WO2024048579A1 - 酸性ガス吸着装置 - Google Patents

酸性ガス吸着装置 Download PDF

Info

Publication number
WO2024048579A1
WO2024048579A1 PCT/JP2023/031209 JP2023031209W WO2024048579A1 WO 2024048579 A1 WO2024048579 A1 WO 2024048579A1 JP 2023031209 W JP2023031209 W JP 2023031209W WO 2024048579 A1 WO2024048579 A1 WO 2024048579A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorption
flow path
opening
desorption
Prior art date
Application number
PCT/JP2023/031209
Other languages
English (en)
French (fr)
Inventor
淳一 安藤
道夫 高橋
裕介 大熊
和希 飯田
博史 菅
行成 柴垣
宗太 前原
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2024048579A1 publication Critical patent/WO2024048579A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an acid gas adsorption device.
  • Such acidic gases mainly include carbon dioxide (hereinafter sometimes referred to as CO 2 ), which causes global warming.
  • CO 2 carbon dioxide
  • a carbon dioxide capture, utilization, and storage (CCUS) cycle is known as a typical example of such an approach.
  • CCUS carbon dioxide capture, utilization, and storage
  • a gas separation unit including a carbon dioxide adsorption section having a pellet structure has been proposed (see, for example, Patent Document 1).
  • the carbon dioxide adsorbent adsorbs CO2 at a predetermined adsorption temperature, and when heated to a desorption temperature exceeding the adsorption temperature, the carbon dioxide adsorbent desorbs the adsorbed CO2 . do.
  • the desorbed CO 2 is recovered together with the desorbed gas by supplying the desorbed gas to the carbon dioxide adsorption section and allowing it to pass through.
  • the carbon dioxide adsorption part since the carbon dioxide adsorption part has a pellet structure, it is difficult to uniformly flow the desorption gas throughout the carbon dioxide adsorption part, and the desorption gas is not allowed to flow through the carbon dioxide adsorption part.
  • the temperature of the desorbed gas decreases as it goes to the later stages. Therefore, a temperature distribution may occur in the carbon dioxide adsorption part due to non-uniformity of the flow rate of the desorption gas in the carbon dioxide adsorption part and a decrease in the temperature of the desorption gas. As a result, there is a problem in that the carbon dioxide adsorption part partially becomes lower than the desorption temperature, and CO 2 cannot be sufficiently desorbed from the carbon dioxide adsorbent.
  • the main object of the present invention is to provide an acidic gas adsorption device that can stably desorb acidic gas from an acidic gas adsorbent.
  • the acidic gas adsorption device includes an acidic gas adsorption section through which a gas to be treated can pass in a predetermined direction.
  • the acidic gas adsorption section includes a first adsorption section and a second adsorption section.
  • the second adsorption section is spaced apart from the first adsorption section on the downstream side in the direction in which the gas to be treated passes.
  • the first adsorption section includes a first flow path.
  • the second adsorption section includes a second flow path.
  • a first desorption gas flow path communicating with the first flow path and the second flow path is formed between the first adsorption section and the second adsorption section in the direction in which the gas to be treated passes.
  • each of the first adsorption section and the second adsorption section includes a honeycomb-shaped base material having a plurality of cells extending from a first end surface to a second end surface. ; and an acidic gas adsorption layer located within the cell and containing an acidic gas adsorbent.
  • the cells of the first adsorption section include the first flow path, and the cells of the second adsorption section include the second flow path.
  • the acidic gas may be carbon dioxide.
  • the acidic gas adsorption device may further include a case and a first on-off valve.
  • the case houses the acidic gas adsorption section.
  • the first on-off valve is housed in the case and can open and close the internal space of the case.
  • the first on-off valve is arranged upstream of the first adsorption section in the direction of passage of the gas to be treated.
  • a second desorption gas flow path communicating with the first flow path is formed between the first on-off valve and the first adsorption section in the direction of passage of the gas to be treated. may have been done.
  • the case may have an inlet, an outlet, and a first opening.
  • the inlet is located at one end of the case in the direction in which the gas to be processed passes.
  • the outlet is located at the other end of the case in the direction of passage of the gas to be treated.
  • the first opening communicates with the first desorption gas flow path.
  • a portion of the internal space of the case where the first on-off valve is arranged may be configured as a first on-off opening that is opened and closed by the first on-off valve.
  • the opening area of the first opening/closing port may be larger than the opening area of the first opening.
  • the acidic gas adsorption device may further include a case and a second on-off valve.
  • the case houses the acidic gas adsorption section.
  • the second on-off valve is housed in the case and can open and close the internal space of the case.
  • the second on-off valve is arranged downstream of the second adsorption section in the direction of passage of the gas to be treated.
  • a third desorption gas flow path communicating with the second flow path is formed between the second adsorption part and the second on-off valve in the passing direction of the gas to be treated. may have been done.
  • the case may have an inlet, an outlet, and a first opening.
  • the inlet is located at one end of the case in the direction in which the gas to be processed passes.
  • the outlet is located at the other end of the case in the direction of passage of the gas to be treated.
  • the first opening communicates with the first desorption gas flow path.
  • a portion of the internal space of the case where the second on-off valve is arranged may be configured as a second on-off opening that is opened and closed by the second on-off valve.
  • the opening area of the second opening may be larger than the opening area of the first opening.
  • the first adsorption section may be divided into a plurality of parts in a direction perpendicular to the passage direction of the gas to be treated.
  • the second adsorption section may be divided into a plurality of parts in a direction perpendicular to the passage direction of the gas to be treated.
  • an acidic gas adsorption device that can stably desorb acidic gas from an acidic gas adsorbent.
  • FIG. 1 is a schematic diagram of an acid gas adsorption apparatus according to one embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of an acidic gas adsorption device according to another embodiment of the present invention.
  • 3 is a schematic perspective view of one embodiment of the block of FIG. 2;
  • FIG. FIG. 4 is a central cross-sectional view of the block of FIG. 2.
  • FIG. 5 is a schematic block diagram of another embodiment of the block of FIG.
  • FIG. 6 is a schematic configuration diagram of an acidic gas adsorption device according to yet another embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram of an acidic gas adsorption device according to yet another embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram of an acidic gas adsorption device according to yet another embodiment of the present invention.
  • FIG. 9 is a schematic configuration diagram of an acidic gas adsorption device according to yet another embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of an acid gas adsorption apparatus according to one embodiment of the present invention.
  • the illustrated acidic gas adsorption apparatus 100 includes an acidic gas adsorption section 10 through which a gas to be treated can pass in a predetermined direction.
  • the acidic gas adsorption section 10 includes a first adsorption section 1 and a second adsorption section 2.
  • the second adsorption section 2 is disposed at a distance from the first adsorption section 1 on the downstream side in the direction in which the gas to be processed passes.
  • the first adsorption section 1 includes a first flow path 94a.
  • the second adsorption section 2 includes a second flow path 94b.
  • a first desorption gas flow path 11 communicating with the first flow path 94a and the second flow path 94b is formed between the first adsorption unit 1 and the second adsorption unit 2 in the direction of passage of the gas to be treated.
  • the first adsorption section and the second adsorption section are arranged with a space between them in the direction of passage of the gas to be processed, and the first desorption gas flow path is formed between them.
  • the first desorption gas flow path communicates with the first flow path of the first adsorption section and the second flow path of the second adsorption section. Therefore, in the desorption process described later, the desorption gas is supplied to the first flow path and the second flow path via the first desorption gas flow path (see FIG.
  • the desorption gas is supplied to the first flow path and the second flow path.
  • the desorption gas that has passed through the second desorption gas flow path can be made to flow into the first desorption gas flow path (see FIG. 7).
  • the desorption gas can flow uniformly throughout the acidic gas adsorption section while reducing the distance through which the desorption gas flows. Thereby, the temperature distribution in the acidic gas adsorption part can be maintained uniformly, and the acidic gas can be stably desorbed from the acidic gas adsorbent.
  • each of the first adsorption section 1 and the second adsorption section 2 includes a honeycomb-shaped base material 9 and an acidic gas adsorption layer 5 (see FIGS. 3 and 4).
  • the honeycomb-shaped base material 9 has a plurality of cells 93 extending from the first end surface E1 to the second end surface E2 (see FIG. 4).
  • the acidic gas adsorption layer 5 is located within the cell 93 and contains an acidic gas adsorbent.
  • the cell 93 of the first adsorption section 1 includes a first flow path 94a.
  • the cell 93 of the second adsorption section 2 includes a second flow path 94b.
  • the desorption gas can flow more uniformly throughout the acidic gas adsorption unit, and the temperature distribution in the acidic gas adsorption unit can be improved. Can be maintained uniformly.
  • the plurality of cells 93 extend in the direction of passage of the gas to be treated, and are arranged in parallel in a direction perpendicular to the direction of passage of the gas to be treated. Therefore, in the first adsorption section 1, the plurality of first flow paths 94a are arranged in parallel in a direction perpendicular to the passage direction of the gas to be treated, and in the second adsorption section 2, the plurality of first flow paths 94a of the second adsorption section 2 are arranged in parallel.
  • the two flow paths 94b are arranged in parallel in a direction perpendicular to the passage direction of the gas to be treated.
  • the first desorption gas flow path 11 extends in a direction perpendicular to the passage direction of the gas to be processed, and communicates with all of the plurality of first flow paths 94a and the plurality of second flow paths 94b. .
  • the dimensions of the first adsorption section 1 are, for example, 0.5 or more, preferably 0.8 or more, relative to the dimensions of the second adsorption section 2, and are, for example, 1.5 or less, preferably It is 1.2 or less, more preferably 1.
  • the dimensions of each of the first adsorption section 1 and the second adsorption section 2 in the direction of passage of the gas to be treated are, for example, 0.25 m or more, preferably 0.30 m or more, and, for example, 1.0 m or less, preferably 0.5 m. It is as follows.
  • the length of the first flow path of the first adsorption section and the length of the second flow path of the second adsorption section 2 can be ensured in a well-balanced manner. Therefore, it is possible to suppress the temperature difference from occurring between the first adsorption part and the second adsorption part in the desorption step, and it is possible to more stably desorb the acidic gas from the acidic gas adsorbent.
  • the dimension of the first desorption gas flow path 11 in the direction of passage of the gas to be treated is the distance between the first adsorption section 1 and the second adsorption section 2, and the dimension in the direction perpendicular to the direction of passage of the gas to be treated ( This is the width of the first desorption gas flow path 11 when viewed from the depth direction of the paper surface of FIG.
  • the dimensions of the first desorption gas flow path 11 are, for example, 1/100 or more, preferably 1/20 or more, and for example 1/5 of the dimensions of the first adsorption section 1. It is preferably 1/10 or less.
  • the dimensions of the first desorption gas flow path 11 in the passing direction of the gas to be treated are, for example, 0.2 cm or more, preferably 0.5 cm or more, and are, for example, 5 cm or less, preferably 2 cm or less. With this design, the resistance to permeation through the adsorption portion becomes sufficiently greater than the permeation resistance of the desorption gas flow path, so that the desorption gas can be distributed uniformly.
  • the dimensions of the desorption gas flow path are determined based on the resistance of the adsorption part, but as long as the distribution of the desorption gas is uniform, the dimensions of the desorption gas flow path may be changed as appropriate depending on the purpose of the effect. be able to.
  • the dimensions of the first desorption gas flow path are within the above range, it is possible to suppress the target gas from remaining in the first desorption gas flow path in the adsorption step described later, and in the desorption step described later. Allows desorption gas to pass through smoothly.
  • the pressure loss in the first adsorption section 1 is greater than the pressure loss in the first desorption gas passage 11
  • the pressure loss in the second adsorption section 2 is greater than the pressure loss in the first desorption gas passage. This is larger than the pressure loss in the gas flow path 11.
  • the respective dimensions of the first adsorption section 1 and the second adsorption section 2 in the direction orthogonal to the passage direction of the gas to be treated are not particularly limited, and are, for example, 1.5 m or more, preferably 2.0 m or more, and are, for example, 4 m or more. .0m or less, preferably 3.0m or less.
  • the acid gas adsorption device 100 further includes a case 6.
  • the case 6 houses an acidic gas adsorption section 10 that includes a first adsorption section 1 , a second adsorption section 2 , and a first desorption gas flow path 11 .
  • the case 6 has a cylindrical shape extending in the direction in which the gas to be processed passes.
  • One end of the case 6 is configured as an inlet 64, and the other end of the case 6 is configured as an outlet 65.
  • the case 6 has an inlet 64 and an outlet 65.
  • the inlet 64 is located at one end of the case 6 in the direction of passage of the gas to be processed.
  • the gas to be treated passes through the inlet 64 and flows into the internal space of the case 6 .
  • the outlet 65 is located at the other end of the case 6 in the direction of passage of the gas to be processed.
  • the process gas whose acidic gas concentration has been reduced after passing through the acidic gas adsorption unit 10 passes through the outlet 65 and flows out from the case 6 .
  • the opening area of the inlet 64 and the opening area of the outlet 65 may be the same or different. In the illustrated example, the opening area of the inlet 64 and the opening area of the outlet 65 are the same.
  • a first opening 61 that communicates with the first desorption gas flow path 11 is typically formed in the side wall of the case 6 .
  • the case 6 further includes the first opening 61.
  • the direction in which the first opening 61 extends may be parallel to the direction in which the first desorption gas flow path 11 extends, or may be inclined so as to intersect with the direction in which the first desorption gas flow path 11 extends. .
  • the direction in which the first opening 61 extends is parallel to the direction in which the first desorption gas flow path 11 extends.
  • the first opening 61 is provided with a first valve 16, and the desorption gas supply unit is capable of supplying desorption gas to the first desorption gas channel 11 via the first valve 16. (not shown) is connected.
  • the acid gas adsorption device 100 further includes a first on-off valve 7.
  • the first on-off valve 7 is housed in the case 6 and can open and close the internal space of the case 6.
  • the first on-off valve 7 is arranged on the upstream side of the first adsorption section 1 in the passage direction of the gas to be treated.
  • Examples of the first on-off valve 7 include a ball valve, a gate valve, and a butterfly valve. In the illustrated example, the first on-off valve 7 is a butterfly valve.
  • a second desorption gas flow path that communicates with the first flow path 94a is located between the first on-off valve 7 and the first adsorption section 1 in the direction in which the gas to be treated passes through. 12 is formed.
  • the first desorption gas flow path and the second desorption gas flow path allow the desorption gas to flow smoothly and uniformly throughout the first adsorption section, and the first desorption gas flow path allows the desorption gas to flow smoothly and uniformly throughout the first adsorption section.
  • Acid gas can be stably desorbed from the acid gas adsorbent containing the acid gas.
  • a portion of the internal space of the case 6 where the first on-off valve 7 is arranged is configured as a first on-off opening 70 that is opened and closed by the first on-off valve 7 .
  • the opening area of the first opening/closing port 70 is typically larger than the opening area of the first opening 61.
  • the opening area of the first opening/closing port 70 is, for example, 8 to 12 times as large as the opening area of the first opening 61. If the opening areas of the first opening and closing port and the first opening have such a relationship, it is possible to maintain both the pressure loss in the adsorption process low and the uniform distribution of the desorbed gas in the desorption process.
  • the acidic gas can be sufficiently desorbed.
  • the opening area of the first opening/closing port 70 may be the same as the opening area of the inflow port 64, or may be different from the opening area of the inflow port 64. In the illustrated example, the opening area of the first opening/closing port 70 is larger than the opening area of the inlet 64. Thereby, it is possible to maintain both the pressure loss in the adsorption process low and the uniform distribution of the desorption gas in the desorption process, and it is possible to sufficiently desorb the acidic gas.
  • the opening area of the first opening/closing port 70 is defined as the opening area of the case 6 in a cross section of the case 6 where the first opening/closing valve 7 is located in a direction perpendicular to the axial direction of the case 6 (the direction in which the gas to be treated passes). is the area of the part surrounded by the side walls of
  • the second desorption gas flow path 12 is located on the opposite side of the first desorption gas flow path 11 with respect to the first adsorption section 1 .
  • the second desorption gas flow path 12 extends in a direction perpendicular to the passage direction of the gas to be treated, and communicates with all of the plurality of first flow paths 94a.
  • the dimension of the second desorption gas flow path 12 in the direction of passage of the gas to be treated is the distance between the first adsorption section 1 and the first on-off valve 7 in the closed state, and is perpendicular to the direction of passage of the gas to be treated. This is the width of the second desorption gas flow path 12 when viewed from the direction (the depth direction of the paper plane in FIG. 1).
  • the maximum dimension of the second desorption gas flow path 12 is, for example, 1/100 or more, preferably 1/20 or more, of the dimension of the first adsorption section 1, for example, 1/20 or more. 5 or less, preferably 1/10 or less.
  • the maximum dimension of the second desorption gas flow path 12 in the passing direction of the gas to be treated is, for example, 0.2 cm or more, preferably 0.5 cm or more, and is, for example, 5 cm or less, preferably 2 cm or less. If the maximum dimension of the second desorption gas flow path is within the above range, the desorption gas can be smoothly passed through in the desorption process described later. In one embodiment, the pressure loss in the first adsorption section 1 is greater than the pressure loss in the second desorption gas flow path 12 during passage of the desorption gas.
  • a second opening 62 communicating with the second desorption gas flow path 12 is formed in the side wall of the case 6 .
  • the case 6 further includes the second opening 62.
  • the extending direction of the second opening 62 may be parallel to the extending direction of the second desorption gas flow path 12 (see FIG. 1), or may be inclined so as to intersect with the extending direction of the second desorption gas flow path 12. (See Figure 8).
  • the second opening 62 is provided with a second valve 17, and a recovery unit collects the desorbed gas containing the acidic gas desorbed from the acidic gas adsorbent through the second valve 17. (not shown) is connected.
  • the opening area of the second opening 62 may be the same as the opening area of the first opening 61, or may be different from the opening area of the first opening 61. In the illustrated example, the opening area of the second opening 62 is the same as the opening area of the first opening 61. The opening area of the second opening 62 is typically smaller than the opening area of the first opening/closing opening 70.
  • the acidic gas adsorption device 100 may have a duct 68 instead of the second opening 62.
  • the duct 68 communicates with the second desorption gas flow path 12 .
  • the duct 68 integrally includes a first portion extending along the passage direction of the gas to be treated and a second portion extending in a direction intersecting (typically orthogonal to) the passing direction of the gas to be treated. has.
  • One end of the first portion communicates with the second desorption gas flow path 12 .
  • the second portion extends continuously from the other end of the first portion.
  • a second valve 17 is typically provided at the free end of the second portion.
  • the duct 68 may be provided integrally with the case 6 or may be attached to the case 6 as a separate body.
  • the acidic gas adsorption device 100 further includes a second on-off valve 8.
  • the second on-off valve 8 is housed in the case 6 and can open and close the internal space of the case 6.
  • the second on-off valve 8 is arranged on the downstream side of the second adsorption section 2 in the passage direction of the gas to be processed.
  • Examples of the second on-off valve 8 include a ball valve, a gate valve, and a butterfly valve. In the illustrated example, the second on-off valve 8 is a butterfly valve.
  • a third desorption gas flow path that communicates with the second flow path 94b is located between the second adsorption unit 2 and the second on-off valve 8 in the passing direction of the gas to be treated. 13 is formed.
  • the first desorption gas flow path and the third desorption gas flow path allow the desorption gas to flow smoothly and uniformly throughout the second adsorption section
  • the second desorption gas flow path allows the desorption gas to flow smoothly and uniformly throughout the second adsorption section.
  • Acid gas can be stably desorbed from the acid gas adsorbent containing the acid gas.
  • a portion of the internal space of the case 6 where the second on-off valve 8 is arranged is configured as a second on-off opening 80 that is opened and closed by the second on-off valve 8 .
  • the opening area of the second opening/closing port 80 is typically larger than the opening area of each of the first opening 61 and the second opening 62.
  • the opening area of the second opening/closing port 80 is, for example, 8 to 12 times as large as the opening area of the first opening 61. If the opening areas of the second opening and closing port and the first opening have such a relationship, it is possible to maintain both a low pressure loss in the adsorption process and a uniform distribution of the desorbed gas during the desorption process. be able to.
  • the opening area of the second opening/closing opening 80 may be the same as the opening area of the first opening/closing opening 70, or may be different from the opening area of the first opening/closing opening 70.
  • the opening area of the second opening/closing port 80 is the same as the opening area of the first opening/closing port 70.
  • the opening area of the second opening/closing port 80 may be the same as the opening area of the outflow port 65, or may be different from the opening area of the outflow port 65. In the illustrated example, the opening area of the second opening/closing port 80 is larger than the opening area of the outflow port 65.
  • the opening area of the second opening/closing port 80 is defined as the opening area of the case 6 in a cross section of the case 6 where the second opening/closing valve 8 is located in a direction perpendicular to the axial direction of the case 6 (the direction in which the gas to be processed passes). is the area of the part surrounded by the side walls of
  • the third desorption gas flow path 13 is located on the opposite side of the first desorption gas flow path 11 with respect to the second adsorption section 2.
  • the third desorption gas flow path 13 extends in a direction perpendicular to the passage direction of the gas to be processed, and communicates with all of the plurality of second flow paths 94b.
  • the dimension of the third desorption gas flow path 13 in the direction of passage of the gas to be treated is the distance between the second adsorption section 2 and the second on-off valve 8 in the closed state, and is perpendicular to the direction of passage of the gas to be treated. This is the width of the third desorption gas flow path 13 when viewed from the direction (the depth direction of the paper plane in FIG. 1).
  • the range of the maximum dimension of the third desorption gas flow path 13 in the passing direction of the gas to be processed is the same as the range of the maximum dimension of the second desorption gas flow path 12 described above. If the maximum dimension of the third desorption gas flow path 13 is within the above range, the desorption gas can be smoothly passed through in the desorption process described later.
  • the pressure loss in the second adsorption section 2 is greater than the pressure loss in the third desorption gas passage 13 during passage of the desorption gas.
  • a third opening 63 communicating with the third desorption gas flow path 13 is formed in the side wall of the case 6 .
  • the case 6 further includes the third opening 63.
  • the direction in which the third opening 63 extends may be parallel to the direction in which the third desorption gas flow path 13 extends, or may be inclined so as to intersect with the direction in which the third desorption gas flow path 13 extends.
  • the third opening 63 is provided with a third valve 18, and a recovery unit recovers the desorbed gas containing the acidic gas desorbed from the acidic gas adsorbent through the third valve 18. (not shown) is connected.
  • the opening area of the third opening 63 may be the same as the opening area of the second opening 62, or may be different from the opening area of the second opening 62. In the illustrated example, the opening area of the first opening 61, the opening area of the second opening 62, and the opening area of the third opening 63 are the same. The opening area of the third opening 63 is typically smaller than the opening area of the second opening/closing opening 80. Further, the acid gas adsorption device 100 may have a duct communicating with the third desorption gas flow path 13 instead of the third opening 63.
  • the first adsorption section 1 is divided into a plurality of first blocks 1a in a direction perpendicular to the passage direction of the gas to be treated.
  • the first adsorption section 1 is constituted by a plurality of first blocks 1a arranged in a direction perpendicular to the passage direction of the gas to be processed.
  • the first suction section can be configured by manufacturing a relatively small first block. Therefore, the first suction section can be manufactured more easily than when the first suction section is manufactured all at once.
  • the first blocks 1a that are adjacent to each other among the plurality of first blocks 1a may have a gap formed therebetween, or may be in contact with each other in a direction perpendicular to the direction in which the gas to be processed passes. Further, although not shown, a plate-like member may be provided between the first blocks 1a adjacent to each other.
  • the first adsorption section 1 is divided into four parts in the vertical direction of the paper (the direction perpendicular to the direction in which the gas to be treated passes).
  • the first suction unit 1 may be divided into a plurality of parts in the depth direction of the drawing (a direction perpendicular to the direction in which the gas to be processed passes).
  • the number of first blocks 1a is, for example, 2 or more, preferably 3 or more, more preferably 5 or more, and, for example, 300 or less.
  • the second adsorption section 2 is divided into a plurality of second blocks 2a in a direction perpendicular to the passing direction of the gas to be treated.
  • the second adsorption section 2 is constituted by a plurality of second blocks 2a arranged in a direction perpendicular to the passage direction of the gas to be processed.
  • the second suction section can be configured by manufacturing a relatively small second block. Therefore, the second suction section can be manufactured more easily than when the second suction section is manufactured all at once.
  • the second blocks 2a that are adjacent to each other among the plurality of second blocks 2a may have a gap formed therebetween, or may be in contact with each other in a direction perpendicular to the passage direction of the gas to be processed. Further, although not shown, a plate member may be provided between the second blocks 2a adjacent to each other.
  • the second adsorption section 2 is divided into four parts in the vertical direction of the paper (the direction perpendicular to the direction in which the gas to be processed passes).
  • the second suction unit 2 may be divided into a plurality of parts in the depth direction of the drawing (a direction perpendicular to the direction in which the gas to be processed passes).
  • the number of second blocks 2a is, for example, 2 or more, preferably 3 or more, more preferably 5 or more, and, for example, 300 or less.
  • acid gases adsorbed by the acid gas adsorption unit 10 include carbon dioxide (CO 2 ), hydrogen sulfide, sulfur dioxide, nitrogen dioxide, dimethyl sulfide (DMS), and hydrogen chloride.
  • the acid gas is carbon dioxide ( CO2 ) and the fluid is a CO2 - containing gas.
  • the CO 2 -containing gas may contain nitrogen in addition to CO 2 .
  • the CO2 - containing gas is typically air (atmosphere).
  • the CO 2 concentration in the CO 2 -containing gas before being supplied to the acidic gas adsorption device is, for example, 100 ppm (volume basis) or more and 2 volume % or less. Below, the case where the acidic gas is carbon dioxide (CO 2 ) will be explained in detail.
  • the acidic gas adsorption unit 10 includes the first adsorption unit 1 and the second adsorption unit 2.
  • the first suction section 1 and the second suction section 2 have similar configurations.
  • the first adsorption section 1 (integrally formed) shown in FIG. 1 and the first block 1a shown in FIG. 2 have the same configuration except that they are different in size. Therefore, below, the first block 1a shown in FIG. 2 will be cited and its configuration will be explained in detail.
  • the first block 1a includes the honeycomb-shaped base material 9 and the acidic gas adsorption layer 5, as described above.
  • honeycomb-shaped base material The honeycomb-shaped base material 9 typically includes partition walls 92 that define a plurality of cells 93.
  • the cells 93 extend from the first end face E1 (inflow end face) to the second end face E2 (outflow end face) of the honeycomb base material 9 in the length direction (axial direction) of the honeycomb base material 9 (see FIG. 4). ).
  • the cells 93 have any suitable shape in a cross section taken in a direction perpendicular to the length direction of the honeycomb-like base material 9. Examples of the cross-sectional shape of the cell include a triangle, a quadrangle, a pentagon, a hexagon or more polygon, a circle, and an ellipse. All of the cross-sectional shapes and sizes of the cells may be the same, or at least some of them may be different. Among the cross-sectional shapes of such cells, preferred are hexagons and quadrangles, and more preferred are squares, rectangles, and hexagons.
  • the cell density (that is, the number of cells 93 per unit area) in the cross section of the honeycomb-like base material in the direction perpendicular to the length direction can be appropriately set depending on the purpose.
  • the cell density can be, for example, from 4 cells/cm 2 to 320 cells/cm 2 . If the cell density is within this range, sufficient strength and effective GSA (geometric surface area) of the honeycomb-like base material can be ensured.
  • the honeycomb-shaped base material 9 has any suitable shape (overall shape). Examples of the shape of the honeycomb-like base material include a columnar shape with a circular bottom surface, an elliptic columnar shape with an elliptical bottom surface, a prismatic shape with a polygonal bottom surface, and a columnar shape with an irregular bottom surface.
  • the illustrated honeycomb base material 9 has a prismatic shape.
  • the outer diameter and length of the honeycomb-shaped base material can be appropriately set depending on the purpose.
  • the honeycomb-shaped base material may have a hollow region at its center in a cross section taken in a direction perpendicular to the length direction.
  • the honeycomb-shaped base material 9 typically includes an outer wall 91 and partition walls 92 located inside the outer wall 91.
  • the outer wall 91 and the partition wall 92 are integrally formed.
  • the outer wall 91 and the partition wall 92 may be separate bodies.
  • the outer wall 91 has a rectangular tube shape.
  • the thickness of the outer wall 91 can be arbitrarily and appropriately set.
  • the thickness of the outer wall 91 is, for example, 0.1 mm to 10 mm.
  • the partition wall 92 defines a plurality of cells 93. More specifically, the partition 92 has a first partition 92 a and a second partition 92 b that are orthogonal to each other, and the first partition 92 a and the second partition 92 b define a plurality of cells 93 .
  • the cross-sectional shape of the cell 93 is approximately rectangular. Note that the configuration of the partition wall is not limited to the partition wall 92 described above.
  • the partition wall may include a first partition wall extending in the radial direction and a second partition wall extending in the circumferential direction, which may define a plurality of cells.
  • the thickness of the partition wall 92 can be appropriately set depending on the use of the acid gas adsorption device.
  • the thickness of the partition wall 92 is typically thinner than the thickness of the outer wall 91.
  • the thickness of the partition wall 92 is, for example, 0.03 mm to 0.6 mm.
  • the thickness of the partition wall is measured by, for example, cross-sectional observation using a SEM (scanning electron microscope). If the thickness of the partition walls is within this range, the mechanical strength of the honeycomb-like base material can be made sufficient, and the opening area (the total area of cells in the cross section) can be made sufficient. can.
  • the porosity of the partition wall 92 can be appropriately set depending on the purpose.
  • the porosity of the partition wall 92 is, for example, 15% or more, preferably 20% or more, and is, for example, 70% or less, preferably 45% or less. Note that the porosity can be measured, for example, by mercury porosimetry.
  • the bulk density of the partition wall 92 can be appropriately set depending on the purpose. Their bulk density is, for example, 0.10 g/cm 3 or more, preferably 0.20 g/cm 3 or more, and, for example, 0.60 g/cm 3 or less, preferably 0.50 g/cm 3 or less. Note that the bulk density can be measured, for example, by mercury porosimetry.
  • a typical material for forming the partition wall 92 is ceramics.
  • ceramics include silicon carbide, silicon-silicon carbide composite materials, cordierite, mullite, alumina, silicon nitride, spinel, silicon carbide-cordierite composite materials, lithium aluminum silicate, and aluminum titanate.
  • the materials constituting the partition wall can be used alone or in combination.
  • preferred are cordierite, alumina, mullite, silicon carbide, silicon-silicon carbide composite materials, and silicon nitride, and more preferred are silicon carbide and silicon-carbide. Examples include silicon-based composite materials.
  • Such a honeycomb-shaped base material 9 is typically produced by the following method. First, a binder and water or an organic solvent are added as necessary to the material powder containing the ceramic powder described above, the resulting mixture is kneaded to form a clay, and the clay is molded into a desired shape (typically (extrusion molding), followed by drying and, if necessary, firing, to produce the honeycomb-shaped base material 9. When firing, it is fired at, for example, 1200°C to 1500°C. The firing time is, for example, 1 hour or more and 20 hours or less.
  • the acidic gas adsorption layer 5 is formed on the surface of the partition wall 92 within the cell 93 .
  • a flow path 94 (first flow path 94a or second flow path 94b) is formed in a section of the cell 93 where the acid gas adsorption layer 5 is not formed (typically in the center). It is formed.
  • the acidic gas adsorption layer 5 may be formed on the entire inner surface of the partition wall 92 (that is, so as to surround the flow path 94) as shown in the illustrated example, or may be formed on a part of the surface of the partition wall. When the acidic gas adsorption layer 5 is formed on the entire inner surface of the partition wall 92, the adsorption efficiency of acidic gas (typically CO 2 ) can be improved.
  • the flow path 94 extends from the first end surface E1 (inflow end surface) to the second end surface E2 (outflow end surface).
  • the cross-sectional shape of the flow path 94 includes the same cross-sectional shape as the cell 93 described above, preferably a hexagon or a quadrilateral, and more preferably a square, a rectangle, or a hexagon. All of the cross-sectional shapes and sizes of the channels 94 may be the same, or at least some of them may be different.
  • a gas to be treated containing an acidic gas is supplied to the cell 93 (more specifically, a flow path 94) in an adsorption process described later, and a desorption gas flows in a desorption process described later.
  • the acidic gas adsorption layer 5 contains an acidic gas adsorbent depending on the acidic gas to be adsorbed.
  • the acid gas adsorbent is a carbon dioxide adsorbent. Any suitable compound capable of adsorbing and desorbing CO 2 may be employed as the carbon dioxide adsorbent.
  • carbon dioxide adsorbents include nitrogen-containing compounds described below; alkaline compounds such as sodium hydroxide and potassium hydroxide; carbonates such as calcium carbonate and potassium carbonate; hydrogen carbonates such as calcium hydrogen carbonate and potassium hydrogen carbonate; MOF.
  • organometallic frameworks such as MOF-74, MOF-200, and MOF-210
  • zeolites activated carbon
  • nitrogen-doped carbon and ionic liquids.
  • Carbon dioxide adsorbents can be used alone or in combination.
  • nitrogen-containing compounds include primary amines such as monoethanolamine and polyvinylamine; secondary amines such as diethanolamine, cyclic amines, and N-(3-aminopropyl)diethanolamine; methyldiethylamine and triethanol.
  • Tertiary amines such as amines; ethylene amine compounds such as tetraethylenepentamine; aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, Aminosilane coupling agents such as polyethyleneimine-trimethoxysilane; imine compounds such as ethyleneimine, linear polyethyleneimine, and branched polyethyleneimine having primary to tertiary amino groups; 1-(2-hydroxy Examples include piperazine compounds such as ethyl)piperazine; amide compounds such as polyamide amine; polyvinylamine; and organic/inorganic compounds to which an amino group is added as a substituent.
  • methyldiethylamine monoethanolamine, cyclic amine, diethanolamine, tetraethylenepentamine, ethyleneimine, linear polyethyleneimine, branched polyethyleneimine, and organic compounds with amino added as a substituent are preferred.
  • /Inorganic compounds methyldiethylamine, monoethanolamine, cyclic amine, diethanolamine, tetraethylenepentamine, ethyleneimine, linear polyethyleneimine, branched polyethyleneimine, and organic compounds with amino added as a substituent are preferred. /Inorganic compounds.
  • An ionic liquid is a liquid "salt" composed only of ions (anions and cations), and is in a liquid state at normal temperature and pressure (23° C., 0.1 MPa).
  • Examples of the cation of the ionic liquid include ammonium ions such as imidazolium salts and pyridinium salts, phosphonium ions, sulfonium salts, and inorganic ions.
  • Examples of the anion of the ionic liquid include halogen-based anions such as bromide ion and triflate; boron-based such as tetraphenylborate; phosphorus-based such as hexafluorophosphate; and sulfur-based such as alkyl sulfonate.
  • a combination of imidazolium salts as a cation and triflate as an anion is preferably used.
  • the ionic liquid is more preferably used in combination with a carbon dioxide adsorbent other than the ionic liquid (hereinafter referred to as "other carbon dioxide adsorbent").
  • the ionic liquid coats other carbon dioxide adsorbents (eg, nitrogen-containing compounds). Therefore, it is possible to improve the performance and extend the life of the carbon dioxide adsorbent.
  • the content ratio of the ionic liquid is, for example, 0.000001 parts by mass or more, preferably 0.00001 parts by mass or more, and, for example, 0.1 parts by mass or less, preferably 0. It is .05 parts by mass or less. When the content ratio of the ionic liquid is within the above range, it is possible to stably improve the performance and extend the life of the carbon dioxide adsorbent.
  • the acidic gas adsorbent layer 5 further includes a porous carrier in addition to the above-described acidic gas adsorbent.
  • the acidic gas adsorbent is typically supported on a porous carrier and faces the flow path.
  • the acidic gas adsorbent layer contains a porous carrier, it is possible to suppress the acidic gas adsorbent from falling off from the acidic gas adsorbent layer during the adsorption step and/or the desorption step.
  • the porous carrier can form mesopores in the acidic gas adsorbent layer.
  • porous carriers include organometallic frameworks (MOF) such as MOF-74, MOF-200, MOF-210; activated carbon; nitrogen-doped carbon; mesoporous silica; mesoporous alumina; zeolite; carbon nanotubes; polyvinylidene fluoride (PVDF); ), and preferred examples include metal organic frameworks (MOF), activated carbon, PVDF, zeolite, mesoporous silica, and mesoporous alumina.
  • Porous carriers can be used alone or in combination.
  • the porous carrier is preferably made of a material different from that of the acidic gas adsorbent.
  • the BET specific surface area of the porous carrier is, for example, 50 m 2 /g or more, preferably 500 m 2 /g or more. If the surface area of the porous carrier is equal to or greater than the above lower limit, the acidic gas adsorbent can be supported stably, and the acidic gas adsorption efficiency can be improved.
  • the upper limit of the BET specific surface area of the porous carrier is typically 2000 m 2 /g or less.
  • the total content of the acidic gas adsorbent and the porous carrier in the acidic gas adsorbent layer is, for example, 30% by mass or more, preferably 50% by mass. % or more, for example, 100% by mass or less, preferably 99% by mass or less.
  • the content of the acidic gas adsorbent in the acidic gas adsorbent layer is, for example, 30% by mass or more, preferably 50% by mass or more, and, for example, 99% by mass or less.
  • the content ratio of the porous carrier is, for example, 0.01 part by mass or more, preferably 0.3 part by mass or more, and, for example, 0.7 part by mass or less, preferably 0.01 part by mass or more, per 1 part by mass of the acidic gas adsorbent. It is 5 parts by mass or less.
  • the content of the porous carrier is within the above range, the acidic gas adsorbent can be supported even more stably.
  • the acidic gas adsorbent layer may be composed only of acidic gas adsorbent.
  • the acidic gas adsorbent is directly supported on the partition wall 92 and faces the flow path.
  • the content of the acidic gas adsorbent in the acidic gas adsorbent layer is typically 95.0% by mass or more and 100% by mass or less.
  • excellent acidic gas adsorption efficiency can be stably ensured.
  • Such an acidic gas adsorbent layer is typically produced by the following method.
  • a solution of the acidic gas adsorbent is prepared by dissolving the acidic gas adsorbent described above in a solvent.
  • the above-mentioned porous carrier is added to the solvent as necessary.
  • the order of addition of the acidic gas adsorbent and the porous carrier is not particularly limited.
  • a solution of the acidic gas adsorbent is applied onto the base material (specifically, the partition wall), and then the coating film is dried and optionally sintered to form an acidic gas adsorbent layer.
  • the configuration of the acidic gas adsorption section (the first adsorption section and the second adsorption section) is not limited to the above.
  • the first block 1a includes a plurality of adsorbent layers 71.
  • the plurality of adsorbent layers 71 are stacked at intervals in their thickness direction.
  • a flow path 94 (first flow path 94a or second flow path 94b) is formed at intervals between adjacent adsorbent layers 71 among the plurality of adsorbent layers 71.
  • five adsorbent layers 71 are arranged in parallel, but the number of adsorbent layers 71 is not limited to this.
  • the number of adsorbent layers 71 is, for example, 5 or more, preferably 10 or more, and more preferably 20 or more.
  • the interval between adjacent adsorbent layers 71 among the plurality of adsorbent layers 71 is, for example, 0.5 cm or more and 1.5 cm or less.
  • Each of the plurality of adsorbent layers 71 includes a flexible fiber member 73 and a plurality of pellet-like adsorbents 72.
  • the flexible fiber member 73 allows the passage of gas and restricts the passage of the pellet-like adsorbent.
  • the flexible fiber member 73 is typically formed into a hollow shape (bag shape) capable of accommodating a plurality of pellet-like adsorbents 72.
  • the flexible fiber member 73 may be a woven fabric or a nonwoven fabric.
  • Examples of the material for the flexible fiber member 73 include organic fibers and natural fibers, preferably polyethylene terephthalate fibers, polyethylene fibers, and cellulose fibers.
  • the thickness of the flexible fiber member 73 is, for example, 25 ⁇ m or more and 500 ⁇ m or less.
  • a plurality of pellet-like adsorbents 72 are filled inside a flexible fiber member 73 having a hollow shape (bag shape).
  • the pellet-like adsorbent 72 functions as an acidic gas adsorbent, and typically functions as a carbon dioxide adsorbent.
  • Examples of the material for the pellet adsorbent 72 include materials modified with the above acidic gas adsorbent, preferably cellulose modified with the above acidic gas adsorbent, and more preferably cellulose modified with the above acidic gas adsorbent. Examples include nanofibrous cellulose modified with acidic gas adsorbents.
  • the average primary particle diameter of the pellet-like adsorbent 72 is, for example, 60 ⁇ m or more and 1200 ⁇ m or less.
  • the filling ratio of the pellet-like adsorbent 72 in the adsorbent layer 71 may be any appropriate value.
  • the illustrated acidic gas adsorption section further includes a plurality of spacers 74.
  • the spacer 74 is sandwiched between adjacent adsorbent layers 71 among the plurality of adsorbent layers 71 . This makes it possible to stably ensure the spacing between adjacent adsorbent layers.
  • the plurality of adsorbent layers 71 and the plurality of spacers 74 have an approximately 99-fold shape when viewed from a direction perpendicular to the thickness direction of the adsorbent layer 71 (the depth direction of the paper plane in FIG. 1). It is arranged so that
  • first suction part (first block 1a) and/or the second suction part (second block 2a) have the configuration shown in FIG. If the first desorption gas flow path is formed between them, the distribution distance of the desorption gas can be reduced, so that the desorption gas can flow uniformly throughout the acidic gas adsorption section, and the desorption gas can flow uniformly throughout the acidic gas adsorption section. Can maintain uniform temperature distribution. In other words, the same effects as described above can be achieved.
  • the acid gas recovery method typically includes an adsorption step and a desorption step in this order.
  • the first on-off valve 7 and the second on-off valve 8 are opened, and the acid gas adsorption unit 1, which has been adjusted to a predetermined adsorption temperature, is supplied through the inlet 64 of the case 6. , supplies a gas to be processed containing an acidic gas.
  • the target gas containing acidic gas passes through the first flow path 94a of the first adsorption section 1 and the second flow path 94b of the second adsorption section 2 in order.
  • the acidic gas adsorbent adsorbs acidic gas from a fluid containing acidic gas (typically CO 2 ).
  • the temperature (adsorption temperature) of the acidic gas adsorption part in the adsorption step is, for example, 0°C or higher, preferably 10°C or higher, and, for example, 50°C or lower, preferably 40°C or lower. In one embodiment, the adsorption temperature is the same as the ambient temperature.
  • the implementation time (adsorption time) of the adsorption step is, for example, 15 minutes or more, preferably 30 minutes or more, and is, for example, 3 hours or less, preferably 2 hours or less. When the adsorption temperature and/or adsorption time is within the above range, the acidic gas adsorbent can efficiently adsorb acidic gas.
  • the acid gas adsorption section 10 (the first adsorption section 1 and the second adsorption section 2) is heated to the adsorption temperature. heating to a higher desorption temperature. More specifically, after the first adsorption section 1 and the second adsorption section 2 are heated to the desorption temperature, they are maintained at the desorption temperature for a predetermined desorption time. As a result, the acidic gas adsorbed by the acidic gas adsorbent in the adsorption step is desorbed from the acidic gas adsorbent.
  • the desorption gas is supplied to the first desorption gas flow path 11 through the first opening 61 of the case 6 .
  • the desorption gas supplied to the first desorption gas flow path 11 flows into the first flow path 94a of the first adsorption section 1 or the second flow path 94b of the second adsorption section 2.
  • the acidic gas desorbed from the acidic gas adsorbent in the first adsorption unit 1 flows out into the second desorption gas flow path 12 together with the desorption gas passing through the first flow path 94a, and flows through the second opening 62 of the case 6. be collected through.
  • the acidic gas desorbed from the acidic gas adsorbent of the second adsorption unit 2 flows out into the third desorption gas flow path 13 together with the desorption gas passing through the second flow path 94b, and flows into the third opening 63 of the case 6. be collected through.
  • the gas recovered in the desorption step may be referred to as recovered gas.
  • the desorption gas is a recovered gas previously recovered by an acidic gas adsorption device.
  • the recovered gas By using the recovered gas as the desorption gas, it is possible to improve the acid gas concentration in the recovered gas.
  • the temperature (desorption temperature) of the acidic gas adsorption part in the desorption step is, for example, 70°C or higher, preferably 80°C or higher, and, for example, 200°C or lower, preferably 110°C or lower.
  • the implementation time of the desorption step (the desorption time during which the acidic gas adsorption part is maintained at the desorption temperature) is, for example, 1 minute or more, preferably 5 minutes or more, and for example, 1 hour or less, preferably 30 minutes or less. .
  • acidic gas can be sufficiently desorbed from the acidic gas adsorbent.
  • the desorption gas and a pressure reduction pump can be used together to suck the recovered gas.
  • the desorption gas in the desorption step, can be uniformly flowed throughout the first adsorption section and the second adsorption section, and the acidic gas can be efficiently recovered.
  • the adsorption step and the desorption step are preferably performed repeatedly in order.
  • the acid gas adsorption apparatus 100 may further include an n-th adsorption part 3 in addition to the first adsorption part 1 and the second adsorption part 2.
  • n is, for example, 3 or more and 20 or less.
  • the n-th suction section 3 is provided between the second suction section 2 and the second on-off valve 8 .
  • n-th adsorption units 3 When there is a plurality of n-th adsorption units 3, they are arranged in order on the downstream side of the second adsorption unit 2 in the passage direction of the gas to be processed.
  • the desorption gas is present between adjacent n-th adsorption units 3 among the plurality of n-th adsorption units 3, and between the n-th adsorption unit 3 located at the most downstream position and the second on-off valve 8 in the closed state.
  • a channel may be formed. Since the n-th suction section 3 has the same configuration as the first suction section, detailed explanation will be omitted.
  • the acid gas adsorption device 100 includes a third adsorption section 31 and a fourth adsorption section 32 in addition to the first adsorption section 1 and the second adsorption section 2.
  • the third adsorption section 31 is disposed at a distance from the second adsorption section 2 on the downstream side in the direction in which the gas to be processed passes.
  • the third desorption gas flow path 13 is formed between the second adsorption section 2 and the third adsorption section 31 in the direction in which the gas to be processed passes.
  • the fourth adsorption section 32 is arranged at a distance from the third adsorption section 31 on the downstream side in the passage direction of the gas to be processed.
  • the fourth desorption gas flow path 14 is formed between the third adsorption section 31 and the fourth adsorption section 32 in the direction in which the gas to be processed passes.
  • a fourth opening 66 communicating with the fourth desorption gas flow path 14 is formed in the side wall of the case 6 .
  • the case 6 further includes the fourth opening 66.
  • the fourth opening 66 will be explained in the same manner as the first opening 61 described above.
  • the fourth opening 66 is provided with a fourth valve 19, and is connected to a desorption gas supply unit (not shown) capable of supplying desorption gas via the fourth valve 19. .
  • the fourth desorption gas flow path 14 is supplied with desorption gas similarly to the first desorption gas flow path 11.
  • the fifth desorption gas flow path 15 is formed between the fourth adsorption section 32 and the second on-off valve 8 in the closed state. Furthermore, a fifth opening 67 communicating with the fifth desorption gas flow path 15 is formed in the side wall of the case 6 . In other words, the case 6 further includes the fifth opening 67. The fifth opening 67 will be explained in the same manner as the third opening 63 described above. Note that the acid gas adsorption device 100 may have a duct communicating with the fifth desorption gas flow path 15 instead of the fifth opening 67.
  • a recovery unit (not shown) is connected to the fifth opening 67 via the fifth valve 20 to recover the desorbed gas containing the acidic gas desorbed from the acidic gas adsorbent. . In the above desorption step, the recovered gas passes through the fifth desorption gas flow path 15 similarly to the second desorption gas flow path 12 . Also with such a configuration, acidic gas can be stably desorbed from the acidic gas adsorbent.
  • the desorption gas is supplied to the first desorption gas flow path 11, the second desorption gas flow path 12, and the third desorption gas flow path 11.
  • the recovered gas passes through the gas flow path 13 .
  • the desorption gas may be supplied to the second desorption gas flow path 12 and the third desorption gas flow path 13, and the recovery gas may pass through the first desorption gas flow path 11.
  • a desorption gas supply unit (not shown) is connected to the second opening 62 and the third opening 63, and a recovery unit (not shown) is connected to the first opening 61. Also with such a configuration, acidic gas can be stably desorbed from the acidic gas adsorbent.
  • the acid gas adsorption device is used to separate and recover acid gas, and can be particularly suitably used in a carbon dioxide capture, utilization, and storage (CCUS) cycle.
  • CCUS carbon dioxide capture, utilization, and storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

酸性ガスを酸性ガス吸着材から安定して脱離できる酸性ガス吸着装置が提供される。本発明の実施形態による酸性ガス吸着装置は、第1吸着部および第2吸着部を備えている。該第2吸着部は、該第1吸着部に対して該処理対象ガスの通過方向の下流側に間隔を空けて配置されている。該第1吸着部が第1流路を含み、該第2吸着部が第2流路を含んでいる。該処理対象ガスの通過方向における該第1吸着部と該第2吸着部との間に、該第1流路および該第2流路と通じる第1脱離ガス流路が形成されている。

Description

酸性ガス吸着装置
 本発明は、酸性ガス吸着装置に関する。
 近年、環境負荷を低減するために、大気に含まれる酸性ガスを分離・回収する取り組みがなされている。このような酸性ガスとして、主に、地球温暖化の原因となる二酸化炭素(以下COと称する場合がある)が挙げられる。そのような取り組みの代表例として、二酸化炭素回収・利用・貯留(Carbon dioxide Capture, Utilization and Storage:CCUS)サイクルが知られている。このような二酸化炭素の分離・回収に用いられる二酸化炭素吸着装置として、ペレット構造の二酸化炭素吸着部を備えるガス分離ユニットが提案されている(例えば、特許文献1参照)。このようなガス分離ユニットでは、二酸化炭素吸着材が所定の吸着温度においてCOを吸着し、吸着温度を超過する脱離温度に加熱されると、二酸化炭素吸着材が吸着したCOを脱離する。脱離したCOは、脱離ガスを二酸化炭素吸着部に供給して通過させることにより、脱離ガスとともに回収される。しかし、特許文献1に記載のガス分離ユニットでは、二酸化炭素吸着部がペレット構造を有するので、二酸化炭素吸着部の全体に脱離ガスを均一に流すことが困難であるとともに、脱離ガスの流通距離が長いため後段に行くほど脱離ガスの温度低下が起こる。そのため、二酸化炭素吸着部における脱離ガスの流量の不均一さ、脱離ガスの温度低下に起因して、二酸化炭素吸着部に温度分布が生じる場合がある。その結果、二酸化炭素吸着部が部分的に脱離温度未満となり、二酸化炭素吸着材からCOを十分に脱離できないという問題がある。
国際公開第2014/170184号
 本発明の主たる目的は、酸性ガスを酸性ガス吸着材から安定して脱離できる酸性ガス吸着装置を提供することにある。
[1]本発明の実施形態による酸性ガス吸着装置は、処理対象ガスが所定方向に通過可能な酸性ガス吸着部を備えている。該酸性ガス吸着部は、第1吸着部と、第2吸着部と、を備えている。該第2吸着部は、該第1吸着部に対して、処理対象ガスの通過方向の下流側に間隔を空けて配置されている。該第1吸着部は第1流路を含んでいる。該第2吸着部は第2流路を含んでいる。該処理対象ガスの通過方向における該第1吸着部と該第2吸着部との間に、該第1流路および該第2流路と通じる第1脱離ガス流路が形成されている。
[2]上記[1]に記載の酸性ガス吸着装置において、上記第1吸着部および上記第2吸着部のそれぞれは、第1端面から第2端面まで延びる複数のセルを有するハニカム状基材と;該セル内に位置する酸性ガス吸着層であって酸性ガス吸着材を含む酸性ガス吸着層と;を備えていてもよい。上記第1吸着部のセルは、上記第1流路を含み、上記第2吸着部のセルは、上記第2流路を含んでいる。
[3]上記[1]または[2]に記載の酸性ガス吸着装置において、上記酸性ガスは、二酸化炭素であってもよい。
[4]上記[1]から[3]のいずれかに記載の酸性ガス吸着装置は、ケースと、第1開閉弁と、をさらに備えていてもよい。該ケースは、上記酸性ガス吸着部を収容している。該第1開閉弁は、該ケースに収容されており、該ケースの内部空間を開閉可能である。該第1開閉弁は、処理対象ガスの通過方向において上記第1吸着部の上流側に配置されている。該第1開閉弁が閉状態であるときに、処理対象ガスの通過方向における第1開閉弁と第1吸着部との間に、上記第1流路と通じる第2脱離ガス流路が形成されていてもよい。
[5]上記[4]に記載の酸性ガス吸着装置において、上記ケースは、流入口と、流出口と、第1開口と、を有していてもよい。該流入口は、上記処理対象ガスの通過方向における上記ケースの一端部に位置している。該流出口は、上記処理対象ガスの通過方向における上記ケースの他端部に位置している。該第1開口は、上記第1脱離ガス流路と通じている。上記ケースの内部空間における上記第1開閉弁が配置される部分は、上記第1開閉弁によって開閉される第1開閉口として構成されていてもよい。該第1開閉口の開口面積は、上記第1開口の開口面積よりも大きくてもよい。
[6]上記[1]から[5]のいずれかに記載の酸性ガス吸着装置は、ケースと、第2開閉弁と、をさらに備えていてもよい。該ケースは、上記酸性ガス吸着部を収容している。該第2開閉弁は、該ケースに収容されており、該ケースの内部空間を開閉可能である。該第2開閉弁は、処理対象ガスの通過方向において上記第2吸着部の下流側に配置されている。該第2開閉弁が閉状態であるときに、処理対象ガスの通過方向における第2吸着部と第2開閉弁との間に、上記第2流路と通じる第3脱離ガス流路が形成されていてもよい。
[7]上記[6]に記載の酸性ガス吸着装置において、上記ケースは、流入口と、流出口と、第1開口と、を有していてもよい。該流入口は、上記処理対象ガスの通過方向における上記ケースの一端部に位置している。該流出口は、上記処理対象ガスの通過方向における上記ケースの他端部に位置している。該第1開口は、上記第1脱離ガス流路と通じている。上記ケースの内部空間における上記第2開閉弁が配置される部分は、上記第2開閉弁によって開閉される第2開閉口として構成されていてもよい。該第2開閉口の開口面積は、上記第1開口の開口面積よりも大きくてもよい。
[8]上記[1]から[7]のいずれかに記載の酸性ガス吸着装置において、上記第1吸着部は、処理対象ガスの通過方向と直交する方向において複数に分割されていてもよい。
[9]上記[1]から[8]のいずれかに記載の酸性ガス吸着装置において、上記第2吸着部は、処理対象ガスの通過方向と直交する方向において複数に分割されていてもよい。
 本発明の実施形態によれば、酸性ガスを酸性ガス吸着材から安定して脱離できる酸性ガス吸着装置を実現できる。
図1は、本発明の1つの実施形態の酸性ガス吸着装置の概略構成図である。 図2は、本発明の別の実施形態の酸性ガス吸着装置の概略構成図である。 図3は、図2のブロックの一実施形態の概略斜視図である。 図4は、図2のブロックの中央断面図である。 図5は、図2のブロックの別の実施形態の概略構成図である。 図6は、本発明のさらに別の実施形態の酸性ガス吸着装置の概略構成図である。 図7は、本発明のさらに別の実施形態の酸性ガス吸着装置の概略構成図である。 図8は、本発明のさらに別の実施形態の酸性ガス吸着装置の概略構成図である。 図9は、本発明のさらに別の実施形態の酸性ガス吸着装置の概略構成図である。
 以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
A.酸性ガス吸着装置の概略
 図1は、本発明の1つの実施形態の酸性ガス吸着装置の概略構成図である。
 図示例の酸性ガス吸着装置100は、処理対象ガスが所定方向に通過可能な酸性ガス吸着部10を備えている。酸性ガス吸着部10は、第1吸着部1と、第2吸着部2とを備えている。第2吸着部2は、第1吸着部1に対して、処理対象ガスの通過方向の下流側に間隔を空けて配置されている。第1吸着部1は、第1流路94aを含んでいる。第2吸着部2は、第2流路94bを含んでいる。処理対象ガスの通過方向における第1吸着部1と第2吸着部2との間に、第1流路94aおよび第2流路94bと通じる第1脱離ガス流路11が形成されている。
 このような構成によれば、処理対象ガスの通過方向において第1吸着部と第2吸着部とが互いに間隔を空けて配置されており、それらの間に第1脱離ガス流路が形成されている。第1脱離ガス流路は、第1吸着部の第1流路および第2吸着部の第2流路と通じている。そのため、後述する脱離工程において、第1脱離ガス流路を介して第1流路および第2流路に脱離ガスを供給するか(図1参照)、あるいは、第1流路および第2流路を通過した脱離ガスを第1脱離ガス流路に流入させることができる(図7参照)。その結果、脱離ガスの流通距離を低減できながら、酸性ガス吸着部の全体に脱離ガスを均一に流すことができる。これによって、酸性ガス吸着部における温度分布を均一に維持でき、酸性ガス吸着材から酸性ガスを安定して脱離させることができる。
 1つの実施形態において、第1吸着部1および第2吸着部2のそれぞれは、ハニカム状基材9と、酸性ガス吸着層5とを備えている(図3および図4参照)。ハニカム状基材9は、第1端面E1から第2端面E2まで延びている複数のセル93を有している(図4参照)。酸性ガス吸着層5は、セル93内に位置しており、酸性ガス吸着材を含んでいる。第1吸着部1のセル93は、第1流路94aを含んでいる。第2吸着部2のセル93は、第2流路94bを含んでいる。このような構成によれば、酸性ガス吸着部がペレット構造を有する場合と比較して、酸性ガス吸着部の全体に脱離ガスをより均一に流すことができ、酸性ガス吸着部における温度分布を均一に維持できる。
 図示例の酸性ガス吸着部10において、複数のセル93は、処理対象ガスの通過方向に延びており、処理対象ガスの通過方向と直交する方向に並列配置されている。そのため、第1吸着部1において、複数の第1流路94aは処理対象ガスの通過方向と直交する方向に並列配置されており、第2吸着部2において、第2吸着部2の複数の第2流路94bは、処理対象ガスの通過方向と直交する方向に並列配置されている。
 図示例において、第1脱離ガス流路11は、処理対象ガスの通過方向と直交する方向に延びており、複数の第1流路94aおよび複数の第2流路94bの全てと通じている。
 処理対象ガスの通過方向において、第1吸着部1の寸法は、第2吸着部2の寸法に対して例えば0.5以上、好ましくは0.8以上であり、例えば1.5以下、好ましくは1.2以下であり、より好ましくは1である。処理対象ガスの通過方向における第1吸着部1および第2吸着部2のそれぞれの寸法は、例えば0.25m以上、好ましくは0.30m以上であり、例えば1.0m以下、好ましくは0.5m以下である。
 第1吸着部の寸法が上記範囲であれば、第1吸着部の第1流路の長さと、第2吸着部2の第2流路の長さとをバランスよく確保できる。そのため、脱離工程において第1吸着部と第2吸着部とに温度差が生じることを抑制でき、酸性ガス吸着材から酸性ガスをより安定して脱離させることができる。
 処理対象ガスの通過方向における第1脱離ガス流路11の寸法は、第1吸着部1と第2吸着部2との間の間隔であって、処理対象ガスの通過方向と直交する方向(図1の紙面奥行方向)から見たときの第1脱離ガス流路11の幅である。
 処理対象ガスの通過方向において、第1脱離ガス流路11の寸法は、第1吸着部1の寸法に対して、例えば1/100以上、好ましくは1/20以上であり、例えば1/5以下、好ましくは1/10以下である。処理対象ガスの通過方向における第1脱離ガス流路11の寸法は、例えば0.2cm以上、好ましくは0.5cm以上であり、例えば5cm以下、好ましくは2cm以下である。このように設計すると、吸着部を透過する抵抗が脱離ガス流路の透過抵抗に対して十分に大きくなるため、脱離ガスの分配が均一となる。吸着部の抵抗を元に脱離ガス流路の寸法を決定しているが、脱離ガスの分配が均一となるのであれば効果の趣旨に応じて脱離ガス流路の寸法は適宜変更することができる。また、第1脱離ガス流路の寸法が上記範囲であれば、後述する吸着工程において処理対象ガスが第1脱離ガス流路に滞留することを抑制でき、かつ、後述する脱離工程において脱離ガスを円滑に通過させることができる。
 1つの実施形態では、脱離ガスの通過において、第1吸着部1の圧力損失が第1脱離ガス流路11の圧力損失よりも大きく、第2吸着部2の圧力損失が第1脱離ガス流路11の圧力損失よりも大きい。
 処理対象ガスの通過方向と直交する方向における第1吸着部1および第2吸着部2のそれぞれの寸法は、特に制限されず、例えば1.5m以上、好ましくは2.0m以上であり、例えば4.0m以下、好ましくは3.0m以下である。
 1つの実施形態において、酸性ガス吸着装置100は、ケース6をさらに備えている。ケース6は、第1吸着部1と第2吸着部2と第1脱離ガス流路11とを含む酸性ガス吸着部10を収容している。図示例では、ケース6は、処理対象ガスの通過方向に延びる筒形状を有している。ケース6の一端部は流入口64として構成され、ケース6の他端部は流出口65として構成される。
 言い換えれば、ケース6は、流入口64と、流出口65と、を有している。流入口64は、処理対象ガスの通過方向におけるケース6の一端部に位置している。後述する吸着工程において、処理対象ガスが、流入口64を通過して、ケース6の内部空間に流入する。また、流出口65は、処理対象ガスの通過方向におけるケース6の他端部に位置している。後述する吸着工程において、酸性ガス吸着部10を通過して酸性ガス濃度が低減された処理ガスが、流出口65を通過してケース6から流出する。
 流入口64の開口面積と流出口65の開口面積とは、互いに同じであってもよく、互いに異なっていてもよい。図示例では、流入口64の開口面積と流出口65の開口面積とは、互いに同じである。
 ケース6の側壁には、代表的には、第1脱離ガス流路11と通じる第1開口61が形成されている。言い換えれば、ケース6は、第1開口61をさらに有している。第1開口61の延びる方向は、第1脱離ガス流路11の延びる方向と平行であってもよく、第1脱離ガス流路11の延びる方向と交差するように傾斜していてもよい。図示例では、第1開口61の延びる方向は、第1脱離ガス流路11の延びる方向と平行である。
 図示例では、第1開口61には、第1バルブ16が設けられており、第1バルブ16を介して、脱離ガスを第1脱離ガス流路11に供給可能な脱離ガス供給ユニット(図示せず)が接続されている。
 1つの実施形態において、酸性ガス吸着装置100は、第1開閉弁7をさらに備えている。第1開閉弁7は、ケース6に収容されており、ケース6の内部空間を開閉可能である。第1開閉弁7は、処理対象ガスの通過方向において第1吸着部1の上流側に配置されている。第1開閉弁7として、例えば、ボール弁、ゲート弁、バタフライ弁が挙げられる。図示例では、第1開閉弁7はバタフライ弁である。第1開閉弁7が閉状態であるときに、処理対象ガスの通過方向における第1開閉弁7と第1吸着部1との間に、第1流路94aと通じる第2脱離ガス流路12が形成される。このような構成によれば、第1脱離ガス流路および第2脱離ガス流路によって、第1吸着部の全体に脱離ガスを円滑かつ均一に流すことができ、第1吸着部が含む酸性ガス吸着材から酸性ガスを安定して脱離させることができる。
 1つの実施形態において、ケース6の内部空間における第1開閉弁7が配置される部分は、第1開閉弁7によって開閉される第1開閉口70として構成されている。第1開閉口70の開口面積は、代表的には、第1開口61の開口面積よりも大きい。第1開閉口70の開口面積は、第1開口61の開口面積に対して、例えば8~12倍である。第1開閉口と第1開口との開口面積がこのような関係であれば、吸着工程の圧力損失を低く保ちながら、脱離工程時には脱離ガスの配流を均一に保つことの双方を両立することができ、酸性ガスを十分に脱離させることができる。
 第1開閉口70の開口面積は、流入口64の開口面積と同じであってもよく、流入口64の開口面積と異なっていてもよい。図示例では、第1開閉口70の開口面積は、流入口64の開口面積よりも大きい。これにより、吸着工程の圧力損失を低く保ちながら、脱離工程時には脱離ガスの配流を均一に保つことの双方を両立することができ、酸性ガスを十分に脱離させることができる。
 なお、第1開閉口70の開口面積は、ケース6における第1開閉弁7が位置する部分をケース6の軸線方向(処理対象ガスの通過方向)に直交する方向に切断した断面において、ケース6の側壁に囲まれる部分の面積である。
 図示例において、第2脱離ガス流路12は、第1吸着部1に対して第1脱離ガス流路11の反対側に位置している。第2脱離ガス流路12は、処理対象ガスの通過方向と直交する方向に延びており、複数の第1流路94aの全てと通じている。
 処理対象ガスの通過方向における第2脱離ガス流路12の寸法は、第1吸着部1と閉状態の第1開閉弁7との間の間隔であって、処理対象ガスの通過方向と直交する方向(図1の紙面奥行方向)から見たときの第2脱離ガス流路12の幅である。
 処理対象ガスの通過方向において、第2脱離ガス流路12の最大寸法は、第1吸着部1の寸法に対して、例えば1/100以上、好ましくは1/20以上であり、例えば1/5以下、好ましくは1/10以下である。処理対象ガスの通過方向における第2脱離ガス流路12の最大寸法は、例えば0.2cm以上、好ましくは0.5cm以上であり、例えば5cm以下、好ましくは2cm以下である。第2脱離ガス流路の最大寸法が上記範囲であれば、後述する脱離工程において脱離ガスを円滑に通過させることができる。
 1つの実施形態では、脱離ガスの通過において、第1吸着部1の圧力損失が第2脱離ガス流路12の圧力損失よりも大きい。
 1つの実施形態において、ケース6の側壁には、第2脱離ガス流路12と通じる第2開口62が形成されている。言い換えれば、ケース6は、第2開口62をさらに有している。第2開口62の延びる方向は、第2脱離ガス流路12の延びる方向と平行であってもよく(図1参照)、第2脱離ガス流路12の延びる方向と交差するように傾斜していてもよい(図8参照)。
 図示例では、第2開口62には、第2バルブ17が設けられており、第2バルブ17を介して、酸性ガス吸着材から脱離された酸性ガスを含む脱離ガスを回収する回収ユニット(図示せず)が接続されている。
 第2開口62の開口面積は、第1開口61の開口面積と同じであってもよく、第1開口61の開口面積と異なっていてもよい。図示例では、第2開口62の開口面積は、第1開口61の開口面積と同じである。第2開口62の開口面積は、代表的には、第1開閉口70の開口面積よりも小さい。
 図9に示すように、1つの実施形態では、酸性ガス吸着装置100は、第2開口62に代えて、ダクト68を有していてもよい。ダクト68は、第2脱離ガス流路12と通じている。図示例では、ダクト68は、処理対象ガスの通過方向に沿って延びる第1部分と、処理対象ガスの通過方向に交差(代表的には直交)する方向に延びる第2部分と、を一体的に有している。第1部分の一端部は、第2脱離ガス流路12と通じている。第2部分は、第1部分の他端部から連続して延びている。第2部分の遊端部には、代表的には、第2バルブ17が設けられている。ダクト68は、ケース6に一体的に設けられていてもよく、別体としてケース6に取り付けられていてもよい。
 図1に示すように、1つの実施形態において、酸性ガス吸着装置100は、第2開閉弁8をさらに備えている。第2開閉弁8は、ケース6に収容されており、ケース6の内部空間を開閉可能である。第2開閉弁8は、処理対象ガスの通過方向において第2吸着部2の下流側に配置されている。第2開閉弁8として、例えば、ボール弁、ゲート弁、バタフライ弁が挙げられる。図示例では、第2開閉弁8はバタフライ弁である。第2開閉弁8が閉状態であるときに、処理対象ガスの通過方向における第2吸着部2と第2開閉弁8との間に、第2流路94bと通じる第3脱離ガス流路13が形成される。このような構成によれば、第1脱離ガス流路および第3脱離ガス流路によって、第2吸着部の全体に脱離ガスを円滑かつ均一に流すことができ、第2吸着部が含む酸性ガス吸着材から酸性ガスを安定して脱離させることができる。
 1つの実施形態において、ケース6の内部空間における第2開閉弁8が配置される部分は、第2開閉弁8によって開閉される第2開閉口80として構成されている。第2開閉口80の開口面積は、代表的には、第1開口61および第2開口62のそれぞれの開口面積よりも大きい。第2開閉口80の開口面積は、第1開口61の開口面積に対して、例えば8~12倍である。第2開閉口と第1開口との開口面積がこのような関係であれば、吸着工程の圧力損失を低く保ちながら、脱離工程時には脱離ガスの配流を均一に保つことの双方を両立することができる。
 第2開閉口80の開口面積は、第1開閉口70の開口面積と同じであってもよく、第1開閉口70の開口面積と異なっていてもよい。図示例では、第2開閉口80の開口面積は、第1開閉口70の開口面積と同じである。
 また、第2開閉口80の開口面積は、流出口65の開口面積と同じであってもよく、流出口65の開口面積と異なっていてもよい。図示例では、第2開閉口80の開口面積は、流出口65の開口面積よりも大きい。これにより、吸着工程の圧力損失を低く保ちながら、脱離工程時には脱離ガスの配流を均一に保つことの双方を両立することができる。
 なお、第2開閉口80の開口面積は、ケース6における第2開閉弁8が位置する部分をケース6の軸線方向(処理対象ガスの通過方向)に直交する方向に切断した断面において、ケース6の側壁に囲まれる部分の面積である。
 図示例において、第3脱離ガス流路13は、第2吸着部2に対して第1脱離ガス流路11の反対側に位置している。第3脱離ガス流路13は、処理対象ガスの通過方向と直交する方向に延びており、複数の第2流路94bの全てと通じている。
 処理対象ガスの通過方向における第3脱離ガス流路13の寸法は、第2吸着部2と閉状態の第2開閉弁8との間の間隔であって、処理対象ガスの通過方向と直交する方向(図1の紙面奥行方向)から見たときの第3脱離ガス流路13の幅である。
 処理対象ガスの通過方向における第3脱離ガス流路13の最大寸法の範囲は、上記した第2脱離ガス流路12の最大寸法の範囲と同様である。第3脱離ガス流路13の最大寸法が上記範囲であれば、後述する脱離工程において脱離ガスを円滑に通過させることができる。
 1つの実施形態では、脱離ガスの通過において、第2吸着部2の圧力損失が第3脱離ガス流路13の圧力損失よりも大きい。
 1つの実施形態において、ケース6の側壁には、第3脱離ガス流路13と通じる第3開口63が形成されている。言い換えれば、ケース6は、第3開口63をさらに有している。第3開口63の延びる方向は、第3脱離ガス流路13の延びる方向と平行であってもよく、第3脱離ガス流路13の延びる方向と交差するように傾斜していてもよい。
 図示例では、第3開口63には、第3バルブ18が設けられており、第3バルブ18を介して、酸性ガス吸着材から脱離された酸性ガスを含む脱離ガスを回収する回収ユニット(図示せず)が接続されている。
 第3開口63の開口面積は、第2開口62の開口面積と同じであってもよく、第2開口62の開口面積と異なっていてもよい。図示例では、第1開口61の開口面積と、第2開口62の開口面積と、第3開口63の開口面積とは、互いに同じである。第3開口63の開口面積は、代表的には、第2開閉口80の開口面積よりも小さい。
 また、酸性ガス吸着装置100は、第3開口63に代えて、第3脱離ガス流路13と通じるダクトを有していてもよい。
 1つの実施形態では、図2に示すように、第1吸着部1は、処理対象ガスの通過方向と直交する方向において、複数の第1ブロック1aに分割されている。言い換えれば、第1吸着部1は、処理対象ガスの通過方向と直交する方向に並ぶ複数の第1ブロック1aによって構成されている。これによって、相対的に小さい第1ブロックを製造して第1吸着部を構成できる。そのため、第1吸着部を一括して製造する場合と比較して、第1吸着部を容易に製造できる。
 複数の第1ブロック1aのうち互いに隣り合う第1ブロック1aは、それらの間に隙間を形成していてもよく、処理対象ガスの通過方向と直交する方向において互いに接触していてもよい。また、図示しないが、互いに隣り合う第1ブロック1aの間に板状部材を設けることもできる。
 図示例では、第1吸着部1が、紙面上下方向(処理対象ガスの通過方向と直交する方向)において4つに分割されている。第1吸着部1は、紙面奥行方向(処理対象ガスの通過方向と直交する方向)において複数に分割されていてもよい。
 第1ブロック1aの数は、例えば2以上、好ましくは3以上、より好ましくは5以上であり、例えば300以下である。
 1つの実施形態では、第2吸着部2は、処理対象ガスの通過方向と直交する方向において、複数の第2ブロック2aに分割されている。言い換えれば、第2吸着部2は、処理対象ガスの通過方向と直交する方向に並ぶ複数の第2ブロック2aによって構成されている。これによって、相対的に小さい第2ブロックを製造して第2吸着部を構成できる。そのため、第2吸着部を一括して製造する場合と比較して、第2吸着部を容易に製造できる。
 複数の第2ブロック2aのうち互いに隣り合う第2ブロック2aは、それらの間に隙間を形成していてもよく、処理対象ガスの通過方向と直交する方向において互いに接触していてもよい。また、図示しないが、互いに隣り合う第2ブロック2aの間に板状部材を設けることもできる。
 図示例では、第2吸着部2が、紙面上下方向(処理対象ガスの通過方向と直交する方向)において4つに分割されている。第2吸着部2は、紙面奥行方向(処理対象ガスの通過方向と直交する方向)において複数に分割されていてもよい。
 第2ブロック2aの数は、例えば2以上、好ましくは3以上、より好ましくは5以上であり、例えば300以下である。
 以下、酸性ガス吸着部(第1吸着部および第2吸着部)の具体的な構成について説明する。
B.酸性ガス吸着部
 酸性ガス吸着部10によって吸着される酸性ガスとして、例えば、二酸化炭素(CO)、硫化水素、二酸化硫黄、二酸化窒素、ジメチルスルフィド(DMS)、塩化水素等が挙げられる。1つの実施形態において、酸性ガスは二酸化炭素(CO)であり、流体はCO含有ガスである。CO含有ガスは、COに加えて窒素を含んでいてもよい。CO含有ガスは、代表的には空気(大気)である。酸性ガス吸着装置に供給前のCO含有ガスにおけるCO濃度は、例えば100ppm(体積基準)以上2体積%以下である。
 以下では、酸性ガスが二酸化炭素(CO)である場合について詳述する。
 酸性ガス吸着部10は、上記したように、第1吸着部1および第2吸着部2を備えている。第1吸着部1および第2吸着部2は、同様の構成を有している。また、図1に示す第1吸着部1(一体形成)と、図2に示す第1ブロック1aとは、サイズが異なること以外は、同様の構成を有している。そのため、以下では、図2に示す第1ブロック1aを挙げて、その構成を詳細に説明する。
 1つの実施形態では、図3および図4に示すように、第1ブロック1aは、上記したように、ハニカム状基材9と、酸性ガス吸着層5と、を備えている。
B-1.ハニカム状基材
 ハニカム状基材9は、代表的には、複数のセル93を規定する隔壁92を備えている。
 セル93は、ハニカム状基材9の長さ方向(軸線方向)において、ハニカム状基材9の第1端面E1(流入端面)から第2端面E2(流出端面)まで延びている(図4参照)。セル93は、ハニカム状基材9の長さ方向に直交する方向の断面において、任意の適切な形状を有する。セルの断面形状として、例えば、三角形、四角形、五角形、六角形以上の多角形、円形、楕円形が挙げられる。セルの断面形状およびサイズは、すべてが同一であってもよく、少なくとも一部が異なっていてもよい。このようなセルの断面形状のなかでは、好ましくは六角形、四角形が挙げられ、より好ましくは正方形、長方形または六角形が挙げられる。
 ハニカム状基材の長さ方向に直交する方向の断面におけるセル密度(すなわち、単位面積当たりのセル93の数)は、目的に応じて適切に設定され得る。セル密度は、例えば4セル/cm~320セル/cmであり得る。セル密度がこのような範囲であれば、ハニカム状基材の強度および有効GSA(幾何学的表面積)を十分に確保できる。
 ハニカム状基材9は、任意の適切な形状(全体形状)を有する。ハニカム状基材の形状として、例えば、底面が円形の円柱状、底面が楕円形の楕円柱状、底面が多角形の角柱状、底面が不定形の柱状が挙げられる。図示例のハニカム状基材9は、角柱形状を有している。ハニカム状基材の外径および長さは、目的に応じて適切に設定され得る。図示しないが、ハニカム状基材は、長さ方向に直交する方向の断面において、その中心部に中空領域を有していてもよい。
 ハニカム状基材9は、代表的には、外壁91と;外壁91の内側に位置している隔壁92と;を備えている。図示例では、外壁91と隔壁92とは一体的に形成されている。外壁91と隔壁92とは、別体であってもよい。
 図示例では、外壁91は、角筒形状を有している。外壁91の厚みは、任意かつ適切に設定され得る。外壁91の厚みは、例えば0.1mm~10mmである。
 隔壁92は、複数のセル93を規定している。より詳しくは、隔壁92は、互いに直交する第1隔壁92aと第2隔壁92bとを有しており、第1隔壁92aおよび第2隔壁92bが、複数のセル93を規定している。セル93の断面形状は、略四角形である。なお、隔壁の構成は、上記した隔壁92に制限されない。隔壁は、放射方向に延びる第1隔壁と、周方向に延びる第2隔壁とを有し、それらが複数のセルを規定していてもよい。
 隔壁92の厚みは、酸性ガス吸着装置の用途に応じて適切に設定され得る。隔壁92の厚みは、代表的には、外壁91の厚みよりも薄い。隔壁92の厚みは、例えば0.03mm~0.6mmである。隔壁の厚みは、例えばSEM(走査型電子顕微鏡)による断面観察により測定される。隔壁の厚みがこのような範囲であれば、ハニカム状基材の機械的強度を十分なものとすることができ、かつ、開口面積(断面におけるセルの総面積)を十分なものとすることができる。
 隔壁92における気孔率は、目的に応じて適切に設定され得る。隔壁92における気孔率は、例えば15%以上、好ましくは20%以上であり、例えば70%以下、好ましくは45%以下である。なお、気孔率は、例えば水銀圧入法により測定され得る。
 隔壁92の嵩密度は、目的に応じて適切に設定され得る。それらの嵩密度は、例えば0.10g/cm以上、好ましくは0.20g/cm以上であり、例えば0.60g/cm以下、好ましくは0.50g/cm以下である。なお、嵩密度は、例えば水銀圧入法により測定され得る。
 隔壁92を構成する材料として、代表的にはセラミックスが挙げられる。セラミックスとして、例えば、炭化珪素、珪素-炭化珪素系複合材料、コージェライト、ムライト、アルミナ、窒化ケイ素、スピネル、炭化珪素-コージェライト系複合材料、リチウムアルミニウムシリケート、および、アルミニウムチタネートが挙げられる。隔壁を構成する材料は、単独でまたは組み合わせて使用できる。隔壁を構成する材料のなかでは、好ましくは、コージェライト、アルミナ、ムライト、炭化珪素、珪素-炭化珪素系複合材料、および、窒化ケイ素が挙げられ、より好ましくは、炭化珪素、および、珪素-炭化珪素系複合材料が挙げられる。
 このようなハニカム状基材9は、代表的には、以下の方法により作製される。まず、上記したセラミックス粉末を含む材料粉末に、必要に応じてバインダーと水または有機溶媒とを加え、得られた混合物を混練して坏土とし、坏土を所望の形状に成形(代表的には押出成形)し、その後、乾燥し必要に応じて焼成して、ハニカム状基材9を作製する。焼成する場合は、例えば1200℃~1500℃で焼成する。焼成時間は、例えば1時間以上20時間以下である。
B-2.酸性ガス吸着層(二酸化炭素吸着層)
 1つの実施形態において、酸性ガス吸着層5は、セル93内において、隔壁92の表面に形成されている。ハニカム状基材9では、セル93の断面における酸性ガス吸着層5が形成されていない部分(代表的には中央部)に、流路94(第1流路94aまたは第2流路94b)が形成されている。酸性ガス吸着層5は、図示例のように隔壁92の内面全体に(すなわち、流路94を包囲するように)形成されてもよく、隔壁の表面の一部に形成されてもよい。酸性ガス吸着層5が隔壁92の内面全体に形成されていると、酸性ガス(代表的にはCO)の吸着効率の向上を図り得る。
 流路94は、セル93と同様に第1端面E1(流入端面)から第2端面E2(流出端面)まで延びている。流路94の断面形状としては、上記したセル93と同様の断面形状が挙げられ、好ましくは六角形、四角形が挙げられ、より好ましくは正方形、長方形または六角形が挙げられる。流路94の断面形状およびサイズは、すべてが同一であってもよく、少なくとも一部が異なっていてもよい。
 セル93(より詳しくは流路94)には、代表的には、後述する吸着工程において、酸性ガスを含む処理対象ガスが供給され、後述する脱離工程において、脱離ガスが流通する。
 酸性ガス吸着層5は、吸着対象となる酸性ガスに応じた酸性ガス吸着材を含んでいる。酸性ガスがCOである場合、酸性ガス吸着材は、二酸化炭素吸着材である。
 二酸化炭素吸着材としては、COを吸着および脱離可能な任意の適切な化合物を採用し得る。二酸化炭素吸着材として、例えば、後述する窒素含有化合物;水酸化ナトリウム、水酸化カリウムなどのアルカリ化合物;炭酸カルシウム、炭酸カリウムなどの炭酸塩;炭酸水素カルシウム、炭酸水素カリウムなどの炭酸水素塩;MOF-74、MOF-200、MOF-210などの有機金属構造体(MOF);ゼオライト;活性炭;窒素ドープカーボン;イオン液体などが挙げられる。二酸化炭素吸着材は、単独でまたは組み合わせて使用できる。
 二酸化炭素吸着材のなかでは、好ましくは、窒素含有化合物およびイオン液体が挙げられる。窒素含有化合物として、より具体的には、モノエタノールアミン、ポリビニルアミンなどの第一級アミン;ジエタノールアミン、環状アミン、N-(3-アミノプロピル)ジエタノールアミンなどの第二級アミン;メチルジエチルアミン、トリエタノールアミンなどの第三級アミン;テトラエチレンペンタミンなどのエチレンアミン化合物;アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピル-トリメトキシシラン、ポリエチレンイミン-トリメトキシシランなどのアミノシランカップリング剤;エチレンイミン、直鎖状ポリエチレンイミン、第一級アミノ基~第三級アミノ基を有する分岐状ポリエチレンイミンなどのイミン化合物;1-(2-ヒドロキシエチル)ピペラジンなどのピペラジン化合物;ポリアミドアミンなどのアミド化合物;ポリビニルアミン;アミノ基が置換基として付与された有機/無機化合物;が挙げられる。
 窒素含有化合物のなかでは、好ましくは、メチルジエチルアミン、モノエタノールアミン、環状アミン、ジエタノールアミン、テトラエチレンペンタミン、エチレンイミン、直鎖状ポリエチレンイミン、分岐状ポリエチレンイミン、アミノが置換基として付与された有機/無機化合物が挙げられる。
 イオン液体は、イオン(アニオンおよびカチオン)のみから構成される液体の「塩」であり、常温常圧(23℃、0.1MPa)において液体状態である。イオン液体のカチオンとして、例えば、イミダゾリウム塩類、ピリジニウム塩類などのアンモニウム系、ホスホニウム系イオン、スルホニウム塩、無機系イオンなどが挙げられる。イオン液体のアニオンとして、例えば、臭化物イオンやトリフラートなどのハロゲン系;テトラフェニルボレートなどのホウ素系;ヘキサフルオロホスフェートなどのリン系;アルキルスルホネートなどの硫黄系が挙げられる。イオン液体のなかでは、好ましくは、カチオンとしてのイミダゾリウム塩類と、アニオンとしてのトリフラートとの組み合わせが挙げられる。
 イオン液体は、より好ましくは、イオン液体以外の二酸化炭素吸着材(以下、他の二酸化炭素吸着材とする。)と併用される。この場合、イオン液体は、他の二酸化炭素吸着材(例えば、窒素含有化合物)をコーティングする。そのため、二酸化炭素吸着材の性能向上、および、長寿命化を図ることができる。
 イオン液体の含有割合は、他の二酸化炭素吸着材1質量部に対して、例えば0.000001質量部以上、好ましくは0.00001質量部以上であり、例えば0.1質量部以下、好ましくは0.05質量部以下である。イオン液体の含有割合が上記範囲であると、二酸化炭素吸着材の性能向上、および、長寿命化を安定して図ることができる。
 1つの実施形態において、酸性ガス吸着材層5は、上記した酸性ガス吸着材に加えて、多孔質担体をさらに含んでいる。この場合、酸性ガス吸着材は、代表的には、多孔質担体に担持されて流路に面している。酸性ガス吸着材層が多孔質担体を含んでいると、吸着工程および/または脱離工程において、酸性ガス吸着材が酸性ガス吸着材層から脱落することを抑制できる。
 多孔質担体は、酸性ガス吸着材層においてメソ細孔を形成し得る。多孔質担体として、例えば、MOF-74、MOF-200、MOF-210などの有機金属構造体(MOF);活性炭;窒素ドープカーボン;メソポーラスシリカ;メソポーラスアルミナ;ゼオライト;カーボンナノチューブ;ポリフッ化ビニリデン(PVDF)などのフッ化性樹脂;が挙げられ、好ましくは、有機金属構造体(MOF)、活性炭、PVDF、ゼオライト、メソポーラスシリカ、および、メソポーラスアルミナが挙げられる。多孔質担体は、単独でまたは組み合わせて使用できる。多孔質担体は、好ましくは、酸性ガス吸着材と異なる材料が採用される。
 多孔質担体のBET比表面積は、例えば50m/g以上、好ましくは500m/g以上である。多孔質担体の表面積が上記下限以上であれば、酸性ガス吸着材を安定して担持でき、酸性ガスの吸着効率の向上を図り得る。多孔質担体のBET比表面積の上限は代表的には2000m/g以下である。
 酸性ガス吸着材層が酸性ガス吸着材および多孔質担体を含む場合、酸性ガス吸着材層における、酸性ガス吸着材および多孔質担体の総和の含有割合は、例えば30質量%以上、好ましくは50質量%以上であり、例えば100質量%以下、好ましくは99質量%以下である。
 酸性ガス吸着材層における酸性ガス吸着材の含有割合は、例えば30質量%以上、好ましくは50質量%以上であり、例えば99質量%以下である。多孔質担体の含有割合は、酸性ガス吸着材1質量部に対して、例えば0.01質量部以上、好ましくは0.3質量部以上であり、例えば0.7質量部以下、好ましくは0.5質量部以下である。多孔質担体の含有割合が上記範囲であると、酸性ガス吸着材をより一層安定して担持できる。
 また、酸性ガス吸着材層は、酸性ガス吸着材のみから構成されてもよい。この場合、酸性ガス吸着材は、隔壁92に直接担持されて流路に面している。酸性ガス吸着材層が酸性ガス吸着材のみから構成される場合、酸性ガス吸着材層における酸性ガス吸着材の含有割合は、代表的には95.0質量%以上100質量%以下である。酸性ガス吸着材の含有割合が上記範囲であると、優れた酸性ガスの吸着効率を安定して確保できる。
 このような酸性ガス吸着材層は、代表的には、以下の方法により作製される。上記した酸性ガス吸着材を溶媒に溶解して酸性ガス吸着材の溶液を調製する。また、必要に応じて、当該溶媒に上記した多孔質担体を添加する。酸性ガス吸着材、および、多孔質担体の添加の順序は特に制限されない。その後、酸性ガス吸着材の溶液を、基材(具体的には隔壁)上に塗布した後、塗膜を乾燥、必要に応じて焼結させて、酸性ガス吸着材層を形成する。
 また、酸性ガス吸着部(第1吸着部および第2吸着部)の構成は上記に限定されない。
 別の実施形態では、図5に示すように、第1ブロック1aは、複数の吸着材層71を備えている。
 複数の吸着材層71は、それらの厚み方向に互いに間隔を空けて積層されている。複数の吸着材層71のうち互いに隣り合う吸着材層71の間隔に、流路94(第1流路94aまたは第2流路94b)が形成されている。図示例では、5つの吸着材層71が並列配置されているが、吸着材層71の個数はこれに制限されない。吸着材層71の個数は、例えば5以上、好ましくは10以上、より好ましくは20以上である。複数の吸着材層71のうち、互いに隣り合う吸着材層71の間の間隔は、例えば0.5cm以上1.5cm以下である。
 複数の吸着材層71のそれぞれは、可撓性繊維部材73と、複数のペレット状吸着材72と、を備えている。
 可撓性繊維部材73は、気体の通過を許容し、かつ、ペレット状吸着材の通過を規制する。可撓性繊維部材73は、代表的には、複数のペレット状吸着材72を収容可能な中空形状(袋形状)に形成されている。可撓性繊維部材73は、織物であってもよく、不織布であってもよい。可撓性繊維部材73の材料として、例えば有機繊維、天然繊維が挙げられ、好ましくは、ポリエチレンテレフタレート繊維、ポリエチレン繊維、セルロース系繊維が挙げられる。可撓性繊維部材73の厚みは、例えば25μm以上500μm以下である。
 複数のペレット状吸着材72は、中空形状(袋形状)を有する可撓性繊維部材73の内部に充填されている。ペレット状吸着材72は、酸性ガス吸着材として機能し、代表的には二酸化炭素吸着材として機能する。ペレット状吸着材72の材料として、例えば、上記した酸性ガス吸着材で修飾された材料が挙げられ、好ましくは、上記した酸性ガス吸着材で修飾されたセルロースが挙げられ、より好ましくは、上記した酸性ガス吸着材で修飾されたナノ繊維化セルロースが挙げられる。ペレット状吸着材72の平均一次粒子径は、例えば60μm以上1200μm以下である。吸着材層71におけるペレット状吸着材72の充填割合は、任意の適切な値を採用し得る。
 図示例の酸性ガス吸着部は、複数のスペーサ74をさらに備えている。スペーサ74は、複数の吸着材層71のうち互いに隣り合う吸着材層71の間に挟まれている。これによって、互いに隣り合う吸着材層の間の間隔を安定して確保できる。1つの実施形態では、複数の吸着材層71と複数のスペーサ74とは、吸着材層71の厚み方向と直交する方向(図1の紙面奥行方向)から見て、略九十九折形状となるように配置されている。
 このような酸性ガス吸着部として、例えば、国際公開第2014/170184号に記載のガス分離ユニットが挙げられる。この公報は、その全体の記載が本明細書に参考として援用される。
 第1吸着部(第1ブロック1a)および/または第2吸着部(第2ブロック2a)が、図5に示すような構成を有していても、第1吸着部と第2吸着部との間に第1脱離ガス流路が形成されていれば、脱離ガスの流通距離を低減できるので、酸性ガス吸着部の全体に脱離ガスを均一に流すことができ、酸性ガス吸着部における温度分布を均一に維持できる。つまり、上記と同様の作用効果を奏することができる。
C.酸性ガスの回収方法
 次に、図1を参照して、本発明の1つの実施形態に係る酸性ガス吸着装置を用いた酸性ガスの回収方法について説明する。酸性ガスの回収方法は、代表的には、吸着工程と脱離工程とを順に含んでいる。
 1つの実施形態では、吸着工程において、第1開閉弁7および第2開閉弁8を開状態とし、所定の吸着温度に調整された酸性ガス吸着部1に、ケース6の流入口64を介して、酸性ガスを含有する処理対象ガスを供給する。このとき、酸性ガスを含有する処理対象ガスは、第1吸着部1の第1流路94aおよび第2吸着部2の第2流路94bを順に通過する。これによって、酸性ガス吸着材が、酸性ガス(代表的にはCO)を含有する流体から酸性ガスを吸着する。
 吸着工程における酸性ガス吸着部の温度(吸着温度)は、例えば0℃以上、好ましくは10℃以上であり、例えば50℃以下、好ましくは40℃以下である。1つの実施形態において、吸着温度は、外気温と同じである。吸着工程の実施時間(吸着時間)は、例えば15分以上、好ましくは30分以上であり、例えば3時間以下、好ましくは2時間以下である。
 吸着温度および/または吸着時間が上記範囲であると、酸性ガス吸着材が酸性ガスを効率よく吸着することができる。
 吸着工程における酸性ガス吸着率(=100-(酸性ガス吸着部を通過した流体における酸性ガス濃度/酸性ガス吸着部に供給前の流体における酸性ガス濃度×100))は、例えば60%以上、好ましくは75%以上、より好ましくは80%以上であり、例えば90%以下である。
 次いで、脱離工程では、代表的には、第1開閉弁7および第2開閉弁8を閉状態とし、酸性ガス吸着部10(第1吸着部1および第2吸着部2)を、吸着温度よりも高い脱離温度に加熱する。より詳しくは、第1吸着部1および第2吸着部2が脱離温度まで昇温された後、脱離温度で所定の脱離時間維持される。これによって、吸着工程において酸性ガス吸着材が吸着した酸性ガスは、酸性ガス吸着材から脱離する。このとき、ケース6の第1開口61を介して、第1脱離ガス流路11に脱離ガスを供給する。第1脱離ガス流路11に供給された脱離ガスは、第1吸着部1の第1流路94aまたは第2吸着部2の第2流路94bに流入する。第1吸着部1の酸性ガス吸着材から脱離した酸性ガスは、第1流路94aを通過する脱離ガスとともに、第2脱離ガス流路12に流出し、ケース6の第2開口62を介して回収される。第2吸着部2の酸性ガス吸着材から脱離した酸性ガスは、第2流路94bを通過する脱離ガスとともに、第3脱離ガス流路13に流出し、ケース6の第3開口63を介して回収される。なお、脱離工程において回収されるガスを回収ガスと称する場合がある。
 脱離ガスとして、好ましくは、酸性ガス吸着装置によって先に回収された回収ガスが挙げられる。脱離ガスとして回収ガスを利用することにより、回収ガスにおける酸性ガス濃度の向上を図ることができる。
 脱離工程における酸性ガス吸着部の温度(脱離温度)は、例えば70℃以上、好ましくは80℃以上であり、例えば200℃以下、好ましくは110℃以下である。脱離工程の実施時間(酸性ガス吸着部が脱離温度で維持される脱離時間)は、例えば1分以上、好ましくは5分以上であり、例えば1時間以下、好ましくは30分以下である。脱離温度および/または脱離時間が上記範囲であると、酸性ガス吸着材から、酸性ガスを十分に脱離させることができる。
 なお、脱離工程では、例えば脱離ガスと減圧ポンプとを併用して、回収ガスを吸引することもできる。
 以上によって、脱離工程において、第1吸着部および第2吸着部の全体に脱離ガスを均一に流すことができ、酸性ガスを効率よく回収することができる。吸着工程と脱離工程とは、好ましくは、順に繰り返して実施される。
D.酸性ガス吸着装置の変形例
 図6に示すように、酸性ガス吸着装置100は、第1吸着部1および第2吸着部2に加えて、第n吸着部3をさらに備えていてもよい。nは、例えば3以上20以下である。第n吸着部3は、第2吸着部2と第2開閉弁8との間に設けられる。第n吸着部3が複数である場合、処理対象ガスの通過方向において第2吸着部2の下流側に順に配置される。複数の第n吸着部3のうち互いに隣り合う第n吸着部3の間、および、最下流に位置する第n吸着部3と閉状態の第2開閉弁8との間には、脱離ガス流路が形成されてもよい。第n吸着部3は、第1吸着部と同様の構成を有するため、詳細な説明を省略する。
 図示例では、酸性ガス吸着装置100は、第1吸着部1および第2吸着部2に加えて、第3吸着部31と、第4吸着部32とを備えている。第3吸着部31は、第2吸着部2に対して、処理対象ガスの通過方向の下流側に間隔を空けて配置されている。本実施形態では、処理対象ガスの通過方向における第2吸着部2と第3吸着部31との間に、第3脱離ガス流路13が形成されている。
 第4吸着部32は、第3吸着部31に対して、処理対象ガスの通過方向の下流側に間隔を空けて配置されている。本実施形態では、処理対象ガスの通過方向における第3吸着部31と第4吸着部32との間に、第4脱離ガス流路14が形成されている。また、ケース6の側壁には、第4脱離ガス流路14と通じる第4開口66が形成されている。言い換えれば、ケース6は、第4開口66をさらに有している。第4開口66は、上記した第1開口61と同様に説明される。
 図示例では、第4開口66には、第4バルブ19が設けられており、第4バルブ19を介して脱離ガスを供給可能な脱離ガス供給ユニット(図示せず)が接続されている。上記した脱離工程において、第4脱離ガス流路14には、第1脱離ガス流路11と同様に脱離ガスが供給される。
 図示例では、第4吸着部32と閉状態の第2開閉弁8との間に、第5脱離ガス流路15が形成されている。また、ケース6の側壁には、第5脱離ガス流路15と通じる第5開口67が形成されている。言い換えれば、ケース6は、第5開口67をさらに有している。第5開口67は、上記した第3開口63と同様に説明される。なお、酸性ガス吸着装置100は、第5開口67に代えて、第5脱離ガス流路15と通じるダクトを有していてもよい。
 図示例では、第5開口67には、第5バルブ20を介して、酸性ガス吸着材から脱離された酸性ガスを含む脱離ガスを回収する回収ユニット(図示せず)が接続されている。上記した脱離工程において、第5脱離ガス流路15には、第2脱離ガス流路12と同様に回収ガスが通過する。このような構成によっても、酸性ガスを酸性ガス吸着材から安定して脱離できる。
 図1から図6に示す酸性ガス吸着装置100では、上記した脱離工程において、第1脱離ガス流路11に脱離ガスが供給され、第2脱離ガス流路12および第3脱離ガス流路13を回収ガスが通過する。図7に示すように、第2脱離ガス流路12および第3脱離ガス流路13に脱離ガスが供給され、第1脱離ガス流路11を回収ガスが通過してもよい。この場合、第2開口62および第3開口63に脱離ガス供給ユニット(図示せず)が接続され、第1開口61に回収ユニット(図示せず)が接続される。このような構成によっても、酸性ガスを酸性ガス吸着材から安定して脱離できる。
 本発明の実施形態による酸性ガス吸着装置は、酸性ガスの分離・回収に用いられ、特に、二酸化炭素回収・利用・貯留(CCUS)サイクルに好適に用いられ得る。
 1    第1吸着部
 2    第2吸着部
 6    ケース
 11   第1脱離ガス流路
 12   第2脱離ガス流路
 13   第3脱離ガス流路
 61   第1開口
 64   流入口
 65   流出口
 70   第1開閉口
 80   第2開閉口
 92   隔壁
 93   セル
 94   流路

 

Claims (9)

  1.  酸性ガスを含む処理対象ガスが所定方向に通過可能な酸性ガス吸着部を備え、
     前記酸性ガス吸着部は、第1吸着部と;前記第1吸着部に対して、前記処理対象ガスの通過方向の下流側に間隔を空けて配置される第2吸着部と;を備え、
     前記第1吸着部は、第1流路を含み、
     前記第2吸着部は、第2流路を含み、
     前記処理対象ガスの通過方向における前記第1吸着部と前記第2吸着部との間に、前記第1流路および前記第2流路と通じる第1脱離ガス流路が形成されている、酸性ガス吸着装置。
  2.  前記第1吸着部および前記第2吸着部のそれぞれは、
      第1端面から第2端面まで延びる複数のセルを有するハニカム状基材と;
      前記セル内に位置する酸性ガス吸着層であって酸性ガス吸着材を含む酸性ガス吸着層と;を備え、
     前記第1吸着部の前記セルは、前記第1流路を含み、
     前記第2吸着部の前記セルは、前記第2流路を含む、請求項1に記載の酸性ガス吸着装置。
  3.  前記酸性ガスは、二酸化炭素である、請求項1または2に記載の酸性ガス吸着装置。
  4.  前記酸性ガス吸着部を収容するケースと;
     前記ケースに収容され、前記ケースの内部空間を開閉可能な第1開閉弁であって、前記処理対象ガスの通過方向において前記第1吸着部の上流側に配置される第1開閉弁と;をさらに備え、
     前記第1開閉弁が閉状態であるときに、前記処理対象ガスの通過方向における前記第1開閉弁と前記第1吸着部との間に、前記第1流路と通じる第2脱離ガス流路が形成されている、請求項1または2に記載の酸性ガス吸着装置。
  5.  前記ケースは、
      前記処理対象ガスの通過方向における前記ケースの一端部に位置する流入口と、
      前記処理対象ガスの通過方向における前記ケースの他端部に位置する流出口と、
      前記第1脱離ガス流路と通じる第1開口と、を有し、
     前記ケースの内部空間における前記第1開閉弁が配置される部分は、前記第1開閉弁によって開閉される第1開閉口として構成され、
     前記第1開閉口の開口面積は、前記第1開口の開口面積よりも大きい、請求項4に記載の酸性ガス吸着装置。
  6.  前記酸性ガス吸着部を収容するケースと;
     前記ケースに収容され、前記ケースの内部空間を開閉可能な第2開閉弁であって、前記処理対象ガスの通過方向において前記第2吸着部の下流側に配置される第2開閉弁と;をさらに備え、
     前記第2開閉弁が閉状態であるときに、前記処理対象ガスの通過方向における前記第2吸着部と前記第2開閉弁との間に、前記第2流路と通じる第3脱離ガス流路が形成されている、請求項1または2に記載の酸性ガス吸着装置。
  7.  前記ケースは、
      前記処理対象ガスの通過方向における前記ケースの一端部に位置する流入口と、
      前記処理対象ガスの通過方向における前記ケースの他端部に位置する流出口と、
      前記第1脱離ガス流路と通じる第1開口と、を有し、
     前記ケースの内部空間における前記第2開閉弁が配置される部分は、前記第2開閉弁によって開閉される第2開閉口として構成され、
     前記第2開閉口の開口面積は、前記第1開口の開口面積よりも大きい、請求項6に記載の酸性ガス吸着装置。
  8.  前記第1吸着部は、前記処理対象ガスの通過方向と直交する方向において複数に分割されている、請求項1または2に記載の酸性ガス吸着装置。
  9.  前記第2吸着部は、前記処理対象ガスの通過方向と直交する方向において複数に分割されている、請求項1または2に記載の酸性ガス吸着装置。

     
PCT/JP2023/031209 2022-09-01 2023-08-29 酸性ガス吸着装置 WO2024048579A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-139536 2022-09-01
JP2022139536 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024048579A1 true WO2024048579A1 (ja) 2024-03-07

Family

ID=90099546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031209 WO2024048579A1 (ja) 2022-09-01 2023-08-29 酸性ガス吸着装置

Country Status (1)

Country Link
WO (1) WO2024048579A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222A (ja) * 1991-06-26 1993-01-08 Matsushita Electric Ind Co Ltd 吸着材再生装置
JPH06339612A (ja) * 1993-02-25 1994-12-13 Boc Group Plc:The 精製方法及びその装置
JP2011163181A (ja) * 2010-02-08 2011-08-25 Toyota Motor Corp 通路切換バルブおよび排気浄化装置
JP2014530093A (ja) * 2011-09-15 2014-11-17 コーニング インコーポレイテッド Co2捕捉のための収着剤基体およびその形成方法
JP2015511887A (ja) * 2012-03-14 2015-04-23 コーニング インコーポレイテッド 二酸化炭素捕捉用セグメント型反応器およびセグメント型反応器を用いた二酸化炭素捕捉方法
JP2017104808A (ja) * 2015-12-10 2017-06-15 Jfeスチール株式会社 圧力スイング吸着法によるガス分離方法及び設備

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222A (ja) * 1991-06-26 1993-01-08 Matsushita Electric Ind Co Ltd 吸着材再生装置
JPH06339612A (ja) * 1993-02-25 1994-12-13 Boc Group Plc:The 精製方法及びその装置
JP2011163181A (ja) * 2010-02-08 2011-08-25 Toyota Motor Corp 通路切換バルブおよび排気浄化装置
JP2014530093A (ja) * 2011-09-15 2014-11-17 コーニング インコーポレイテッド Co2捕捉のための収着剤基体およびその形成方法
JP2015511887A (ja) * 2012-03-14 2015-04-23 コーニング インコーポレイテッド 二酸化炭素捕捉用セグメント型反応器およびセグメント型反応器を用いた二酸化炭素捕捉方法
JP2017104808A (ja) * 2015-12-10 2017-06-15 Jfeスチール株式会社 圧力スイング吸着法によるガス分離方法及び設備

Similar Documents

Publication Publication Date Title
US8852322B2 (en) Gas purification process utilizing engineered small particle adsorbents
ES2717932T3 (es) Aparato para fabricar composiciones de recubrimiento, estratificados y elementos de adsorción
US8858690B2 (en) Thermally integrated adsorption-desorption systems and methods
AU2008254961B2 (en) Temperature swing adsorption of CO2 from flue gas utilizing heat from compression
US20130095996A1 (en) Methods of applying a sorbent coating on a substrate, a support, and/or a substrate coated with a support
EP2680948A2 (en) Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
WO2008143826A1 (en) Removal of co2, n2, and h2s from gas mixtures containing same
JP6999665B2 (ja) 平行通路コンタクター及び吸着ガス分離方法
ES2901130T3 (es) Método para producir un agente de adsorción para tratar gas comprimido y un dispositivo de adsorción provisto de dicho agente de adsorción
Lee et al. Integrated membrane contactor absorber/regeneration column process for CO2 capture with large scale module at various operating conditions
WO2024048579A1 (ja) 酸性ガス吸着装置
US10449479B2 (en) Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds
WO2024048567A1 (ja) 酸性ガスの回収方法
WO2024048568A1 (ja) 酸性ガス回収システム
WO2024048566A1 (ja) 酸性ガスの回収方法
WO2024048577A1 (ja) 酸性ガス吸着装置
WO2024048578A1 (ja) 酸性ガス吸着装置
WO2023248967A1 (ja) 酸性ガス吸着装置の再生方法、および、酸性ガス吸着装置の製造方法
WO2024004928A1 (ja) 酸性ガス吸着装置の再生方法、酸性ガス吸着装置の製造方法および酸性ガス吸着装置の運転方法
WO2023195388A1 (ja) 酸性ガス吸着装置の再生方法および酸性ガス吸着装置の製造方法
WO2022238474A1 (en) Co2 adsorption apparatus
Wright et al. Capture of carbon dioxide (CO 2) from air

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860341

Country of ref document: EP

Kind code of ref document: A1