WO2024051071A1 - 室内机、空调器及其控制方法 - Google Patents

室内机、空调器及其控制方法 Download PDF

Info

Publication number
WO2024051071A1
WO2024051071A1 PCT/CN2023/073575 CN2023073575W WO2024051071A1 WO 2024051071 A1 WO2024051071 A1 WO 2024051071A1 CN 2023073575 W CN2023073575 W CN 2023073575W WO 2024051071 A1 WO2024051071 A1 WO 2024051071A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
pressure value
indoor unit
indoor
indoor heat
Prior art date
Application number
PCT/CN2023/073575
Other languages
English (en)
French (fr)
Inventor
井旭
颜鹏
黄信博
夏兴祥
张恒
赵玉垒
刘心怡
王珩
孙杨
孟建军
韩飞
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211091531.7A external-priority patent/CN116255667A/zh
Priority claimed from CN202222590935.2U external-priority patent/CN218721891U/zh
Priority claimed from CN202211273970.XA external-priority patent/CN115654679A/zh
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2024051071A1 publication Critical patent/WO2024051071A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties

Definitions

  • the present disclosure relates to the technical field of household appliances, and in particular, to an indoor unit, an air conditioner and a control method thereof.
  • the temperature In spring and mid-June to early July in southern my country, the temperature is mostly maintained at 20-30°C, but the humidity can reach more than 80%. At this time, the temperature is relatively comfortable but the humidity is too high, and users do not want the air conditioner to lower the indoor temperature. The demand for temperature and dehumidification at the same time is quite prominent.
  • an indoor unit includes a casing, an air outlet, an indoor heat exchanger and a shielding component.
  • the casing includes an upper cover plate and a bottom plate arranged oppositely, and a first side plate connected to the upper cover plate and the bottom plate; the air outlet is provided on the first side plate; the indoor air conditioner
  • the heater is located inside the casing, its extension direction is parallel to the extension direction of the air outlet and its length is smaller than the length of the air outlet.
  • the first end of the indoor heat exchanger and the first end of the air outlet The second end of the indoor heat exchanger and the second end of the air outlet are located on the same side. There is an avoidance between the first end of the indoor heat exchanger and the first end of the air outlet. space; the blocking component connects the first end of the indoor heat exchanger and the first end of the air outlet to block the avoidance space to prevent exposure.
  • an air conditioner in another aspect, includes the indoor unit as described above.
  • an air conditioner in another aspect, includes an indoor unit, an outdoor unit, and a circulation pipeline connecting the indoor unit and the outdoor unit.
  • the indoor unit includes a first indoor unit, and the first indoor unit includes a first indoor heat exchanger, a first electronic expansion valve, a second indoor heat exchanger, a second electronic expansion valve, and a first blowing device.
  • the second end of the first indoor heat exchanger is connected in series with the first electronic expansion valve, the second indoor heat exchanger and the first end of the second electronic expansion valve;
  • the first blowing device is configured In order to blow air to the first indoor heat exchanger;
  • the outdoor unit includes a compressor assembly, a first refrigerant flow switching device, a third electronic expansion valve, a first outdoor heat exchanger and a second refrigerant flow switching device.
  • the compressor assembly includes a compressor with an outlet and an inlet;
  • the first refrigerant flow switching device includes a first port connected to the first end of the first indoor heat exchanger, and a second port connected to the inlet.
  • the second refrigerant flow switching device includes a fifth port connected to the inlet, a sixth port connected to the first end of the first outdoor heat exchanger, a seventh port connected to the outlet, and The fourth port is connected to the eighth port.
  • a control method of an air conditioner is provided.
  • the air conditioner is the air conditioner as described above; the method includes: the controller obtains the first exhaust pressure value of the compressor at the first moment through the pressure sensor; the controller obtains the first exhaust pressure value from the pressure sensor; The maximum target pressure value is determined among a target pressure value and a second target pressure value.
  • the first target pressure value is the target exhaust pressure value of the compressor when the first indoor unit operates in the first mode.
  • the second target pressure value is The target pressure value is the target exhaust pressure value of the compressor when the second indoor unit is running in the second mode; the controller calculates the pressure deviation between the maximum target pressure value and the first exhaust pressure value. value; the controller adjusts the gear of the outdoor fan based on the pressure deviation value so that the exhaust pressure value of the compressor reaches the maximum target pressure value.
  • Figure 1 is a perspective view of an indoor unit of an air conditioner with a non-cooling and dehumidification function without blocking components according to some embodiments;
  • Figure 2 is a perspective view of an indoor unit according to some embodiments.
  • Figure 3 is a top view of Figure 2;
  • Figure 4 is a cross-sectional view of the B-B cross-sectional view of Figure 3 rotated 90° clockwise;
  • Figure 5 is an enlarged view of part C of Figure 4.
  • Figure 6 is an enlarged view of part A in Figure 2;
  • Figure 7 is a perspective view of a heat exchanger configured with non-cooling and dehumidification system components in an indoor unit according to some embodiments;
  • Figure 8 is a perspective view of the shielding component of the indoor unit according to some embodiments.
  • Figure 9 is a perspective view of the assembly structure of the heat exchanger and shielding component of the indoor unit according to some embodiments.
  • Figure 10 is a perspective view of the assembly structure of the heat exchanger and shielding component of the indoor unit according to some embodiments from another perspective;
  • Figure 11 is an assembly structural diagram of the upper cover foam layer and shielding components of the indoor unit according to some embodiments.
  • Figure 12 is an enlarged view of part D in Figure 11;
  • Figure 13 is a structural diagram of a related art air conditioner
  • Figure 14 is a structural diagram of an air conditioner according to some embodiments.
  • Figure 15 is a circuit connection diagram of an air conditioner according to some embodiments.
  • Figure 16 is an operating cycle structure diagram of an air conditioner according to some embodiments.
  • Figure 17 is a pressure-enthalpy diagram of an air conditioner in a non-cooling and dehumidification mode according to some embodiments.
  • Figure 18 is another operating cycle structure diagram of an air conditioner according to some embodiments.
  • Figure 19 is a pressure-enthalpy diagram of a cooling and dehumidification mode of an air conditioner according to some embodiments.
  • Figure 20 is another operating cycle structure diagram of an air conditioner according to some embodiments.
  • Figure 21 is yet another air conditioner operation cycle structure diagram according to some embodiments.
  • Figure 22 is another operating cycle structure diagram of an air conditioner according to some embodiments.
  • Figure 23 is yet another air conditioner operation cycle structure diagram according to some embodiments.
  • Figure 24 is a pressure-enthalpy diagram of another air conditioner in a non-cooling and dehumidification mode according to some embodiments.
  • Figure 25 is a diagram of the main components of an air conditioner according to some embodiments.
  • Figure 26 is a flow chart of a control method of an air conditioner according to some embodiments.
  • Figure 27 is a logic flow diagram of a control method for an air conditioner according to some embodiments.
  • Figure 28 is a hardware configuration block diagram of a controller of an air conditioner according to some embodiments.
  • 200-Indoor unit 201-The first indoor unit; 11-The first indoor temperature sensor; 12-The second indoor temperature sensor; 13-The third indoor temperature sensor; 51-The first inlet air temperature sensor; 202-The second indoor temperature sensor machine; 14-The fourth indoor temperature sensor; 15-The fifth indoor temperature sensor; 16-The sixth indoor temperature sensor; 52-The second inlet air temperature sensor; 210-Indoor heat exchanger; 211-The first indoor heat exchanger end; 212-the second end of the indoor heat exchanger; 213-plastic end plate; 214-the first indoor heat exchanger; 215-the second indoor heat exchanger; 220-casing; 221-upper cover; 2211-upper Cover body; 2212-upper cover foam layer; 2212A-straight part; 2212B-inclined part; 2212C-positioning part; 222-bottom plate; 223-air outlet; 2231-first end of air outlet; 2232-air outlet Second end; 224-first side plate; 225-second side plate; 226-third side plate; 227-
  • 300-expansion valve 310-outdoor electronic expansion valve; 320-indoor electronic expansion valve; 321-first electronic expansion valve; 322-second electronic expansion valve; 311-third electronic expansion valve; 323-fourth electronic expansion valve ; 324-fifth indoor expansion valve; 312-sixth electronic expansion valve;
  • 600-solenoid valve 601-the first end of solenoid valve 600; 602-the second end of solenoid valve 600;
  • connection port 001-first connection port; 002-second connection port; 003-third connection port; 20-compressor assembly; 21-inlet; 22-outlet; 23-oil return capillary; 24-one-way valve;
  • E-screw hole E-screw hole; F-screw hole; G-screw hole; H-screw hole; M-first port; N-second port; O-third port; P-fourth port; R-fifth port; S-sixth port; T-seventh port; U-eighth port; I-ninth port; K-tenth port; Y-eleventh port; Z-twelfth port;
  • Pd-exhaust pressure value Pd01-first exhaust pressure value; Pd02-second exhaust pressure value; Pd1-first saturation pressure value; Pd2-second saturation pressure value;
  • Pdset-target pressure value Pdset1(1)-first target pressure value; Pdset2(1)-second target pressure value; Pdset1(2)-third target pressure value; Pdset2(2)-fourth target pressure value;
  • Ti-indoor ambient temperature Ti1-first ambient temperature; Ti2-second ambient temperature; Ts-preset temperature;
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C together, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • FIG. 14 is a structural diagram of an air conditioner according to some embodiments. As shown in FIG. 14 , air conditioner 1000 includes compressor 110 , outdoor heat exchanger 120 , indoor heat exchanger 210 , and expansion valve 300 .
  • Air conditioner 1000 includes an outdoor unit 100 and an indoor unit 200 .
  • the outdoor unit 100 includes a compressor 110 and an outdoor heat exchanger 120
  • the indoor unit 200 includes an indoor heat exchanger 210
  • an expansion valve 300 may be provided in the outdoor unit 100 or the indoor unit 200 .
  • the compressor 110, the condenser (indoor heat exchanger 210 or outdoor heat exchanger 120), the expansion valve 300, and the evaporator (outdoor heat exchanger 120 or indoor heat exchanger 210) execute the refrigerant cycle of the air conditioner 1000.
  • the refrigerant cycle includes a series of processes involving compression, condensation, expansion and evaporation, and supplies refrigerant to the regulated side cycle.
  • the indoor heat exchanger 210 is configured to perform heat exchange between indoor air and the refrigerant transported in the indoor heat exchanger 210 .
  • the indoor heat exchanger 210 works as an evaporator when the air conditioner 1000 operates in the cooling mode, so that the refrigerant that has been dissipated through the outdoor heat exchanger 120 absorbs heat from the indoor air through the indoor heat exchanger 210 and evaporates.
  • the indoor heat exchanger 210 works as a condenser in the heating mode of the air conditioner 1000, so that the refrigerant that has absorbed heat through the outdoor heat exchanger 210 dissipates heat to the indoor air through the indoor heat exchanger 210 to be condensed.
  • the expansion valve 300 is connected between the outdoor heat exchanger 120 and the indoor heat exchanger 210.
  • the opening of the expansion valve 300 adjusts the pressure of the refrigerant flowing through the outdoor heat exchanger 120 and the indoor heat exchanger 210 to regulate the flow to the outdoors.
  • the flow rate and pressure of the refrigerant flowing between the outdoor heat exchanger 120 and the indoor heat exchanger 210 will affect the heat exchange performance of the outdoor heat exchanger 120 and the indoor heat exchanger 210 .
  • Expansion valve 300 may be an electronic valve.
  • the opening of the expansion valve 300 is adjustable to control the flow rate and pressure of the refrigerant flowing through the expansion valve 300 .
  • the compressor 110 compresses the gas-phase refrigerant in a low-temperature and low-pressure state and discharges the compressed high-temperature and high-pressure gas-phase refrigerant.
  • the high-temperature and high-pressure gas phase refrigerant flows into the condenser.
  • the condenser condenses the high-temperature and high-pressure gas phase refrigerant into a high-pressure liquid phase refrigerant, and the heat is released to the surrounding environment along with the condensation process.
  • the expansion valve 300 expands a high-pressure liquid refrigerant into a low-pressure gas-liquid two-phase refrigerant.
  • the evaporator absorbs heat from the surrounding environment and evaporates the low-pressure gas-liquid two-phase refrigerant to form a low-temperature and low-pressure gas-phase refrigerant.
  • the low-temperature and low-pressure gas phase refrigerant is returned to the compressor 110 .
  • a conventional two-pipe air conditioner In order for a conventional two-pipe air conditioner to have the function of non-cooling and dehumidification (that is, it can dehumidify without lowering the indoor temperature), it is necessary to add system components to the piping end of the indoor heat exchanger, such as dehumidification solenoid valves and corresponding piping lines. While ensuring that the size of the indoor unit remains unchanged, in order to install the system components to the pipe end of the indoor heat exchanger, the length of the indoor heat exchanger needs to be shortened accordingly to reserve space for the system components. At this time, the length of the indoor heat exchanger is smaller than the length of the air outlet, and there is an exposed area between the indoor heat exchanger and the air outlet. The wind resistance in the exposed area is small, and the air from the air conditioner will preferentially flow out of this area instead of passing through the indoor heat exchanger, causing air leakage from this area of the whole machine, thus affecting the performance of the air conditioner.
  • the length of the air outlet is usually shortened accordingly to solve the problem of an exposed area between the indoor heat exchanger and the air outlet.
  • shortening the length of the air outlet will affect the on-site installation versatility of the air conditioner.
  • some embodiments of the present disclosure provide an indoor unit that can avoid the exposed area between the indoor heat exchanger and the air outlet without affecting the on-site installation versatility of the air conditioner.
  • Figure 1 is a perspective view of an indoor unit of an air conditioner with non-cooling and dehumidification function according to some embodiments, with shielding components removed;
  • Figure 2 is a perspective view of the indoor unit according to some embodiments;
  • Figure 3 is a top view of Figure 2;
  • Figure 4 is Figure 3 The BB cross-sectional view is rotated 90° clockwise;
  • Figure 5 is an enlarged view of part C in Figure 4.
  • the indoor unit 200 includes an indoor heat exchanger 210, a casing 220, and other structural components, such as a fan assembly.
  • the casing 220 includes an upper cover 221, a bottom plate 222, an air outlet 223 and a circumferential side plate.
  • the circumferential side plate is surrounded by four side plates, front, rear, left and right, including the first side plate 224, which are connected in sequence.
  • the casing 220 is in the shape of a rectangular parallelepiped, and its upper cover 221, bottom plate 222 and circumferential side plates are all rectangular.
  • the air outlet 223 is provided on the first side plate 224 and includes a first end 2231 of the air outlet and a second end 2232 of the air outlet.
  • the length direction of the air outlet 223 is consistent with the length direction of the first side plate 224, and the length of the air outlet 223 is Less than the length of the first side plate 224 .
  • the upper cover 221 in order to improve the thermal insulation performance of the casing 220 of the indoor unit 200 and reduce heat transfer, usually includes a metal upper cover body 2211 and protrudes from the upper cover body 2211 toward the interior of the indoor unit 200
  • the upper cover foam layer 2212 includes a straight portion 2212A parallel to the bottom plate 222 and an inclined portion 2212B inclined toward the bottom plate 222.
  • the inclined portion 2212B is located close to the air outlet 223 and is located on the same side as the air outlet 223.
  • the inclined portion 2212B is configured to guide the outlet airflow to the air outlet 223 to increase the air outlet volume of the indoor unit 200 .
  • the indoor heat exchanger 210 is located inside the casing 220 near the air outlet 223, and includes a first end 211 of the indoor heat exchanger and a second end 212 of the indoor heat exchanger.
  • the first end 211 of the indoor heat exchanger is the end of the indoor heat exchanger 210.
  • the piping end, the second end 212 of the indoor heat exchanger is the other end corresponding to the piping end of the indoor heat exchanger 210 .
  • the length direction of the indoor heat exchanger 210 is consistent with the length direction of the air outlet 223 , and the length of the indoor heat exchanger 210 is smaller than the length of the air outlet 223 .
  • the first end 211 of the indoor heat exchanger and the first end 2231 of the air outlet are located on the same side.
  • the second end 212 of the indoor heat exchanger and the second end 2232 of the air outlet are located on the same side.
  • the second end 212 of the indoor heat exchanger and the second end 2232 of the air outlet are located on the same side.
  • the two ends 2232 are tightly connected to ensure that this end is closed as much as possible to prevent air leakage.
  • the indoor unit 200 further includes system components 400 .
  • the system component 400 is arranged at the first end 211 of the indoor heat exchanger and is located in the avoidance space A.
  • system components 400 include dehumidification solenoid valves and corresponding piping lines.
  • the indoor unit 200 also includes a water receiving tray 230.
  • the water receiving tray 230 is disposed inside the casing 220 and located below the indoor heat exchanger 210 (ie, the side of the indoor heat exchanger 210 close to the bottom plate 222). ), a disk-shaped structure with an opening facing the upper cover 221, is configured to receive the condensed water on the indoor heat exchanger 210.
  • the water receiving tray 230 includes a water receiving tray bottom plate 231 and circumferential water receiving tray side plates.
  • the water receiving tray side plates include a first water receiving tray side plate 232 and three other water receiving tray side plates.
  • the plate 232 is close to the first side plate 224 of the indoor unit 200 and is arranged parallel to the first side plate 224 .
  • Figure 6 is an enlarged view of part A of Figure 2;
  • Figure 7 is a perspective view of an indoor heat exchanger configured with non-cooling dehumidification system components according to some embodiments;
  • Figure 8 is a perspective view of the shielding component of the indoor unit according to some embodiments;
  • Figure 9 It is a perspective view of the assembly structure of the indoor heat exchanger and the shielding component according to some embodiments.
  • Figure 10 is a perspective view of the assembly structure of the indoor heat exchanger and the shielding component according to some embodiments.
  • Figure 11 is a perspective view of the assembly structure of the indoor heat exchanger and the shielding component according to some embodiments.
  • Figure 11 is a perspective view of the assembly structure of the indoor heat exchanger and shielding components according to some embodiments.
  • Figure 12 is an enlarged view of part D in Figure 11.
  • the indoor unit 200 further includes a shielding component 240.
  • the shielding component 240 is connected to the first end 211 of the indoor heat exchanger and the first end 2231 of the air outlet, and is configured to shield the avoidance space A to prevent the avoidance space A from being exposed, thereby preventing air leakage from the avoidance space A when the air conditioner 1000 discharges air. Affects the performance of the air conditioner 1000.
  • the shielding component 240 can also be used to fix the first end 211 of the indoor heat exchanger. There is no need to configure a corresponding fixing structure for the shortened first end 211 of the indoor heat exchanger, which reduces the cost of the air conditioner 1000.
  • the indoor heat exchanger 210 also includes a plastic end plate 213 (as shown in Figure 7).
  • the plastic end plate 213 is disposed at the second end 212 of the indoor heat exchanger.
  • the indoor unit 200 also includes a plastic fixing piece ( (not shown in the figure), the plastic fixing part is arranged on the fourth side plate 227, and the plastic end plate 213 is clamped in the plastic fixing part, thereby realizing the second end 212 of the indoor heat exchanger in the casing 220. fixed.
  • the avoidance space A is parallel to There are gaps in the length direction of the air outlet 223 , and there are also gaps in the direction perpendicular to the first side plate 224 .
  • the shielding component 240 includes a first shielding part 241 and a second shielding part 242.
  • the first shielding part 241 is arranged parallel to the air outlet 223, that is, parallel to the first side plate 224, and Fixedly connected to the first side plate 224 connected, capable of blocking the gap in the avoidance space A along the length direction of the air outlet 223;
  • the second shielding portion 242 is arranged perpendicular to the air outlet 223, that is, perpendicular to the first side plate 224, and is fixed to the first end 211 of the indoor heat exchanger.
  • the connection can block the gap in the avoidance space A along the direction perpendicular to the first side plate 224 . In this way, the shielding component 240 can effectively shield the avoidance space A and reduce air leakage as much as possible.
  • the first shielding part 241 of the shielding component 240 includes a shielding part main body 2410, a first support part 2411 and a second support part 2412.
  • the first support part The portion 2411 is provided at one end of the shielding portion main body 2410 close to the upper cover 221 and abuts against the inclined portion 2212B of the upper cover foam layer 2212. It leans against the surface of the first water receiving tray side plate 232 close to the upper cover 221 and is in contact with the first water receiving tray side plate 232 .
  • the second shielding part 242 of the shielding component 240 includes a third support part 2421 and a fourth support part 2422.
  • the third support part 2421 abuts the upper cover 221 and includes a first support subsection 2421A parallel to the upper cover 221 and the second supporting portion 2421B that is inclined to the upper cover 221 , and the fourth supporting portion 2422 abuts against the surface of the water receiving tray bottom plate 231 close to the upper cover plate 221 and is in contact with the water receiving tray bottom plate 231 .
  • the upper cover 221 and the water tray 230 of the indoor unit 200 can position and limit the shielding component 240 from the up and down directions, making it more stable and reliable, thereby improving the installation stability of the shielding component 240 and the reliability of the shielding. sex.
  • the first support part 2411 has an inclination angle that is adapted to the inclined part 2212B of the upper cover foam layer 2212, that is, the first support part 2411 is also inclined and is in contact with the upper cover.
  • the inclined part 2212B of the bubble layer 2212 is adapted to fit;
  • the third support part 2421 includes a first support part 2421A that is adapted to fit with the straight part 2212A and a second support part 2421B that is adapted to fit with the inclined part 2212B.
  • the first shielding part 241 and the second shielding part 242 are respectively fitted with the first water tray side plate 232 and the water tray bottom plate 231, the gap between adjacent structural components is made as small as possible, thereby improving the shielding component. 240 degree of occlusion tightness.
  • the upper cover foam layer 2212 also includes a positioning portion 2212C.
  • the positioning portion 2212C is provided on the inclined portion 2212B and protrudes toward the side of the bottom plate 222.
  • One side of the first support portion 2411 By abutting against the positioning portion 2212C, the positioning effect on the shielding component 240 is further improved.
  • the first shielding part 241 of the shielding component 240 further includes an insertion part 2413 , the insertion part 2413 is connected to the second support part 2412 , and is connected to the second support part 2413 .
  • the second supporting portion 2412 is perpendicular to each other, the second supporting portion 2412 is arranged parallel to the bottom plate 222 , and the insertion portion 2413 is arranged perpendicular to the bottom plate 222 .
  • the first shielding part 241 is inserted into the gap through the insertion part 2413, which can improve the support and limiting effect on the shielding component 240, and can improve the tightness of shielding by the shielding component 240.
  • the first shielding part 241 further includes a connecting part 2414 , which is disposed at an end of the shielding part body 2410 away from the second shielding part 242 , relative to the shielding part 2414 .
  • the main body 2410 is folded toward the outside of the casing 220 and is configured to be fixedly connected to the first side plate 224 of the casing 220 .
  • the connecting part 2414 includes a first connecting part 2414A and a second connecting part 2414B.
  • the first connecting part 2414A and the second connecting part 2414B are perpendicular to each other.
  • the second connecting part 2414B is attached to the first side plate 224 and is connected to the first side plate 2414B. Plate 224 is fixedly connected.
  • the first side plate 224 includes screw holes E (before the indoor heat exchanger 210 is shortened, The screw hole E is used to fixedly connect the first end 211) of the indoor heat exchanger.
  • the second connection part 2414B includes a screw hole F. The screw hole E and the screw hole F are set correspondingly. The screw hole E and the screw hole F are connected by screws, so that In order to connect the second connecting portion 2414B to the first side plate 224, there is no need to add an additional connecting structure and to consider the assembly location.
  • the second shielding portion 242 of the shielding component 240 also includes a through portion 2423, and the through portion 2423 is configured to avoid system components at the first end 211 of the indoor heat exchanger. 400.
  • the second shielding portion 242 is in contact with the end surface of the first end 211 of the indoor heat exchanger, and the outline shape of the through portion 2423 closely matches the cross-sectional outline shape of the indoor heat exchanger 210 to effectively avoid related piping structures.
  • the cross section of the indoor heat exchanger 210 is V-shaped, and the through portion 2423 has an approximately V-shaped structure.
  • the indoor heat exchanger 210 is not limited to a V-shape. When using other forms of indoor heat exchangers 210, the shape of the through portion 2423 of the second shielding portion 242 only needs to be changed accordingly.
  • the indoor unit 200 further includes a connecting end plate 250.
  • the connecting end plate 250 is provided at the first end 211 of the indoor heat exchanger and is configured to connect the first end 211 of the indoor heat exchanger and the second shield.
  • the connecting end plate 250 includes a plurality of screw holes G, and the plurality of screw holes G are provided at the edge of the connecting end plate 250.
  • the second shielding portion 242 includes a plurality of screw holes H, and the plurality of screw holes H are provided in the through portion.
  • the indoor heat exchanger first end 211 and the second shielding part 242 of the indoor heat exchanger 210 are connected by screws.
  • the indoor unit 200 adopts a flip-down assembly method, that is, the indoor unit 200 is flipped up and down so that the upper cover 221 of the casing 220 faces downward and the bottom plate 222 faces upward. assembly.
  • the shielding component 240 can be connected to the indoor heat exchanger 210 before the indoor unit 200 is installed as a whole.
  • One end of the first shielding part 241 and the second shielding part 242 rests against the inclination of the upper cover foam layer 2212.
  • the other ends of the first shielding part 241 and the second shielding part 242 are against the water tray 230, which can position and support the entirety of the indoor heat exchanger 210 and the shielding component 240.
  • the positioning portion 2212C can also improve the positioning function of the overall assembly composed of the indoor heat exchanger 210 and the shielding member 240.
  • the shielding component 240 is an integral metal plate-like structure, formed by bending, which facilitates processing and has high structural strength.
  • the shielding component 240 may also be composed of the separate first shielding part 241 and the second shielding part 242 that are welded or connected through other structural forms, or the whole part may be an injection molded part. There is no restriction on this.
  • Figure 13 is a schematic structural diagram of an air conditioner in the related art.
  • a two-pipe air conditioner includes: an outdoor unit 100 and multiple indoor units 200 connected to the outdoor unit 100; wherein multiple indoor units The units 200 are connected in parallel, and the outdoor unit 100 is connected to a plurality of indoor units 200 connected in parallel through the first connection port 001 and the third connection port 003 .
  • the outdoor unit 100 includes a compressor 110, an outdoor heat exchanger 120, a gas-liquid separator 130, an oil separator 140, multiple parallel refrigerant heat exchange pipelines, a three-way valve 150, a four-way valve 160, and an outdoor electronic expansion valve. 310.
  • Each refrigerant heat exchange pipeline between the oil separator 140 and the three-way valve 150 is connected in sequence to the four-way valve 160, the outdoor heat exchanger 120, and the outdoor electronic expansion valve 310.
  • the four-way valve 160 is configured to switch the flow direction of the refrigerant in the refrigerant circuit so that the air conditioner 1000 performs a cooling operation mode or a heating operation mode.
  • the indoor unit 200 includes an indoor heat exchanger 210 and an indoor electronic expansion valve 320 .
  • One end of the indoor heat exchanger 210 is connected to one end of the indoor electronic expansion valve 320, and the other end of the indoor heat exchanger 210 is connected to one end of multiple parallel refrigerant heat exchange pipelines through the first connection port 001 (a four-way valve in Figure 13
  • the other end of the indoor electronic expansion valve 320 is connected to the other end of multiple parallel refrigerant heat exchange pipelines through the third connection port 003 (the end where the three-way valve 150 is located in Figure 13).
  • the refrigerant heat exchange pipeline in the cooling operation of the two-pipe air conditioner is the same as the refrigerant heat exchange pipeline in the heating operation mode.
  • the indoor unit of a two-pipe air conditioner generally only includes one indoor heat exchanger, so the operating modes are limited to heating operation mode, cooling operation mode and dehumidification operation mode.
  • the above multiple operation modes cannot satisfy users. For example, in some areas where the rainy season occurs, after entering the rainy season, the indoor and outdoor temperatures are generally low (usually below 20 degrees Celsius). If the user uses a two-pipe air conditioner to run the dehumidification operation mode, the air When dehumidifying, the following problems will occur: the current two-pipe air conditioner will cause the indoor temperature to drop during dehumidification operation. At this time, the air conditioner will become colder as it dehumidifies, seriously damaging user comfort.
  • a three-pipe air conditioner has one outdoor unit connected to multiple indoor units at the same time.
  • one outdoor unit is connected to two indoor units, and one of the two indoor units can run during the system operation.
  • another indoor unit can run in dehumidification mode, so the purpose of dehumidification can be achieved without lowering the indoor temperature by using a three-pipe air conditioner.
  • three-pipe air conditioners generally have inconvenient installation and poor operational stability. Poor and many other shortcomings.
  • a three-pipe air conditioner usually uses long pipes during installation. When the installation space is limited, there is a high gap between the indoor unit 200 and the outdoor unit 100, which brings inconvenience to the installation process.
  • the three-pipe air conditioner may not be able to operate normally and its operation stability will be poor.
  • the amount of refrigerant in a three-pipe air conditioner is usually large, which can easily lead to reduced compressor operation reliability, poor air conditioner operation stability, and low user satisfaction.
  • the present disclosure provides an air conditioner 1000.
  • the air conditioner 1000 includes four operating modes, which are heating operation mode, non-cooling and dehumidification operation mode, cooling operation mode, and cooling and dehumidification operation mode.
  • the heating operation mode means that the air conditioner 1000 heats the indoor environment
  • the cooling operation mode means that the air conditioner 1000 cools the indoor environment.
  • the non-cooling and dehumidification operation mode means that the air conditioner 1000 dehumidifies the indoor environment without lowering the indoor temperature.
  • the cooling and dehumidification operation mode means that the air conditioner 1000 dehumidifies the indoor environment while lowering the indoor temperature.
  • FIG 14 is a structural diagram of an air conditioner according to some embodiments of the present disclosure.
  • the air conditioner 1000 includes at least one indoor unit 200, an outdoor unit 100 and a circulation pipeline.
  • the circulation pipeline is configured to At least one indoor unit 200 and the outdoor unit 100 are connected to form a circulation loop.
  • This disclosure does not limit the number of indoor units 200, which can be one or more.
  • the air conditioner 1000 includes one indoor unit 200, that is, the first indoor unit 201, as an example for description.
  • the first indoor unit 201 includes two indoor heat exchangers 210 , two indoor electronic expansion valves 320 and a first blowing device 251 .
  • the two indoor heat exchangers 210 are respectively the first indoor heat exchanger 214 and the second indoor heat exchanger 215, and the two indoor electronic expansion valves 320 are respectively the first electronic expansion valve 321 and the second electronic expansion valve 322.
  • the first indoor heat exchanger 214 , the first electronic expansion valve 321 , the second indoor heat exchanger 215 and the second electronic expansion valve 322 are connected in series in sequence.
  • the indoor heat exchanger 210 in the air conditioner 1000 is affected by the flow direction of the refrigerant, and the first indoor heat exchanger 214 and the second indoor heat exchanger 215 can be used as a condenser or an evaporator respectively.
  • the first blowing device 251 is configured to blow air to the first indoor heat exchanger 214.
  • the air outlet side of the first blowing device 251 faces the first indoor heat exchanger 214. This can improve the connection between the first indoor heat exchanger 214 and the indoor air. Heat exchange efficiency.
  • the first blowing device 251 may be a fan, a blower, etc., which is not limited in this disclosure.
  • the outdoor unit 100 of the air conditioner 1000 includes a compressor assembly 20, an outdoor heat exchanger 120 (ie, a first outdoor heat exchanger 121), two refrigerant flow switching devices 170, and a second blowing device 252 and the outdoor electronic expansion valve 310 (ie, the third electronic expansion valve 311).
  • the two refrigerant flow switching devices 170 are respectively a first refrigerant flow switching device 171 and a second refrigerant flow switching device 172 .
  • the second blowing device 252 is configured to blow air to the first outdoor heat exchanger 121 , and the air outlet side of the second blowing device 252 faces the first outdoor heat exchanger 121 .
  • the compressor assembly 20 includes: an inlet 21 , an outlet 22 , a gas-liquid separator 130 , a compressor 110 , an oil separator 140 , an oil return capillary 23 and a one-way valve 24 .
  • the inlet 21 is the first port 131 of the gas-liquid separator 130
  • the second port 132 of the gas-liquid separator 130 is connected with the air return port 111 of the compressor 110
  • the exhaust port 112 of the compressor 110 is connected with the first port of the oil separator 140.
  • Port 141 is connected, the second port 142 of the oil separator 140 is connected with the one-way valve 24, the outlet 22 is provided on the communication pipeline on the side of the one-way valve 24 away from the oil separator 140, and the third port 143 of the oil separator 140 passes through
  • the oil return capillary tube 23 is connected with the second port 132 of the gas-liquid separator 130 .
  • the gas-liquid separator 130 is configured to use the principles of centrifugal separation and wire mesh filtration to filter the liquid refrigerant that has not been completely evaporated from the gaseous refrigerant returned to the compressor 110 .
  • the oil separator 140 is configured to separate the compressor oil in the high-temperature and high-pressure gas phase refrigerant discharged from the compressor 110 under the action of gravity based on the oil separation principle of reducing the air flow speed and changing the air flow direction to ensure safe and efficient operation of the device.
  • the refrigerant flow switching device 170 can be a three-way valve, a four-way valve, etc., and the structures of the first refrigerant flow switching device 171 and the second refrigerant flow switching device 172 can be the same, or they can Differently, this disclosure does not limit this.
  • the four-way valve has the advantages of rapid opening and closing, simple structure, small size, light weight, easy maintenance, not restricted by the installation direction, and the flow direction of the medium can be switched arbitrarily, some embodiments of the present disclosure use the refrigerant flow switching device 170 as the Take the four-way valve as an example to describe.
  • the first refrigerant flow switching device 171 includes a first port M, a second port N, a third port O, and a fourth port P.
  • the first port M is connected to one end of the first indoor heat exchanger 214
  • the second port N is connected to the inlet 21, and the first port M is connected to one end of the first indoor heat exchanger 214.
  • the third port O is connected to the outlet 22, and the fourth port P is connected to the second refrigerant flow switching device 172 through the connection port.
  • the second refrigerant flow switching device 172 includes a fifth port R, a sixth port S, a seventh port T, and an eighth port U.
  • the fifth port R is connected to the inlet 21, the sixth port S is connected to the first outdoor heat exchanger 121, the seventh port T is connected to the outlet 22, and the eighth port U is connected to the fourth port P through a connection port.
  • Both the first refrigerant flow switching device 171 and the second refrigerant flow switching device 172 can realize switching communication between ports. For example, the communication between the first port M and the second port N can be switched to the communication between the second port N and the third port. Port O is connected.
  • Figure 15 is a circuit connection diagram of an air conditioner according to some embodiments.
  • the air conditioner 1000 also includes a controller 500.
  • the controller 500 is connected to the indoor unit 200 and the outdoor unit 100. Both are electrically connected and configured to control starting or stopping of the indoor unit 200 and the outdoor unit 100 .
  • the controller 500 can be used as a hub to control the operation of the air conditioner 1000, which is beneficial to the stable operation of the air conditioner 1000.
  • the controller 500 of the air conditioner 1000 controls the connection status of the ports of the first refrigerant flow switching device 171 and the second refrigerant flow switching device 172 , the opening of the expansion valve 300 , and the first blowing device 251 power to adjust the first indoor heat exchanger 214, the second indoor heat exchanger 215 and the first outdoor heat exchanger 121 to be used as a condenser or evaporator. Therefore, when the air conditioner 1000 operates in the dehumidification operation mode, the indoor temperature does not drop, thereby improving the user's comfort and enhancing the user's experience.
  • Figure 16 is an operating cycle structure diagram of an air conditioner according to some embodiments.
  • the controller 500 controls the first refrigerant flow to the first port of the switching device 171 M is connected to the third port O, the second port N is connected to the fourth port P; the fifth port R of the second refrigerant flow switching device 172 is connected to the sixth port S, and the seventh port T is connected to the eighth port U.
  • the fourth port P and the eighth port U are blocked to prevent refrigerant from leaking.
  • the first electronic expansion valve 321 is controlled to be fully opened, and the rotation speed of the first blowing device 251 is controlled to a first preset value.
  • the first indoor heat exchanger 214 and the second indoor heat exchanger 215 function as condensers, and the first outdoor heat exchanger 121 functions as an evaporator. Since the condenser dissipates heat during the condensation process, both indoor heat exchangers 210 dissipate heat during operation, and the air conditioner operates in the heating operation mode.
  • the compressor 110 compresses the low-temperature and low-pressure gas phase refrigerant and discharges the compressed high-temperature and high-pressure gas phase refrigerant through the exhaust port 112 to the oil separator 140.
  • the oil separator 140 separates the high-temperature and high-pressure gas phase refrigerant from part of the compressor oil, and then compresses the gas phase refrigerant.
  • the oil returns to the compressor 110, and the high-temperature and high-pressure gas phase refrigerant flows out and enters the first indoor heat exchanger 214 through the one-way valve 24, the first refrigerant flow switching device 171, the first connection port 001, and the second connection port 002 in sequence.
  • the high-temperature and high-pressure gas phase refrigerant passes through the first indoor heat exchanger 214 and is condensed into a medium-temperature and high-pressure liquid phase refrigerant under the action of the first blowing device 251, and is further condensed into a medium-temperature and high-pressure liquid phase in the second indoor heat exchanger 215.
  • the medium-temperature and high-pressure liquid refrigerant becomes a medium-temperature and medium-pressure liquid refrigerant after being expanded by the second electronic expansion valve 322.
  • the medium-temperature and medium-pressure liquid refrigerant enters the third connection port 003 through the third connection port 004 and the fourth connection port 004 in turn.
  • the electronic expansion valve 311 becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant after being expanded again by the third electronic expansion valve 311.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant evaporates into a low-temperature and low-pressure gas phase refrigerant through the first outdoor heat exchanger 121.
  • the low-pressure gas phase refrigerant finally flows into the gas-liquid separator 130 through the second refrigerant flow switching device 172.
  • the gas-liquid separator 130 filters the incompletely evaporated liquid phase refrigerant again, and finally the gas phase refrigerant in a low-temperature and low-pressure state returns to the compressor through the return port 111.
  • the circulation of the refrigerant during the heating operation mode of the air conditioner 1000 is thus completed.
  • the refrigerant flow direction of the air conditioner and the connection manner of each port of the first refrigerant flow switching device 171 and the second refrigerant flow switching device 172 are consistent with those in the heating operation mode. Please refer to Figure 16.
  • the controller 500 controls the second electronic expansion valve 322 and the third electronic expansion valve 311 to fully open, and controls the rotation speed of the first blowing device 251 to a second preset value.
  • the second preset value is greater than the first preset value to ensure that In the non-cooling and dehumidification mode, the high-temperature and high-pressure gas phase refrigerant can be fully condensed into a medium-temperature and high-pressure liquid phase refrigerant when passing through the first indoor heat exchanger 214 .
  • the first indoor heat exchanger 214 serves as a condenser, the second indoor heat exchanger 215 and the first outdoor heat exchanger 121 Used as evaporator.
  • the high-temperature and high-pressure gas phase refrigerant passes through the first indoor heat exchanger 214 and is condensed into a medium-temperature and high-pressure liquid-phase refrigerant under the action of the first blowing device 251.
  • the liquid refrigerant expands into a low-temperature and low-pressure liquid refrigerant through the first electronic expansion valve 321.
  • the low-temperature and low-pressure liquid refrigerant evaporates into a low-temperature and low-pressure gas-liquid two-phase refrigerant through the second indoor heat exchanger 215.
  • the low-temperature and low-pressure gas-liquid refrigerant is The two-phase refrigerant flows out through the second electronic expansion valve 322, flows into the first outdoor heat exchanger 121 through the third connection port 003, the fourth connection port 004, and the third electronic expansion valve 311 in sequence, and passes through the first outdoor heat exchanger 121 It is further evaporated into a low-temperature and low-pressure gas phase refrigerant.
  • the low-temperature and low-pressure gas phase refrigerant flows into the gas-liquid separator 130 through the second refrigerant flow switching device 172.
  • the low-temperature and low-pressure gas phase refrigerant flowing out from the gas-liquid separator 130 enters the compressor 110. This is completed.
  • the refrigerant circulates when the air conditioner 1000 is operating in the non-cooling and dehumidification operation mode.
  • the rotation speed of the first blowing device 251 is greater than the rotation speed of the first blowing device 251 when the air conditioner 1000 operates in the heating operation mode. Therefore, when the air conditioner 1000 When operating in the non-cooling and dehumidifying operating mode, the first indoor heat exchanger 214 serves as a condenser to condense the refrigerant, which is equivalent to the first indoor heat exchanger 214 and the second indoor heat exchanger when the air conditioner 1000 operates in the heating operating mode. 215 acts as a condenser to superimpose refrigerant condensation.
  • the second indoor heat exchanger 215 and the first outdoor heat exchanger 121 act as evaporators to superimpose the evaporation of the refrigerant, which is equivalent to when the air conditioner 1000 operates in the heating operation mode.
  • the first outdoor heat exchanger 121 functions as an evaporator to evaporate the refrigerant.
  • Figure 17 is a pressure-enthalpy diagram of the non-cooling and dehumidification operation mode of the air conditioner according to some embodiments.
  • state point a is the state before the refrigerant enters the first heat exchanger 214
  • state point b is the state of the refrigerant after passing through the first heat exchanger 214.
  • the state after the heat exchanger 214 is condensed.
  • the state point a and the state point b show the state change of the refrigerant during the condensation process of the first indoor heat exchanger 214
  • the state point c is the refrigerant passing through the first electronic expansion valve 321. After expansion, it enters the state before the second indoor heat exchanger 215.
  • the state point d is the state after the refrigerant evaporates through the second indoor heat exchanger 215.
  • the period between state point c and state point d is the heat exchange of the refrigerant after passing through the second indoor heat exchanger.
  • the state changes during the evaporation process of the refrigerant 215; the state point e is the state after the refrigerant evaporates again after passing through the first outdoor heat exchanger 121.
  • the state point d and the state point e are during the evaporation process of the refrigerant passing through the first outdoor heat exchanger 121. status changes.
  • the enthalpy value corresponding to state point a is h4
  • the enthalpy value corresponding to state point b and state point c is h1
  • the enthalpy value corresponding to state d is point h2
  • the enthalpy value corresponding to state point e is h3
  • the air conditioner 1000 is running During the process, the amount of refrigerant circulating in the system is m.
  • the heat released by the refrigerant after being condensed through the first indoor heat exchanger 214 is greater than the heat absorbed by the refrigerant after being evaporated through the second indoor heat exchanger 215, that is, Q cond > Q evap , so the air conditioner 1000 is operating without cooling and dehumidification.
  • the indoor air temperature will increase while the humidity decreases.
  • Figure 18 is another operating cycle structure diagram of an air conditioner according to some embodiments.
  • the controller 500 when the air conditioner When the device 1000 is operating in the cooling operation mode, the controller 500 is configured to control the first port M of the first refrigerant flow switching device 171 to communicate with the second port N, and the third port O to communicate with the fourth port P; the second refrigerant flow direction
  • the sixth port S of the switching device 172 is connected to the seventh port T, the fifth port R is connected to the eighth port U, and the fourth port P and the eighth port U are blocked.
  • the first electronic expansion valve 321 is controlled to be fully opened, and the rotation speed of the second blowing device 252 is controlled to a third preset value.
  • the first outdoor heat exchanger 121 functions as a condenser
  • the first indoor heat exchanger 214 and the second indoor heat exchanger 215 function as evaporators. Since the evaporator absorbs heat during the evaporation process, both indoor heat exchangers 210 absorb heat during operation, and the air conditioner 1000 operates in the cooling mode.
  • the low-temperature and low-pressure gas phase refrigerant is compressed by the compressor 110 and becomes a high-temperature and high-pressure gas phase refrigerant.
  • the high-temperature and high-pressure gas phase refrigerant flows out and enters the first outdoor heat exchanger 121 through the one-way valve 24 and the second refrigerant flow switching device 172.
  • the gas phase refrigerant passes through the first outdoor heat exchanger 121 and is condensed into a medium temperature and high pressure liquid phase refrigerant under the action of the second blowing device 252.
  • the medium temperature and high pressure liquid phase refrigerant becomes a medium temperature and medium pressure after being expanded by the third electronic expansion valve 311.
  • the gas-liquid two-phase refrigerant of medium temperature and medium pressure enters the second electronic expansion valve 322 through the fourth connection port 004 and the third connection port 003 in sequence. After being expanded again by the second electronic expansion valve 322, it becomes It is a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant evaporates into a low-temperature and low-pressure gas-phase refrigerant through the second indoor heat exchanger 215 and the first indoor heat exchanger 214.
  • the low-temperature and low-pressure gas phase refrigerant is sequentially It flows into the gas-liquid separator 130 through the second connection port 002, the first connection port 001 and the first refrigerant flow switching device 171. Finally, the gas phase refrigerant in a low temperature and low pressure state returns to the compressor 110 through the air return port 111, thus completing the air conditioning The circulation of refrigerant during the refrigeration operation cycle of the device 1000.
  • the refrigerant flow direction in the air conditioner and the connection manner of each port of the first refrigerant flow switching device 171 and the second refrigerant flow switching device 172 are consistent with those in the cooling operation mode. Refer to Figure 18.
  • the controller 500 controls the second electronic expansion valve 322 and the third electronic expansion valve 311 to fully open, and controls the rotation speed of the second blowing device 252 to a fourth preset value, which is smaller than the third preset value.
  • the first outdoor heat exchanger 121 and the second indoor heat exchanger 215 function as condensers, and the first indoor heat exchanger 214 functions as an evaporator.
  • the high-temperature and high-pressure gas-phase refrigerant passes through the first outdoor heat exchanger 121 and is condensed into a medium-temperature and high-pressure gas-liquid two-phase refrigerant under the action of the second blowing device 252.
  • the medium temperature and high pressure gas-liquid two-phase refrigerant flows out through the third electronic expansion valve 311 and then flows into the second indoor heat exchanger 215 through the fourth connection port 004, the third connection port 003 and the second electronic expansion valve 322.
  • the gas-liquid two-phase refrigerant is condensed into a medium-temperature and high-pressure liquid-phase refrigerant through the second indoor heat exchanger 215.
  • the medium-temperature and high-pressure liquid refrigerant is expanded by the first electronic expansion valve 321 and becomes a medium-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the medium-temperature and low-pressure gas-liquid two-phase refrigerant evaporates into a low-temperature and low-pressure gas-phase refrigerant through the first indoor heat exchanger 214.
  • the low-temperature and low-pressure gas phase refrigerant flows in through the second connection port 002, the first connection port 001, and the first refrigerant flow direction switch 171.
  • the gas-liquid separator 203 finally returns the gas-phase refrigerant in a low-temperature and low-pressure state to the compressor 110 through the air return port 111, thus completing the cycle of the refrigerant when the air conditioner 1000 is operating in the cooling and dehumidification operation mode.
  • the rotation speed of the second blowing device 252 is smaller than the rotation speed of the second blowing device 252 when the air conditioner 1000 operates in the cooling operation mode. Therefore, when the air conditioner 1000 operates in the cooling operation mode, In the cooling and dehumidification operation mode, the effect of the first indoor heat exchanger 214 as an evaporator on the evaporation of the refrigerant is equivalent to the superposition of the first indoor heat exchanger 214 and the second indoor heat exchanger 215 on the evaporation of the refrigerant when the air conditioner 1000 is running in the cooling mode. role.
  • the second indoor heat exchanger 215 and the first outdoor heat exchanger 121 serve as condensers to superimpose the refrigerant condensation effect on the first outdoor air conditioner when the air conditioner 1000 is operating in the cooling operation mode.
  • the heat exchanger 121 serves as a condenser to condense the refrigerant.
  • Figure 19 is a pressure-enthalpy diagram of the cooling and dehumidification mode of the air conditioner according to some embodiments.
  • state point a is the state of the refrigerant before entering the first outdoor heat exchanger 121
  • state point b is the state of the refrigerant after passing through the first outdoor heat exchanger 121.
  • the state after condensation in an outdoor heat exchanger 121 is the state change of the refrigerant during the condensation process of the first outdoor heat exchanger 121
  • state point c is the state change of the refrigerant after passing through the second indoor heat exchanger 215.
  • the state after condensation, between state point b and state point c The period is the state change of the refrigerant during the condensation process of the second indoor heat exchanger 322; the state point d is the state of the refrigerant after it has been expanded by the third electronic expansion valve 311, and the state point e is the state of the refrigerant after it has been expanded by the first electronic expansion valve 321.
  • state, the state point f is the state after the refrigerant evaporates through the first indoor heat exchanger 214, and the state point d is the state change during the condensation process of the refrigerant through the second indoor heat exchanger 215; state point e and state point Between f is the state change of the refrigerant during the evaporation process of the first indoor heat exchanger 214.
  • the enthalpy value corresponding to state point a is h4
  • the enthalpy value corresponding to state point b is h2
  • the enthalpy value corresponding to state point c is h1
  • the enthalpy value corresponding to state point d is h1
  • the enthalpy value corresponding to state point e is h1
  • the enthalpy value corresponding to state point f is h3.
  • the amount of refrigerant circulating in the system is m.
  • the air conditioner 1000 Since h 3 > h 2 , the heat absorbed by the refrigerant after evaporating through the first indoor heat exchanger 214 is greater than the heat released after the refrigerant is condensed through the second indoor heat exchanger 215 , that is, Q evap > Q cond , so the air conditioner 1000 is in When running the cooling and dehumidification operation mode, the temperature of the indoor air will decrease while the humidity decreases.
  • the air conditioner 1000 includes two indoor units 200 (a first indoor unit 201 and a second indoor unit 202).
  • FIG. 20 is another operating cycle diagram of an air conditioner according to some embodiments
  • FIG. 21 is a structural diagram of another operating cycle of an air conditioner according to some embodiments.
  • the air conditioner 1000 further includes a second indoor unit 202.
  • the second indoor unit 202 includes a third indoor heat exchanger 216, a fourth electronic expansion valve 323, The fourth indoor heat exchanger 217 and the fifth electronic expansion valve 324.
  • the third indoor heat exchanger 216 is connected in series with the fourth electronic expansion valve 323, the fourth indoor heat exchanger 217 and the fifth electronic expansion valve 324 in sequence.
  • the second indoor unit 202 is connected in parallel with the first indoor unit 201, and the two indoor units 200 are connected in series with the outdoor unit 100 respectively. It should be noted that when the air conditioner 1000 operates in any one of the four modes, the refrigerant flowing from the outdoor unit 100 to the two indoor units 200 passes through the second connection port 002 or the third connection port 003 and then passes through the refrigerant pipeline. The refrigerant flows to the first indoor unit 201 and the second indoor unit 202 respectively, and the refrigerant flowing from the two indoor units 200 to the outdoor unit 100 passes through the refrigerant pipe after the refrigerants in the first indoor unit 201 and the second indoor unit 202 merge. The path flows into the outdoor unit 100.
  • the outdoor unit 100 of the air conditioner 1000 includes one or more outdoor heat exchangers 120.
  • the multiple outdoor heat exchangers 120 are connected in parallel.
  • the multiple outdoor heat exchangers 120 can improve the efficiency of the air conditioner 1000. Cooling or heating effect.
  • This disclosure takes the outdoor unit 100 including two outdoor heat exchangers 120 as an example for description.
  • the outdoor unit 200 also includes a second outdoor heat exchanger 122, a sixth electronic expansion valve 312, a third blowing device 253, and a third refrigerant flow switching device 173.
  • the third refrigerant flow switching device 173 may be a three-way valve or a four-way valve. This disclosure takes the third refrigerant flow switching device 173 as a four-way valve as an example.
  • the third refrigerant flow switching device 173 includes a ninth port I, a tenth port K, an eleventh port Y, and a twelfth port Z.
  • the ninth port I of the third refrigerant flow switching device 173 is connected to the inlet 21, the tenth port K is connected to the second outdoor heat exchanger 122, the eleventh port Y is connected to the outlet 22, and the twelfth port Z is connected to the second refrigerant.
  • the flow is connected to the sixth port S of the switching device 172 .
  • the second outdoor unit 202 communicates with the two indoor units 200 through the sixth electronic expansion valve 312.
  • the third blowing device 253 is configured to blow air to the second outdoor heat exchanger 122 , and the air outlet side of the third blowing device 253 is disposed toward the second outdoor heat exchanger 122 .
  • the controller 500 when the air conditioner 1000 operates in the heating operation mode and/or the non-cooling and dehumidification operation mode, the controller 500 is configured to control the ninth port I and the tenth port K to be connected, and the remaining ports are blocked.
  • the refrigerant flowing out from the two indoor units 200 is divided after passing through the connection port, and part of the refrigerant flows into the gas-liquid separator 130 through the third electronic expansion valve 311, the first outdoor heat exchanger 121, and the second refrigerant flow switching device 172. Another part of the refrigerant flows into the gas-liquid separator 130 through the sixth electronic expansion valve 312, the second outdoor heat exchanger 122, and the third refrigerant flow switching device 173 in sequence.
  • the controller 500 when the air conditioner 1000 operates in the cooling operation mode or the cooling and dehumidification operation mode, the controller 500 is configured to control the tenth port K and the eleventh port Y to be connected, and the remaining ports are blocked.
  • the refrigerant flowing out from the oil separator 140 is divided after passing through the one-way valve 24. A part of the refrigerant flows into the two indoor units 200 through the first outdoor heat exchanger 121 and the third electronic expansion valve 311, and the other part of the refrigerant passes through the second outdoor heat exchanger.
  • the heater 122 and the sixth electronic expansion valve 312 flow into the two indoor units 200 .
  • only part of the outdoor heat exchanger 120 can be operated to reduce the energy consumption of the air conditioner 1000.
  • only the third outdoor heat exchanger 120 can be operated.
  • the sixth electronic expansion valve 312 is closed and the third electronic expansion valve 311 is opened.
  • the operating cycle of the refrigerant of the air conditioner 1000 can be the operating state when the second outdoor heat exchanger 122 is removed as shown in Figure 21. As shown in the figure, the details will not be described again in this disclosure.
  • Figure 23 is another air conditioner operation cycle structure diagram according to some embodiments.
  • the air conditioner 1000 in order to further reduce the energy consumption of the air conditioner 1000, in some embodiments of the present disclosure, also includes a solenoid valve 600 , the first end 601 of the solenoid valve 600 is connected to the second end 3222 of the second electronic expansion valve 322, and the second end 602 of the solenoid valve 600 is connected to the inlet 21.
  • the controller 500 is configured to control the third electronic expansion valve 311 to close and the solenoid valve 600 to open.
  • the first port M and the third port O of the first refrigerant flow switching device 171 are connected, and the second electronic expansion valve 322 and the fifth electronic expansion valve 324 are both fully open.
  • the low-temperature and low-pressure gas phase refrigerant is compressed by the compressor 110 and flows out into a high-temperature and high-pressure gas phase refrigerant.
  • the high-temperature and high-pressure gas phase refrigerant passes through the one-way valve 24, the first refrigerant flow switching device 171, the first connection port 001 and the second connection port in sequence. 002, it is divided into two parts.
  • a part of the high-temperature and high-pressure gas phase refrigerant is condensed into a medium-temperature and high-pressure liquid phase refrigerant through the first indoor heat exchanger 214.
  • the medium-temperature and medium-pressure liquid phase refrigerant expands through the first electronic expansion valve 321 and becomes low temperature and low pressure.
  • the low-temperature and low-pressure liquid refrigerant is evaporated by the second indoor heat exchanger 215 and becomes a low-temperature and low-pressure gas phase refrigerant.
  • the low-temperature and low-pressure gas phase refrigerant flows out from the second electronic expansion valve 322; another part of the high-temperature and high-pressure gas phase refrigerant
  • the liquid refrigerant is condensed into a medium temperature and high pressure liquid refrigerant through the third indoor heat exchanger 216.
  • the medium temperature and medium pressure liquid refrigerant is expanded into a low temperature and low pressure gas-liquid two-phase refrigerant through the fourth electronic expansion valve 323.
  • the low temperature and low pressure gas-liquid two-phase refrigerant is The state refrigerant evaporates into a low-temperature and low-pressure gas phase refrigerant through the fourth indoor heat exchanger 217.
  • the low-temperature and low-pressure gas phase refrigerant flows out from the fifth electronic expansion valve 324; the low-temperature refrigerant flows out from the second electronic expansion valve 322 and the fifth electronic expansion valve 324 respectively.
  • the gas-liquid separator 130 again filters the liquid phase refrigerant that has not completely evaporated, and finally is in a low temperature and low pressure state.
  • the gas phase refrigerant returns to the compressor 110 through the air return port 111.
  • the outdoor heat exchanger 120 can complete the dehumidification and heating of the indoor air without working, thereby reducing the energy consumption of the air conditioner 1000.
  • Figure 24 is a pressure-enthalpy diagram of another air conditioner in a non-cooling and dehumidification operation mode according to some embodiments.
  • state point a is the state of the refrigerant before entering the first indoor heat exchanger 214.
  • State point a b is the state of the refrigerant after it has been condensed through the first indoor heat exchanger 214.
  • the state point a and b are the state changes of the refrigerant during the condensation process through the first indoor heat exchanger 214;
  • state point c is the state of the refrigerant entering the first indoor heat exchanger 214.
  • the state point d is the state after the refrigerant evaporates through the second indoor heat exchanger 215.
  • the period between state point c and state point d is the evaporation process of the refrigerant through the second indoor heat exchanger 215. status changes in .
  • the enthalpy value corresponding to state point a is h3, the enthalpy value corresponding to state point b and state point c is h1, and the enthalpy value corresponding to state point d is h2; during the operation of the air conditioner 1000, the amount of refrigerant circulating in the system is m.
  • the air conditioner 1000 operates in the non-cooling and dehumidification mode.
  • the indoor air is condensed through the first indoor heat exchanger 214 and evaporated through the second indoor heat exchanger 215 respectively.
  • the refrigerant will not absorb heat from the outdoor heat exchanger 120, and the temperature of the indoor air will rise slightly while the humidity decreases.
  • the air conditioner 1000 includes: a second outdoor heat exchanger 122 , a sixth electronic expansion valve 312 , a third blowing device 253 and a third refrigerant flow switching device 173 , then the refrigerant is The flow direction can be referred to Figure 23, which will not be described again in this disclosure.
  • the air conditioner 1000 controls the refrigerant by detecting the temperature and humidity value of the space where the indoor unit is located to adjust the operating frequency of the compressor 110, the opening of the electronic expansion valve 300, and the fan gear of the indoor unit 200.
  • the flow rate and air outlet temperature of the indoor unit 200 are used to realize frequency conversion adjustment of the air conditioner 1000, thereby changing the temperature and humidity of the space where the indoor unit 200 is located.
  • the compressor 110 may work at a fixed frequency, causing the user to feel that the humidity does not decrease but the body temperature is too low.
  • the present disclosure provides a method for controlling the air conditioner 1000.
  • controlling the air conditioner 1000 dual control of room temperature and humidity of multiple indoor units 200 is achieved.
  • FIG 25 is a diagram of the main components of an air conditioner according to some embodiments. As shown in Figure 25, embodiments of the present disclosure provide an air conditioner 1000 and an operating mode control method of the air conditioner 1000.
  • the air conditioner 1000 may include One outdoor unit 100 and two or more indoor units 200, and a controller 500 for controlling each indoor unit 200 and outdoor unit 100.
  • the outdoor unit 100 includes an outdoor heat exchanger 120, that is, the first outdoor heat exchanger 121.
  • the outdoor unit 100 also includes an outdoor fan 180 (that is, the second blowing device 252), a liquid side stop valve 191 and a gas side stop valve 192.
  • the first indoor unit 201 also includes a first inlet air temperature sensor 51 , a first indoor temperature sensor 11 , a second indoor temperature sensor 12 and a third indoor temperature sensor 13 .
  • the second indoor unit 202 also includes a second inlet air temperature sensor 52 , a fourth indoor temperature sensor 14 , a fifth indoor temperature sensor 15 and a sixth indoor temperature sensor 16 .
  • Figure 26 is a flow chart of a control method for an air conditioner according to some embodiments. As shown in Figure 26, the present disclosure provides a control method for an air conditioner 1000, which includes the following steps:
  • the controller 500 obtains the first exhaust pressure value Pd01 of the compressor 110 at the first time through the pressure sensor 60.
  • the first time is any time when the air conditioner 1000 is running.
  • the exhaust pressure value Pd of the compressor 110 refers to the pressure value of the refrigerant gas in the exhaust pipe at the compressor exhaust port 112 .
  • the first exhaust pressure value Pd01 is the exhaust pressure value of the compressor 110 detected by the pressure sensor 60 at the first time.
  • the first time may be the start time of the air conditioner 1000.
  • the controller 500 may execute step S101 based on the operating mode selected by the user to obtain the first exhaust pressure value Pd01 of the compressor 110.
  • the controller 500 determines the maximum target pressure value from the first target pressure value Pdset1(1) and the second target pressure value Pdset2(1).
  • the target pressure value Pdset is the target discharge pressure value of the compressor 110 when any one of the plurality of indoor units 200 operates in any mode.
  • the first target pressure value Pdset1(1) is the target exhaust pressure value of the compressor 110 at the first time when the first indoor unit 201 of the plurality of indoor units 200 operates in any mode.
  • the second target pressure value Pdset2(1) is the target discharge pressure value of the compressor 110 at the first time when the second indoor unit 202 of the plurality of indoor units 200 operates in any mode.
  • its set target pressure value Pdset may change.
  • the first target pressure value Pdset1(1) of the first indoor unit 201 at the first moment will change with the change of the indoor ambient temperature Ti, This makes the redetermined target pressure value Pdset more consistent with the current environmental conditions of the first indoor unit 201 .
  • the controller 500 determines that the first target pressure value Pdset1(1) of the first indoor unit 201 is greater than or equal to the second target pressure value Pdset2(1) of the second indoor unit 202, the first target pressure value Pdset1(1) Determine the maximum target pressure value.
  • the controller 500 determines that the first target pressure value Pdset1(1) of the first indoor unit 201 is smaller than the second target pressure value Pdset2(1) of the second indoor unit 202, the second target pressure value Pdset2(1) is determined as Maximum target pressure value.
  • Step S103 The controller 500 calculates the pressure deviation value ⁇ Pd2.
  • the pressure deviation value ⁇ Pd2 refers to the difference between the maximum target pressure value when the air conditioner 1000 is operating at any time and the exhaust pressure value Pd of the compressor 110 at that time.
  • the controller 500 determines that the first target pressure value Pdset1(1) of the first indoor unit 201 is greater than the second target pressure value Pdset2(2) of the second indoor unit 202 at the first time, the maximum target pressure value is Pdset1(1), the first exhaust pressure value of the compressor 110 at the first moment is Pd01.
  • Step S104 The controller 500 obtains the fan gear adjustment value of the outdoor fan 180 and adjusts the gear of the outdoor fan 180.
  • the controller 500 finds the fan gear adjustment value of the outdoor fan 180 in the preset correspondence table based on the pressure deviation value ⁇ Pd2, and adjusts the gear gear of the outdoor fan 180 so that the exhaust pressure value Pd of the compressor 110 changes from the first moment The first exhaust pressure value Pd01 is adjusted toward the maximum target pressure value.
  • the preset correspondence table is a correspondence table between the pressure deviation value ⁇ Pd2 and the fan gear adjustment value, which includes at least one maximum target pressure value of the indoor unit 200 at any time and the exhaust pressure value of the compressor 110 at that time.
  • the pressure deviation value ⁇ Pd2 between Pd, and the fan gear adjustment value of at least one outdoor fan 180, and at least one pressure deviation value ⁇ Pd2 has a corresponding relationship with the fan gear adjustment value of at least one outdoor fan 180.
  • the controller 500 obtains the outdoor ambient temperature and the frequency of the compressor 110 at the start of operation, and gives the outdoor fan 180 an initial fan gear according to the outdoor ambient temperature and the frequency of the compressor 110 .
  • the controller 500 determines the pressure deviation value ⁇ Pd2, and finds the fan gear adjustment value of the outdoor fan 180 in the preset correspondence table based on the pressure deviation value ⁇ Pd2. Based on the found fan gear adjustment value, the controller 500 determines the fan gear adjustment value according to the initial fan speed. Adjust the gear of the outdoor fan 180 so that the exhaust pressure value Pd of the compressor 110 is adjusted toward the maximum target pressure value.
  • the exhaust pressure value Pd of the compressor 110 reaches the maximum target pressure value at any time at that time, it can be considered that the indoor ambient temperature Ti at that time has reached the predetermined value. Assuming the temperature Ts, the operation of the air conditioner 1000 reaches a dynamic balance at this time. When there is no change in the preset temperature Ts or a sudden change in the indoor ambient temperature Ti, the maximum pressure value of the indoor unit 200 generally no longer changes with the change of time. .
  • the corresponding relationship between the pressure deviation value ⁇ Pd2 and the fan gear adjustment value is as shown in Table 1.
  • Table 1 belongs to Default correspondence table.
  • the air conditioner 1000 may also include another preset correspondence table.
  • the controller 500 can determine the second exhaust pressure of the compressor 110 The value Pd02 reaches the maximum target pressure value.
  • the preset threshold may be a preset smaller pressure value.
  • Figure 27 is a logic flow chart of a control method for an air conditioning system according to some embodiments. As shown in Figure 27, when the first indoor unit 201 operates in the non-cooling and dehumidification operation mode and the second indoor unit 202 operates in the cooling operation mode , or when both the first indoor unit 201 and the second indoor unit 202 are operating in the non-cooling and dehumidification operation mode, the following steps may be included after steps S101 to S104:
  • Step S201 obtain the ambient temperature Ti and the set temperature Ts, and determine the first temperature difference ⁇ T1 and the temperature difference change rate X.
  • the controller 500 obtains the first ambient temperature Ti1 at the first time and the second ambient temperature Ti2 at the second time through the first inlet air temperature sensor 51 of the first indoor unit 201 to obtain the set temperature Ts.
  • the second moment is the moment after one cycle has passed from the first moment, taking a certain detection time as a cycle.
  • the n+1th moment is the moment after one cycle of the nth moment.
  • This disclosure does not limit the length of a cycle. For example, a cycle can be 10 seconds.
  • the set temperature Ts is the user input set temperature value.
  • the temperature difference change rate X refers to the temperature difference at the n+1th time and the temperature difference change rate at the nth time.
  • Ti(n+1) represents the detected ambient temperature at the (n+1)th time
  • Ti(n) represents the detected ambient temperature at the nth time.
  • the indoor ambient temperature detected by the first inlet air temperature sensor 51 of the first indoor unit 201 at the first moment is Ti1
  • the first inlet air temperature of the first indoor unit 201 at the second moment is Ti1.
  • the indoor ambient temperature detected by the sensor 51 is Ti2.
  • Step S202 Obtain the second exhaust pressure value Pd02 and determine the relationship between the second exhaust pressure value Pd02 and the first exhaust pressure value Pd01.
  • the controller 500 obtains the second exhaust pressure value Pd02 of the compressor 110 at the second time through the pressure sensor 60 .
  • Step S203 Obtain the change value ⁇ Pd1 of the target pressure, and determine the third target pressure value Pdset1(2) and the fourth target pressure value Pdset2(2).
  • the temperature difference of the temperature Ts is set based on the first ambient temperature Ti1 ⁇ T1 and temperature difference change rate X are used to determine the change value ⁇ Pd1 of the target pressure.
  • the change value ⁇ Pd1 of the target pressure is the difference between the target pressure value Pdset1(n+1) of the indoor unit 200 at the (n+1)th time and the target exhaust pressure value Pdset1(n) at the nth time.
  • the change value ⁇ Pd1 of the target pressure of the first indoor unit 201 is the first target pressure value Pdset1(1) when the first indoor unit 201 operates at the first time and the value Pdset1(1) when the first indoor unit 201 operates at the second time.
  • Table 4 is a relationship table between the target pressure change value ⁇ Pd1, the temperature difference ⁇ T, and the temperature difference change rate X.
  • ⁇ Pd1 is determined by combining the temperature difference ⁇ T and the temperature difference change rate ) is the target value of the exhaust pressure of the indoor unit 200 at time .
  • the temperature difference between the ambient temperature Ti1 detected by the first temperature sensor and the set temperature Ts at the first time is ⁇ T is -4°C
  • the temperature difference change rate X is -0.7°C, based on the temperature difference ⁇ T being -4°C, the temperature difference change rate
  • the ambient temperature Ti1 detected by the first inlet air temperature sensor 51 at the first time is equal to the set temperature Ts.
  • the temperature difference ⁇ T is 2°C.
  • the temperature difference change rate X is 0.3°C, based on the temperature difference ⁇ T being 2°C, the temperature difference change rate
  • the calculation method of the fourth target pressure value Pdset2(2) at the second time is the same as the third target pressure value Pdset1 of the first indoor unit 201 operating at the second time.
  • the calculation method of (2) is the same and will not be described in detail in this disclosure.
  • Step S204 determine the magnitude of the third target pressure value Pdset1(2) and the fourth target pressure value Pdset2(2).
  • the target pressure value Pdset of the second indoor unit 202 does not change, so the second indoor unit 202 operates in the second
  • the fourth target pressure value Pdset2(2) at the time is equal to the second target pressure value Pdset2(1) at the first time, and at this time, steps S204A1 to S209 are executed.
  • Step S204A determine that the third target pressure value Pdset1(2) is greater than the fourth target pressure value Pdset2(2).
  • the controller 500 determines the magnitude of the third target pressure value Pdset1(2) of the first indoor unit 201 at the second time and the fourth target pressure value Pdset2(2) of the second indoor unit 202 at the second time.
  • the first target pressure value Pdset1(1) of the first indoor unit 201 at the first time is greater than the second target pressure value Pdset2(1) of the second indoor unit 202 at the first time. It can be obtained that the first indoor unit 201 is at The third target pressure value Pdset1(2) at the second time is greater than the second target pressure value Pdset2(1) of the second indoor unit 202 at the first time. At the second time, the first indoor unit 201 and the second The maximum target pressure value of the indoor unit 202 should be the third target pressure value Pdset1(2).
  • Step S205 obtain the maximum target pressure value of the indoor unit 200 at the second time, that is, the third target pressure value Pdset1(2) of the first indoor unit 201 at the second time, and based on the third target pressure value Pdset1(2 ) Adjust the gear of the outdoor fan 180.
  • the outdoor fan 180 is adjusted based on the pressure deviation value ⁇ Pd2 between the third target pressure value Pdset1(2) of the first indoor unit 201 at the second time and the second exhaust pressure value Pd02 of the compressor 110 at the second time. gear, so that the exhaust pressure value Pd of the compressor 110 is adjusted from the second exhaust pressure value Pd02 to the third target pressure value Pdset1(2).
  • Step S206 determine whether the exhaust pressure value Pd of the compressor 110 at any time reaches the maximum target pressure value at that time, that is, the third target pressure value Pdset1(2). If not, continue to step S205. If it reaches, execute Step S207.
  • Step S207 determine the size of the second exhaust pressure value Pd02 of the compressor 110 at this time and the second saturation pressure value Pd2 corresponding to the ambient temperature Ti of the second indoor unit 202, and determine the size according to the second target pressure value Pdset2(1) and The second saturation pressure value Pd2 corresponding to the second ambient temperature Ti2 adjusts the opening of the fifth indoor expansion valve 324.
  • step S208 When the second exhaust pressure value Pd02 of the compressor 110 is greater than the second saturation pressure value Pd2 corresponding to the ambient temperature of the second indoor unit 202, step S208 is executed; otherwise, step S209 is executed.
  • Step S208 Decrease the opening of the fifth indoor expansion valve 324 of the second indoor unit 202.
  • Step S209 Increase the opening of the fifth indoor expansion valve 324 of the second indoor unit 202.
  • Step S211 end the adjustment task.
  • the controller 500 may determine the second target pressure value Pdset2(1) of the second indoor unit 202.
  • the second saturation pressure value Pd2 corresponding to the ambient temperature Ti2 reaches the second exhaust pressure value Pd02 of the compressor 110 .
  • the second exhaust pressure value Pd02 of the compressor 110 is relatively close to the second saturation pressure value Pd2 corresponding to the second ambient temperature Ti2.
  • the second exhaust pressure value Pd02 of the compressor 110 corresponds to the second ambient temperature Ti2.
  • the controller 500 may determine that the second saturation pressure value Pd2 corresponding to the second ambient temperature Ti2 of the second indoor unit 202 reaches the second temperature of the compressor 110 .
  • the preset threshold may be a preset smaller pressure value.
  • both the fifth electronic expansion valve 324 and the fourth electronic expansion valve 323 maintain the maximum opening.
  • the adjustment process is similar to steps S201 to S211, and will not be described again in this disclosure.
  • steps S204 to S211 are executed.
  • steps S204A2 to S311 are executed.
  • Step S204A2 determine that the third target pressure value Pdset1(2) is smaller than the fourth target pressure value Pdset2(2).
  • Step S305 obtain the maximum target pressure value of the indoor unit 200 at the second time, that is, the fourth target pressure value Pdset2(2) of the second indoor unit 202 at the second time, and based on the fourth target pressure value Pdset2(2 ) Adjust the gear of the outdoor fan 180.
  • the outdoor fan 180 is adjusted based on the pressure deviation value ⁇ Pd2 between the fourth target pressure value Pdset2(2) of the second indoor unit 202 at the second time and the second exhaust pressure value Pd02 of the compressor 110 at the second time. gear, so that the exhaust pressure value Pd of the compressor 110 is adjusted from the second exhaust pressure value Pd02 to the fourth target pressure value Pdset2(2).
  • Step S306 Determine whether the exhaust pressure value Pd of the compressor 110 at any time reaches the maximum target pressure value at that time, that is, the fourth target pressure value Pdset2(2). If not, continue to step S305. If it reaches it, execute Step S307.
  • Step S307 determine the size of the second exhaust pressure value Pd02 of the compressor 110 at this time and the first saturation pressure value Pd1 corresponding to the ambient temperature Ti of the first indoor unit 201, and determine the size according to the first target pressure value Pdset1(1) and The first saturation pressure value Pd1 corresponding to the first ambient temperature Ti1 adjusts the opening of the second indoor expansion valve 322.
  • step S308 When the second exhaust pressure value Pd02 of the compressor 110 is greater than the first saturation pressure value Pd1 corresponding to the ambient temperature Ti of the first indoor unit 201, step S308 is executed; otherwise, step S309 is executed.
  • Step S308 Decrease the opening of the second indoor expansion valve 322 of the first indoor unit 201.
  • Step S309 Increase the opening of the second indoor expansion valve 322 of the first indoor unit 201.
  • Step S311 end the adjustment task.
  • the controller 500 may determine the first target pressure value Pdset1(1) of the first indoor unit 201.
  • the first saturation pressure value Pd1 corresponding to an ambient temperature Ti1 reaches the second exhaust pressure value Pd02 of the compressor 110 .
  • the second exhaust pressure value Pd02 of the compressor 110 is relatively close to the first saturation pressure value Pd1 corresponding to the first ambient temperature Ti2.
  • the second exhaust pressure value Pd02 of the compressor 110 corresponds to the first ambient temperature Ti1.
  • the controller 500 may determine that the first saturation pressure value Pd1 corresponding to the first ambient temperature Ti1 of the first indoor unit 201 reaches the second temperature of the compressor 110 .
  • the preset threshold may be a preset smaller pressure value.
  • the outdoor unit 100 of the air conditioner 1000 gives the outdoor fan 180 an initial start based on the outdoor ambient temperature and the operating frequency of the compressor 110.
  • the windshield value is used to obtain the corresponding first exhaust pressure value Pd01 of the compressor 110, and the corresponding indoor ambient temperature Ti is obtained from the inlet air temperature sensor 50.
  • the ambient temperatures Ti of the two indoor units 200 are different, and the two temperature-controlled dehumidifiers
  • the set temperature Ts of the indoor unit 200 is also different. According to the temperature difference between the ambient temperature Ti and the set temperature Ts and the temperature difference change rate X, the change value of the target pressure is obtained, and then the next exhaust pressure target is confirmed. value, and finally realize that the ambient temperature Ti of the indoor unit 200 is consistent with the set temperature Ts. This improves the user's efficiency in setting the air conditioner 1000 and also optimizes the user's experience.
  • Figure 28 is a hardware configuration block diagram of a controller of an air conditioning system according to some embodiments.
  • the controller 500 includes a processor 1001. In some embodiments, it also includes a memory connected to the processor 1001. 1002 and communication interface 1003. The processor 1001, the memory 1002 and the communication interface 1003 are connected through a bus 1004.
  • the processor 1001 may be a central processing unit (CPU), a general-purpose processor, a network processor (NP), a digital signal processor (DSP), a microprocessor, a microcontroller, or a Programmable logic device (PLD) or any combination thereof.
  • the processor 1001 can also be any other device with processing functions, such as a circuit, device or software module.
  • the processor 1001 may also include multiple CPUs, and the processor 1001 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor here may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • Memory 1002 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media to be accessed, the embodiments of this application do not impose any restrictions on this.
  • the memory 1002 may exist independently or may be integrated with the processor 1001. Among them, the memory 1002 may contain computer program code.
  • the processor 1001 is used to execute the computer program code stored in the memory 1002, thereby implementing the control method of the air conditioning system provided by the embodiment of the present application.
  • the communication interface 1003 can be used to communicate with other devices or communication networks (such as Ethernet, wireless access network (radio access network, RAN), wireless local area networks (WLAN), etc.).
  • the communication interface 1003 may be a module, a circuit, a transceiver, or any device capable of communicating.
  • the bus 1004 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • the bus 1004 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only one thick line is used in Figure 28, but it does not mean that there is only one bus or one type of bus.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium.
  • the computer-readable storage medium includes computer-executable instructions. When the computer-executed instructions are run on a computer, the computer is caused to execute the control of an air conditioner as provided in the above embodiments. method.
  • Some embodiments of the present disclosure also provide a computer program product.
  • the computer program product can be directly loaded into the memory and contains software code. After being loaded and executed by the computer, the computer program product can implement the air conditioner provided in the above embodiments. The control method of the device 1000.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

一种室内机,包括机壳、出风口、室内换热器和遮挡部件。所述机壳包括相对设置的上盖板和底板,以及与所述上盖板和所述底板连接的第一侧板;所述出风口设置在所述第一侧板上;所述室内换热器位于所述机壳内部,其延伸方向平行于所述出风口的延伸方向且长度小于所述出风口的长度,所述室内换热器的第一端与所述出风口的第一端位于同一侧,所述室内换热器的第二端与所述出风口的第二端位于同一侧,所述室内换热器的第一端与所述出风口的第一端之间存在避让空间;所述遮挡部件连接所述室内换热器的第一端和所述出风口的第一端,以遮挡所述避让空间防止外露。

Description

室内机、空调器及其控制方法
本申请要求申请号为202211273970.X、2022年10月18日提交的、申请号为202222590935.2、2022年9月29日提交的、申请号为202211091531.7、2022年9月7日提交的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及家用电器技术领域,尤其涉及一种室内机、空调器及其控制方法。
背景技术
在我国南方地区的春天和6月中旬至7月上旬期间,温度大多维持在20~30℃,但是湿度可达80%以上,此时温度较为舒适但是湿度太大,用户对空调器不降低室内温度同时还能够实现除湿目的的需求比较突出。
发明内容
一方面,提供一种室内机。所述室内机包括机壳、出风口、室内换热器和遮挡部件。所述机壳包括相对设置的上盖板和底板,以及与所述上盖板和所述底板连接的第一侧板;所述出风口设置在所述第一侧板上;所述室内换热器位于所述机壳内部,其延伸方向平行于所述出风口的延伸方向且长度小于所述出风口的长度,所述室内换热器的第一端与所述出风口的第一端位于同一侧,所述室内换热器的第二端与所述出风口的第二端位于同一侧,所述室内换热器的第一端与所述出风口的第一端之间存在避让空间;所述遮挡部件连接所述室内换热器的第一端和所述出风口的第一端,以遮挡所述避让空间防止外露。
另一方面,提供一种空调器。所述空调器包括如上所述的室内机。
又一方面,提供一种空调器。所述空调器包括室内机、室外机、将所述室内机和所述室外机连通的循环管路。所述室内机包括第一室内机,所述第一室内机包括第一室内换热器、第一电子膨胀阀、第二室内换热器、第二电子膨胀阀和第一吹风装置,所述第一室内换热器的第二端依次串联连通所述第一电子膨胀阀、所述第二室内换热器和所述第二电子膨胀阀的第一端;所述第一吹风装置被配置为向所述第一室内换热器吹风;所述室外机包括压缩机组件、第一冷媒流向切换装置、第三电子膨胀阀、第一室外换热器和第二冷媒流向切换装置。所述压缩机组件包括压缩机,具有出口与进口;所述第一冷媒流向切换装置包括与所述第一室内换热器的第一端连通的第一端口、与所述进口连通的第二端口、与所述出口连通的第三端口,以及第四端口;所述第一室外换热器的第二端通过所述第三电子膨胀阀与所述第二电子膨胀阀的第二端连通;所述第二冷媒流向切换装置包括与所述进口连通的第五端口、与所述第一室外换热器的第一端连通的第六端口、与所述出口连通的第七端口、与所述第四端口连通的第八端口。
又一方面,提供一种空调器的控制方法。所述空调器为如上所述的空调器;所述方法包括:所述控制器通过所述压力传感器获取所述压缩机在第一时刻下的第一排气压力值;所述控制器从第一目标压力值和第二目标压力值中确定最大目标压力值,所述第一目标压力值为所述第一室内机运行在第一模式时压缩机的目标排气压力值,所述第二目标压力值为所述第二室内机运行在第二模式时压缩机的目标排气压力值;所述控制器计算所述最大目标压力值与所述第一排气压力值之间的压力偏差值;所述控制器基于所述压力偏差值,调节所述室外风机的档位,以使得所述压缩机的排气压力值达到所述最大目标压力值。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的具有不降温除湿功能的空调器室内机去除遮挡部件的立体图;
图2为根据一些实施例的室内机的立体图;
图3为图2的俯视图;
图4为图3的B-B向剖视图顺时针旋转90°后的剖视图;
图5为图4的C部放大图;
图6为图2的A部放大图;
图7为根据一些实施例的室内机配置有不降温除湿系统零件的换热器立体图;
图8为根据一些实施例的室内机的遮挡部件立体图;
图9为根据一些实施例的室内机的换热器与遮挡部件装配结构一视角的立体图;
图10为根据一些实施例的室内机的换热器与遮挡部件装配结构另一视角的立体图;
图11为根据一些实施例的室内机的上盖发泡层与遮挡部件的装配结构图;
图12为图11的D部放大图;
图13为相关技术的空调器的结构图;
图14为根据一些实施例的一种空调器的结构图;
图15为根据一些实施例的一种空调器的电路连接关系图;
图16为根据一些实施例的一种空调器运行循环结构图;
图17为根据一些实施例的一种空调器的不降温除湿模式的压焓图;
图18为根据一些实施例的另一种空调器运行循环结构图;
图19为根据一些实施例的一种空调器的降温除湿模式的压焓图;
图20为根据一些实施例的又一种空调器运行循环结构图;
图21为根据一些实施例的又一种空调器运行循环结构图;
图22为根据一些实施例的又一种空调器运行循环结构图;
图23为根据一些实施例的又一种空调器运行循环结构图;
图24为根据一些实施例的另一种空调器的不降温除湿模式的压焓图;
图25为根据一些实施例的一种空调器的主要组成部分图;
图26为根据一些实施例的一种空调器的控制方法的流程图;
图27为根据一些实施例的一种空调器的控制方法的逻辑流程图;
图28为根据一些实施例的一种空调器的控制器的硬件配置框图。
在附图中,1000-空调器;
100-室外机;110-压缩机;111-回气口;112-排气口;120-室外换热器;121-第一室外换热器;130-气液分离器;131-气液分离器130的第一端口;132-气液分离器130的第二端口;140-油分离器;141-油分离器140的第一端口;142-油分离器140的第二端口;143-油分离器140的第三端口;150-三通阀;160-四通阀;170-冷媒流向切换装置;171-第一冷媒流向切换装置;172-第二冷媒流向切换装置;173-第三冷媒流向切换装置;
200-室内机;201-第一室内机;11-第一室内温度传感器;12-第二室内温度传感器;13-第三室内温度传感器;51-第一进风温度传感器;202-第二室内机;14-第四室内温度传感器;15-第五室内温度传感器;16-第六室内温度传感器;52-第二进风温度传感器;210-室内换热器;211-室内换热器第一端;212-室内换热器第二端;213-塑料端板;214-第一室内换热器;215-第二室内换热器;220-机壳;221-上盖板;2211-上盖板主体;2212-上盖板发泡层;2212A-平直部;2212B-倾斜部;2212C-定位部;222-底板;223-出风口;2231-出风口第一端;2232-出风口第二端;224-第一侧板;225-第二侧板;226-第三侧板;227-第四侧板;230-接水盘;231-接水盘底板;232-第一接水盘侧板;A-避让空间;240-遮挡部件;241-第一遮挡部;2410-遮挡部主体;2411-第一支撑部;2412-第二支 撑部;2413-插设部;2414-连接部;2414A-第一连接部;2414B-第二连接部;242-第二遮挡部;2421-第三支撑部;2422-第四支撑部;2423-贯通部;250-连接端板;251-第一吹风装置;252-第二吹风装置;253-第三吹风装置;
300-膨胀阀;310-室外电子膨胀阀;320-室内电子膨胀阀;321-第一电子膨胀阀;322-第二电子膨胀阀;311-第三电子膨胀阀;323-第四电子膨胀阀;324-第五室内膨胀阀;312-第六电子膨胀阀;
400-系统零件;
500-控制器;
600-电磁阀;601-电磁阀600的第一端;602-电磁阀600的第二端;
001-第一连接端口;002-第二连接端口;003-第三连接端口;20-压缩机组件;21-进口;22-出口;23-回油毛细管;24-单向阀;
E-螺钉孔;F-螺钉孔;G-螺钉孔;H-螺钉孔;M-第一端口;N-第二端口;O-第三端口;P-第四端口;R-第五端口;S-第六端口;T-第七端口;U-第八端口;I-第九端口;K-第十端口;Y-第十一端口;Z-第十二端口;
Pd-排气压力值;Pd01-第一排气压力值;Pd02-第二排气压力值;Pd1-第一饱和压力值;Pd2-第二饱和压力值;
Pdset-目标压力值;Pdset1(1)-第一目标压力值;Pdset2(1)-第二目标压力值;Pdset1(2)-第三目标压力值;Pdset2(2)-第四目标压力值;
ΔPd2-压力偏差值;
Ti-室内环境温度;Ti1-第一环境温度;Ti2-第二环境温度;Ts-预设温度;
ΔT-温度差;ΔT1-第一温度差;ΔT2-第二温度差;X-温差变化率。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组 合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
图14为根据一些实施例的一种空调器的结构图。如图14所示,空调器1000包括压缩机110、室外换热器120、室内换热器210和膨胀阀300。
空调器1000包括室外机100和室内机200。室外机100包括压缩机110和室外换热器120,室内机200包括室内换热器210,膨胀阀300可以提供在室外机100或室内机200中。
压缩机110、冷凝器(室内换热器210或室外换热器120)、膨胀阀300和蒸发器(室外换热器120或室内换热器210)来执行空调器1000的冷媒循环。冷媒循环包括一系列过程,涉及压缩、冷凝、膨胀和蒸发,并向被调节侧循环供应冷媒。
室内换热器210被配置为将室内空气与在室内换热器210中传输的冷媒进行热交换。例如,室内换热器210在空调器1000运行在制冷模式时作为蒸发器进行工作,使得经由室外换热器120散热后的冷媒通过室内换热器210吸收室内空气的热量而蒸发。室内换热器210在空调器1000的制热模式下作为冷凝器进行工作,使得经由室外换热器210吸热后的冷媒通过室内换热器210将热量散发至室内空气而冷凝。
膨胀阀300连接于室外换热器120与室内换热器210之间,由膨胀阀300的开度大小调节流经室外换热器120和室内换热器210的冷媒压力,以调节流通于室外换热器120和室内换热器210之间的冷媒流量。流通于室外换热器120和室内换热器210之间的冷媒的流量和压力将影响室外换热器120和室内换热器210的换热性能。膨胀阀300可以是电子阀。膨胀阀300的开度是可调节的,以控制流经膨胀阀300的冷媒的流量和压力。
压缩机110压缩处于低温低压状态的气相冷媒并排出压缩后的高温高压的气相冷媒,高温高压的气相冷媒流入冷凝器。冷凝器将高温高压的气相冷媒冷凝成高压状态的液相冷媒,热量随着冷凝过程释放到周围环境。膨胀阀300将高压状态的液相冷媒膨胀为低压状态的气液两相态冷媒。蒸发器从周围环境中吸取热量并将低压状态的气液两相态冷媒蒸发形成低温低压的气相冷媒,低温低压状态的气相冷媒返回到压缩机110中。
为使常规两管制空调器具有不降温除湿(即不降低室内温度同时还能够除湿)功能,需要在室内换热器的配管端新增系统零件,比如除湿电磁阀和相应的配管管路。在保证室内机尺寸不变的情况下,为了将系统零件安装至室内换热器的配管端,则需要将室内换热器的长度相应缩短,为系统零件预留空间。此时,室内换热器的长度小于出风口的长度,且室内换热器与出风口之间存在外露区域。外露区域风阻小,空调器出风会优先从此区域流出,而不经过室内换热器,导致整机由此区域漏风,从而影响空调器的性能。
相关技术中,通常将出风口的长度相应缩短,以解决室内换热器与出风口之间存在外露区域的问题,但出风口的长度缩短,会影响空调器的现场安装通用性。为此,本公开一些实施例提供一种室内机,能够避免室内换热器与出风口之间存在外露区域,同时不会影响空调器的现场安装通用性。图1为根据一些实施例的具有不降温除湿功能的空调器室内机去除遮挡部件的立体图;图2为根据一些实施例的室内机的立体图;图3为图2的俯视图;图4为图3的B-B向剖视图顺时针旋转90°后的剖视图;图5为图4的C部放大图。在一些实施例中,如图1至图4所示,室内机200包括室内换热器210、机壳220、以及其他结构部件,比如风机组件等。机壳220包括上盖板221、底板222、出风口223和周向侧板,周向侧板由前后左右四块侧板围成,包括依次连接的第一侧板224、 第二侧板225、第三侧板226和第四侧板227。在一些实施例中,机壳220呈长方体,其上盖板221、底板222和周向侧板均为矩形。出风口223设在第一侧板224上,包括出风口第一端2231和出风口第二端2232,出风口223的长度方向与第一侧板224的长度方向一致,且出风口223的长度小于第一侧板224的长度。
在一些实施例中,为提高室内机200的机壳220的保温性能,减少热量传递,上盖板221通常包括金属的上盖板主体2211和由上盖板主体2211朝向室内机200内部凸出的上盖板发泡层2212。上盖板发泡层2212包括平行于底板222的平直部2212A和朝向底板222倾斜的倾斜部2212B,倾斜部2212B靠近出风口223设置,与出风口223位于同一侧。倾斜部2212B被配置为引导出风气流流向出风口223,以增加室内机200的出风量。
室内换热器210位于机壳220内部靠近出风口223处,包括室内换热器第一端211和室内换热器第二端212,室内换热器第一端211为室内换热器210的配管端,室内换热器第二端212为与室内换热器210的配管端相对应的另一端。室内换热器210的长度方向与出风口223的长度方向一致,且室内换热器210的长度小于出风口223的长度。室内换热器第一端211与出风口第一端2231位于同一侧,室内换热器第二端212与出风口第二端2232位于同一侧,室内换热器第二端212与出风口第二端2232紧密连接,以尽可能保证此端封闭,防止漏风。室内换热器第一端211与出风口第一端2231之间存在避让空间A(参见图1),以为其他部件预留空间。
在一些实施例中,如图1所示,室内机200还包括系统零件400。系统零件400设置在室内换热器第一端211,位于避让空间A中。示例地,系统零件400包括除湿电磁阀和相应的配管管路。
如图4和图5所示,室内机200还包括接水盘230,接水盘230设置在机壳220内部且位于室内换热器210下方(即室内换热器210靠近底板222的一侧),呈开口朝向上盖板221的盘状结构,被配置为盛接室内换热器210上的冷凝水。接水盘230包括接水盘底板231和周向的接水盘侧板,接水盘侧板包括第一接水盘侧板232与另外三个接水盘侧板,第一接水盘侧板232靠近室内机200的第一侧板224,且与第一侧板224平行设置。
图6为图2的A部放大图;图7为根据一些实施例的配置有不降温除湿系统零件的室内换热器立体图;图8为根据一些实施例的室内机的遮挡部件立体图;图9为根据一些实施例的室内换热器与遮挡部件装配结构一视角的立体图;图10为根据一些实施例的室内换热器与遮挡部件装配结构另一视角的立体图;图11为根据一些实施例的室内机的上盖板发泡层与遮挡部件的装配结构示意图;图12为图11的D部放大图。
如图2、图6和图7所示,在一些实施例中,室内机200还包括遮挡部件240。
遮挡部件240连接室内换热器第一端211和出风口第一端2231,被配置为遮挡避让空间A,防止该避让空间A外露,从而避免空调器1000出风时从该避让空间A漏风,影响空调器1000的性能。同时,由于出风口223长度无需调整,不影响空调器1000的现场安装通用性。同时,遮挡部件240还能够用来固定室内换热器第一端211,无需为缩短后的室内换热器第一端211另外配置相应的固定结构,降低了空调器1000的成本。
在一些实施例中,室内换热器210还包括塑料端板213(如图7中所示),塑料端板213设置在室内换热器第二端212,室内机200还包括塑料固定件(图中未示出),塑料固定件设置在第四侧板227上,该塑料端板213卡设在该塑料固定件内,从而实现了室内换热器第二端212在机壳220内的固定。
在本公开一些实施例中,由于室内换热器210与出风口223并不在同一平面上,且室内换热器210相对于出风口223朝向室内机200的内部凹陷,因此,避让空间A在平行于出风口223的长度方向上存在空隙,且在垂直于第一侧板224的方向上也存在空隙。
如图6、图8至图10所示,遮挡部件240包括第一遮挡部241和第二遮挡部242,第一遮挡部241平行于出风口223设置,即平行于第一侧板224,且与第一侧板224固定连 接,能够遮挡避让空间A沿出风口223的长度方向上的空隙;第二遮挡部242垂直于出风口223设置,即垂直于第一侧板224,且与室内换热器第一端211固定连接,能够遮挡避让空间A沿垂直于第一侧板224方向上的空隙。如此,遮挡部件240可以对避让空间A进行有效遮挡,尽可能减少漏风。
如图4、图5和图8所示,在本公开一些实施例中,遮挡部件240的第一遮挡部241包括遮挡部主体2410、第一支撑部2411和第二支撑部2412,第一支撑部2411设置在遮挡部主体2410靠近上盖板221的一端,抵靠在上盖板发泡层2212的倾斜部2212B上,第二支撑部2412设置在遮挡部主体2410靠近底板222的一端,抵靠在第一接水盘侧板232靠近上盖板221的表面,且与第一接水盘侧板232贴合。遮挡部件240的第二遮挡部242包括第三支撑部2421和第四支撑部2422,第三支撑部2421抵靠在上盖板221上,包括平行于上盖板221的第一支撑分部2421A和倾斜于上盖板221的第二支撑分部2421B,第四支撑部2422抵靠在接水盘底板231靠近上盖板221的表面且与接水盘底板231贴合。此时室内机200的上盖板221和接水盘230可以从上下方向对遮挡部件240进行定位和限位,使其更为稳固可靠,从而提高了遮挡部件240的安装稳固性,以及遮挡可靠性。
在本公开一些实施例中,第一支撑部2411具有与上盖板发泡层2212的倾斜部2212B相适配的倾斜角度,即第一支撑部2411也呈倾斜状,且与上盖板发泡层2212的倾斜部2212B适配贴合;第三支撑部2421包括与平直部2212A适配贴合的第一支撑分部2421A和与倾斜部2212B适配贴合的第二支撑分部2421B。且由于第一遮挡部241和第二遮挡部242分别与第一接水盘侧板232和接水盘底板231贴合,使得邻近的结构部件之间的间隙尽可能小,从而可提高遮挡部件240遮挡的严密性。
如图11和图12所示,上盖板发泡层2212还包括定位部2212C,定位部2212C设置在倾斜部2212B上,且朝向底板222所在侧凸出,第一支撑部2411的一侧边抵靠在定位部2212C上,进一步提高了对遮挡部件240的定位作用。
如图5和图8所示,在本公开一些实施例中,遮挡部件240的第一遮挡部241还包括插设部2413,插设部2413与第二支撑部2412连接,且与第二支撑部2412相互垂直,第二支撑部2412平行于底板222设置,插设部2413垂直于底板222设置。接水盘230的第一接水盘侧板232与机壳220的第一侧板224之间具有装配间隙,插设部2413插设在该装配间隙中。第一遮挡部241通过插设部2413插设在该间隙内,可以提高对遮挡部件240的支撑和限位作用,并且可以提高遮挡部件240遮挡的严密性。
如图6和图8所示,在本公开一些实施例中,第一遮挡部241还包括连接部2414,连接部2414设置在遮挡部主体2410远离第二遮挡部242的一端,相对于遮挡部主体2410向机壳220的外部翻折,被配置为与机壳220的第一侧板224固定连接。连接部2414包括第一连接部2414A和第二连接部2414B,第一连接部2414A与第二连接部2414B相互垂直,第二连接部2414B与第一侧板224相贴合,且与第一侧板224固定连接。
为尽可能地在保证整机原有的装配结构的基础上来安装固定遮挡部件240,在本公开一些实施例中,第一侧板224上包括螺钉孔E(室内换热器210未缩短前,螺钉孔E用于固定连接室内换热器第一端211),第二连接部2414B包括螺钉孔F,螺钉孔E和螺钉孔F相应设置,通过螺钉将螺钉孔E和螺钉孔F连接,从而使得第二连接部2414B与第一侧板224连接,无需额外增设连接结构以及额外考虑装配位置。
同样为提高遮挡严密性,如图7至图10所示,遮挡部件240的第二遮挡部242还包括贯通部2423,贯通部2423被配置为避让室内换热器第一端211处的系统零件400。第二遮挡部242与室内换热器第一端211的端面贴合,贯通部2423的轮廓形状与室内换热器210的横截面轮廓形状接近适配,以有效避让相关配管结构。示例地,室内换热器210的横截面为V形,贯通部2423则呈近似V形结构。在本公开中,室内换热器210不限于V形,使用其他形式的室内换热器210时,只需对应改变第二遮挡部242的贯通部2423的形状即可。
在本公开一些实施例中,室内机200还包括连接端板250,连接端板250设置在室内换热器第一端211处,被配置为连接室内换热器第一端211与第二遮挡部242。连接端板250包括多个螺钉孔G,多个螺钉孔G设置在连接端板250的边缘处,相应地,第二遮挡部242包括多个螺钉孔H,多个螺钉孔H设置在贯通部2423的边缘处,室内换热器210的室内换热器第一端211和第二遮挡部242通过螺钉进行连接。
在本公开一些实施例中,在生产装配过程中,室内机200采取整机倒装的装配方式,即将室内机200上下翻转,使机壳220的上盖板221朝下、底板222朝上进行装配。装配时可以将遮挡部件240与室内换热器210连接好后再对室内机200进行整体安装,第一遮挡部241和第二遮挡部242的一端抵靠在上盖板发泡层2212的倾斜部2212B上,第一遮挡部241和第二遮挡部242的另一端抵靠在接水盘230上,可以对室内换热器210及遮挡部件240构成的整体起到定位和支撑承重的作用,有利于提高装配效率。定位部2212C也可以提高对室内换热器210及遮挡部件240构成的整体装配的定位作用。
在本公开一些实施例中,遮挡部件240为一个整体的金属板状结构,通过折弯成型,方便加工且结构强度高。在本公开另一些实施例中,遮挡部件240也可以由分体的第一遮挡部241和第二遮挡部242焊接连接构成或通过其他结构形式连接构成,或者整体为一注塑件,本公开对此不做限制。
图13为相关技术的空调器的结构示意图,如图13所示,在相关技术中,两管制的空调器包括:室外机100以及与室外机100连接的多个室内机200;其中多个室内机200之间并联连接,室外机100与并联连接的多个室内机200通过第一连接端口001和第三连接端口003连接。
室外机100包括压缩机110、室外换热器120、气液分离器130、油分离器140、多条并联的冷媒换热管路、三通阀150、四通阀160、以及室外电子膨胀阀310。油分离器140与三通阀150之间的每条冷媒换热管路上依次连接四通阀160、室外换热器120以及室外电子膨胀阀310。四通阀160被配置为切换冷媒在冷媒回路中的流向以使空调器1000执行制冷运行模式或制热运行模式。
室内机200包括室内换热器210和室内电子膨胀阀320。室内换热器210的一端连接室内电子膨胀阀320的一端,室内换热器210的另一端通过第一连接端口001连接多条并联的冷媒换热管路的一端(图13中为四通阀160所在的一端),室内电子膨胀阀320的另一端通过第三连接端口003连接多条并联的冷媒换热管路的另一端(图13中为三通阀150所在的一端)。两管制的空调器制冷运行中的冷媒换热管路与制热运行模式中的冷媒换热管路相同。
在相关技术中,两管制的空调器的室内机一般只包括一个室内换热器,因此运行模式仅限于制热运行模式、制冷运行模式和除湿运行模式,然而上述多种运行模式并不能满足用户的实际需求,示例地,对于一些会出现梅雨季节的地区,在进入梅雨季节后,室内外温度普遍偏低(通常在20摄氏度以下),若用户使用两管制的空调器运行除湿运行模式对空气进行除湿,会出现如下问题:目前的两管制的空调器在除湿运行时会导致室内温度下降,此时空调器运行除湿运行模式会出现越除湿越冷的情况,严重损害用户舒适度。
在一些实施例中,三管制的空调器为一台室外机同时连接多台室内机,示例地,一台室外机连接两台室内机,两台室内机中的一台室内机可以运行在制热模式,另一台室内机可以运行在除湿模式,因此可以通过使用三管制的空调器实现不降低室内温度同时还能够实现除湿的目的,但是三管制的空调器普遍存在安装不便、运行稳定性较差等诸多不足。示例地,三管制的空调器在安装时通常采用长配管,当安装空间有限时,室内机200和室外机100之间有较高落差,给安装过程带来不便。示例地,三管制的空调器中通常存在较多的配管节点,当其中一个节点出现问题时,有可能导致三管制的空调器无法正常运行,运行稳定性较差。另外,三管制的空调器中的冷媒量通常也较多,易导致压缩机运行可靠性降低,空调器运行稳定性较差,用户满意度偏低。
为解决上述问题,本公开提供一种空调器1000。空调器1000包括四种运行模式,分别为制热运行模式、不降温除湿运行模式、制冷运行模式、和降温除湿运行模式。制热运行模式表示空调器1000对室内环境进行制热,制冷运行模式表示空调器1000对室内环境进行制冷。不降温除湿运行模式表示空调器1000在对室内环境进行除湿的同时,不降低室内温度。降温除湿运行模式表示空调器1000在对室内环境进行除湿的同时,降低室内温度。
图14为根据本公开一些实施例的一种空调器的结构图,如图14所示,空调器1000包括至少一台室内机200、室外机100以及循环管路,循环管路被配置为将至少一台室内机200和室外机100连通,以构成循环回路。本公开对室内机200的数量不做限定,其可以为一台或多台。
以空调器1000包括一台室内机200,即第一室内机201为例进行说明。
在本公开一些实施例中,第一室内机201包括两个室内换热器210、两个室内电子膨胀阀320和第一吹风装置251。两个室内换热器210分别为第一室内换热器214和第二室内换热器215,两个室内电子膨胀阀320分别为第一电子膨胀阀321和第二电子膨胀阀322。如图14所示,第一室内换热器214、第一电子膨胀阀321、第二室内换热器215和第二电子膨胀阀322依次串联连接。在本公开一些实施例中,空调器1000中的室内换热器210受冷媒流向的影响,第一室内换热器214和第二室内换热器215可以分别作为冷凝器或蒸发器使用。
第一吹风装置251被配置为向第一室内换热器214吹风,第一吹风装置251的出风侧朝向第一室内换热器214,如此可以提高第一室内换热器214与室内空气的热交换效率。第一吹风装置251可以为风扇、风机等,本公开对此不作限定。在本公开一些实施例中,空调器1000的室外机100包括压缩机组件20、室外换热器120(即第一室外换热器121)、两个冷媒流向切换装置170、第二吹风装置252和室外电子膨胀阀310(即第三电子膨胀阀311)。两个冷媒流向切换装置170分别为第一冷媒流向切换装置171和第二冷媒流向切换装置172。第二吹风装置252被配置为向第一室外换热器121吹风,第二吹风装置252的出风侧朝向第一室外换热器121。
如图14所示,压缩机组件20包括:进口21、出口22、气液分离器130、压缩机110、油分离器140、回油毛细管23和单向阀24。进口21为气液分离器130的第一端口131,气液分离器130的第二端口132与压缩机110的回气口111连通,压缩机110的排气口112与油分离器140的第一端口141连通,油分离器140的第二端口142与单向阀24连通,出口22设置在单向阀24远离油分离器140一侧的连通管路上,油分离器140的第三端口143通过回油毛细管23与气液分离器130的第二端口132连通。
气液分离器130被配置为采用离心分离、丝网过滤的原理,实现过滤返回压缩机110中的气态冷媒中未经完全蒸发的液态冷媒。
在一些实施例中,由于经过压缩机110压缩后的气相冷媒排出时的流速快、温度高,部分压缩机油由于受高温的作用形成油蒸气及油滴微粒与气相冷媒一同排出,油分离器140被配置为根据降低气流速度和改变气流方向的分油原理,将压缩机110排出的高温高压的气相冷媒中的压缩机油在重力作用下进行分离,保证装置安全高效地运行。
在本公开一些实施例中,冷媒流向切换装置170可以为三通阀,也可以为四通阀等,且第一冷媒流向切换装置171与第二冷媒流向切换装置172的结构可以相同,也可以不同,本公开对此不作限定。
由于四通阀具有启闭迅速,结构简单,体积小,重量轻,便于维修、不受安装方向的限制以及介质的流向可任意切换等优点,因此本公开一些实施例以冷媒流向切换装置170均为四通阀为例进行描述。
此时,第一冷媒流向切换装置171包括第一端口M、第二端口N、第三端口O和第四端口P。第一端口M与第一室内换热器214的一端连通,第二端口N与进口21连通,第 三端口O与出口22连通,第四端口P通过连接端口与第二冷媒流向切换装置172连通。第二冷媒流向切换装置172包括第五端口R、第六端口S、第七端口T和第八端口U。第五端口R与进口21连通,第六端口S与第一室外换热器121连通,第七端口T与出口22连通,第八端口U与第四端口P通过一个连接端口连通。第一冷媒流向切换装置171和第二冷媒流向切换装置172均可以实现端口与端口之间的切换连通,例如,可以由第一端口M与第二端口N连通切换为第二端口N与第三端口O连通。
图15为根据一些实施例的空调器的电路连接关系图,如图15所示,在本公开一些实施例中,空调器1000还包括控制器500,控制器500与室内机200和室外机100均电连接,被配置为控制室内机200和室外机100的启动或停止。
如此,可以将控制器500作为中枢以控制空调器1000的运行,有利于空调器1000的稳定运行。
在本公开一些实施例中,空调器1000的控制器500通过控制第一冷媒流向切换装置171和第二冷媒流向切换装置172端口的连接状态、膨胀阀300的开度、以及第一吹风装置251的功率,来调整第一室内换热器214、第二室内换热器215和第一室外换热器121作为冷凝器或蒸发器使用。从而使得空调器1000运行除湿运行模式时,室内的温度不下降,提高用户的舒适度,增强用户的使用体验。
图16为根据一些实施例的一种空调器运行循环结构图,如图16所示,当空调器1000以制热运行模式运行时,控制器500控制第一冷媒流向切换装置171的第一端口M与第三端口O连通,第二端口N和第四端口P连通;第二冷媒流向切换装置172的第五端口R与第六端口S连通,第七端口T和第八端口U连通,第四端口P和第八端口U封堵,防止冷媒外泄。控制第一电子膨胀阀321全开,并控制第一吹风装置251的转速至第一预设数值。
此时,第一室内换热器214和第二室内换热器215用作冷凝器,第一室外换热器121用作蒸发器。由于冷凝器冷凝过程中散发热量,两个室内换热器210在运行过程中均进行散热,空调器运行在制热运行模式。
压缩机110压缩低温低压的气相冷媒并将压缩后的高温高压的气相冷媒经排气口112排出至油分离器140,油分离器140将高温高压的气相冷媒和部分压缩机油分离后,压缩机油回流至压缩机110中,高温高压的气相冷媒流出,依次经过单向阀24、第一冷媒流向切换装置171、第一连接端口001、第二连接端口002进入第一室内换热器214,高温高压的气相冷媒经第一室内换热器214且在第一吹风装置251的作用下冷凝为中温高压的液相冷媒,在第二室内换热器215中进一步冷凝为中温高压的液相冷媒,中温高压的液相冷媒经第二电子膨胀阀322膨胀后变为中温中压的液相冷媒,中温中压的液相冷媒依次经过第三连接端口003和第四连接端口004进入第三电子膨胀阀311,经第三电子膨胀阀311再次膨胀后成为低温低压气液两相态冷媒,低温低压的气液两相态冷媒经第一室外换热器121蒸发为低温低压气相冷媒,低温低压的气相冷媒最后经过第二冷媒流向切换装置172流入气液分离器130,气液分离器130再次过滤未完全蒸发的液相冷媒,最终处于低温低压状态的气相冷媒经回气口111返回到压缩机110中,如此完成了空调器1000制热运行模式过程中冷媒的循环。
当空调器1000以不降温除湿运行模式运行时,空调器的冷媒流向以及第一冷媒流向切换装置171和第二冷媒流向切换装置172各个端口的连通方式与制热运行模式运行时一致,可参考图16。
控制器500控制第二电子膨胀阀322和第三电子膨胀阀311全开,且控制第一吹风装置251的转速至第二预设数值,第二预设数值大于第一预设数值,以保证在不降温除湿模式时高温高压的气相冷媒经过第一室内换热器214时可以充分冷凝为中温高压的液相冷媒。
此时,第一室内换热器214用作冷凝器,第二室内换热器215和第一室外换热器121 用作蒸发器。
冷媒由压缩机110进入第一室内换热器214后,高温高压的气相冷媒经第一室内换热器214且在第一吹风装置251的作用下冷凝为中温高压的液相冷媒,中温高压的液相冷媒经第一电子膨胀阀321膨胀为低温低压的液相冷媒,低温低压的液相冷媒经第二室内换热器215蒸发为低温低压的气液两相态冷媒,低温低压的气液两相态冷媒经第二电子膨胀阀322流出,依次经过第三连接端口003、第四连接端口004、第三电子膨胀阀311流入第一室外换热器121,经第一室外换热器121进一步蒸发为低温低压的气相冷媒,低温低压的气相冷媒经第二冷媒流向切换装置172流入气液分离器130,从气液分离器130流出的低温低压气相冷媒进入压缩机110中,如此完成了空调器1000运行在不降温除湿运行模式过程中冷媒的循环。
可以理解的是,当空调器1000运行在不降温除湿运行模式时,第一吹风装置251的转速大于空调器1000运行在制热运行模式时第一吹风装置251的转速,因此,当空调器1000运行在不降温除湿运行模式时,第一室内换热器214作为冷凝器对冷媒冷凝的作用相当于空调器1000运行在制热运行模式时第一室内换热器214和第二室内换热器215作为冷凝器对冷媒冷凝叠加的作用。当空调器1000运行在不降温除湿运行模式时,第二室内换热器215和第一室外换热器121作为蒸发器对冷媒蒸发叠加的作用相当于当空调器1000运行在制热运行模式时第一室外换热器121作为蒸发器对冷媒蒸发的作用。
图17为根据一些实施例的空调器的不降温除湿运行模式的压焓图,如图17所示,状态点a为冷媒进入第一换热器214前的状态,状态点b为冷媒经第一换热器214冷凝之后的状态,状态点a与状态点b之间示出了冷媒经过第一室内换热器214冷凝过程中的状态变化;状态点c为冷媒经第一电子膨胀阀321膨胀之后,进入第二室内换热器215前的状态,状态点d为冷媒经过第二室内换热器215蒸发之后的状态,状态点c和状态点d之间为冷媒经过第二室内换热器215蒸发过程中的状态变化;状态点e为冷媒经过第一室外换热器121再次蒸发后的状态,状态点d、状态点e之间为冷媒经过第一室外换热器121蒸发过程中的状态变化。
其中,状态点a对应的焓值为h4、状态点b、状态点c对应的焓值为h1、状态d对应的焓值为点h2、状态点e对应的焓值为h3;空调器1000运行过程中,系统循环的冷媒量为m。
冷媒经过第一室内换热器214冷凝时释放在空气中的热量可以用公式1进行计算:
Qcond=(h4-h1)×m        公式1
冷媒经过第二室内换热器215蒸发时吸收空气中的热量为可以用公式2进行计算:
Qevap=(h2-h1)×m       公式2
冷媒经过第一室外换热器121蒸发时吸收空气中的热量可以用公式3进行计算:
Qevap_out=(h3-h2)×m        公式3
压缩机110的耗功量可以用公式4进行计算:
W=(h4-h3)×m          公式4
冷媒经过第一室内换热器214冷凝时释放在空气中的热量Qcond、冷媒经过第二室内换热器215蒸发时吸收空气中的热量Qevap、冷媒经过第一室外换热器121蒸发时吸收空气中的热量Qevap_out和压缩机110的耗功量W之间的关系如公式5所示:
Qcond=Qevap+Qevap_out+W           公式5
此时,冷媒在经过第一室内换热器214冷凝之后的放热量大于冷媒经过第二室内换热器215蒸发之后的吸热量即Qcond>Qevap,故空调器1000在不降温除湿运行模式运转情况下,室内空气在湿度降低的同时温度会上升。
图18为根据一些实施例的另一种空调器运行循环结构图,如图18所示,当空调 器1000以制冷运行模式运行时,控制器500被配置为控制第一冷媒流向切换装置171的第一端口M与第二端口N连通,第三端口O与第四端口P连通;第二冷媒流向切换装置172的第六端口S与第七端口T连通,第五端口R与第八端口U连通,第四端口P和第八端口U封堵。控制第一电子膨胀阀321全开,且控制第二吹风装置252的转速至第三预设数值。
此时,第一室外换热器121用作冷凝器,第一室内换热器214和第二室内换热器215用作蒸发器。由于蒸发器蒸发过程中吸收热量,两个室内换热器210在运行过程中均进行吸热,空调器1000运行在制冷模式。
低温低压的气相冷媒经压缩机110压缩后变为高温高压的气相冷媒,高温高压的气相冷媒流出后经单向阀24和第二冷媒流向切换装置172进入第一室外换热器121,高温高压的气相冷媒经第一室外换热器121且在第二吹风装置252的作用下冷凝为中温高压的液相冷媒,中温高压的液相冷媒经第三电子膨胀阀311膨胀后变为中温中压的气液两相态冷媒,中温中压的气液两相态冷媒依次经过第四连接端口004和第三连接端口003进入第二电子膨胀阀322,经第二电子膨胀阀322再次膨胀后成为为低温低压的气液两相态冷媒,低温低压的气液两相态冷媒经过第二室内换热器215和第一室内换热器214蒸发为低温低压的气相冷媒,低温低压的气相冷媒依次经第二连接端口002、第一连接端口001与第一冷媒流向切换装置171流入气液分离器130,最终处于低温低压状态的气相冷媒经回气口111返回到压缩机110中,如此完成了空调器1000的制冷运行循环过程中冷媒的循环。
当空调器1000以降温除湿运行模式运行时,空调器中的冷媒流向以及第一冷媒流向切换装置171和第二冷媒流向切换装置172各个端口的连通方式与制冷运行模式运行时一致,可参考图18。
控制器500控制第二电子膨胀阀322和第三电子膨胀阀311全开,且控制第二吹风装置252的转速至第四预设数值,第四预设数值小于第三预设数值。
此时第一室外换热器121和第二室内换热器215用作冷凝器,第一室内换热器214用作蒸发器。
冷媒由压缩机110进入第一室外换热器121后,高温高压的气相冷媒经第一室外换热器121且在第二吹风装置252的作用下冷凝为中温高压的气液两相态冷媒,中温高压的气液两相态冷媒经第三电子膨胀阀311流出后依次经第四连接端口004、第三连接端口003和第二电子膨胀阀322流入第二室内换热器215,中温高压的气液两相态冷媒经第二室内换热器215冷凝为中温高压的液相冷媒,中温高压的液相冷媒经第一电子膨胀阀321膨胀后变为中温低压的气液两相态冷媒,中温低压的气液两相态冷媒经第一室内换热器214蒸发为低温低压的气相冷媒,低温低压气相冷媒依次经第二连接端口002、第一连接端口001和第一冷媒流向切换171流入气液分离器203,最终处于低温低压状态的气相冷媒经回气口111返回到压缩机110中,如此完成了空调器1000在运行降温除湿运行模式过程中冷媒的循环。
可以理解的是,当空调器1000运行在降温除湿运行模式时,第二吹风装置252的转速小于空调器1000运行在制冷运行模式时第二吹风装置252的转速,因此,当空调器1000运行在降温除湿运行模式时,第一室内换热器214作为蒸发器对冷媒蒸发的作用相当于空调器1000运行在制冷模式时第一室内换热器214和第二室内换热器215对冷媒蒸发叠加的作用。当空调器1000运行在降温除湿运行模式时,第二室内换热器215和第一室外换热器121作为冷凝器对冷媒冷凝叠加的作用相当于空调器1000运行在制冷运行模式时第一室外换热器121作为冷凝器对冷媒冷凝的作用。
图19为根据一些实施例的空调器的降温除湿模式的压焓图,如图19所示,状态点a为冷媒在进入第一室外换热器121之前的状态,状态点b为冷媒经过第一室外换热器121冷凝之后的状态,状态点a与状态点b之间为冷媒经第一室外换热器121冷凝过程中的状态变化;状态点c为冷媒经第二室内换热器215冷凝之后的状态,状态点b和状态点c之 间为冷媒经第二室内换热器322冷凝过程中的状态变化;状态点d为冷媒经第三电子膨胀阀311膨胀之后的状态,状态点e为冷媒经第一电子膨胀阀321膨胀之后的状态,状态点f为为冷媒经过第一室内换热器214蒸发之后的状态,和状态点d之间为冷媒经过第二室内换热器215冷凝过程中的状态变化;状态点e和状态点f之间为冷媒经过第一室内换热器214蒸发过程中的状态变化。
其中,状态点a对应的焓值为h4、状态点b对应的焓值为h2、状态点c对应的焓值为h1、状态点d对应的焓值为h1、状态点e对应的焓值为h1,状态点f对应的焓值为h3。该空调器1000运行过程中,系统循环的冷媒量为m。
冷媒经过第二室内换热器215冷凝时释放在空气中的热量可以用公式6进行计算:
Qcond=(h2-h1)×m         公式6
冷媒经过第一室内换热器214蒸发时吸收空气中的热量可以用公式7进行计算:
Qevap=(h3-h1)×m         公式7
由于h3>h2,故冷媒经过第一室内换热器214蒸发之后的吸热量大于冷媒经过第二室内换热器215冷凝之后的放热量即Qevap>Qcond,故空调器1000在运行降温除湿运行模式时,室内空气在湿度降低的同时温度会降低。
在本公开另一些实施例中,空调器1000包括两个室内机200(第一室内机201和第二室内机202)。
图20为根据一些实施例的又一种空调器运行循环图,图21为根据一些实施例的又一种空调器运行循环结构图。如图20和图21所示,在本公开另一些实施例中,空调器1000还包括第二室内机202,第二室内机202包括第三室内换热器216、第四电子膨胀阀323、第四室内换热器217和第五电子膨胀阀324。第三室内换热器216与第四电子膨胀阀323、第四室内换热器217和第五电子膨胀阀324依次串联连接。
第二室内机202与第一室内机201并联,且两个室内机200分别与室外机100串联。需要说明的是,当空调器1000运行在四个模式中的任意一个模式时,从室外机100流向两个室内机200的冷媒经由第二连接端口002或第三连接端口003后经冷媒管路分别流至第一室内机201和第二室内机202中,从两个室内机200流向室外机100的冷媒则是在第一室内机201和第二室内机202中的冷媒汇合后经冷媒管路流入室外机100中。
在本公开另一些实施例中,空调器1000的室外机100包括一个或多个室外换热器120,多个室外换热器120并联连接,多个室外换热器120可以提高空调器1000的制冷或制热效果。本公开以室外机100包括两个室外换热器120为例进行说明。此时室外机200还包括第二室外换热器122、第六电子膨胀阀312、第三吹风装置253和第三冷媒流向切换装置173。
第三冷媒流向切换装置173可以为三通阀或四通阀,本公开以第三冷媒流向切换装置173为四通阀为例进行说明。第三冷媒流向切换装置173包括第九端口I、第十端口K、第十一端口Y和第十二端口Z。第三冷媒流向切换装置173的第九端口I与进口21连通,第十端口K与第二室外换热器122连通,第十一端口Y与出口22连通,第十二端口Z与第二冷媒流向切换装置172的第六端口S连通。第二室外机202通过第六电子膨胀阀312与两个室内机200连通。第三吹风装置253被配置为向第二室外换热器122吹风,第三吹风装置253的出风侧朝向第二室外换热器122设置。
如图20所示,当空调器1000运行在制热运行模式和/或不降温除湿运行模式时,控制器500被配置为控制第九端口I与第十端口K连通,其余端口封堵。从两个室内机200流出的冷媒经过连接端口后分流,一部分冷媒依次经过第三电子膨胀阀311、第一室外换热器121、第二制冷剂流向切换装置172流入气液分离器130中,另外一部分冷媒依次经过第六电子膨胀阀312、第二室外换热器122、第三冷媒流向切换装置173流入气液分离器130中。
如图21所示,当空调器1000运行在制冷运行模式或降温除湿运行模式时,控制器500被配置为控制第十端口K与第十一端口Y连通,其余端口封堵。从油分离器140中流出的冷媒经过单向阀24后分流,一部分冷媒经过第一室外换热器121和第三电子膨胀阀311流入两个室内机200中,另一部分冷媒经过第二室外换热器122和第六电子膨胀阀312流入两个室内机200中。
在本公开一些实施例中,当空调器1000运行在不降温除湿模式时,可以仅运转部分室外换热器120,以降低空调器1000的能耗,例如,如图22所示,仅运转第一室外换热器121,此时关闭第六电子膨胀阀312,开启第三电子膨胀阀311,空调器1000的冷媒的运行循环可如图21中除去第二室外换热器122时的运行状态所示,本公开不再赘述。
图23为根据一些实施例的又一种空调器运行循环结构图,如图23所示,为了进一步降低空调器1000的能耗,在本公开一些实施例中,空调器1000还包括电磁阀600,电磁阀600的第一端601与第二电子膨胀阀322第二端3222连通,电磁阀600的第二端602与进口21连通。
当空调器1000运行在不降温除湿运行模式时,控制器500被配置为控制第三电子膨胀阀311关闭,控制电磁阀600开启。此时第一冷媒流向切换装置171的第一端口M与第三端口O连通,第二电子膨胀阀322和第五电子膨胀阀324均全开。
低温低压的气相冷媒经压缩机110压缩后变为高温高压的气相冷媒流出,高温高压的气相冷媒依次经单向阀24、第一冷媒流向切换装置171、第一连接端口001和第二连接端口002后被分成两部分,一部分高温高压的气相冷媒经过第一室内换热器214冷凝为中温高压的液相冷媒,中温中压的液相冷媒经过第一电子膨胀阀321膨胀后变为低温低压的液相冷媒,低温低压的液相冷媒经第二室内换热器215蒸发后变为低温低压的气相冷媒,低温低压的气相冷媒从第二电子膨胀阀322流出;另外一部分高温高压的气相冷媒经第三室内换热器216冷凝为中温高压的液相冷媒,中温中压的液相冷媒经第四电子膨胀阀323膨胀为低温低压的气液两相态冷媒,低温低压的气液两相态冷媒经第四室内换热器217蒸发为低温低压的气相冷媒,低温低压的气相冷媒从第五电子膨胀阀324流出;从第二电子膨胀阀322和第五电子膨胀阀324分别流出的低温低压的气相冷媒汇合后依次经过第三连接端口003、第四连接端口004和电磁阀600流入气液分离器130,气液分离器130再次过滤未完全蒸发的液相冷媒,最终处于低温低压状态的气相冷媒经回气口111返回到压缩机110中。
此时,室外换热器120不需工作便可完成对室内空气的除湿升温,减少了空调器1000的能耗。
图24为根据一些实施例的另一种空调器的不降温除湿运行模式的压焓图,如图24所示,状态点a为冷媒在进入第一室内换热器214之前的状态,状态点b为冷媒经过第一室内换热器214冷凝之后的状态,状态点a与状态点b之间即为冷媒经过第一室内换热器214冷凝过程中的状态变化;状态点c为冷媒进入第二室内换热器215之前的状态,状态点d为冷媒经过第二室内换热器215蒸发之后状态,状态点c和和状态点d之间即为冷媒经过第二室内换热器215蒸发过程中的状态变化。
状态点a对应的焓值为h3、状态点b、状态点c应的焓值为h1、状态点d对应的焓值为h2;在空调器1000运行过程中,系统循环的冷媒量为m。
则冷媒经过第一室内换热器214冷凝时释放在空气中的热量可以用公式8进行计算:
Qcond=(h3-h1)×m         公式8
冷媒经过第二室内换热器215蒸发时吸收空气中的热量可以用公式9进行计算:
Qevap=(h2-h1)×m         公式9
压缩机110的耗功量可以用公式10进行计算:
W=(h3-h2)×m         公式10
冷媒经过第一室内换热器214冷凝时释放在空气中的热量Qcond、冷媒经过第二室内换热器215蒸发时吸收空气中的热量Qevap和压缩机110的耗功量W之间的关系如公式11所示:
Qcond=Qevap+W         公式11
如此,冷媒经过第二室内换热器215蒸发之后的吸热量小于冷媒经过第一室内换热器214冷凝之后的放热量即Qevap<Qcond,故空调器1000在不降温除湿模式运转情况下,室内空气分别经过第一室内换热器214冷凝、第二室内换热器215蒸发,冷媒不会从室外换热器120吸热,室内空气在湿度降低的同时温度也会轻微上升。
在一些实施例中,如图23所示,空调器1000包括:第二室外换热器122、第六电子膨胀阀312、第三吹风装置253和第三冷媒流向切换装置173时,则冷媒的流向可参考图23,本公开对此不再赘述。
在相关技术中,空调器1000是以检测室内机所处空间的温湿度值以此来调节压缩机110的运行频率、电子膨胀阀300的开度、室内机200的风扇的档位来控制冷媒流量、室内机200出风温度,实现对空调器1000的变频调节,从而改变室内机200所处空间的温度和湿度。然而当室内的温湿度差值较大而温湿度又没有固定的目标值时,压缩机110可能会以固定的频率进行工作,致使用户感受到湿度没有下降但体感温度过低的问题。
基于此,本公开提供一种空调器1000的控制方法,通过控制空调器1000,实现对多台室内机200室温、湿度的双重控制。
图25为根据一些实施例的一种空调器的主要组成部分图,如图25所示,本公开实施例提供了一种空调器1000和空调器1000的运行模式控制方法,空调器1000可包括1台室外机100和2台及2台以上的室内机200,以及用于控制各个室内机200和室外机100的控制器500。
室外机100包括一个室外换热器120,即第一室外换热器121,室外机100还包括室外风机180(即第二吹风装置252)、液侧截止阀191和气侧截止阀192。
第一室内机201还包括第一进风温度传感器51,第一室内温度传感器11,第二室内温度传感器12和第三室内温度传感器13。
第二室内机202还包括第二进风温度传感器52,第四室内温度传感器14,第五室内温度传感器15和第六室内温度传感器16。
图26为根据一些实施例的一种空调器的控制方法的流程图,如图26所示,本公开提供了一种空调器1000的控制方法,包括以下步骤:
S101、控制器500通过压力传感器60获取压缩机110在第一时刻下的第一排气压力值Pd01。
第一时刻为空调器1000运行的任意时刻。压缩机110的排气压力值Pd是指压缩机排气口112处的排气管内冷媒气体的压力值。第一排气压力值Pd01为压力传感器60在第一时刻检测到的压缩机110的排气压力值。
例如,第一时刻可以为空调器1000的开始运行时刻,用户开启空调器1000时,控制器500可以基于用户选择的运行模式,执行步骤S101,获取压缩机110的第一排气压力值Pd01。
S102、控制器500从第一目标压力值Pdset1(1)和第二目标压力值Pdset2(1)中确定最大目标压力值。
目标压力值Pdset为多个室内机200中的任意一个室内机运行在任意一种模式时压缩机110的目标排气压力值。第一目标压力值Pdset1(1)为多个室内机200中第一室内机201运行在任意一种模式时,在第一时刻下压缩机110的目标排气压力值。第二目标压力值Pdset2(1)为多个室内机200中第二室内机202运行在任意一种模式时,在第一时刻下压缩机110的目标排气压力值。
需要说明的是,当室内机200运行在制冷运行模式时具有固定的目标压力值Pdset,示例地,当第一室内机201运行在制冷运行模式时,第一室内机201在第一时刻下的第一目标压力值Pdset1(1)=2.9Mpa。当室内机200运行在不降温除湿运行模式时,其设定的目标压力值Pdset可以是变化的。示例地,当第一室内机201运行在不降温除湿运行模式时,第一室内机201在第一时刻下的第一目标压力值Pdset1(1)会随着室内环境温度Ti的变化发生改变,以使得重新确定目标压力值Pdset更符合当前第一室内机201的环境情况。
当控制器500判断第一室内机201的第一目标压力值Pdset1(1)大于或等于第二室内机202的第二目标压力值Pdset2(1)时,将第一目标压力值Pdset1(1)确定为最大目标压力值。当控制器500判断第一室内机201的第一目标压力值Pdset1(1)小于第二室内机202的第二目标压力值Pdset2(1)时,将第二目标压力值Pdset2(1)确定为最大目标压力值。
步骤S103、控制器500计算压力偏差值ΔPd2。
压力偏差值ΔPd2是指在空调器1000运行在任意一个时刻下的最大目标压力值与压缩机110在该时刻下的排气压力值Pd之间的差值。
示例地,当控制器500判断在第一时刻下第一室内机201的第一目标压力值Pdset1(1)大于第二室内机202的第二目标压力值Pdset2(2)时,最大目标压力值为Pdset1(1),压缩机110在第一时刻下的第一排气压力值为Pd01,此时压力偏差值ΔPd2与第一排气压力值Pd01、最大目标压力值之间的关系为:ΔPd2=Pdset1(1)-Pd01。
步骤S104、控制器500获取室外风机180的风机档位调节值并调节室外风机180的档位。
控制器500基于压力偏差值ΔPd2在预设对应关系表中查找出室外风机180的风机档位调节值,调节室外风机180的档位,以使得压缩机110的排气压力值Pd由第一时刻下的第一排气压力值Pd01向最大目标压力值进行调整。
预设对应关系表为压力偏差值ΔPd2与风机档位调节值的对应关系表,其中包括至少一个在任一时刻下室内机200的最大目标压力值与在该时刻下压缩机110的排气压力值Pd之间的压力偏差值ΔPd2,以及至少一个室外风机180的风机档位调节值,并且,至少一个压力偏差值ΔPd2与至少一个室外风机180的风机档位调节值具有对应关系。
示例地,当空调器1000开始运行时,控制器500获取开始运行时刻下的室外环境温度和压缩机110的频率,并依据室外环境温度和压缩机110的频率给予室外风机180一个初始风机档位。控制器500确定压力偏差值ΔPd2,并根据压力偏差值ΔPd2在预设对应关系表中查找出室外风机180的风机档位调节值,控制器500基于查找出的风机档位调节值,根据初始风机档位来调节室外风机180的档位,使得压缩机110的排气压力值Pd向最大目标压力值进行调整。
需要说明的是,在本公开一些实施例中,当压缩机110的排气压力值Pd在任意一个时刻达到该时刻下的最大目标压力值,可以认为该时刻下的室内环境温度Ti已达到预设温度Ts,此时空调器1000的运行达到动态平衡,在没有预设温度Ts的变化或室内环境温度Ti的突然变化时,室内机200的最大压力值一般不再随着时刻的变化发生变化。
在本公开一些实施例中,当第一室内机201和第二室内机202均运行在制冷运行模式时,压力偏差值ΔPd2与风机档位调节值的对应关系如表1所示,表1属于预设对应关系表。
表1

示例地,当控制器500确定出的最大目标压力值与压缩机110的第一排气压力值Pd01之间的压力偏差值ΔPd2为0,则基于压力偏差值ΔPd2=0和表1,可以确定出室外风机180需要调节的风机档位调节值为0,则此时将室外风机180的风机档位无需调整。
示例地,控制器500确定室内机200运行在第一时刻下的最大目标压力值与压缩机110的第一排气压力值Pd01之间的压力偏差值ΔPd2为-0.9,则控制器500基于压力偏差值ΔPd2=-0.9和表1确定室外风机180需要调节的风机档位调节值为+3,此时控制器500将室外风机180的第一风机档位上调3个档位。
示例地,控制器500确定出室内机200运行在第一时刻下的最大目标压力值与压缩机110的第一排气压力值Pd01之间的压力偏差值ΔPd2为0.4,则控制器500基于压力偏差值ΔPd2=0.4和表1确定室外风机180需要调节的风机档位调节值为-1,此时控制器500将室外风机180的第一风机档位下调1个档位。若第一时刻调整后的室外风机180的风机档位为档位1,则第二时刻控制器500可以将风机档位调整为档位0。
在一些实施例中,当第一室内机201和第二室内机202均运行在制热运行模式时,空调器1000还可以包括另一预设对应关系表。
当第一室内机201运行在不降温除湿运行模式,第二室内机202运行在制冷运行模式时,压力偏差值ΔPd2与风机档位调节值的对应关系如表2所示,表2属于预设对应关系表。
表2
当第一室内机201和第二室内机202均运行在不降温除湿运行模式时,压力偏差值ΔPd2与风机档位调节值的对应关系如表3所示,表3属于预设对应关系表。
表3

需要说明的是,当压缩机110的第二排气压力值Pd02与第二时刻下的最大目标压力值相等,或者压缩机110的第二排气压力值Pd02与第二时刻下的最大目标压力值较为接近,例如压缩机110的第二排气压力值Pd02与最大目标压力值之间的压力偏差值ΔPd2小于一定预设压力阈值时,控制器500可以确定压缩机110的第二排气压力值Pd02达到最大目标压力值。预设阈值可以为预设的较小的压力值。
图27为根据一些实施例的一种空调系统的控制方法的逻辑流程图,如图27所示,当第一室内机201运行在不降温除湿运行模式、第二室内机202运行在制冷运行模式,或者当第一室内机201和第二室内机202均运行在不降温除湿运行模式时,步骤S101至步骤S104后还可以包括以下步骤:
步骤S201,获取环境温度Ti和设定温度Ts,并确定第一温度差ΔT1与温差变化率X。
控制器500通过第一室内机201的第一进风温度传感器51获取第一时刻下的第一环境温度Ti1,第二时刻下的第二环境温度Ti2,获取设定温度Ts。
第二时刻为以一定检测时间作为一个周期,由第一时刻经过一个周期后的时刻。以此为规律,第n+1时刻为第n时刻经过一个周期后的时刻。本公开对一个周期的时长不做限定,例如,一个周期可以为10s。
设定温度Ts为用户输入设定温度值。
温度差ΔT为室内机200中的任意一个室内机200运行在任意一个时刻下的环境温度Ti与设定温度Ts的差值。示例地,当第一室内机201运行在第一时刻时,第一温度差ΔT1=Ti1-Ts,当第一室内机201运行在第二时刻时,第二温度差ΔT2=Ti2-Ts。
温差变化率X是指第n+1时刻的温度差与第n时刻的温度差变化率。温差变化率X可以根据公式12确定:
X=(Ti(n+1)-Ts)+(Ti(n)-Ts)       公式12
Ti(n+1)表示第(n+1)时刻下的检测到的环境温度,Ti(n)为第n时刻下的检测到的环境温度。示例地,当n=1时,第一时刻下第一室内机201的第一进风温度传感器51检测到的室内环境温度为Ti1,第二时刻下第一室内机201的第一进风温度传感器51检测到的室内环境温度为Ti2,此时第一室内机201运行在第二时刻下的第二温度差ΔT2与运行在第一时刻下的第一温度差ΔT1的温差变化率X为(Ti2-Ts)+(Ti1-Ts)。
步骤S202,获取第二排气压力值Pd02并判断第二排气压力值Pd02与第一排气压力值Pd01的关系。
控制器500通过压力传感器60获取压缩机110在第二时刻下的第二排气压力值Pd02。
当判断压缩机110在第二时刻下的第二排气压力值Pd02与在第一时刻下的第一排气压力值Pd01相等,则认为压缩机110在第一时刻下的第一排气压力值Pd01 达到第一时刻下的最大目标压力值,且第二时刻下压缩机110的最大目标压力值与第一时刻下的最大目标压力值相等,因此压缩机110在第二时刻时已达到第二时刻下的最大目标压力值,此时不需要再进行下一步的迭代计算,如不相等,则继续进行步骤S203。
步骤S203,得到目标压力的变化值ΔPd1,确定第三目标压力值Pdset1(2)与第四目标压力值Pdset2(2)。
当判断压缩机110在第二时刻下的第二排气压力值Pd02与在第一时刻下的第一排气压力值Pd01不相等时,则依据第一环境温度Ti1设定温度Ts的温度差ΔT1、温差变化率X来判断目标压力的变化值ΔPd1。
目标压力的变化值ΔPd1为室内机200在第(n+1)时刻下的目标压力值Pdset1(n+1)与第n时刻下的目标排气压力值Pdset1(n)的差值。
目标压力的变化值ΔPd1与Pdset1(n+1)与Pdset1(n)的关系如公式13所示:
Pdset1(n+1)=ΔPd1+Pdset1(n)          公式13
示例地,第一室内机201的目标压力的变化值ΔPd1为第一室内机201运行在第一时刻时的第一目标压力值Pdset1(1)与第一室内机201运行在第二时刻时的第三目标压力值Pdset1(2)的差值。
表4为目标压力的变化值ΔPd1与温度差ΔT、温差变化率X的关系表。
如表4所示,由温度差ΔT、温差变化率X结合确定出ΔPd1,并依据室内机200在第n时刻下的目标压力值Pdset(n)以及公式2,可以确定出第(n+1)时刻下室内机200的排气压力的目标值。
示例地,当第一室内机201在第一时刻下的第一目标压力值Pdset1(1)为5Mpa时,第一时刻下第一温度传感器检测到的环境温度Ti1与设定温度Ts的温度差ΔT为-4℃,当温差变化率X为-0.7℃时,基于温度差ΔT为-4℃、温差变化率x为-0.7℃和表4,得出ΔPd1=0.5Mpa,可以确定第二时刻的第三目标压力值Pdset1(2)为5Mpa+0.5Mpa=5.5Mpa。
示例地,当第一室内机201在第一时刻下的第一目标压力值Pdset1(1)为12Mpa时,第一时刻下第一进风温度传感器51检测到的环境温度Ti1与设定温度Ts的温度差ΔT为2℃,当温差变化率X为0.3℃时,则基于温度差ΔT为2℃、温差变化率X为0.3℃和表4,得出ΔPd1=-0.2Mpa,可以确定第二时刻的第三目标压力值Pdset1(2)为12Mpa+(-0.2Mpa)=11.8Mpa。
当第二室内机202运行在不降温除湿运行模式时,第二时刻下第四目标压力值Pdset2(2)的计算方式与第一室内机201运行在第二时刻下的第三目标压力值Pdset1(2)的计算方式一致,本公开不再赘述。
步骤S204,判断第三目标压力值Pdset1(2)与第四目标压力值Pdset2(2)的大小。
当第一室内机201运行在不降温除湿运行模式,第二室内机202运行在制冷运行模式时,第二室内机202的目标压力值Pdset不发生变化,因此第二室内机202运行在第二时刻下的第四目标压力值Pdset2(2)与运行在第一时刻下的第二目标压力值Pdset2(1)相等,此时运行步骤S204A1至S209。
步骤S204A1,判断第三目标压力值Pdset1(2)大于第四目标压力值Pdset2(2)。
控制器500判断第一室内机201在第二时刻下的第三目标压力值Pdset1(2)与第二室内机202在第二时刻下的第四目标压力值Pdset2(2)的大小。
第一室内机201在第一时刻下的第一目标压力值Pdset1(1)大于第二室内机202在第一时刻下的第二目标压力值Pdset2(1),可以得到第一室内机201在第二时刻下的第三目标压力值Pdset1(2)大于第二室内机202在第一时刻下的第二目标压力值Pdset2(1),在第二时刻下,第一室内机201与第二室内机202的最大目标压力值应为第三目标压力值Pdset1(2)。
步骤S205,获得室内机200在第二时刻下的最大目标压力值,即第一室内机201在第二时刻下的第三目标压力值Pdset1(2),并基于第三目标压力值Pdset1(2)调整室外风机180的档位。
基于第一室内机201在第二时刻下的第三目标压力值Pdset1(2)与压缩机110在第二时刻下的第二排气压力值Pd02之间的压力偏差值ΔPd2,调节室外风机180的档位,以使得压缩机110的排气压力值Pd由第二排气压力值Pd02向第三目标压力值Pdset1(2)进行调整。
依据第一室内机201在第二时刻下的第三目标压力值Pdset1(2)与压缩机110在第二时刻下的第二排气压力值Pd02之间的压力偏差值ΔPd2与表2对室外风机180进行调档。
步骤S206,判断压缩机110在任一时刻下的排气压力值Pd是否达到该时刻下的最大目标压力值,即第三目标压力值Pdset1(2),未达到,继续执行步骤S205,达到则执行步骤S207。
步骤S207,判断此时压缩机110的第二排气压力值Pd02与第二室内机202的环境温度Ti对应的第二饱和压力值Pd2的大小,并根据第二目标压力值Pdset2(1)与第二环境温度Ti2对应的第二饱和压力值Pd2,调节第五室内膨胀阀324的开度。
当压缩机110的第二排气压力值Pd02大于第二室内机202的环境温度对应的第二饱和压力值Pd2时,执行步骤S208,否则,执行步骤S209。
步骤S208,减小第二室内机202的第五室内膨胀阀324的开度。
步骤S209,增大第二室内机202的第五室内膨胀阀324的开度。
步骤S210,判断压缩机110的排气压力值Pd达到第二室内机202的第二环境温度Ti2对应的第二饱和压力值Pd2,也即Pd02=Pd2。
步骤S211,结束调节任务。
需要说明的是,当第二室内机202的第二目标压力值Pdset2(1)与第二环境温度Ti2对应的第二饱和压力值Pd2相等时,控制器500可以确定第二室内机202的第二环境温度Ti2对应的第二饱和压力值Pd2达到压缩机110的第二排气压力值Pd02。
或者,压缩机110的第二排气压力值Pd02与第二环境温度Ti2对应的第二饱和压力值Pd2较为接近,例如压缩机110的第二排气压力值Pd02与第二环境温度Ti2对应的第二饱和压力值Pd2之间的压力偏差值ΔPd2小于预设阈值时,控制器500可以确定第二室内机202的第二环境温度Ti2对应的第二饱和压力值Pd2达到压缩机110的第二排气压力值Pd02。其中,预设阈值可以为预设的较小的压力值。
需要说明的是,第二室内机202运行在制冷运行模式时,第五电子膨胀阀324以及第四电子膨胀阀323均保持最大开度。
当第一室内机201运行在制冷模式,第二室内机202运行在不降温除湿模式,且第一室内机201的第一目标压力值Pdset1小于第二室内机202的第二目标压力值Pdset2时,调节过程与步骤S201至步骤S211类似,本公开在此不再赘述。
当第一室内机201和第二室内机202均运行在不降温除湿运行模式,且第一室内机201运行在第一时刻下的第一目标压力值Pdset1(1)大于第二室内机202运行在第一时刻下的第二目标压力值Pdset2(1)时,运行步骤S204至步骤S211。
当第一室内机201和第二室内机202均运行在不降温除湿运行模式,且第一室内机201运行在第一时刻下的第一目标压力值Pdset1(1)小于第二室内机202运行在第一时刻下的第二目标压力值Pdset2(1)时,运行步骤S204A2至步骤S311。
步骤S204A2,判断第三目标压力值Pdset1(2)小于第四目标压力值Pdset2(2)。
步骤S305,获得室内机200在第二时刻下的最大目标压力值,即第二室内机202在第二时刻下的第四目标压力值Pdset2(2),并基于第四目标压力值Pdset2(2)调整室外风机180的档位。
基于第二室内机202在第二时刻下的第四目标压力值Pdset2(2)与压缩机110在第二时刻下的第二排气压力值Pd02之间的压力偏差值ΔPd2,调节室外风机180的档位,以使得压缩机110的排气压力值Pd由第二排气压力值Pd02向第四目标压力值Pdset2(2)进行调整。
依据第二室内机202在第二时刻下的第四目标压力值Pdset2(2)与压缩机110在第二时刻下的第二排气压力值Pd02之间的压力偏差值ΔPd2与表2对室外风机180进行调档。
步骤S306,判断压缩机110在任一时刻下的排气压力值Pd是否达到该时刻下的最大目标压力值,即第四目标压力值Pdset2(2),未达到,继续执行步骤S305,达到则执行步骤S307。
步骤S307,判断此时压缩机110的第二排气压力值Pd02与第一室内机201的环境温度Ti对应的第一饱和压力值Pd1的大小,并根据第一目标压力值Pdset1(1)与第一环境温度Ti1对应的第一饱和压力值Pd1,调节第二室内膨胀阀322的开度。
当压缩机110的第二排气压力值Pd02大于第一室内机201的环境温度Ti对应的第一饱和压力值Pd1时,执行步骤S308,否则,执行步骤S309。
步骤S308,减小第一室内机201的第二室内膨胀阀322的开度。
步骤S309,增大第一室内机201的第二室内膨胀阀322的开度。
步骤S310,判断压缩机110的排气压力值Pd达到第一室内机201的环境温度Ti对应的第一饱和压力值Pd1,也即Pd02=Pd1。
步骤S311,结束调节任务。
需要说明的是,当第一室内机201的第一目标压力值Pdset1(1)与第一环境温度Ti2对应的第一饱和压力值Pd1相等时,控制器500可以确定第一室内机201的第一环境温度Ti1对应的第一饱和压力值Pd1达到压缩机110的第二排气压力值Pd02。
或者,压缩机110的第二排气压力值Pd02与第一环境温度Ti2对应的第一饱和压力值Pd1较为接近,例如压缩机110的第二排气压力值Pd02与第一环境温度Ti1对应的第一饱和压力值Pd1之间的压力偏差值ΔPd2小于预设阈值时,控制器500可以确定第一室内机201的第一环境温度Ti1对应的第一饱和压力值Pd1达到压缩机110的第二排气压力值Pd02。其中,预设阈值可以为预设的较小的压力值。
本公开一些实施例提供的技术方案至少带来以下有益效果:空调器1000的室外机100依据室外环境温度和压缩机110的工作频率,给予室外风机180一个初始 风挡值,得到对应的压缩机110的第一排气压力值Pd01,由进风温度传感器50得到对应的室内环境温度Ti,若两台室内机200的环境温度Ti不同,且两台控温除湿的室内机200的设定温度Ts也不相同,则根据环境温度Ti与设定温度Ts的温度差、温差变化率X的情况得到目标压力的变化值,进而确认下一步的排气压力的目标值,最终实现室内机200的环境温度Ti与设定温度Ts一致。提高了用户设定空调器1000的效率,也优化了用户的使用体验感。
本领域技术人员应该很容易意识到,结合本公开中所公开的实施例描述的各示例的模块及算法步骤,本公开一些实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图28为根据一些实施例的一种空调系统的控制器的硬件配置框图,如图28所示,该控制器500包括处理器1001,在一些实施例中,还包括与处理器1001连接的存储器1002和通信接口1003。处理器1001、存储器1002和通信接口1003通过总线1004连接。
处理器1001可以是中央处理器(central processing unit,CPU),通用处理器网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器1001还可以是其它任意具有处理功能的装置,例如电路、器件或软件模块。处理器1001也可以包括多个CPU,并且处理器1001可以是一个单核(single-CPU)处理器,也可以是多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器1002可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器1002可以是独立存在,也可以和处理器1001集成在一起。其中,存储器1002中可以包含计算机程序代码。处理器1001用于执行存储器1002中存储的计算机程序代码,从而实现本申请实施例提供的一种空调系统的控制方法。
通信接口1003可以用于与其他设备或通信网络通信(如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等)。通信接口1003可以是模块、电路、收发器或者任何能够实现通信的装置。
总线1004可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线1004可以分为地址总线、数据总线、控制总线等。为便于表示,图28中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本公开一些实施例还提供一种计算机可读存储介质,计算机可读存储介质包括计算机执行指令,当计算机执行指令在计算机上运行时,使得计算机执行如上述实施例提供的一种空调器的控制方法。
本公开一些实施例还提供一种计算机程序产品,该计算机程序产品可直接加载到存储器中,并含有软件代码,该计算机程序产品经由计算机载入并执行后能够实现上述实施例提供的一种空调器1000的控制方法。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且 可以在不脱离本公开的精神的情况下对实施例的某些要素进行修改和替换。本公开的范围受所附权利要求的限制。

Claims (30)

  1. 一种室内机,包括:
    机壳,所述机壳包括相对设置的上盖板和底板,以及与所述上盖板和所述底板连接的第一侧板;
    出风口,设置在所述第一侧板上;
    室内换热器,所述室内换热器位于所述机壳内部,其延伸方向平行于所述出风口的延伸方向且长度小于所述出风口的长度,所述室内换热器的第一端与所述出风口的第一端位于同一侧,所述室内换热器的第二端与所述出风口的第二端位于同一侧,所述室内换热器的第一端与所述出风口的第一端之间存在避让空间;
    遮挡部件,其连接所述室内换热器的第一端和所述出风口的第一端,以遮挡所述避让空间。
  2. 根据权利要求1所述的室内机,其中,
    所述遮挡部件包括:
    第一遮挡部,所述第一遮挡部平行于所述出风口,所述第一遮挡部与所述第一侧板固定连接;
    第二遮挡部,所述第二遮挡部与所述第一遮挡部连接,且所述第二遮挡部垂直于所述出风口,所述第二遮挡部与所述室内换热器的第一端固定连接。
  3. 根据权利要求2所述的室内机,还包括:
    接水盘,设置在所述机壳内部,且位于所述室内换热器靠近所述底板的一侧;其中,所述接水盘包括:
    接水盘底板;
    与所述接水盘底板连接的第一接水盘侧板,所述第一接水盘侧板与所述第一侧板平行且相邻;
    所述第一遮挡部包括:
    遮挡部主体;
    第一支撑部,设置在所述遮挡部主体靠近所述上盖板的一端,且与所述上盖板靠近所述底板的表面抵靠;
    第二支撑部,设置在所述遮挡部主体靠近所述底板的一端,且与所述第一接水盘侧板靠近所述上盖板的表面抵靠;
    所述第二遮挡部包括:
    第三支撑部,与所述上盖板靠近所述底板的表面抵靠;
    第四支撑部,与所述接水盘底板靠近所述上盖板的表面抵靠。
  4. 根据权利要求3所述的室内机,其中,
    所述第一支撑部、所述第三支撑部均与所述上盖板靠近所述底板的表面贴合,所述第二支撑部与所述第一接水盘侧板靠近所述上盖板的表面贴合、所述第四支撑部与所述接水盘底板靠近所述上盖板的表面贴合。
  5. 根据权利要求4所述的室内机,其中,
    所述上盖板包括:
    上盖板主体;
    位于所述上盖板主体靠近所述底板一侧的上盖板发泡层,所述上盖板发泡层包括与所述底板平行的平直部和相对所述平直部朝向所述底板倾斜的倾斜部,所述倾斜部位于所述出风口所在侧;
    所述第一支撑部具有与所述倾斜部相适配的倾斜角度,所述第一支撑部与所述倾斜部适配贴合;所述第三支撑部包括与所述平直部适配贴合的第一支撑分部和与所述倾斜部适配贴合的第二支撑分部。
  6. 根据权利要求5所述的室内机,其中,
    所述上盖板发泡层还包括定位部,所述定位部设置在所述倾斜部上,且朝向所述底板 所在侧凸出,所述第一支撑部的一侧边抵靠在所述定位部上。
  7. 根据权利要求3所述的室内机,其中,
    所述第一遮挡部还包括插设部,所述插设部与所述第二支撑部连接,所述第一接水盘侧板与所述第一侧板之间具有间隙,所述插设部插设在所述间隙中。
  8. 根据权利要求1所述的室内机,其中,
    所述第一遮挡部还包括连接部,所述连接部设置在所述遮挡部主体远离所述第二遮挡部的一侧,所述连接部相对于所述遮挡部主体向所述机壳外部翻折,所述连接部具有第一连接部和第二连接部,所述第二连接部与所述第一侧板相贴合,且与所述第一侧板固定连接。
  9. 根据权利要求2所述的室内机,其中,
    所述第二遮挡部与所述换热器的第一端端面贴合,且所述第二遮挡部包括用于避让与所述室内换热器连接的配管的贯通部。
  10. 一种空调器,
    包括权利要求1至9中任一项所述的室内机。
  11. 一种空调器,包括:
    室内机,包括:
    第一室内换热器;
    第二室内换热器,与所述第一室内换热器连通;
    第一吹风装置,被配置为向所述第一室内换热器吹风;
    室外机,通过循环管路与所述室内机连接;
    控制器,与所述室内机和所述室外机均电连接,被配置为:
    在制热运行模式下,控制所述第一室内换热器和所述第二室内换热器作为冷凝器,且控制所述第一吹风装置的转速至第一预设数值;
    在不降温除湿运行模式下,控制所述第一室内换热器作为冷凝器,所述第二室内换热器作为蒸发器,且控制所述第一吹风装置的转速至第二预设数值,所述第二预设数值大于所述第一预设数值。
  12. 根据权利要求11所述的空调器,其中,
    所述室内机还包括:
    第一电子膨胀阀,与所述第一室内换热器和所述第二室内换热器连通;
    第二电子膨胀阀,与所述第二室内换热器和所述室外机连通;
    所述室外机包括:
    压缩机组件,具有出口与进口;
    第一冷媒流向切换装置,包括:与所述第一室内换热器连通的第一端口、与所述进口连通的第二端口、与所述出口连通的第三端口,以及第四端口;
    第三电子膨胀阀;
    第一室外换热器,通过所述第三电子膨胀阀与所述第二电子膨胀阀连通;
    第二冷媒流向切换装置,包括:与所述进口连通的第五端口、与所述第一室外换热器连通的第六端口、与所述出口连通的第七端口、与所述第四端口连通的第八端口。
  13. 根据权利要求12所述的空调器,其中,所述控制器还被配置为:
    在所述制热运行模式和所述不降温除湿运行模式下,控制所述第一端口与所述第三端口连通,所述第五端口与所述第六端口连通。
  14. 根据权利要求13所述的空调器,其中,所述室外机还包括:
    第二吹风装置,用于向所述第一室外换热器吹风;
    所述控制器还被配置为:
    在制冷运行模式下,控制所述第一端口与所述第二端口连通,所述第六端口与所述第七端口连通,且控制所述第二吹风装置的转速至第三预设数值;
    在降温除湿运行模式下,控制所述第一端口与所述第二端口连通,所述第六端口与第七端口连通,且控制所述第二吹风装置的转速至第四预设数值,所述第四预设数值小于所述第三预设数值。
  15. 根据权利要求12所述的空调器,其中,所述室内机还包括:
    第三室内换热器、第四电子膨胀阀、第四室内换热器和第五电子膨胀阀,所述第三室内换热器、所述第四电子膨胀阀、第四室内换热器和第五电子膨胀阀依次串联连通;
    所述第三室内换热器与所述第一端口连通,所述第五电子膨胀阀与所述第三电子膨胀阀连通。
  16. 根据权利要求13所述的空调器,还包括:
    电磁阀,与所述第二电子膨胀阀和所述进口连通。
  17. 根据权利要求16所述的空调器,其中,所述控制器还被配置为:
    在所述不降温除湿运行模式下,控制所述第三电子膨胀阀关闭,且控制所述电磁阀开启。
  18. 根据权利要求14所述的空调器,其中,所述室外机还包括:
    第二室外换热器和第六电子膨胀阀,所述第二室外换热器通过所述第六电子膨胀阀与所述第二电子膨胀阀连通;
    第三吹风装置,用于向所述第二室外换热器吹风;
    第三冷媒流向切换装置,包括:与所述进口连通的第九端口,与所述第二室外换热器连通的第十端口,与所述出口连通的第十一端口,与所述第六端口连通的第十二端口。
  19. 根据权利要求18所述的空调器,其中,所述控制器还被配置为:
    在所述制热运行模式和所述不降温除湿运行模式下,控制所述第九端口与所述第十端口连通;
    在所述制冷运行模式和所述降温除湿运行模式下,控制所述第十端口与所述第十一端口连通。
  20. 根据权利要求11至19任一项所述的空调器,其中,所述第一冷媒流向切换装置和所述第二冷媒流向切换装置均包括:四通阀。
  21. 一种空调器,包括:
    室外风机;
    多个室内机;
    压缩机;
    压力传感器,用于检测所述压缩机的排气压力值;
    控制器,与所述压力传感器连接,被配置为:
    通过所述压力传感器获取所述压缩机在第一时刻下的第一排气压力值;
    从第一目标压力值和第二目标压力值中确定最大目标压力值,所述第一目标压力值为所述多个室内机中第一室内机运行在第一模式时压缩机的目标排气压力值,所述第二目标压力值为所述多个室内机中第二室内机运行在第二模式时压缩机的目标排气压力值;
    计算所述最大目标压力值与所述第一排气压力值之间的压力偏差值;
    基于所述压力偏差值,调节所述室外风机的档位,以使得所述压缩机的排气压力值达到所述最大目标压力值。
  22. 根据权利要求21所述的空调器,其中,
    所述第一模式为不降温除湿运行模式,所述第二模式为制冷运行模式;
    或者,
    所述第一模式和所述第二模式均为不降温除湿运行模式。
  23. 根据权利要求22所述的空调器,其中,在所述第一模式为不降温除湿运行模式,所述第二模式为制冷运行模式的情况下,所述第一室内机的第一室内换热器作为冷凝器进行工作,所述第一室内机的第二室内换热器作为蒸发器进行工作,且所述第二室内机的第 三室内换热器和第四室内换热器均作为蒸发器进行工作。
  24. 根据权利要求23所述的空调器,还包括:
    第一进风温度传感器,用于检测所述第一室内机的环境温度;
    所述控制器,还被配置为:
    通过所述第一进风温度传感器获取第一时刻的第一环境温度和第二时刻的第二环境温度;
    根据所述第二环境温度与第一室内机预设温度之间的第二温度差值和在第二时刻下所述第一室内机的温差变化率,调整所述第一目标压力值;其中,所述温差变化率为所述第二温度差值与第一温度差值之间的变化值,所述第一温度差值为所述第一环境温度与第一室内机预设温度之间的温度差值。
  25. 根据权利要求22所述的空调器,还包括:
    第一进风温度传感器,用于检测所述第一室内机的环境温度;
    第二进风温度传感器,用于检测所述第二室内机的环境温度;
    第二电子膨胀阀,用于调节所述第一室内机与所述室外机之间管路内的冷媒流量;
    第五电子膨胀阀,用于调节所述第二室内机与所述室外机之间管路内的冷媒流量;
    所述控制器,还被配置为:
    在所述第一模式和所述第二模式均为不降温除湿运行模式的情况下,通过所述压力传感器获取压缩机在第二时刻下的第二排气压力值,且通过所述第一进风温度传感器获取第一室内机第二时刻下的第二环境温度,通过所述第二进风温度传感器获取第二室内机第二时刻下的第四环境温度;所述第二时刻为在所述第一时刻之后的时刻;
    在所述第二排气压力值达到所述最大目标压力值的情况下,若所述第一目标压力值大于或等于所述第二目标压力值,根据所述第二目标压力值与所述第四环境温度下的饱和压力值,调节所述第五电子膨胀阀的开度,以使得所述第二室内机的环境温度下的饱和压力值达到所述压缩机的排气压力值;或者,
    若所述第一目标压力值小于所述第二目标压力值,根据所述第一目标压力值与所述第二环境温度下的饱和压力值,调节所述第二电子膨胀阀的开度,以使得所述第一室内机的环境温度下的饱和压力值达到所述压缩机的排气压力值。
  26. 一种空调器的控制方法,其中,所述空调器包括:
    室外风机;
    多个室内机;
    压缩机;
    压力传感器,用于检测所述压缩机的排气压力值;
    控制器,与所述压力传感器连接;
    所述方法包括:
    所述控制器通过所述压力传感器获取所述压缩机在第一时刻下的第一排气压力值;
    所述控制器从第一目标压力值和第二目标压力值中确定最大目标压力值,所述第一目标压力值为所述多个室内机中的第一室内机运行在第一模式时压缩机的目标排气压力值,所述第二目标压力值为所述多个室内机中的第二室内机运行在第二模式时压缩机的目标排气压力值;
    所述控制器计算所述最大目标压力值与所述第一排气压力值之间的压力偏差值;
    所述控制器基于所述压力偏差值,调节所述室外风机的档位,以使得所述压缩机的排气压力值达到所述最大目标压力值。
  27. 根据权利要求26所述的方法,其中,所述第一模式为不降温除湿运行模式,所述第二模式为制冷运行模式;
    或者,
    所述第一模式和所述第二模式均为不降温除湿运行模式。
  28. 根据权利要求27所述的方法,其中,在所述第一模式为不降温除湿运行模式,所述第二模式为制冷运行模式的情况下,所述第一室内机的第一室内换热器作为冷凝器进行工作,所述第一室内机的第二室内换热器作为蒸发器进行工作,且所述第二室内机的第三室内换热器和第四室内换热器均作为蒸发器进行工作。
  29. 根据权利要求28所述的方法,其中,所述空调器还包括第一进风温度传感器,用于检测所述第一室内机的环境温度;
    所述方法还包括:
    所述控制器通过所述第一进风温度传感器获取第一时刻的第一环境温度和第二时刻的第二环境温度;
    所述控制器根据所述第二环境温度与第一室内机预设温度之间的第二温度差值和在第二时刻下所述第一室内机的温差变化率,调整所述第一目标压力值;其中,所述温差变化率为所述第二温度差值与第一温度差值之间的变化值,所述第一温度差值为所述第一环境温度与第一室内机预设温度之间的温度差值。
  30. 根据权利要求27所述的方法,其中,所述空调器还包括:
    第一进风温度传感器,用于检测所述第一室内机的环境温度;
    第二进风温度传感器,用于检测所述第二室内机的环境温度;
    第二电子膨胀阀,用于调节所述第一室内机与所述室外机之间管路内的冷媒流量;
    第五电子膨胀阀,用于调节所述第二室内机与所述室外机之间管路内的冷媒流量;
    所述方法还包括:
    在所述第一模式和所述第二模式均为不降温除湿运行模式的情况下,所述控制器通过所述压力传感器获取压缩机在第二时刻下的第二排气压力值,且通过所述第一进风温度传感器获取第一室内机第二时刻下的第二环境温度,通过所述第二进风温度传感器获取第二室内机第二时刻下的第四环境温度;所述第二时刻为在所述第一时刻之后的时刻;
    在所述第二排气压力值达到所述最大目标压力值的情况下,若所述第一目标压力值大于或等于所述第二目标压力值,所述控制器根据所述第二目标压力值与所述第四环境温度下的饱和压力值,调节所述第五电子膨胀阀的开度,以使得所述第二室内机的环境温度下的饱和压力值达到所述压缩机的排气压力值;或者,
    若所述第一目标压力值小于所述第二目标压力值,控制器根据所述第一目标压力值与所述第二环境温度下的饱和压力值,调节所述第二电子膨胀阀的开度,以使得所述第一室内机的环境温度下的饱和压力值达到所述压缩机的排气压力值。
PCT/CN2023/073575 2022-09-07 2023-01-28 室内机、空调器及其控制方法 WO2024051071A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202211091531.7A CN116255667A (zh) 2022-09-07 2022-09-07 一种空调装置
CN202211091531.7 2022-09-07
CN202222590935.2U CN218721891U (zh) 2022-09-29 2022-09-29 室内机及空调器
CN202222590935.2 2022-09-29
CN202211273970.XA CN115654679A (zh) 2022-10-18 2022-10-18 一种空调系统及其控制方法
CN202211273970.X 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024051071A1 true WO2024051071A1 (zh) 2024-03-14

Family

ID=90192742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073575 WO2024051071A1 (zh) 2022-09-07 2023-01-28 室内机、空调器及其控制方法

Country Status (1)

Country Link
WO (1) WO2024051071A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307723A (ja) * 1993-04-21 1994-11-01 Matsushita Refrig Co Ltd 多室型空気調和機
CN101149168A (zh) * 2006-09-21 2008-03-26 海尔集团公司 定温除湿空调器及其控制方法
CN102927715A (zh) * 2012-10-31 2013-02-13 青岛海信日立空调系统有限公司 多联机热泵空调系统及控制多联机热泵空调系统的方法
CN103062851A (zh) * 2013-01-07 2013-04-24 青岛海信日立空调系统有限公司 空调系统及其除湿方法
CN105091231A (zh) * 2015-08-11 2015-11-25 青岛海尔空调器有限总公司 一种空调器及其从制冷模式向恒温除湿模式的切换方法
CN111023401A (zh) * 2019-12-31 2020-04-17 海信(广东)空调有限公司 空调器的除湿控制方法及空调器
CN111578472A (zh) * 2020-05-29 2020-08-25 广东美的制冷设备有限公司 空调器室外机的控制方法及装置、空调器室外机及空调器
CN214949393U (zh) * 2021-06-25 2021-11-30 海信(山东)空调有限公司 空调室内机
CN215062436U (zh) * 2021-06-21 2021-12-07 海信(广东)空调有限公司 空调器室内机
CN114165844A (zh) * 2021-11-26 2022-03-11 青岛海信日立空调系统有限公司 空调器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307723A (ja) * 1993-04-21 1994-11-01 Matsushita Refrig Co Ltd 多室型空気調和機
CN101149168A (zh) * 2006-09-21 2008-03-26 海尔集团公司 定温除湿空调器及其控制方法
CN102927715A (zh) * 2012-10-31 2013-02-13 青岛海信日立空调系统有限公司 多联机热泵空调系统及控制多联机热泵空调系统的方法
CN103062851A (zh) * 2013-01-07 2013-04-24 青岛海信日立空调系统有限公司 空调系统及其除湿方法
CN105091231A (zh) * 2015-08-11 2015-11-25 青岛海尔空调器有限总公司 一种空调器及其从制冷模式向恒温除湿模式的切换方法
CN111023401A (zh) * 2019-12-31 2020-04-17 海信(广东)空调有限公司 空调器的除湿控制方法及空调器
CN111578472A (zh) * 2020-05-29 2020-08-25 广东美的制冷设备有限公司 空调器室外机的控制方法及装置、空调器室外机及空调器
CN215062436U (zh) * 2021-06-21 2021-12-07 海信(广东)空调有限公司 空调器室内机
CN214949393U (zh) * 2021-06-25 2021-11-30 海信(山东)空调有限公司 空调室内机
CN114165844A (zh) * 2021-11-26 2022-03-11 青岛海信日立空调系统有限公司 空调器

Similar Documents

Publication Publication Date Title
WO2021169539A1 (zh) 循环系统及其控制方法和控制装置、空调
WO2012056739A1 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP6320639B2 (ja) 空気調和装置
JP5869955B2 (ja) 輻射式空気調和機
JP2015068582A (ja) 空気調和機
WO2016194098A1 (ja) 空気調和装置及び運転制御装置
JP6479181B2 (ja) 空気調和装置
JPWO2013061377A1 (ja) 冷凍空調装置及び調湿装置
JP2019082308A (ja) 換気装置
JP5213372B2 (ja) 空気調和機
WO2020189586A1 (ja) 冷凍サイクル装置
WO2024051071A1 (zh) 室内机、空调器及其控制方法
JP2008121997A (ja) 空気調和機
JP2005291553A (ja) マルチ型空気調和装置
JP2004239609A (ja) 空気調和機
JP2019020089A (ja) 冷凍装置
JP6921299B2 (ja) 空気調和装置およびエアハンドリングユニット
JP2000055444A (ja) 空気調和機
JP2011247522A (ja) 冷凍サイクル装置、ならびに本冷凍サイクル装置を用いた冷蔵庫、低温装置、および空調装置
WO2024040915A1 (zh) 空调器
JP7150198B2 (ja) 冷凍装置
CN113566384B (zh) 空调器中室内机防止凝露的控制方法及存储介质
KR20120047679A (ko) 공기조화기
JP2002106925A (ja) 空気調和機
JP6989788B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861783

Country of ref document: EP

Kind code of ref document: A1