WO2024050734A1 - 一种生成船舶系统的拓扑图的方法以及相关装置 - Google Patents

一种生成船舶系统的拓扑图的方法以及相关装置 Download PDF

Info

Publication number
WO2024050734A1
WO2024050734A1 PCT/CN2022/117642 CN2022117642W WO2024050734A1 WO 2024050734 A1 WO2024050734 A1 WO 2024050734A1 CN 2022117642 W CN2022117642 W CN 2022117642W WO 2024050734 A1 WO2024050734 A1 WO 2024050734A1
Authority
WO
WIPO (PCT)
Prior art keywords
host
ship
ship system
orientation
identification information
Prior art date
Application number
PCT/CN2022/117642
Other languages
English (en)
French (fr)
Inventor
陈观富
刘岳峰
陶师正
万小康
Original Assignee
广东逸动科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东逸动科技有限公司 filed Critical 广东逸动科技有限公司
Priority to PCT/CN2022/117642 priority Critical patent/WO2024050734A1/zh
Priority to CN202280005949.3A priority patent/CN117999221A/zh
Publication of WO2024050734A1 publication Critical patent/WO2024050734A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels

Definitions

  • the present application relates to the technical field of topological diagrams of ship systems, and in particular to a method, device, outboard motor, ship and storage medium for generating topological diagrams of ship systems.
  • the topology diagram of the ship system can show users which access devices are included in the ship system and the connection relationships between the various access devices.
  • the topology diagram of the ship system usually needs to be generated manually by the user based on the composition of the ship system. Less efficient.
  • this application provides a method, a device, an outboard motor, a ship, and a storage medium for generating a topology diagram of a ship system.
  • a method for generating a topology diagram of a ship system includes: obtaining each The device identification information sent by the access device through the communication bus; the description information of the topology structure of the ship system is determined according to the device identification information, and the description information is used to characterize each of the access devices and the The connection relationship of the communication bus;
  • the description information is sent to a display device so that the display device converts the description information into a topology map and displays it.
  • a device for generating a topology diagram of a ship system is provided.
  • Multiple access devices of the ship system communicate through a communication bus of the ship system.
  • the device includes: a first The acquisition module is configured to acquire the device identification information sent by each of the access devices through the communication bus; the first determination module is configured to determine the description information of the topology structure of the ship system based on the device identification information, The description information is used to characterize the connection relationship between each access device and the communication bus;
  • the first sending module is configured to send the description information to a display device so that the display device converts the description information into a topology map and displays it.
  • an outboard motor includes: a propeller; a motor for driving the propeller to rotate; and a processor connected to the motor, the processor being The method for generating a topology diagram of a ship system described in any embodiment of the present application is executed.
  • a ship including: a hull; and the outboard motor according to any embodiment of the present application, the outboard motor being loaded on the hull.
  • a computer-readable storage medium is provided.
  • a computer program is stored on the readable storage medium.
  • the method described in any embodiment of the present application is implemented. Methods for generating topological diagrams of ship systems.
  • the device identification information sent by each access device through the communication bus is obtained, and description information of the topology structure of the ship system is generated based on the obtained device identification information.
  • This description information can not only describe what features are in the ship system.
  • the access device can also describe the connection relationship between each access device and the communication bus.
  • the display device can convert the description information into a topology map and display it. In this way, the topology map of the ship system can be directly and automatically generated, which improves the efficiency of generating topology maps and improves the intelligence of the ship. level.
  • Figure 1 is a flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application
  • Figure 2 is another flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application
  • Figure 3 is a schematic diagram of the connection relationship between an outboard motor and a battery according to an exemplary embodiment of the present application
  • Figure 4 is another flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application
  • Figure 5 is a schematic diagram of the relative positions of three outboard motors according to an exemplary embodiment of the present application.
  • Figure 6 is a schematic diagram of the relative positions of another three outboard motors shown in this application according to an exemplary embodiment
  • Figure 7 is another flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 8 is another flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 9 is another flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 10 is another flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 11 is another flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 12 is a topology diagram of a ship system in related technologies
  • Figure 13 is a topological diagram of the ship system shown in this application according to an exemplary embodiment
  • Figure 14 is another flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 15 is another topology diagram of the ship system shown in this application according to an exemplary embodiment
  • Figure 16 is another flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 17 is another flow chart of generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 18 is a schematic diagram of a device for generating a topology diagram of a ship system according to an exemplary embodiment of the present application
  • Figure 19 is a schematic diagram of another device for generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 20 is a schematic diagram of another device for generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 21 is a schematic diagram of another device for generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 22 is a schematic diagram of another device for generating a topology diagram of a ship system according to an exemplary embodiment of the present application.
  • Figure 23 is a schematic diagram of an outboard motor shown in this application according to an exemplary embodiment
  • Figure 24 is a schematic diagram of a ship according to an exemplary embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • a ship usually includes a hull, propulsion system and control system.
  • the propulsion system includes the outboard motor and the battery that powers the outboard motor
  • the control system includes the steering wheel, remote control box, and remote control.
  • Outboard motor refers to the propulsion engine installed on the outside of the hull (ship side), also called outboard motor, and is usually hung on the outside of the stern board.
  • an outboard motor includes a propeller, a motor that drives the propeller to rotate, and a processor connected to the motor.
  • Outboard motors are highly integrated and easy to install and purchase. They are the first choice for personal leisure and entertainment boats. They are also widely used in fisheries, commercial operations, and government law enforcement.
  • the topology diagram of the ship system can show users which access devices are included in the ship system and the connection relationships between the various access devices.
  • the topology diagram of the ship system usually needs to be generated manually by the user based on the composition of the ship system. Less efficient.
  • this application proposes a method, device, outboard motor, ship and storage medium for generating a topology diagram of a ship system, so as to solve the problem that the topology diagram of the ship system requires manual configuration by the user.
  • Figure 1 is a flow chart of a method for generating a topology diagram of a ship system according to an exemplary embodiment of the present application, which includes the following steps:
  • Step S101 Obtain the device identification information sent by each access device through the communication bus;
  • Step S102 Determine the description information of the topology structure of the ship system according to the device identification information
  • Step S103 Send the description information to a display device so that the display device converts the description information into a topology map and displays it.
  • the access devices in the ship system include at least one of outboard motors, batteries, steering wheels, remote control boxes, remote controls, and displays.
  • the number of each access device is greater than or equal to 1.
  • Each access device They can communicate with each other through the communication bus.
  • the communication bus is used to connect different access devices.
  • Each access device can send information to the communication bus based on a preset communication protocol, and can also obtain information from the communication bus based on the communication protocol.
  • the communication bus may be a Controller Area Network (CAN) bus.
  • CAN Controller Area Network
  • the CAN bus is a serial communication network that effectively supports distributed control or real-time control.
  • the CAN bus broadcasts the data sent by the node to all nodes in the network in the form of messages. For each node, it receives the data regardless of whether it is sent to itself.
  • the communication bus may be an RS485 bus.
  • One bus is used to connect various nodes in series, and communication is implemented using balanced transmission and differential reception.
  • any communication bus that can meet the communication characteristics in the above exemplary embodiments falls within the protection scope of this application, and is not limited here.
  • each access device has unique device identification information.
  • the topology of the ship system can be confirmed based on the device identification information of each access device.
  • the device identification information may include a device identification code, which may be used to identify the type of access device or the identity of a specific access device, where the identity is used to distinguish multiple devices of the same type.
  • Access device By pre-recording and saving the correspondence between the encoding format and specific values of each access device and its device identification code, the type and identity of the access device can be determined by looking up the correspondence. For example, when the device identification code meets the encoding format of the outboard motor, the access device is an outboard motor; when the device identification code meets the encoding format of the remote control box, the access device is a remote control box.
  • the access device includes two outboard motors, recorded as outboard motor I and outboard motor II respectively. When the device identification code is the same as the preset code of outboard motor I, the access device is an outboard motor. Outboard motor I; when the device identification code is the same as the preset code of outboard motor II, the connected device is outboard motor II.
  • the description information of the topology structure of the ship system can be used to describe the type of access device and the connection relationship between the access device and the communication bus. For example, after identifying the types of all access devices connected to the communication bus based on the collected device identification information, the topology of the ship system can be used to reflect the access types of the access devices of the communication bus; for another example, according to After the collected device identification information identifies the specific identities of all access devices connected to the communication bus, the topology of the ship system can be used to reflect the specific identity of each access device connected to the communication bus. Users can set the specific content of the description information according to their personal needs.
  • each outboard motor can be connected to an output port, and each battery can be connected to an input port.
  • the output port The corresponding relationship with the input port is determined by the built-in connection network of the power management module, and the connection network is provided with an interface that can be connected or disconnected.
  • the power management module can determine which outboard machine or outboard motors each battery should supply by controlling the on/off interface.
  • the power management module is connected to the communication bus and can send interface signals to the communication bus for other devices to obtain.
  • the interface signals include on-signals and off-signals.
  • the connection relationship between multiple outboard motors and multiple batteries can be determined through multiple interface signals.
  • FIG. 2 it is a flow chart of another method of generating a topology diagram of a ship system according to an exemplary embodiment. Based on the previous embodiment, this embodiment describes how to determine the topology diagram based on the device identification information.
  • a process for processing the description information of the topological structure of the ship system includes the following steps:
  • Step S1021 Determine the connection relationship between each access device and the communication bus based on the device identification information
  • Step S1022 Obtain multiple interface signals between the multiple outboard motors and the multiple batteries from the power management module;
  • Step S1023 Determine connection relationships between the multiple outboard motors and the multiple batteries based on the multiple interface signals.
  • the description information can also be used to describe the connection relationship between multiple outboard motors and the multiple batteries.
  • each outboard motor has a matching battery.
  • the description information can describe the single connection relationship between each outboard motor and each supporting battery; for another example, each battery can correspondingly supply power to multiple outboard motors, then the description information can describe which battery each battery is specifically connected to. The connection relationship of the outboard motor.
  • the topology diagram may be description information used to display the topology structure of the ship system in a more user-friendly graphical interface through a display device.
  • the description information may display the topological structure of the ship system in the form of blocks and lines through a display device.
  • tiles of different shapes can represent different types of access equipment, such as a circle representing a steering wheel, a rectangle representing an outboard motor, etc.
  • the tiles of the same shape can be used to distinguish different access devices of the same type by color.
  • the blocks can be connected in the form of straight lines to represent the connection relationship between the access device and the bus; for another example, blocks of different colors can represent different types of access devices, such as green represents the steering wheel, and blue represents Outboard motors, etc. Blocks of the same color can be marked with text to distinguish different access devices of the same type.
  • the blocks can be connected in the form of curved bars to represent the connection between the access device and the bus. relation.
  • a two-dimensional pattern corresponding to the access device can also be used to represent the access device.
  • a pattern of a steering wheel is used to represent the steering wheel in the access device
  • a pattern of a battery is used to represent the battery in the access device.
  • the access device may be represented by a three-dimensional model.
  • Different access devices correspond to different three-dimensional models.
  • each type of access equipment can be represented by a corresponding three-dimensional structure, and the same type of access equipment can be distinguished by different text labels; in a three-dimensional space, different access equipment and communication buses are connected through three-dimensional lines. , which is equivalent to the topology diagram displayed by the display device being a three-dimensional diagram.
  • Users can intuitively understand the specific access equipment included in the ship system and the connection relationship between the access equipment and the communication bus. They can also understand the three-dimensional structure of the access equipment. , to deepen the understanding of access equipment.
  • the ship system may include a single outboard motor or multiple outboard motors.
  • Each outboard motor is configured with a processor.
  • Each outboard motor can obtain information sent by other access devices through the communication bus. And perform information processing, and can also send information to other access devices.
  • the ship system includes multiple outboard motors, the outboard motor as the host in the ship system is responsible for obtaining the required data from other outboard motors and combining it with its own data to perform calculations and processing according to the target task to obtain the results.
  • the outboard motor of the aircraft needs to provide its own data to the host machine.
  • the processor integrated into the outboard motor may be one or more electronic control units (ECU).
  • the ECU consists of a microcontroller (MCU), memory (ROM, RAM), and input/output interfaces. (I/O), analog-to-digital converter (A/D), and large-scale integrated circuits such as shaping and driving.
  • the ECU has computing and control functions.
  • processors that can complete the above functions are within the protection scope of this application. This application is not limited here.
  • the outboard motor obtains the device identification information sent by each access device through the communication bus and performs subsequent processing on the device identification information.
  • the outboard motor serving as the host among the multiple outboard motors can obtain the device identification information sent by each access device through the communication bus and the device identification information. subsequent processing of the information.
  • one outboard motor can be selected as the master through the election strategy, and the other outboard motors are regarded as slaves.
  • the election strategy adopted may be to use the outboard unit that first accesses the communication bus as the host, which can save time in selecting the host.
  • the election strategy adopted may be to use the device identification code in the device identification information. After all outboards are connected to the communication bus, each outboard can obtain other outboards through the communication bus. and compare it with its own device identification code, then the outboard motor with the smallest device identification code is confirmed to be the host. In this way, when communication is restored after the power supply is cut off, the same outboard motor can still be selected according to this election strategy.
  • An outboard motor serves as the host, eliminating the need for the time-consuming behavior of data retransmission or data re-collection caused by changing the host, which wastes user time and affects the user experience.
  • Figure 4 is a flow chart of another method for generating a topology diagram of a ship system according to an exemplary embodiment of the present application. Based on the previous embodiment, this implementation also includes the following steps:
  • Step S104 Obtain the host positioning data and host orientation data of the host
  • Step S105 Obtain the slave positioning data of the slave machine
  • Step S106 Determine the relative position relationship of the multiple outboard motors on the ship based on the host positioning data, the slave positioning data and the host orientation data, and send the relative position relationship to the display screen.
  • the master positioning data and the slave positioning data may be the longitude and latitude data corresponding to the master and the longitude and latitude data corresponding to the slave respectively.
  • the longitude and latitude data can determine the host and the slave. The relative position of the slave machine.
  • the relative positional relationship between the master machine and the slave machine can be known by comparing the longitudes of the master machine and the slave machine; for example, the master machine and the slave machine are at different degrees of east longitude, Then by comparing the magnitude of the degrees, you can know the position of the slave relative to the master.
  • the orientation of the outboard motor is generally consistent with the direction of the propulsion force, and the direction of the propulsion force is consistent with the direction of the ship from the stern to the bow.
  • an outboard motor relies on the propeller blades to rotate in the water to convert the engine rotational power into propulsion and drive the ship. Therefore, the orientation of the outboard motor, the direction of the propulsion force, and the direction of the ship from the stern to the bow should be Maintain a consistent relationship. Therefore, the main engine orientation data can be used to indicate the direction of the propulsion force of the outboard motor as the main engine, and thereby indirectly obtain the direction of the ship from the stern to the bow.
  • the orientation of the host is used as the positive center reference line.
  • the position of the slave relative to the host can be determined.
  • the ship system includes three outboard motors, in which the orientation of the main engine is used as the forward center reference line.
  • the slave machine I is located on the left side of the main machine, and the slave machine I is located on the left side of the main machine.
  • Machine II is located on the right side of the main engine.
  • the slave machine I is located on the left side of the main machine.
  • the slave machine II is located on the right side of the master machine.
  • left and “right” here are directions relative to the direction of the ship from the stern to the bow. For example, you can take the location of the host machine as the center point and the direction of the stern pointing to the bow as the reference direction. If the center point is regarded as the starting point of the vector, and the direction of the stern pointing to the bow of the ship is regarded as the direction of the vector, then the landing point The area where the vector rotates clockwise from 0 degrees to 180 degrees from the starting point is determined to be right, and the direction in which the vector rotates counterclockwise from 0 degrees to 180 degrees from the starting point is determined to be left.
  • the obtained relative position relationship can be combined into the topology diagram of the ship system to display multiple outboard motors, so that users can know the position distribution of the outboard motors on the ship through the topology diagram of the ship system.
  • Figure 7 is a flow chart of another method of generating a topology diagram of a ship system according to an exemplary embodiment of the present application. It describes a method based on the master positioning data, the slave positioning data and A process of using the host orientation data to determine the relative positional relationship of the multiple outboard motors on the ship, including the following steps:
  • Step S1061 Determine the orientation of the host according to the acceleration data of the host
  • Step S1062 Determine the orientation from the stern to the bow of the ship based on the orientation of the main engine
  • Step S1063 Determine the relative positional relationship of the multiple outboard motors on the ship based on the master positioning data, the slave positioning data and the direction from the stern to the bow of the ship.
  • the host orientation data may include acceleration data or angular velocity data of the host. Since the orientation of the host is consistent with the direction of the propulsion force, and the propulsion direction of the host is equivalent to the acceleration direction of the host, the acceleration data in the host orientation data is It can be used to determine the orientation of the main engine and then determine the orientation of the ship from stern to bow. For example, when the acceleration data shows that the acceleration value in the true north direction is positive, the orientation of the main engine is true north at this time. According to the direction of the propulsion force of the main engine is parallel to the direction of the ship from the stern to the bow, then the current direction of the ship from the stern to the bow is Orientation is due north.
  • Figure 8 is a flow chart of another method of generating a topology diagram of a ship system according to an exemplary embodiment of the present application, describing the method of determining the orientation of the main engine according to the acceleration data of the main engine.
  • a processing process including the following steps:
  • Step S10611 Obtain the host acceleration data collected by the host acceleration detection unit of the host;
  • Step S10612 Determine the orientation of the host according to the acceleration data of the host.
  • the host acceleration detection unit may be an accelerometer.
  • the host acceleration detection unit may be an inertial measurement unit (IMU).
  • IMU inertial measurement unit
  • the host's acceleration data can be collected first through the host's built-in host acceleration detection unit, and then directly obtained by the host's processor. Therefore, the host's processor does not need to perform additional communications to other devices to obtain data as the host's acceleration. data, which improves the efficiency with which the host's processor determines the host's orientation.
  • FIG. 9 it is a flow chart of another method of generating a topology diagram of a ship system according to an exemplary embodiment. Based on the previous embodiment, this embodiment describes the method for determining the topology diagram based on the host acceleration data.
  • a processing process for the orientation of the host includes the following steps:
  • Step S10612A When the host acceleration data is available, determine the orientation of the host according to the host acceleration data;
  • Step S10612B When the host acceleration data is unavailable, obtain the slave acceleration data collected by the slave acceleration detection unit of the slave machine, and determine the orientation of the host based on the slave acceleration data.
  • the slave acceleration detection unit may be an accelerometer.
  • the slave acceleration detection unit may be an inertial measurement unit (IMU).
  • IMU inertial measurement unit
  • the processor of the host may determine whether the host acceleration data is available based on at least one of a data format, a value range, and a communication status between the host acceleration detection unit and the processor of the host. For example, in the example of determining whether the host acceleration data is available based on the data format of the host acceleration data, if the host acceleration data meets the preset data format, then the host acceleration data is considered available; if the host acceleration data is garbled or intermittent data , then the host acceleration data is regarded as unavailable; for another example, in the example of determining whether the host acceleration data is available based on the numerical range of the host acceleration data, if the host acceleration data satisfies the preset numerical range, then the host acceleration data is regarded as Available; if the host acceleration data exceeds the upper or lower limit of the range, the host acceleration data is considered unavailable; for another example, in the example of determining whether the host acceleration data is available based on the communication status between the host acceleration detection unit and the host's processor , if the communication status between
  • the host acceleration data that may be obtained is empty, and the host acceleration data is considered unavailable. Then when the host acceleration data is unavailable, generally speaking, the orientation of the host and slave is the same, and the host's processor can obtain the slave acceleration data collected by the slave acceleration detection unit as substitute data, and Determine the orientation of the main engine based on the acceleration data of the slave machine. This can avoid being unable to determine the orientation of the main engine when the acceleration data of the main engine is unavailable, thus affecting the topology map's display of the relative position of the outboard motor on the ship.
  • Figure 10 is a flow chart of another method of generating a topology diagram of a ship system according to an exemplary embodiment of the present application. Steps S10611 and S10612 can be replaced with steps S10613 and S10614.
  • Step S10613 Collect the slave acceleration data of the slave machine and send it to the host machine as the acceleration data of the host machine;
  • Step S10614 Determine the orientation of the host according to the acceleration data of the host.
  • the acceleration detection units of the host and the slave are set differently.
  • the user sets the data acquisition rate of the acceleration detection unit of the host. Higher than the slave acceleration detection unit, when the acquisition rate requirement is low, the user can set the host's processor to give priority to obtaining the slave acceleration data from the slave acceleration detection unit as the host's acceleration data (at this time, the host's The acceleration detection unit may not work to reduce energy consumption).
  • the user sets the range of acceleration data obtained by the host acceleration detection unit to be larger than that of the slave acceleration detection unit.
  • the user can set the host's processor to give priority to the slave.
  • the acceleration detection unit obtains the acceleration data of the slave machine as the acceleration data of the host machine (at this time, the acceleration detection unit of the host machine may not work to reduce energy consumption).
  • the topology diagram of the ship system may be formed from a top view of the ship.
  • the display direction of the topology diagram from bottom to top may be the direction of the ship from the stern to the bow.
  • the topology diagram displays multiple units.
  • the position distribution of the outboard motors on the ship is further displayed based on the left and right position information of the slave machine relative to the master machine, so that when the user is on the ship, the location of the outboard motors can be easily distinguished based on the topological map. It is convenient for users to identify the position of the outboard motor on the ship and the corresponding control and detection needs.
  • FIG. 11 it is a flow chart of another method of generating a topology diagram of a ship system according to an exemplary embodiment. Based on the previous embodiment, this embodiment also includes the following steps:
  • Step S107 Obtain model information of the multiple outboard motors, and send the model information to the display device.
  • model information is unique for each outboard motor.
  • the topology map can use icons to display each outboard motor and at the same time display the model of the outboard motor correspondingly, thereby facilitating the user to compare the model information of the corresponding position on the topology map with the model information of the corresponding position on the actual ship. outboard motor to match. For example, if the ship system includes three outboard motors, with models 1, 2, and 3 respectively, then the topology diagram of the related technology, as shown in Figure 12, can only show the number of outboard motors, but cannot show multiple outboard motors. The relative position between them. In this embodiment, as shown in Figure 13, by obtaining the model information of the outboard motor, the outboard motor can be marked on the topology diagram.
  • the outboard motor can be marked on the topology diagram. It is formed from the top view of the ship, so that the topology map can show the relative positions of multiple outboard motors on the ship based on the direction from the stern to the bow of the ship.
  • FIG. 14 it is a flow chart of another method of generating a topology diagram of a ship system according to an exemplary embodiment. Based on the previous embodiment, this embodiment also includes the following steps:
  • Step S108 Obtain the status information reported by the access device through the communication bus, and send the status information to the display device for display.
  • the status information may include at least one of the remaining power of the access device, accumulated usage time, real-time temperature, and whether the function is available.
  • the status information can include the cumulative usage time of the outboard motor, real-time temperature and whether the function is available; the cumulative usage time can tell the user the cumulative working time of the outboard motor, making it convenient for the user to combine the outboard motor with the The outboard motor should be regularly inspected or replaced according to the average life of the outboard motor; the real-time temperature can tell the user the operating temperature value of the outboard motor, and the use of the outboard motor can be adjusted based on the normal temperature range; the user can be told whether the function is available.
  • the status information can include the remaining power of the wireless remote control box and whether the function is available; the remaining power can tell the user the pre-stored power consumption of the wireless remote control box, making it easier for the user to judge whether Charging is required; whether the function is available can tell the user whether the wireless remote control box is in a normally enabled state.
  • the status information can be displayed on the display device simultaneously with the topology map.
  • the status information of each access device can be displayed correspondingly near the area representing the access device in the topology map; for another example, The status information of each access device can be displayed correspondingly in the area representing the access device in the topology diagram.
  • a function entrance that triggers the display of status information of the access device may be provided on the display area of the topology diagram corresponding to different access devices.
  • a small icon can be set on the display area of an access device.
  • status information can be displayed in the form of a pop-up window; for another example, the display area of an access device After the user triggers it, the status information can be displayed in the corresponding display area; the carriers for user-triggered actions include keyboard, mobile phone touch screen, and mouse.
  • the display device may be a display of the ship system
  • the description information may be sent to the display through a communication bus of the ship system
  • the topology map may be displayed on the display.
  • the display device can be a user terminal, and the outboard motor can also integrate a wireless communication module.
  • the description information can be uploaded to the cloud server through the wireless communication module, and then the cloud server can forward the description information to the user terminal, and the user terminal
  • the topology diagram is displayed. For example, if the user terminal is a mobile phone, the topology map can be displayed through the mobile phone APP; for example, if the user terminal is a computer, the topology map can be displayed through the computer web page.
  • the access devices of the ship system may change, and users can add or remove access devices according to their own needs.
  • the topology map of the ship system may need to be updated.
  • step S101 can be replaced with step S109.
  • Step S109 Periodically obtain the device identification information sent by each access device through the communication bus.
  • Step S110 If the obtained device identification information changes, update the description information.
  • a single outboard motor or a host computer in multiple outboard motors may set a fixed time interval to periodically update the acquired device identification information. For example, it is set to re-obtain the device identification information of each access device every 5 seconds.
  • FIG. 17 it is a flow chart of another method of generating a topology diagram of a ship system according to an exemplary embodiment. Based on the previous embodiment, this embodiment describes how to obtain the device identification A process of updating the description information when the information changes, including the following steps:
  • Step S110A If the first device identification information obtained at the first time is not obtained at the second time, remove the first device identification information from the description information. before moment;
  • Step S110B If the second device identification information obtained at the second time is not obtained at the first time, add the second device identification information to the description information, and the first time is before the second time. .
  • the host in a single outboard motor or multiple outboard motors obtains the device identification information of a certain access device, it cannot continue to obtain the device identification information through the communication bus after one or more consecutive cycles.
  • the device identification information of the access device will be automatically removed based on the original description information, and the display of the access device in the topology map will be removed or invalidated accordingly.
  • the device identification information of an access device obtained by the host of a single outboard motor or multiple outboard motors at a certain time is device identification information that has not been obtained at a previous time, then Automatically add the device identification information to the existing description information, and the display of the access device will be added to the topology map accordingly.
  • this application also provides a device for generating a topological diagram of a ship system.
  • Figure 18 is a schematic structural diagram of a device 1800 for generating a topology diagram of a ship system according to an exemplary embodiment of the present application, in which multiple access devices of the ship system pass through
  • the device 1800 communicates through the communication bus.
  • the device 1800 includes the following modules: a first acquisition module 1810, configured to acquire device identification information sent by each access device through the communication bus; a first determination module 1820, configured to obtain the device identification information according to the communication bus.
  • the device identification information determines the description information of the topology structure of the ship system;
  • the first sending module 1830 is configured to send the description information to the display device so that the display device converts the description information into a topology map and to display.
  • the access device includes at least one of the following: an outboard motor, a battery, a steering wheel, a remote control box, a remote control, and a display.
  • the access device includes multiple outboard motors and multiple batteries, and a power management module is connected between the multiple outboard motors and the multiple batteries.
  • the first determination module 1820 is specifically configured to determine the connection relationship between each of the access devices and the communication bus based on the device identification information; and obtain the relationship between the multiple outboard motors and the multiple outboard motors from the power management module. Multiple interface signals between the batteries; determining connection relationships between the multiple outboard motors and the multiple batteries based on the multiple interface signals.
  • the access device includes an outboard motor; when the number of the outboard motor is greater than 1, the acquisition of device identification information sent by each of the access devices through the communication bus is performed by multiple The outboard motor serving as the host among the outboard motors performs.
  • FIG. 19 it is a schematic structural diagram of another device 1800 for generating a topology diagram of a ship system according to an exemplary embodiment.
  • this embodiment also includes the following modules: second acquisition Module 1840 is configured to obtain the host positioning data and host orientation data of the host, and obtain the slave positioning data of the slave; the second determination module 1850 is configured to obtain the host positioning data and the slave positioning data based on the host positioning data and the slave positioning data.
  • the positioning data and the host orientation data determine the relative position relationship of the multiple outboard motors on the ship; the second sending module 1860 sends the relative position relationship to the display device.
  • the host is the outboard motor that first accesses the communication bus; or, the device identification information of the outboard motor includes a device identification code, and the host is a plurality of outboard motors.
  • the outboard motor with the smallest equipment identification number described in.
  • the host orientation data includes acceleration data of the host
  • the second determination module 1850 is further configured to: determine the orientation of the host based on the acceleration data of the host; based on the orientation of the host Determine the orientation from the stern to the bow of the ship; determine the location of the multiple outboard motors on the ship based on the host positioning data, the slave positioning data and the orientation from the stern to the bow of the ship. relative positional relationship.
  • the second determination module 1850 is further configured to: obtain the host acceleration data collected by the host acceleration detection unit of the host, and determine the orientation of the host based on the host acceleration data.
  • the second determination module 1850 is further configured to: when the host acceleration data is available, determine the orientation of the host according to the host acceleration data; when the host acceleration data is unavailable, obtain all The slave machine acceleration data collected by the slave machine acceleration detection unit of the slave machine is used to determine the orientation of the host machine based on the slave machine acceleration data.
  • the second determination module 1850 is further configured to: use the slave acceleration data collected by the slave acceleration detection unit of the slave machine and sent to the host as the acceleration data of the host, according to the host The acceleration data determines the orientation of the host.
  • the topology diagram of the ship system is used to represent the connection relationship of each device in the ship system and the relative position of the multiple outboard motors on the ship from a top view of the ship. Location.
  • FIG. 20 it is a schematic structural diagram of another device 1800 for generating a topology diagram of a ship system according to an exemplary embodiment. Based on the previous embodiment, this embodiment also includes the following modules: third acquisition The module 1870 is configured to obtain the model information of the multiple outboard motors; the third sending module 1880 is configured to send the model information to the display device.
  • third acquisition The module 1870 is configured to obtain the model information of the multiple outboard motors; the third sending module 1880 is configured to send the model information to the display device.
  • the topology diagram of the marine system is also used to display models of the multiple outboard motors.
  • FIG. 21 it is a schematic structural diagram of another device 1800 for generating a topology diagram of a ship system according to an exemplary embodiment. Based on the previous embodiment, this embodiment also includes the following modules: Fourth acquisition Module 1890 is configured to obtain the status information reported by the access device through the communication bus; the fourth sending module 18100 is configured to send the status information to the display device for display.
  • Fourth acquisition Module 1890 is configured to obtain the status information reported by the access device through the communication bus
  • the fourth sending module 18100 is configured to send the status information to the display device for display.
  • the status information and the topology map are displayed on the display device at the same time; or, the display device includes a function portal, and the status information is displayed on the display device after the function portal is selected. on the above display device.
  • the display device is a display of the ship system; the first sending module 1830 is further configured to send the description information to the display of the ship system through the communication bus.
  • the display device is a user terminal; the first sending module 1830 is further configured to: upload the description information to the cloud server through a wireless communication module, so that the cloud server sends the description information to the cloud server. forwarded to the user terminal.
  • the first acquisition module 1810 is further configured to: periodically acquire the device identification information sent by each access device through the communication bus; as shown in Figure 22, the aforementioned device 1800 also includes the following modules:
  • the first update module 18110 is configured to update the description information if the obtained device identification information changes.
  • the first update module 18110 is further configured to: if the first device identification information obtained at the first time is not obtained at the second time, update the first device identification information from the description information. removed from the first time, the first time is before the second time; or, if the second device identification information obtained at the second time is not obtained at the first time, the second device identification information is added to the In the description information, the first time is before the second time.
  • this application also provides an outboard motor.
  • This application illustrates an outboard motor 1900 according to an exemplary embodiment.
  • the outboard motor 1900 includes: a propeller 1910, a motor 1920 for driving the propeller 1910 to rotate, and a motor 1920 connected to the motor 1920.
  • the connected processor 1930, the implementation process of the functions and effects of the processor 1930 are detailed in the implementation process of the corresponding steps in the above method, and will not be described again here.
  • this application also provides a ship.
  • the present application illustrates a ship 2000 according to an exemplary embodiment. As shown in FIG. 24 , the ship 2000 includes a hull 2010, and the hull 2010 is loaded with the outboard motor 1900 described in the above embodiment of the present application.
  • the implementation process of the functions and functions of the processor 1930 in the outboard motor 1900 is detailed in the implementation process of the corresponding steps in the above method, and will not be described again here.
  • this application also provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the method described in any of the foregoing embodiments is implemented.
  • Computer-readable media includes both persistent and non-volatile, removable and non-removable media that can be implemented by any method or technology for storage of information.
  • Information may be computer-readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), and read-only memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • compact disc read-only memory CD-ROM
  • DVD digital versatile disc
  • Magnetic tape cassettes tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • the device embodiment since it basically corresponds to the method embodiment, please refer to the partial description of the method embodiment for relevant details.
  • the device embodiments described above are only illustrative.
  • the modules described as separate components may or may not be physically separated.
  • the components shown as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this application. Persons of ordinary skill in the art can understand and implement the method without any creative effort.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种生成船舶系统的拓扑图的方法、装置、船外机、船舶和存储介质。船舶系统的多个接入设备通过船舶系统的通信总线进行通信,方法包括:获取各个接入设备通过通信总线发送的设备标识信息(S101);根据设备标识信息确定船舶系统的拓扑结构的描述信息(S102);将描述信息发送至显示设备以使显示设备将描述信息转换为拓扑图并进行显示(S103)。该方法可以提高生成拓扑图的效率,提升船舶的智能化水平。

Description

一种生成船舶系统的拓扑图的方法以及相关装置 技术领域
本申请涉及船舶系统的拓扑图技术领域,尤其涉及一种生成船舶系统的拓扑图的方法、装置、船外机、船舶和存储介质。
背景技术
船舶系统的拓扑图可以向用户展示船舶系统中包括哪些接入设备以及各个接入设备之间的连接关系,但是船舶系统的拓扑图通常需要用户根据船舶系统的组成情况手动生成,生成拓扑图的效率较低。
发明内容
为克服相关技术中存在的问题,本申请提供了一种生成船舶系统的拓扑图的方法、装置、船外机、船舶和存储介质。
根据本申请实施例的第一方面,提供一种生成船舶系统的拓扑图的方法,所述船舶系统的多个接入设备通过所述船舶系统的通信总线进行通信;所述方法包括:获取各个所述接入设备通过所述通信总线发送的设备标识信息;根据所述设备标识信息确定所述船舶系统的拓扑结构的描述信息,所述描述信息用于表征各个所述接入设备与所述通信总线的连接关系;
将所述描述信息发送至显示设备以使所述显示设备将所述描述信息转换为拓扑图并进行显示。
根据本申请实施例的第二方面,提供一种生成船舶系统的拓扑图的装置,所述船舶系统的多个接入设备通过所述船舶系统的通信总线进行通信,所述装置包括:第一获取模块,被配置为获取各个所述接入设备通过所述通信总线发送的设备标识信息;第一确定模块,被配置为根据所述设备标识信息确定所述船舶系统的拓扑结构的描述信息,所述描述信息用于表征各个接入设备与所述通信总线的连接关系;
第一发送模块,被配置为将所述描述信息发送至显示设备以使所述显示设备将所述描述信息转换为拓扑图并进行显示。
根据本申请实施例的第三方面,提供一种船外机,所述船外机包括:螺旋桨;用于驱动所述螺旋桨旋转的电机;及与所述电机连接的处理器,所述处理器用于执行本申请任一实施例所述的生成船舶系统的拓扑图的方法。
根据本申请实施例的第四方面,提供一种船舶,包括:船体;及本申请任一实施例所述的船外机,所述船外机装载于所述船体。
根据本申请实施例的第五方面,提供一种计算机可读存储介质,所述可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本申请任一实施例所述的生成船舶系统的拓扑图的方法。
本申请的实施例提供的技术方案可以包括以下有益效果:
本申请实施例中,通过获取各个接入设备通过通信总线发送的设备标识信息,并根据所得到的设备标识信息生成船舶系统的拓扑结构的描述信息,该描述信息不仅能够描述船舶系统中具有哪些接入设备,还能描述各个接入设备与通信总线之间的连接关系。通过将该描述信息发送至显示设备,使得显示设备能够将描述信息转换为拓扑图并进行显示,这样可以直接自动生成船舶系统的拓扑图,提高了生成拓扑图的效率,同时可以提升船舶的智能化水平。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制 本申请。
附图说明
此处的附图被并入说明书中并构成本申请的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理;
图1是本申请根据一示例性实施例示出的一种生成船舶系统的拓扑图的流程图;
图2是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的流程图;
图3是本申请根据一示例性实施例示出的一种船外机与电池的连接关系的示意图;
图4是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的流程图;
图5是本申请根据一示例性实施例示出的一个三台船外机的相对位置示意图;
图6是本申请根据一示例性实施例示出的另一个三台船外机的相对位置示意图;
图7是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的流程图;
图8是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的流程图;
图9是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的流程图;
图10是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的流程图;
图11是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的流程图;
图12是相关技术中船舶系统的拓扑图;
图13是本申请根据一示例性实施例示出的船舶系统的一种拓扑图;
图14是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的流程图;
图15是本申请根据一示例性实施例示出的船舶系统的另一种拓扑图;
图16是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的流程图;
图17是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的流程图;
图18是本申请根据一示例性实施例示出的一种生成船舶系统的拓扑图的装置的示意图;
图19是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的装置的示意图;
图20是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的装置的示意图;
图21是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的装置的示意图;
图22是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的装置的示意图;
图23是本申请根据一示例性实施例示出的一种船外机的示意图;
图24是本申请根据一示例性实施例示出的一种船舶的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。另外,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含 一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
船舶通常包括船体、推进系统及操控系统。其中,推进系统包括船外机及为船外机供电的电池,操控系统包括方向盘、远操盒及遥控器等。船外机,顾名思义是指安装在船体(船舷)外侧的推进用发动机,又称舷外机,通常悬挂于艉板的外侧。通常船外机包括:螺旋桨,驱动螺旋桨旋转的电机以及与电机连接的处理器。船外机集成度高、安装选购简单,是个人休闲娱乐小艇的首选动力,也广泛应用于渔业、商业运营、政府执法领域。
船舶系统的拓扑图可以向用户展示船舶系统中包括哪些接入设备以及各个接入设备之间的连接关系,但是船舶系统的拓扑图通常需要用户根据船舶系统的组成情况手动生成,生成拓扑图的效率较低。
对此,本申请提出一种生成船舶系统的拓扑图的方法、装置、船外机、船舶和存储介质,以解决船舶系统的拓扑图需要用户手动配置的问题。
接下来对本申请实施例进行详细说明。
如图1所示,图1是本申请根据一示例性实施例示出的一种生成船舶系统的拓扑图的方法的流程图,包括以下步骤:
步骤S101:获取各个所述接入设备通过所述通信总线发送的设备标识信息;
步骤S102:根据所述设备标识信息确定所述船舶系统的拓扑结构的描述信息;
步骤S103:将所述描述信息发送至显示设备以使所述显示设备将所述描述信息转换为拓扑图并进行显示。
在本申请中,船舶系统中接入设备包括船外机、电池、方向盘、远操盒、遥控器和显示器中的至少一种,每种接入设备的数量大于或等于1,各个接入设备之间可以通过通信总线进行通信。通信总线用于将不同的接入设备连接起来,每一个接入设备都可以基于预先设置的通信协议向通信总线发送信息,也可以基于该通信协议从通信总线获取信息。
在一些实施例中,通信总线可以是控制器局域网络(Controller Area Network,CAN)总线,CAN总线是一种有效支持分布式控制或实时控制的串行通信网络,当CAN总线上的一个节点发送数据时,CAN总线以报文形式将该节点发送的数据广播给网络中所有节点。对每个节点来说,无论数据是否是发给自己的,都对其进行接收。
在一些实施例中,通信总线可以是RS485总线,采用一条总线将各个节点串接起来,采用平衡发送和差分接收方式实现通信。当然,能满足上述示例性实施例中通信特性的通信总线都属于本申请保护范围内,本申请在此不做限定。
在本申请中,每个接入设备都拥有唯一的设备标识信息。根据各个接入设备的设备标识信息可以确认船舶系统的拓扑结构。
在一些实施例中,该设备标识信息可以包括设备识别码,该设备识别码可以用来识别接入设备的类型或具体某个接入设备的身份,其中,身份用来区分多个相同类型的接入设备。通过预先记录并保存每个接入设备及其设备识别码的编码格式和具体数值的对应关系,可以通过查找该对应关系确定接入设备的类型和身份。例如,当设备识别码满足船外机的编码格式时,则该接入设备为船外机;当设备识别码满足远操盒的编码格式时,则该接入设备为远操盒。又例如,接入设备中包括两台船外机,分别记为船外机Ⅰ和船外机Ⅱ,当设备识别码与船外机Ⅰ的预设编码相同时,则该接入设备为船外机Ⅰ;当设备识别码与船外机Ⅱ的预设编码相同时,则该接入设备为船外机Ⅱ。
在一些实施例中,船舶系统的拓扑结构的描述信息可以用来描述接入设备的类型,以及接入设备与通信总线之间的连接关系。例如,根据所采集的设备标识信息识别出接入通信总线的所有接入设备的类型后,船舶系统的拓扑结构可以用来体现通信总线的接入设备的接入类型有哪些;又例如,根据所采集的设备标识信息识别出接入通信总线的所有接入设备的具体身份后,船舶系统的拓扑结构可以用来体现接入通信总线的每一个接入设备的具体身份。用户可以根据个人需求对描述信息具体内容进行设定。
在本申请中,多台船外机和多个电池均会接入电源管理模块提供的端口,每一台船外机可以接入一个输出端口,每一个电池可以接入一个输入端口,输出端口与输入端口的对应关系由电源管理模块内置的连接网络决定,而且连接网络内设置有可接通或断开的接口。电源管理模块可以通过控制接口的通断来决定每个电池对应给哪一台或者哪几台船外机供电。电源管理模块与通信总线连接,可以将接口信号发送至通信总线以供其他设备获取,其中接口信号包括接通信号和断开信号。通过多个接口信号可以确定多台船外机与多个电池之间的连接关系。
如图2所示,是根据一示例性实施例示出的另一种生成船舶系统的拓扑图的方法的流程图,本实施方式在前述实施例的基础上,描述了根据所述设备标识信息确定所述船舶系统的拓扑结构的描述信息的一种处理过程,包括如下步骤:
步骤S1021:基于所述设备标识信息确定各个所述接入设备与所述通信总线的连接关系;
步骤S1022:从所述电源管理模块获取所述多台船外机与所述多个电池之间的多个接口信号;
步骤S1023:基于所述多个接口信号确定所述多台船外机与所述多个电池之间的连接关系。
在一些实施例中,如图3所示,描述信息还可以用来描述多台船外机与所述多个电池之间的连接关系,例如,每一台船外机都有一个配套的电池,则描述信息可以描述每一台船外机与每一个配套电池的单一连接关系;又例如,每一个电池可对应给多台船外机供电,则描述信息可以描述每一个电池具体与哪几台船外机的连接关系。
在本申请中,拓扑图可以是描述信息通过显示设备以更人性化的图形界面对船舶系统的拓扑结构进行展示。
在一些实施例中,描述信息可以通过显示设备以图块以及线条的方式将船舶系统的拓扑结构进行展示。例如,不同形状的图块可以代表不同类型的接入设备,比如圆形代表方向盘,矩形代表船外机等等,同种形状的图块可以通过颜色来区分同种类型下不同的接入设备,图块之间可以用直线条连接的形式来表示接入设备与总线之间的连接关系;又例如,不同颜色的图块可以代表不同类型的接入设备,比如绿色代表方向盘,蓝色代表船外机等等,同种颜色的图块可以通过文字标识来区分同种类型下不同的接入设备,图块之间可以用曲线条连接的形式来表示接入设备与总线之间的连接关系。又例如,还可以用接入设备对应的二维图案表示接入设备,例如,用方向盘的图案表示接入设备中的方向盘,用电池的图案表示接入设备中的电池。这样可以便于用户通过拓扑图直观地了解船舶系统所包括的具体的接入设备以及接入设备与通信总线的连接关系。
在一些实施例中,可以通过三维模型表示接入设备。不同的接入设备对应不同的三维模型。例如,每一种接入设备均可以使用对应的三维结构来表示,同种接入设备可以使用不同的文字标识来区分;在一个三维空间中,将不同接入设备与通信总线通过立体线条连接,相当于显示设备所显示的拓扑图是一个三维立体图,用户可以直观地了解船舶系统所包括的具体的接入设备以及接入设备与通信总线的连接关系,还可以了解接入设备的立体结构,加深对接入设备的认识。
在本申请中,船舶系统可以包括单台船外机或者多台船外机,每个船外机都配置有处理 器,每个船外机可以通过通信总线获取其他接入设备所发送的信息并进行信息处理,也可以向其他接入设备发送信息。当船舶系统包括多台船外机时,在船舶系统中作为主机的船外机负责从其他船外机获取所需的数据并结合自身的数据,根据目标任务进行运算处理得到结果,而作为从机的船外机则需向主机提供自身的数据。
在一些实施例中,船外机所集成的处理器可以是一个或多个电子控制单元ECU(Electronic Control Unit),ECU由微控制器(MCU)、存储器(ROM、RAM)、输入/输出接口(I/O)、模数转换器(A/D)以及整形、驱动等大规模集成电路组成,ECU具有运算与控制功能,当然,能完成上述功能的处理器都属于本申请保护范围内,本申请在此不做限定。
在一些实施例中,若船舶系统包括单台船外机,则由该船外机获取各个接入设备通过通信总线发送的设备标识信息以及对设备标识信息进行的后续处理。
在另一些实施例中,若船舶系统包括多台船外机,可以由多台所述船外机中作为主机的船外机获取各个接入设备通过通信总线发送的设备标识信息以及对设备标识信息进行的后续处理。
在本申请中,多台船外机接入船舶系统后可以通过选举策略选出某一船外机作为主机,其余船外机则视为从机。
在一些实施例中,所采用的选举策略可以是将最先接入通信总线的船外机作为主机,这样能节省选出主机的时间。
在一些实施例中,所采用的选举策略可以是利用设备标识信息中的设备标识码,在所有船外机都接入通信总线后,每一台船外机均能通过通信总线获取其他船外机的设备标识码并与自身的设备标识码进行比较,那么确认自身的设备标识码最小的船外机即作为主机,这样在切断供电后恢复通信的情况下,根据该选举策略仍然可以将同一台船外机作为主机,而无需因为更换主机造成数据重传或者数据重新采集的耗时行为,浪费用户时间,影响使用体验。
如图4所示,图4是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的方法的流程图,本实施方式在前述实施例的基础上,还包括以下步骤:
步骤S104:获取所述主机的主机定位数据及主机朝向数据;
步骤S105:获取所述从机的从机定位数据;
步骤S106:基于所述主机定位数据、所述从机定位数据和所述主机朝向数据,确定所述多台船外机在船舶上的相对位置关系,并将所述相对位置关系发送至所述显示设备。
在一些实施例中,主机定位数据与从机定位数据可以分别是主机对应的经纬度数据和从机对应的经纬度数据,通过主机对应的经纬度数据和从机对应的经纬度数据该经纬度数据可以判断主机和从机的相对位置关系。例如,在纬度相同情况下,以主机的经度为中心参考值,通过比较主机与从机的经度可以得知主机和从机的相对位置关系;例如,主机和从机分别处于东经的不同度数,那么通过比较度数的大小,就可以知道从机相对于主机的位置。
在本申请中,通常船外机的朝向与推进力的方向一致,而推进力的方向与船舶从船尾指向船头的方向一致。例如,船外机是依靠螺旋桨的桨叶在水中旋转将发动机转动功率转化为推进力并驱动船舶的,所以船外机的朝向,推进力方向,船舶从船尾指向船头的方向三者应该是保持一致的关系。因而主机朝向数据是可以用于指示作为主机的船外机的推进力的方向,进而间接得到船舶从船尾指向船头的方向。
在一些实施例中,以主机朝向为正向中心参考线,此时以该参考为依据并结合前述实施例中所得到的从机相对于主机的位置,可以判断在主机朝向下,从机相对于主机的左右位置,又因为主机朝向与船舶从船尾指向船头的方向一致,所以相当于可以得到以船尾指向船头的方向为基准,从机相对于主机在船舶上的左右位置。例如,如图5以及图6所示,船舶系统包括三台船外机,其中以主机的朝向作为正向中心参考线,根据主机的位置可以判断出,从 机Ⅰ位于主机的左侧,从机Ⅱ位于主机的右侧,同样地,因为船舶从船尾指向船头的方向与船外机朝向一致,因而当用户站在船舶的船尾望向船头时,从机Ⅰ位于主机的左侧,从机Ⅱ位于主机的右侧。
应当说明的是,这里的“左”和“右”是相对于船舶从船尾指向船头的方向而言的方向。例如,可以以主机所在的位置为中心点,并以船尾指向船头的方向为基准方向,如果将该中心点视为向量的起点,将船尾指向船头的方向视为向量的方向,那么落在该向量以起点顺时针旋转0度到180度的区域确定为右,落在该向量以起点逆时针旋转0度到180度的方向确定为左。
在本申请中,所得到的相对位置关系可以结合到船舶系统的拓扑图中对多台船外机进行展示,方便用户通过船舶系统的拓扑图就可以对应知道船外机在船舶上的位置分布,有利用与船外机相关的作业,如某个船外机的检修,更换等等。
如图7所示,图7是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的方法的流程图,描述了基于所述主机定位数据、所述从机定位数据和所述主机朝向数据,确定所述多台船外机在船舶上的相对位置关系的一种处理过程,包括如下步骤:
步骤S1061:根据所述主机的加速度数据确定所述主机的朝向;
步骤S1062:基于所述主机的朝向确定所述船舶的船尾到船头的朝向;
步骤S1063:根据所述主机定位数据、所述从机定位数据以及所述船舶的船尾到船头的朝向,确定所述多台船外机在所述船舶上的相对位置关系。
在一些实施例中,主机朝向数据可以包括主机的加速度数据或角速度数据,由于主机的朝向与推进力的方向一致,而主机的推进力方向相当于主机的加速度方向,因此主机朝向数据中加速度数据可以用来确定主机的朝向,进而确定船舶从船尾到船头的朝向。例如,当加速度数据显示正北方向的加速度值为正值时,此时主机的朝向为正北,根据主机推动力方向与船舶从船尾到船头方向平行,则当前船舶从船尾到船头的朝向为正北。
如图8所示,图8是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的方法的流程图,描述了根据所述主机的加速度数据确定所述主机的朝向的一种处理过程,包括如下步骤:
步骤S10611:获取所述主机的主机加速度检测单元采集的主机加速度数据;
步骤S10612:根据所述主机加速度数据确定所述主机的朝向。
在一些实施例中,主机加速度检测单元可以是加速度计。
在一些实施例中,主机加速度检测单元可以是惯性测量单元IMU(Inertial Measurement Unit),当然,能完成上述获得加速度数据的器件都属于本申请保护范围内,本申请在此不做限定。
在一些实施例中,主机的加速度数据可以优先通过主机内置的主机加速度检测单元采集,然后由主机的处理器直接获取,因此主机的处理器无需进行额外的通信去其他设备获取数据作为主机的加速度数据,这样可以提高主机的处理器确定主机的朝向的效率。
如图9所示,是根据一示例性实施例示出的另一种生成船舶系统的拓扑图的方法的流程图,本实施方式在前述实施例的基础上,描述了根据所述主机加速度数据确定所述主机的朝向的一种处理过程,包括如下步骤:
步骤S10612A:当所述主机加速度数据可用时,根据所述主机加速度数据确定所述主机的朝向;
步骤S10612B:当所述主机加速度数据不可用时,获取所述从机的从机加速度检测单元采集的从机加速度数据,根据所述从机加速度数据确定所述主机的朝向。
在一些实施例中,从机加速度检测单元可以是加速度计。
在一些实施例中,从机加速度检测单元可以是惯性测量单元IMU(Inertial Measurement  Unit),当然,能完成上述获得加速度数据的器件都属于本申请保护范围内,本申请在此不做限定。
在一些实施例中,主机的处理器可以根据主机加速度数据的数据格式、数值范围、主机加速度检测单元与主机的处理器之间的通信状态中的至少一者确定主机加速度数据是否可用。例如,在根据主机加速度数据的数据格式确定主机加速度数据是否可用的例子中,如果主机加速度数据满足预设的数据格式,那么将主机加速度数据视为可用;如果主机加速度数据是乱码或者间断的数据,那么将主机加速度数据视为不可用;又例如,在根据主机加速度数据的数值范围确定主机加速度数据是否可用的例子中,如果主机加速度数据满足预设的数值范围,那么将主机加速度数据视为可用;如果主机加速度数据超出范围上限或者下限,那么将主机加速度数据视为不可用;又例如,在根据主机加速度检测单元与主机的处理器之间的通信状态确定主机加速度数据是否可用的例子中,如果主机加速度检测单元与主机的处理器之间的通信状态处于正常,那么将主机加速度数据视为可用;如果主机加速度检测单元与主机的处理器之间的通信状态处于非正常,那么将无法获取主机加速度数据,可能获取的主机加速度数据为空,主机加速度数据视为不可用。那么当遇到主机加速度数据不可用时,通常来说,主机和从机的朝向是一致的,主机的处理器可以去获取从机的从机加速度检测单元采集的从机加速度数据作为替补数据,并根据该从机加速度数据确定所述主机的朝向,这样可以避免因主机加速度数据不可用时,而无法确定主机的朝向,从而影响拓扑图对船外机在船舶上相对位置的显示。
如图10所示,图10是本申请根据一示例性实施例示出的另一种生成船舶系统的拓扑图的方法的流程图,可以将步骤S10611和步骤S10612替换为步骤S10613和步骤S10614。
步骤S10613:将所述从机的从机加速度检测单元采集并发送给主机的从机加速度数据作为所述主机的加速度数据;
步骤S10614:根据所述主机的加速度数据确定所述主机的朝向。
在一些实施例中,考虑到用户可能对于加速度数据的获取速率或加速度数据的范围区间的不同需求对主机和从机的加速度检测单元进行不同的设置,例如,用户设置主机加速度检测单元获取数据速率高于从机加速度检测单元,在获取速率要求较低的情况下,用户可以将主机的处理器设置为优先从从机加速度检测单元获取从机加速度数据作为主机的加速度数据(此时,主机的加速度检测单元可以不工作,以降低能耗)。又例如,用户设置主机加速度检测单元所获取的加速度数据的范围区间大于从机加速度检测单元,在加速度数据的范围区间要求不大的情况下,用户可以将主机的处理器设置为优先从从机加速度检测单元获取从机加速度数据作为主机的加速度数据(此时,主机的加速度检测单元可以不工作,以降低能耗)。
在一些实施例中,船舶系统的拓扑图可以是以船舶的俯视视角形成的,拓扑图从底部到顶部的显示方向,可以是船舶从船尾指向船头的方向,那么该拓扑图在显示多台船外机数量的基础上,进一步根据从机相对于主机的左右位置信息显示船外机在船舶上的位置分布,方便用户位于船舶上时,可以容易根据拓扑图去分辨船外机的位置,方便用户对于船舶上船外机位置的分辨以及相应的控制、检测需求。
如图11所示,是根据一示例性实施例示出的另一种生成船舶系统的拓扑图的方法的流程图,本实施方式在前述实施例的基础上,还包括如下步骤:
步骤S107:获取所述多台船外机的型号信息,并将所述型号信息发送至所述显示设备。
在本申请中,每一台船外机的型号信息是唯一的。
在一些实施例中,拓扑图可以在利用图标显示每一台船外机的同时,对应显示该船外机的型号,从而便于用户根据拓扑图上对应位置的型号信息与实际船舶上对应位置的船外机进行匹配。例如,船舶系统包括三台船外机,型号分别为1,2,3,那么相关技术的拓扑图, 如图12所示,仅能展示出船外机的数量,无法展示出多台船外机之间的相对位置,而本实施例中,如图13所示,通过得到船外机的型号信息,可以在拓扑图上对船外机进行标记,结合前述实施例中船舶系统的拓扑图可以是以船舶的俯视视角形成的,这样拓扑图可以展示以船舶的船尾到船头的方向为基准,多台船外机在船舶上的相对位置。
如图14所示,是根据一示例性实施例示出的另一种生成船舶系统的拓扑图的方法的流程图,本实施方式在前述实施例的基础上,还包括如下步骤:
步骤S108:获取所述接入设备通过所述通信总线上报的状态信息,并将所述状态信息发送至所述显示设备进行显示。
在一些实施例中,状态信息可以包括接入设备的剩余电量、累计使用时长、实时温度和功能是否可用中的至少一者。例如,当接入设备是船外机时,状态信息可以包括船外机的累计使用时长、实时温度和功能是否可用;其中累计使用时长可以告诉用户船外机的累计工作时长,方便用户结合船外机的平均寿命对船外机进行定期检修或更换;实时温度可以告诉用户船外机运行温度值,并结合正常使用的温度范围对船外机的使用进行调整;功能是否可用可以告诉用户船外机是否处于正常启用的状态。又例如,当接入设备是无线远操盒时,状态信息可以包括无线远操盒的剩余电量和功能是否可用;其中剩余电量可以告诉用户无线远操盒的预存电量消耗程度,便于用户判断是否需要进行充电;功能是否可用可以告诉用户无线远操盒是否处于正常启用的状态。
在一些实施例中,状态信息可以与拓扑图同时显示在所述显示设备上,例如,每一个接入设备的状态信息可以对应显示在拓扑图中表示该接入设备的区域附近;又例如,每一个接入设备的状态信息可以对应显示在拓扑图中表示该接入设备的区域里。
在一些实施例中,在拓扑图对应于不同接入设备的显示区域上,可以设置有触发该接入设备的状态信息显示的功能入口。例如,如图15所示,某接入设备的显示区域上可以设置小图标,当用户触发该小图标时,状态信息可以通过弹窗的形式进行显示;又例如,某接入设备的显示区域本身在用户触发后,状态信息可以显示在相应的显示区域内;其中用户触发动作的载体包括键盘,手机触摸屏,鼠标。
在一些实施例中,显示设备可以是船舶系统的显示器,描述信息可以通过船舶系统的通信总线发送至显示器,并在显示器上显示出拓扑图。
在一些实施例中,显示设备可以是用户终端,船外机还可以集成无线通信模块,描述信息可以通过无线通信模块上传至云端服务器,然后云端服务器可以将描述信息转发给用户终端,并用户终端上显示出拓扑图。例如,用户终端是手机,则可以通过手机APP将拓扑图显示出来;又例如,用户终端是电脑,则可以通过电脑网页将拓扑图显示出来。
在本申请中,船舶系统的接入设备可以是有变化的,用户可以根据自身的需求对接入设备进行增加或移除,这样船舶系统的拓扑图会存在需要更新的问题。
如图16所示,是根据一示例性实施例示出的另一种生成船舶系统的拓扑图的方法的流程图,本实施方式在前述实施例的基础上,可以将步骤S101替换为步骤S109,
步骤S109:周期性地获取各个接入设备通过所述通信总线发送的设备标识信息。
还包括如下步骤:
步骤S110:若获取的所述设备标识信息发生变化,对所述描述信息进行更新。
在一些实施例中,单台船外机或者多台船外机中的主机可以设置固定的时间间隔来对所获取的设备标识信息作周期性的更新。例如设定每隔5s就对各个接入设备的设备标识信息进行重新获取。
如图17所示,是根据一示例性实施例示出的另一种生成船舶系统的拓扑图的方法的流程图,本实施方式在前述实施例的基础上,描述了若获取的所述设备标识信息发生变化,对所述描述信息进行更新的一种处理过程,包括如下步骤:
步骤S110A:若在第一时刻获取的第一设备标识信息在第二时刻未获取到,将所述第一设备标识信息从所述描述信息中移除,所述第一时刻在所述第二时刻之前;
步骤S110B:若在第二时刻获取的第二设备标识信息在第一时刻未获取到,将所述第二设备标识信息加入所述描述信息中,所述第一时刻在所述第二时刻之前。
在一些实施例中,单台船外机或者多台船外机中的主机在获取到某一接入设备的设备标识信息后,连续一个或多个周期后都无法继续通过通信总线获取到该接入设备的设备标识信息,则自动将该设备标识信息在原有的描述信息的基础上移除,那么在拓扑图中也会相应地将该接入设备的显示进行移除或者失效处理。
在一些实施例中,单台船外机或者多台船外机中的主机在某一时刻获取到的某一接入设备的设备标识信息,是之前的时刻未曾获取过的设备标识信息,则自动将该设备标识信息加入到已有的描述信息中,那么在拓扑图中也会相应地加入该接入设备的显示。
另外,本申请还提供一种生成船舶系统的拓扑图的装置。
如图18所示,图18是本申请根据一示例性实施例示出的一种生成船舶系统的拓扑图的装置1800的结构示意图,其中,船舶系统的多个接入设备通过所述船舶系统的通信总线进行通信,该装置1800包括以下模块:第一获取模块1810,被配置为获取各个所述接入设备通过所述通信总线发送的设备标识信息;第一确定模块1820,被配置为根据所述设备标识信息确定所述船舶系统的拓扑结构的描述信息;第一发送模块1830,被配置为将所述描述信息发送至显示设备以使所述显示设备将所述描述信息转换为拓扑图并进行显示。
在一些实施例中,所述接入设备包括以下至少一种:船外机、电池、方向盘、远操盒、遥控器和显示器。
在一些实施例中,所述接入设备包括多台船外机及多个电池,所述多台船外机与所述多个电池之间连接有电源管理模块。第一确定模块1820,具体被配置为基于所述设备标识信息确定各个所述接入设备与所述通信总线的连接关系;从所述电源管理模块获取所述多台船外机与所述多个电池之间的多个接口信号;基于所述多个接口信号确定所述多台船外机与所述多个电池之间的连接关系。
在一些实施例中,所述接入设备包括船外机;在所述船外机的数量大于1时,所述获取各个所述接入设备通过所述通信总线发送的设备标识信息由多台所述船外机中作为主机的船外机执行。
如图19所示,是根据一示例性实施例示出的另一种生成船舶系统的拓扑图的装置1800的结构示意图,本实施方式在前述实施例的基础上,还包括以下模块:第二获取模块1840,被配置为获取所述主机的主机定位数据及主机朝向数据,获取所述从机的从机定位数据;第二确定模块1850,被配置为基于所述主机定位数据、所述从机定位数据和所述主机朝向数据,确定所述多台船外机在船舶上的相对位置关系;第二发送模块1860,将所述相对位置关系发送至所述显示设备。
在一些实施例中,所述主机为最先接入所述通信总线的船外机;或,所述船外机的设备标识信息包括设备标识码,所述主机为多台所述船外机中所述设备标识码最小的船外机。
在一些实施例中,所述主机朝向数据包括所述主机的加速度数据,第二确定模块1850,进一步被配置为:根据所述主机的加速度数据确定所述主机的朝向;基于所述主机的朝向确定所述船舶的船尾到船头的朝向;根据所述主机定位数据、所述从机定位数据以及所述船舶的船尾到船头的朝向,确定所述多台船外机在所述船舶上的相对位置关系。
在一些实施例中,第二确定模块1850,进一步被配置为:获取所述主机的主机加速度检测单元采集的主机加速度数据,根据所述主机加速度数据确定所述主机的朝向。
在一些实施例中,第二确定模块1850,进一步被配置为:当所述主机加速度数据可用时,根据所述主机加速度数据确定所述主机的朝向;当所述主机加速度数据不可用时, 获取所述从机的从机加速度检测单元采集的从机加速度数据,根据所述从机加速度数据确定所述主机的朝向。
在一些实施例中,第二确定模块1850,进一步被配置为:将所述从机的从机加速度检测单元采集并发送给主机的从机加速度数据作为所述主机的加速度数据,根据所述主机的加速度数据确定所述主机的朝向。
在一些实施例中,所述船舶系统的拓扑图用于在所述船舶的俯视视角下,表征所述船舶系统中各个设备的连接关系以及所述多台船外机在所述船舶上的相对位置。
如图20所示,是根据一示例性实施例示出的另一种生成船舶系统的拓扑图的装置1800的结构示意图,本实施方式在前述实施例的基础上,还包括以下模块:第三获取模块1870,被配置为获取所述多台船外机的型号信息;第三发送模块1880,被配置为将所述型号信息发送至所述显示设备。
在一些实施例中,所述船舶系统的拓扑图还用于显示所述多台船外机的型号。
如图21所示,是根据一示例性实施例示出的另一种生成船舶系统的拓扑图的装置1800的结构示意图,本实施方式在前述实施例的基础上,还包括以下模块:第四获取模块1890,被配置为获取所述接入设备通过所述通信总线上报的状态信息;第四发送模块18100,被配置为将所述状态信息发送至所述显示设备进行显示。
在一些实施例中,所述状态信息与所述拓扑图同时显示在所述显示设备上;或,所述显示设备上包括功能入口,所述状态信息在所述功能入口被选择后显示在所述显示设备上。
在一些实施例中,所述显示设备为所述船舶系统的显示器;第一发送模块1830,进一步被配置为将所述描述信息通过所述通信总线发送至所述船舶系统的显示器。
在一些实施例中,所述显示设备为用户终端;第一发送模块1830,进一步被配置为:通过无线通信模块将所述描述信息上传至云端服务器,以使所述云端服务器将所述描述信息转发至用户终端。
在一些实施例中,第一获取模块1810,进一步被配置为:周期性地获取各个接入设备通过所述通信总线发送的设备标识信息;如图22所示,前述装置1800还包括以下模块:第一更新模块18110,被配置为若获取的所述设备标识信息发生变化,对所述描述信息进行更新。
在一些实施例中,第一更新模块18110,进一步被配置为:若在第一时刻获取的第一设备标识信息在第二时刻未获取到,将所述第一设备标识信息从所述描述信息中移除,所述第一时刻在所述第二时刻之前;或,若在第二时刻获取的第二设备标识信息在第一时刻未获取到,将所述第二设备标识信息加入所述描述信息中,所述第一时刻在所述第二时刻之前。
另外,本申请还提供一种船外机。本申请根据一示例性实施例示出的一种船外机1900,如图23所示,该船外机1900包括:螺旋桨1910,用于驱动所述螺旋桨1910旋转的电机1920以及与所述电机1920连接的处理器1930,该处理器1930的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
另外,本申请还提供一种船舶。本申请根据一示例性实施例示出的一种船舶2000,如图24所示,该船舶2000包括船体2010,且该船体2010上装载有本申请上述实施例所述的船外机1900。该船外机1900中处理器1930的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
另外,本申请还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述任一实施例所述的方法。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、 动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本申请方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
上述对本申请特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本领域技术人员在考虑说明书及实践这里申请的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未申请的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (22)

  1. 一种生成船舶系统的拓扑图的方法,其特征在于,所述船舶系统的多个接入设备通过所述船舶系统的通信总线进行通信;所述方法包括:
    获取各个所述接入设备通过所述通信总线发送的设备标识信息;
    根据所述设备标识信息确定所述船舶系统的拓扑结构的描述信息,所述描述信息用于表征各个所述接入设备与所述通信总线的连接关系;
    将所述描述信息发送至显示设备以使所述显示设备将所述描述信息转换为拓扑图并进行显示。
  2. 根据权利要求1所述的方法,其特征在于,所述接入设备包括以下至少一种:船外机、电池、方向盘、远操盒、遥控器和显示器。
  3. 根据权利要求1所述的方法,其特征在于,所述接入设备包括多台船外机及多个电池,所述多台船外机与所述多个电池之间连接有电源管理模块,所述根据所述设备标识信息确定所述船舶系统的拓扑结构的描述信息,包括:
    基于所述设备标识信息确定各个所述接入设备与所述通信总线的连接关系;
    从所述电源管理模块获取所述多台船外机与所述多个电池之间的多个接口信号;
    基于所述多个接口信号确定所述多台船外机与所述多个电池之间的连接关系。
  4. 根据权利要求1所述的方法,其特征在于,所述接入设备包括船外机;在所述船外机的数量大于1时,所述获取各个所述接入设备通过所述通信总线发送的设备标识信息由多台所述船外机中作为主机的船外机执行。
  5. 根据权利要求1所述的方法,其特征在于,所述接入设备包括多台船外机,所述多台船外机包括主机和从机,所述方法还包括:
    获取所述主机的主机定位数据及主机朝向数据;
    获取所述从机的从机定位数据;
    基于所述主机定位数据、所述从机定位数据和所述主机朝向数据,确定所述多台船外机在船舶上的相对位置关系,并将所述相对位置关系发送至所述显示设备;所述相对位置关系用于在船舶系统的拓扑图中对所述多台船外机进行显示;所述拓扑图中显示的多台船外机之间的相对位置与所述多台船外机在所述船舶上的相对位置相同。
  6. 根据权利要求4或5所述的方法,其特征在于,
    所述主机为最先接入所述通信总线的船外机;
    或,
    所述船外机的设备标识信息包括设备标识码,所述主机为多台所述船外机中所述设备标识码最小的船外机。
  7. 根据权利要求5所述的方法,其特征在于,所述主机朝向数据包括所述主机的加速度数据,所述基于所述主机定位数据、所述从机定位数据和所述主机朝向数据,确定所述多台船外机在船舶上的相对位置关系,包括:
    根据所述主机的加速度数据确定所述主机的朝向;
    基于所述主机的朝向确定所述船舶的船尾到船头的朝向;
    根据所述主机定位数据、所述从机定位数据以及所述船舶的船尾到船头的朝向,确定所述多台船外机在所述船舶上的相对位置关系。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述主机的加速度数据确定所述主机的朝向,包括:
    获取所述主机的主机加速度检测单元采集的主机加速度数据,根据所述主机加速度数据确定所述主机的朝向。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述主机加速度数据确定所述主机的朝向,包括:
    当所述主机加速度数据可用时,根据所述主机加速度数据确定所述主机的朝向;
    当所述主机加速度数据不可用时,获取所述从机的从机加速度检测单元采集的从机加速度数据,根据所述从机加速度数据确定所述主机的朝向。
  10. 根据权利要求7所述的方法,其特征在于,所述根据所述主机的加速度数据确定所述主机的朝向,包括:
    将所述从机的从机加速度检测单元采集并发送给主机的从机加速度数据作为所述主机的加速度数据,根据所述主机的加速度数据确定所述主机的朝向。
  11. 根据权利要求5所述的方法,其特征在于,所述船舶系统的拓扑图用于在所述船舶的俯视视角下,表征所述船舶系统中各个设备的连接关系以及所述多台船外机在所述船舶上的相对位置。
  12. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    获取所述多台船外机的型号信息,并将所述型号信息发送至所述显示设备;所述型号信息用于在船舶系统的拓扑图中对所述多台船外机的型号进行显示。
  13. 根据权利要求12所述的方法,其特征在于,所述船舶系统的拓扑图还用于显示所述多台船外机的型号。
  14. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述接入设备通过所述通信总线上报的状态信息,并将所述状态信息发送至所述显示设备进行显示。
  15. 根据权利要求14所述的方法,其特征在于,
    所述状态信息与所述拓扑图同时显示在所述显示设备上;
    或,
    所述显示设备上包括功能入口,所述状态信息在所述功能入口被选择后显示在所述显示设备上。
  16. 根据权利要求1所述的方法,其特征在于,
    所述显示设备为所述船舶系统的显示器;所述将所述描述信息发送至显示设备,包括:
    将所述描述信息通过所述通信总线发送至所述船舶系统的显示器;
    或,
    所述显示设备为用户终端;所述将所述描述信息发送至显示设备,包括:
    通过无线通信模块将所述描述信息上传至云端服务器,以使所述云端服务器将所述描述信息转发至用户终端。
  17. 根据权利要求1所述的方法,其特征在于,所述获取各个接入设备通过所述通信总线发送的设备标识信息,包括:
    周期性地获取各个接入设备通过所述通信总线发送的设备标识信息;
    所述方法还包括:
    若获取的所述设备标识信息发生变化,对所述描述信息进行更新。
  18. 根据权利要求17所述的方法,其特征在于,所述若获取的所述设备标识信息发生变化,对所述描述信息进行更新,包括:
    若在第一时刻获取的第一设备标识信息在第二时刻未获取到,将所述第一设备标识信息从所述描述信息中移除,所述第一时刻在所述第二时刻之前;
    或,
    若在第二时刻获取的第二设备标识信息在第一时刻未获取到,将所述第二设备标 识信息加入所述描述信息中,所述第一时刻在所述第二时刻之前。
  19. 一种生成船舶系统的拓扑图的装置,所述船舶系统的多个接入设备通过所述船舶系统的通信总线进行通信,所述装置包括:
    第一获取模块,被配置为获取各个所述接入设备通过所述通信总线发送的设备标识信息;
    第一确定模块,被配置为根据所述设备标识信息确定所述船舶系统的拓扑结构的描述信息,所述描述信息用于表征各个接入设备与所述通信总线的连接关系;
    第一发送模块,被配置为将所述描述信息发送至显示设备以使所述显示设备将所述描述信息转换为拓扑图并进行显示。
  20. 一种船外机,其特征在于,所述船外机包括:螺旋桨;用于驱动所述螺旋桨旋转的电机;及与所述电机连接的处理器,所述处理器用于执行权利要求1至18任意一项所述的生成船舶系统的拓扑图的方法。
  21. 一种船舶,包括:船体;及权利要求20所述的船外机,所述船外机装载于所述船体。
  22. 一种计算机可读存储介质,其特征在于,所述可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至18任意一项所述的生成船舶系统的拓扑图的方法。
PCT/CN2022/117642 2022-09-07 2022-09-07 一种生成船舶系统的拓扑图的方法以及相关装置 WO2024050734A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/117642 WO2024050734A1 (zh) 2022-09-07 2022-09-07 一种生成船舶系统的拓扑图的方法以及相关装置
CN202280005949.3A CN117999221A (zh) 2022-09-07 2022-09-07 一种生成船舶系统的拓扑图的方法以及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/117642 WO2024050734A1 (zh) 2022-09-07 2022-09-07 一种生成船舶系统的拓扑图的方法以及相关装置

Publications (1)

Publication Number Publication Date
WO2024050734A1 true WO2024050734A1 (zh) 2024-03-14

Family

ID=90192678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117642 WO2024050734A1 (zh) 2022-09-07 2022-09-07 一种生成船舶系统的拓扑图的方法以及相关装置

Country Status (2)

Country Link
CN (1) CN117999221A (zh)
WO (1) WO2024050734A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040059477A1 (en) * 2002-06-12 2004-03-25 Kish Loretta Ann Integrated vessel monitoring and control system
US20080254689A1 (en) * 2006-10-06 2008-10-16 Yamaha Hatsudoki Kabushiki Kaisha Control apparatus for marine vessel propulsion system, and marine vessel running supporting system and marine vessel using the same
JP2018122696A (ja) * 2017-01-31 2018-08-09 スズキ株式会社 船舶における表示システム、及び船外機用の表示装置
KR20190056683A (ko) * 2017-11-17 2019-05-27 대우조선해양 주식회사 클라우드 기반의 선박의 구역별 감지 및 네트워크 시스템
CN110085006A (zh) * 2019-03-13 2019-08-02 中交广州航道局有限公司 船舶监测方法、装置、系统和存储介质
CN112101589A (zh) * 2020-09-07 2020-12-18 中国人民解放军海军工程大学 一种基于云计算的船舶远程技术保障系统
CN114258372A (zh) * 2019-09-09 2022-03-29 古野电气株式会社 船舶信息显示系统、船舶信息显示方法、图像生成装置以及程序

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040059477A1 (en) * 2002-06-12 2004-03-25 Kish Loretta Ann Integrated vessel monitoring and control system
US20080254689A1 (en) * 2006-10-06 2008-10-16 Yamaha Hatsudoki Kabushiki Kaisha Control apparatus for marine vessel propulsion system, and marine vessel running supporting system and marine vessel using the same
JP2018122696A (ja) * 2017-01-31 2018-08-09 スズキ株式会社 船舶における表示システム、及び船外機用の表示装置
KR20190056683A (ko) * 2017-11-17 2019-05-27 대우조선해양 주식회사 클라우드 기반의 선박의 구역별 감지 및 네트워크 시스템
CN110085006A (zh) * 2019-03-13 2019-08-02 中交广州航道局有限公司 船舶监测方法、装置、系统和存储介质
CN114258372A (zh) * 2019-09-09 2022-03-29 古野电气株式会社 船舶信息显示系统、船舶信息显示方法、图像生成装置以及程序
CN112101589A (zh) * 2020-09-07 2020-12-18 中国人民解放军海军工程大学 一种基于云计算的船舶远程技术保障系统

Also Published As

Publication number Publication date
CN117999221A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
US11740949B2 (en) Distribution of events in edge devices
CN205193562U (zh) 一种基于以太网交换总线的无人机飞行控制系统
CN108124471A (zh) 无人飞行器返航方法、装置、存储介质和无人飞行器
US7363521B1 (en) Method and apparatus for remote device control using control signals superimposed over Ethernet
CN102999047B (zh) 自主导航式水下机器人运行异常自检及数据传输系统
CN106585979B (zh) 一种基于无人机螺旋桨的桨叶角度调节的方法及无人机
US10949274B2 (en) Inter-core communication method, processor and multi-processor communication system
US20150100658A1 (en) Dual Mode Master/Slave Interface
CN116166034B (zh) 跨域协同围捕方法、装置及系统
US20240054821A1 (en) Management device, in-vehicle system, vehicle, communication management method and storage medium
WO2024050734A1 (zh) 一种生成船舶系统的拓扑图的方法以及相关装置
CN207319073U (zh) 无人机和无人飞行系统
CN104615134A (zh) 基于pc104和arm的船舶自航控制系统
CN114793239A (zh) 一种内河智能船舶域控制器功能实现的系统及方法
US11038837B2 (en) Method and device for bus addressing, and method and device for providing information
CN212083951U (zh) 消防探测设备及消防报警控制系统
WO2024050733A1 (zh) 一种识别多台船外机安装位置的方法以及相关装置
CN208572439U (zh) 一种船舶监控管理设备
CN111580443A (zh) 一种云数据中心物联管控及应用系统
CN104393412A (zh) 一种天线控制装置与方法
CN210804047U (zh) 变频控制系统及船舶控制系统
CN203819468U (zh) 一种用于海面多目标搜寻的信标系统
CN111624913A (zh) 消防探测设备、消防报警控制系统、方法及装置
Lin et al. Design and implementation of unmanned boat platform for underwater acoustic communication emulation
CN203450366U (zh) 船舶自动操舵仪控制系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280005949.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957706

Country of ref document: EP

Kind code of ref document: A1