WO2024051405A1 - 一种喷淋组件、半导体设备及晶片的加工方法 - Google Patents
一种喷淋组件、半导体设备及晶片的加工方法 Download PDFInfo
- Publication number
- WO2024051405A1 WO2024051405A1 PCT/CN2023/110761 CN2023110761W WO2024051405A1 WO 2024051405 A1 WO2024051405 A1 WO 2024051405A1 CN 2023110761 W CN2023110761 W CN 2023110761W WO 2024051405 A1 WO2024051405 A1 WO 2024051405A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spray
- annular
- area
- air inlet
- plate
- Prior art date
Links
- 239000007921 spray Substances 0.000 title claims abstract description 250
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- 238000003672 processing method Methods 0.000 title claims abstract description 8
- 239000000376 reactant Substances 0.000 claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 230000000149 penetrating effect Effects 0.000 claims 2
- 238000000034 method Methods 0.000 abstract description 11
- 230000008021 deposition Effects 0.000 abstract description 8
- 235000012431 wafers Nutrition 0.000 description 27
- 238000000231 atomic layer deposition Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 238000000151 deposition Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
Definitions
- the invention relates to the field of semiconductor equipment and manufacturing, and in particular to a spray component, semiconductor equipment and a wafer processing method.
- Plasma enhancement technology is widely used in the field of semiconductor manufacturing. It can increase the activation energy of reactants during the reaction process, while significantly reducing the reaction deposition temperature and reducing the stress introduced by the inconsistent thermal expansion coefficient between the deposition layer and the base layer.
- Remote plasma Remote Plasma
- ALD Atomic Layer Deposition, atomic layer deposition
- the plasma generated after the reaction gas is processed by radio frequency is provided into the chamber from the entrance. This method is The bombardment on the surface of the wafer is small, and the plasma damage generated is also small.
- the remote plasma is relatively far away from the wafer and has a long diffusion path, the ion beam in the excited state on the wafer surface is unevenly distributed. Usually, the density in the center of the wafer is higher. High and low in the edge area, which will lead to uneven deposition thickness in the center and edge areas of the wafer.
- the object of the present invention is to provide a shower component, a semiconductor device and a wafer processing method to improve the uniformity of the deposition thickness in the edge area and center area of the wafer.
- the present invention has the following technical solutions:
- a spray assembly is applied to semiconductor equipment and is used to be arranged in the edge area of the central air inlet of the semiconductor equipment.
- the spray assembly includes a first spray plate and a second spray plate arranged in a stack, and the The first spray plate and the second spray plate are annular plates arranged coaxially; wherein,
- the first spray plate is provided with a first annular spray area and a spray introduction area coaxially arranged therewith;
- the second spray plate is provided with a second annular spray area coaxially arranged with the second annular spray area.
- a shaped spray area is provided corresponding to the spray introduction area, and the spray introduction area is used to introduce reactants in the second annular spray area into the chamber, and the first annular spray area and the third annular spray area are The two annular spray areas are independent of each other.
- the first annular spray area is used to form an inner annular spray area
- the second annular spray area is used to cooperate with the spray introduction area to form an outer annular spray area
- the second annular spray area is used to cooperate with the spray introduction area to form an inner ring spray area
- the first annular spray area is used to cooperate with the spray introduction area to form an outer ring. Spray area.
- the first spray plate is further provided with a first air inlet connected to the first annular spray area
- the second spray plate is further provided with a first air inlet connected to the second annular spray area.
- the second air inlet connected to the shower area.
- the first annular spray area includes a first annular groove and a first spray hole that passes through the first annular groove
- the second annular spray area includes a second annular groove and a through hole.
- the second spray hole of the second annular groove, the spray introduction area includes an annular through hole area provided on the first spray plate, the annular through hole area is provided with a through hole, the The second spray hole at least partially communicates with the through hole.
- the first spray holes and the second spray holes are evenly distributed, and the hole diameter range is 0.2-3mm.
- the second spray plate is disposed below the chamber cover of the semiconductor device, and the first spray plate is disposed below the second spray plate.
- a spray assembly includes an annular plate, and coaxially arranged first spray areas and second spray areas are spaced on the annular plate.
- the first spray area includes an inner groove ring and the inner groove ring.
- a first spray hole is provided on the groove ring, and the second spray area includes an outer groove ring and a second spray hole provided on the outer groove ring.
- an air intake cover plate is also included, the air intake cover plate is located above the annular plate, and a first air intake channel and a second air intake channel are respectively provided in the air intake cover plate.
- the first air inlet channel passes through the inner groove ring, and the second air inlet channel passes through the outer groove ring.
- an air inlet cover plate is also included, and the air inlet cover plate is located above the annular plate, so The air inlet cover plate is provided with a first air inlet channel, and the first air inlet channel is connected to the inner groove ring; the annular plate is also provided with a second air inlet channel, and the second air inlet channel is Channels communicate to the outer groove ring.
- the air inlet cover is a chamber cover.
- a semiconductor device which is a remote plasma ALD device, including a tubular radio frequency generator and a reaction chamber.
- the upper end of the reaction chamber is provided with a central air inlet, and the central air inlet is arranged corresponding to the outlet of the tubular radio frequency generator, Any one of the above spray components is provided in the reaction chamber and below the tubular radio frequency generator.
- the tubular radio frequency generator includes a gas pipe and a plurality of coil pipes arranged around the gas pipe.
- Each coil pipe includes a spirally arranged coil, and the plurality of coil pipes have different diameters.
- a wafer processing method characterized by including:
- the wafer is processed.
- the spray components, semiconductor equipment and wafer processing methods provided by embodiments of the present invention provide an annular spray plate.
- the annular area of the spray plate forms multiple independent spray areas, which can control the incoming reactants as needed.
- the flow rate and concentration are adjusted separately.
- These spray areas are distributed in an annular shape and are set at the edge of the central air inlet of the semiconductor equipment.
- the flow rate and concentration of the reactants introduced into different spray areas can be adjusted separately according to needs. , supplement and adjust the airflow density in the edge area to adjust the consistency of the process parameters on the wafer surface, thereby achieving the purpose of improving the uniformity of the deposition thickness between the edge area and the center area of the wafer.
- Figure 1A shows a schematic three-dimensional structural view of a sprinkler assembly according to Embodiment 1 of the present invention
- FIG. 1B shows a schematic cross-sectional structural diagram of a semiconductor device equipped with Embodiment 1 of the present invention
- Figure 2A shows a schematic three-dimensional structural view of a sprinkler assembly according to Embodiment 2 of the present invention
- FIG. 2B shows a schematic cross-sectional structural diagram of a semiconductor device equipped with Embodiment 2 of the present invention
- Figure 3A shows a schematic three-dimensional structural view of a sprinkler assembly according to Embodiment 3 of the present invention
- Figure 3B shows a schematic three-dimensional structural diagram of a chamber cover that cooperates with Embodiment 3 of the present invention
- Figure 3C shows a schematic cross-sectional view of Figure 3B
- FIG. 3D shows a schematic cross-sectional structural diagram of a semiconductor device equipped with Embodiment 3 of the present invention.
- this patent provides a spray component.
- the spray component is an annular spray plate, which can be arranged around the central air inlet of the remote plasma ALD equipment. By forming multiple annular independent spray areas, it can be It is necessary to adjust the flow rate and concentration of reactants in different spray zones respectively to supplement and adjust the airflow density in the edge area, thereby improving the process consistency between the edge area and the center area.
- different embodiments will be described below, and the component structure of two annular independent spray zones will be taken as an example for description below.
- the two independent spray areas can be formed on two spray plates, one A spray area and a spray introduction area are formed on the spray plate, and another spray area is formed on the other spray plate.
- This spray area is set correspondingly to the spray introduction area. After the reactants enter the spray area, they pass through the spray area. The spray introduction area enters the chamber.
- the implementation of independent spray zones is more flexible.
- the spray assembly includes a first spray plate 110 and a second spray plate 120 arranged in a stack, and the two spray plates are coaxially arranged.
- a first annular spray area 112 and a spray introduction area 114 are respectively provided on the first spray plate 110 .
- a second annular spray area 124 is provided on the second spray plate 120 .
- the position is opposite to the spray introduction area 114 .
- the spray introduction area 114 corresponds to the second spray area 124 in position, and is used to further introduce the reactants in the second spray area 124 into the chamber.
- the annular spray areas 112 and 124 can introduce reactants and have an accommodating space for the reactants and a gas outlet spray hole for the reactants.
- the accommodating space can be formed in conjunction with the components adjacent to it during use.
- the spray introduction area 114 is formed to further introduce the reactants in the spray area 124 into the chamber.
- the first annular spray area 112 and the second annular spray area 124 are mutually independent spray areas, their reactant accommodating spaces are independent of each other, and their reactant introduction paths are also independent.
- the first annular spray area 112 may include a first groove formed on the first spray plate 110 and a first spray hole formed in the first groove
- the second annular spray area 124 It may include a second groove formed on the second spray plate 120 and a second spray hole formed in the second groove.
- the spray introduction area 114 may include an annular passage provided on the first spray plate.
- the hole area that is, the annular area formed by through-holes, is at least partially connected to each other through the through-holes in the annular through-hole area and the second through-holes in the second annular spray area 124, so that the inside of the second spray area 124 can be of reactants flow into the chamber.
- the first spray hole, the second spray hole, and the through holes are regularly distributed through holes.
- these through holes can adopt the same or different layouts, and the diameters of the through holes can be the same or different.
- the diameter of these through holes can be selected in the range of 0.2-3mm.
- the first spray plate 110 is located below the second spray plate 120, the first annular spray area 112 is used to form an inner annular spray area, and the second annular spray area is Spray area 124 Used to form the outer ring spray area.
- the first spray plate 110 is also provided with a first air inlet hole 116 that communicates with the inner ring spray area 112. The reactants are introduced into the inner ring spray area through the air inlet hole 116 provided on the first spray plate 110.
- the second spray plate 120 is provided with a second air inlet hole 126 that communicates with the outer ring spray area 124, and the reactants are introduced into the outer ring spray area through the air inlet hole 126 provided on the second spray plate 120. .
- the reactants are introduced into the spray area through the air inlet hole provided on the spray plate.
- the structure is simple and easy to integrate.
- other methods can be used.
- a cover with a ventilation pipe can be separately provided. The cover plate is arranged above the spray plate, and the reactants are introduced from above the spray area through the ventilation pipe in the cover plate.
- the first spray plate 210 is located below the second spray plate 220, the first annular spray area 212 is used to form an outer annular spray area, and the second annular spray area is The spray area 224 is used to form an inner ring spray area.
- the first spray plate 210 is also provided with a first air inlet hole 216 that penetrates the outer ring spray area 212. The reactants are introduced into the outer ring spray area through the air inlet hole 216 provided on the first spray plate 210.
- the second spray plate 220 is provided with a second air inlet hole 226 that communicates with the inner ring spray area 224, and the reactants are introduced into the inner ring spray area through the air inlet hole 226 provided on the second spray plate 220.
- the reactants are introduced into the spray area through the air inlet holes provided on the spray plate.
- the structure is simple and easy to integrate. In other embodiments, other methods can also be used, for example, additional settings can be used.
- a cover plate with a ventilation pipe is provided above the spray plate, and reactants are introduced from above the spray area through the ventilation pipe in the cover plate.
- the second spray plate 120 can be located below the chamber cover 18, and the second annular spray area 124 cooperates with the adjacent chamber cover 18 to form a container for the reactants.
- the first spray plate 110 is located below the second spray plate 120, and the first annular spray area 112 cooperates with the adjacent second spray plate 120 to form a storage space for reactants.
- FIG. 1B and FIG. 2B are shown along the positions where the first air inlet hole and the second air inlet hole can be easily displayed in cross section. does not represent the actual relative positional relationship between the two. In actual applications, the first air inlet hole and the second air inlet hole can be respectively disposed at appropriate positions on the first spray plate and the second spray plate.
- different annular spray areas can be arranged on one spray plate, and the structure is simpler.
- an annular plate 300 is included, and coaxially arranged first spray areas 302 and second spray areas 304 are spaced on the annular plate 300 .
- a spray area 302 includes an inner groove ring and a first spray hole provided on the inner groove ring
- the second spray area 304 includes an outer groove ring and a third spray hole provided on the outer groove ring. Two spray holes.
- the reactants are introduced into the first spray zone 302 and the second spray zone 304 respectively through independent air inlet passages. Some or all of the air inlet passages can be set through another air inlet cover plate.
- the air inlet in the air inlet cover plate Pipes provide reactants to the spray zone above the spray zone.
- an air inlet cover 18 is also included.
- the air inlet cover 18 is located above the annular plate 300 .
- Each of the air inlet cover 18 is A first air inlet channel 312 and a second air inlet channel 314 are provided.
- the first air inlet channel 312 penetrates to the inner groove ring, and the second air inlet channel 314 penetrates to the outer groove ring.
- an air inlet cover is also included, the air inlet cover is located above the annular plate, and a first air inlet is provided in the air inlet cover. channel, the first air inlet channel is connected to the inner groove ring; a second air inlet channel is also provided in the annular plate, and the second air inlet channel is connected to the outer groove ring.
- the air inlet cover 18 can be an independent cover structure, or can be integrated with other structures. In a preferred embodiment, the air inlet cover 18 can be a chamber cover.
- the present invention also provides the above-mentioned remote plasma ALD equipment, as shown in FIGS. 1B, 2B, and 3D, including a tubular RF generator and a reaction chamber.
- Chamber 20 the upper end of the reaction chamber 20 is provided with a central air inlet, the central air inlet is arranged corresponding to the outlet of the tubular RF generator, and there is a central air inlet in the reaction chamber 20 and below the tubular RF generator.
- the annular spray area of the spray assembly is located at the periphery of the air outlet of the tubular radio frequency generator.
- the tubular radio frequency generator converts the input process gas into plasma reactants through radio frequency.
- a support seat 22 is provided in the chamber. The support seat 22 is used to place the wafer to be processed.
- the gas outlet of the tubular radio frequency generator is located at the side of the wafer 24 Above the central area, since the remote plasma is relatively far away from the wafer and has a long diffusion path, the ion beam in the excited state on the surface of the wafer is unevenly distributed. The density in the central area of the wafer is higher and the edge area is lower.
- the spray component is equipped with an independent edge spray area, located around the main air inlet. The flow rate and concentration of the incoming reactants can be adjusted according to needs, thereby adjusting the consistency of the process parameters on the wafer surface. , thereby achieving the purpose of improving the uniformity of the deposition thickness between the edge area and the center area of the wafer.
- the tubular radio frequency generator includes a gas pipe 15 and a plurality of coil pipes 14 and 16.
- Each coil pipe includes a spirally arranged coil.
- the number of coils may be one or more.
- the plurality of coil pipes may be one or more.
- the coil pipes 14 and 16 have different diameters.
- the present invention also provides a wafer processing method. After placing the wafer in the above-mentioned remote plasma ALD equipment, the wafer is processed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Drying Of Semiconductors (AREA)
- Weting (AREA)
Abstract
一种喷淋组件、半导体设备及晶片的加工方法,提供环形喷淋板,喷淋板的环形区形成多个独立的喷淋区,可以根据需要对通入的反应物的流量和浓度等分别进行调节,这些喷淋区环形分布,可以设置于中心进气口的边缘区域,可以根据需要对不同的喷淋区通入的反应物的流量和浓度等分别进行调节,进而调整晶片表面工艺参数的一致性,从而达到提高晶片边缘区域与中心区域沉积厚度的均匀性的目的。
Description
本发明涉及半导体设备及制造领域,特别涉及一种喷淋组件、半导体设备及晶片的加工方法。
等离子增强技术广泛应用于半导体制造领域,其可以提高反应过程中反应物的活化能,同时显著降低反应沉积温度,减小沉积层与基层之间由于热膨胀系数不一致而引入的应力。
远程等离子体(RPS,Remote Plasma System)ALD(Atomic Layer Deposition,原子层沉积)是ALD设备的一种,反应气体经过射频处理之后产生的等离子体,从入口处提供至腔室内,这种方式对晶片表面的轰击较小,产生的等离子损伤也较小,但是由于远程等离子体距离晶片相对较远,扩散路径较长,使得晶片表面处于激发态的离子束分布不均匀,通常晶片中心区域密度较高而边缘区域较低,这会导致晶片中心与边缘区域沉积厚度不均匀。
发明内容
有鉴于此,本发明的目的在于提供一种喷淋组件、半导体设备及晶片的加工方法,提高晶片边缘区域与中心区域沉积厚度的均匀性。
为实现上述目的,本发明有如下技术方案:
一种喷淋组件,应用于半导体设备并用于设置于所述半导体设备的中心进气口的边缘区域,所述喷淋组件包括层叠设置的第一喷淋板和第二喷淋板,所述第一喷淋板和所述第二喷淋板为同轴设置的环形板;其中,
所述第一喷淋板上设置有与其同轴设置的第一环形喷淋区和喷淋导入区;
所述第二喷淋板上设置有与其同轴设置的第二环形喷淋区,所述第二环
形喷淋区与所述喷淋导入区对应设置,所述喷淋导入区用于将第二环形喷淋区内的反应物导入至腔室内,所述第一环形喷淋区和所述第二环形喷淋区相互独立。
可选地,所述第一环形喷淋区用于形成内环喷淋区,所述第二环形喷淋区用于与所述喷淋导入区配合形成外环喷淋区。
可选地,所述第二环形喷淋区用于与所述喷淋导入区配合形成内环喷淋区,所述第一环形喷淋区用于与所述喷淋导入区配合形成外环喷淋区。
可选地,所述第一喷淋板上还设置有与所述第一环形喷淋区连通的第一进气孔,所述第二喷淋板上还设置有与所述第二环形喷淋区连通的第二进气孔。
可选地,所述第一环形喷淋区包括第一环形凹槽和贯通所述第一环形凹槽的第一喷淋孔,所述第二环形喷淋区包括第二环形凹槽和贯通所述第二环形凹槽的第二喷淋孔,所述喷淋导入区包括设置于所述第一喷淋板上的环形通孔区,所述环形通孔区设置有贯通孔,所述第二喷淋孔与所述贯通孔至少部分贯通。
可选地,所述第一喷淋孔和所述第二喷淋孔分别均匀分布,孔径范围为0.2-3mm。
可选地,所述第二喷淋板设置于所述半导体设备的腔室盖板下方,所述第一喷淋板设置于所述第二喷淋板下方。
一种喷淋组件,包括环形板,所述环形板上间隔设置有同轴设置的第一喷淋区和第二喷淋区,所述第一喷淋区包括内凹槽环和所述内凹槽环上设置的第一喷淋孔,所述第二喷淋区包括外凹槽环和所述外凹槽环上设置的第二喷淋孔。
可选地,还包括进进气盖板,所述进气盖板位于所述环形板的上方,所述进气盖板中分别设置有第一进气通道和第二进气通道,所述第一进气通道贯通至所述内凹槽环,所述第二进气通道贯通至所述外凹槽环。
可选地,还包括进气盖板,所述进气盖板板位于所述环形板的上方,所
述进气盖板中设置有第一进气通道,所述第一进气通道连通至所述内凹槽环;所述环形板中还设置有第二进气通道,所述第二进气通道连通至所述外凹槽环。
可选地,所述进气盖板为腔室盖板。
一种半导体设备,为远程等离子体ALD设备,包括管形射频发生器和反应腔室,反应腔室上端设有中心进气口,所述中心进气口与管形射频发生器出口对应设置,在所述反应腔室内、所述管形射频发生器下方设置有上述任一的喷淋组件。
可选地,所述管形射频发生器包括气体管道和设置于气体管道外围的多个线圈管道,每个线圈管道包括呈螺旋式排布的线圈,多个线圈管道具有不同的直径。
一种晶片加工方法,其特征在于,包括:
将晶片放置于上述任一的半导体设备的反应腔室中;
对所述晶片进行工艺处理。
本发明实施例提供的喷淋组件、半导体设备及晶片的加工方法,提供环形喷淋板,该喷淋板的环形区形成多个独立的喷淋区,可以根据需要对通入的反应物的流量和浓度等分别进行调节,这些喷淋区环形分布,设置于半导体设备的中心进气口的边缘区域,可以根据需要对不同的喷淋区通入的反应物的流量和浓度等分别进行调节,补充和调节边缘区域气流密度进而调整晶片表面工艺参数的一致性,从而达到提高晶片边缘区域与中心区域沉积厚度的均匀性的目的。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不
付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1A示出了根据本发明实施例一的喷淋组件的立体结构示意图;
图1B示出了设置有本发明实施例一的半导体设备的剖面结构示意图;
图2A示出了根据本发明实施例二的喷淋组件的立体结构示意图;
图2B示出了设置有本发明实施例二的半导体设备的剖面结构示意图;
图3A示出了根据本发明实施例三的喷淋组件的立体结构示意图;
图3B示出了与本发明实施例三配合的腔室盖板的立体结构示意图;
图3C示出了图3B的剖面示意图;
图3D示出了设置有本发明实施例三的半导体设备的剖面结构示意图。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
正如背景技术的描述,远程等离子ALD设备从中心进气口通入反应物气体,由于远程等离子体距离晶片相对较远,扩散路径较长,使得晶片表面处于激发态的离子束分布不均匀,导致晶片中心与边缘区域沉积厚度不均匀。为此,本专利提供了一种喷淋组件,该喷淋组件为环形喷淋板,可以设置于远程等离子ALD设备中心进气孔的周围,通过形成多个环形的独立喷淋区,可以根据需要对不同的喷淋区通入的反应物的流量和浓度等分别进行调节,补充和调节边缘区域气流密度,进而改善边缘区域与中心区域的工艺一致性。为了更好的理解本发明,以下将结合不同的实施例进行说明,以下将以两个环形的独立喷淋区的组件结构为例进行说明。
在一些实施例中,该两个独立的喷淋区可以形成在两块喷淋板上,一块
喷淋板上形成一喷淋区和喷淋导入区,另一块喷淋板上形成另一喷淋区,该喷淋区与喷淋导入区位置上对应设置,反应物进入喷淋区后经喷淋导入区进入腔室。在这些实施例中,独立的喷淋区的实现更为灵活。
实施例一和实施例二
参考图1A、1B和2A、2B所示,喷淋组件包括叠层设置的第一喷淋板110和第二喷淋板120,这两块喷淋板为同轴设置。
在第一喷淋板110上分别设置有第一环形喷淋区112和喷淋导入区114,第二喷淋板120上设置有第二环形喷淋区124,位置与喷淋导入区114相对应,喷淋导入区114在位置上与第二喷淋区124相对应,用于将第二喷淋区124中的反应物进一步导入到腔室中。
本发明实施例中,环形喷淋区112、124可以导入反应物并具有反应物的容置空间和反应物的出气喷淋孔,该容置空间的形成可以与使用中与其相邻的部件共同形成,喷淋导入区114用于将喷淋区124内的反应物进一步导入到腔室内。第一环形喷淋区112和第二环形喷淋区124为相互独立的喷淋区,他们的反应物容置空间相互独立且反应物的导入通路也是独立的。
在一些应用中,第一环形喷淋区112可以包括在第一喷淋板110上形成的第一凹槽以及在第一凹槽内形成的第一喷淋孔,第二环形喷淋区124可以包括在第二喷淋板120上形成的第二凹槽和在第二凹槽内形成的第二喷淋孔,喷淋导入区114则可以包括设置于第一喷淋板上的环形通孔区,即由贯通孔形成的环形区域,通过环形通孔区的贯通孔与第二环形喷淋喷淋区124上的第二通孔至少部分相互连通,实现将第二喷淋区124内的反应物贯通至腔室内。
第一喷淋孔和第二喷淋孔、贯通孔为规律分布的通孔,在具体的实施例中,这些通孔可以采用相同或不同的布局方式,通孔的孔径可以相同或不同,优选的,这些通孔的孔径可以在0.2-3mm的范围内选择。
如图图1A、1B所示,在实施例一中,第一喷淋板110位于第二喷淋板120的下方,第一环形喷淋区112用于形成内环喷淋区,第二环形喷淋区124
用于形成外环喷淋区。第一喷淋板110上还设置与内环喷淋区112贯通的第一进气孔116,通过设置于第一喷淋板110上的进气孔116将反应物导入至内环喷淋区,第二喷淋板120上设置与外环喷淋区124贯通的第二进气孔126,通过设置于第二喷淋板120上的进气孔126将反应物导入至外环喷淋区。该实施例中,通过喷淋板上设置进气孔导入反应物至喷淋区,结构简单并易于集成,在其他实施例中,还可以采用其他方式实现,例如可以另行设置具有通气管道的盖板,盖板设置于喷淋板上方,通过盖板内的通气管道从喷淋区上方导入反应物。
如图图2A、2B所示,在实施例二中,第一喷淋板210位于第二喷淋板220的下方,第一环形喷淋区212用于形成外环喷淋区,第二环形喷淋区224用于形成内环喷淋区。第一喷淋板210上还设置有与外环喷淋区212贯通第一进气孔216,通过设置于第一喷淋板210上的进气孔216将反应物导入至外环喷淋区,第二喷淋板220上设置与内环喷淋区224贯通的第二进气孔226,通过设置于第二喷淋板220上的进气孔226将反应物导入至内环喷淋区。同实施例一,该实施例中,通过喷淋板上设置进气孔导入反应物至喷淋区,结构简单并易于集成,在其他实施例中,还可以采用其他方式实现,例如可以另行设置具有通气管道的盖板,盖板设置于喷淋板上方,通过盖板内的通气管道从喷淋区上方导入反应物。
在以上实施例的具体应用中,第二喷淋板120可以位于腔室盖板18的下方,第二环形喷淋区124则与和其相邻的腔室盖板18配合形成反应物的容置空间,第一喷淋板110位于第二喷淋板120的下方,第一环形喷淋区112则与和其相邻的第二喷淋板120配合形成反应物的容置空间。
需要说明的是,为了便于理解本发明实施例的具体结构,在图1B和图2B提供的剖视图中,均是按照沿着可以便于剖面显示第一进气孔和第二进气孔的位置展示的,并不代表二者实际的相对位置关系,在实际的应用中,第一进气孔、第二进气孔可以分别设置于第一喷淋板、第二喷淋板合适的位置处。
实施例三
在另外一些实施例中,不同的环形喷淋区可以设置于一块喷淋板上,结构更为简单。
参考图3A至图3D所示,在这些实施例中,包括环形板300,所述环形板300上间隔设置有同轴设置的第一喷淋区302和第二喷淋区304,所述第一喷淋区302包括内凹槽环和所述内凹槽环上设置的第一喷淋孔,所述第二喷淋区304包括外凹槽环和所述外凹槽环上设置的第二喷淋孔。
反应物通过独立的进气通路分别导入至第一喷淋区302和第二喷淋区304,可以通过另一进气盖板设置部分或全部的进气通道,进气盖板中的进气管道在喷淋区的上方向喷淋区提供反应物。
在一些具体的实施例中,如3A至图3D所示,还包括进进气盖板18,所述进气盖板18位于所述环形板300的上方,所述进气盖板18中分别设置有第一进气通道312和第二进气通道314,所述第一进气通道312贯通至所述内凹槽环,所述第二进气通道314贯通至所述外凹槽环。
在另一些具体的实施例中(图未示出),还包括进气盖板,所述进气盖板板位于所述环形板的上方,所述进气盖板中设置有第一进气通道,所述第一进气通道连通至所述内凹槽环;所述环形板中还设置有第二进气通道,所述第二进气通道连通至所述外凹槽环。
进气盖板18可以为独立的盖板结构,也可以与其他结构集成在一起,优选的实施例中,进气盖板18可以为腔室盖板。
以上对本发明实施例的喷淋组件进行了详细的描述,此外,本发明还提供了设置有上述的远程等离子ALD设备,参考图1B、2B、3D所示,包括管形射频发生器和反应腔室20,反应腔室20上端设有中心进气口,所述中心进气口与管形射频发生器出口对应设置,在所述反应腔室20内、所述管形射频发生器下方设置有上述任一结构的喷淋组件,所述喷淋组件的环形喷淋区位于管形射频发生器出气口的外围。
管形射频发生器将输入的工艺气体通过射频转变为等离子体反应物,腔室内设置有支撑座22,支撑座22上用于放置待加工晶片,管形射频发生器其出气口位于晶片24的中心区域的上方,由于远程等离子体距离晶片相对较远,扩散路径较长,使得晶片表面处于激发态的离子束分布不均匀,晶片中心区域密度较高而边缘区域较低,通过设置上述的喷淋组件,喷淋组件设置有独立的边缘喷淋区,位于主进气口的周围,可以根据需要对通入的反应物的流量和浓度等分别进行调节,进而调整晶片表面工艺参数的一致性,从而达到提高晶片边缘区域与中心区域沉积厚度的均匀性的目的。
本发明实施例中,管形射频发生器包括气体管道15和多个线圈管道14、16,每个线圈管道包括呈螺旋式排布的线圈,线圈的数量可以为一个或多个,所述多个线圈管道14、16的直径不同,通过对不同线圈设定不同功率,这样,在工艺气体从进气口进入后,小直径线圈管道先实现等离子体点火,并随气体流动向下扩散,大直径线圈管道启动激发等离子体,进一步改善边缘等离子体分布的均匀性。
此外,本发明还提供了一种晶片的加工方法,在将晶片放置于上述的远程等离子ALD设备后,对晶片进行工艺处理。
以上所述仅是本发明的优选实施方式,虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何的简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。
Claims (14)
- 一种喷淋组件,其特征在于,应用于半导体设备并用于设置于所述半导体设备的中心进气口的边缘区域,所述喷淋组件包括层叠设置的第一喷淋板和第二喷淋板,所述第一喷淋板和所述第二喷淋板为同轴设置的环形板;其中,所述第一喷淋板上设置有与其同轴设置的第一环形喷淋区和喷淋导入区;所述第二喷淋板上设置有与其同轴设置的第二环形喷淋区,所述第二环形喷淋区与所述喷淋导入区对应设置,所述喷淋导入区用于将第二环形喷淋区内的反应物导入至腔室内,所述第一环形喷淋区和所述第二环形喷淋区相互独立。
- 根据权利要求1所述的喷淋组件,其特征在于,所述第一环形喷淋区用于形成内环喷淋区,所述第二环形喷淋区用于与所述喷淋导入区配合形成外环喷淋区。
- 根据权利要求1所述的喷淋组件,其特征在于,所述第二环形喷淋区用于与所述喷淋导入区配合形成内环喷淋区,所述第一环形喷淋区用于与所述喷淋导入区配合形成外环喷淋区。
- 根据权利要求1所述的喷淋组件,其特征在于,所述第一喷淋板上还设置有与所述第一环形喷淋区连通的第一进气孔,所述第二喷淋板上还设置有与所述第二环形喷淋区连通的第二进气孔。
- 根据权利要求1-4中任一项所述的喷淋组件,其特征在于,所述第一环形喷淋区包括第一环形凹槽和贯通所述第一环形凹槽的第一喷淋孔,所述第二环形喷淋区包括第二环形凹槽和贯通所述第二环形凹槽的第二喷淋孔,所述喷淋导入区包括设置于所述第一喷淋板上的环形通孔区,所述环形通孔区设置有贯通孔,所述第二喷淋孔与所述贯通孔至少部分贯通。
- 根据权利要求5所述的喷淋组件,其特征在于,所述第一喷淋孔和所述第二喷淋孔分别均匀分布,孔径范围为0.2-3mm。
- 根据权利要求5所述的喷淋组件,所述第二喷淋板设置于所述半导体 设备的腔室盖板下方,所述第一喷淋板设置于所述第二喷淋板下方。
- 一种喷淋组件,其特征在于,包括环形板,所述环形板上间隔设置有同轴设置的第一喷淋区和第二喷淋区,所述第一喷淋区包括内凹槽环和所述内凹槽环上设置的第一喷淋孔,所述第二喷淋区包括外凹槽环和所述外凹槽环上设置的第二喷淋孔。
- 根据权利要求8所述的喷淋组件,其特征在于,还包括进进气盖板,所述进气盖板位于所述环形板的上方,所述进气盖板中分别设置有第一进气通道和第二进气通道,所述第一进气通道贯通至所述内凹槽环,所述第二进气通道贯通至所述外凹槽环。
- 根据权利要求8所述的喷淋组件,其特征在于,还包括进气盖板,所述进气盖板板位于所述环形板的上方,所述进气盖板中设置有第一进气通道,所述第一进气通道连通至所述内凹槽环;所述环形板中还设置有第二进气通道,所述第二进气通道连通至所述外凹槽环。
- 根据权利要求9或10所述的喷淋组件,其特征在于,所述进气盖板为腔室盖板。
- 一种半导体设备,为远程等离子体ALD设备,其特征在于,包括管形射频发生器和反应腔室,反应腔室上端设有中心进气口,所述中心进气口与管形射频发生器出口对应设置,在所述反应腔室内、所述管形射频发生器下方设置有如权利要求1-11中任一项所述的喷淋组件。
- 根据权利要求12所述的半导体设备,其特征在于,所述管形射频发生器包括气体管道和设置于气体管道外围的多个线圈管道,每个线圈管道包括呈螺旋式排布的线圈,多个线圈管道具有不同的直径。
- 一种晶片加工方法,其特征在于,包括:将晶片放置于如权利要求12或13所述的半导体设备的反应腔室中;对所述晶片进行工艺处理。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211105794.9A CN115513033A (zh) | 2022-09-09 | 2022-09-09 | 一种喷淋组件、半导体设备及晶片的加工方法 |
CN202211105794.9 | 2022-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024051405A1 true WO2024051405A1 (zh) | 2024-03-14 |
Family
ID=84503171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/110761 WO2024051405A1 (zh) | 2022-09-09 | 2023-08-02 | 一种喷淋组件、半导体设备及晶片的加工方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115513033A (zh) |
WO (1) | WO2024051405A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118422351A (zh) * | 2024-07-04 | 2024-08-02 | 博海新能源(合肥)有限公司 | 一种太阳电池制造用扩散炉喷淋进气管 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115513033A (zh) * | 2022-09-09 | 2022-12-23 | 江苏微导纳米科技股份有限公司 | 一种喷淋组件、半导体设备及晶片的加工方法 |
CN115652288B (zh) * | 2022-12-28 | 2023-04-14 | 拓荆科技(上海)有限公司 | 一种半导体工艺设备的喷淋板及半导体工艺设备 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1359531A (zh) * | 1999-06-30 | 2002-07-17 | 兰姆研究公司 | 半导体加工的气体分布装置 |
JP2004214669A (ja) * | 2003-01-03 | 2004-07-29 | Ips Ltd | 薄膜蒸着用反応容器 |
CN101136322A (zh) * | 2006-08-15 | 2008-03-05 | 东京毅力科创株式会社 | 基板处理装置、气体供给装置、基板墀理方法和存储介质 |
CN101499407A (zh) * | 2008-02-02 | 2009-08-05 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种气体分配装置及应用该分配装置的半导体处理设备 |
CN102424956A (zh) * | 2011-12-02 | 2012-04-25 | 彭继忠 | 用于金属有机化合物化学气相沉积设备的喷淋装置 |
CN103590019A (zh) * | 2013-10-31 | 2014-02-19 | 沈阳拓荆科技有限公司 | 一种立体与平面分区方式的多气体独立通道的喷淋方法 |
CN103915306A (zh) * | 2012-12-31 | 2014-07-09 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 微电子工艺处理设备和用于其的反应腔室 |
CN110176391A (zh) * | 2018-02-20 | 2019-08-27 | Asm知识产权私人控股有限公司 | 衬底处理方法及设备 |
CN113871280A (zh) * | 2020-06-30 | 2021-12-31 | 中微半导体设备(上海)股份有限公司 | 等离子体处理装置及其边缘气体组件 |
CN114774887A (zh) * | 2022-06-22 | 2022-07-22 | 拓荆科技(北京)有限公司 | 气体传输装置、方法和半导体沉积设备 |
CN115513033A (zh) * | 2022-09-09 | 2022-12-23 | 江苏微导纳米科技股份有限公司 | 一种喷淋组件、半导体设备及晶片的加工方法 |
-
2022
- 2022-09-09 CN CN202211105794.9A patent/CN115513033A/zh active Pending
-
2023
- 2023-08-02 WO PCT/CN2023/110761 patent/WO2024051405A1/zh unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1359531A (zh) * | 1999-06-30 | 2002-07-17 | 兰姆研究公司 | 半导体加工的气体分布装置 |
JP2004214669A (ja) * | 2003-01-03 | 2004-07-29 | Ips Ltd | 薄膜蒸着用反応容器 |
CN101136322A (zh) * | 2006-08-15 | 2008-03-05 | 东京毅力科创株式会社 | 基板处理装置、气体供给装置、基板墀理方法和存储介质 |
CN101499407A (zh) * | 2008-02-02 | 2009-08-05 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种气体分配装置及应用该分配装置的半导体处理设备 |
CN102424956A (zh) * | 2011-12-02 | 2012-04-25 | 彭继忠 | 用于金属有机化合物化学气相沉积设备的喷淋装置 |
CN103915306A (zh) * | 2012-12-31 | 2014-07-09 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 微电子工艺处理设备和用于其的反应腔室 |
CN103590019A (zh) * | 2013-10-31 | 2014-02-19 | 沈阳拓荆科技有限公司 | 一种立体与平面分区方式的多气体独立通道的喷淋方法 |
CN110176391A (zh) * | 2018-02-20 | 2019-08-27 | Asm知识产权私人控股有限公司 | 衬底处理方法及设备 |
CN113871280A (zh) * | 2020-06-30 | 2021-12-31 | 中微半导体设备(上海)股份有限公司 | 等离子体处理装置及其边缘气体组件 |
CN114774887A (zh) * | 2022-06-22 | 2022-07-22 | 拓荆科技(北京)有限公司 | 气体传输装置、方法和半导体沉积设备 |
CN115513033A (zh) * | 2022-09-09 | 2022-12-23 | 江苏微导纳米科技股份有限公司 | 一种喷淋组件、半导体设备及晶片的加工方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118422351A (zh) * | 2024-07-04 | 2024-08-02 | 博海新能源(合肥)有限公司 | 一种太阳电池制造用扩散炉喷淋进气管 |
Also Published As
Publication number | Publication date |
---|---|
CN115513033A (zh) | 2022-12-23 |
TW202411462A (zh) | 2024-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024051405A1 (zh) | 一种喷淋组件、半导体设备及晶片的加工方法 | |
TWI768093B (zh) | 電漿蝕刻製程中使用塗佈部件的製程裕度擴充 | |
US10407771B2 (en) | Atomic layer deposition chamber with thermal lid | |
TWI490366B (zh) | Cvd腔室之流體控制特徵結構 | |
US20190385823A1 (en) | Chemical control features in wafer process equipment | |
US8236133B2 (en) | Plasma reactor with center-fed multiple zone gas distribution for improved uniformity of critical dimension bias | |
JP5728482B2 (ja) | 誘導結合プラズマリアクタ内での高効率ガス解離のための方法及び装置 | |
US20130315795A1 (en) | Plasma reactor gas distribution plate with radially distributed path splitting manifold | |
WO2021227943A1 (zh) | 半导体反应腔室及原子层等离子体刻蚀设备 | |
KR20180054366A (ko) | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 | |
WO2009089794A1 (en) | Plasma processing equipment and gas distribution apparatus thereof | |
CN101156233A (zh) | 氧化硅膜的制造方法、其控制程序、存储介质和等离子体处理装置 | |
JP2018505551A (ja) | 複数の加熱ゾーンを有する基板支持体 | |
CN103993293A (zh) | 带温度控制的多室喷头 | |
US20210013013A1 (en) | Plasma Spreading Apparatus And System | |
CN103184433A (zh) | 气体扩散均匀化装置及使用该装置的等离子体工艺设备 | |
WO2024094175A1 (zh) | 原子层沉积设备 | |
JP2000509199A (ja) | プラズマエッチング装置 | |
TWI753451B (zh) | 氣體調節裝置及應用該裝置的電漿蝕刻設備 | |
US20210032753A1 (en) | Methods and apparatus for dual channel showerheads | |
JP7267308B2 (ja) | 上方電極アセンブリ、反応チャンバおよび原子層堆積装置 | |
JP3194017B2 (ja) | 処理装置 | |
TW550727B (en) | Semiconductor device fabrication apparatus having multi-hole angled gas injection system | |
CN202643920U (zh) | 气体扩散均匀化装置及使用该装置的等离子体工艺设备 | |
CN110249073A (zh) | 用于可流动cvd的扩散器设计 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23862105 Country of ref document: EP Kind code of ref document: A1 |