WO2024051614A1 - 一种辅助驾驶方法及相关装置 - Google Patents

一种辅助驾驶方法及相关装置 Download PDF

Info

Publication number
WO2024051614A1
WO2024051614A1 PCT/CN2023/116622 CN2023116622W WO2024051614A1 WO 2024051614 A1 WO2024051614 A1 WO 2024051614A1 CN 2023116622 W CN2023116622 W CN 2023116622W WO 2024051614 A1 WO2024051614 A1 WO 2024051614A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
partition
windshield
area
blocked
Prior art date
Application number
PCT/CN2023/116622
Other languages
English (en)
French (fr)
Inventor
孔令芳
张二艳
王乾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024051614A1 publication Critical patent/WO2024051614A1/zh

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits

Definitions

  • the present application relates to the field of vehicle safety technology, and in particular, to an assisted driving method and related devices.
  • This application provides an assisted driving method and related devices in order to improve driving safety.
  • this application provides an assisted driving method, which can be executed by an assisted driving device, or can also be executed by components (such as chips, chip systems, etc.) configured in the assisted driving device, or can also be executed It is implemented by a logic module or software that can realize all or part of the functions of the auxiliary driving device, which is not limited in this application.
  • the method includes: acquiring an image of the windshield, which includes an image collected of the windshield; and based on the position of the occluded area in the image of the windshield and the location of the occluded area. Area, determines the degree of occlusion of the windshield.
  • the situation that the windshield is blocked is determined by combining the position of the blocked area in the acquired image of the windshield and the area of the blocked area. Compared with determining the windshield only by the area of the blocked area, When the glass is blocked, it can effectively avoid the misjudgment of the windshield being blocked due to only considering the area of the blocked area, which is helpful to improve the accuracy of judging the windshield being blocked. In this way, it can Reasonable driving assistance measures can be taken according to the blocked situation, which will help improve driving safety.
  • the image of the windshield includes a plurality of partitions, and the plurality of partitions are located at different positions in the image of the windshield, and the plurality of partitions
  • Each partition is predefined with at least one preset interval corresponding to at least one occlusion level, the at least one preset interval is related to the area of the blocked area falling within the corresponding partition; and, the above-mentioned image based on the windshield Determine the degree of obstruction of the windshield based on the location of the blocked area and the area of the blocked area, including: determining the degree of obstruction of each partition based on the area of each partition where the blocked area is distributed in multiple partitions; The highest level among the levels of partition obstruction is determined as the level of windshield obstruction.
  • the plurality of partitions include a first partition and a second partition, and the impact of the first partition on the driver's line of sight is greater than that of the second partition on the driver's line of sight.
  • the degree of influence is that under the same occlusion level, the upper limit of the preset interval corresponding to the first partition is smaller than the upper limit of the preset interval corresponding to the second partition.
  • At least one preset interval is related to the proportion of the area of the blocked area in the corresponding partition to the area of the partition. That is, for a certain occlusion level corresponding to a certain partition among the multiple partitions, the preset value corresponding to the occlusion level is Let the interval be the value range of the ratio of the area of the occluded area in the partition to the area of the partition.
  • the greater the impact on the driver's line of sight among the multiple partitions the smaller the upper limit of the corresponding preset interval under the same occlusion level. In this way, the partitions that have a greater impact on the driver's line of sight are more likely to be judged to have a higher occlusion level, and measures can be taken to better assist the driver in driving the vehicle and improve driving safety.
  • the preset interval corresponding to the occlusion level may also be a value range of the area of the blocked area in the partition.
  • the upper limit of the preset interval corresponding to the same occlusion level may be larger or smaller in the partition that has a greater impact on the driver's line of sight among the multiple partitions. The upper limit is related to the ratio of the area of the partition to the area of the entire image.
  • the upper limit of the preset interval corresponding to this partition may be greater than the preset thresholds of other partitions at the same occlusion level. upper limit.
  • the plurality of partitions include a first partition and a third partition, and the first partition and the third partition correspond to different numbers of at least one occlusion level.
  • the second partition and the third partition may be the same partition or different partitions.
  • the partition that has a greater impact on the driver's line of sight has a greater number of corresponding occlusion levels.
  • the above method further includes: assisting the driver based on at least one of the following methods Driving a vehicle: Adjust the vehicle's taillights, turn on the fragrance, turn on the wipers or turn on the double flashing warning lights.
  • one or more basic methods can be used to assist the driver in driving the vehicle, such as adjusting the vehicle's taillights, turning on the fragrance, turning on the wipers or turning on the Double flashing warning lights, etc. This will help improve driving safety.
  • the above method when the level of occlusion of the windshield is greater than the preset occlusion level, the above method further includes: determining the current speed of the vehicle; , determines the processing used to assist the driver in driving the vehicle.
  • the current speed of the vehicle can be continued to be determined, and reasonable processing methods can be made based on the current speed to ensure driving safety.
  • the above processing method includes: displaying the top view picture of the vehicle and the front view picture of the vehicle through the central control display screen ; Or, if the current vehicle speed is greater than the preset threshold, the above processing method includes: displaying a virtual road condition image through the central control display. The virtual road condition image is drawn based on the vehicle's near-field road condition information and the vehicle's far-field road condition information.
  • the central control display screen can display the top view picture and the front view picture of the vehicle, that is, display some road condition information in the near field of the vehicle to assist the driver in driving the vehicle.
  • one or more of the following can be added to assist driving: adjusting the vehicle's taillights, turning on fragrance, turning on wipers, or turning on double flashing warning lights, etc.
  • the current speed of the vehicle is high, simply assisting the driver in driving the vehicle through the above methods may not be able to ensure the driver's safety. For example, if the current speed is high, the braking distance of the vehicle is large, that is, the vehicle needs to drive for a long time. distance to stop.
  • virtual traffic images can be displayed through the central control display to assist driving.
  • the driver drives the vehicle, and the virtual road condition image is drawn based on the vehicle's near-field road condition information and the vehicle's far-field road condition information.
  • one or more of the following can be added to assist driving: adjusting the vehicle's taillights, turning on fragrance, turning on wipers, or turning on double flashing warning lights, etc. In this way, it is more conducive to improving driving safety.
  • the above method before displaying the virtual road condition image through the central control display, the above method further includes: acquiring the near-field road condition information of the vehicle through radar; The roadside equipment of the system obtains the far-field road condition information of the vehicle; and draws the virtual road condition image based on the near-field road condition information of the vehicle and the far-field road condition information of the vehicle.
  • the above method when the current vehicle speed is greater than a preset threshold, the above method further includes: sending vehicle fault information to a roadside device of the vehicle-road coordination system to Let the roadside equipment broadcast the fault information of the above-mentioned vehicles.
  • the vehicle's fault information can also be sent to the roadside device of the vehicle-road coordination system, so that the roadside device broadcasts the vehicle's fault information. In this way, other vehicles can actively avoid the vehicle after hearing the broadcast, which will help ensure driving safety.
  • the above method when the current vehicle speed is greater than a preset threshold, the above method further includes: when the vehicle is non-autonomous driving, prompting the driver to continue through voice Driving and pulling over; or, if the vehicle is autonomously driving, obtain the vehicle's target speed and pull-over section information, automatically adjust the vehicle speed to the target speed, and automatically pull over at the section indicated by the above-mentioned section information.
  • this application provides an assisted driving method, which can be executed by an assisted driving device, or can also be executed by components (such as chips, chip systems, etc.) configured in the assisted driving device, or can also be executed It is implemented by a logic module or software that can realize all or part of the functions of the auxiliary driving device, which is not limited in this application.
  • the method includes: determining a level at which the windshield is blocked; when the level at which the windshield is blocked is greater than a preset blocking level, determining the current speed of the vehicle; and determining, based on the above-mentioned current speed, the amount of time required for assistance. The way a driver handles a vehicle.
  • the current speed of the vehicle is further combined to determine the number of times to assist the driver in driving the vehicle. method, which is conducive to improving the rationality of assisted driving.
  • the above processing method includes: displaying the top view picture of the vehicle and the front view picture of the vehicle through the central control display screen ; Or, if the current vehicle speed is greater than the preset threshold, the above processing method includes: displaying a virtual road condition image through the central control display. The virtual road condition image is drawn based on the vehicle's near-field road condition information and the vehicle's far-field road condition information.
  • the central control display screen can display the top view picture and the front view picture of the vehicle, that is, display some road condition information in the near field of the vehicle to assist the driver in driving the vehicle.
  • one or more of the following can be added to assist driving: adjusting the vehicle's taillights, turning on fragrance, turning on wipers, or turning on double flashing warning lights, etc.
  • the current speed of the vehicle is high, simply assisting the driver in driving the vehicle through the above methods may not be able to ensure the driver's safety. For example, if the current speed is high, the braking distance of the vehicle is large, that is, the vehicle needs to drive for a long time. distance to stop.
  • virtual traffic images can be displayed through the central control display to assist driving.
  • the driver drives the vehicle, and the virtual road condition image is drawn based on the vehicle's near-field road condition information and the vehicle's far-field road condition information.
  • one or more of the following can be added to assist driving: adjusting the vehicle's taillights, turning on fragrance, turning on wipers, or turning on double flashing warning lights, etc. In this way, it is more conducive to improving driving safety.
  • the above method before displaying the virtual road condition image through the central control display, the above method further includes: acquiring the near-field road condition information of the vehicle through radar; The roadside equipment of the system obtains the far-field road condition information of the vehicle; and draws the virtual road condition image based on the near-field road condition information of the vehicle and the far-field road condition information of the vehicle.
  • the above method further includes: sending vehicle fault information to the roadside device of the vehicle-road coordination system to Let the roadside equipment broadcast the fault information of the above-mentioned vehicles.
  • the vehicle's fault information can also be sent to the roadside device of the vehicle-road coordination system, so that the roadside device broadcasts the vehicle's fault information. In this way, other vehicles can actively avoid the vehicle after hearing the broadcast, which will help ensure driving safety.
  • the above method when the current vehicle speed is greater than a preset threshold, the above method further includes: when the vehicle is non-autonomous driving, prompting the driver to continue through voice Driving and pulling over; or, if the vehicle is autonomously driving, obtain the vehicle's target speed and pull-over section information, automatically adjust the vehicle speed to the target speed, and automatically pull over at the section indicated by the above-mentioned section information.
  • this application provides an auxiliary driving device that can implement the first aspect and the method in any possible implementation of the first aspect, or can implement the second aspect and any possible implementation of the second aspect.
  • the device includes corresponding units for performing the above method.
  • the units included in the device can be implemented by software and/or hardware.
  • the present application provides an auxiliary driving device, which includes a processor.
  • the processor is coupled to a memory and can be used to execute a computer program in the memory to implement the method in the first aspect and any possible implementation of the first aspect, or to implement the second aspect and any possible implementation of the second aspect. method in the implementation.
  • the device further includes memory.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • this application provides a vehicle that can be used to implement the above first aspect and the method described in any possible implementation of the first aspect, or to implement the second aspect and any one of the second aspects. Methods in possible implementations.
  • the vehicle includes an auxiliary driving device as described in the third or fourth aspect.
  • the present application provides a chip system, which includes at least one processor to support the implementation of the functions involved in the above-mentioned first aspect and any possible implementation of the first aspect, or to support the implementation of The functions involved in the above-mentioned second aspect and any possible implementation manner of the second aspect, for example, include receiving or processing the data and/or information involved in the above-mentioned method.
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located within the processor or outside the processor.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the present application provides a computer-readable storage medium in which a computer program or instructions are stored. When the computer program or instructions are executed, the first aspect and any aspect of the first aspect are implemented. A method in a possible implementation manner, or a method in any possible implementation manner of implementing the second aspect and the second aspect.
  • the present application provides a computer-readable storage medium, including a computer program, which, when run on a computer, causes the computer to implement the method in the first aspect and any possible implementation of the first aspect, or, Implement the second aspect and the method in any possible implementation manner of the second aspect.
  • the present application provides a computer program product.
  • the computer program product includes: a computer program (which may also be called a code, or an instruction).
  • a computer program which may also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute the first aspect and and the method in any possible implementation manner of the first aspect, or, perform the second aspect and the method in any possible implementation manner of the second aspect.
  • Figure 1 is a schematic diagram of a scenario applicable to the method provided by the embodiment of this application;
  • Figure 2 is a schematic flowchart of detecting the obstruction of the windshield in the known technology
  • Figure 3 is a schematic system structure diagram of the assisted driving system provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of the assisted driving method provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of each partition provided by the embodiment of the present application.
  • Figure 6 is a detailed flow chart for determining the level of windshield occlusion provided by an embodiment of the present application.
  • Figure 7 is a schematic flowchart of determining an assisted driving mode based on the level of windshield occlusion provided by an embodiment of the present application
  • Figure 8 is a schematic flowchart of determining a method for assisting a driver to drive a vehicle based on the current speed of the vehicle provided by an embodiment of the present application;
  • Figure 9 is a schematic diagram of the surround panoramic image and the virtual road condition image provided by the embodiment of the present application.
  • Figure 10 is a schematic block diagram of an auxiliary driving device provided by an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of the auxiliary driving device provided by the embodiment of the present application.
  • At least one item refers to one item or multiple items.
  • “And/or” describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an “or” relationship, but it does not exclude the situation that the related objects are in an “and” relationship. The specific meaning can be understood based on the context.
  • the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusion, for example, a process, method, system, product or equipment that includes a series of steps or units does not necessarily are limited to those steps or elements expressly listed, but may include other steps or elements not expressly listed or inherent to the process, method, product or apparatus.
  • the image of the windshield includes an image collected from the windshield, but the image of the windshield may also include other structures besides the windshield, such as those used for inlaying.
  • the windshield, the car frame, etc. are not limited in this application.
  • the windshield may refer to the front windshield or the rear windshield, which is not limited in this application.
  • the application scenarios of the assisted driving method provided by the embodiment of the present application will be described below. It can be understood that the application scenarios described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • Figure 1 is a schematic diagram of a scenario applicable to the method provided by the embodiment of this application.
  • the driver can observe the road conditions ahead through the front windshield 101, the road conditions behind through the left rearview mirror 102, and even the left front door glass.
  • Li Lai observes the road conditions on the left to ensure driving safety.
  • the windshield 101 may be blocked by foreign objects 103, and the driver cannot make a reasonable judgment on the road conditions ahead. If he continues to drive, turns the steering wheel hard, or brakes in an emergency, etc., it will cause serious consequences. pose a greater safety risk.
  • the vehicle may include more or less structures.
  • FIG. 2 is a schematic flowchart of detecting the obstruction of the windshield in the known technology.
  • the obstruction of the windshield can currently be detected through the following methods: First, take an image of the windshield through a camera. Secondly, the image is processed and the area of the occluded area in the image is calculated. Finally, the calculated area of the blocked area is compared with the threshold, which refers to the threshold of the area of the blocked area. If the calculated area of the blocked area is greater than the threshold, it is determined that the windshield is blocked; if calculated If the area of the blocked area is less than or equal to the threshold, it is determined that the windshield is not blocked.
  • this application provides an assisted driving method, which determines the windshield by combining the position of the blocked area in the acquired image of the windshield and the area of the blocked area. Compared with determining the blocked situation of the windshield only by the area of the blocked area, it is helpful to improve the accuracy of judging the blocked situation of the windshield, which in turn helps improve driving safety.
  • assisted driving system involved in the embodiment of the present application will be described in detail below with reference to FIG. 3 .
  • Figure 3 is a schematic structural diagram of an assisted driving system provided by an embodiment of the present application.
  • the assisted driving system 300 includes: an assisted driving device 301 , an in-car central control 302 , a camera 303 , a radar 304 and a driving recorder 305 .
  • the in-car central control 302, camera 303, radar 304 and driving recorder 305 are all connected to the auxiliary driving device 301 and can communicate with the auxiliary driving device 301.
  • the camera 303 and the radar 304 are also connected to the in-car central control 302. The functions of each part of the above-mentioned assisted driving system 300 will be described in detail below.
  • the auxiliary driving device 301 may be used to obtain an image of the windshield, and determine the degree of obstruction of the windshield based on the position and area of the blocked area in the image of the windshield.
  • the in-car central control 302 refers to the vehicle's controller, which can be used to control the vehicle's air conditioner, speakers, doors, etc., and can also be used to display the image of the driving recorder and the near-field road condition information of the vehicle collected by radar through the display screen.
  • Virtual traffic images, etc. where the virtual traffic images are drawn based on the vehicle's near-field traffic information and far-field traffic information.
  • the number of cameras 303 may be one or more.
  • the cameras 303 include multiple cameras installed at the front, rear, left and right of the vehicle. Camera 303 can be used to capture images. Multiple cameras on the front, rear, left and right of the vehicle form a panoramic surround view system. The multiple cameras can be used to capture images around the vehicle. They can also be processed by the control unit to splice the images captured by the above-mentioned front, rear, left and right cameras into a panoramic top-down image of the vehicle. It is then displayed on the central control display for the driver’s reference.
  • the number of radars 304 may be one or more.
  • the radars 304 include multiple radars installed at the front, rear, left and right of the vehicle.
  • Radar 304 can use the principle of ultrasonic waves to emit ultrasonic waves and reflect the sound waves after hitting obstacles, thereby calculating the actual distance between the vehicle and the obstacles.
  • Radar 304 may be used, for example, to detect obstacles, predict collisions, adaptive cruise control, etc.
  • the driving recorder 305 can be used to capture the scene in front of the vehicle, record and store the vehicle's driving speed, time, mileage and other status information related to the vehicle's driving, and can realize data output through the interface.
  • assisted driving system 300 does not constitute any limitation on the assisted driving system 300.
  • the assisted driving system 300 may also include more or fewer components than shown in the figure, or a combination of certain components. some parts, or split some parts, or arrange different parts.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • each part in the assisted driving system 300 described above are only examples. In other embodiments, each part may include more or less functions, which is not limited by the embodiments of the present application.
  • the auxiliary driving device can be deployed on the vehicle alone, or it can be integrated with other controllers in a domain controller and deployed on the vehicle. This application does not limit this.
  • the driving assistance device is deployed separately.
  • the auxiliary driving device can also be integrated with the in-car central control shown in Figure 3 in a domain controller.
  • FIG. 4 is a schematic flow chart of the assisted driving method provided by the embodiment of the present application.
  • the assisted driving method 400 shown in FIG. 4 may include step 401 and step 402. Each step in the method 400 is described in detail below.
  • Step 401 Obtain an image of the windshield.
  • the above-mentioned images of the windshield include images collected from the windshield.
  • the windshield image may also include a small amount of images of the vehicle frame used to inlay the windshield, images of the steering wheel, etc.
  • the windshield in this application is The specific structure included in the image is not limited, as long as the image includes an image taken of the windshield.
  • the blocked area of the windshield will be different from other areas in the image of the windshield. In this application, a certain area of the windshield is blocked, resulting in a certain area of the image of the windshield being blocked.
  • the following exemplarily illustrates several ways in which the driving assistance device acquires images of the windshield.
  • the auxiliary driving device can capture the image of the windshield through the camera.
  • a driving assistance device can capture an image of the front windshield through a forward-facing camera.
  • the driving assistance device can capture images of the rear windshield through a rear-facing camera.
  • the auxiliary driving device can capture the image of the windshield through the driving recorder.
  • the driver assistance device can take an image of the front windshield through a driving recorder.
  • the driving assistance device can periodically acquire images of the windshield to determine whether the windshield is blocked.
  • the assisted driving device can obtain an image of the windshield every 5 seconds and determine whether it is blocked.
  • the auxiliary driving device can also obtain the image of the windshield in real time and judge whether it is blocked, which will help improve driving safety.
  • Step 402 Determine the degree of occlusion of the windshield according to the position of the blocked area in the image of the windshield and the area of the blocked area.
  • the level of the windshield being blocked can be used to represent the degree of the windshield being blocked, or the degree of impact on the driver's line of sight. For example, the higher the degree of obstruction of the windshield, the greater the degree of obstruction of the windshield, or the greater the impact on the driver's line of sight.
  • the degree of obstruction of the windshield may be identified by text.
  • the degree of obstruction of the windshield includes severe obstruction, general obstruction or no obstruction. Among them, severe occlusion has the highest level and unobstructed level has the lowest.
  • the level of the windshield being blocked can also be identified by a specific numerical value.
  • the level of the windshield being blocked includes 1, 2 or 3. Among them, the higher the level of the windshield is blocked, the larger the value; the lower the level of the windshield is blocked, the smaller the value is. Alternatively, the higher the level of the windshield being blocked, the smaller the value; the lower the level of the windshield being blocked, the higher the value. This application does not limit the corresponding relationship between the level value of the windshield being blocked and the level of the windshield being blocked.
  • the predefined occlusion levels of each partition can be identified by text.
  • the predefined occlusion levels of each partition include severe occlusion, general occlusion and no occlusion. Among them, severe occlusion has the highest level and unobstructed level has the lowest.
  • the predefined occlusion levels of each partition can also use other forms of occlusion levels.
  • the predefined occlusion levels of each partition can also be identified by specific values. For example, the higher the occlusion level, the greater the value; the lower the occlusion level, The smaller the value. Or, as another example, the higher the occlusion level, the smaller the value; the lower the occlusion level, the higher the value. This application does not limit the corresponding relationship between the occlusion level value and the occlusion level.
  • the following exemplarily provides several implementation methods for determining the degree of occlusion of the windshield.
  • the auxiliary driving device divides the above-mentioned windshield image into multiple partitions, and determines whether the area of the blocked area in each partition is based on the area of each partition where the blocked area is distributed in the multiple partitions.
  • Exceed the corresponding threshold to obtain the target partition, which is one or more partitions in each partition in which the area of the blocked area exceeds the corresponding threshold; according to the occlusion level corresponding to the target partition, determine the area where the windshield is blocked Level, the level at which the windshield is blocked is the highest level among the occlusion levels corresponding to the target partition.
  • the above-mentioned multiple partitions are located at different positions in the image of the windshield.
  • Each of the multiple partitions is predefined with an occlusion level and a threshold corresponding to the occlusion level.
  • the threshold is the same as the blocked area falling within the corresponding partition. Relevant to the area of the region.
  • the auxiliary driving device After the auxiliary driving device obtains the image of the windshield, it divides the image into three partitions, namely partition 1, partition 2 and partition 3.
  • the degree of influence of each partition on the driver's line of sight is as follows: Partition 2>Partition 1>Partition 3.
  • the occlusion level corresponding to Partition 2 is severe occlusion
  • the occlusion level corresponding to Partition 1 is general occlusion
  • the occlusion level corresponding to Partition 3 is unblocked.
  • the assisted driving device calculates the area of each partition in which the blocked area is distributed in multiple partitions.
  • the partition is determined as the target partition, for example, partition 1 and If the area of the blocked area in Partition 2 exceeds the corresponding threshold, the target partitions are Partition 1 and Partition 2, and the occlusion level of Partition 2 is higher than the occlusion level of Partition 1. Therefore, the level of the windshield being blocked is severely blocked. .
  • the auxiliary driving device divides the above-mentioned windshield image into multiple partitions, and determines the level of occlusion of each partition based on the area of each partition where the blocked area is distributed in the multiple partitions, Then, the highest level among the blocked levels of each partition is determined as the blocked level of the windshield.
  • the plurality of partitions are located at different positions in the image of the windshield, and each of the plurality of partitions is predefined with at least one preset interval corresponding to at least one occlusion level, and the at least one preset interval falls within It is related to the area of the occluded area in the corresponding partition.
  • the auxiliary driving device After the auxiliary driving device obtains the image of the windshield, it divides the image into three partitions, namely partition 1, partition 2 and partition 3.
  • the predefined occlusion levels of partition 2 include severe occlusion, general occlusion and Unobstructed
  • the predefined occlusion levels in partition 1 include general occlusion and unobstructed
  • the predefined occlusion levels in partition 3 include general occlusion and unobstructed.
  • the assisted driving device calculates the area of each partition where the blocked area is distributed in multiple partitions, and determines the level of obstruction of each partition according to the preset interval to which the area of the blocked area in each partition belongs, for example, in partition 1
  • the preset interval to which the area of the occluded area belongs is the preset interval corresponding to general occlusion.
  • the preset interval to which the area of the occluded area in Partition 2 belongs is the preset interval corresponding to severe occlusion.
  • the area of the occluded area in Partition 3 belongs to The preset interval is the preset interval corresponding to unobstructed, then the level of the windshield being blocked is severely blocked.
  • Table 1 gives examples of the occlusion levels of the windshield determined in several distribution scenarios of the occluded area, which will be introduced in detail below in conjunction with Table 1.
  • one possible scenario is that the occluded area is only distributed in partition 1, where the area of the occluded area distributed in partition 1 accounts for 50% of the area of partition 1, which belongs to general occlusion and is The area of the blocked area distributed in Partition 2 and Partition 3 is 0, so the blocked level of Partition 2 and Partition 3 is unblocked. According to the blocked levels of Partition 1, Partition 2 and Partition 3, it can be concluded that the windshield is The level of occlusion is general occlusion.
  • the occluded area is distributed in partition 1 and partition 2.
  • the area of the occluded area distributed in partition 1 accounts for 70% of the area of partition 1, which belongs to general occlusion.
  • the distribution of the occluded area The area in partition 2 accounts for 60% of the area of partition 2, which is severely blocked.
  • the area of the blocked area distributed in partition 3 is 0, which is unblocked. Therefore, it can be concluded that the level of windshield obstruction is: Severely obscured.
  • the occluded area is distributed in partition 1, partition 2 and partition 3.
  • the area of the occluded area distributed in partition 1 accounts for 40% of the area of partition 1, which is unoccluded and is blocked.
  • the area of the blocked area distributed in partition 2 accounts for 15% of the area of partition 2, which is unblocked.
  • the area of the blocked area distributed in partition 3 accounts for 40% of the area of partition 3, which is unblocked. Therefore, , it can be concluded that the level of the windshield being blocked is unblocked.
  • the occluded area is distributed in partition 2 and partition 3.
  • the area of the occluded area distributed in partition 2 accounts for 30% of the area of partition 2, which belongs to general occlusion.
  • the distribution of the occluded area The area in partition 3 accounts for the area of partition 3
  • the percentage of the area is 60%, which is general occlusion.
  • the area of the blocked area distributed in partition 1 is 0, which is not blocked. Therefore, it can be concluded that the level of windshield occlusion is general occlusion.
  • the driving assistance device may divide the image of the windshield into multiple partitions according to predefined rules.
  • the predefined rules include: the multiple partitions are respectively the upper 1/4 area of the windshield image, the middle 1/2 area of the windshield image, and the lower middle area of the windshield image. 1/4 area.
  • the assisted driving device may also divide the image according to other rules.
  • different models can also correspond to different rules.
  • the image of the windshield can be divided into more or fewer partitions, and the number of levels at which the windshield is blocked can also be more or less, which is not limited in this application.
  • the auxiliary driving device acquires an image of the front windshield.
  • the image includes the image taken of the front windshield and also includes some other structures of the vehicle (parts shown in the figure). steering wheel).
  • the auxiliary driving device divides the above-mentioned windshield image into multiple partitions. For example, the upper 1/4 area of the above-mentioned windshield image is regarded as partition 1, and the upper 1/4 area of the windshield image is regarded as partition 1. The middle 1/2 area of the image is regarded as partition 2, and the lower 1/4 area of the windshield image is regarded as partition 3.
  • the greater the impact on the driver's line of sight the smaller the upper limit of the preset interval corresponding to the same occlusion level.
  • the multiple preset intervals are related to the ratio of the area of the blocked area in the corresponding partition to the area of the partition. That is, for a certain occlusion level corresponding to a certain partition in the multiple partitions, the preset area corresponding to the occlusion level Let the interval be the value range of the ratio of the area of the occluded area in the partition to the area of the partition.
  • the greater the impact on the driver's line of sight among the multiple partitions the smaller the upper limit of the preset interval corresponding to the same occlusion level. In this way, the partitions that have a greater impact on the driver's line of sight are more likely to be judged to have a higher occlusion level, and measures can be taken to better assist the driver in driving the vehicle and improve driving safety.
  • the multiple partitions include a first partition and a second partition.
  • the impact of the first partition on the driver's line of sight is greater than the impact of the second partition on the driver's line of sight.
  • the preset corresponding to the first partition The upper limit of the interval is smaller than the upper limit of the preset interval corresponding to the second partition.
  • the preset interval corresponding to the occlusion level may also be a value range of the area of the blocked area in the partition.
  • the upper limit of the preset interval corresponding to the same occlusion level may be larger or smaller in the partition that has a greater impact on the driver's line of sight among the multiple partitions. The upper limit is related to the ratio of the area of the partition to the area of the entire image.
  • the upper limit of the preset interval corresponding to this partition may be greater than the preset thresholds of other partitions at the same occlusion level. upper limit.
  • the plurality of partitions include a first partition and a third partition, and the first partition and the third partition have different numbers of predefined at least one occlusion level.
  • the degree of influence of Partition 1 on the driver's line of sight is greater than that of Partition 2 on the driver's line of sight, and the number of predefined occlusion levels of Partition 1 may be greater than the number of predefined occlusion levels of Partition 2.
  • the second partition and the third partition may be the same partition or different partitions.
  • partition 1 the partition that has a greater impact on the driver's line of sight has a greater number of corresponding occlusion levels.
  • the above-mentioned multiple partitions include partition 1, partition 2 and partition 3.
  • the degree of influence of each partition on the driver's line of sight is as follows: partition 2 > partition 1 > partition 3.
  • the predefined occlusion levels of partition 2 include severe obstruction, normal Blocked and unblocked, the predefined blockage levels in Partition 1 include general blockage and unblocked, and the predefined blockage levels in Zone 3 include unblocked.
  • the size relationship of the number of occlusion levels corresponding to each partition mentioned above is only an example and should not constitute any limitation on the embodiment of the present application.
  • the number of corresponding occlusion levels may be the same for partitions that have different degrees of impact on the driver's line of sight.
  • the above-mentioned multiple partitions include partition 1, partition 2 and partition 3.
  • the degree of influence of each partition on the driver's line of sight is as follows: partition 2 > partition 1 > partition 3.
  • the predefined occlusion levels of partition 2 include severe obstruction, normal Blocked and unblocked, the predefined blockage levels in partition 1 include general blockage and unblocked, and the predefined blockage levels in partition 3 include general blockage and unblocked.
  • FIG. 6 is a detailed flowchart for determining the level of windshield occlusion provided by an embodiment of the present application.
  • multiple partitions include partition 1, partition 2, and partition 3.
  • the predefined occlusion levels of partition 1 include unobstructed and general occlusion
  • the predefined occlusion levels of partition 2 include unobstructed, General occlusion and severe occlusion.
  • the predefined occlusion levels in Partition 3 include unoccluded and general occlusion.
  • Step 601 Obtain an image of the windshield.
  • the auxiliary driving device can capture an image of the windshield through a camera, or can also capture an image of the windshield through a driving recorder.
  • the embodiments of this application do not limit the specific method of obtaining the image.
  • obtaining the image of the windshield please refer to step 401, which will not be described in detail here.
  • Step 602 Calculate the area of the occluded area distributed in each partition.
  • Step 602 specifically includes: calculating the area S1 of the blocked area distributed in partition 1, calculating the area S2 of the blocked area distributed in partition 2, and calculating the area S3 of the blocked area distributed in partition 3.
  • Step 603 Determine the degree of occlusion of each partition.
  • the auxiliary driving device determines whether S1 ⁇ a is established. If S1 ⁇ a, the auxiliary driving device determines that the blocked level of partition 1 is general occlusion; if S1 ⁇ a, the auxiliary driving device determines that the blocked level of partition 1 is not blocked.
  • the auxiliary driving device determines whether S2 ⁇ b is established. Among them, when the calculation result of the area of the blocked area distributed in each partition is expressed in the form of a percentage, that is, when expressed in the form of the ratio of the area of the blocked area distributed in each partition to the area of the corresponding partition, a >b. If S2 ⁇ b, the auxiliary driving device determines that the blocked level of partition 2 is unblocked; if S2 ⁇ b, it continues to determine whether S2 ⁇ c is true. If S2 ⁇ c, the auxiliary driving device determines that the level of partition 2 being blocked is severe occlusion; if S2 ⁇ c, the auxiliary driving device determines that the level of occlusion of partition 2 is general occlusion.
  • the auxiliary driving device determines whether S3 ⁇ a is established. If S3 ⁇ a, the auxiliary driving device determines that the blocked level of partition 3 is general occlusion; S3 ⁇ a, then the auxiliary driving device determines that the blocked level of partition 3 is not blocked.
  • the number of predefined occlusion levels and the preset intervals corresponding to each occlusion level in partition 1 and partition 3 are taken as an example. However, this should not constitute any limitation to the embodiment of the present application. For example, in other embodiments, the number of predefined occlusion levels for partition 1 and partition 3 and the preset intervals corresponding to each occlusion level may also be different.
  • Step 604 Determine the blocked level of the windshield to be the highest level among the blocked levels of each partition.
  • the blocked level of Partition 1 is normal blocking, the blocked level of Partition 2 is severely blocked, and the blocked level of Partition 3 is not blocked, then the blocked level of the windshield is severely blocked.
  • the degree of occlusion of the windshield please refer to step 402, which will not be described in detail here.
  • the auxiliary driving device determines the degree of obstruction of the windshield, it can take corresponding processing measures according to the degree of obstruction of the windshield to assist the driver in driving the vehicle, thereby improving driving safety.
  • the method 400 shown in FIG. 4 also includes: when the level of the windshield being blocked is a preset blocking level, the above method further includes: assisting the driver in driving the vehicle based on at least one of the following methods: adjusting Turn on the vehicle's taillights, turn on the fragrance, turn on the wipers or turn on the double flashing warning lights.
  • the auxiliary driving device can assist the driver in driving the vehicle through some basic methods, such as adjusting the vehicle's taillights, turning on the fragrance, turning on the windshield wipers, or turning on the dual-wheel drive system. Flashing warning lights, etc.
  • the embodiments of the present application do not place any restrictions on the specific manner of assisting the driver in driving the vehicle.
  • the auxiliary driving device can also assist the driver in driving the vehicle in other ways, for example, by prompting the driver not to panic too much through voice prompts.
  • adjusting the taillights of the vehicle is used to remind the vehicle behind to pay attention to the distance between the vehicles, such as adjusting the arrangement and flash frequency of the array taillights.
  • Turning on the fragrance can relieve the driver's nervousness and uneasiness, allowing the driver to concentrate on observing the road conditions and continue driving. If the current fragrance is already on, it can automatically change to a soothing fragrance.
  • the auxiliary driving device When the degree of occlusion of the windshield is less than the preset occlusion level, the auxiliary driving device does not need to perform any processing and the driver can continue driving.
  • the method 400 shown in Figure 4 may also include: determining the current speed of the vehicle; and determining a processing method for assisting the driver in driving the vehicle based on the current speed. .
  • the auxiliary driving device can continue to determine the current speed of the vehicle, and then make reasonable processing methods based on the vehicle speed to ensure driving safety.
  • the above processing method may include: displaying the top view picture of the vehicle and the front view picture of the vehicle through the central control display; if the current vehicle speed is greater than the preset threshold, The above processing method may include: displaying a virtual road condition image through the central control display screen. The virtual road condition image is drawn based on the vehicle's near-field road condition information and the vehicle's far-field road condition information.
  • the auxiliary driving device can display a near-field image of the vehicle through the central control display.
  • Some road condition information such as the vehicle's overhead view and the vehicle's front view, are used to assist the driver in driving the vehicle.
  • the auxiliary driving device can also add one or more of the following to assist driving: adjusting the vehicle's taillights, turning on the incense atmosphere, turn on the wipers or turn on the double flashing warning lights, etc.
  • the auxiliary driving device may not be able to ensure the safety of the driver by only assisting the driver in driving the vehicle through the above methods. For example, if the current speed is high, the braking distance of the vehicle is large, that is, it is necessary to drive It takes a long distance to stop. If the driver can only see the road condition information around the vehicle through the display screen, there may be safety risks because he cannot see the road condition information in the distance. Therefore, the auxiliary driving device can be displayed through the central control display screen.
  • the virtual road condition image is used to assist the driver in driving the vehicle.
  • the virtual road condition image is drawn based on the vehicle's near-field road condition information and the vehicle's far-field road condition information.
  • the above-mentioned virtual road condition image can be drawn in the following ways: acquiring the near-field road condition information of the above-mentioned vehicle through radar, and acquiring the far-field road condition information of the above-mentioned vehicle from the roadside equipment of the vehicle-road coordination system.
  • the PC5 interface of the processing module (telematics box, T-BOX) obtains the far-field traffic information of the above-mentioned vehicle from the roadside equipment of the vehicle-road collaboration system, and then draws a The above virtual traffic image.
  • Near-field road condition information includes, for example, but is not limited to: relative distance, relative speed, driving angle, driving direction, etc. of surrounding vehicles.
  • Far-field road condition information includes, for example, but is not limited to: vehicle position, lane information, vehicle model information, relative speed, acceleration etc.
  • the auxiliary driving device can also add one or more of the following to assist the driver in driving the vehicle: adjust the vehicle's taillights, turn on the fragrance, turn on the wipers, or turn on the dual flashers. Warning lights, etc. In this way, it is more conducive to improving driving safety.
  • the auxiliary driving device can also send the vehicle's fault information to the roadside equipment of the vehicle-road coordination system, so that the roadside equipment broadcasts the vehicle's fault information.
  • the auxiliary driving device can also send the vehicle's fault information to the roadside equipment of the vehicle-road coordination system, so that the roadside equipment broadcasts the vehicle's fault information. In this way, other vehicles can actively avoid the vehicle after hearing the broadcast, which will help ensure driving safety.
  • the auxiliary driving device can also prompt the driver to continue driving and pull over through voice, and the driver can pull over under appropriate circumstances. parking.
  • the assisted driving device can also obtain the vehicle's target speed and the road section where it is parked, and automatically adjust the vehicle speed to the target speed and automatically pull over on the above-mentioned road section.
  • the auxiliary driving device can also obtain the vehicle's target speed and the road section where it is parked from the vehicle's computing platform. The relative position of the vehicle can be calculated to ensure safe driving at what target speed it is at. After obtaining the above target speed and road section, the auxiliary driving device can automatically adjust the vehicle speed to the target speed and automatically pull over to the side of the road section.
  • FIG. 7 is a schematic flowchart of determining an assisted driving mode based on the level of windshield occlusion provided by an embodiment of the present application.
  • Step 701 Obtain the degree of obstruction of the windshield.
  • Step 702 Determine the assisted driving mode according to the level of windshield obstruction.
  • the windshield is blocked and the level is not blocked, no processing will be done and the vehicle will continue driving. If the windshield is blocked to a general level, the driver will be assisted in driving the vehicle through basic methods. Among them, the basic methods include one or more of the following: adjusting the vehicle's taillights, turning on the fragrance, turning on the wipers, or turning on the double flashing warning lights, etc. If the windshield is blocked to a severe level, the method of assisting the driver in driving the vehicle is determined based on the current speed of the vehicle. The process of determining a way to assist the driver in driving the vehicle based on the current speed of the vehicle will be described in detail below with reference to FIG. 8 .
  • FIG. 8 is a schematic flowchart of determining a method for assisting a driver to drive a vehicle based on the current speed of the vehicle provided by an embodiment of the present application.
  • Step 801 Determine whether the windshield is blocked to a severe level.
  • Step 802 Determine whether the current vehicle speed ⁇ the preset speed is established.
  • the auxiliary driving device executes step 803 and/or step 804; if the current vehicle speed ⁇ the preset speed, the auxiliary driving device executes steps 805 to 808.
  • the assisted driving device may also perform step 803 and/or step 804.
  • Step 803 adjust the taillight of the vehicle and turn on the fragrance.
  • Adjusting the taillights of the vehicle is used to remind the vehicle behind to pay attention to the distance between the vehicles.
  • the auxiliary driving device can adjust the arrangement and flash frequency of the array taillights. Turning on the fragrance can relieve the driver's nervousness and uneasiness, allowing the driver to concentrate on observing the road conditions and continue driving. It is understandable that if the current fragrance is already on, it can automatically change to a fragrance that can soothe your mood.
  • the auxiliary driving device can also turn on wipers or turn on double flashing warning lights, etc.
  • turning on the wipers can help clear the windshield If there are obstructions on the glass, turning on the double flashing warning lights can be used to remind the vehicle in front or behind to pay attention to the distance between the vehicles.
  • Step 804 Display the panoramic image through the central control display screen.
  • the panoramic image includes a 360-degree top view of the vehicle and a front view of the vehicle.
  • the above-mentioned top view picture of the vehicle may be taken by the front, rear, left and right cameras installed on the vehicle, and the front view picture of the vehicle may be taken by the front camera installed on the vehicle.
  • Step 805 Obtain near-field traffic information from the radar.
  • the assisted driving device obtains near-field road condition information from the radar.
  • the road condition information includes, for example, the relative distance, relative speed, driving angle, driving direction, etc. of surrounding vehicles.
  • Step 806 Obtain far-field road condition information from the roadside equipment of the vehicle-road coordination system.
  • Far-field road condition information includes, for example: vehicle position, lane information, vehicle model information, relative speed, acceleration, etc.
  • Step 807 Draw a virtual traffic image based on the near-field traffic information and the far-field traffic information.
  • the auxiliary driving device fuses and calculates comprehensive road condition information based on the acquired near-field vehicle information and far-field vehicle information, including lane information, vehicle position, vehicle model information, relative speed, acceleration, etc. , and draw virtual traffic images.
  • Step 808 Display the virtual road condition image through the central control display screen.
  • the auxiliary driving device displays a virtual road condition image through the central control display screen, so that the driver can see the road condition information on the central control display screen. In this way, even if the obstruction affects the driver's line of sight, the driver can still view the virtual road conditions based on the central control display screen. Driving a vehicle using virtual road conditions images will help improve driving safety.
  • the auxiliary driving device may also provide voice prompts if the vehicle is in a non-autonomous driving state when the current vehicle speed ⁇ the preset speed. The driver continues driving and pulls over, which allows the driver to pull over if appropriate. If the vehicle is currently in the autonomous driving state, the assisted driving device can also obtain the target speed of the vehicle and the road section where it is parked, and automatically adjust the vehicle speed to the target speed and automatically pull over on the above road section. For another example, when the current vehicle speed is less than the preset speed, the auxiliary driving device may skip step 803 and directly execute step 804.
  • the embodiment of the present application does not limit the order of the steps shown in FIG. 8 .
  • the assisted driving device may first perform step 806 and then perform step 807, or perform step 806 and step 807 at the same time.
  • the assisted driving device may first perform step 804 and then perform step 803, or perform step 804 and step 803 at the same time. For the sake of brevity, they are not listed here.
  • the auxiliary driving device may determine the level of windshield occlusion according to a known method of determining the level of windshield occlusion (the method shown in Figure 2), or, Through the method for determining the level of the windshield being blocked (the method shown in Figure 4) provided by this application, the level of the windshield being blocked is determined, and then when the level of the windshield being blocked is greater than the preset blocking level In this case, the current speed of the vehicle is determined; based on the current speed, the processing method used to assist the driver in driving the vehicle is determined.
  • a known method of determining the level of windshield occlusion the method shown in Figure 2
  • the method shown in Figure 4 Through the method for determining the level of the windshield being blocked (the method shown in Figure 4) provided by this application, the level of the windshield being blocked is determined, and then when the level of the windshield being blocked is greater than the preset blocking level In this case, the current speed of the vehicle is determined; based on the current speed, the processing method used to assist the driver in driving the vehicle is determined.
  • Figure 9 is a schematic diagram of a surround panoramic image and a virtual road condition image provided by an embodiment of the present application.
  • vehicle a is its own vehicle.
  • the auxiliary driving device can display a panoramic image through the central control display.
  • the panoramic image can include vehicle a.
  • the top view picture and the front view picture can be divided into left and right half screens.
  • the left half screen of the central control display displays the top view picture of vehicle a
  • the right half screen displays the front view picture of vehicle a.
  • the auxiliary driving device can display a virtual road condition image through the central control display.
  • the virtual road condition image can include vehicles around vehicle a and the far field
  • the vehicle model information, vehicle speed information, etc. can also include lane information, etc.
  • the situation that the windshield is blocked is determined by combining the position of the blocked area in the acquired image of the windshield and the area of the blocked area. Compared with determining the windshield only by the area of the blocked area, When the glass is blocked, it can effectively avoid the misjudgment of the windshield being blocked due to only considering the area of the blocked area, and it is helpful to improve the accuracy of judging the windshield being blocked. In this way, it can Reasonable driving assistance measures can be taken according to the blocked situation, which will help improve driving safety.
  • FIG. 10 is a schematic block diagram of an auxiliary driving device provided by an embodiment of the present application.
  • the device 1000 may include: a transceiver unit 1010 and a processing unit 1020.
  • the device 1000 can be used to implement the method described in the embodiment shown in Figure 4, Figure 6, Figure 7 or Figure 8.
  • the transceiver unit 1010 can be used to obtain an image of the windshield.
  • the image of the windshield includes collecting the windshield.
  • the processing unit 1020 may be used to determine the degree of obstruction of the windshield according to the position of the blocked area and the area of the blocked area in the image of the windshield.
  • each functional unit in various embodiments of the present application may be integrated into one processor, may exist independently, or may have two or more units integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software function modules.
  • FIG. 11 is another schematic block diagram of the auxiliary driving device provided by the embodiment of the present application.
  • the device 1100 can be used to implement the method described in the embodiment shown in FIG. 4, FIG. 6, FIG. 7 or FIG. 8.
  • the device 1100 may be a system on a chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device 1100 may include at least one processor 1110 for implementing the method described in the embodiments shown in FIG. 4 , FIG. 6 , FIG. 7 or FIG. 8 .
  • the processor 1110 can be used to obtain an image of the windshield.
  • the image of the windshield includes an image collected from the windshield.
  • the image of the windshield is determined according to the position of the blocked area and the area of the blocked area in the above image of the windshield. For details, please refer to the detailed description in the method example and will not be repeated here.
  • the apparatus 1100 may also include at least one memory 1120, which may be used to store program instructions and/or data.
  • Memory 1120 and processor 1110 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • the processor 1110 may cooperate with the memory 1120.
  • Processor 1110 may execute program instructions stored in memory 1120 . At least one of the at least one memory may be included in the processor.
  • the device 1100 may also include a communication interface 1130 for communicating with other devices through a transmission medium, so that the device 1100 can communicate with other devices.
  • the communication interface 1130 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing transceiver functions.
  • the processor 1110 may utilize the communication interface 1130 to send and receive data and/or information, and be used to implement the methods described in the embodiments shown in FIG. 4, FIG. 6, FIG. 7 or FIG. 8.
  • connection medium between the processor 1110, the memory 1120 and the communication interface 1130 is not limited in the embodiment of the present application.
  • the processor 1110, the memory 1120 and the communication interface 1130 are connected through a bus 1140.
  • the bus 1140 is represented by a thick line in FIG. 11 , and the connection methods between other components are only schematically illustrated and not limited thereto.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • This application also provides a chip system, which includes at least one processor and is used to implement the method described in the embodiment shown in FIG. 4, FIG. 6, FIG. 7 or FIG. 8.
  • the chip system further includes a memory, the memory is used to store program instructions and data, and the memory is located within the processor or outside the processor.
  • the chip system can be composed of chips or include chips and other discrete devices.
  • the present application also provides a vehicle, which can be used to implement the method described in the embodiments shown in FIG. 4, FIG. 6, FIG. 7 or FIG. 8.
  • the vehicle may correspond to the auxiliary driving device shown in FIG. 10 or 11 , for example, may be the above-mentioned auxiliary driving device, or may include the above-mentioned auxiliary driving device.
  • the computer program product includes: a computer program (which can also be called a code, or an instruction).
  • a computer program which can also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute as shown in Figures 4, 6 and 6. 7 or the method described in the embodiment shown in FIG. 8 .
  • This application also provides a computer-readable storage medium that stores a computer program (which may also be called a code, or an instruction).
  • a computer program which may also be called a code, or an instruction.
  • the computer program When the computer program is run, the computer is caused to perform the method described in the embodiment shown in FIG. 4, FIG. 6, FIG. 7 or FIG. 8.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable processors.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • directrambus RAM direct memory bus random access memory
  • unit may be used to refer to computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated into one processing module, or each module can exist physically alone, or two or more units can be integrated into one module.
  • each functional module can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions (programs). When the computer program instructions (program) are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated therein.
  • the available media may be magnetic media (for example, floppy disks, hard disks, tapes), optical media (for example, data digital video disc (DVD)), or semiconductor media (such as solid state disk (SSD)), etc.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种辅助驾驶方法及相关装置,该方法包括:获取挡风玻璃的图像,该挡风玻璃的图像中包括对挡风玻璃采集到的图像(401);根据该挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积,确定挡风玻璃被遮挡的等级(402)。通过结合获取到的挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积来确定挡风玻璃被遮挡的情况,相比只通过被遮挡区域的面积来确定挡风玻璃被遮挡的情况,可以有效地避免由于仅考虑被遮挡区域的面积而导致的挡风玻璃被遮挡情况的误判,有利于提高判断挡风玻璃被遮挡情况的准确度,这样一来,可以根据挡风玻璃被遮挡的情况而做出合理的辅助驾驶的措施,进而有利于提高驾驶的安全性。

Description

一种辅助驾驶方法及相关装置
本申请要求于2022年09月06日提交中国专利局、申请号为202211083310.5、申请名称为“一种辅助驾驶方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆安全技术领域,尤其涉及一种辅助驾驶方法及相关装置。
背景技术
随着智能车辆的普及程度越来越高,车辆的传感器(激光/毫米波雷达、摄像头等)、控制器、处理器等装置也更加先进,这使得车辆对周围环境的感知能力也逐渐提高。然而车辆在行驶过程中仍然存在各种可能影响驾驶员的视线的突发情况,例如,挡风玻璃被异物遮挡,这种情况下,驾驶员对前方路况无法做出合理的判断,如果继续驾驶、猛打方向盘或紧急制动等都会带来较大的安全隐患。
因此,希望提供一种方法,在某些特殊情况下(如挡风玻璃被遮挡),辅助驾驶员驾驶车辆,以提高驾驶的安全性。
发明内容
本申请提供了一种辅助驾驶方法及相关装置,以期提高驾驶的安全性。
第一方面,本申请提供了一种辅助驾驶方法,该方法可以由辅助驾驶装置执行,或者,也可以由配置在辅助驾驶装置中的部件(如芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分辅助驾驶装置功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:获取挡风玻璃的图像,该挡风玻璃的图像中包括对挡风玻璃采集到的图像;根据该挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积,确定挡风玻璃被遮挡的等级。
上述技术方案中,通过结合获取到的挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积来确定挡风玻璃被遮挡的情况,相比只通过被遮挡区域的面积来确定挡风玻璃被遮挡的情况,可以有效地避免由于仅考虑被遮挡区域的面积而导致的挡风玻璃被遮挡情况的误判,有利于提高判断挡风玻璃被遮挡情况的准确度,这样一来,可以根据被遮挡的情况而做出合理的辅助驾驶的措施,进而有利于提高驾驶的安全性。
结合第一方面,在第一方面的某些可能的实现方式中,上述挡风玻璃的图像包括多个分区,该多个分区位于上述挡风玻璃的图像中的不同位置,该多个分区的每个分区预定义有与至少一个遮挡等级对应的至少一个预设区间,该至少一个预设区间与落在所对应的分区内的被遮挡区域的面积相关;以及,上述根据挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积,确定挡风玻璃被遮挡的等级,包括:根据被遮挡区域分布在多个分区中每个分区的面积,确定各个分区被遮挡的等级;将各个分区被遮挡的等级中最高的等级确定为挡风玻璃被遮挡的等级。
将挡风玻璃的图像划分成多个分区,通过被遮挡区域落在每个分区的面积来确定每个分区被遮挡的等级,再根据每个分区被遮挡的等级确定出挡风玻璃被遮挡的等级,充分考虑了被遮挡区域的位置落在挡风玻璃的位置,可以有效地避免由于仅考虑被遮挡区域的面积而导致的挡风玻璃被遮挡情况的误判,有利于提高判断挡风玻璃被遮挡情况的准确度。
结合第一方面,在第一方面的某些可能的实现方式中,上述多个分区包括第一分区和第二分区,第一分区对驾驶员视线的影响程度大于第二分区对驾驶员视线的影响程度,同一遮挡等级下,第一分区对应的预设区间的上限小于第二分区对应的预设区间的上限。
至少一个预设区间与所对应的分区内的被遮挡区域的面积占该分区的面积的比例相关,也即,针对多个分区中某一分区对应的某一遮挡等级,该遮挡等级对应的预设区间是该分区内的被遮挡区域的面积占该分区的面积的比例的取值范围。可选地,这种设计下,多个分区中对驾驶员的视线的影响程度越大的分区,同一遮挡等级下对应的预设区间的上限越小。如此一来,在对驾驶员的视线的影响程度越大的分区,更容易被判定为较高的遮挡等级,进而做出更能辅助驾驶员驾驶车辆的措施,提高驾驶的安全性。
可以理解,针对多个分区中某一分区对应的某一遮挡等级,该遮挡等级对应的预设区间还可以是该分区内的被遮挡区域的面积的取值范围。可选地,这种设计下,多个分区中对驾驶员的视线的影响程度越大的分区,同一遮挡等级对应的预设区间的上限可能越大,也可能越小。该上限与该分区的面积占整个图像的面积的比例相关。例如,某一分区的面积占整个图像的面积的比例远大于其他分区占整个图像的面积的比例,则可能同一遮挡等级下,该分区对应的预设区间的上限可能大于其他分区的预设门限的上限。
结合第一方面,在第一方面的某些可能的实现方式中,上述多个分区包括第一分区和第三分区,该第一分区和第三分区对应的至少一个遮挡等级的数量不同。
第二分区和第三分区可以是同一分区,也可以是不同分区。
可选地,多个分区中对驾驶员的视线的影响程度越大的分区,对应的遮挡等级的数量越多。
结合第一方面,在第一方面的某些可能的实现方式中,在挡风玻璃被遮挡的等级为预设的遮挡等级的情况下,上述方法还包括:基于以下至少一种方式辅助驾驶员驾驶车辆:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯。
在挡风玻璃被遮挡的等级为预设的遮挡等级的情况下,可以通过一项或多项基础方式来辅助驾驶员驾驶车辆,例如,调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯等。这样有利于提高驾驶的安全性。
在挡风玻璃被遮挡的等级小于预设的遮挡等级的情况下,可以不做任何处理,驾驶员继续行驶即可。
结合第一方面,在第一方面的某些可能的实现方式中,在挡风玻璃被遮挡的等级大于预设的遮挡等级的情况下,上述方法还包括:确定车辆的当前车速;根据当前车速,确定用于辅助驾驶员驾驶车辆的处理方式。
在挡风玻璃被遮挡的等级大于预设的遮挡等级的情况下,可以继续判断该车辆的当前车速,进而根据当前车速做出合理的处理方式,进而保证驾驶的安全性。
结合第一方面,在第一方面的某些可能的实现方式中,若当前车速小于或等于预设门限,则上述处理方式包括:通过中控显示屏显示车辆的俯视画面和车辆的前视画面;或,若当前车速大于预设门限,则上述处理方式包括:通过中控显示屏显示虚拟路况影像,该虚拟路况影像是基于车辆近场的路况信息以及车辆远场的路况信息绘制的。
可以理解,如果该车辆的当前车速较低,则可以通过中控显示屏显示车辆的俯视画面和车辆的前视画面,也即,显示该车辆近场的一些路况信息,来辅助驾驶员驾驶车辆,此外,还可以再加上以下一项或多项来辅助驾驶:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯等。如果该车辆的当前车速较高,则只通过上述方式辅助驾驶员驾驶车辆可能无法保证驾驶员的安全,例如,当前车速较高,车辆的制动距离较大,也即,需要行驶较长的距离才能停下来,如果驾驶员只能通过显示屏看见该车辆周围的路况信息,可能由于无法看见远处的路况信息而存在安全隐患,因此,可以通过中控显示屏显示虚拟路况影像来辅助驾驶员驾驶车辆,该虚拟路况影像是基于车辆近场的路况信息以及车辆远场的路况信息绘制的。此外,还可以再加上以下一项或多项来辅助驾驶:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯等。这样,更有利于提高驾驶的安全性。
结合第一方面,在第一方面的某些可能的实现方式中,在通过中控显示屏显示虚拟路况影像之前,上述方法还包括:通过雷达获取上述车辆近场的路况信息;从车路协同系统的路侧设备获取上述车辆远场的路况信息;基于上述车辆近场的路况信息以及上述车辆远场的路况信息,绘制上述虚拟路况影像。
结合第一方面,在第一方面的某些可能的实现方式中,在当前车速大于预设门限的情况下,上述方法还包括:向车路协同系统的路侧设备发送车辆的故障信息,以使路侧设备广播上述车辆的故障信息。
在当前车速大于预设门限的情况下,还可以向车路协同系统的路侧设备发送车辆的故障信息,以使路侧设备广播上述车辆的故障信息。如此一来,其他车辆听到广播便可以主动避让该车辆,进而有利于保证驾驶的安全性。
结合第一方面,在第一方面的某些可能的实现方式中,在当前车速大于预设门限的情况下,上述方法还包括:在车辆为非自动驾驶的情况下,通过语音提示驾驶员继续行驶并靠边停车;或,在车辆为自动驾驶的情况下,获取车辆的目标车速和靠边停车的路段信息,自动将车速调整至目标车速,并自动在上述路段信息指示的路段靠边停车。
第二方面,本申请提供了一种辅助驾驶方法,该方法可以由辅助驾驶装置执行,或者,也可以由配置在辅助驾驶装置中的部件(如芯片、芯片系统等)执行,或者,还可以由能够实现全部或部分辅助驾驶装置功能的逻辑模块或软件实现,本申请对此不作限定。
示例性地,该方法包括:确定挡风玻璃被遮挡的等级;在挡风玻璃被遮挡的等级大于预设的遮挡等级的情况下,确定车辆的当前车速;根据上述当前车速,确定用于辅助驾驶员驾驶车辆的处理方式。
基于上述方案,在挡风玻璃被遮挡的等级较高的情况下,如挡风玻璃被遮挡的等级大于预设的遮挡等级的情况下,进一步结合车辆的当前车速,确定辅助驾驶员驾驶车辆的方式,有利于提高辅助驾驶的合理性。
结合第二方面,在第二方面的某些可能的实现方式中,若当前车速小于或等于预设门限,则上述处理方式包括:通过中控显示屏显示车辆的俯视画面和车辆的前视画面;或,若当前车速大于预设门限,则上述处理方式包括:通过中控显示屏显示虚拟路况影像,该虚拟路况影像是基于车辆近场的路况信息以及车辆远场的路况信息绘制的。
可以理解,如果该车辆的当前车速较低,则可以通过中控显示屏显示车辆的俯视画面和车辆的前视画面,也即,显示该车辆近场的一些路况信息,来辅助驾驶员驾驶车辆,此外,还可以再加上以下一项或多项来辅助驾驶:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯等。如果该车辆的当前车速较高,则只通过上述方式辅助驾驶员驾驶车辆可能无法保证驾驶员的安全,例如,当前车速较高,车辆的制动距离较大,也即,需要行驶较长的距离才能停下来,如果驾驶员只能通过显示屏看见该车辆周围的路况信息,可能由于无法看见远处的路况信息而存在安全隐患,因此,可以通过中控显示屏显示虚拟路况影像来辅助驾驶员驾驶车辆,该虚拟路况影像是基于车辆近场的路况信息以及车辆远场的路况信息绘制的。此外,还可以再加上以下一项或多项来辅助驾驶:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯等。这样,更有利于提高驾驶的安全性。
结合第二方面,在第二方面的某些可能的实现方式中,在通过中控显示屏显示虚拟路况影像之前,上述方法还包括:通过雷达获取上述车辆近场的路况信息;从车路协同系统的路侧设备获取上述车辆远场的路况信息;基于上述车辆近场的路况信息以及上述车辆远场的路况信息,绘制上述虚拟路况影像。
结合第二方面,在第二方面的某些可能的实现方式中,在当前车速大于预设门限的情况下,上述方法还包括:向车路协同系统的路侧设备发送车辆的故障信息,以使路侧设备广播上述车辆的故障信息。
在当前车速大于预设门限的情况下,还可以向车路协同系统的路侧设备发送车辆的故障信息,以使路侧设备广播上述车辆的故障信息。如此一来,其他车辆听到广播便可以主动避让该车辆,进而有利于保证驾驶的安全性。
结合第二方面,在第二方面的某些可能的实现方式中,在当前车速大于预设门限的情况下,上述方法还包括:在车辆为非自动驾驶的情况下,通过语音提示驾驶员继续行驶并靠边停车;或,在车辆为自动驾驶的情况下,获取车辆的目标车速和靠边停车的路段信息,自动将车速调整至目标车速,并自动在上述路段信息指示的路段靠边停车。
第三方面,本申请提供了一种辅助驾驶装置,可以实现第一方面以及第一方面任一种可能的实现方式中的方法,或,可以实现第二方面以及第二方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元。该装置包括的单元可以通过软件和/或硬件方式实现。
第四方面,本申请提供了一种辅助驾驶装置,该装置包括处理器。该处理器与存储器耦合,可用于执行存储器中的计算机程序,以实现第一方面以及第一方面任一种可能的实现方式中的方法,或,实现第二方面以及第二方面任一种可能的实现方式中的方法。
可选地,该装置还包括存储器。
可选地,该装置还包括通信接口,处理器与通信接口耦合。
第五方面,本申请提供了一种车辆,该车辆可用于实现上述第一方面以及第一方面任一种可能实现方式中所述的方法,或,实现第二方面以及第二方面任一种可能的实现方式中的方法。
示例性地,该车辆包括如第三方面或第四方面所述的辅助驾驶装置。
第六方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持实现上述第一方面以及第一方面任一种可能实现方式中所涉及的功能,或,支持实现上述第二方面以及第二方面任一种可能实现方式中所涉及的功能,例如,例如接收或处理上述方法中所涉及的数据和/或信息。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。第四方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,以实现第一方面和第一方面任一种可能的实现方式中的方法,或,实现第二方面和第二方面任一种可能的实现方式中的方法。
第七方面,本申请提供了一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得计算机实现第一方面以及第一方面任一种可能实现方式中的方法,或,实现第二方面以及第二方面任一种可能实现方式中的方法。
第八方面,本申请提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行第一方面以及以及第一方面任一种可能实现方式中的方法,或,执行第二方面以及第二方面任一种可能实现方式中的方法。
应当理解的是,本申请实施例的第三方面至第八方面与本申请的第一方面和第二方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1是适用于本申请实施例提供的方法的场景示意图;
图2是已知技术中检测挡风玻璃的被遮挡情况的流程示意图;
图3是本申请实施例提供的辅助驾驶系统的系统结构示意图;
图4是本申请实施例提供的辅助驾驶方法的示意性流程图;
图5是本申请实施例提供的各个分区的示意图;
图6是本申请实施例提供的确定挡风玻璃被遮挡的等级的详细流程图;
图7是本申请实施例提供的根据挡风玻璃被遮挡的等级确定辅助驾驶方式的流程示意图;
图8是本申请实施例提供的根据车辆的当前车速确定辅助驾驶员驾驶车辆的方式的流程示意图;
图9是本申请实施例提供的环视全景影像和虚拟路况影像的示意图;
图10是本申请实施例提供的辅助驾驶装置的示意性框图;
图11是本申请实施例提供的辅助驾驶装置的又一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为便于清楚描述本申请实施例的技术方案,首先做出如下说明。
第一,在本申请中,“至少一项(个)”是指一项(个)或者多项(个)。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系,但并不排除表示前后关联对象是一种“和”的关系的情况,具体表示的含义可以结合上下文进行理解。
第二,在本申请中,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。例如,在本申请中提供的方法中,挡风玻璃的图像包括对挡风玻璃采集到的图像,但该挡风玻璃的图像中还可以包括除挡风玻璃外的其他结构,如用来镶嵌挡风玻璃的车的框架等,本申请对此不作限定。
第三,在本申请中,挡风玻璃可以是指前挡风玻璃,也可以是指后挡风玻璃,本申请对此不作限定。
为便于理解本申请实施例提供的辅助驾驶方法,下面将对本申请实施例提供的辅助驾驶方法的应用场景进行说明。可理解地,本申请实施例描述的应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
图1是适用于本申请实施例提供的方法的场景示意图。如图1所示,在车辆的行驶过程中,驾驶员可以透过前挡风玻璃101来观察前方路况,通过左后视镜102来观察后方路况,甚至可以透过左前门玻 璃来观察左方路况,以保证行车安全。但在某些情况下,如图1中所示,挡风玻璃101可能被异物103遮挡,驾驶员对前方路况无法做出合理的判断,如果继续驾驶、猛打方向盘或紧急制动等都会带来较大的安全隐患。
应理解,图1中仅示出了车辆的部分结构,但不应对本申请构成任何限定,在其他实施例中,车辆可以包括更多或更少的结构。
下面首先结合图2详细描述已知技术中检测挡风玻璃的被遮挡情况的方法。
图2是已知技术中检测挡风玻璃的被遮挡情况的流程示意图。
如图2所示,目前可以通过以下方法来检测挡风玻璃的被遮挡情况:首先,通过摄像头拍摄挡风玻璃的图像。其次,对该图像进行处理,计算得到图像中被遮挡区域的面积。最后,将计算出的被遮挡区域的面积与阈值做比较,该阈值是指被遮挡区域的面积的阈值,如果计算出的被遮挡区域的面积大于阈值,则确定挡风玻璃被遮挡;如果计算出的被遮挡区域的面积小于或等于阈值,则确定挡风玻璃未被遮挡。可以理解,如果挡风玻璃中对驾驶员视线的影响程度较大的某一区域被遮挡,而由于被遮挡区域的面积较小,例如可能小于阈值,因此被判定为未被遮挡,从而不做任何处理,这样一来,可能会严重影响驾驶员的视线,进而影响驾驶员的安全。
为辅助驾驶员驾驶车辆,提高驾驶的安全性,本申请提供了一种辅助驾驶方法,通过结合获取到的挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积来确定挡风玻璃被遮挡的情况,相比只通过被遮挡区域的面积来确定挡风玻璃被遮挡的情况,有利于提高判断挡风玻璃被遮挡情况的准确度,进而有利于提高驾驶的安全性。
为便于理解本申请实施例提供的辅助驾驶方法,下面将结合图3详细描述本申请实施例涉及的辅助驾驶系统。
图3是本申请实施例提供的辅助驾驶系统的结构示意图。
如图3所示,辅助驾驶系统300包括:辅助驾驶装置301、车内中控302、摄像头303、雷达304以及行车记录仪305。其中,车内中控302、摄像头303、雷达304以及行车记录仪305均连接于辅助驾驶装置301,可以和辅助驾驶装置301进行通信。摄像头303和雷达304还连接于车内中控302,下面将详细描述上述辅助驾驶系统300中各部分的功能。
辅助驾驶装置301,可以用于获取挡风玻璃的图像,并根据挡风玻璃的图像中被遮挡区域的位置和被遮挡区域的面积,确定挡风玻璃被遮挡的等级。
车内中控302,是指车辆的控制器,可以用于控制车辆的空调、音箱、车门等,还可以用于通过显示屏显示行车记录仪的影像、雷达采集的车辆近场的路况信息、虚拟路况影像等,其中,虚拟路况影像是基于车辆近场的路况信息和远场的路况信息绘制的。
摄像头303,其数量可以为一个或多个,例如,摄像头303包括安装在车辆前后左右的多个摄像头。摄像头303可以用于拍摄图像。车辆前后左右的多个摄像头组成全景环视系统,上述多个摄像头可以用时拍摄车辆周围的图像,还可以通过控制单元处理,将上述前后左右的摄像头拍摄的图像拼接成一幅全景的车辆的俯视图像,进而通过中控显示屏显示,以供驾驶员参考。
雷达304,其数量可以为一个或多个,例如,雷达304包括安装在车辆前后左右的多个雷达。雷达304可以通过超声波原理,发出超声波,碰到障碍物后反射声波,从而计算出车辆与障碍物的实际距离。雷达304例如可以用于发现障碍物、预测碰撞、自适应巡航控制等。
行车记录仪305,可以用于拍摄车辆前方的画面,对车辆行驶速度、时间、里程以及有关车辆行驶的其他状态信息进行记录、存储,并可以通过接口实现数据输出。
应理解,本申请实施例示意的结构并不构成对辅助驾驶系统300的任何限定,在其他实施例中,该辅助驾驶系统300还可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件、软件、或软件和硬件的组合实现。
还应理解,上文描述的辅助驾驶系统300中各部分的功能仅为示例,在其他实施例中,各部分组成可以包括更多或更少的功能,本申请实施例对此不作限定。
下文将结合实施例具体描述本申请提供的辅助驾驶方法。
应理解,下文示出的实施例以辅助驾驶装置为执行主体来描述,但不应对该方法的执行主体构成任何限定。只要能够运行记录有本申请实施例提供的方法的代码的程序,便可执行本申请实施例提供的方 法。
其中,辅助驾驶装置可以单独部署在车辆上,也可以和其他控制器集成在一个域控制器中部署在车辆上,本申请对此不作限定。例如,如图3中所示的系统,辅助驾驶装置单独部署。又例如,辅助驾驶装置也可以和图3中所示的车内中控集成在一个域控制器中。
图4是本申请实施例提供的辅助驾驶方法的示意性流程图。图4所示的辅助驾驶方法400可以包括步骤401和步骤402。下面详细说明方法400中的各个步骤。
步骤401,获取挡风玻璃的图像。
上述挡风玻璃的图像中包括对挡风玻璃采集到的图像。其中,挡风玻璃的图像中除了包括对挡风玻璃拍摄到的图像外,还可能包括少量的用于镶嵌挡风玻璃的车辆的框体的图像、方向盘的图像等,本申请对挡风玻璃的图像中包括的具体结构不作限定,只要图像中包括对挡风玻璃拍摄到的图像即可。
可以理解,如果挡风玻璃被异物遮挡,则在挡风玻璃的图像中挡风玻璃被遮挡区域和其他区域不同。在本申请中,挡风玻璃的某一区域被遮挡,导致挡风玻璃的图像中某一区域被遮挡。
下文示例性地示出了几种辅助驾驶装置获取挡风玻璃的图像的方式。
方式a、辅助驾驶装置可以通过摄像头拍摄挡风玻璃的图像。例如,辅助驾驶装置可以通过前向摄像头拍摄前挡风玻璃的图像。又例如,辅助驾驶装置可以通过后向摄像头拍摄后挡风玻璃的图像。
方式b、辅助驾驶装置可以通过行车记录仪拍摄挡风玻璃的图像。例如,辅助驾驶装置可以通过行车记录仪拍摄前挡风玻璃的图像。
可选地,辅助驾驶装置可以周期性地获取挡风玻璃的图像,以对挡风玻璃被遮挡的情况进行判断。例如,辅助驾驶装置可以每隔5秒获取一次挡风玻璃的图像,并对其被遮挡情况进行判断。辅助驾驶装置还可以实时获取挡风玻璃的图像,并对其被遮挡的情况进行判断,这样一来,有利于提高驾驶的安全性。
步骤402,根据挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积,确定挡风玻璃被遮挡的等级。
其中,挡风玻璃被遮挡的等级可以用于表征挡风玻璃被遮挡的程度,或,对驾驶员的视线的影响程度。例如,挡风玻璃被遮挡的等级越高,可以表征挡风玻璃被遮挡的程度越大,或,对驾驶员的视线的影响程度越大。
可选地,挡风玻璃被遮挡的等级可以通过文字来标识,例如,挡风玻璃被遮挡的等级包括严重遮挡、一般遮挡或未遮挡。其中,严重遮挡的等级最高,未遮挡的等级最低。挡风玻璃被遮挡的等级还可以通过具体的数值来标识,例如,挡风玻璃被遮挡的等级包括1、2或3。其中,挡风玻璃被遮挡的等级越高,数值越大;挡风玻璃被遮挡的等级越低,数值越小。或者,挡风玻璃被遮挡的等级越高,数值越小;挡风玻璃被遮挡的等级越低,数值越高。本申请对于挡风玻璃被遮挡的等级数值与挡风玻璃被遮挡的等级高低的对应关系并不做限定。
相应地,各个分区预定义的遮挡等级可以通过文字来标识,例如,各个分区预定义的遮挡等级包括严重遮挡、一般遮挡和未遮挡。其中,严重遮挡的等级最高,未遮挡的等级最低。各个分区预定义的遮挡等级还可以使用其他形式的遮挡等级,例如,各个分区预定义的遮挡等级也可通过具体的数值来标识,如,遮挡等级越高,数值越大;遮挡等级越低,数值越小。或者,又如,遮挡等级越高,数值越小;遮挡等级越低,数值越高。本申请对于遮挡等级数值与遮挡等级高低的对应关系并不做限定。
下文示例性地提供了几种确定挡风玻璃被遮挡的等级的实现方式。
一种可能的实现方式是,辅助驾驶装置将上述挡风玻璃的图像划分成多个分区,根据被遮挡区域分布在多个分区中每个分区的面积,确定各个分区中被遮挡区域的面积是否超过所对应的阈值,以得到目标分区,该目标分区是各个分区中被遮挡区域的面积超过所对应的阈值的一个或多个分区;根据目标分区对应的遮挡等级,确定挡风玻璃被遮挡的等级,该挡风玻璃被遮挡的等级是目标分区对应的遮挡等级中最高的等级。其中,上述多个分区位于挡风玻璃的图像中的不同位置,多个分区的每个分区预定义有一个遮挡等级以及遮挡等级对应的阈值,该阈值与落在所对应的分区内的被遮挡区域的面积相关。
示例性地,辅助驾驶装置获取到挡风玻璃的图像后,将该图像划分成3个分区,分别为分区1、分区2以及分区3,各个分区对驾驶员的视线的影响程度大小如下:分区2>分区1>分区3,分区2对应的遮挡等级为严重遮挡、分区1对应的遮挡等级为一般遮挡、分区3对应的遮挡等级为未遮挡。进一步 地,辅助驾驶装置计算被遮挡区域分布在多个分区中每个分区的面积,如果各个分区中被遮挡区域的面积超过所对应的阈值,则将该分区确定为目标分区,例如,分区1和分区2中被遮挡区域的面积超过所对应的阈值,则目标分区为分区1和分区2,而分区2的遮挡等级高于分区1的遮挡等级,因此,挡风玻璃被遮挡的等级为严重遮挡。
另一种可能的实现方式是,辅助驾驶装置将上述挡风玻璃的图像划分为多个分区,根据被遮挡区域分布在上述多个分区中每个分区的面积,确定各个分区被遮挡的等级,再将各个分区被遮挡的等级中最高的等级确定为挡风玻璃被遮挡的等级。其中,上述多个分区位于挡风玻璃的图像中的不同位置,上述多个分区的每个分区预定义有与至少一个遮挡等级对应的至少一个预设区间,该至少一个预设区间与落在所对应的分区内的被遮挡区域的面积相关。
示例性地,辅助驾驶装置获取到挡风玻璃的图像后,将该图像划分成3个分区,分别为分区1、分区2以及分区3,分区2预定义的遮挡等级包括严重遮挡、一般遮挡和未遮挡,分区1预定义的遮挡等级包括一般遮挡和未遮挡,分区3预定义的遮挡等级包括一般遮挡和未遮挡。进一步地,辅助驾驶装置计算被遮挡区域分布在多个分区中每个分区的面积,根据各个分区中被遮挡区域的面积所属的预设区间,确定各个分区被遮挡的等级,例如,分区1中被遮挡区域的面积所属的预设区间为一般遮挡对应的预设区间,分区2中被遮挡区域的面积所属的预设区间为严重遮挡对应的预设区间,分区3中被遮挡区域的面积所属的预设区间为未遮挡对应的预设区间,则挡风玻璃被遮挡的等级为严重遮挡。
表1给出了被遮挡区域几种分布场景下确定出的挡风玻璃的遮挡等级的示例,下面将结合表1进行详细介绍。
表1
如表1所示,一种可能的场景是,被遮挡区域仅分布于分区1,其中,被遮挡区域分布在分区1中的面积占分区1的面积的百分比为50%,属于一般遮挡,被遮挡区域分布在分区2和分区3的面积为0,故分区2和分区3被遮挡的等级为未遮挡,根据分区1、分区2以及分区3的被遮挡的等级,可以得出挡风玻璃被遮挡的等级为一般遮挡。
另一种可能的场景是,被遮挡区域分布于分区1和分区2,其中,被遮挡区域分布在分区1中的面积占分区1的面积的百分比为70%,属于一般遮挡,被遮挡区域分布在分区2中的面积占分区2的面积的百分比为60%,属于严重遮挡,被遮挡区域分布在分区3的面积为0,属于未遮挡,因此,可以得出挡风玻璃被遮挡的等级为严重遮挡。
又一种可能的场景是,被遮挡区域分布于分区1、分区2以及分区3,其中,被遮挡区域分布在分区1中的面积占分区1的面积的百分比为40%,属于未遮挡,被遮挡区域分布在分区2中的面积占分区2的面积的百分比为15%,属于未遮挡,被遮挡区域分布在分区3中的面积占分区3的面积的百分比为40%,属于未遮挡,因此,可以得出挡风玻璃被遮挡的等级为未遮挡。
再一种可能的场景是,被遮挡区域分布于分区2和分区3,其中,被遮挡区域分布在分区2中的面积占分区2的面积的百分比为30%,属于一般遮挡,被遮挡区域分布在分区3中的面积占分区3的面 积的百分比为60%,属于一般遮挡,被遮挡区域分布在分区1的面积为0,属于未遮挡,因此,可以得出挡风玻璃被遮挡的等级为一般遮挡。
可选地,辅助驾驶装置可以根据预定义的规则来将挡风玻璃的图像划分为多个分区。示例性地,预定义的规则包括:多个分区分别为挡风玻璃的图像中上方1/4的区域、挡风玻璃的图像中的中间部分1/2的区域、挡风玻璃的图像中下方1/4的区域。上述预定义的规则仅为示例,不应对本申请实施例构成任何限定。在其他的实施例中,辅助驾驶装置还可以通过其他的规则来将图像进行划分。另外,不同的车型也可以对应不同的规则。
可选地,挡风玻璃的图像可以被划分为更多或更少的分区,挡风玻璃被遮挡的等级数量也可以更多或更少,本申请对此均不做限定。
如图5中的a)所示,辅助驾驶装置获取到前挡风玻璃的图像,该图像包括对前挡风玻璃拍摄到的图像,还包括一些车辆的其他结构(如图中所示的部分方向盘)。如图5中的b)所示,辅助驾驶装置将上述挡风玻璃的图像划分为多个分区,例如,将上述挡风玻璃的图像中上方1/4的区域作为分区1,挡风玻璃的图像中的中间部分1/2的区域作为分区2,挡风玻璃的图像中下方1/4的区域作为分区3。
可选地,本申请所述的多个分区中对驾驶员的视线的影响程度越大的分区,同一遮挡等级对应的预设区间的上限越小。
多个预设区间与所对应的分区内的被遮挡区域的面积占该分区的面积的比例相关,也即,针对多个分区中某一分区对应的某一遮挡等级,该遮挡等级对应的预设区间是该分区内的被遮挡区域的面积占该分区的面积的比例的取值范围。可选地,这种设计下,多个分区中对驾驶员的视线的影响程度越大的分区,同一遮挡等级对应的预设区间的上限越小。如此一来,在对驾驶员的视线的影响程度越大的分区,更容易被判定为较高的遮挡等级,进而做出更能辅助驾驶员驾驶车辆的措施,提高驾驶的安全性。
示例性地,多个分区包括第一分区和第二分区,第一分区对驾驶员视线的影响程度大于第二分区对驾驶员视线的影响程度,同一遮挡等级下,第一分区对应的预设区间的上限小于第二分区对应的预设区间的上限。
可以理解,针对多个分区中某一分区对应的某一遮挡等级,该遮挡等级对应的预设区间还可以是该分区内的被遮挡区域的面积的取值范围。可选地,这种设计下,多个分区中对驾驶员的视线的影响程度越大的分区,同一遮挡等级对应的预设区间的上限可能越大,也可能越小。该上限与该分区的面积占整个图像的面积的比例相关。例如,某一分区的面积占整个图像的面积的比例远大于其他分区占整个图像的面积的比例,则可能同一遮挡等级下,该分区对应的预设区间的上限可能大于其他分区的预设门限的上限。
可选地,上述多个分区包括第一分区和第三分区,该第一分区和第三分区预定义的至少一个遮挡等级的数量不同。
例如,分区1对驾驶员视线的影响程度大于分区2对驾驶员视线的影响程度,分区1预定义的遮挡等级的数量可以大于分区2预定义的遮挡等级的数量。其中,第二分区和第三分区可以是同一分区,也可以是不同分区。
一种可能的设计是,多个分区中对驾驶员的视线的影响程度越大的分区,对应的遮挡等级的数量越多。例如,上述多个分区包括分区1、分区2以及分区3,各个分区对驾驶员的视线的影响程度大小如下:分区2>分区1>分区3,分区2预定义的遮挡等级包括严重遮挡、一般遮挡以及未遮挡,分区1预定义的遮挡等级包括一般遮挡和未遮挡,分区3预定义的遮挡等级包括未遮挡。
应理解,上述各个分区对应的遮挡等级的数量的大小关系仅为示例,不应对本申请实施例构成任何限定。在其他实施例中,对驾驶员的视线的影响程度不同的分区,对应的遮挡等级的数量可能相同。例如,上述多个分区包括分区1、分区2以及分区3,各个分区对驾驶员的视线的影响程度大小如下:分区2>分区1>分区3,分区2预定义的遮挡等级包括严重遮挡、一般遮挡以及未遮挡,分区1预定义的遮挡等级包括一般遮挡和未遮挡,分区3预定义的遮挡等级包括一般遮挡和未遮挡。
图6是本申请实施例提供的确定挡风玻璃被遮挡的等级的详细流程图。在图6所示的实施例中,多个分区包括分区1、分区2以及分区3,其中,分区1预定义的遮挡等级包括未遮挡和一般遮挡,分区2预定义的遮挡等级包括未遮挡、一般遮挡以及严重遮挡,分区3预定义的遮挡等级包括未遮挡和一般遮挡。
步骤601,获取挡风玻璃的图像。
辅助驾驶装置可以通过摄像头拍摄挡风玻璃的图像,还可以通过行车记录仪拍摄挡风玻璃的图像,本申请实施例对获取图像的具体方式不作限定。关于获取挡风玻璃的图像的具体描述可以参看步骤401,此处不再详述。
步骤602,计算被遮挡区域分布在各个分区的面积。
步骤602具体包括:计算被遮挡区域分布在分区1中的面积S1,计算被遮挡区域分布在分区2中的面积S2以及计算被遮挡区域分布在分区3中的面积S3。
步骤603,确定各个分区被遮挡的等级。
针对分区1,辅助驾驶装置判断S1≥a是否成立。若S1≥a,则辅助驾驶装置确定分区1被遮挡的等级为一般遮挡;若S1<a,则辅助驾驶装置确定分区1被遮挡的等级为未遮挡。
针对分区2,辅助驾驶装置判断S2≥b是否成立。其中,被遮挡区域分布在各个分区的面积的计算结果是以百分比的形式表示时,也即,以被遮挡区域分布在各个分区的面积占所对应的分区的面积的比值的形式表示时,a>b。若S2<b,则辅助驾驶装置确定分区2被遮挡的等级为未遮挡;S2≥b,则继续判断S2≥c是否成立。若S2≥c,则辅助驾驶装置确定分区2被遮挡的等级为严重遮挡;若S2<c,则辅助驾驶装置确定分区2被遮挡的等级为一般遮挡。
针对分区3,辅助驾驶装置判断S3≥a是否成立。若S3≥a,则辅助驾驶装置确定分区3被遮挡的等级为一般遮挡;S3<a,则辅助驾驶装置确定分区3被遮挡的等级为未遮挡。
应理解,图6所示的实施例中,以分区1和分区3预定义的遮挡等级的数量以及每个遮挡等级对应的预设区间相同为例,但不应对本申请实施例构成任何限定。例如,在其他的实施例中,分区1和分区3预定义的遮挡等级的数量以及每个遮挡等级对应的预设区间也可以不同。
步骤604,确定挡风玻璃被遮挡的等级为各个分区被遮挡的等级中最高的等级。
示例性地,分区1被遮挡的等级为一般遮挡,分区2被遮挡的等级为严重遮挡,分区3被遮挡的等级为未遮挡,则挡风玻璃被遮挡的等级为严重遮挡。关于确定挡风玻璃被遮挡的等级更具体的描述可以参看步骤402,此处不再详述。
可以理解,辅助驾驶装置确定出挡风玻璃被遮挡的等级后,可以根据挡风玻璃被遮挡的等级,做出相应的处理措施,以辅助驾驶员驾驶车辆,进而提高驾驶的安全性。
可选地,图4所示的方法400还包括:在挡风玻璃被遮挡的等级为预设的遮挡等级的情况下,上述方法还包括:基于以下至少一种方式辅助驾驶员驾驶车辆:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯。
在挡风玻璃被遮挡的等级为预设的遮挡等级的情况下,辅助驾驶装置可以通过一些基础方式来辅助驾驶员驾驶车辆,例如,调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯等。本申请实施例对上述辅助驾驶员驾驶车辆的具体方式不作任何限定。在实际应用中,辅助驾驶装置还可以通过其他方式来辅助驾驶员驾驶车辆,例如,通过语音提示驾驶员无需过于慌张等。
可以理解,调整车辆的尾灯,用于提醒后车注意车距,比如调整阵列式尾灯的排列、闪光频率等。开启香氛可以舒缓驾驶员紧张、不安的感觉,使驾驶员可以集中精神观察路况继续驾驶。如果当前香氛已经是开启状态,则可以自动更换对应舒缓心情的香氛。
在挡风玻璃被遮挡的等级小于预设的遮挡等级的情况下,辅助驾驶装置可以不做任何处理,驾驶员继续行驶即可。
在挡风玻璃被遮挡的等级大于预设的遮挡等级的情况下,图4所示的方法400还可以包括:确定车辆的当前车速;根据当前车速,确定用于辅助驾驶员驾驶车辆的处理方式。
在挡风玻璃被遮挡的等级大于预设的遮挡等级的情况下,辅助驾驶装置可以继续判断该车辆的当前车速,进而根据车速做出合理的处理方式,进而保证驾驶的安全性。
一种可能的实现方式是,若当前车速小于或等于预设门限,则上述处理方式可以包括:通过中控显示屏显示车辆的俯视画面和车辆的前视画面;若当前车速大于预设门限,则上述处理方式可以包括:通过中控显示屏显示虚拟路况影像,该虚拟路况影像是基于车辆近场的路况信息以及车辆远场的路况信息绘制的。
可以理解,如果该车辆的当前车速较低,则辅助驾驶装置可以通过中控显示屏显示该车辆近场的一 些路况信息,例如车辆的俯视画面和车辆的前视画面,来辅助驾驶员驾驶车辆,此外,辅助驾驶装置还可以再加上以下一项或多项来辅助驾驶:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯等。
如果该车辆的当前车速较高,则辅助驾驶装置只通过上述方式辅助驾驶员驾驶车辆可能无法保证驾驶员的安全,例如,当前车速较高,车辆的制动距离较大,也即,需要行驶较长的距离才能停下来,如果驾驶员只能通过显示屏看见该车辆周围的路况信息,可能由于无法看见远处的路况信息而存在安全隐患,因此,辅助驾驶装置可以通过中控显示屏显示虚拟路况影像来辅助驾驶员驾驶车辆,该虚拟路况影像是基于车辆近场的路况信息以及车辆远场的路况信息绘制的。
其中,上述虚拟路况影像可以通过以下方式绘制:通过雷达获取上述车辆近场的路况信息,并从车路协同系统的路侧设备获取上述车辆远场的路况信息,更为详细地,通过远程信息处理模块(telematics box,T-BOX)的PC5接口从车路协同系统的路侧设备获取上述车辆远场的路况信息,进而基于上述车辆近场的路况信息以及上述车辆远场的路况信息,绘制上述虚拟路况影像。
近场的路况信息例如包括但不限于:周围车辆的相对距离、相对速度、行驶角度、行驶方向等,远场的路况信息例如包括但不限于:车辆位置、车道信息、车型信息、相对速度、加速度等。
此外,在当前车速大于预设门限的情况下,辅助驾驶装置还可以再加上以下一项或多项来辅助驾驶员驾驶车辆:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯等。这样,更有利于提高驾驶的安全性。
可选地,在当前车速大于预设门限的情况下,辅助驾驶装置还可以向车路协同系统的路侧设备发送车辆的故障信息,以使路侧设备广播上述车辆的故障信息。
在当前车速大于预设门限的情况下,辅助驾驶装置还可以向车路协同系统的路侧设备发送车辆的故障信息,以使路侧设备广播上述车辆的故障信息。如此一来,其他车辆听到广播便可以主动避让该车辆,进而有利于保证驾驶的安全性。
可选地,在当前车速大于预设门限的情况下,若当前车辆处于非自动驾驶状态,则辅助驾驶装置还可以通过语音提示驾驶员继续行驶并靠边停车,驾驶员可以在合适的情况下靠边停车。若当前车辆处于自动驾驶状态,则辅助驾驶装置还可以获取车辆的目标车速以及靠边停车的路段,并自动调整车速至目标车速,自动在上述路段靠边停车。例如,若当前车辆处于自动驾驶状态,则辅助驾驶装置还可以从车辆的计算平台获取车辆的目标车速和靠边停车的路段,例如计算平台根据自身车辆的车速和其他车辆的车速、以及与其他车辆的相对位置,计算出自身处于怎样的目标车速可以保证安全行驶,获取到上述目标车速和路段后,辅助驾驶装置可以自动调整车速至目标车速,并自动在上述路段靠边停车。
图7是本申请实施例提供的根据挡风玻璃被遮挡的等级确定辅助驾驶方式的流程示意图。
步骤701,获取挡风玻璃被遮挡的等级。
步骤702,根据挡风玻璃被遮挡的等级确定辅助驾驶方式。
若挡风玻璃被遮挡的等级为未遮挡,则不做处理,继续行驶。若挡风玻璃被遮挡的等级为一般遮挡,则通过基础方式辅助驾驶员驾驶车辆。其中,基础方式包括以下一项或多项:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯等。若挡风玻璃被遮挡的等级为严重遮挡,则根据车辆的当前车速确定辅助驾驶员驾驶车辆的方式。下面将结合图8详细描述根据车辆的当前车速确定辅助驾驶员驾驶车辆的方式的过程。
图8是本申请实施例提供的根据车辆的当前车速确定辅助驾驶员驾驶车辆的方式的流程示意图。
步骤801,确定挡风玻璃被遮挡的等级为严重遮挡。
步骤802,确定当前车速≥预设速度是否成立。
若当前车速<预设速度,则辅助驾驶装置执行步骤803和/或步骤804;若当前车速≥预设速度,则辅助驾驶装置执行步骤805至步骤808。可选地,若当前车速≥预设速度,辅助驾驶装置还可以执行步骤803和/或步骤804。
步骤803,调整车辆的尾灯,开启香氛。
调整车辆的尾灯,用于提醒后车注意车距,例如,辅助驾驶装置可以调整阵列式尾灯的排列、闪光频率等。开启香氛可以舒缓驾驶员紧张、不安的感觉,使驾驶员可以集中精神观察路况继续驾驶。可以理解,如果当前香氛已经是开启状态,则可以自动更换可以舒缓心情的香氛。
可选地,辅助驾驶装置还可以开启雨刮或开启双闪警示灯等。其中,开启雨刮可以有助于清除挡风 玻璃上的遮挡物,开启双闪警示灯可以用于提醒前车或后车注意车距。
步骤804,通过中控显示屏显示环视全景影像。
其中,环视全景影像包括360度的车辆的俯视画面和车辆的前视画面。上述车辆的俯视画面可以是通过车辆上安装的前后左右的摄像头拍摄的,车辆的前视画面可以是通过车辆上安装的前方的摄像头拍摄的。
步骤805,从雷达获取近场的路况信息。
若当前车速≥预设速度,则辅助驾驶装置从雷达获取近场的路况信息。其中,路况信息例如包括:周围车辆的相对距离、相对速度、行驶角度、行驶方向等。
步骤806,从车路协同系统的路侧设备获取远场的路况信息。
远场的路况信息例如包括:车辆位置、车道信息、车型信息、相对速度、加速度等。
步骤807,根据近场的路况信息和远场的路况信息,绘制虚拟路况影像。
示例性地,辅助驾驶装置根据获取到的该车辆近场的车辆的信息和远场的车辆的信息,融合计算出综合的路况信息,包括车道信息、车辆位置、车型信息、相对速度、加速度等,并绘制虚拟路况影像。
步骤808,通过中控显示屏显示虚拟路况影像。
辅助驾驶装置通过中控显示屏显示虚拟路况影像,使得驾驶员可以从中控显示屏上看见路况信息,这样一来,即使遮挡物影响驾驶员的视线,驾驶员也可以基于中控显示屏显示的虚拟路况影像来驾驶车辆,有利于提高驾驶的安全性。
应理解,图8所示的实施例仅为示例,不应对本申请实施例构成任何限定。在其他的实施例中,可以包括比图8更多或更少的步骤,例如,辅助驾驶装置还可以在当前车速≥预设速度的情况下,如果车辆处于非自动驾驶状态,则通过语音提示驾驶员继续行驶并靠边停车,这样一来,驾驶员可以在合适的情况下靠边停车。如果当前车辆处于自动驾驶状态,则辅助驾驶装置还可以获取车辆的目标车速以及靠边停车的路段,并自动调整车速至目标车速,自动在上述路段靠边停车。又例如,辅助驾驶装置在当前车速<预设速度的情况下,可以略过步骤803,直接执行步骤804。
另外,本申请实施例对图8所示的各个步骤的先后顺序不作限定。例如,在其他的实施例中,辅助驾驶装置可以先执行步骤806,再执行步骤807,或,同时执行步骤806和步骤807。又例如,在其他的实施例中,辅助驾驶装置可以先执行步骤804,再执行步骤803,或,同时执行步骤804和步骤803。为了简洁,此处不再一一列举。
需要说明的是,在其他的实施例中,辅助驾驶装置可以根据已知的确定挡风玻璃被遮挡等级的方法(如图2所示的方法),确定挡风玻璃被遮挡的等级,或,通过本申请提供的确定挡风玻璃被遮挡的等级的方法(如图4所示的方法),确定挡风玻璃被遮挡的等级,进而在挡风玻璃被遮挡的等级大于预设的遮挡等级的情况下,确定车辆的当前车速;根据当前车速,确定用于辅助驾驶员驾驶车辆的处理方式。更具体的过程可以参看图7或图8的相关描述,此处不再赘述。
图9是本申请实施例提供的环视全景影像和虚拟路况影像的示意图。
如图9中的a)所示,车辆a为自身车辆,在当前车速<预设速度的情况下,辅助驾驶装置可以通过中控显示屏显示环视全景影像,该环视全景影像可以包括车辆a的俯视画面和前视画面,画面可以分为左右半屏,例如,通过中控显示屏的左半屏显示车辆a的俯视画面,通过右半屏显示车辆a的前视画面。如图9中的b)所示,在当前车速≥预设速度的情况下,辅助驾驶装置可以通过中控显示屏显示虚拟路况影像,该虚拟路况影像可以包括车辆a的周围的车辆以及远场的车辆的车型信息、车速信息等,还可以包括车道信息等。
应理解,图9中的虚拟路况影像仅示例性地示出了车道信息、车辆a的周围的部分车辆等,在实际应用中,中控显示屏上还可以显示每辆车辆的车速、加速度等,本申请实施例对此不作限定。
基于上述技术方案,通过结合获取到的挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积来确定挡风玻璃被遮挡的情况,相比只通过被遮挡区域的面积来确定挡风玻璃被遮挡的情况,可以有效地避免由于仅考虑被遮挡区域的面积而导致的挡风玻璃被遮挡情况的误判,有利于提高判断挡风玻璃被遮挡情况的准确度,这样一来,才能根据被遮挡的情况而做出合理的辅助驾驶的措施,进而有利于提高驾驶的安全性。
图10是本申请实施例提供的辅助驾驶装置的示意性框图。
如图10所示,该装置1000可以包括:收发单元1010和处理单元1020。该装置1000可用于实现图4、图6、图7或图8所示实施例中所述的方法。
示例性地,当该装置1000用于实现图4所示实施例所述的方法时,所述收发单元1010可以用于获取挡风玻璃的图像,该挡风玻璃的图像包括对挡风玻璃采集到的图像;处理单元1020可以用于根据上述挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积,确定挡风玻璃被遮挡的等级。
各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
应理解,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图11是本申请实施例提供的辅助驾驶装置的又一示意性框图。
该装置1100可用于实现上述图4、图6、图7或图8所示的实施例中所述的方法。该装置1100可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图11所示,该装置1100可以包括至少一个处理器1110,用于实现图4、图6、图7或图8所示的实施例中所述的方法。
示例性地,当该装置1100用于实现图4所示实施例中所述的方法时,处理器1110可以用于获取挡风玻璃的图像,该挡风玻璃的图像包括对挡风玻璃采集到的图像;根据上述挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积,确定挡风玻璃被遮挡的等级。具体参见方法示例中的详细描述,此处不做赘述。
该装置1100还可以包括至少一个存储器1120,可以用于存储程序指令和/或数据。存储器1120和处理器1110耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1110可能和存储器1120协同操作。处理器1110可能执行存储器1120中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
该装置1100还可以包括通信接口1130,用于通过传输介质和其它设备进行通信,从而使得该装置1100可以和其它设备进行通信。所述通信接口1130例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。处理器1110可利用通信接口1130收发数据和/或信息,并用于实现图4、图6、图7或图8所示的实施例中所述的方法。
本申请实施例中不限定上述处理器1110、存储器1120以及通信接口1130之间的具体连接介质。本申请实施例在图11中以处理器1110、存储器1120以及通信接口1130之间通过总线1140连接。总线1140在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请还提供了一种芯片系统,所述芯片系统包括至少一个处理器,用于实现上述图4、图6、图7或图8所示实施例中所述的方法。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存程序指令和数据,存储器位于处理器之内或处理器之外。
该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请还提供一种车辆,该车辆可用于实现如图4、图6、图7或图8所示的实施例中所述的方法。该车辆可对应于图10或图11所示的辅助驾驶装置,例如可以是上述辅助驾驶装置,或者,可以包括上述辅助驾驶装置。
本申请还提供一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行如图4、图6、图7或图8所示的实施例中所述的方法。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)。当所述计算机程序被运行时,使得计算机执行如图4、图6、图7或图8所示的实施例中所述的方法。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(fieldprogrammable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(directrambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本说明书中使用的术语“单元”、“模块”等,可用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上单元集成在一个模块中。
在上述实施例中,各功能模块的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数 字通用光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种辅助驾驶方法,其特征在于,包括:
    获取挡风玻璃的图像,所述挡风玻璃的图像中包括对所述挡风玻璃采集到的图像;
    根据所述挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积,确定所述挡风玻璃被遮挡的等级。
  2. 如权利要求1所述的方法,其特征在于,所述挡风玻璃的图像包括多个分区,所述多个分区位于所述挡风玻璃的图像中的不同位置,所述多个分区的每个分区预定义有与至少一个遮挡等级对应的至少一个预设区间,所述至少一个预设区间与落在所对应的分区内的被遮挡区域的面积相关;以及,
    所述根据所述挡风玻璃的图像中被遮挡区域的位置以及被遮挡区域的面积,确定所述挡风玻璃被遮挡的等级,包括:
    根据所述被遮挡区域分布在所述多个分区中每个分区的面积,确定各个分区被遮挡的等级;
    将所述各个分区被遮挡的等级中最高的等级确定为所述挡风玻璃被遮挡的等级。
  3. 如权利要求2所述的方法,其特征在于,所述多个分区包括第一分区和第二分区,所述第一分区对驾驶员视线的影响程度大于所述第二分区对驾驶员视线的影响程度,同一遮挡等级下,所述第一分区对应的预设区间的上限小于所述第二分区对应的预设区间的上限。
  4. 如权利要求2所述的方法,其特征在于,所述多个分区包括第一分区和第三分区,所述第一分区和所述第三分区对应的至少一个遮挡等级的数量不同。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,在所述挡风玻璃被遮挡的等级为预设的遮挡等级的情况下,所述方法还包括:
    基于以下至少一种方式辅助驾驶员驾驶车辆:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,在所述挡风玻璃被遮挡的等级大于预设的遮挡等级的情况下,所述方法还包括:
    确定车辆的当前车速;
    根据所述当前车速,确定用于辅助驾驶员驾驶所述车辆的处理方式。
  7. 如权利要求6所述的方法,其特征在于,若所述当前车速小于或等于预设门限,则所述处理方式包括:通过中控显示屏显示所述车辆的俯视画面和所述车辆的前视画面;或,
    若所述当前车速大于预设门限,则所述处理方式包括:通过中控显示屏显示虚拟路况影像,所述虚拟路况影像是基于所述车辆近场的路况信息以及所述车辆远场的路况信息绘制的。
  8. 如权利要求7所述的方法,其特征在于,在所述通过中控显示屏显示所述虚拟路况影像之前,所述方法还包括:
    通过雷达获取所述车辆近场的路况信息;
    从车路协同系统的路侧设备获取所述车辆远场的路况信息;
    基于所述车辆近场的路况信息以及所述车辆远场的路况信息,绘制所述虚拟路况影像。
  9. 如权利要求7或8所述的方法,其特征在于,在所述当前车速大于预设门限的情况下,所述方法还包括:
    向车路协同系统的路侧设备发送所述车辆的故障信息,以使所述路侧设备广播所述车辆的故障信息。
  10. 如权利要求7至9中任一项所述的方法,其特征在于,在所述当前车速大于预设门限的情况下,所述方法还包括:
    当所述车辆为非自动驾驶时,通过语音提示驾驶员继续行驶并靠边停车;或,
    当所述车辆为自动驾驶时,获取所述车辆的目标车速和靠边停车的路段信息;
    自动将车速调整至所述目标车速,并自动在所述路段信息指示的路段靠边停车。
  11. 如权利要求6至10中任一项所述的方法,其特征在于,所述方法还包括:
    基于以下至少一种方式辅助驾驶员驾驶车辆:调整车辆的尾灯、开启香氛、开启雨刮或开启双闪警示灯。
  12. 一种辅助驾驶装置,其特征在于,包括用于实现如权利要求1至11中任一项所述的方法的单元。
  13. 一种辅助驾驶装置,其特征在于,包括处理器和存储器,其中,
    所述存储器用于存储计算机程序;
    所述处理器用于调用所述计算机程序,以使得所述装置执行权利要求1至11中任一项所述的方法。
  14. 一种车辆,其特征在于,包括辅助驾驶装置,所述辅助驾驶装置用于实现如权利要求1至11中任一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被计算机执行时,实现如权利要求1至11中任一项所述的方法。
  16. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被计算机运行时,实现如权利要求1至11中任一项所述的方法。
PCT/CN2023/116622 2022-09-06 2023-09-01 一种辅助驾驶方法及相关装置 WO2024051614A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211083310.5A CN117711199A (zh) 2022-09-06 2022-09-06 一种辅助驾驶方法及相关装置
CN202211083310.5 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024051614A1 true WO2024051614A1 (zh) 2024-03-14

Family

ID=90152098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116622 WO2024051614A1 (zh) 2022-09-06 2023-09-01 一种辅助驾驶方法及相关装置

Country Status (2)

Country Link
CN (1) CN117711199A (zh)
WO (1) WO2024051614A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096604A (ja) * 2008-10-16 2010-04-30 Denso Corp 視界状態検知装置および視界確保装置
CN107554485A (zh) * 2017-07-18 2018-01-09 上海禹点电子科技有限公司 挡风玻璃遮挡区域擦拭控制系统及方法
DE102016224332A1 (de) * 2016-12-07 2018-06-07 Audi Ag Kraftfahrzeug
EP3483781A1 (en) * 2017-11-13 2019-05-15 Continental Automotive GmbH Device for detecting windshield blockage
CN110775028A (zh) * 2019-10-29 2020-02-11 长安大学 一种汽车挡风玻璃遮挡物检测及辅助驾驶系统和方法
CN111703371A (zh) * 2020-06-16 2020-09-25 北京百度网讯科技有限公司 交通信息的显示方法、装置、电子设备和存储介质
CN111775890A (zh) * 2020-05-29 2020-10-16 恒大新能源汽车投资控股集团有限公司 车窗玻璃的遮挡检测方法、装置和系统以及存储介质
CN113353025A (zh) * 2021-07-14 2021-09-07 恒大恒驰新能源汽车研究院(上海)有限公司 一种车辆除霜除雾方法和装置
CN113511140A (zh) * 2020-04-11 2021-10-19 杭州光力美电子科技有限公司 一种汽车驾驶盲区摄像头
CN113657277A (zh) * 2021-08-18 2021-11-16 南京佑驾科技有限公司 一种车辆被遮挡状态判断系统及方法
CN113911034A (zh) * 2021-11-04 2022-01-11 无锡睿勤科技有限公司 驾驶视野保障设备、方法及计算机可读存储介质
CN114312672A (zh) * 2022-01-27 2022-04-12 中国第一汽车股份有限公司 一种雨刷控制方法及系统、行车记录仪

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096604A (ja) * 2008-10-16 2010-04-30 Denso Corp 視界状態検知装置および視界確保装置
DE102016224332A1 (de) * 2016-12-07 2018-06-07 Audi Ag Kraftfahrzeug
CN107554485A (zh) * 2017-07-18 2018-01-09 上海禹点电子科技有限公司 挡风玻璃遮挡区域擦拭控制系统及方法
EP3483781A1 (en) * 2017-11-13 2019-05-15 Continental Automotive GmbH Device for detecting windshield blockage
CN110775028A (zh) * 2019-10-29 2020-02-11 长安大学 一种汽车挡风玻璃遮挡物检测及辅助驾驶系统和方法
CN113511140A (zh) * 2020-04-11 2021-10-19 杭州光力美电子科技有限公司 一种汽车驾驶盲区摄像头
CN111775890A (zh) * 2020-05-29 2020-10-16 恒大新能源汽车投资控股集团有限公司 车窗玻璃的遮挡检测方法、装置和系统以及存储介质
CN111703371A (zh) * 2020-06-16 2020-09-25 北京百度网讯科技有限公司 交通信息的显示方法、装置、电子设备和存储介质
CN113353025A (zh) * 2021-07-14 2021-09-07 恒大恒驰新能源汽车研究院(上海)有限公司 一种车辆除霜除雾方法和装置
CN113657277A (zh) * 2021-08-18 2021-11-16 南京佑驾科技有限公司 一种车辆被遮挡状态判断系统及方法
CN113911034A (zh) * 2021-11-04 2022-01-11 无锡睿勤科技有限公司 驾驶视野保障设备、方法及计算机可读存储介质
CN114312672A (zh) * 2022-01-27 2022-04-12 中国第一汽车股份有限公司 一种雨刷控制方法及系统、行车记录仪

Also Published As

Publication number Publication date
CN117711199A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
JP4933669B2 (ja) 車載用画像表示装置
WO2020037603A1 (zh) 一种汽车盲区的监测方法及系统
EP3648076A1 (en) Method and apparatus for interacting traffic information, and computer storage medium
WO2020037604A1 (zh) 一种汽车盲区的监测报警方法、装置、设备及存储介质
US10798281B2 (en) Apparatus and method for disabling a driver facing camera in a driver monitoring system
US20190389455A1 (en) Blended autonomous driving system
CN112796609A (zh) 一种车门预警方法、装置、设备及汽车
CN107992056A (zh) 一种基于分域集中计算单元的汽车智能驾驶计算平台终端
WO2024051614A1 (zh) 一种辅助驾驶方法及相关装置
CN111845557B (zh) 车辆驾驶的安全预警方法、系统及相关装置
JP2017076431A (ja) 車両制御装置
CN107640111B (zh) 基于百核微处理器控制的汽车视觉图像处理系统及方法
JP6372556B2 (ja) 車載用画像表示装置
CN113240940A (zh) 汽车提醒监控方法、电子设备及存储介质
CN115675282A (zh) 倒车预警策略确定方法、预警方法、系统、设备及介质
JP2014078271A (ja) 車載用画像表示装置
CN114734918A (zh) 一种盲区检测及预警方法、系统及存储介质
JP2016064829A (ja) 車両制御装置
CN112215031B (zh) 一种障碍物的确定方法及装置
JP6105513B2 (ja) 車両制御装置、及び車載用画像表示装置
CN113345217B (zh) 一种虚拟警示墙生成方法、装置及计算机设备
KR20190079334A (ko) 후방 추돌 사고를 방지하는 장치 및 방법
WO2024140404A1 (zh) 一种交互方法、装置及系统
CN112498237A (zh) 一种狭窄环境的行车辅助方法、系统、设备及存储介质
CN115107761A (zh) 一种车辆爆胎的智能控制方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862308

Country of ref document: EP

Kind code of ref document: A1