WO2024049278A1 - 임플란트용 밀링 버 - Google Patents

임플란트용 밀링 버 Download PDF

Info

Publication number
WO2024049278A1
WO2024049278A1 PCT/KR2023/013111 KR2023013111W WO2024049278A1 WO 2024049278 A1 WO2024049278 A1 WO 2024049278A1 KR 2023013111 W KR2023013111 W KR 2023013111W WO 2024049278 A1 WO2024049278 A1 WO 2024049278A1
Authority
WO
WIPO (PCT)
Prior art keywords
milling
cutting
bur
diameter
alveolar bone
Prior art date
Application number
PCT/KR2023/013111
Other languages
English (en)
French (fr)
Inventor
허채헌
Original Assignee
허채헌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 허채헌 filed Critical 허채헌
Publication of WO2024049278A1 publication Critical patent/WO2024049278A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C3/00Dental tools or instruments
    • A61C3/02Tooth drilling or cutting instruments; Instruments acting like a sandblast machine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools

Definitions

  • the present invention relates to a threading bur for implants, and in particular, a milling bur for implants used to form threads in holes for implants formed in the alveolar bone.
  • Teeth are very important to humans, and when a tooth is extracted due to damage to the tooth, it becomes difficult to consume food, causing nutritional damage.
  • the implant procedure involves drilling the alveolar bone where a tooth has been lost to an appropriate depth for implanting an artificial tooth using a medical drill as shown in Figure 1 (Korea Publication No. 10-2022-0098844, published on July 12, 2022). After that, the artificial tooth is installed by inserting and fastening the artificial tooth with a screw installed at the bottom into the perforation.
  • medical drills used in implant procedures are generally similar in shape to commercially used drills, except that their sizes are different.
  • the alveolar bone is composed of the supporting alveolar bone located on the outside and the intrinsic alveolar bone located on the inside of the supporting alveolar bone, and the supporting alveolar bone is harder than the intrinsic alveolar bone.
  • the bone density of the intrinsic alveolar bone is different for each person, and bone density may also vary along the depth direction.
  • the applicant of the present invention applied for a patent on a milling bur for implants and a method of forming a hole for implants using the same (application number: 10-2022-0065367) on May 27, 2022.
  • this patent only provides the conceptual shape and structure of the milling bur and does not present the specific shape and structure, so there is a need to provide a milling bur with the most appropriate structure and shape for implants.
  • the purpose of the present invention is to provide a milling bur for implants that can form perforations with various diameters in the depth direction of the alveolar bone in response to the bone density of the alveolar bone.
  • a milling bur for implants used to form a hole for implantation of an artificial tooth consists of an upper end connected to a surgical robot or a dedicated milling bur drive device, and a lower end connected to the upper end. body part; a cutting portion located at one end of the lower portion; a drive shaft rotatably supported inside the body and connected to the cutting unit; It is formed at one end of the drive shaft and consists of a coupling part that is detachably connected to the driving device of the surgical robot or a dedicated milling bur driving device, and the diameter of the cutting portion is formed to be larger than the diameter of the lower portion.
  • the drive shaft is rotatably supported inside the body through a bearing means.
  • a grid line is formed at the lower end to enable confirmation of the drilling depth of the hole for implants.
  • the diameter of the cutting portion is formed to be smaller than the diameter of the hole for the implant in order to form holes of various diameters in the alveolar bone.
  • the diameter of the cutting portion is formed to be smaller than the diameter of the lower end of the body portion, and is characterized in that it is formed to be 1/2 to 1/3 the size of the diameter of the lower portion.
  • the cutting part is characterized in that it is formed of a milling part for cutting the side part of the alveolar bone and a drill part for cutting in the depth direction of the alveolar bone.
  • the milling part includes a plurality of milling cutting parts for cutting the side surface of the alveolar bone, and a milling cutting groove is formed to discharge the alveolar bone fragments cut by the milling cutting parts, and the milling part
  • the cutting portion and the milling cutting groove are configured in a spiral shape for smooth cutting and discharge of bone fragments.
  • the drill part is configured so that its cross-sectional shape is close to a triangle, and also includes a plurality of drill cutting parts for cutting the alveolar bone downward, and discharging bone fragments cut by the drill cutting parts. It consists of a plurality of drill cutting grooves for cutting, and the milling cutting part, the drill cutting part, and the milling cutting groove and the drill cutting groove are formed to extend so as to be integrated.
  • the milling bur for implants according to the present invention
  • the milling bur is installed on a surgical robot, and the surgical robot drives the milling bur in an upward and downward direction and left and right circularly to form a hole in the alveolar bone, and the diameter of the milling bur is that of the hole. It is characterized by being smaller than the diameter.
  • the milling bur for implants of the present invention has the effect of reducing the number of tools required for implant surgery because it can cope with holes of various diameters through a single milling bur.
  • holes of various diameters can be formed through a single operation according to the bone density of the alveolar bone, and by adjusting the diameter of the hole according to the bone density, there is uniformity between the fastening screw for the implant and the alveolar bone. It also has the effect of ensuring a firm contact force.
  • 1 is a diagram showing a drill used for existing implants.
  • Figure 2 is a view showing a side view of a milling bur according to the present invention.
  • Figure 3 is a view showing an oblique view from the upper side of the milling bur according to the present invention.
  • Figure 4 is a view showing the cutting part of the milling bur according to the present invention in detail.
  • Figure 5 is a diagram showing hole formation by a conventional drill.
  • 6 and 7 are views showing hole formation by the milling bur of the present invention.
  • Figure 8 is a diagram showing a method of forming an asymmetric hole in an extreme bone density situation to explain the present invention in more detail.
  • FIGS. 2 and 3 are diagrams showing a milling bur for implants according to the present invention.
  • FIG. 2 is a side view of a milling bur
  • FIG. 3 is a top perspective view of the milling bur.
  • the milling bur according to the present invention is used by installing on a computer-controlled surgical robot, but it can also be used manually by a dentist by being mounted on a dedicated milling bur drive device.
  • the milling bur 100 is configured in the form of a stick, with an upper end 10' connected to a surgical robot or a dedicated milling bur drive device (not shown), and one end A body portion (10) consisting of a lower portion (10") connected to the upper portion, a cutting portion (40) located at one end of the lower portion (10"), and rotatably supported inside the body portion (10). It consists of a drive shaft 20 connected to the cutting part, and a coupling part 30 formed at one end of the drive shaft and detachably connected to the drive device of the surgical robot or a dedicated milling bur drive device.
  • the drive shaft is rotatably supported inside the body through a predetermined bearing means (not shown).
  • a grid line (11) is formed on the outer surface of the lower part (10") to allow the doctor to visually check the hole depth formed when forming the hole for the implant in the alveolar bone.
  • the depth of the hole for the implant is at a predetermined depth. Since it must be formed, safe implant work can be performed by checking the depth through the above grid line.
  • the coupling portion 30 connected to the driving device of the surgical robot or the dedicated milling bur driving device has a circular cross-section, and one end of the circular cross-section is cut to maintain ease of coupling and robustness of the coupling. . Therefore, by accurately connecting the coupling portion to the driving device of the surgical robot or the dedicated milling bur driving device, a stable driving force can be transmitted to the milling bur of the present invention.
  • the lower part 30" is a part inserted into the hole when forming the hole for an implant, it is usually formed to be longer than the depth of the hole for the implant, and is generally preferably 15 mm to 20 mm.
  • the cutting part 40 When the cutting part 40 forms an implant hole in the alveolar bone, it moves in a three-dimensional direction, that is, left, right, and up and down to form the implant hole, so the diameter (L') of the cutting part has various diameters in the alveolar bone.
  • the diameter (L') of the cutting part 40 In order to form a hole, it is formed to a size smaller than the diameter of the implant hole, and in the alveolar bone to be formed, the diameter (L') of the cutting part 40 is set at the lower end of the body part 10 to form an alveolar bone smaller than the upper side ( It is formed to be smaller than the diameter (L") of 10").
  • it may be formed to have a size of 1/2 to 1/3 of the diameter of the lower end.
  • it is not necessarily limited to this size and that the size can be adjusted as needed.
  • Figure 4 is an enlarged view showing the configuration of the cutting unit 40 according to the present invention.
  • the cutting part 40 is formed of a milling part 41 for cutting the side part of the alveolar bone and a drill part 41 for cutting in the depth direction of the alveolar bone.
  • the milling unit 41 includes a plurality of milling cutting units 41' for cutting the side of the alveolar bone, and a milling cutting groove 41" for discharging the alveolar bone fragments cut by the milling cutting unit 41'.
  • the milling cutting portion and the milling cutting groove are formed in a spiral shape for smooth cutting and discharge of bone fragments.
  • the drill part 41 is configured to have a cross-sectional shape close to a triangle, and also includes a plurality of drill cutting parts 42' for cutting the alveolus downward, and a plurality of drill cutting parts 42' for discharging bone fragments cut by the drill cutting parts. It consists of a drill cutting groove (42"). The milling cutting part and the drill cutting part, and the milling cutting groove and the drill cutting groove are formed to extend so as to be integrated.
  • the length of the cutting portion is preferably 1 to 2 mm, and the diameter is preferably less than 0.5 mm. However, it should be noted that it is not necessarily limited to this size and that the size can be adjusted as needed.
  • alveolar bone is composed of compact bone and cancellous bone located on the inner side of the compact bone.
  • Compact bone has a relatively high bone density and is relatively hard, but cancellous bone has a lower bone density than compact bone and bone density tends to decrease from the upper side to the chin area.
  • cancellous bone may have varying bone density in the depth direction depending on the person.
  • holes When holes are formed in alveolar bone with various bone densities using a conventional implant drill, they have the same diameter.
  • the diameter of the hole is formed to be smaller than the diameter of the fastening screw of the artificial tooth to securely fix the artificial tooth.
  • a firm contact is made with the fastening screw of the artificial tooth and applying excessive pressure, but in the alveolar bone with low bone density, a relatively loose contact is made with the fastening screw of the artificial tooth.
  • Figure 5 is a diagram showing that a hole for an artificial tooth is formed using an existing drill for an implant and is combined with a fastening screw of the artificial tooth.
  • a lighter color indicates that the bone density of the alveolar bone is relatively high, and a darker color indicates that the bone density is relatively low.
  • the hole for an artificial tooth formed using a conventional drill for an implant is formed in a straight shape and has a diameter equal to that of the drill.
  • the fastening screw of the artificial tooth has a diameter that decreases downward. Therefore, when the fastening screw of an artificial tooth is inserted into a hole formed by an existing drill, the upper side, where bone density is high, comes into contact with the relatively large diameter fastening screw portion, generating a strong contact force, but the fastening screw of a relatively small diameter is generated. The screw parts come into contact on the lower side, where bone density is low, so the contact force is relatively low. Therefore, the fastening screw of the artificial tooth may not be firmly fixed to the alveolar bone.
  • Figure 6 shows a hole formed in the alveolar bone using a milling bur for an implant according to the present invention.
  • the existing implant drill and the milling bur according to the present invention are fastened to and driven by the surgical robot.
  • Existing drills can only move up and down, i.e., only 2-dimensional movement, by surgical robots, but the milling bur according to the present invention is driven to enable circular movement not only up and down but also left and right, that is, 3-dimensional movement.
  • the milling bur according to the present invention has a cutting function on the side, unlike existing drills.
  • the milling bur forms a hole in the alveolar bone through three-dimensional movement.
  • the milling blade of the milling bur is formed to have a diameter corresponding to or smaller than the hole of the minimum diameter to be formed.
  • the alveolar bone is cut to have a relatively wide diameter on the upper side where bone density is high, and the alveolar bone is cut to have a relatively narrow diameter toward the lower side where bone density is low. do.
  • the cross-sectional shape of the formed hole has the same shape as shown in FIG. 6.
  • the artificial tooth fastening screw when the artificial tooth fastening screw is inserted into the hole, it is fixed with uniform and high contact force on both the upper and lower sides of the alveolar bone. Therefore, from the beginning of artificial tooth implantation, it has higher stability than artificial tooth implantation through a conventional drill.
  • Figure 7 shows an example of a hole formed according to the bone density of the alveolar bone. As shown in the drawing, it can be seen that the size of the hole formed varies depending on the bone density of the alveolar bone.
  • the diameter of the hole to be formed is larger than the diameter of the hole to be formed.
  • Figure 8 is a diagram showing an example of installing a fastening screw by forming an asymmetric hole in the alveolar bone with extreme bone density.
  • Area D1 represents the area with the highest bone density
  • D2 represents the area with the next highest bone density.
  • D4 represents the area with the lowest bone density.
  • area D1 with the highest bone density is perforated so that the surface in contact with the fastening screw is low (T1, T5), and area D2 with the next highest bone density contacts the fastening screw more than area D1.
  • D4 area which has the lowest bone density, is drilled so that it contacts the fastening screw the most (T2, T3, T6). At this time, by milling smaller than the diameter of the implant's fastening screw, the implant's fastening screw can cut the alveolar bone on its own to secure additional fixation force.
  • the bone density of the alveolar bone is measured.
  • Bone density can be measured using devices such as CT.
  • the measured bone density is stored in the surgical robot, and the milling bur according to the present invention is installed in the surgical robot.
  • the operator who is a dentist, holds the milling bur and moves the milling blade of the milling bur to the alveolar bone where the hole is to be formed, moving the milling bur in the direction of the depth of the alveolar bone and moving it circularly left and right to form a hole in the alveolar bone.
  • the bone density information stored in the surgical robot may be different from the actual bone density information, and in this case, there is a risk of excessive or insufficient alveolar bone cutting.
  • a sensor that can measure changes in torque applied to the milling bur can be installed on the surgical robot where the milling bur is installed. Therefore, by operating the milling bur based on the torque value measured in real time along with the bone density information stored in the surgical robot, the initially intended hole can be safely formed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Robotics (AREA)
  • Dental Prosthetics (AREA)
  • Transplantation (AREA)

Abstract

인공치아의 식립을 위한 홀을 형성하는데 사용하는 임플란트용 밀링 버는 스틱형태로 구성되고, 수술 로봇에 체결되는 상단에서부터 끝단으로 갈수록 그 직경이 감소되는 형태를 가지고, 끝단에는 임플란트를 위해 치조골에 인공치아의 식립을 위한 홀을 형성하기 위한 밀링 날이 설치되며, 상기 밀링 날의 직경은 상기 끝단의 직경보다 크도록 형성된다.

Description

임플란트용 밀링 버
본 발명은 임플란트용 스레딩 버에 관한 것으로서, 특히 치조골에 형성된 임플란트용 홀에 나사산을 형성하는데 사용되는, 임플란트용 밀링 버이다.
사람에 있어서 치아는 매우 중요한 것으로서, 치아의 손상으로 치아가 발치되면 음식물의 섭취가 힘들게 되어 영양학적으로 피해가 발생하게 된다.
이에 따라, 치아가 한 두개 발치된 경우에는 성한 치아를 지주로 삼아 보철로서 인공의 치아를 형성하거나, 또는 치아가 대부분 손상되어 발치된 경우에는 잇몸과 구강에 맞게 형성한 틀니를 사용하였다.
그러나, 인공 치아를 사용하는 보철의 경우에는, 인공 치아가 손상이 없는 치아를 통해 지지되기 때문에 딱딱한 음식을 먹는데 상대적으로 어려움이 있고 또한 이물감이 있다. 그리고, 틀니를 사용하는 경우에는 틀니의 형상과 구강의 형상이 일치하지 않으면 불편한 착용감을 느끼는 한편 틀니로 인해 구강에 상처가 발생할 수 있다, 또한 딱딱한 음식을 섭취하기가 어려우며, 무엇보다도 저녁 취침전에 틀니의 빼내어 위생을 위해 세척 또는 소독을 해주어야 하는 불편함이 있었다.
이러한 문제점을 해결하기 위한 방안으로서, 치아가 상실된 치조골에 타공을 한 후에 나사선이 아래에 설치된 인공치아를 치조골에 매립하는 임플란트가 등장하였다.
임플란트 시술은 치아가 상실된 치조골에 도 1에 도시된 것과 같은 의료용 드릴(대한민국 공개공보 제 10-2022-0098844호, 2022년07월12일 공개)을 사용하여, 인공치아 이식을 위한 적절한 깊이로 천공한 후에, 하부에 나사가 설치된 인공치아를 상기 천공에 삽입하여 체결함으로써 인공치아 식립이 이루어진다. 도면을 통해 알 수 있듯이, 임플란트 시술에 사용되는 의료용 드릴은 대체적으로 상업적으로 사용되는 드릴과 그 형상이 유사하며, 다만 그 크기가 상이할 뿐이다.
일반적으로 치조골은 외부에 위치하는 지지치조골과 지지치조골 내측에 위하는 고유치조골로 이루어지고, 지지치조골이 고유치조골보다 단단한 성질을 가지고 있다. 또한, 사람마다 고유치조골의 골밀도가 상이하고 또한 깊이방향을 따라 골밀도가 달라질 수 있다.
이와 같은 치조골에 의료용 드릴을 사용하여 인공치아 이식을 위한 홀을 천공할 때, 인공치아에 적절한 직경을 홀을 천공하는 것이 중요하고, 또한 이식된 인공치아와 치조골의 밀찰력을 견고히 하기 위하여 홀의 직경을 적절히 조절하는 것이 필요하다. 그러나, 의료용 드릴을 통한 천공은 드릴의 직경과 거의 동일하기 때문에 다양한 크기의 천공에 대응하기 위해 다양한 직경의 드릴을 구비할 필요성이 발생한다. 또한, 드릴을 이용한 천공시에 마찰열이 발생하고, 이러한 마찰열을 낮추기 위해 식염수가 함께 공급되게 된다. 그러나, 드릴의 측면부와 천공된 치조골의 벽은 거의 밀착한 상태가 되어 식염수가 원활히 제공되지 못해 열을 적절히 제거하지 못할 수 있다.
따라서, 적은 수의 기구를 사용하면서, 천공시 발생하는 열을 효율적으로 제거하는 한편 치조골에 3차원적인 형상의 천공을 형성할 수 있는 기구 및 이를 이용하는 천공방법을 제공하는 것이 바람직할 것이다.
이에 본 발명의 출원인은 2022년 05월 27일자로 임플란트용 밀링 버와 이를 이용한 임플란트용 홀 형성방법(출원번호:10-2022-0065367호)에 관한 특허를 출원하였다. 그러나, 본 특허에서는 밀링 버의 개념적인 형상과 구조를 제공하였을 뿐 구체적인 형상과 구조를 제시하지 않아 임플란트에 가장 적절한 구조와 형상의 밀링버를 제공할 필요가 있다.
본 발명의 목적은 치조골의 골밀도에 대응해 치조골의 깊이 방향으로 다양한 직경을 가지는 천공을 형성할 수 있는 임플란트용 밀링 버를 제공하는 것이다.
본 발명의 목적을 달성하기 위하여, 인공치아의 식립을 위한 홀을 형성하는데 사용하는 임플란트용 밀링 버는, 수술로봇 또는 전용 밀링 버 구동장치에 연결되는 상단부와, 일단이 상기 상단부의 연결되는 하단부로 이루어지는 몸체부와; 상기 하단부의 일단에 위치하는 절삭부와; 상기 몸체부 내측에 회전 가능하게 하게 지지되며 상기 절삭부와 연결되는 구동축과; 상기 구동축의 일단에 형성되며 상기 수술로봇의 구동장치 또는 전용 밀링 버 구동장치에 착탈가능하게 연결되는 결합부로 구성되며, 상기 절삭부의 직경은 상기 하단부의 직경보다 크도록 형성되는 것을 특징으로 한다.
본 발명에 따른 임플란트용 밀링 버에서, 상기 구동축은 베어링수단을 통해 상기 몸체부 내측에 회전가능하게 지지되게 되는 것을 특징으로 한다.
본 발명에 따른 임플란트용 밀링 버에서, 상기 하단부에는 임플란트용 홀의 천공 깊이를 확인할 수 있도록 해주는 눈금선이 형성되는 것을 특징으로 한다.
본 발명에 따른 임플란트용 밀링 버에서, 상기 절삭부의 직경은 치조골에 다양한 직경의 홀을 형성하기 위하여 임플란트용 홀의 직경보다 작은 크기로 형성되는 것을 특징으로 한다.
본 발명에 따른 임플란트용 밀링 버에서, 상기 절삭부의 직경은 몸체부의 하단부의 직경보다 작도록 형성되며, 하단부의 직경의 1/2 내지 1/3 크기로 형성되는 것을 특징으로 한다.
본 발명에 따른 임플란트용 밀링 버에서, 상기 절삭부는 치조골의 측면부를 절삭하기 위한 밀링부와, 치조골의 깊이방향으로 절삭을 위한 드릴부로 형성되는 것을 특징으로 한다.
본 발명에 따른 임플란트용 밀링 버에서, 상기 밀링부에는 치조골의 측면을 절삭하기 위한 다수의 밀링 절삭부와, 상기 밀링 절삭부에 의해 절삭된 치조골 골편의 배출을 밀링 절삭홈이 형성되며, 상기 밀링 절삭부와 밀링 절삭 홈은 원활한 절삭과 골편의 배출을 위해 나선형으로 구성되는 것을 특징으로 한다.
본 발명에 따른 임플란트용 밀링 버에서, 상기 드릴부는 그 단면 형상이 삼각형에 가깝도록 구성되며, 역시 치조골을 하방으로 절삭하기 위한 다수의 드릴 절삭부와, 상기 드릴 절삭부에 의해 절삭된 골편을 배출하기 위한 다수의 드릴 절삭홈으로 이루어지며, 상기 밀링 절삭부와 드릴 절삭부, 그리고 상기 밀링 절삭홈과 드릴 절삭홈은 일체가 되도록 연장 형성되는 것을 특징으로 한다.
본 발명에 따른 임플란트용 밀링 버에서, 상기 밀링 버는 수술로봇에 설치되고, 상기 수술로봇은 밀링 버를 상하 방향과, 좌우 원형으로 구동시켜 치조골에 홀을 형성하고, 상기 밀링 버의 직경은 상기 홀의 직경보다 작은 것을 특징으로 한다.
본 발명의 임플란트용 밀링 버는, 하나의 밀링 버를 통해 다양한 직경의 홀에 대응할 수 있기 때문에 임플란트의 시술에 필요한 공구의 수를 줄일 수 있는 효과가 있다.
또한 본 발명에 따른 밀링 버에 의해, 치조골의 골밀도에 따라 다양한 직경의 홀을 한 번의 작업을 통해 형성할 수 있고, 그리고 골밀도에 따라 홀의 직경을 조절함에 따라 임플란트용 체결나사와 치조골 사이에 균일하고도 견고한 접촉력이 이루어질 수 있도록 해주는 효과가 있다.
도 1은 기존 임플란트에 사용되는 드릴를 보여주는 도면.
도 2는 본 발명에 따른 밀링 버의 측면을 보여주는 도면.
도 3은 본 발명에 따른 밀링 버의 상측에서 비스듬히 본 모습을 보여주는 도면.
도 4는 본 발명에 따른 밀링 버의 절삭부를 상세히 보여주는 도면.
도 5는 기존 드릴에 의한 홀 형성을 보여주는 도면.
도 6 및 7은 본 발명의 밀링 버에 의한 홀 형성을 보여주는 도면.
도 8은 본 발명을 보다 상세히 설명하기 위해 극단적인 골밀도 상황에서 비대칭적인 홀 형성방법을 보여주는 도면.
이하에서는, 첨부된 도면을 참고하여 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.
본 발명의 설명에 앞서, 이하의 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며, 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니된다.
또한, 본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로, 특정 실시예들을 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시 형태에 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도 2와 도 3은 본 발명에 따른 임플란트용 밀링 버를 도시한 도면이다. 도 2는 밀링 버의 측명을 도시한 도면이고, 도 3은 밀링 버의 상부 사시도이다.
본 발명에 따른 밀링 버는 컴퓨터로 제어되는 수술로봇에 설치하여 사용하는 것이지만, 전용 밀링 버 구동장치에 장착되어 치과의사에 의한 수작업으로도 사용될 수 있는 것이다.
도 2와 도 3에 도시되어 있듯이, 본 발명에 따른 밀링 버(100)는 스틱형태로 구성되며, 수술로봇 또는 전용 밀링 버 구동장치(미도시)에 연결되는 상단부(10')와, 일단이 상기 상단부의 연결되는 하단부(10")로 이루어지는 몸체부(10)와, 상기 하단부(10")의 일단에 위치하는 절삭부(40)와, 상기 몸체부(10) 내측에 회전 가능하게 하게 지지되며 상기 절삭부와 연결되는 구동축(20)과, 상기 구동축의 일단에 형성되며 상기 수술로봇의 구동장치 또는 전용 밀링 버 구동장치에 착탈가능하게 연결되는 결합부(30)로 구성된다.
상기 구동축은 소정의 베어링수단(미도시)을 통해 상기 몸체부 내측에 회전가능하게 지지되게 된다.
또한 상기 하단부(10")의 외면에는, 치조골에 임플란트용 홀을 형성할 때 형성되는 홀 깊이를 의사가 시각적으로 확인할 수 있도록 하는 눈금선(11)이 형성된다. 임플란트용 홀의 깊이는 예정된 깊이로 형성되어야만 하기 때문에 상기 눈금선을 통해 깊이를 확인함으로써 안전한 임플란트 작업이 이루어질 수 있도록 해준다.
상기 수술로봇의 구동장치 또는 전용 밀링 버 구동장치에 연결되는 결합부(30)는 그 단면이 원형으로 이루어지고, 결합의 용이함과 결합의 견고함을 유지하기 위하여 원형의 단면 일단이 절삭되게 형성된다. 따라서, 결합부를 수술로봇의 구동장치 또는 전용 밀링 버 구동장치에 정확하게 연결되게 함으로써 안정된 구동력이 본 발명의 밀링 버에 전달될 수 있도록 해준다.
한편, 상기 하단부(30")는 임플란트용 홀을 형성할 때 홀 내측으로 삽입되는 부분이기 때문에, 통상적으로 임플란트용 홀의 깊이 보다 길게 형성되며 일반적으로 15mm 내지 20mm인 것이 바람직하다.
상기 절삭부(40)는 치조골에 임플란트 홀을 형성할 때 3차원의 방향, 즉 좌, 우측 및 상하로 이동하여 임플란트 홀을 형성하기 때문에, 절삭부의 직경(L')은, 치조골에 다양한 직경의 홀을 형성하기 위하여 임플란트용 홀의 직경보다 작은 크기로 형성되며, 또한 형성하는 치조골에서, 상측보다 작은 치조골의 형성을 위하여 절삭부(40)의 직경(L')은 몸체부(10)의 하단부(10")의 직경(L")보다 작도록 형성된다. 바람직하게는 하단부의 직경의 1/2 내지 1/3 크기로 형성될 수 있다. 그러나, 반드시 이러한 크기에 한정되지 않고 필요에 따라 크기를 조절할 수 있음은 본 기술분야의 당업자라면 충분히 이해할 수 있을 것이다.
도 4는 본 발명에 따른 절삭부(40)의 구성을 보여주는 확대도이다.
도 4에 도시된 바와 같이, 본 발명에 따른 절삭부(40)는 치조골의 측면부를 절삭하기 위한 밀링부(41)와, 치조골의 깊이방향으로 절삭을 위한 드릴부(41)로 형성된다.
상기 밀링부(41)에는 치조골의 측면을 절삭하기 위한 다수의 밀링 절삭부(41')와, 상기 밀링 절삭부(41')에 의해 절삭된 치조골 골편의 배출을 밀링 절삭홈(41")이 형성되며, 상기 밀링 절삭부와 밀링 절삭 홈은 원활한 절삭과 골편의 배출을 위해 나선형으로 구성된다.
상기 드릴부(41)는 그 단면 형상이 삼각형에 가깝도록 구성되며, 역시 치조을 하방으로 절삭하기 위한 다수의 드릴 절삭부(42')와, 상기 드릴 절삭부에 의해 절삭된 골편을 배출하기 위한 다수의 드릴 절삭홈(42")으로 이루어진다. 상기 밀링 절삭부와 드릴 절삭부, 그리고 상기 밀링 절삭홈과 드릴 절삭홈은 일체가 되도록 연장 형성되게 된다.
상기 절삭부의 길이는 1 내지 2mm로 형성되고, 그 직경은 0.5mm 미만으로 형성되는 것이 바람직하다. 그러나, 반드시 이러한 크기에 한정되지 않고 필요에 따라 그 크기가 조정될 수 있음을 알아야 한다.
일반적으로, 치조골은 치밀골과 치밀골 내측에 위하는 해면골로 이루어져 있으며, 치밀골은 골밀도가 상당히 높아 상대적으로 경도가 높지만, 해면골은 치밀골보다 골밀도 낮고 또한 상측에서 턱부위로 갈수록 골밀도 낮아지는 경향이 있다. 그러나, 이는 통상적인 것이며, 사람에 따라 해면골은 깊이 방향으로 다양한 골밀도를 가질 수도 있다.
이와 같이 다양한 골밀도를 가지는 치조골을 통상적인 임플란트 드릴을 사용하여 홀을 형성하게 되면, 동일한 직경을 가지게 된다. 홀의 직경은 인공치아의 견고한 고정을 위해 인공치아의 체결나사의 직경보다 작게 형성된다. 그러나, 골밀도가 높은 치조골에서는 인공치아의 체결나사와 과도한 압박을 주는 견고한 접촉이 이루어지지만, 골밀도가 낮은 치조골에서는 인공치아의 체결나사와는 상대적으로 느슨한 접촉이 이루어지게 된다.
도 5는 기존 임플란트용 드릴을 이용하여 인공치아용 홀을 형성하고, 이에 인공치아의 체결나사와 결합하게 되는 것을 보여주는 도면이다. 도면에서, 옅은색은 치조골이 골밀도가 상대적으로 높은 것을 나타내고, 색상이 짙어질 수록 골밀도가 상대적으로 낮은 것을 나타낸다.
도 5에 도시된 바와 같이, 기존의 임플란트용 드릴을 이용하여 형성하는 인공치아용 홀은 일자형으로 형성되고 또한 드릴의 직경과 동일한 직경을 가지도록 형성된다. 그리고, 인공치아의 체결나사는 도면에 나타낸 바와 같이 아래로 갈수록 직경이 감소하는 형성을 가지고 된다. 따라서, 기존 드릴로 형성한 홀에 인공치아의 체결나사를 삽입하게 되면, 골밀도가 높은 상측에서는 높은 상대적으로 큰 직경의 체결나사 부분과 접촉하게 되어 견고한 접촉력이 발생하게 되지만, 상대적으로 작은 직경의 체결나사 부분들은 골밀도가 낮은 하측에서 접촉하게 되어 접촉력이 상대적으로 떨어지게 된다. 따라서, 치조골에 인공치아의 체결나사가 견고히 고정될 수 없을 수 있게 된다.
또한, 골밀도가 낮은 하측에서 접촉력을 증가시키기 위해 홀의 직경을 작게 형성하게 되면, 골밀도가 높은 상측 부분에서 체결나사와 과도한 접촉력이 발생할 수 있게 되고, 이와 같은 과도한 접촉력은 치조골을 괴사시킬 가능성도 있다.
도 6은 본 발명에 따른 임플란트용 밀링 버를 사용하여 치조골에 홀을 형성한 것을 보여준다.
앞서 설명하였듯이, 기존의 임플란트용 드릴과 본 발명에 따른 밀링 버는 수술로봇에 체결되어 구동되게 된다. 기존의 드릴은 수술로봇에 의해 상하로만 이동, 즉 2차원 운동만이 가능하게 되지만, 본 발명에 따른 밀링 버는 상하뿐만 아니라 좌우로 원형 이동이 가능하게, 즉 3차원으로 이동이 가능하도록 구동된다. 또한 본 발명에 따른 밀링 버는 기존의 드릴과는 다르게 측면에서도 절삭의 기능을 가지게 된다.
도 6에 도시된 바와 같이, 상하 2차원 이동만이 가능한 드릴에 의해 드릴의 직경에 대응하는 홀을 치조골에 형성하는 것과 달리 본 발명에 따른 밀링버는 3차원 이동을 통해 홀을 치조골에 형성하기 때문에, 밀링버의 밀링날은 형성하고자 하는 최소 직경의 홀에 대응하는 또는 보다 작은 직경을 가지게 형성된다. 이와 같은 직경의 밀링날을 가지는 밀링 버를 수술로봇에 설치한 후, 골밀도 높은 상측에서는 상대적으로 넓은 직경을 가지도록 치조골을 절삭하고, 골밀도 낮아지는 하측으로 갈수록 상대적으로 좁은 직경을 가지도록 치조골을 절삭한다. 따라서, 형성된 홀의 단면 형상은 도 6에 도시된 것과 같은 형상을 가지게 된다.
따라서, 홀에 인공치아의 체결나사를 삽입하게 되면, 치조골의 상하측 모두에서 균일하고도 높은 접촉력을 가지게 고정되게 된다. 따라서, 인공치아의 식립 초기부터, 기존의 드릴을 통한 인공치아의 식립보다 높은 안정성을 가지게 된다.
도 7은 치조골의 골밀도에 따라 형성된 홀의 예를 보여준다. 도면에 도시되어 있듯이, 치조골의 골밀도에 따라 형성되는 홀의 크기는 다양하게 형성됨을 알 수 있다.
한편, 기존의 임플란트용 드릴을 사용하여 치조골에 다양한 직경의 홀을 형성하고자 하면, 형성하고자 하는 홀의 직경에 대응하는 직경을 가지는 드릴을 교체하여야만 한다는 문제가 있지만, 본 발명에서는 형성하고자 하는 홀의 직경보다 작은 직경을 가지는 밀링날을, 수술로봇을 통해 상하 및 좌우 3차원방향으로 구동시킴으로써, 치조골에 형성하고자 하는 홀의 크기에 상관없이 하나의 밀링 버를 사용하여 다양한 크기의 홀을 형성할 수 있게 된다는 장점이 있다. 즉, 치조골에 홀을 형성하기 위해 필요한 장치, 즉 공구의 수를 현저히 줄일 수 있다는 장점이 있다.
도 8은 극단적인 골밀도를 가지는 치조골에 비대칭적인 홀을 형성하여 체결나사를 설치하는 예를 도시한 도면으로서, D1 영역이 가장 높은 골밀도를 가지는 영역을 나타내고, D2는 그 다음으로 높은 골밀도를 가지는 영역을 나타내며, D4는 가장 낮은 골밀도를 가지는 영역을 나타낸다.
도 8에 도시되어 있듯이, 가장 높은 골밀도를 가지는 영역 D1은 체결나사와 접촉하는 면이 낮도록 천공하고(T1, T5), 다음으로 높은 골밀도를 가지는 영역 D2는 D1 영역보다는 더 많이 체결나사와 접촉하도록 천공하고(T4), 그리고 가장 낮은 골밀도를 가지는 D4 영역은 가장 많이 체결나사와 접촉하도록 천공한다(T2, T3, T6). 이때 임플란트의 체결나사의 직경보다 작게 밀링하여 임플란트의 체결나사가 자체적으로 치조골을 절삭하여 추가 고정력을 확보할 수 있다.
이와 같이 천공하여 체결나사를 홀에 삽입함으로써 체결나사의 모든 접촉면에 걸쳐 균일하고도 견고한 접촉력이 유지되게 되며, 과도한 접촉압력으로 인한 치조골의 괴사를 방지할 수 있게 된다.
본 발명에 따른 밀링 버를 사용하여 치조골에 임플란트를 위한 홀을 형성하는 방법을 다시 한 번 설명하면, 먼저 치조골에 대한 골밀도를 측정한다. 골밀도의 측정은 CT와 같은 장치를 통해 이루어질 수 있다. 그런 다음, 측정한 골밀도를 수술로봇에 저장하고, 수술로봇에 본 발명에 따른 밀링 버를 설치한다. 그런 다음, 치과의사인 시술자가 밀링 버를 파지하고서 홀을 형성할 치조골에 밀링 버의 밀링날을 이동시켜, 밀링 버를 치조골 깊이 방향으로 이동시키는 한편 좌우 원형으로 이동시키면서 치조골에 홀을 형성한다.
이때, 수술로봇에 저장된 골밀도에 따른 밀링 버의 이동 한계치를 벗어나면 밀링 버의 햅틱기능으로 시술자에게 경고를 한다. 그러나, 수술로봇에 저장된 골밀도의 정보와 실제 골밀도의 정보가 상이할 수 있는데, 이러한 경우에는 과도한 또는 충분치 못한 치조골의 절삭이 이루어질 위험성이 있다. 이와 같은 위험성을 해결하기 위해, 밀링 버에 가해지는 토크의 변화를 측정할 수 있는 센서를, 밀링 버가 설치되는 수술로봇에 설치할 수 있다. 따라서, 수술로봇에 저장된 골밀도 정보와 함께 실시간으로 측정되는 토크값을 기반으로 밀링 버를 작동시키면 최초에 의도한 홀을 안전하게 형성할 수 있게 된다.
상기한 설명에 많은 사항이 구체적으로 기재되어 있으나 이것은 발명의 범위를 한정하는 것이라기보다 바람직한 실시예의 예시로서 해석되어야 한다. 따라서 발명은 설명된 실시예에 의하여 정할 것이 아니고 특허청구범위와 특허청구범위에 균등한 것에 의하여 정하여져야 한다.

Claims (9)

  1. 인공치아의 식립을 위한 홀을 형성하는데 사용하는 임플란트용 밀링 버에 있어서,
    수술로봇 또는 전용 밀링 버 구동장치에 연결되는 상단부와, 일단이 상기 상단부의 연결되는 하단부로 이루어지는 몸체부와; 상기 하단부의 일단에 위치하는 절삭부와; 상기 몸체부 내측에 회전 가능하게 하게 지지되며 상기 절삭부와 연결되는 구동축과; 상기 구동축의 일단에 형성되며 상기 수술로봇의 구동장치 또는 전용 밀링 버 구동장치에 착탈가능하게 연결되는 결합부로 구성되며, 상기 절삭부의 직경은 상기 하단부의 직경보다 크도록 형성되는 것을 특징으로 하는 임플란트용 밀링 버.
  2. 제1항에 있어서,
    상기 구동축은 베어링수단을 통해 상기 몸체부 내측에 회전가능하게 지지되게 되는 것을 특징으로 하는 임플란트용 밀링 버.
  3. 제1항에 있어서,
    상기 하단부에는 임플란트용 홀의 천공 깊이를 확인할 수 있도록 해주는 눈금선이 형성되는 것을 특징으로 하는 임플란트용 밀링 버.
  4. 제1항에 있어서,
    상기 절삭부의 직경은 치조골에 다양한 직경의 홀을 형성하기 위하여 임플란트용 홀의 직경보다 작은 크기로 형성되는 것을 특징으로 하는 임플란트용 밀링 버.
  5. 제1항에 있어서,
    상기 절삭부의 직경은 몸체부의 하단부의 직경보다 작도록 형성되며, 하단부의 직경의 1/2 내지 1/3 크기로 형성되는 것을 특징으로 하는 임플란트용 밀링 버.
  6. 제1항에 있어서,
    상기 절삭부는 치조골의 측면부를 절삭하기 위한 밀링부와, 치조골의 깊이방향으로 절삭을 위한 드릴부로 형성되는 것을 특징으로 하는 임플란트용 밀링 버.
  7. 제6항에 있어서,
    상기 밀링부에는 치조골의 측면을 절삭하기 위한 다수의 밀링 절삭부와, 상기 밀링 절삭부에 의해 절삭된 치조골 골편의 배출을 밀링 절삭홈이 형성되며, 상기 밀링 절삭부와 밀링 절삭 홈은 원활한 절삭과 골편의 배출을 위해 나선형으로 구성되는 것을 특징으로 하는 임플란트용 밀링 버.
  8. 제6항에 있어서,
    상기 드릴부는 그 단면 형상이 삼각형에 가깝도록 구성되며, 역시 치조골을 하방으로 절삭하기 위한 다수의 드릴 절삭부와, 상기 드릴 절삭부에 의해 절삭된 골편을 배출하기 위한 다수의 드릴 절삭홈으로 이루어지며, 상기 밀링 절삭부와 드릴 절삭부, 그리고 상기 밀링 절삭홈과 드릴 절삭홈은 일체가 되도록 연장 형성되는 것을 특징으로 하는 임플란트용 밀링 버.
  9. 제7항 또는 제8항에 있어서,
    상기 밀링 버는 수술로봇에 설치되고, 상기 수술로봇은 밀링 버를 상하 방향과, 좌우 원형으로 구동시켜 치조골에 홀을 형성하고, 상기 밀링 버의 직경은 상기 홀의 직경보다 작은 것을 특징으로 하는 임플란트용 밀링 버.
PCT/KR2023/013111 2022-09-01 2023-09-01 임플란트용 밀링 버 WO2024049278A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220110732A KR102484720B1 (ko) 2022-09-01 2022-09-01 임플란트용 밀링 버
KR10-2022-0110732 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024049278A1 true WO2024049278A1 (ko) 2024-03-07

Family

ID=84924441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013111 WO2024049278A1 (ko) 2022-09-01 2023-09-01 임플란트용 밀링 버

Country Status (2)

Country Link
KR (1) KR102484720B1 (ko)
WO (1) WO2024049278A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102484720B1 (ko) * 2022-09-01 2023-01-03 허채헌 임플란트용 밀링 버

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3141122U (ja) * 2008-01-18 2008-04-24 孝 矢萩 歯科用骨収集装置
WO2018130730A1 (es) * 2017-01-16 2018-07-19 Xam Mar Mangrane Esteban Herramienta de fresado de una superestructura dental
US20200345454A1 (en) * 2018-11-06 2020-11-05 Dentistry Elevated Llc A tooth repair system
CN213552504U (zh) * 2020-08-06 2021-06-29 深圳市人民医院 口腔种植定位钻
KR20210114995A (ko) * 2019-02-05 2021-09-24 파라곤 툴즈, 에스.엘. 치과 구조물에 스크류를 안착시키기 위한 밀링 공구
KR102484720B1 (ko) * 2022-09-01 2023-01-03 허채헌 임플란트용 밀링 버

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220110777A (ko) * 2019-12-02 2022-08-09 콘피던트 에이비씨 엘티디. 전기 드릴 비트

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3141122U (ja) * 2008-01-18 2008-04-24 孝 矢萩 歯科用骨収集装置
WO2018130730A1 (es) * 2017-01-16 2018-07-19 Xam Mar Mangrane Esteban Herramienta de fresado de una superestructura dental
US20200345454A1 (en) * 2018-11-06 2020-11-05 Dentistry Elevated Llc A tooth repair system
KR20210114995A (ko) * 2019-02-05 2021-09-24 파라곤 툴즈, 에스.엘. 치과 구조물에 스크류를 안착시키기 위한 밀링 공구
CN213552504U (zh) * 2020-08-06 2021-06-29 深圳市人民医院 口腔种植定位钻
KR102484720B1 (ko) * 2022-09-01 2023-01-03 허채헌 임플란트용 밀링 버

Also Published As

Publication number Publication date
KR102484720B1 (ko) 2023-01-03

Similar Documents

Publication Publication Date Title
EP2237739B1 (en) Drill for sinus membrane lift
WO2024049278A1 (ko) 임플란트용 밀링 버
US5366374A (en) Dental implant
US7934929B2 (en) Sinus lift implant
US10064707B2 (en) Self-osteotomizing bone implant and related method
WO2011046294A2 (ko) 임플란트 시술용 드릴
WO2010098543A2 (ko) 치과용 임플란트
WO2012128537A2 (ko) 임플란트 시술용 드릴
WO2010013900A2 (ko) 임플란트용 천공 드릴
WO2010128771A2 (ko) 임플란트용 일체형 치조골절개 확장기
CA2207950A1 (en) Design process for skeletal implants to optimize cellular response
US20140248581A1 (en) Device for loosening, insertion and removal of dental implants
US20130022942A1 (en) Self-osteotomizing and grafting bone implant
ITFI20110130A1 (it) Sistema di guida chirurgica per implantologia dentale e procedimento per la realizzazione di guide chirurgiche per implantologia dentale.
US20140023990A1 (en) Self-osteotomizing bone implant and related method
KR20110027461A (ko) 임플란트 드릴용 스토퍼 유닛 및 그를 구비한 임플란트 시술용 드릴
JP2001517988A (ja) インプラント体および回転体
WO2012154053A1 (en) Process for securing a dental implant and dental implant
WO2009151276A2 (ko) 임플란트 시술용 드릴
WO2011115339A1 (ko) 치조골용 버
CN211067102U (zh) 一种定深套筒及可配合定深套筒使用的根尖手术导板
WO2012134094A2 (ko) 상악동막을 직접 조절하여 상악동막을 원하는 방향으로 원하는 만큼 안전하게 거상할 수 있게 하는 안전 상악동막 거상기 및 그를 이용한 시술방법
WO2023229424A1 (ko) 임플란트용 밀링 버 및 이를 이용한 임플란트용 홀 형성방법
WO2023085641A1 (ko) 다중지지 구조를 가진 임플란트
KR20200105134A (ko) 상악동 거상술용 임플란트 세트 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860953

Country of ref document: EP

Kind code of ref document: A1