WO2024051250A1 - 一种电驱动工程机械制动控制方法及系统 - Google Patents

一种电驱动工程机械制动控制方法及系统 Download PDF

Info

Publication number
WO2024051250A1
WO2024051250A1 PCT/CN2023/100177 CN2023100177W WO2024051250A1 WO 2024051250 A1 WO2024051250 A1 WO 2024051250A1 CN 2023100177 W CN2023100177 W CN 2023100177W WO 2024051250 A1 WO2024051250 A1 WO 2024051250A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval
braking torque
brake
brake pedal
gradient
Prior art date
Application number
PCT/CN2023/100177
Other languages
English (en)
French (fr)
Inventor
魏加洁
王小虎
王振
韩嫔
范小童
李伯宇
齐陆燕
张宁
Original Assignee
徐工集团工程机械股份有限公司科技分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐工集团工程机械股份有限公司科技分公司 filed Critical 徐工集团工程机械股份有限公司科技分公司
Publication of WO2024051250A1 publication Critical patent/WO2024051250A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid

Definitions

  • the invention belongs to the technical field of engineering machinery and relates to a braking control method and system for electrically driven engineering machinery.
  • the driver lifts the accelerator pedal.
  • the whole machine begins to perform electric braking and deceleration, that is, the VCU sends a negative torque signal to the drive motor, turns the drive motor into a generator to generate electricity, and consumes braking energy to perform deceleration and braking;
  • the accelerator pedal is located on the driver's side of the loader.
  • the right foot and the left foot are conventional hydraulic brakes, that is, full hydraulic brakes, or air-cap oil brakes. They are mechanical assemblies with integrated brake pedals and brake valves. They are not electronic brake pedals, that is, brakes.
  • the wheel brake terminal After the moving pedal is depressed, the wheel brake terminal responds to the brake pressure, and the displacement of the brake pedal is proportional to the terminal brake pressure or braking torque. See Figure 8 and Figure 9 for details.
  • the driver's braking The perceived force of the pedal is often linear within the entire pedal displacement stroke, that is, the force exerted by the driver's foot changes linearly with the pedal angular displacement throughout the entire pedal displacement stroke.
  • This technology can meet the braking needs of existing small and medium-tonnage loaders (loader rated load ⁇ 7 tons, unloaded complete machine weight ⁇ 25 tons), that is, loaders below 7 tons can meet the requirements, and for ultra-large tonnage electric drive loaders ( The rated load of the loader is ⁇ 15 tons, and the unloaded weight of the whole machine is ⁇ 55 tons) cannot be satisfied, because the weight of the ultra-large tonnage loader exceeds 70 tons when fully loaded, and frequent hydraulic braking will cause hydraulic friction discs and brakes.
  • the friction linings on the brakes are damaged prematurely, especially the friction linings on the brakes. After damage, frequent maintenance and replacement will lead to a reduction in the overall machine attendance rate, a reduction in the overall average productivity, an increase in the failure rate, and a high overall cost of use.
  • the present invention is aimed at a braking solution for an ultra-large-tonnage electric-driven engineering machinery. It cancels the electric braking during the process of lifting the accelerator pedal, and adopts a technical solution of integrating electric braking and hydraulic braking of the left foot brake pedal.
  • the right accelerator pedal of the present invention only controls the acceleration process of the entire machine and does not produce electric braking of the entire machine; further, the angular displacement of the left brake pedal of the present invention is ⁇ , and the angular displacement of the brake pedal is ⁇ .
  • the stroke includes four intervals, namely the empty stroke interval (the first interval), the electric braking interval (the second interval), the hydraulic acceleration interval (the third interval) and the hydraulic braking interval (the fourth interval).
  • the present invention provides a braking control method and system for electrically driven engineering machinery.
  • a braking control method for electrically driven engineering machinery including:
  • the braking force is distributed to the corresponding brake actuator, including:
  • the first interval the idle stroke interval only reduces the driving torque
  • the second interval the electric braking interval, the electric braking torque increases or decreases with the gradient a0;
  • the third interval the hydraulic acceleration interval, the hydraulic braking torque increases or decreases with the gradient a1;
  • the fourth interval hydraulic braking interval, the hydraulic braking torque increases or decreases with gradient a2;
  • the brake pedal angular displacement stroke in the third interval is ⁇ 1°
  • the maximum hydraulic braking torque in the third interval is 90% to 110% of the maximum electric braking torque in the second interval; and, the preset It is assumed that the gradient of the brake pedal force increase from the third interval to the fourth interval is greater than the gradient of the brake pedal force increase from 0 to the second interval.
  • a braking control method for electrically driven engineering machinery includes:
  • the braking force is distributed to the corresponding brake actuator, including:
  • the hydraulic braking torque signal is output, including: outputting a signal to the brake valve.
  • the maximum opening of the brake valve spool in the third interval is preset to be L1.
  • the opening of the brake valve spool is controlled according to ⁇ and the braking torque generated is
  • the gradient is a1, and the time for the valve core opening from 0 to L1 is ⁇ 50ms; where a0 ⁇ a1;
  • the hydraulic braking torque signal is output, including: outputting a signal to the brake valve.
  • the maximum opening of the brake valve spool in the fourth interval is L2.
  • the brake valve spool opening is controlled according to ⁇ , and the spool opening is from During the time when L1 increases to L2, the hydraulic braking torque is proportional to ⁇ , and the generated braking torque gradient is a2, where a0 ⁇ a2 ⁇ a1;
  • the brake pedal angular displacement stroke in the third interval is ⁇ 1°; the valve core opening is from 0 to L1
  • the time is ⁇ 50ms, and the hydraulic braking torque gradient is a1 and the duration is ⁇ 50ms.
  • a ⁇ B ⁇ C ⁇ D the value range of A is from 5° to 8°, the value range of B is from 6° to 40°, and the value range of C is from 35° to 40°; The value range of D is 36° ⁇ 50°.
  • A
  • B 35°
  • C 36°
  • D 45°
  • a controller in a second aspect, includes a memory and a processor.
  • the memory is used to store instructions.
  • the instructions are used to control the processor to operate to perform the electric drive according to the first aspect.
  • Engineering machinery braking control method In a second aspect, a controller is provided.
  • the controller includes a memory and a processor.
  • the memory is used to store instructions.
  • the instructions are used to control the processor to operate to perform the electric drive according to the first aspect.
  • Engineering machinery braking control method Engineering machinery braking control method.
  • an electrically driven engineering machinery braking control system including the controller described in the second aspect.
  • the electric drive engineering machinery brake control system also includes an accelerator pedal, a brake pedal, a drive motor, a brake valve, and a travel reducer; the controller is connected to the accelerator pedal and the brake pedal respectively. , drive motor, brake valve signal connection; the drive motor is driven and connected with the traveling reducer;
  • the outlet K of the brake valve is connected to the oil port end of the travel reducer, and the pressure oil enters the piston of the brake disc through the oil port end of the travel reducer to perform hydraulic braking; the brake valve is configured to open by adjusting the valve core. Control the pressure at the outlet K of the brake valve to achieve control of the hydraulic braking torque.
  • the brake valve is a proportional solenoid valve that adjusts the position or opening of the valve core through signal current or voltage.
  • the gradient of the brake pedal force increase from the third interval to the fourth interval is greater than the gradient of the brake pedal force increase from 0 to the second interval; wherein the preset is by mechanically setting the brake pedal from the third interval to the second interval.
  • the four intervals and the number or spring force of the springs from 0 to the second interval are implemented, or by setting the response current size of the third interval to the fourth interval and the 0 to second interval of the control brake pedal. That is, the pedal force can be realized by setting the mechanical device in different intervals, or the strength of the current or voltage signal in different intervals can be controlled by the VCU program to achieve different responses to the brake pedal force.
  • the brake pedal of the present invention is an electronic brake pedal, and the adjustment of the pedal force is controlled through a program preset by the VCU.
  • the electric-driven engineering machinery brake control system further includes a brake pedal angular displacement acquisition unit for collecting the brake pedal angular displacement and sending it to the controller.
  • an electrically driven engineering machine including the brake control system for the electrically driven engineering machine.
  • the invention provides a braking control method and system for electric-driven engineering machinery, which has the following advantages for ultra-large-tonnage electric-driven engineering machinery:
  • the electric braking interval can meet more than 90% of the operating frequency and operating conditions, which can reduce the frequency of hydraulic braking and reduce the wear of friction plates and hydraulic brake discs.
  • Loaders can improve operating efficiency, reduce failure rates, improve attendance rates, and lower overall costs.
  • the zonal braking technical solution of the present invention can be adapted to a variety of working conditions, including working conditions where point braking does not cut off power, working conditions where electric braking energy is recovered, and hydraulic braking in emergencies or overloading or overspeeding. It has better adaptability to dynamic working conditions.
  • the brake pedal of the present invention integrates the idle stroke interval, the electric braking interval, the hydraulic acceleration interval, and the hydraulic braking interval. It integrates multiple braking schemes into one pedal, realizing the use of only one brake pedal. , and achieve the integration of multiple braking effects. It complies with the existing braking habit of loader drivers using their left foot to brake.
  • the hydraulic braking torque in the hydraulic acceleration range, can compensate the electric braking torque in a very short time, and in this range, the pedal force gradient changes, making the driver You can feel that the pedal force has become harder, but the braking torque has not significantly softened.
  • Braking becomes softer means that the braking distance becomes longer, the braking force becomes smaller, and the vehicle speed has an increased braking effect.
  • Figure 1 is a flow chart of a control method according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of the brake pedal in different intervals
  • Figure 3 is a graph of the brake pedal force applied by the driver with his foot versus the brake pedal stroke
  • Figure 4 is a graph showing the variation of braking torque with brake pedal stroke
  • Figure 5 is a graph showing the variation of driving torque with brake pedal stroke
  • Figure 7 is the entire control principle diagram
  • Figure 8 is a graph showing changes in pedal force with brake pedal stroke in the prior art
  • Figure 9 is a graph showing the variation of braking torque with brake pedal stroke in the prior art.
  • a braking control method for electrically driven engineering machinery including:
  • the braking force is distributed to the corresponding brake actuator, including include:
  • the first interval the idle stroke interval only reduces the driving torque
  • the second interval the electric braking interval, the electric braking torque increases or decreases with the gradient a0;
  • the third interval the hydraulic acceleration interval, the hydraulic braking torque increases or decreases with the gradient a1;
  • the fourth interval hydraulic braking interval, the hydraulic braking torque increases or decreases with gradient a2;
  • the brake pedal angular displacement stroke in the third interval is ⁇ 1°
  • the maximum hydraulic braking torque in the third interval is 90% to 110% of the maximum electric braking torque in the second interval; and, the preset It is assumed that the gradient of the brake pedal force increase from the third interval to the fourth interval is greater than the gradient of the brake pedal force increase from 0 to the second interval.
  • a braking control method for electrically driven engineering machinery includes:
  • the braking force is distributed to the corresponding brake actuator, including:
  • the hydraulic braking torque signal is output, including: outputting a signal to the brake valve.
  • the maximum opening of the brake valve spool in the third interval is preset to be L1.
  • the opening of the brake valve spool is controlled according to ⁇ and the braking torque generated is
  • the gradient is a1, and the time for the valve core opening from 0 to L1 is ⁇ 50ms; where a0 ⁇ a1;
  • the hydraulic braking torque signal is output, including: outputting a signal to the brake valve.
  • the maximum opening of the brake valve spool in the fourth interval is L2.
  • the brake valve spool opening is controlled according to ⁇ , and the spool opening is from During the time when L1 increases to L2, the hydraulic braking torque is proportional to ⁇ , and the generated braking torque gradient is a2, where a0 ⁇ a2 ⁇ a1;
  • the brake pedal angular displacement stroke in the third interval is ⁇ 1°; the valve core opening is from 0 to L1
  • the time is ⁇ 50ms, and the hydraulic braking torque gradient is a1 and the duration is ⁇ 50ms.
  • a ⁇ B ⁇ C ⁇ D the value range of A is from 5° to 8°, the value range of B is from 6° to 40°, and the value range of C is from 35° to 40°; The value range of D is 36° ⁇ 50°.
  • A
  • B 35°
  • C 36°
  • D 45°
  • the right accelerator pedal of the embodiment of the present invention only controls the acceleration process of the entire machine and does not generate electric braking of the entire machine.
  • a braking control method for electrically driven engineering machinery includes:
  • the angular displacement of the left brake pedal in this embodiment is ⁇ , and the stroke of the brake pedal includes four intervals, namely an idle stroke interval, an electric braking interval, a hydraulic acceleration interval and a hydraulic braking interval.
  • Idle stroke interval that is, when the angular displacement of the brake pedal is ⁇ , 0 ⁇ ⁇ ⁇ A, in this interval, the electric braking torque is 0, the hydraulic braking torque is 0, and only the driving torque of the accelerator pedal is reduced.
  • the driving torque of the whole machine is inversely proportional to ⁇ .
  • the driving torque is only related to the ⁇ of the brake pedal, that is, the VCU at this time
  • This range is often used for braking without cutting off the power of the entire machine. See attached pictures 2, 3, 4 and 5 for details.
  • Electric braking interval that is, when the angular displacement of the brake pedal is ⁇ , A ⁇ B, within this interval, the electric braking torque is proportional to ⁇ , and the gradient of the generated electric braking torque is a0; The hydraulic braking torque is 0.
  • This interval belongs to conventional deceleration braking, that is, 90% of the entire machine Braking under working conditions can be satisfied in this range; and the electric braking torque gradient a0, the VCU can be adjusted to meet the driver's comfort requirements.
  • the frequency of use in this interval accounts for more than 90% of the entire operating conditions. By using more electric brakes, the frequency of hydraulic braking can be reduced and the proportion of hydraulic braking in the entire operating conditions can be reduced.
  • the pedal sensing force of the brake pedal is linear, that is, the force exerted by the driver's foot changes linearly with the pedal angular displacement within this stroke.
  • This interval belongs to hydraulic deceleration braking, and the action time of this interval is very short to quickly compensate for the instantaneous loss caused by the electric braking torque reducing to 0.
  • the duration of a1 is 30ms; the time for the valve core opening from 0 to L1 is 30ms. This interval is mainly used to compensate for the instantaneous loss of the electric braking torque.
  • the driver's brake pedal force in this interval changes significantly, see Figures 2, 3, and 4 for details; the pedal displacement stroke changes from B to C, resulting in a pedal force gradient greater than the pedal force gradient from 0 to B.
  • the range of this interval is: 35 ⁇ 40°.
  • C 36°.
  • Hydraulic braking interval that is, when the angular displacement of the brake pedal is ⁇ , C ⁇ ⁇ ⁇ D, within this interval, the VCU outputs a signal to the brake valve, the maximum valve core opening is L2, and the valve core opening is During the time from L1 to L2, the hydraulic braking torque is proportional to ⁇ , and the gradient of the hydraulic braking torque generated is a2, and a0 ⁇ a2 ⁇ a1, the L2 opening is proportional to the pedal angular displacement, and the accelerator pedal The driving torque is 0 and the electric braking torque is 0.
  • the driver's brake pedal force in this interval changes linearly (the force of pressing the brake pedal with your foot), see Figures 2, 3, and 4 for details; the pedal displacement stroke changes from B to C, and then to D.
  • the pedal force gradient is the same and larger than the pedal force gradient from 0 to B, giving the driver a significantly changing pedal force feedback. That is, the pedal force from B to D is significantly higher than the pedal force from A to B.
  • the BC interval is shorter and the stroke is very small, it is in the transitional stage when the driver feels the change in pedal force.
  • the CD interval is longer and the stroke is larger. The driver can obviously feel that the pedal force becomes harder and the pedal force becomes harder. The force has increased, and the comfort level is different from the pedal force in the electric braking range, and the comfort level has become worse.
  • the present invention divides the angular displacement stroke of the brake pedal into four intervals, namely an idle stroke interval, an electric braking interval, a hydraulic acceleration interval, and a hydraulic braking interval; the idle stroke interval is for realizing point braking without cutting off power.
  • the electric braking interval is the conventional braking interval, which is used most frequently.
  • the hydraulic acceleration interval is very short, mainly to quickly increase the electric braking torque to the maximum value to compensate for the instantaneous reduction of the electric braking torque to 0.
  • the braking effect is weakened or reduced, while hydraulic braking is an emergency braking zone, or a heavy load or overload braking zone.
  • the preferred angles of A, B, C, and D of the present invention are 5°, 35°, 36°, and 45° respectively; that is, the idle stroke accounts for 11.1%; electric braking accounts for 66.7%, and the hydraulic acceleration interval accounts for 2.2%; hydraulic braking The interval accounts for 20%; different interval proportions can be adjusted appropriately, but still belong to the protection scope of the present invention.
  • the construction machine takes a loader as an example.
  • Figure 1 is a flow chart of the control method of the present invention
  • Figure 2 is a schematic diagram of the brake pedal in different intervals
  • Figure 3 is a graph of the brake pedal force applied by the driver with his foot versus the brake pedal stroke.
  • Figure 4 is a graph of changes in braking torque with brake pedal stroke
  • Figure 5 is a graph of changes in driving torque with brake pedal stroke
  • a controller the controller includes a memory and a processor, the memory is used to store instructions, and the instructions are used The processor is controlled to perform an operation to execute the braking control method of the electrically driven engineering machinery according to Embodiment 1.
  • An electrically driven engineering machinery braking control system includes the controller described in Embodiment 2.
  • the electric-driven engineering machinery brake control system also includes an accelerator pedal 2, a brake pedal 7, a drive motor 3, a brake valve 5, and a traveling reducer 4;
  • the pedal 2, the brake pedal 7, the drive motor 3, and the brake valve 5 are connected with signals;
  • the drive motor 3 is drivingly connected with the traveling reducer 4;
  • the K port of the brake valve 5 is connected to the oil port end of the travel reducer 4, and the pressure oil enters the piston of the brake disc through the oil port end of the travel reducer to perform hydraulic braking; the brake valve 5 is configured to adjust the The valve core opening controls the pressure at the outlet K of the brake valve to control the hydraulic braking torque.
  • the brake valve is a proportional solenoid valve that adjusts the position or opening of the valve core through signal current or voltage.
  • the gradient of the brake pedal force increase from the third interval to the fourth interval is preset to be greater than the gradient of the brake pedal force increase from 0 to the second interval; in some embodiments, the preset is by mechanically setting the brake This is achieved by adjusting the number or spring force of the springs in the third to fourth intervals and the 0 to second intervals of the pedal, or by setting the current size that controls the response of the third to fourth intervals and the 0 to second intervals of the brake pedal. .
  • the pedal force can be realized by setting the mechanical device in different intervals, or the strength of the current or voltage signal in different intervals can be controlled by the VCU program to achieve different responses to the brake pedal force.
  • the brake pedal of the present invention is an electronic brake pedal, and the adjustment of the pedal force is controlled through a program preset by the VCU.
  • the electric-driven engineering machinery brake control system further includes a brake pedal angular displacement acquisition unit (not shown in the figure) for collecting the brake pedal angular displacement and sending it to the controller.
  • the accelerator pedal 2 is signal-connected to the drive motor 3 through the controller 1.
  • the controller 1 controls the displacement of the accelerator pedal, thereby controlling the driving torque of the drive motor.
  • the construction machine takes a loader as an example.
  • the input terminal of the VCU controller 1 is connected to the accelerator pedal 2, the brake pedal 7, the drive motor 3, and the brake valve 5;
  • the output terminal of the VCU controller is connected to the accelerator pedal 2, the brake pedal 2, and the brake valve 5.
  • the drive motor 3 and the travel reducer 4 are connected by mechanical splines; the H port of the accumulator 6 is connected to the P port of the brake valve 5, and the K port of the brake valve 5 is connected to the oil port end of the travel reducer 4, and the pressure oil passes through
  • the oil port end of the traveling reducer enters the piston of the brake disc for hydraulic braking;
  • the T port of the brake valve 5 is connected to the oil tank;
  • the H port of the accumulator 6 is also connected to the pressure oil source.
  • the brake valve output signal, the maximum valve core opening is L2, and the hydraulic braking torque gradient a0 ⁇ a2 ⁇ a1; the valve core opening is mainly controlled by the current or voltage of the electromagnets at both ends of the brake valve, and the current Or the size of the voltage is controlled by the VCU controller according to the position range of the pedal.
  • a construction machinery includes the above-mentioned brake control system for electric drive construction machinery.
  • the construction machine takes a loader as an example.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

本发明公开了一种电驱动工程机械制动控制方法及系统,方法包括:根据制动踏板角位移以及所在的区间,向相应的制动执行机构分配制动力:空行程区间仅减小驱动力矩,电制动区间电制动力矩以梯度a0进行增加或减小,液压加速区间液压制动力矩以梯度a1进行增加或减小,液压制动区间液压制动力矩以梯度a2进行增加或减小,且a0<a2≤a1,第三区间的行程≤1°,第三区间的最大液压制动力矩为第二区间的最大电制动力矩的90%~110%,并且,预设从第三区间至第四区间的踏板力增长的梯度大于从0至第二区间的踏板力增长的梯度。

Description

一种电驱动工程机械制动控制方法及系统 技术领域
本发明属于工程机械技术领域,涉及一种电驱动工程机械制动控制方法及系统。
背景技术
现有技术中,在电驱动工程机械(譬如:电驱动装载机,包含纯电动装载机、电传动装载机、油电混动装载机等)在行车制动时,司机抬起加速踏板的过程中,整机就开始进行电制动减速,即VCU向驱动电机发送负扭矩信号,将驱动电机转为发电机进行发电,消耗制动能量来进行减速制动;加速踏板位于装载机驾驶员的右脚,而左脚是常规的液压制动,即全液压制动,或者气顶油制动,均为制动踏板与制动阀集成式的机械总成,并非电子制动踏板,即制动踏板踩下去后,轮边制动终端就有制动压力响应,并且,制动踏板的位移与终端制动压力或制动力矩成正比,详见图8和图9,驾驶员的制动踏板感知力在踏板位移的全行程内,往往是线性的,即驾驶员用脚踩下的力的大小,在整个踏板位移的行程内,与踏板角位移行程是线性变化的。
该技术能满足现有中小吨位装载机(装载机额定载荷≤7吨,空载整机重量≤25吨)的制动需求,即7吨以下的装载机能满足,对于超大吨位电驱动装载机(装载机额定载荷≥15吨,空载整机重量≥55吨)就无法满足了,因为超大吨位装载机,满载时整机重量超过70吨,频繁的液压制动,会导致液压摩擦盘以及制动器上的摩擦片过早损坏,尤其是制动器上的摩擦片,损坏后,频繁的维修更换,导致整机出勤率降低,综合平均生产率降低,而故障率却增高,综合使用成本较高。
发明内容
本发明针对超大吨位电驱动工程机械的制动方案,取消加速踏板抬起的过程中的电制动,而采用左脚制动踏板的集成电制动和液压制动的技术方案。
具体地,本发明的右脚加速踏板,仅仅控制整机的加速过程,并不产生整机的电制动;进一步地,本发明的左脚制动踏板的角位移为θ,制动踏板的行程包含四个区间,即空行程区间(第一区间),电制动区间(第二区间),液压加速区间(第三区间)和液压制动区间(第四区间)。
目的:为了克服现有技术中存在的不足,本发明提供一种电驱动工程机械制动控制方法及系统。
技术方案:为解决上述技术问题,本发明采用的技术方案为:
第一方面,提供一种电驱动工程机械制动控制方法,包括:
响应于驾驶员通过踩踏制动踏板给出制动需求,获取制动踏板角位移;
根据所述制动踏板角位移以及所在的区间,向相应的制动执行机构分配制动力,包括:
第一区间:空行程区间仅减小驱动力矩;
第二区间:电制动区间,电制动力矩以梯度a0进行增加或减小;
第三区间:液压加速区间,液压制动力矩以梯度a1进行增加或减小;
第四区间:液压制动区间,液压制动力矩以梯度a2进行增加或减小;
其中a0<a2≤a1,第三区间的制动踏板角位移行程≤1°,第三区间的最大液压制动力矩为第二区间的最大电制动力矩的90%~110%;并且,预设从第三区间至第四区间的制动踏板力增长的梯度大于从0至第二区间的制动踏板力增长的梯度。
进一步地,一种电驱动工程机械制动控制方法,包括:
响应于驾驶员通过踩踏制动踏板给出制动需求,获取制动踏板角位移;
根据所述制动踏板角位移,向相应的制动执行机构分配制动力,包括:
(1)当所述制动踏板角位移θ位于第一区间,即0<θ≤A,控制:
(a)电制动力矩为0;
(b)液压制动力矩为0;
(c)输出驱动力矩信号,且驱动力矩与θ成反比,当θ=A时,驱动力矩为0;
(2)当所述制动踏板角位移θ位于第二区间,即A<θ≤B,控制:
(a)输出电制动力矩信号,其中所述电制动力矩与θ成正比,且产生的电制动力矩的梯度为a0;当θ=B时,达到电制动力矩最大值;
(b)液压制动力矩为0;
(c)驱动力矩为0;
(3)当所述制动踏板角位移θ位于第三区间,即B<θ≤C,控制:
(a)电制动力矩为0;
(b)输出液压制动力矩信号,其中所述液压制动力矩与θ成正比,且产生的液压制动力矩的梯度为a1;当θ=C时,液压制动力矩达到第三区间最大值M1,其中所述M1为第二区间电制动力矩最大值的90%~110%;优选的与电制动力矩最大值相等,用于等值补偿电制动力矩;
其中输出液压制动力矩信号,包括:向制动阀输出信号,预设第三区间制动阀阀芯开度最大值为L1,根据θ控制制动阀阀芯开度且产生的制动力矩梯度为a1,并且阀芯开度从0至L1的时间≤50ms;其中a0<a1;
(c)驱动力矩为0;
(4)当所述制动踏板角位移θ所在的区间位于第四区间,即C<θ≤D,控制:
(a)电制动力矩为0;
(b)输出液压制动力矩信号,其中所述液压制动力矩与θ成正比,且产生的液压制动力矩的梯度为a2;当θ=D时,液压制动力矩达到第四区间最大值M2;
其中输出液压制动力矩信号,包括:向制动阀输出信号,设第四区间制动阀阀芯开度最大值为L2,根据θ控制制动阀阀芯开度,并且阀芯开度从L1增加至L2的时间内,液压制动力矩与θ成正比,产生的制动力矩梯度为a2,其中a0<a2≤a1;
(c)驱动力矩为0。
在一些实施例中,当所述制动踏板角位移θ所在的区间位于第三区间B<θ≤C,第三区间的制动踏板角位移行程≤1°;阀芯开度从0至L1的时间≤50ms,液压制动力矩梯度为a1持续的时间≤50ms。
在一些实施例中,A<B<C<D,A的取值范围在5°~8°,B的取值范围为6°~40°,C的取值范围为35°~40°;D的取值范围为36°~50°。
更优选的,A=6°,B=35°,C=36°,D=45°。
第二方面,提供一种控制器,所述控制器包括存储器和处理器,存储器用于存储指令,所述指令用于控制所述处理器进行操作,以执行根据第一方面所述的电驱动工程机械制动控制方法。
第三方面,提供一种电驱动工程机械制动控制系统,包括第二方面所述的控制器。
在一些实施例中,所述的电驱动工程机械制动控制系统,还包括加速踏板、制动踏板、驱动电机、制动阀、行走减速机;所述控制器分别与加速踏板、制动踏板、驱动电机、制动阀信号连接;所述驱动电机与行走减速机驱动连接;
所述制动阀的出口K连接行走减速机的油口端,压力油通过行走减速机油口端进入制动盘的活塞,进行液压制动;所述制动阀被配置为通过调节阀芯开度控制制动阀的出口K的压力,实现控制液压制动力矩。
所述制动阀为比例式电磁阀,通过信号电流或电压调节阀芯的位置或开度。
预设从第三区间至第四区间的制动踏板力增长的梯度大于从0至第二区间的制动踏板力增长的梯度;其中所述预设通过机械设置制动踏板第三区间至第四区间与0至第二区间的弹簧个数或弹簧力来实现,或者通过设置控制制动踏板第三区间至第四区间与0至第二区间的响应电流大小来实现。即踏板力在不同的区间可以进行机械装置设置来实现,也可以通过VCU的程序控制不同区间的电流或电压信号的强弱来实现制动踏板力的不同响应。
优选的,本发明的制动踏板为电子制动踏板,踏板力的调节,通过VCU预设的程序进行控制。
在一些实施例中,所述的电驱动工程机械制动控制系统,还包括制动踏板角位移采集单元,用于采集制动踏板角位移,并发送给控制器。
第三方面,提供一种电驱动工程机械,包括所述的电驱动工程机械制动控制系统。
有益效果:本发明提供的一种电驱动工程机械制动控制方法及系统,针对超大吨位电驱动工程机械,具有以下优点:
1.通过本发明的技术方案,电制动区间可以满足90%以上的作业频率和作业工况,可以降低液压制动的频率,减少摩擦片以及液压制动盘的磨损,对于超大吨位电驱动装载机,可以提高作业效率,降低故障率,提高出勤率,综合成本更低。
2.由于电制动和液压制动区间,驾驶员踩制动踏板的力的梯度有显著的变化,踏板力给驾驶员的反馈使驾驶员能显著区分出电制动区间和液压制动区间的变化,进而可以人为的控制车辆是采用电制动还是液压制动。
3.本发明的分区制动技术方案,可以适应于多种工况,分别为点刹不切断动力的工况,以及电制动能量回收的工况,以及紧急情况或超载、超速的液压制动工况,适应性更好。
4.本发明的制动踏板,集成了空行程区间、电制动区间、液压加速区间,以及液压制动区间,将多种制动方案集成到一个踏板上,实现了仅仅采用一个制动踏板,而实现多种制动效果的集成。符合现有装载机驾驶员左脚踩刹车的制动习惯。
5.本发明的制动技术方案,在液压加速区间,液压制动力矩在极短的时间,就能够等值补偿电制动力矩,且在该区间,踏板力梯度发生了改变,使驾驶员能够感觉到踏板力变硬了,但是制动力矩却没有明显变软的制动效果。说明:制动变软指的是,制动距离变长,制动力变小,车速有增加的制动效果。
附图说明
图1是本发明实施例控制方法的流程图;
图2是制动踏板在不同区间的示意图;
图3是驾驶员用脚踩的制动踏板力随制动踏板行程的曲线图;
图4是制动力矩随制动踏板行程的变化曲线图;
图5是驱动力矩随制动踏板行程的变化曲线图;
图6是制动力矩随制动踏板行程的变化曲线图(在B到D区间内,制动力矩梯度a1=a2的一种特殊情况,而B到C的响应时间≤50ms);
图7是整个控制原理图;
图8是现有技术中,踏板力随制动踏板行程的变化曲线图;
图9是现有技术中,制动力矩随制动踏板行程的变化曲线图。
图中:1、VCU控制器;2、加速踏板;3、驱动电机;4、行走减速机;5、制动阀;6、蓄能器;7、制动踏板。
具体实施方式
下面结合附图和实施例对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
在本发明的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
实施例1
一种电驱动工程机械制动控制方法,包括:
响应于驾驶员通过踩踏制动踏板给出制动需求,获取制动踏板角位移;
根据所述制动踏板角位移以及所在的区间,向相应的制动执行机构分配制动力,包 括:
第一区间:空行程区间仅减小驱动力矩;
第二区间:电制动区间,电制动力矩以梯度a0进行增加或减小;
第三区间:液压加速区间,液压制动力矩以梯度a1进行增加或减小;
第四区间:液压制动区间,液压制动力矩以梯度a2进行增加或减小;
其中a0<a2≤a1,第三区间的制动踏板角位移行程≤1°,第三区间的最大液压制动力矩为第二区间的最大电制动力矩的90%~110%;并且,预设从第三区间至第四区间的制动踏板力增长的梯度大于从0至第二区间的制动踏板力增长的梯度。
进一步地,一种电驱动工程机械制动控制方法,包括:
响应于驾驶员通过踩踏制动踏板给出制动需求,获取制动踏板角位移;
根据所述制动踏板角位移,向相应的制动执行机构分配制动力,包括:
(1)当所述制动踏板角位移θ位于第一区间,即0<θ≤A,控制:
(a)电制动力矩为0;
(b)液压制动力矩为0;
(c)输出驱动力矩信号,且驱动力矩与θ成反比,当θ=A时,驱动力矩为0;
(2)当所述制动踏板角位移θ位于第二区间,即A<θ≤B,控制:
(a)输出电制动力矩信号,其中所述电制动力矩与θ成正比,且产生的电制动力矩的梯度为a0;当θ=B时,达到电制动力矩最大值;
(b)液压制动力矩为0;
(c)驱动力矩为0;
(3)当所述制动踏板角位移θ位于第三区间,即B<θ≤C,控制:
(a)电制动力矩为0;
(b)输出液压制动力矩信号,其中所述液压制动力矩与θ成正比,且产生的液压制动力矩的梯度为a1;当θ=C时,液压制动力矩达到第三区间最大值M1,其中所述M1为第二区间电制动力矩最大值的90%~110%;优选的与电制动力矩最大值相等,用于等值补偿电制动力矩;
其中输出液压制动力矩信号,包括:向制动阀输出信号,预设第三区间制动阀阀芯开度最大值为L1,根据θ控制制动阀阀芯开度且产生的制动力矩梯度为a1,并且阀芯开度从0至L1的时间≤50ms;其中a0<a1;
(c)驱动力矩为0;
(4)当所述制动踏板角位移θ所在的区间位于第四区间,即C<θ≤D,控制:
(a)电制动力矩为0;
(b)输出液压制动力矩信号,其中所述液压制动力矩与θ成正比,且产生的液压制动力矩的梯度为a2;当θ=D时,液压制动力矩达到第四区间最大值M2;
其中输出液压制动力矩信号,包括:向制动阀输出信号,设第四区间制动阀阀芯开度最大值为L2,根据θ控制制动阀阀芯开度,并且阀芯开度从L1增加至L2的时间内,液压制动力矩与θ成正比,产生的制动力矩梯度为a2,其中a0<a2≤a1;
(c)驱动力矩为0。
在一些实施例中,当所述制动踏板角位移θ所在的区间位于第三区间B<θ≤C,第三区间的制动踏板角位移行程≤1°;阀芯开度从0至L1的时间≤50ms,液压制动力矩梯度为a1持续的时间≤50ms。
在一些实施例中,A<B<C<D,A的取值范围在5°~8°,B的取值范围为6°~40°,C的取值范围为35°~40°;D的取值范围为36°~50°。
更优选的,A=6°,B=35°,C=36°,D=45°。
在一些实施例中,本发明实施例的右脚加速踏板,仅仅控制整机的加速过程,并不产生整机的电制动。
如图1所示,一种电驱动工程机械制动控制方法,包括:
本实施例的左脚制动踏板的角位移为θ,制动踏板的行程包含四个区间,即空行程区间,电制动区间,液压加速区间和液压制动区间。
1)空行程区间,即当制动踏板的角位移为θ,0<θ≤A,该区间内,电制动力矩为0,液压制动力矩为0,而仅仅减小加速踏板的驱动力矩,整机的驱动力矩与θ成反比,当θ=A时,驱动力矩为0,即此时驾驶员虽然踩着加速踏板,但是由于同时也踩着制动踏板,因此加速踏板产生的驱动力矩不再由加速踏板控制,而是由制动踏板控制,因此此时无论加速踏板的角位移增加、还是减少,还是保持在当前位置,驱动力矩仅仅与制动踏板的θ相关,即VCU此时屏蔽掉加速踏板的角位移信号,但是驱动力矩的初始值仍然进行了保持(即θ=0时的加速踏板对应的驱动力矩),车辆在滚动阻力作用下进行减速。该区间往往为了点刹,而又不切断整机动力的工况。详见附图2、3、4、5。该区间 A的取值范围在5°-8°,优选地,取A=6°。
2)电制动区间,即当制动踏板的角位移为θ,A<θ≤B,该区间内,电制动力矩与θ成正比,并且,产生的电制动力矩的梯度为a0;液压制动力矩为0,当θ=B时,电制动力矩达到最大值M1;车辆在滚动阻力以及电制动力矩作用下减速,该区间属于常规的减速制动,即90%的整机作业工况的制动,该区间都可以满足;而电制动力矩梯度a0,VCU可以进行调节,以满足驾驶员的舒适度要求。该区间的使用频率占到整个作业工况的90%以上,通过更多的使用电制动,可以减小液压制动的频率和同时减小液压制动在整个作业工况的占比。
从0至B区间,制动踏板的踏板感知力是线性的,即驾驶员用脚踩下的力的大小,在该行程内,与踏板角位移行程是线性变化的。该区间的范围是:6<θ≤40°,优选的,取B=35°。
3)液压加速区间,即当制动踏板的角位移为θ,B<θ≤C,该区间内,液压制动力矩与θ成正比,并且产生的液压制动力矩的梯度为a1;当θ=C时,液压制动力矩达到该区间最大值M1,与电制动的最大制动力矩相等,即等值补偿;VCU向制动阀输出信号,阀芯开度最大值为L1,并且阀芯开度从0至L1的时间≤50ms;液压制动力矩梯度为a1的时间≤50ms;加速踏板的驱动力矩为0,电制动力矩为0。并且a0<a1;车辆在滚动阻力以及液压制动力矩作用下减速,该区间属于液压减速制动,并且,该区间的作用时间很短,以快速补偿电制动力矩降低为0带来的瞬时车辆速度的增加,该区间越短越好;优选的,a1持续的时间是30ms;阀芯开度从0至L1的时间是30ms,该区间主要是等值补偿电制动力矩的瞬时损失。
该区间的驾驶员制动踏板力有显著的变化,详见图2、3、4;踏板位移行程由B到C的变化,产生的踏板力的梯度大于由0到B的踏板力梯度。给驾驶员一个显著变化的踏板力的反馈,提示驾驶员,该区域进入到液压制动区,而电制动完全消失或减小为0。该区间的范围是:35<θ≤40°,优选的,取C=36°。
4)液压制动区间,即当制动踏板的角位移为θ,C<θ≤D,该区间内,VCU向制动阀输出信号,阀芯开度最大值为L2,并且阀芯开度从L1增加至L2的时间内,液压制动力矩与θ成正比,并且产生的液压制动力矩的梯度为a2,且a0<a2≤a1,L2开度与踏板角位移成正比,加速踏板的驱动力矩为0,电制动力矩为0。当θ=D时,液压制动力 矩达到该区间最大值M2;
该区间的驾驶员制动踏板力是线性变化的(用脚踩下制动踏板的力),详见图2、3、4;踏板位移行程由B到C,再到D的变化,产生的踏板力的梯度是相同的,并且大于由0到B的踏板力梯度,给驾驶员一个显著变化的踏板力的反馈。即,从B到D的踏板力,明显高于由A到B的踏板力,驾驶员感觉到踏板变硬了,提示驾驶员,该区域是液压制动区,电制动完全消失或减小为0。该区间的范围是:36<θ≤50°,优选的,取D=45°。
由于BC区间时间较短,行程很小,处于驾驶员感觉到踏板力的变化的过渡阶段,而CD区间时间较长,行程较大,驾驶员可以显著的感受到踏板力变硬了,踩踏的力变大了,而且与电制动区间的踏板力的舒适度是不同的,舒适度变差了。
本发明将制动踏板的角位移行程分为四个区间,分别为空行程区间,电制动区间,液压加速区间,和液压制动区间;空行程区间是为了实现点刹而不切断动力的工况,电制动区间为常规制动区间,使用的频率最高,液压加速区间时间很短,主要是为了快速增加到电制动力矩的最大值,以补偿电制动力矩瞬时降低为0,带来的制动效果减弱或降低的变化,而液压制动为紧急制动区间,或者是重载、超载制动区间。
当制动踏板完全松开时,即角位移为0时,VCU恢复对加速踏板的信号通讯。
本发明优选地的A、B、C、D分别为5°,35°,36°,45°;即空行程占11.1%;电制动占66.7%,液压加速区间占2.2%;液压制动区间占20%;不同的区间占比值可以进行适当调整,但是,仍然属于本发明的保护范围。
在一些实施例中,所述工程机械以装载机为例。
在一些实施例中,图1为本发明控制方法的流程图;图2是制动踏板在不同区间的示意图;图3是驾驶员用脚踩的制动踏板力随制动踏板行程的曲线图;图4是制动力矩随制动踏板行程的变化曲线图;图5是驱动力矩随制动踏板行程的变化曲线图;图6是制动力矩随制动踏板行程的变化曲线图(在B到D区间内,制动力矩梯度a1=a2的一种特殊情况,而B到C的响应时间≤50ms)。
实施例2
一种控制器,所述控制器包括存储器和处理器,存储器用于存储指令,所述指令用 于控制所述处理器进行操作,以执行根据实施例1所述的电驱动工程机械制动控制方法。
实施例3
一种电驱动工程机械制动控制系统,包括实施例2所述的控制器。
在一些实施例中,所述的电驱动工程机械制动控制系统,还包括加速踏板2、制动踏板7、驱动电机3、制动阀5、行走减速机4;所述控制器分别与加速踏板2、制动踏板7、驱动电机3、制动阀5信号连接;所述驱动电机3与行走减速机4驱动连接;
所述制动阀5的K口连接行走减速机4的油口端,压力油通过行走减速机油口端进入制动盘的活塞,进行液压制动;所述制动阀5被配置为通过调节阀芯开度控制制动阀的出口K的压力,实现控制液压制动力矩。
所述制动阀为比例式电磁阀,通过信号电流或电压调节阀芯的位置或开度。
预设从第三区间至第四区间的制动踏板力增长的梯度大于从0至第二区间的制动踏板力增长的梯度;在一些实施例中,其中所述预设通过机械设置制动踏板第三区间至第四区间与0至第二区间的弹簧个数或弹簧力来实现,或者通过设置控制制动踏板第三区间至第四区间与0至第二区间响应的电流大小来实现。
即踏板力在不同的区间可以进行机械装置设置来实现,也可以通过VCU的程序控制不同区间的电流或电压信号的强弱来实现制动踏板力的不同响应。
优选的,本发明的制动踏板为电子制动踏板,踏板力的调节,通过VCU预设的程序进行控制。
在一些实施例中,所述的电驱动工程机械制动控制系统,还包括制动踏板角位移采集单元(图中未示出),用于采集制动踏板角位移,并发送给控制器。
所述加速踏板2通过控制器1与驱动电机3信号连接,控制器1通过控制加速踏板的位移,进而控制驱动电机的驱动力矩。
在一些实施例中,所述工程机械以装载机为例。
在一些实施例中,如图7所示,VCU控制器1的输入端接加速踏板2、制动踏板7、驱动电机3、制动阀5;VCU控制器的输出端接加速踏板2、制动踏板7、驱动电机3、制动阀5;
驱动电机3和行走减速机4采用机械花键连接;蓄能器6的H口接制动阀5的P口,制动阀5的K口接行走减速机4的油口端,压力油通过行走减速机油口端进入制动盘的活塞,进行液压制动;制动阀5的T口接油箱;蓄能器6的H口同时接压力油源。
说明:在B到C区间,制动阀的阀芯开度最大值为L1,并且产生的液压制动力矩的梯度为a1;当θ=C时,液压制动力矩达到该区间最大值M1,与电制动的最大制动力矩相等;VCU向制动阀输出信号,阀芯开度最大值为L1,并且阀芯开度从0至L1的时间≤50ms;液压制动力矩梯度为a1持续的时间≤50ms;阀芯的开度主要由制动阀两端的电磁铁的电流或电压大小来控制,而电流或电压的大小由VCU控制器根据踏板的位置区间进行控制。
在C到D区间,制动阀的阀芯开度最大值为L2,并且产生的液压制动力矩的梯度为a2;当θ=D时,液压制动力矩达到该区间最大值M2;VCU向制动阀输出信号,阀芯开度最大值为L2,液压制动力矩梯度a0<a2≤a1;阀芯的开度主要由制动阀两端的电磁铁的电流或电压大小来控制,而电流或电压的大小由VCU控制器根据踏板的位置区间进行控制。
实施例4
一种工程机械,包括上述的电驱动工程机械制动控制系统。
在一些实施例中,所述工程机械以装载机为例。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种电驱动工程机械制动控制方法,其特征在于,包括:
    响应于驾驶员通过踩踏制动踏板给出制动需求,获取制动踏板角位移;
    根据所述制动踏板角位移以及所在的区间,向相应的制动执行机构分配制动力,包括:
    第一区间:空行程区间仅减小驱动力矩;
    第二区间:电制动区间,电制动力矩以梯度a0进行增加或减小;
    第三区间:液压加速区间,液压制动力矩以梯度a1进行增加或减小;
    第四区间:液压制动区间,液压制动力矩以梯度a2进行增加或减小;
    其中a0<a2≤a1,第三区间的制动踏板角位移行程≤1°,第三区间的最大液压制动力矩为第二区间的最大电制动力矩的90%~110%;并且,预设从第三区间至第四区间的制动踏板力增长的梯度大于从0至第二区间的制动踏板力增长的梯度。
  2. 一种电驱动工程机械制动控制方法,其特征在于,包括:
    响应于驾驶员通过踩踏制动踏板给出制动需求,获取制动踏板角位移;
    根据所述制动踏板角位移,向相应的制动执行机构分配制动力,包括:
    (1)当所述制动踏板角位移θ位于第一区间,即0<θ≤A,控制:
    (1a)电制动力矩为0;
    (1b)液压制动力矩为0;
    (1c)输出驱动力矩信号,且驱动力矩与θ成反比,当θ=A时,驱动力矩为0;
    (2)当所述制动踏板角位移θ位于第二区间,即A<θ≤B,控制:
    (2a)输出电制动力矩信号,其中所述电制动力矩与θ成正比,且产生的电制动力矩的梯度为a0;当θ=B时,达到电制动力矩最大值;
    (2b)液压制动力矩为0;
    (2c)驱动力矩为0;
    (3)当所述制动踏板角位移θ位于第三区间,即B<θ≤C,控制:
    (3a)电制动力矩为0;
    (3b)输出液压制动力矩信号,其中所述液压制动力矩与θ成正比,且产生的液压制动力矩的梯度为a1;当θ=C时,液压制动力矩达到第三区间最大值M1,其中所述M1为第二区间电制动力矩最大值的90%~110%;优选的与电制动力矩最大值相等,用于等值补偿电制动力矩;
    其中输出液压制动力矩信号,包括:向制动阀输出信号,预设第三区间制动阀阀芯开度最大值为L1,根据θ控制制动阀阀芯开度且产生的制动力矩梯度为a1,并且阀芯开度从0至L1的时间≤50ms;其中a0<a1;
    (3c)驱动力矩为0;
    (4)当所述制动踏板角位移θ所在的区间位于第四区间,即C<θ≤D,控制:
    (4a)电制动力矩为0;
    (4b)输出液压制动力矩信号,其中所述液压制动力矩与θ成正比,且产生的液压制动力矩的梯度为a2;当θ=D时,液压制动力矩达到第四区间最大值M2;
    其中输出液压制动力矩信号,包括:向制动阀输出信号,设第四区间制动阀阀芯开度最大值为L2,根据θ控制制动阀阀芯开度,并且阀芯开度从L1增加至L2的时间内,液压制动力矩与θ成正比,产生的制动力矩梯度为a2,其中a0<a2≤a1;
    (4c)驱动力矩为0。
  3. 根据权利要求1或2所述的电驱动工程机械制动控制方法,其特征在于,当所述制动踏板角位移θ所在的区间位于第三区间B<θ≤C,第三区间的制动踏板角位移行程≤1°;阀芯开度从0至L1的时间≤50ms,液压制动力矩梯度为a1持续的时间≤50ms。
  4. 根据权利要求2所述的电驱动工程机械制动控制方法,其特征在于,A<B<C<D,A的取值范围在5°~8°,B的取值范围为6°~40°,C的取值范围为35°~40°;D的取值范围为36°~50°。
  5. 根据权利要求4所述的电驱动工程机械制动控制方法,其特征在于,A=6°,B=35°,C=36°,D=45°。
  6. 根据权利要求1或2所述的电驱动工程机械制动控制方法,其特征在于,所述工程机械为装载机。
  7. 一种控制器,其特征在于,所述控制器包括存储器和处理器,存储器用于存储指令,所述指令用于控制所述处理器进行操作,以执行根据权利要求1-6任一项所述的电驱动工程机械制动控制方法。
  8. 一种电驱动工程机械制动控制系统,其特征在于,包括权利要求7所述的控制器。
  9. 根据权利要求8所述的电驱动工程机械制动控制系统,其特征在于,还包括加速踏板、制动踏板、驱动电机、制动阀、行走减速机;所述控制器分别与加速踏板、制动踏板、驱动电机、制动阀信号连接;所述驱动电机与行走减速机驱动连接;所述制动阀 为比例式电磁阀,通过信号电流或电压调节阀芯的位置或开度;预设从第三区间至第四区间的制动踏板力增长的梯度大于从0至第二区间的制动踏板力增长的梯度;
    所述制动阀的出口K连接行走减速机的油口端,压力油通过行走减速机油口端进入制动盘的活塞,进行液压制动;所述制动阀被配置为通过调节阀芯开度控制制动阀的出口K的压力,实现控制液压制动力矩。
  10. 根据权利要求8或9所述的电驱动工程机械制动控制系统,其特征在于,还包括制动踏板角位移采集单元,用于采集制动踏板角位移,并发送给控制器。
  11. 一种电驱动工程机械,其特征在于,包括权利要求8-10任一项所述的电驱动工程机械制动控制系统。
PCT/CN2023/100177 2022-09-08 2023-06-14 一种电驱动工程机械制动控制方法及系统 WO2024051250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211094810.9 2022-09-08
CN202211094810.9A CN115158267B (zh) 2022-09-08 2022-09-08 一种电驱动工程机械制动控制方法及系统

Publications (1)

Publication Number Publication Date
WO2024051250A1 true WO2024051250A1 (zh) 2024-03-14

Family

ID=83482352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100177 WO2024051250A1 (zh) 2022-09-08 2023-06-14 一种电驱动工程机械制动控制方法及系统

Country Status (2)

Country Link
CN (1) CN115158267B (zh)
WO (1) WO2024051250A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115158267B (zh) * 2022-09-08 2022-11-29 徐工集团工程机械股份有限公司科技分公司 一种电驱动工程机械制动控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632534A (en) * 1993-10-07 1997-05-27 Lucas Industries Public Limited Company Electric vehicle having a hydraulic brake system
CN103738327A (zh) * 2014-01-14 2014-04-23 东风汽车公司 基于abs装置的混合动力汽车制动能量回收方法
CN113682147A (zh) * 2021-09-16 2021-11-23 航天重型工程装备有限公司 一种控制电液复合踏板的方法及装置
CN113815425A (zh) * 2021-10-28 2021-12-21 北京福田戴姆勒汽车有限公司 车辆制动控制方法、制动系统和车辆
CN114905978A (zh) * 2022-06-21 2022-08-16 徐工集团工程机械股份有限公司科技分公司 一种工程机械坡道起步控制方法及系统
CN115158267A (zh) * 2022-09-08 2022-10-11 徐工集团工程机械股份有限公司科技分公司 一种电驱动工程机械制动控制方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056339B2 (ja) * 2012-10-03 2017-01-11 日産自動車株式会社 ブレーキ制御装置
JP6056430B2 (ja) * 2012-12-04 2017-01-11 日産自動車株式会社 車両用制動制御装置
JP6237139B2 (ja) * 2013-11-12 2017-11-29 日産自動車株式会社 車両用制動制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632534A (en) * 1993-10-07 1997-05-27 Lucas Industries Public Limited Company Electric vehicle having a hydraulic brake system
CN103738327A (zh) * 2014-01-14 2014-04-23 东风汽车公司 基于abs装置的混合动力汽车制动能量回收方法
CN113682147A (zh) * 2021-09-16 2021-11-23 航天重型工程装备有限公司 一种控制电液复合踏板的方法及装置
CN113815425A (zh) * 2021-10-28 2021-12-21 北京福田戴姆勒汽车有限公司 车辆制动控制方法、制动系统和车辆
CN114905978A (zh) * 2022-06-21 2022-08-16 徐工集团工程机械股份有限公司科技分公司 一种工程机械坡道起步控制方法及系统
CN115158267A (zh) * 2022-09-08 2022-10-11 徐工集团工程机械股份有限公司科技分公司 一种电驱动工程机械制动控制方法及系统

Also Published As

Publication number Publication date
CN115158267A (zh) 2022-10-11
CN115158267B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
US9150206B2 (en) Brake system and actuator control device
WO2024051250A1 (zh) 一种电驱动工程机械制动控制方法及系统
CN101137531B (zh) 用于自动装卸车的制动系统
CN101801748B (zh) 制动设备、制动控制单元和制动控制方法
US8678975B2 (en) Vehicle braking system
US8548707B2 (en) Braking system and method for braking a vehicle having a hybrid drive
JP3896240B2 (ja) 回生協調ブレーキシステムの制御方法
CN102442286B (zh) 线控制动系统能量再生装置及制动系统控制方法
US9937925B2 (en) Shift control method for hybrid vehicle with DCT
DE10060907B4 (de) Bremssystem eines Hybridfahrzeugs mit vorderen und hinteren Regenerationsbremsen mit unterschiedlichen Wirksamkeiten
CN101918254B (zh) 车辆控制装置和搭载有该装置的车辆
KR20170129839A (ko) 차량의 회생 브레이크 시스템의 작동 방법, 및 차량의 회생 브레이크 시스템용 제어 장치
DE102009037190A1 (de) Steuervorrichtung für Elektrofahrzeuge
KR102267583B1 (ko) 허용 가능한 재생 토크에 따라서 전기 차량 또는 하이브리드 차량의 바퀴들로 전달되는 토크를 제어하는 방법
CN202491793U (zh) 一种线控制动系统能量再生装置
CN115140001B (zh) 一种重装电动叉车电液复合制动系统及控制方法
CN107985082B (zh) 一种自卸车电液制动方法
CN115848155B (zh) 一种液压制动分档的电动汽车紧急制动转矩分配控制系统
CN109649163B (zh) 车辆行走系统及其控制方法、环卫车辆
CN217649425U (zh) 一种重装电动叉车电液复合制动系统
JP2012016987A (ja) 運転操作支援装置、運転操作支援方法
CN112319206B (zh) 一种混合动力系统及其控制方法、车辆
EP1531073A1 (de) Verfahren zur Energierückgewinnung bei einem Fahrzeug
DE102019113225A1 (de) Geschwindigkeitseinstell-System für ein Fahrzeug und Verfahren zur Einstellung einer Fahrgeschwindigkeit
CN109476299A (zh) 车辆的制动控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861953

Country of ref document: EP

Kind code of ref document: A1