轴1131向相反的两个方向转动以在分闸位置与合闸位置之间转动;由此,所述操作装置1可以通过两种方式分闸,一种方式是外力旋拧操作轴1131以手动方式驱动操作装置1分闸,另一种方式是通过远程控制方式向脱扣机构输入脱扣信号,脱扣机构动作触发延时储能机构释能,延时储能机构驱动操作装置1分闸,从而实现对于旋转隔离开关的远程分闸控制。
进一步的,所述锁定机构包括锁扣件122,锁扣件122用于与延时储能机构锁定配合将其锁定在储能状态;所述脱扣机构包括脱扣器134,脱扣器134优选为磁通脱扣器,用于驱动锁扣件122动作使其与延时储能机构解除锁定配合;所述延时储能机构切换至储能状态后与锁扣件122锁定配合以保持在储能状态;所述脱扣机构收到脱扣信号后,脱扣器134动作驱动锁扣件122与延时储能机构解除锁定配合。
如图1-11、15-19b、23-25d所示,所述操作装置1还包括装置壳体,延时储能机构、实时储能机构、锁扣机构和脱扣机构均设置装置壳体内。进一步的,如图23所示,所述装置壳体包括沿操作轴1131的轴向设置的第一空间s1和第二空间s2,第一空间s1和第二空间s2之间设置分隔板p,延时储能机构设置在第一空间s1内,实时储能机构设置在第二空间s2内,分隔板p设置供操作轴1131穿过的隔板轴孔1023,操作轴1131转动插置在第一空间s1和第二空间s2内且分别与延时储能机构和实时储能机构配合,操作轴1131一端凸出在装置壳体外部供操作,另一端依次穿过第一空间s1和分隔板p后插置在第二空间s2内。进一步的,如图23-25d所示,所述装置壳体包括依次配合的壳体上盖103、壳体隔板102和壳体底座101,壳体上盖103与壳体隔板102扣合围成第一空间s 1,壳体隔板102和壳体底座101扣合围成第二空间s2,壳体隔板102包括分隔板p。
优选的,如图23-24所示,所述装置壳体还包括壳体面板104,壳体面板104和壳体隔板102分别位于壳体上盖103两侧,壳体面板104与壳体上盖103固定相连。进一步的,如图25a所示,所述壳体面板104的面向壳体上盖103的一侧上设置面板卡脚1041;如图25b所示,所述壳体上盖103面向壳体面板104的一侧上设有上盖卡孔1032,面板卡脚1041卡置在上盖卡孔1032内。
优选的,如图24、25a,所述壳体面板104背离壳体上盖103的一侧设置横截面为弧线的弧形凸起面,弧形凸起面长度方向的两端分别与壳体面板104两端平齐;所述壳体上盖103面向壳体面板104的一侧还设有上盖轴柱基座,上盖轴柱设置在上盖轴柱基座上,弧形凸起面中部设有供上盖轴柱基座穿过且与其匹 配配合的的面板开孔。
作为其它实施例,所述壳体面板104还可以通过螺钉、超声波铆接、热铆接等方式与壳体上盖103相连。
结合图4-6、19a-19b、23-24所示,所述锁定机构优选设置在第一空间s 1内。
优选的,如图23所示,所述装置壳体还包括用于容纳脱扣机构的第三空间s3,第三空间s3与第二空间s2沿操作轴1131的径向方向并排设置。
如图1-2、32-33所示,所述操作装置1还包括手柄4,操作后1131的远离实时储能机构的一端为操作轴连接端,用于与手柄4插接相连。
如图12所示,所述操作轴连接端设置两个操作轴限位面11313,两个操作轴限位面11313均平行于操作轴1131的轴向,在操作轴1131的横截面上,两个操作轴限位面11313成八字形分布;所述手柄4中部设置手柄连接孔41,手柄连接孔41的形状与操作轴连接端匹配配合。进一步的,两个所述操作轴限位面11313对称设置在操作轴1131的轴向截面两侧。
如图32所示,所述操作装置1还包括手柄连接螺钉5,手柄连接螺钉5沿操作轴1131的轴向穿过手柄4后与操作轴连接端的操作轴螺孔11315螺纹连接,提高手柄4与操作轴1131的连接可靠性。
如图10-18所示,为所述实时储能机构的一个实施例,操作轴1131在合闸位置和分闸位置之间转动以通过实时储能机构完成合闸和分闸操作时,实时储能机构均经历先储能后释能的过程,实时储能机构储能时,开关本体2优选不动作,实时储能机构释能时,驱动开关本体2在闭合与分断状态之间切换;具体的,所述实时储能机构包括第二储能弹簧1133和输出轴111,实时储能机构的储能和释能过程,也即是第二储能弹簧1133的储能和释能过程,第二储能弹簧1133储能时,输出轴111不转动,第二储能弹簧1133释能时,驱动输出轴111转动,输出轴111驱动开关本体2闭合或分断电路。
如图10-14所示,所述实时储能机构包括第二储能弹簧1133、与操作轴1131固定连接的旋转架1134、滑动架112、输出轴111和壳体底座101;所述操作轴1131带动旋转架1134相对于滑动架112转动至与滑动架112限位配合并使第二储能弹簧1133储能,滑动架112具有两个锁定位置且在两个锁定位置分别与壳体底座101锁定配合以阻止滑动架112转动,操作轴1133继续转动并通过旋转架1134驱动滑动架112在一个锁定位置处相对于壳体底座101滑动而解除与壳体底座101的锁定配合,第二储能弹簧1133释能驱动滑动架112转动后滑入另一个锁定位置,同时滑动架112带动输出轴111转动。进一步的,所述输出轴111绕自身轴线转动设置在看壳体底座101上,滑动架112与输出轴111同步转动设置且滑动架112相对于壳体底座101和输出轴111滑动设置,壳体底座101包括沿输出轴111的转动方向间隔分布的两个限位槽,分别为分闸槽1012-13和合闸槽1015-16;所述滑动架112在一个锁定位置处与一个限位槽限位配合,操作轴1131带动旋转架1134相对于滑动架112转动至旋转架1134与滑动架112限位配合,同时使第二储能弹簧1133储能,操作轴1131继续转动以通过旋转架1134驱动滑动架112相对于壳体底座101滑动从该限位槽内脱出,第二储能弹簧1133释能驱动滑动架112转动并滑入另一个限位槽内,使滑动架112达到另一个锁定位置处,同时滑动架112带动输出轴111转动,输出轴111驱动开关本体2闭合或断开电路。进一步的,所述操作轴1131在合闸位置和分闸位置之间转动以使滑动架112在两个限位槽之间切换。具体的,如图15所示,所述操作轴1131位于分闸位置且滑动架112与分闸槽1012-13限位配合,外力使操作轴1131顺时针转动,操作轴1131带动旋转架1134相对于滑动架112转动同时使第二储能弹簧1133储能,直至旋转架1134与滑动架112限位配合(例如接触限位),如图16所示;如图17所示,所述操作轴1131继续顺时针转动,通过旋转架1134驱动滑动架112相对于输出轴111滑动以从分闸槽1012-13内脱出,第二储能弹簧1133开始释能并带动滑动架112顺时针转动后滑入合闸槽1015-16内,如图18所示。如图18所示,所述操作轴1131位于合闸位置且滑动架112与合闸槽1015-16限位配合,外力使操作轴1131逆时针转动,操作轴1131带动旋转架1134相对于滑动架112转动同时使第二储能弹簧1133储能,直至旋转架1134与滑动架112接触配合;所述操作轴1131继续逆时针转动,通过旋转架1134驱动滑动架112相对于输出轴111以从合闸槽1015-16内脱出,第二储能弹簧1133开始释能并带动滑动架112逆时针转动后滑入分闸槽1012-13内,如图15所示。
结合图1-2、11-12所示,所述操作轴1131一端与旋转架1134固定相连,另一端穿过壳体上盖103凸出在装置壳体外部供操作。进一步的,如图23和25b所示,所述上盖103包括上盖轴柱,上盖轴柱中部设置供操作轴1131穿过的上盖轴孔1031。进一步的,所述操作轴1131上设有密封圈1132,密封圈1132位于上盖轴孔1031的内侧壁和操作轴1131之间;所述密封圈1132一则有利于减小操作轴1131与上盖轴孔1031的摩擦力,二来实现上盖轴孔1031的密封。进一步的,所述操作轴1131上设有用于容纳密封圈1132的环形槽11312。
如图10-14所示,所述第二储能弹簧1133为扭簧且转动套设在操作轴1131上。进一步的,所述第二储能弹簧1133、旋转架1134、输出轴111和操作轴1131同轴设置,第二储能弹簧1133、旋转架1134、滑动架112、输出轴111依次设置;所述滑动架112沿输出轴111的径向滑动。
作为其它实施例,所述第二储能弹簧1133还可以为其他形式的弹簧,例如压簧,两个压簧对称设置在旋转架1134的径向两端且分别与其转动相连,此种结构会造成实时储能机构的体积增大,占用更多的安装空间。
如图10-12所示,所述实时储能机构还包括第二衬套1135,第二衬套1135转动套设在操作轴1131上且插置在第二储能弹簧1133和操作轴1131之间,可有效防止第二储能弹簧1133在扭转时抱死,且能更好的固定第二储能弹簧1133,防止其偏转,保证实时储能机构的可靠稳定工作。
所述第二储能弹簧1133包括转动套设在操作轴1131上的第二弹簧螺旋体,第二弹簧螺旋体的两端分别与第二衬套1135两端平齐或者位于第二衬套1135的两端之间,以最大程度将第二储能弹簧1133和操作轴1131隔开,从而避免第二储能弹簧1133抱死操作轴1131,保证实时储能机构可靠动作。具体的,所述第二衬套1135一端与旋转架1134相抵,另一端与操作轴1131上的限位台面相抵;所述第二衬套1135和第二储能弹簧1133的第二储能弹簧螺旋体的一端均抵靠在旋转架1134上,第二衬套1135另一端凸出在第二储能弹簧螺旋体的另一端外部或二者平齐。
如图10-12所示,所述旋转架1134为U形结构,其包括旋转架底板11340和相对设置的两个旋转架臂;如图10-14所示,所述滑动架112为U型结构,其包括滑动架底板1120和相对设置的两个滑动架臂;如图10-12所示,两个旋转架臂位于两个滑动架臂之间,第二储能弹簧1133包括第二弹簧螺旋体以及分别与第二弹簧螺旋体相连的两个第二弹簧弹性臂,两个第二弹簧弹性臂优选位于同一平面上,旋转架臂和滑动架臂位于两个第二弹簧弹性臂的连线同一侧,一个旋转架臂和一个滑动架臂并排位于操作轴1131的径向一侧与第二储能弹簧1133的一个第二弹簧弹性臂配合,另一个旋转架臂和另一个滑动架臂位于操作轴1131的径向另一侧且与第二储能弹簧1133的另一个第二弹簧弹性臂配合,第二储能弹簧1133向滑动架112施加作用力阻止其脱出限位槽。具体的,如图10-12所示,所述旋转架1134的两个旋转架臂分别为合闸旋转架臂11343和分闸旋转架臂11344;如图10-11、13所示,所述滑动架112的两个滑动架臂分别为合闸滑动架臂1122c和分闸滑动架臂1122o;如图12所示,所述第二储能弹簧1133的两端分别为第二弹簧第一端11331和第二弹簧第二端11332;如图10-11、14、18所示,所述第二弹簧第一端11331和第二弹簧第二端11332位于旋转架臂和滑动架臂的同一侧,第二弹簧第一端11331与并排设置的合闸旋转架臂11343和合闸滑动架臂1122c配合,第二弹簧第二端11332与并排设置的分闸旋转臂11344和分闸滑动架臂1122o配合;如图15-18所示,所述操作轴1131由分闸位置向合闸位置转动(优选为顺时针转动)时,操作轴1131带动旋转架1134转动,合闸旋转架臂11343抵压第二弹簧第一端11331使第二储能弹簧1133扭转储能,直至旋转架1134与滑动架112的合闸滑动架臂1122c接触,同时分闸旋转架臂11344远离第二弹簧第二端11332,操作轴1131继续转动并通过旋转架1134驱动滑动架112相对于输出轴111滑动以从分闸槽1012-13内脱出,第二储能弹簧1133开始释能,通过第二弹簧第二端11332抵压分闸滑动架臂1122o使滑动架112转动直至滑动架112滑入合闸槽1015-16内,第二弹簧第二端11332再次与分闸旋转夹臂11344配合,滑动架112同时带动输出轴111转动,输出轴111驱动开关本体2闭合电路;结合图18和15所示,所述操作轴1131由合闸位置向分闸位置转动(优选为逆时针转动)时,操作轴1131带动旋转架1134转动,分闸旋转架臂11344抵压第二弹簧第二端1132使第二储能弹簧1133扭转储能,直至旋转架1134与滑动架112的分闸滑动架臂1122o接触,同时合闸旋转架臂11343远离第二弹簧第一端11331,操作轴113继续转动并通过旋转架1134驱动滑动架112相对于输出轴111滑动以从合闸槽1015-16内脱出,第二储能弹簧1133开始释能,通过第二弹簧第一端11331抵压合闸滑动架臂1122c使滑动架112转动直至滑动架112滑入分闸槽1012-13内,第二弹簧第一端11331再次与合闸旋转架臂11343配合,滑动架112同时带动输出轴111转动,输出轴111驱动开关本体2断开电路。
如图10-12、15-18所示,所述旋转架1134的旋转架底板11340的一端设置旋转架驱动部,旋转架驱动部抵压滑动架112的滑动架臂,驱动滑动架112相对于壳体底座101滑动,以从壳体底座101的限位槽中脱出。
如图15-18所示,所述壳体底座101还包括过渡弧面1014,过渡弧面1014两端分别与分闸槽1012-13和合闸槽1015-16相连,滑动架112滑过过渡弧面1014以在分闸槽1012-13和合闸槽1015-16之间切换。进一步的,如图13-18所示,所述滑动架112的滑动架底板1120包括设置在其一端的滑动架限位端1123,滑动架限位端1123的端面为与过渡弧面1014配合的滑动架弧面,保证滑动架112流畅的滑入对应限位槽内。
如图15-18所示,所述分闸槽1012-13包括相对间隔设置的第一分闸槽侧面1012和第二分闸槽侧面1013,合闸槽1015-16包括相对间隔设置的第一合闸槽侧面1015和第二合闸槽侧面1016,第二分闸槽侧面1013和第一合闸槽侧面1015两端分别与过渡弧面1014的两端相连,第二分闸槽侧面1013和第一合闸槽侧面1015对称设置且呈八字形分布,第二分闸槽侧面1013和第一合闸槽侧面1015与过渡弧面1014相连的一端的间距小于第二分闸槽侧面1013和第一合闸槽侧面1015的另一端的间距。进一步的,所述第一分闸槽侧面1012和第二分闸槽侧面1013对称设置;所述第一合闸槽侧面1015和第二合闸槽侧面1016对称设置。
如图13所示,所述滑动架底板1120设有滑动架滑槽1124,输出轴111包括输出轴受动部1110,输出轴受动部1110面向滑动架底板1120的一侧设置滑动凸台1112,滑动架滑槽1124的宽度与滑动凸台1112的宽度匹配,滑动架滑槽1124的长度大于滑动凸台1112的长度,滑动架底板1120通过滑动架滑槽1124滑动套设在滑动凸台1112上且滑动设置在输出轴受动部1110上;所述滑动架底板1120沿输出轴111的径向滑动。
如图13所示,所述输出轴111还包括输出轴定位孔1113;如图12所示,所述操作轴1131的靠近输出轴111的一端转动插置在输出轴定位孔1113内;所述输出轴定位孔1113与操作轴配合,保证输出轴111和操作轴1131同轴。进一步的,如图13所示,所述输出轴定位孔1113包括同轴设置且彼此连通的第一孔段和第二孔段,第一孔段内径大于第二孔段内径;如图12所示,所述操作轴1131包括设置在其面向输出轴111的一端上的操作轴定位柱11311,操作轴定位柱11311的外径小于操作轴1131的外径,操作轴定位柱11311穿过第一孔段后转动插置在第二孔段内,操作轴1131转动插置在第一孔段内。
如图14所示,所述输出轴111还包括输出轴驱动部1111,输出轴驱动部111一端与输出轴受动部1110同轴相连,另一端设置驱动部连接孔1114,用于与开关本体2的各开关单元的动触头组件驱动相连。进一步的,所述驱动部连接孔1114包括方形沉孔以及分别设置在方形沉孔的四个顶角处的柱形沉孔,柱形沉孔与方形沉孔连通。
如图25d所示,所述上盖底座101设有依次设置的底座装配槽1010u、底座沉孔1010m和底座轴孔1011d,分闸槽1012-13和合闸槽1015-16均设置在底座装配槽1010u内,滑动架112滑动设置在底座装配槽1010u内,底座沉孔1010m和底座轴孔1011d同轴设置,输出轴111的输出轴受动部1110和输出轴驱动部111分别转动设置在底座沉孔1010m和底座轴孔1011d内。
如图4-7、19a-22所示,为所述延时储能机构的一个实施例,延时储能机构用于向操作装置的分闸提供能量,也即是延时储能机构向操作轴1131提供驱动其由合闸位置向分闸位置转动的驱动力,具体的:延时储能机构包括第一储能弹簧126,操作轴1131由分闸位置向合闸位置转动以驱动操作装置合闸时,驱动第一储能弹簧126储能,也即是驱动延时储能机构由释能状态切换至储能状态,在远程控制分闸时,延时储能机构释能,也即是第一储能弹簧126释能,向操作轴1131提供使其由合闸位置向分闸位置转动的驱动力。
所述操作装置1在合闸状态下,延时储能机构释能驱动操作轴1131转动,然后操作轴1131通过实时储能机构驱动操作装置1切换至分闸状态,延时储能机构驱动操作装置1分闸时的传动路径为:延时储能机构→操作轴1131→实时储能机构,与现有技术的延时储能机构直接通过实时储能机构相比,简化了操作装置的整体结构,提高了工作稳定性和可靠性。本实施例旋转隔离开关,无论是手动操作,还是远程控制,均需通过操作轴1131输出分闸或合闸操作力,并通过实时储能机构完成分闸操作或合闸操作。
如图7和19a所示,所述延时储能机构包括转盘127和第一储能弹簧126,转盘127受操作轴1131驱动由释能位置转动至储能位置使第一储能弹簧126储能,且转盘127被锁定在储能位置使延时储能机构保持在储能状态;所述操作轴1131在合闸位置,也即是操作装置1处于合闸状态,转盘127与操作轴1131之间存在分闸空行程,外力驱动操作轴1131转动,操作轴1131由合闸位置转动至分闸位置使操作装置1切换至分闸状态,同时相对于转盘127走过分闸空行程。进一步的,如图6-7所示,所述转盘127与锁定机构的锁扣件122锁定配合,将转盘127锁定在储能位置。
如图4-9、19a-19b所示,所述转盘127与操作轴1131同轴设置,转盘127包括转盘主板1270,转盘主板1270设有转盘轴孔1271和至少一个转盘受动孔1276,转盘127通过转盘轴孔1271转动套设在操作轴1131上,转盘受动孔1276包括第一面12761和第二面12762;所述延时储能机构包括固定设置在操作轴1131上与其同步转动的驱动指,驱动指设置在转盘受动孔1276内;所述驱动指抵压第一面12761使转盘127向储能位置转动;如图19b所示,所述操作轴1131处于合闸位置时,第二面12762与驱动指之间存在分闸空行程,分闸空行程优选为驱动指与第二面12762之间的一个扇形避让转角,此时,操作轴1131由合闸位置转动至分闸位置,操作轴1131带动驱动指相对于转盘127走过分闸空行程,驱动指也相对于 第二面12762转过该扇形避让转角,同时在驱动指和第一面12761之间形成合闸空行程,此时,操作轴1131由分闸位置转动至合闸位置,操作轴1131则带动驱动指相对于转盘127走过合闸空行程,在驱动指和第二面12762之间再次形成合闸空行程,也即是说,延时储能机构在储能状态下(转盘127位于储能位置),操作轴1131可相对于转盘127在合闸位置和分闸位置之间自由转动,而不会影响延时储能机构的状态,即延时储能机构会保持在储能状态;所述延时储能机构释能时,第一储能弹簧126释能驱动转盘127向释能位置转动,第一面12761与驱动指配合,驱动操作轴1131向分闸位置转动,操作轴1131优选通过实时储能机构驱动操作装置1切换至分闸状态。所述驱动指:在所述操作轴1131驱动延时储能机构储能时,抵压第一面12761而驱动转盘127由释能位置转动至储能位置;在所述延时储能机构释能时,转盘127由储能位置转动至释能位置并通过第一面12761抵压驱动指,驱动指带动操作轴1131由合闸位置转动至分闸位置。
如图21所示,所述转盘受动孔1276为与转盘轴孔1271同圆心设置的扇面形孔,扇面形孔的圆周方向的两端分别设置第一面12761和第二面12762。进一步的,所述转盘127包括两个扇面形孔,两个扇面形孔对称设置在转盘轴孔1271的径向两侧;所述延时储能机构还包括驱动键128,驱动键128沿操作轴1131的径向插置在其上且驱动键128的两端分别突出在操作轴1131的径向两侧作为驱动指,分别设置在两个扇面形孔内。进一步的,两个所述扇面形孔的径向内端均与转盘轴孔1271连通,三者整体成哑铃型结构;如图12、19a-19b所示,所述操作轴1131设有供驱动件128插入的操作轴插孔11314。
作为其它实施例,还可以通过以下方式实现转盘127与操作轴1131之间的分闸空行程,具体的:所述操作轴1131设置扇形槽,扇形槽的圆心与操作轴1131的轴线重合,扇形槽的圆周方向上的两端分别为两个驱动面,分别为第一驱动面和第二驱动面;所述转盘127包括设置在转盘轴孔1271内的转盘受动指,转盘受动指插置在扇形槽内;所述操作轴1131由分闸位置向合闸位置转动时,第一驱动面抵压转盘受动指使转盘127由释能位置转动至储能位置且转盘127被锁定在储能位置,第二驱动面和转盘受动指之间存在分闸空行程,此时,操作轴1131由合闸位置转动至分闸位置时,操作轴1131相对于转盘127走过分闸空行程,第二驱动面和转盘受动指之间存在合闸空行程,此时,操作轴1131由分闸位置转动至分闸位置,则操作轴1131相对于转盘受动指走过合闸空行程,也即是说,延时储能机构在储能状态下(转盘127位于储能位置),操作轴1131可自由在合闸位置和分闸位置之间转动,以驱动操作装置在合闸状态和分闸状态之间切换。
如图4-9、19a-19b所示,所述第一储能弹簧126为转动套设在操作轴1131上的扭簧,第一储能弹簧126、转盘127和操作轴1131同轴设置,第一储能弹簧126的两端分别为固定设置的第一弹簧固定端1261以及与转盘127配合的第一弹簧受动端1262,转盘127向储能位置转动驱动第一弹簧受动端1262摆动使第一储能弹簧126扭转储能。进一步的,所述第一储能弹簧126包括第一弹簧螺旋体、第一弹簧固定端1261和第一弹簧受动端1262,第一弹簧固定端1261和第一弹簧受动端1262分别与第一弹簧螺旋体两端相连。
作为其它实施例,所述第一储能弹簧126为线性压簧,一端转动设置在装置壳体的壳体隔板102上,另一端与转盘127转动相连;所述转盘127由释能位置向储能位置转动使第一储能弹簧126被压缩储能,转盘127的储能位置在第一储能弹簧126的死点位置之前,第一储能弹簧126的死点位置指的是第一储能弹簧126的几何轴线与转盘127的轴线位于同一直线时第一储能弹簧126的位置。当然,所述第一储能弹簧126还可以替换为扭簧,扭簧两端分别与壳体隔板102和转盘127转动相连,此时第一储能弹簧126的死点位置指的是扭簧的两端与转盘127位于同一直线上时第一储能弹簧126的位置。以上实现方式会增加延时储能机构的占用空间,因此本实施例第一储能弹簧126优选采用转动套设在操作轴1131上的扭簧。
如图4-6、19a-19b、21所示,所述转盘127包括转盘主板1270和转盘配合臂1275-77,第一储能弹簧126的第一弹簧固定端1261一端固定在装置壳体上,第一弹簧受动端1262与转盘配合臂1275-77配合,转盘127通过转盘配合臂1275-77推动第一弹簧受动端1262摆动以使第一储能弹簧126扭转储能。进一步的,所述转盘127转动设置在装置壳体的壳体隔板102上,壳体隔板102设置转盘挡台1026和壳体隔板弹簧限位槽1025,第一弹簧固定端1261固定在壳体隔板弹簧限位槽1025内,转盘挡台1026与转盘配合臂1275-77限位配合将转盘127限位在释能位置。进一步的,所述壳体隔板弹簧限位槽1025设置在转盘挡台1026上;所述转盘配合臂1275-77包括相对设置的转盘配合臂限位侧缘1277和转盘配合臂配合侧缘1275,转盘配合臂限位侧缘1277与转盘挡台1026配合,转盘配合臂配合侧缘1275与第一弹簧受动端1262配合。
优选的,如图19a-21所示,所述转盘配合臂1275-77与转盘主板1270的所在平面折弯相连。进一步的,所述转盘配合臂1275-77垂直于转盘转1270。
如图4-9、19a-19b所示,所述延时储能机构还包括第一衬套124,第一衬套124转动套设在操作轴 1131上且插置在第一储能弹簧126和操作轴1131之间,防止第一储能弹簧126扭转储能时抱死操作轴1131的情况发生,且能更好的固定第一储能弹簧126,防止其偏转,保证延时储能机构可靠稳定的工作;所述第一衬套124一端与转盘127相抵,将转盘127限位在第一衬套124和壳体隔板102之间,将转盘127保持在水平状态(也即是垂直于操作轴1131的轴向的状态),阻止转盘127在第一储能弹簧126的扭转力矩作用下产生的翘曲趋势。
如图7、19a-20所示,所述延时储能机构还包括设置在装置壳体的壳体隔板102上的垫片121;如图19a-19b、23-24所示,所述第一衬套124包括同轴设置且彼此相连的第一衬套头1242和第一衬套身1241,第一衬套头1242的外径大于第一衬套身1241的外径且大于第一储能弹簧126的第一弹簧螺旋体的外径,第一衬套身1241插置在第一弹簧螺旋体和操作轴1131之间,垫片121设置在壳体隔板102上,第一储能弹簧126、转盘127和垫片121依次设置在壳体上盖103和壳体隔板102之间,第一衬套头1242与壳体上盖103配合限制第一衬套124沿操作轴1131的轴向移动,第一弹簧螺旋体位于第一衬套头1242和转盘127之间,转盘127转动设置在垫片121上,垫片121对壳体隔板102形成保护,避免转盘127转动磨损壳体隔板102,有利于提高使用寿命。进一步的,所述第一衬套身1241一端与第一衬套头1242相连,另一端设有多个滑动凸起1245,滑动凸起1245与转盘127相抵,有利于减小第一衬套124与转盘127之间的滑动阻力,而且滑动凸台1245对转盘127在储能簧126偏心扭矩作用下产生的翘曲趋势进行平面限位,使转盘127的转盘主板1270保持水平状态,确保转盘锁定臂锁止面1274保持水平状态以与锁扣件122的锁扣件锁止面1223-0在水平方向上保持限位配合;多个所述滑动凸起1245优选沿第一衬套身1241的周向均匀分布在第一衬套身1241的自由端上。
如图19a-19b、21所示,所述垫片121设有供操作轴1131穿过的垫片避让孔1211、设置在垫片121面向转盘127一侧上的垫片沉孔1212以及供延时储能机构的驱动键128穿过的垫片开口1216,垫片沉孔1212的内径大于垫片避让孔1211的内径且小于转盘127的转盘主板1270的外径,垫片开口1216与垫片沉孔1212连通,驱动键128经过垫片开口1216进入垫片沉孔1212内插置在操作轴1131上,并在垫片沉孔1212内摆动;所述操作装置装配时,首先将操作轴1131与实时储能机构装配在一起,然后再装配延时储能机构,垫片开口1216便于驱动键128和操作轴1131的装配,提高装配效率。进一步的,所述垫片121还包括第一垫片卡槽1214和第二垫片卡槽1215,两个垫片卡槽分别设置在垫片121的两个相对设置的侧边上,分别与装置壳体的壳体隔板102卡接配合。
如图25c所示,所述壳体隔板102设有垫片安装槽1021,垫片安装槽1021的底壁设有供操作轴1131穿过的隔板轴孔1023,垫片安装槽1021内还设有分别与第一垫片卡槽1214和第二垫片卡槽1215配合的两个隔板卡台,分别为第一隔板卡台和第二隔板卡台。
如图4-7、19a-19b、26a所示,所述锁定机构的锁扣件122转动设置,其包括锁扣件主板1222和锁扣件锁定部1223;所述转盘127还包括设置在转盘主板1270上的转盘锁定臂1273-74(作为与锁扣件122的锁扣件锁定部1223限位配合的外部结构);所述转盘127由释能位置向储能位置转动过程中(也即是转盘127驱动第一储能弹簧126储能过程中),转盘锁定臂1273-74抵压锁扣件锁定部1223使锁扣件122向第一方向转动以避让转盘锁定臂1273-74,转盘锁定臂1273-74越过锁扣件锁定部1223后,锁扣件122向第二方向转动以复位并与转盘锁定臂1273-74限位配合,将转盘127限位在储能位置,使延时储能机构保持在储能状态;所述第一方向和第二方向互为反方向:所述锁扣件122向第一方向(解锁方向)转动以避让转盘锁定臂1273-74,使转盘锁定臂1273-74与锁扣件锁定部1223解除锁定,第一储能弹簧126释能驱动转盘127由储能位置向释能位置转动。进一步的,所述锁扣件锁定部1223设置在锁扣件主板1222的面向转盘127的侧缘上。
如图7和26a-26b所示,所述锁扣件122一端为锁扣件枢置端,另一端设置锁扣件受动部1221,锁扣件122通过锁扣件枢置端转动设置,外力(例如脱扣机构的脱扣器134)通过锁扣受动部1221驱动锁扣件122向解锁方向转动使锁扣件锁定部1223与转盘锁定臂1273-74解除锁定配合。进一步的,所述锁扣受动部1221与锁扣件主板1222折弯相连,锁扣件受动部1221所在平面与锁扣件主板1222所在平面相交。进一步的,所述锁扣件受动部1221所在平面垂直于锁扣件主板1222所在平面,锁扣件主板1222的与锁扣件受动部1221相连的一端与锁扣件受动部1221的侧缘平齐。
如图26a-26b所示,所述锁扣枢置端设有锁扣轴孔1222-0;如图4-7、19a-19b所示,所述锁定机构还包括固定在装置壳体的壳体隔板102上的锁扣轴125,锁扣122通过锁扣轴孔1222-0转动设置在锁扣轴125上。
如图26a-26b所示,所述锁扣件锁定部1223包括锁扣件锁止面1223-0,锁扣件锁止面1223-0位于一条沿锁扣件主板1222的延伸方向延伸且经过锁扣件122的转动中心O的直线L1一侧。具体的,如图26b 所示,所述锁扣件122处于水平状态时,锁扣件锁止面1223-0位于直线L1下方,外部结构从锁扣件锁止面1223-0一侧与其配合向其施加平行于直线L1的作用力,使锁扣件122向锁定方向转动;所述锁定方向与解锁方向互为反方向。
如图26b所示,所述锁扣件122的转动中心O,与转盘锁定臂1273-74与锁定部锁止面1223-0的接触点的连线为直线L2;所述转盘锁定臂1273-74向锁定部锁止面1223-0施加的作用力沿直线L3的方向延伸,直线L3位于直线L2下方,直线L2位于直线L1下方。
优选的,如图7和26a-26b所示,所述锁扣件锁定部1223包括锁定部导引面1223-1和锁定部锁止面1223-0,转盘锁定臂1273-74抵压锁定部导引面1223-1使锁扣件122向第一方向转动,转盘锁定臂1273-74与锁定部锁止面1223-0限位配合将转盘127锁定在储能位置。进一步的,所述锁扣件锁定部1223和锁扣件主板1222共平面,锁扣件锁定部1223设置在锁扣件主板1222面向转盘主板1270的侧缘上,锁扣件锁定部1223为楔形结构,其大径端与锁扣件主板1222相连,尖端朝向转盘主板1270。
优选的,如图21所示,所述转盘主板1270的转动平面垂直于操作轴1131,转盘锁定臂1273-74所在平面与转盘主板1270所在平面平行,转盘锁定臂1273-74优选与转盘主板1270共平面。进一步的,所述转盘锁定臂1273-74包括锁定臂配合部分,锁定臂配合部分为直角形板结构,其一个直角边与转盘主板1270相连,另一个直角边与锁定部锁止面1223-0限位配合,斜面与锁定部导引面1223-1配合。进一步的,所述转盘锁定臂1273-74包括转盘锁定臂配合面1273和转盘锁定臂锁止面1274,转盘锁定臂配合面1273为倒角斜面,与锁定部导引斜面1223-1配合,转盘锁定臂锁止面1274与锁定部锁止面1223-0配合。
优选的,如图7和26a-26b所示,所述锁扣件导引面1223-1为斜面,该斜面从靠近锁扣件枢置端的一端向远离锁扣件主板1222的方向倾斜。
作为其它实施例,所述锁扣件锁定部1223不设置锁定部导引面1223-1,转盘锁定臂1273-74设置锁定臂导引面,转盘127由释能位置向储能位置转动时,锁定臂导引面抵压锁扣件锁定部1223的自由端,使锁扣件122向第一方向转动以避让转盘锁定臂1273-74。
如图26a-26b所示,所述锁扣件122优选为一体式结构。
如图4-7、19a-19b所示,所述锁定机构还包括锁扣件复位元件123,锁扣件复位元件123向锁扣件122施加作用力,使锁扣件122向第二方向转动以复位。
所述锁扣件主板1222包括用于与锁扣件复位元件123配合的锁扣件复位部1222-1,锁扣件复位部1222-1受锁扣件复位元件123作用力使锁扣件122向锁定方向转动,锁扣件受动部1221受外力作用使锁扣件122向解锁方向转动,锁定方向和解锁方向互为反方向。进一步的,如图26b所示方向,所述锁定方向为逆时针方向,解锁方向为顺时针方向。
如图26a-26b所示,所述锁扣件复位部1222-1设置在锁扣件的锁扣件枢置端以外的部分上。进一步的,所述锁扣件复位部1222-1为设置在锁扣件主板1222上的主板限位槽,主板限位槽和锁扣件锁定部1223分别位于锁扣件主板1222的一对侧缘上。进一步的,如图26a和26b所示方向,所述主板限位槽和锁定件锁定部1223分别设置在锁扣件主板1222上、下侧缘上。
作为其它实施例,所述锁扣件复位部1222-1为设置在锁扣件主板1222上的孔,或者设置在锁扣件主板1222一侧或两侧上的凸筋。
如图4-7、19a-19b所示,所述锁扣件复位元件123为拉簧,其一端与装置壳体的壳体隔板102相连,另一端与锁扣件122相连。进一步的,所述锁扣件122还包括设置在锁扣件主板1222上的主板限位槽1222-1,拉簧一端挂设在主板限位槽1222-1内;所述主板限位槽1222-1和锁扣件锁定部1223分别设置在锁扣件主板1222相对设置的一对侧缘上。
作为其它实施例,所述锁扣件复位元件123还可以为扭簧,扭簧套设在锁扣件122的转轴(例如锁扣轴125)上,一端固定在壳体隔板102上,另一端与锁扣件主板1222配合。
如图26a-26b所示,所述锁扣件主板1222包括依次相连且共平面的主板第一段、主板第二段和主板第三段,主板第一段一端为锁扣件枢置端,另一端与主板第二段一端相连,主板第二段另一端与主板第三段一端相连,主板第三段另一端与锁扣件受动部1221折弯相连;所述主板第一段宽度大于主板第二段宽度,主板第一段和主板第二段的一侧缘平齐,主板第一段的另一侧缘和锁扣件锁定部1223凸出于主板第二段的另一侧缘,主板第三段相对于主板第二段向锁扣件锁定部1223所在侧偏移。进一步的,所述主板第一段和锁扣件锁定部1223之间设有第一避让槽,转盘127的转盘锁定臂1273-74先进入第一避让槽内后与锁扣件锁定部1223配合;所述主板第三段和锁扣件锁定部1223之间设有第二避让槽,转盘锁定臂1273-74越过锁扣件锁定部1223后进入第二避让槽内。具体的,如图26a-26b所示方向,所述主板第一段和主板第二段的上侧缘平齐,主板第一段的下侧缘和锁扣件锁定部1223凸出在主板第二段的下侧缘下方; 所述主板第三段相对于主板第二段整体向下偏移。
如图27-31所示,为所述开关本体2的开关单元一个实施例。
如图27-28所示,所述开关单元包括单元壳体221以及设置在单元壳体221内的动触头组件225、动触头转轴222和静触头223,动触头组件225包括触头支持和设置在触头支持上的动触头,触头支持通过动触头转轴222转动设置在单元壳体221内,两组静触头223分别设置在动触头组件225的径向两侧且分别与动触头的两端配合。进一步的,所述开关单元还包括灭弧室224,两个灭弧室224分别设置在动触头225的径向两侧,分别与两组静触头223配合。
所述开关本体2中,相邻开关单元的动触头转轴222彼此相连且同步转动设置,以实现各开关单元的联动。
如图27-28、30所示,所述触头支持中部设置支持轴孔;如图30-31所示,所述动触头转轴222包括转轴底座2221-22和转轴立柱2223-24,动触头转轴222通过转轴底座2221-22转动设置在单元壳体221内,通过转轴立柱2223-24插置在支持轴孔内且二者限位配合,实现触头支持和动触头转轴222的同步转动。
如图30-31所示,所述转轴立柱2223-24包括转轴立柱下段2223和转轴立柱上段2224,转轴立柱下段2223一端与转轴底座2221-22相连,另一端与转轴立柱上段2224相连;所述转轴立柱下段2223插置在触头支持的支持轴孔内,转轴立柱上段2224和转轴底座2221-22分别位于触头支持两侧。进一步的,所述转轴立柱下段2223和转轴立柱上段2224同轴设置且均为正四边形柱,转轴立柱下段2223的宽度大于转轴立柱上段2224的宽度。
如图30-31所示,所述转轴底座2221-22包括转轴底座上段2222和转轴底座下段2221,转轴底座上段2222一端与转轴立柱2223-24相连,另一端与转轴底座下段2221相连,转轴底座上段2222和转轴底座下段2221为同轴设置的两个圆柱体,转轴底座上段2222的外径大于转轴底座下段2221的外径。
如图29所示,所述单元壳体221的底壁上设有彼此连通的单元壳体轴孔2211和单元壳体沉孔2212,单元壳体沉孔2212内径大于单元壳体轴孔2211的内径,单元壳体沉孔2212的内径与转轴底座上段2222的外径匹配,单元壳体轴孔2211的内径与转轴底座下段2221的外径匹配;所述转轴底座下段2221穿过单元壳体沉孔2212后转动设置在单元壳体轴孔2211内,转轴底座上段2222转动设置在单元壳体沉孔2212内。
如图30-31所示,所述转轴底座2221-22中部设置转轴底座连接孔2226;所述开关本体2中,相邻两个动触头转轴222,一个动触头转轴222的转轴立柱2223-24的自由端插置在另一个动触头转轴222的转轴底座连接孔2226内,以实现两个动触头转轴的同步转动,与操作装置1相邻的开关单元,其动触头转轴222的转轴立柱2223-24的自由端插置在实时储能机构的输出轴111的驱动部连接孔1114内,以实现动触头转轴222与输出轴111的同步转动。
如图31所示,所述转轴底座连接孔2226的底壁上设有第一盲孔2227,转轴立柱2221-22的转轴立柱上段2222中部设有第二盲孔2228;所述开关单元还包括多边形金属连接轴,多边形金属连接轴的横截面形状与第一盲孔2227和第二盲孔2228的横截面形状匹配配合;相邻两个所述动触头转轴222通过多边形金属连接轴相连,金属连接轴一端插入一个动触头转轴222的第一盲孔2227与其限位配合,另一端插入另一个动触头转轴222的第二盲孔2228内与其限位配合,从而提高相邻动触头转轴222的转动同步性。所述多边形金属连接轴可以为正多边形金属柱体,也可以为不规则形状的金属柱体。
如图31所示,所述第一盲孔2227位于转轴立柱上段2224中部,第二盲孔2228位于转轴立柱下段2223中部,二者之间设有隔板。
如图29所示,所述单元壳体221的底壁上还设有用于装配引弧结构的单元壳体开槽2214,单元壳体开槽2214位于单元壳体沉孔2212外侧。
如图29所示,所述单元壳体221还设有单元壳体穿孔2215,螺杆3穿过各单元壳体穿孔2215将各单元壳体221连接在一起。进一步的,所述单元壳体221设有两个单元壳体穿孔2215,分别设置在单元壳体沉孔2212的径向两侧。
如图3所示,所述开关本体2中,各开关单元的单元壳体221均设有与灭弧室224对应的排气口,相邻单元壳体221的排气口交错设置;所述开关本体2中,开关单元分为三种类型,第一中间开关单元22、第二中间开关单元23和尾端开关单元21,第一中间开关单元22和第二中间开关单元23交替设置,二者的区别在于:单元壳体221的排气口布置位置不同,单元壳体221内各部件的布局相应调整,尾端开关单元21位于开关本体2远离操作装置1的一端,尾端开关单元21的单元壳体221的单元壳体轴孔2211为盲孔。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是使用时惯常摆放的方位或位置关系,仅是为了便于描述,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示相对重要性。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (15)

  1. 一种远程控制旋转隔离开关,其包括操作装置(1)和开关本体(2);所述开关本体(2)包括至少一个开关单元,开关单元包括转动设置的动触头组件(225)以及与动触头组件(225)配合的静触头;所述操作装置(1)与开关单元的动触头组件(225)驱动相连,驱动动触头组件(225)转动而与静触头闭合或断开,从而接通或分断电路;所述操作装置(1)包括绕自身轴线转动设置的操作轴(1131)、实时储能机构、延时储能机构、锁定机构和脱扣机构,锁定机构包括锁扣件(122),脱扣机构包括脱扣器(134);所述远程控制旋转隔离开关处于分闸状态且延时储能机构处于释能状态时,操作轴(1131)由分闸位置向合闸位置转动且通过实时储能机构驱动操作装置切换至合闸状态,同时驱动延时储能机构切换至储能状态且与锁扣件(122)锁定配合使延时储能机构保持在储能状态;所述延时储能机构在储能状态下,操作轴(113)在分闸位置与合闸位置之间自由转动,同时驱动远程控制旋转隔离开关在分闸状态和合闸状态之间自由切换;其特征在于:所述脱扣器(134)收到脱扣信号后动作,驱动锁扣件(122)与延时储能机构解除锁定,延时储能机构释能驱动操作轴(1131)向分闸位置转动,操作轴(1131)再驱动实时操作机构驱动远程控制旋转隔离开关切换至分闸状态。
  2. 根据权利要求1所述的远程控制旋转隔离开关,其特征在于:所述延时储能机构包括转盘(127)和第一储能弹簧(126),转盘(127)受操作轴(1131)驱动由释能位置转动至储能位置使第一储能弹簧(126)储能,转盘(127)与锁扣件(122)锁定配合使延时储能机构保持在储能状态;
    所述远程控制旋转开关在合闸状态下,转盘(127)与操作轴(1131)之间存在分闸空行程,外力驱动操作轴(1131)转动使其通过实时储能机构驱动远程控制旋转开关切换至分闸状态,同时相对于转盘(127)走过分闸空行程。
  3. 根据权利要求2所述的远程控制旋转隔离开关,其特征在于:所述转盘(127)与操作轴(1131)同轴设置,转盘(127)包括转盘轴孔(1271)和至少一个转盘受动孔(1276),转盘(127)通过转盘轴孔(1271)转动套设在操作轴(1131)上,转盘受动孔(1276)包括第一面(12761)和第二面(12762);
    所述操作轴(1131)包括驱动指,驱动指设置在转盘受动孔(1276)内;
    所述驱动指抵压第一面(12761)使转盘(127)向储能位置转动;
    所述远程控制旋转开关处于合闸状态时,第二面(12762)与驱动指之间存在分闸空行程,延时储能机构释能时,第一储能弹簧(126)释能驱动转盘(127)向释能位置转动,第一面(12761)通过驱动指驱动操作轴(1131)向分闸位置转动。
  4. 根据权利要求3所述的远程控制旋转隔离开关,其特征在于:所述转盘受动孔(1276)为与转盘轴孔(1271)同圆心设置的扇面形孔,扇面形孔的圆周方向上的两端分别设有第一面(12761)和第二面(12762);所述延时储能机构还包括驱动键(128),驱动键(128)沿操作轴(1131)的径向插置在其上且驱动键(128)两端分别凸出在操作轴(1131)的径向两侧作为驱动指,两个驱动指分别设置在两个扇面形孔内。
  5. 根据权利要求2所述的远程控制旋转隔离开关,其特征在于:所述转盘(127)还包括转盘锁定臂(1273-74);所述锁扣件(122)一端转动设置,另一端与脱扣器(134)配合,锁扣件(122)包括设置在其中部的锁扣件锁定部(1223);所述转盘(127)由释能位置向储能位置转动,转盘锁定臂(1273-74)抵压锁扣件锁定部(1223)使锁扣件(122)向第一方向转动以避让转盘锁定臂(1273-74),转盘锁定臂(1273-74)越过锁扣件锁定部(1223)后,锁扣件(122)向第二方向转动复位,与转盘锁定臂(1273-74)限位配合将转盘(127)锁定在储能位置;所述第一方向和第二方向互为反方向;所述脱扣器(134)收到脱扣信号后动作,驱动锁扣件(122)向第一方向转动,使锁扣件(122)与转盘锁定臂(1273-74)解除限位配合。
  6. 根据权利要求5所述的远程控制旋转隔离开关,其特征在于:所述锁扣件锁定部(1223)包括锁定部锁止面(1223-0)和锁定部导引斜面(1223-1),转盘锁定臂(1273-74)抵压锁定部导引斜面(1223-1)使锁扣件(122)向解锁方向转动,转盘锁定臂(1273-74)与锁定部锁止面(1223-0)限位配合将转盘(127)锁定在储能位置;
    所述锁扣件(122)一端转动设置,另一端与脱扣器(134)传动配合,锁扣件(122)中部设置锁扣件锁定部(1223);所述脱扣器(134)收到脱扣信号后动作,驱动锁扣件(122)向解锁方向转动,使锁扣件锁定部(1223)与延时储能机构解除锁定;
    所述锁扣件(122)还包括锁扣件主板(1222)和锁扣件受动部(1221),锁扣件主板(1222)一端为锁扣件枢置端,另一端与锁扣件受动部(1221)相连,锁扣件(122)通过锁扣件枢置端转动设置,锁扣件主板(1222)所在平面垂直于锁扣件受动部(1221)所在平面,锁扣件锁定部(1223)设置在锁扣件主 板(1222)上且位于锁扣件枢置端和锁扣件受动部(1221)之间;
    所述锁定机构还包括锁扣件复位元件(123),锁扣件复位元件(123)向锁扣件(122)施加作用力,使锁扣件(122)向锁定方向转动,锁定方向与解锁方向互为反方向。
  7. 根据权利要求2所述的远程控制旋转隔离开关,其特征在于:所述第一储能弹簧(126)为扭簧,所述第一储能弹簧(126)、转盘(127)和操作轴(1131)同轴设置;所述延时储能机构还包括第一衬套(124),第一衬套(124)转动套设在操作轴(1131)上且位于第一储能弹簧(126)和操作轴(1131)之间。
  8. 根据权利要求1所述的远程控制旋转隔离开关,其特征在于:所述实时储能机构包括第二储能弹簧(1133)、滑动架(112)、旋转架(1134)、输出轴(111)和壳体底座(101),输出轴(111)绕自身轴线转动设置在壳体底座(101)上,旋转架(1134)与操作轴(1131)固定相连且同步转动,滑动架(112)与输出轴(111)同步转动设置且相对于壳体底座(101)和输出轴(111)滑动设置,壳体底座(101)包括两个沿输出轴(111)的转动方向间隔分布的限位槽,分别为分闸槽(1012-13)和合闸槽(1015-16);
    所述滑动架(112)与一个限位槽限位配合,操作轴(1131)带动旋转架(1134)转动使第二储能弹簧(1133)储能至旋转架(1134)与滑动架(112)配合,操作轴(1131)继续转动以通过旋转架(1134)驱动滑动架(112)相对于壳体底座(101)滑动从该限位槽中脱出,第二储能弹簧(1133)释能驱动滑动架(112)转动并滑入另一个限位槽内,同时滑动架(112)带动输出轴(111)转动;
    所述第二储能弹簧(1133)为扭簧,第二储能弹簧(1133)、旋转架(1134)、输出轴(111)和操作轴(1131)同轴设置,第二储能弹簧(1133)、旋转架(1134)、滑动架(112)和输出轴(111)依次设置;所述实时储能机构还包括第二衬套(1135),第二衬套(1135)转动套设在操作轴(1131)上且插置在操作轴(1131)和第二储能弹簧(1133)之间。
  9. 根据权利要求1所述的远程控制旋转隔离开关,其特征在于:所述操作装置还包括装置壳体,装置壳体包括用于容纳延时储能机构的第一空间(s1)和用于容纳实时储能机构的第二空间(s2),第一空间(s1)和第二空间(s2)沿操作轴(1131)的轴向分布,第一空间(s1)和第二空间(s2)之间设有分隔板(p),分隔板(p)设有供操作轴(1131)穿过的隔板轴孔(1023);所述操作轴(1131)一端凸出在装置壳体外部供操作,另一端依次穿过第一空间(s1)和隔板轴孔(1023)插入第二空间(s2)内。
  10. 根据权利要求9所述的远程控制旋转隔离开关,其特征在于:所述装置壳体包括依次设置的壳体上盖(103)、壳体隔板(102)和壳体底座(101),壳体上盖(103)和壳体隔板(102)扣合围成第一空间(s1),壳体隔板(102)和壳体底座(101)扣合围成第二空间(s2),壳体隔板(102)包括分隔板(p)。
  11. 根据权利要求10所述的远程控制旋转开关,其特征在于:所述延时储能机构还包括垫片(121),垫片(121)设置在装置壳体的壳体隔板(102)上,延时储能机构的转盘(127)转动设置在垫片(121)上。
  12. 根据权利要求11所述的远程旋转控制开关,其特征在于:所述垫片(121)包括供操作轴(1131)穿过的垫片避让孔(1211)、设置在面向转盘(127)一侧上的垫片沉孔(1212)以及垫片开口(1216),垫片沉孔(1212)的内径大于垫片避让孔(1211)内径,垫片开口(1216)与垫片沉孔(1212)连通,延时储能机构的驱动键(128)经由垫片开口(1216)进入垫片沉孔(1212)内插置在操作轴(1131),在垫片沉孔(1212)内转动。
  13. 根据权利要求10所述的远程控制旋转开关,其特征在于:所述延时储能机构的第一储能弹簧(126)为扭簧,其两端分别为第一弹簧固定端(1261)和第一弹簧受动端(1262),第一弹簧固定端(1261)固定设置在壳体隔板(102)上,第一弹簧受动端(1262)与延时储能机构的转盘(127)配合;所述壳体隔板(102)包括转盘挡台(1026),延时储能机构在释能状态下,转盘(127)与转盘挡台(1026)限位配合,使转盘(127)停止在释能位置处。
  14. 根据权利要求13所述的远程控制旋转开关,其特征在于:所述转盘(127)包括转盘主板(1270)以及分别设置在转盘主板(1270)上的转盘锁定臂(127374)和转盘配合臂(127577),转盘配合臂(127577)与第一弹簧配合端(1261)配合;所述延时储能机构在储能状态下,转盘锁定臂(127374)与锁扣件(122)锁定配合;所述延时储能机构在释能状态下,转盘锁定臂(1273-74)与转盘挡台(1026)限位配合;所述转盘主板(1270)的转动平面与操作轴(1131)的轴线垂直,转盘主板(1270)所在平面与转盘锁定臂(127374)所在平面平行。
  15. 根据权利要求13所述的远程控制旋转开关,其特征在于:所述壳体隔板(102)还设置壳体隔板弹簧限位槽(1025),第一储能弹簧(126)的第一弹簧固定端(1261)固定在壳体隔板弹簧限位槽(1025)内,壳体隔板弹簧限位槽(1025)设置在所述转盘挡台(1026)上。
PCT/CN2023/117131 2022-09-07 2023-09-06 远程控制旋转隔离开关 WO2024051714A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211132427.8A CN117711850A (zh) 2022-09-07 2022-09-07 远程控制旋转隔离开关
CN202211132427.8 2022-09-07

Publications (1)

Publication Number Publication Date
WO2024051714A1 true WO2024051714A1 (zh) 2024-03-14

Family

ID=90144900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117131 WO2024051714A1 (zh) 2022-09-07 2023-09-06 远程控制旋转隔离开关

Country Status (2)

Country Link
CN (1) CN117711850A (zh)
WO (1) WO2024051714A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339609A (ja) * 1998-05-26 1999-12-10 Terasaki Electric Co Ltd 回路遮断器
CN113394041A (zh) * 2021-05-24 2021-09-14 嘉兴京硅智能技术有限公司 一种隔离开关
CN215578337U (zh) * 2021-05-24 2022-01-18 嘉兴京硅智能技术有限公司 一种隔离开关及其自动脱扣机构
CN113963978A (zh) * 2020-07-20 2022-01-21 上海良信电器股份有限公司 一种旋转开关
CN215834424U (zh) * 2021-06-10 2022-02-15 上海良信电器股份有限公司 操作装置及旋转开关
CN114582666A (zh) * 2022-01-29 2022-06-03 上海京硅智能技术有限公司 自动脱扣隔离开关
CN216749634U (zh) * 2021-11-01 2022-06-14 上海正泰智能科技有限公司 开关装置的操作机构及开关装置
CN218631727U (zh) * 2022-09-07 2023-03-14 上海正泰智能科技有限公司 远程分闸开关
CN218631775U (zh) * 2022-09-07 2023-03-14 上海正泰智能科技有限公司 储能脱扣机构及保护开关
CN218631725U (zh) * 2022-09-07 2023-03-14 上海正泰智能科技有限公司 可自动复位的脱扣机构
CN218631702U (zh) * 2022-09-07 2023-03-14 上海正泰智能科技有限公司 操作装置及隔离开关

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11339609A (ja) * 1998-05-26 1999-12-10 Terasaki Electric Co Ltd 回路遮断器
CN113963978A (zh) * 2020-07-20 2022-01-21 上海良信电器股份有限公司 一种旋转开关
CN113394041A (zh) * 2021-05-24 2021-09-14 嘉兴京硅智能技术有限公司 一种隔离开关
CN215578337U (zh) * 2021-05-24 2022-01-18 嘉兴京硅智能技术有限公司 一种隔离开关及其自动脱扣机构
CN215834424U (zh) * 2021-06-10 2022-02-15 上海良信电器股份有限公司 操作装置及旋转开关
CN216749634U (zh) * 2021-11-01 2022-06-14 上海正泰智能科技有限公司 开关装置的操作机构及开关装置
CN114582666A (zh) * 2022-01-29 2022-06-03 上海京硅智能技术有限公司 自动脱扣隔离开关
CN218631727U (zh) * 2022-09-07 2023-03-14 上海正泰智能科技有限公司 远程分闸开关
CN218631775U (zh) * 2022-09-07 2023-03-14 上海正泰智能科技有限公司 储能脱扣机构及保护开关
CN218631725U (zh) * 2022-09-07 2023-03-14 上海正泰智能科技有限公司 可自动复位的脱扣机构
CN218631702U (zh) * 2022-09-07 2023-03-14 上海正泰智能科技有限公司 操作装置及隔离开关

Also Published As

Publication number Publication date
CN117711850A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
WO2016008298A1 (zh) 一种多极小型断路器的操作装置
CN218769169U (zh) 自动分闸机构
WO2024051714A1 (zh) 远程控制旋转隔离开关
CN109859972B (zh) 真空柜用强制联锁结构
CN209357690U (zh) 一种小型断路器操作机构及小型断路器
WO2023217210A1 (zh) 可多侧操作的操作机构、隔离开关和开关电器
CN218631702U (zh) 操作装置及隔离开关
CN218631775U (zh) 储能脱扣机构及保护开关
WO2021027909A1 (zh) 电开关装置
CN218631727U (zh) 远程分闸开关
CN105428137A (zh) 充气柜三工位负荷开关操作机构
CN218631725U (zh) 可自动复位的脱扣机构
CN111105940B (zh) 一种电动弹簧机构及接地开关
CN219738818U (zh) 远程分闸机构及旋转隔离开关
EP3051566B1 (en) Exchange operating mechanism
CN218769146U (zh) 储能结构及旋转隔离开关
CN111370257B (zh) 一种负荷开关/隔离开关防误型操作手柄及其使用方法
CN218769246U (zh) 储能脱扣装置及旋转开关
CN209487386U (zh) 一种充气柜三工位隔离操作机构
WO2024051722A1 (zh) 自动分闸机构
CN218939514U (zh) 锁扣件
CN117672734A (zh) 储能结构及旋转隔离开关
CN107293455B (zh) 永磁式断路器的脱扣机构、永磁式断路器及开关柜
CN208548329U (zh) 断路器的操作机构及断路器
CN216288260U (zh) 断路器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862408

Country of ref document: EP

Kind code of ref document: A1