WO2024051179A1 - Appareil et procédé de détermination de paramètre de silencieux, dispositif, support de stockage et système - Google Patents

Appareil et procédé de détermination de paramètre de silencieux, dispositif, support de stockage et système Download PDF

Info

Publication number
WO2024051179A1
WO2024051179A1 PCT/CN2023/090795 CN2023090795W WO2024051179A1 WO 2024051179 A1 WO2024051179 A1 WO 2024051179A1 CN 2023090795 W CN2023090795 W CN 2023090795W WO 2024051179 A1 WO2024051179 A1 WO 2024051179A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound propagation
liquid refrigerant
proportion
refrigerant
density
Prior art date
Application number
PCT/CN2023/090795
Other languages
English (en)
Chinese (zh)
Inventor
张晓�
陈运东
郝建领
林金涛
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2024051179A1 publication Critical patent/WO2024051179A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/2282Tablespace storage structures; Management thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Definitions

  • the invention relates to the technical field of product testing, and in particular to a muffler parameter determination method, device, equipment, storage medium and system.
  • the air conditioner compressor periodically inhales and exhausts air
  • the high-temperature and high-pressure gas discharged from the compressor exhaust port will cause pressure pulses in the pipeline, which is the main noise source of the air conditioner.
  • Noise can be effectively reduced by adding a muffler to the pipeline. Due to the changes in the compressor piping system and the different refrigerant states under various operating conditions, a large amount of test verification is required in the process of matching a muffler for an air conditioner, which is not only inefficient but also increases the development cost of the muffler.
  • the present invention provides a muffler parameter determination method, device, equipment, storage medium and system, which has the characteristics of high efficiency and lower cost.
  • the sound propagation speed is determined based on the proportion of the gaseous refrigerant, the proportion of the liquid refrigerant, the density of the gaseous refrigerant, the density of the liquid refrigerant, the sound propagation speed of the gaseous refrigerant, and the sound propagation speed of the liquid refrigerant. Describe the sound propagation speed of the compressor pipeline;
  • the length of the muffler is determined based on the corrected sound propagation velocity of the compressor pipeline and the maximum amplitude noise frequency.
  • obtaining the temperature value, pressure value, proportion of gaseous refrigerant and proportion of liquid refrigerant in the compressor pipeline includes:
  • the temperature value, the pressure value, the proportion of the gaseous refrigerant and the proportion of the liquid refrigerant are obtained based on the gas-liquid two-phase sensor on the compressor pipeline.
  • determining the density of the gaseous refrigerant, the density of the liquid refrigerant, the sound propagation speed of the gaseous refrigerant and the sound propagation speed of the liquid refrigerant based on the temperature value and the pressure value includes:
  • the method is based on the proportion of the gaseous refrigerant, the proportion of the liquid refrigerant, the density of the gaseous refrigerant, the density of the liquid refrigerant, the sound propagation speed of the gaseous refrigerant and the density of the liquid refrigerant.
  • the sound propagation velocity determines the sound propagation velocity of the compressor pipeline, including:
  • c sep is the sound propagation velocity of the compressor pipeline
  • ⁇ g is the density of the gas refrigerant
  • ⁇ l is the density of the liquid refrigerant
  • c g is the sound propagation speed of the gas refrigerant
  • c l is the sound propagation of the liquid refrigerant speed.
  • determining a correction factor for the sound propagation velocity of the compressor pipeline based on the proportion of the liquid refrigerant, and correcting the sound propagation velocity of the compressor pipeline based on the correction factor includes:
  • determining the length of the muffler based on the corrected sound propagation velocity of the compressor pipeline and the maximum amplitude noise frequency includes:
  • l is the length of the muffler
  • f max is the noise frequency of the maximum amplitude
  • n is a positive integer including 0.
  • Parameter acquisition module is used to obtain the temperature value, pressure value, proportion of gaseous refrigerant and liquid in the compressor pipeline. Proportion of state refrigerant;
  • a parameter search module configured to determine the density of the gaseous refrigerant, the density of the liquid refrigerant, the sound propagation speed of the gaseous refrigerant, and the sound propagation speed of the liquid refrigerant based on the temperature value and the pressure value;
  • a speed determination module configured to base on the proportion of the gaseous refrigerant, the proportion of the liquid refrigerant, the density of the gaseous refrigerant, the density of the liquid refrigerant, the sound propagation speed of the gaseous refrigerant and the liquid refrigerant.
  • the sound propagation speed determines the sound propagation speed of the compressor pipeline
  • a speed correction module configured to determine a correction factor for the sound propagation speed of the compressor pipeline based on the proportion of the liquid refrigerant, and correct the sound propagation speed of the compressor pipeline based on the correction factor
  • the length determination module is used to determine the length of the muffler based on the corrected sound propagation velocity of the compressor pipeline and the maximum amplitude noise frequency.
  • a device provided according to a specific embodiment of the present invention includes: a memory and a processor;
  • the memory is used to store programs
  • the processor is configured to execute the program and implement each step of the muffler parameter determination method as described above.
  • a storage medium provided according to a specific embodiment of the present invention has a computer program stored thereon.
  • the computer program is executed by a processor, each step of the muffler parameter determination method as described above is implemented.
  • a muffler parameter determination system includes the device as described above, and also includes: a gas-liquid two-phase sensor and a communication module connected to the processor, where the gas-liquid two-phase sensor is used to The temperature value, pressure value, proportion of gaseous refrigerant and proportion of liquid refrigerant in the compressor pipeline are obtained, and the communication module is used to send the length of the muffler to the user terminal.
  • the method for determining muffler parameters provided by the present invention can obtain the temperature value, pressure value, proportion of gaseous refrigerant, and proportion of liquid refrigerant in the compressor pipeline. Then the density of the gaseous refrigerant, the density of the liquid refrigerant, the sound propagation speed of the gaseous refrigerant and the sound propagation speed of the liquid refrigerant are determined based on the temperature value and the pressure value. The sound propagation speed of the compressor pipeline is determined based on the proportion of gaseous refrigerant, the proportion of liquid refrigerant, the density of gaseous refrigerant, the density of liquid refrigerant, the sound propagation speed of gaseous refrigerant and the sound propagation speed of liquid refrigerant.
  • the correction factor of the sound propagation velocity of the compressor pipeline is determined based on the proportion of liquid refrigerant, and the sound propagation velocity of the compressor pipeline is corrected based on the correction factor.
  • the length of the muffler is determined based on the corrected sound propagation velocity of the compressor pipeline and the maximum amplitude noise frequency.
  • the muffler is manufactured according to the length of the obtained muffler, which not only improves the efficiency of muffler production, but also effectively reduces the development cost of the muffler.
  • Figure 1 is a flow chart of a muffler parameter determination method provided according to an exemplary embodiment
  • Figure 2 is a structural diagram of a muffler parameter determination device provided according to an exemplary embodiment
  • Figure 3 is a structural diagram of a device provided according to an exemplary embodiment
  • Figure 4 is a structural diagram of a muffler parameter determination system provided according to an exemplary embodiment.
  • an embodiment of the present invention provides a method for determining muffler parameters.
  • the method may include the following steps:
  • the refrigeration and heating piping system mainly consists of compressor 1, liquid reservoir 2, condenser 3, four-way valve 4, evaporator 5, exhaust
  • the pipeline 6 and the return pipeline 7 are composed of a gas-liquid two-phase sensor 8 installed in the exhaust pipeline 6 to obtain the temperature value, pressure value, proportion of gaseous refrigerant and proportion of liquid refrigerant under refrigeration conditions. Compare. By arranging a gas-liquid two-phase sensor 8 in the return air pipeline 7, the temperature value, pressure value, proportion of gaseous refrigerant and proportion of liquid refrigerant under heating conditions can be obtained. Depending on which muffler needs to be made in the pipeline, the corresponding gas-liquid two-phase sensor can be used to collect the corresponding data.
  • the obtained temperature and pressure values can be searched in a preset table.
  • This table can usually use a thermal calculation physical property parameter table.
  • this table there are corresponding densities and sound propagation speeds under temperature and pressure. According to the measured By searching the obtained temperature value and pressure value accordingly, you can obtain the density of the gaseous refrigerant, the density of the liquid refrigerant, the sound propagation speed of the gaseous refrigerant and the sound propagation speed of the liquid refrigerant.
  • the sound propagation velocity of the compressor pipeline can be obtained, where c sep is the sound propagation velocity of the compressor pipeline, is the proportion of gaseous refrigerant, is the proportion of liquid refrigerant, ⁇ g is the density of gas refrigerant, ⁇ l is the density of liquid refrigerant, c g is the sound propagation speed of gas refrigerant, and c l is the sound propagation speed of liquid refrigerant.
  • c seq is the corrected sound propagation velocity of the compressor pipeline.
  • l is the length of the muffler
  • f max is the noise frequency of the maximum amplitude
  • n is a positive integer including 0.
  • the muffler can be manufactured after the length is determined, thereby effectively reducing the number of test verifications of the muffler and the production of prototypes, reducing development costs and improving the matching success rate of the muffler.
  • the density of the gaseous refrigerant and the density of the liquid refrigerant are determined based on the temperature value and the pressure value.
  • Density, sound propagation speed of gaseous refrigerant and sound propagation speed of liquid refrigerant may include:
  • a muffler parameter determination device is also provided.
  • the device can implement each step of the above muffler parameter determination method when running.
  • the device can include:
  • the parameter acquisition module 201 is used to acquire the temperature value, pressure value, proportion of gaseous refrigerant, and proportion of liquid refrigerant in the compressor pipeline.
  • the parameter search module 202 is used to determine the density of the gaseous refrigerant, the density of the liquid refrigerant, the sound propagation speed of the gaseous refrigerant, and the sound propagation speed of the liquid refrigerant based on the temperature value and the pressure value.
  • the speed determination module 203 is used to determine the sound propagation speed of the compressor pipeline based on the proportion of gaseous refrigerant, the proportion of liquid refrigerant, the density of gaseous refrigerant, the density of liquid refrigerant, the sound propagation speed of gaseous refrigerant and the sound propagation speed of liquid refrigerant. transmission speed.
  • the speed correction module 204 is used to determine the correction factor of the sound propagation speed of the compressor pipeline based on the proportion of liquid refrigerant, and correct the sound propagation speed of the compressor pipeline based on the correction factor. as well as
  • the length determination module 205 is used to determine the length of the muffler based on the corrected sound propagation velocity of the compressor pipeline and the maximum amplitude noise frequency.
  • This device has the same beneficial effects as the above-mentioned muffler parameter determination method.
  • an embodiment of the present invention also provides a device, which may include: a memory 301 and a processor 302 .
  • Memory 301 is used to store programs.
  • the processor 302 is used to execute the program and implement each step of the muffler parameter determination method as described above.
  • Embodiments of the present invention also provide a storage medium on which a computer program is stored.
  • a computer program is executed by a processor, each step of the muffler parameter determination method described in the above embodiment is implemented.
  • an embodiment of the present invention also provides a muffler parameter determination system, which includes the equipment described in the above embodiment, and also includes: a gas-liquid two-phase sensor 8 and a communication module 11 connected to the processor 302,
  • the gas-liquid two-phase sensor 8 is used to obtain the temperature value, pressure value, proportion of gaseous refrigerant and proportion of liquid refrigerant in the compressor pipeline, and the communication module 11 is used to send the length of the muffler to the user terminal.
  • the communication module 11 can use a wireless communication module, such as Bluetooth, WIFI, 4G, 5G and other communication modules to send the obtained length of the muffler in the form of a short message to the user's smartphone, application, operating platform and other user terminals. 10 for users to use, the processor 302 searches for corresponding parameters through the database 9 .
  • a wireless communication module such as Bluetooth, WIFI, 4G, 5G and other communication modules to send the obtained length of the muffler in the form of a short message to the user's smartphone, application, operating platform and other user terminals. 10 for users to use, the processor 302 searches for corresponding parameters through the database 9 .
  • the muffler parameter determination methods, devices, equipment, storage media and systems provided by the above embodiments of the present invention can effectively reduce the number of muffler test verifications, reduce development costs, and improve the matching success rate of the muffler.
  • Modules and sub-modules in the devices and terminals of various embodiments of the present invention can be merged, divided and deleted according to actual needs.
  • the disclosed terminal, device and method can be implemented in other ways.
  • the terminal embodiments described above are only illustrative.
  • the division of modules or sub-modules is only a logical function division.
  • there may be other division methods for example, multiple sub-modules or modules may be combined. Or it can be integrated into another module, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • Modules or submodules described as separate components may or may not be physically separate.
  • Components described as modules or submodules may or may not be physical modules or submodules, that is, they may be located in one place, or they may be distributed to on multiple network modules or submodules. Some or all of the modules or sub-modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module or sub-module in various embodiments of the present invention can be integrated in one processing module, or each module or sub-module can exist physically alone, or two or more modules or sub-modules can be integrated in one in a module.
  • the above-mentioned integrated modules or sub-modules can be implemented in the form of hardware or in the form of software function modules or sub-modules.
  • the steps of the methods or algorithms described in connection with the embodiments disclosed herein may be implemented directly in hardware, in software units executed by a processor, or in a combination of both.
  • the software unit may be located in random access memory (RAM), memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, register, hard disk, removable disk, CD-ROM, or any other device in the technical field. any other known form of storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Compressor (AREA)

Abstract

L'invention concerne un appareil et un procédé de détermination de paramètre de silencieux, un dispositif, un support de stockage et un système, le procédé consistant à : acquérir la valeur de température et la valeur de pression d'un fluide frigorigène, la proportion d'un fluide frigorigène gazeux et la proportion d'un fluide frigorigène liquide dans un tuyau de compresseur ; puis, sur la base de la valeur de température et de la valeur de pression, déterminer la densité du fluide frigorigène gazeux, la densité du fluide frigorigène liquide, une vitesse de propagation du son dans le fluide frigorigène gazeux et une vitesse de propagation du son dans le fluide frigorigène liquide ; déterminer, sur la base de la proportion du fluide frigorigène gazeux, de la proportion du fluide frigorigène liquide, de la densité du fluide frigorigène gazeux, de la densité du fluide frigorigène liquide, de la vitesse de propagation du son dans le fluide frigorigène gazeux et de la vitesse de propagation du son dans le fluide frigorigène liquide, une vitesse de propagation du son dans le tuyau de compresseur ; déterminer un facteur de correction pour la vitesse de propagation du son dans le tuyau de compresseur sur la base de la proportion du fluide frigorigène liquide et corriger la vitesse de propagation du son dans le tuyau de compresseur sur la base du facteur de correction ; et, sur la base de la vitesse de propagation du son corrigé dans le tuyau de compresseur et la fréquence de bruit ayant la valeur d'amplitude maximum, déterminer la longueur d'un silencieux.
PCT/CN2023/090795 2022-09-08 2023-04-26 Appareil et procédé de détermination de paramètre de silencieux, dispositif, support de stockage et système WO2024051179A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211096039.9A CN115435492A (zh) 2022-09-08 2022-09-08 一种消声器参数确定方法、装置、设备、存储介质和系统
CN202211096039.9 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024051179A1 true WO2024051179A1 (fr) 2024-03-14

Family

ID=84246854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090795 WO2024051179A1 (fr) 2022-09-08 2023-04-26 Appareil et procédé de détermination de paramètre de silencieux, dispositif, support de stockage et système

Country Status (2)

Country Link
CN (1) CN115435492A (fr)
WO (1) WO2024051179A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115435492A (zh) * 2022-09-08 2022-12-06 青岛海尔空调器有限总公司 一种消声器参数确定方法、装置、设备、存储介质和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015965A1 (fr) * 2006-08-01 2008-02-07 Daikin Industries, Ltd. Dispositif de réfrigération
JP2011012869A (ja) * 2009-07-01 2011-01-20 Panasonic Corp 空気調和機
CN203595247U (zh) * 2013-09-24 2014-05-14 Tcl空调器(中山)有限公司 消声器及变频空调器
CN110116601A (zh) * 2018-02-06 2019-08-13 上海汽车集团股份有限公司 一种空调管路消声器
CN112179028A (zh) * 2019-07-03 2021-01-05 青岛海尔电冰箱有限公司 消音器、制冷回路及冰箱
CN113915805A (zh) * 2021-06-21 2022-01-11 中南大学 一种双向节流管掺汽超空化喷射噪声抑制装置
CN114738849A (zh) * 2022-04-13 2022-07-12 青岛海尔空调器有限总公司 空调的降噪方法、降噪装置、空调及电子设备
CN115435492A (zh) * 2022-09-08 2022-12-06 青岛海尔空调器有限总公司 一种消声器参数确定方法、装置、设备、存储介质和系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015965A1 (fr) * 2006-08-01 2008-02-07 Daikin Industries, Ltd. Dispositif de réfrigération
JP2011012869A (ja) * 2009-07-01 2011-01-20 Panasonic Corp 空気調和機
CN203595247U (zh) * 2013-09-24 2014-05-14 Tcl空调器(中山)有限公司 消声器及变频空调器
CN110116601A (zh) * 2018-02-06 2019-08-13 上海汽车集团股份有限公司 一种空调管路消声器
CN112179028A (zh) * 2019-07-03 2021-01-05 青岛海尔电冰箱有限公司 消音器、制冷回路及冰箱
CN113915805A (zh) * 2021-06-21 2022-01-11 中南大学 一种双向节流管掺汽超空化喷射噪声抑制装置
CN114738849A (zh) * 2022-04-13 2022-07-12 青岛海尔空调器有限总公司 空调的降噪方法、降噪装置、空调及电子设备
CN115435492A (zh) * 2022-09-08 2022-12-06 青岛海尔空调器有限总公司 一种消声器参数确定方法、装置、设备、存储介质和系统

Also Published As

Publication number Publication date
CN115435492A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2024051179A1 (fr) Appareil et procédé de détermination de paramètre de silencieux, dispositif, support de stockage et système
CN108895611B (zh) 一种冷凝器脏堵检测方法及装置
CN108073772B (zh) 离心压缩机设计方法
Popovic et al. A semi-empirical method for modeling a reciprocating compressor in refrigeration systems
CN108981101B (zh) 一种电子膨胀阀的控制方法、控制装置及一种机组
CN103162469A (zh) 空调器的回油控制方法、装置及空调器
CN107436018A (zh) 改善空调配管气柱共振的控制方法、装置及空调
CN111023429B (zh) 一种控制方法、系统及空调器
CN103593519B (zh) 一种基于试验设计的运载火箭总体参数优化方法
CN109140678A (zh) 变频空调系统空调数据及制冷剂参数的回归分析方法
CN105890112A (zh) 室外机换热器中温度传感器漂移检测方法、处理器及空调
CN113688510B (zh) 一种燃料电池车用离心压缩系统喘振预测方法
CN110726221B (zh) 确定空调能效信息的方法、装置和空调
CN110118421B (zh) 空调器及其控制方法、流通管路及可读存储介质
CN112503715A (zh) 一种控制方法、空调系统及计算机存储介质
WO2023184928A1 (fr) Procédé et appareil de commande de climatiseur, climatiseur, support d'enregistrement et produit programme
CN110397992B (zh) 消声器、空调器、消声器的控制方法及可读存储介质
WO2022222486A1 (fr) Procédé et appareil de commande de résonance pour dispositif d'alimentation en air, et dispositif électronique et support de stockage
CN107506546A (zh) 一种空调系统的建模方法和仿真方法
CN110953685B (zh) 通用的空调系统的水力仿真计算方法、存储装置、处理器
CN111413115B (zh) 冷冻空调主机效率的智能量测验证方法及其系统
CN209623159U (zh) 一种热风机的降噪装置
WO2020052234A1 (fr) Procédé et appareil de commande de retour d'huile de compresseur
CN112524687A (zh) 一种控制方法、空调系统及计算机存储介质
CN110428303A (zh) 商用空调的辅助选型方法、装置、设备、系统和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861885

Country of ref document: EP

Kind code of ref document: A1