WO2024048250A1 - Pile fabric and manufacturing method therefor - Google Patents

Pile fabric and manufacturing method therefor Download PDF

Info

Publication number
WO2024048250A1
WO2024048250A1 PCT/JP2023/029296 JP2023029296W WO2024048250A1 WO 2024048250 A1 WO2024048250 A1 WO 2024048250A1 JP 2023029296 W JP2023029296 W JP 2023029296W WO 2024048250 A1 WO2024048250 A1 WO 2024048250A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
pile
hydroxyalkanoate
poly
ground
Prior art date
Application number
PCT/JP2023/029296
Other languages
French (fr)
Japanese (ja)
Inventor
大関達郎
徳本裕幸
平井悠佑
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024048250A1 publication Critical patent/WO2024048250A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/233Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads protein-based, e.g. wool or silk
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/587Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads adhesive; fusible
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/02Pile fabrics or articles having similar surface features
    • D04B1/04Pile fabrics or articles having similar surface features characterised by thread material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C23/00Making patterns or designs on fabrics
    • D06C23/02Making patterns or designs on fabrics by singeing, teasing, shearing, etching or brushing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C23/00Making patterns or designs on fabrics
    • D06C23/04Making patterns or designs on fabrics by shrinking, embossing, moiréing, or crêping

Definitions

  • the present invention relates to a biodegradable pile fabric and a method for producing the same.
  • Patent Document 1 describes a biodegradable carpet in which piles are made of biodegradable fibers made of a biodegradable polymer whose main component is an aliphatic polyester such as polylactic acid.
  • Patent Document 2 describes a pile fabric in which the pile yarns are made of filament yarns containing aliphatic polyester fibers containing L-lactic acid and/or R-lactic acid as a main component.
  • backing treatment is usually used to prevent shedding.
  • Patent Document 3 describes that in a pile fabric using acrylic fibers, hair loss is prevented by thermocompression bonding the pile fabric from the back side.
  • the polylactic acid used in the pile fabrics described in Patent Documents 1 and 2 does not have marine degradability, and further improvements are required from the viewpoint of environmental protection. Furthermore, when backing treatment is used to prevent shedding, the pile fibers in the pile portion may shrink or fuse, resulting in a hard and rough texture. Further, when a pile fabric is thermocompression bonded from the back side as in Patent Document 3, the base structure of the pile fabric becomes hard, and the pile fabric may become hard.
  • the present invention provides a pile fabric that is ocean-degradable, has a good feel in the pile portion, has excellent flexibility, and suppresses shedding, and a method for producing the same.
  • One or more embodiments of the present invention are pile fabrics that include a ground weave and pile fibers that are entwined with ground yarns constituting the ground weave and are raised on the surface of the ground weave, the pile fibers comprising poly( 3-hydroxyalkanoate)-based fibers, the ground yarn includes fibers having a higher softening point than the poly(3-hydroxyalkanoate)-based fibers, and among the pile fibers entwined with the ground yarn, the ground yarn At least a portion of the poly(3-hydroxyalkanoate) fibers present on the back side of the threads are fused, and when the pile fabric is heat-treated for 15 minutes in a dry heat atmosphere at 140°C with no load, the difference between before and after heat treatment.
  • the rate of change in the length of the pile fibers is 15.0 to 40.0%, and the bending stiffness of the base structure of the pile fabric is 1.00 ⁇ 10 -4 N m 2 /m or less.
  • One or more embodiments of the present invention include a step of manufacturing a pile fabric including a ground texture and pile fibers that are entwined with ground yarns constituting the ground texture and are raised on the surface of the ground texture, and
  • the pile fibers include a step of thermocompression bonding from the side, the pile fibers include poly(3-hydroxyalkanoate)-based fibers, and the ground yarn has a higher softening point than the poly(3-hydroxyalkanoate)-based fibers.
  • the temperature conditions during the thermocompression bonding treatment are (1) above the softening point of the poly(3-hydroxyalkanoate)-based fibers and below the melting point of the poly(3-hydroxyalkanoate)-based fibers +10°C; and (2) if the softening point is lower than the softening point of the fiber, which is higher than the poly(3-hydroxyalkanoate) fiber in the base yarn, and the polishing step is not included, or if the polishing step is included, the polishing is , relates to a method for producing a pile fabric carried out at a temperature higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber and lower than the softening point of the poly(3-hydroxyalkanoate) fiber -40°C.
  • the present invention can provide a pile fabric that is marine degradable, has a good texture in the pile portion, has excellent flexibility, and has suppressed shedding. According to the manufacturing method of the present invention, it is possible to suitably obtain a pile fabric that is marine degradable, has a good texture in the pile portion, has excellent flexibility, and has suppressed shedding.
  • FIG. 2 is a manufacturing process diagram schematically showing a process of thermocompression bonding a pile fabric from the back side at a predetermined temperature.
  • FIG. 2 is a schematic cross-sectional view illustrating a method for evaluating the flexibility of pile fabric.
  • FIG. 2 is a schematic cross-sectional view illustrating a method for evaluating the flexibility of pile fabric. This is a photograph showing the surface of the pile portion of an example of pile fabric in which the ends of the hair are not fused. This is a photograph showing the surface of the pile portion of an example of a pile fabric in which the ends of the hair are fused.
  • This is a schematic explanation of a method for measuring the length of pile fibers.
  • the present inventors have made extensive studies in order to solve the above problems.
  • (1) the pile fibers are poly(3-hydroxyalkanoate) fibers (hereinafter referred to as (2) using ground yarn containing fibers with a higher softening point than poly(3-hydroxyalkanoate)-based fibers, and creating piles entwined with the ground yarn;
  • the fibers at least a part of the poly(3-hydroxyalkanoate) fibers present on the back side of the base yarn is fused, and (3) the pile fibers in the pile fabric are made to have a predetermined dry heat shrinkage rate of 140°C.
  • the pile fabric is made to have ocean degradability, and the texture of the pile part and the flexibility of the ground structure are improved. We have found that it can increase hair loss and suppress hair loss.
  • P3HA poly(3-hydroxyalkanoate)
  • pile fabric in order to prevent the pile fibers from falling out (shedding), backing treatment is performed, that is, adhesive is applied to the back side of the pile fabric and heated to a temperature of 100°C or higher (for example, 130°C) using a tenter. , the adhesive is dried and solidified, but when P3HA fibers are used as pile fibers, the P3HA fibers shrink greatly due to heat during the tenter process, resulting in pile fabrics that are hard to the touch and have a rough texture. .
  • the present inventors examined the pile fabric from the back side of the ground structure without performing backing treatment.
  • the melting point of the base yarn is +10°C or lower, and (2) the base yarn is lower than the softening point of the fiber whose softening point is higher than that of the poly(3-hydroxyalkanoate) fiber.
  • the pile fibers entangled in the fabric at least a portion of the P3HA fibers present on the back side of the ground yarn are fused, and the P3HA fibers that stand on the surface of the ground texture are not fused, thereby suppressing hair loss. It has been found that the soft feel of the pile part can be maintained and the flexibility of the ground structure can also be maintained well. Further, when producing a pile fabric, polishing may not be included, but if a polishing step is included, the soft texture of the pile portion can be maintained by performing the polishing under specific temperature conditions.
  • biodegradability refers to properties that can be differentiated to the molecular level through the action of microorganisms and eventually become water and carbon dioxide
  • marine degradability refers to properties that can be differentiated to the molecular level by the action of microorganisms in the ocean, It means the property of being differentiated down to the molecular level and eventually becoming water and carbon dioxide.
  • Poly(3-hydroxyalkanoate) is widely used as a biodegradable bioplastic with marine degradability. By using P3HA-based fibers as the pile fibers, excellent ocean degradability can be imparted to the pile fabric.
  • biodegradability of pile fabrics varies depending on aerobic or anaerobic conditions, aqueous or solid phase systems, microbial groups, temperature, etc. 2, ISO14853, ISO15985, etc.
  • biodegradability by microorganisms in seawater may be evaluated using the BOD (Biochemical Oxygen Demand) test method, which evaluates the amount of oxygen consumed.
  • the pile fibers include P3HA-based fibers.
  • P3HA fibers In one or more embodiments of the invention, the pile fibers include P3HA-based fibers. From the viewpoint of marine degradability, when the total amount of pile fibers is 100% by weight, it is preferable to contain P3HA fibers in an amount of 80% by weight or more, more preferably 90% by weight or more, and even more preferably 95% by weight or more. Preferably, it is particularly preferably composed of 100% by weight.
  • the pile fibers can contain other fibers, if necessary, within a range that does not impede the effects of the present invention. As other fibers, biodegradable fibers are preferred, and synthetic fibers containing aliphatic polyesters other than P3HA, natural fibers, regenerated fibers, and the like can be used.
  • Examples of aliphatic polyesters other than P3HA include polylactic acid, polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate, and polybutylene succinate.
  • Examples of natural fibers include natural cellulose fibers and natural animal fibers. Examples of natural cellulose fibers include cotton fibers, kapok fibers, flax fibers, hemp fibers, ramie fibers, jute fibers, Manila hemp fibers, and kenaf fibers.
  • Examples of natural animal fibers include wool fibers, mohair fibers, cashmere fibers, camel fibers, alpaca fibers, and angora fibers. Examples of regenerated fibers include regenerated cellulose fibers such as rayon, regenerated protein fibers such as regenerated collagen fibers, and the like.
  • P3HA-based fiber means a fiber containing 80% by weight or more of P3HA, preferably 85% by weight or more, more preferably 90% by weight or more, 95% by weight or more. It is more preferable that the content is at least % by weight. In one or more embodiments of the invention, the P3HA-based fibers may optionally be comprised of 100% by weight P3HA.
  • a resin having a 3-hydroxyalkanoate repeating unit can be used, and specifically, a resin having a 3-hydroxyalkanoate repeating unit represented by the following general formula (1) can be used.
  • R 1 represents an alkyl group having 1 to 15 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group may be linear or branched.
  • Examples of R 1 include linear or branched alkyl groups such as methyl group, ethyl group, propyl group, methylpropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, and hexyl group. can be mentioned.
  • P3HA preferably contains 50 mol% or more, more preferably 70 mol% or more of the 3-hydroxyalkanoate repeating unit represented by the general formula (1) based on the total monomer repeating units (100 mol%). , more preferably 80 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and may be 100 mol%.
  • P3HA may contain other repeating units such as 4-hydroxyalkanoate repeating units.
  • P3HA is a 3-hydroxyalkanoate repeating unit represented by the general formula (1) in which R 1 is a methyl group, that is, 3-hydroxybutyric acid (also called 3-hydroxybutyrate).
  • (hereinafter also simply referred to as "3HB") repeating units preferably contain 50 mol% or more based on the total monomer repeating units (100 mol%), more preferably 70 mol% or more, and still more preferably 80 mol%. % or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and may be 100 mol%.
  • poly(3-hydroxybutyrate) also referred to as "P3HB”
  • poly(3-hydroxybutyrate-co-3-hydroxyvalerate) also referred to as "P3HB3HV”
  • poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) also referred to as “P3HB3HH”
  • poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3) -hydroxyhexanoate) also referred to as “P3HB3HV3HH”
  • poly(3-hydroxybutyrate-co-4-hydroxybutyrate) also referred to as “P3HB4HB”
  • poly(3-hydroxybutyrate-co-4-hydroxybutyrate) also referred to as “P3HB4HB”
  • poly(3-hydroxybutyrate-co-3-hydroxydecanoate) also referred to as “P3HB4HB”
  • poly(3-hydroxybutyrate-co-3-hydroxydecanoate) and poly(3-hydroxybutyrate-
  • P3HA From the viewpoint of ocean degradability, it is preferable that all 3HB constituting P3HA be in the R form (D form). From the viewpoint of mechanical properties, P3HB3HH and/or P3HB4HB are preferable, and P3HB3HH is more preferable.
  • composition ratio of repeating units (monomer structural units) of P3HB3HH is not particularly limited, but from the viewpoint of balance between flexibility and strength, the molar ratio of 3-hydroxybutyrate/3-hydroxyhexanoate is 99/1 to 3-hydroxybutyrate/3-hydroxyhexanoate.
  • the ratio is preferably 80/20, and more preferably 97/3 to 85/15.
  • One type of P3HB3HH may be used alone, or a mixture of two or more types having different composition percentages of 3HB may be used.
  • P3HA is not particularly limited and can be produced by a known method, but from the viewpoint of easily obtaining P3HA with high marine degradability, it is preferable to produce it by a production method using microorganisms.
  • the production method using microorganisms known methods can be used.
  • the microorganism is not particularly limited as long as it has the ability to produce P3HA. Examples of microorganisms capable of producing P3HA include Aeromonas caviae, Cupriavidus necator, Ralstonia eutropha, and Alcaligenes ratus. s latus), etc.
  • the Alcaligenes eutrophus AC32 strain (FERM BP-6038) into which genes for poly(3-hydroxyalkanoate) synthase group were introduced (J. Bateriol., 179 , p4821-4830 (1997)), etc. may be used.
  • FERM BP-6038 the Alcaligenes eutrophus AC32 strain into which genes for poly(3-hydroxyalkanoate) synthase group were introduced
  • P3HA a commercially available product such as biodegradable polymer GP (Green Planet (registered trademark)) manufactured by Kaneka Corporation may be used.
  • the weight average molecular weight of P3HA is not particularly limited, but from the viewpoint of moldability and strength, it is preferably 50,000 to 3,000,000, more preferably 100,000 to 1,500,000.
  • the weight average molecular weight refers to that measured from polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using a chloroform eluent.
  • GPC gel permeation chromatography
  • a column suitable for measuring the molecular weight may be used as a column in the GPC.
  • the melt flow rate (MFR) of P3HA is not particularly limited, but according to JIS K 7210-1:2014, the melt flow rate (MFR) measured under the conditions of a temperature of 165°C and a load of 5 kg (49 N) is 0.1. It is preferably 100 g/10 minutes, more preferably 1 to 50 g/10 minutes, even more preferably 10 to 40 g/10 minutes. When the melt flow rate is within the above-mentioned range, the fluidity of the molten resin will be within an appropriate range, and fiberization will be good.
  • the P3HA-based fiber may contain a crystal nucleating agent and/or a lubricant. Furthermore, in one or more embodiments of the present invention, the P3HA-based fiber may contain other resin components and other additive components in addition to P3HA within a range that does not impede the effects of the present invention.
  • the P3HA-based fiber preferably contains 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, of a crystal nucleating agent based on 100 parts by weight of P3HA. , more preferably 0.5 to 8 parts by weight, particularly preferably 1 to 5 parts by weight.
  • the P3HA-based fiber preferably contains 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, and more preferably 0.1 to 10 parts by weight of a lubricant per 100 parts by weight of P3HA. It is more preferable to contain 5 to 8 parts by weight, particularly preferably 1 to 5 parts by weight. Further, the P3HA-based fiber may contain other additive components, based on 100 parts by weight of P3HA, at most 5 parts by weight, at most 3 parts by weight, or at most 1 part by weight. Further, the P3HA-based fiber may contain other resin components in an amount of 20% by weight or less, 10% by weight or less, or 5% by weight or less based on the total amount (100% by weight) of P3HA and other resin components.
  • the P3HA-based fiber can be composed of a resin composition containing P3HA, for example. That is, P3HA-based fibers can be obtained by fiberizing a resin composition containing P3HA.
  • the resin composition is not particularly limited, but preferably contains P3HA in an amount of 80% by weight or more, more preferably 85% by weight or more, and even more preferably 90% by weight or more.
  • the upper limit may be 100% by weight, but may be, for example, 98% by weight or less or 95% by weight or less.
  • the resin composition is not particularly limited, from the viewpoint of productivity and fiber properties, it is preferable that the resin composition further contains a crystal nucleating agent.
  • the crystal nucleating agent is not particularly limited as long as it is a compound that has the effect of promoting crystallization of P3HA.
  • sugar alcohol compounds, polyvinyl alcohol, chitin, chitosan, etc. are preferred, sugar alcohol compounds are more preferred, and pentaerythritol is even more preferred.
  • One type of crystal nucleating agent may be used alone, or two or more types may be used in combination.
  • the content of the crystal nucleating agent in the resin composition is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, and preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HA.
  • the amount is more preferably 0.5 to 8 parts by weight, and particularly preferably 1 to 5 parts by weight.
  • the resin composition is not particularly limited, from the viewpoint of productivity, it is preferable that the resin composition further contains a lubricant.
  • the lubricant is not particularly limited as long as it is a compound that has the effect of imparting lubricity to P3HA. Examples include fatty acid amide, alkylene fatty acid amide, glycerin monofatty acid ester, organic acid monoglyceride, sorbitan fatty acid ester, polyglycerin fatty acid ester, and higher alcohol fatty acid ester.
  • lubricants compounds having the effect of imparting external lubricity, specifically fatty acid amides, glycerin fatty acid esters, and the like are preferred.
  • fatty acid amides include monoamides and bisamides of fatty acids.
  • the fatty acid (fatty acid moiety) constituting the fatty acid amide preferably has 12 to 30 carbon atoms, more preferably from the viewpoint of giving the resin composition a suitably high melting point and suppressing deterioration of processability during melt processing. has 18 to 22 carbon atoms.
  • fatty acid amides include behenic acid amide, erucic acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, ethylene bis oleic acid amide, and ethylene bis oleic acid amide.
  • Examples include biserucic acid amide.
  • Examples of glycerin fatty acid esters include glycerin monoesters, glycerin diesters, and glycerin triesters.
  • glycerin triesters include glycerin diacetomonoesters such as glycerin diacetomonolaurate, glycerin diacetomonooleate, glycerin diacetomonostearate, glycerin diacetomonocaprylate, and glycerin diacetomonodecanoate.
  • glycerin diacetomonoesters such as glycerin diacetomonolaurate, glycerin diacetomonooleate, glycerin diacetomonostearate, glycerin diacetomonocaprylate, and glycerin diacetomonodecanoate.
  • One type of lubricant may be used alone, or two or more types may be used in combination.
  • the content of the lubricant in the resin composition is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HA.
  • the amount is preferably 0.5 to 8 parts by weight, more preferably 0.5 to 8 parts by weight, and particularly preferably 1 to 5 parts by weight.
  • the resin composition may contain plasticizers, inorganic fillers, organic fillers (cellulose, etc.), antioxidants, ultraviolet absorbers, dyes, pigments, etc., as necessary, within a range that does not impede the effects of the present invention.
  • Other additive components such as colorants and antistatic agents may also be included.
  • One type of other additive components may be used alone, or two or more types may be used in combination.
  • the amount of other additive components added may be 5 parts by weight or less, or 1 part by weight or less with respect to 100 parts by weight of P3HA.
  • the resin composition may contain resin components other than P3HA (other resin components), if necessary, within a range that does not impede the effects of the present invention.
  • resin components biodegradable resins are preferred.
  • other biodegradable resins include petroleum-derived resins such as polylactic acid, polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate, and polybutylene succinate, and natural polymers such as starch and cellulose. can be mentioned.
  • the other resin components one kind can be used alone, or two or more kinds can be used in combination.
  • the content of other resin components is preferably 20% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, based on the total amount (100% by weight) of the resin components.
  • P3HA-based fibers can be obtained, for example, by melt-spinning the resin composition.
  • a pellet-shaped resin composition obtained by melt-kneading the resin composition is melted using a melt extruder, and the molten resin composition is continuously extruded from a nozzle to form fibers.
  • Spun filaments (undrawn filaments) can be produced.
  • the melt spinning temperature is not particularly limited as long as it is higher than the melting point of the resin composition and lower than the thermal decomposition temperature, but for example, when the melting point of the resin composition is Tm, it is [Tm+5°C] to [Tm+40°C]. It may be [Tm+10°C] to [Tm+30°C]. More specifically, the temperature may be 145 to 180°C, 150 to 180°C, or 150 to 170°C.
  • melt spinning temperature refers to a temperature in the highest temperature range among the temperatures applied while the resin composition is fiberized.
  • the glass transition temperature, crystallization temperature, melting point, and thermal decomposition temperature of the resin or resin composition are measured using a differential scanning calorimeter (for example, manufactured by TA Instruments, model number "DSC25"). It can be measured by differential scanning calorimetry under the conditions of a temperature range of 0 to 180°C, a temperature increase rate of 10°C/min, and a cooling rate of 10°C/min. Specifically, it can be measured as described in Examples.
  • the glass transition temperature and melting point of the fibers are measured using a differential scanning calorimeter (for example, manufactured by TA Instruments, model number "DSC25") at a temperature range of 0 to 180°C and a heating rate of 10°C.
  • the glass transition temperature and melting point of the fiber are equivalent to the melting point of the resin or resin composition constituting the fiber.
  • the resin composition is not particularly limited, but for example, from the viewpoint of moldability and fiber strength, the weight average molecular weight is preferably 50,000 to 3,000,000, and preferably 100,000 to 1,500,000. It is more preferable that
  • the environmental temperature when extruding the molten resin composition from the spinneret is not particularly limited, and when the glass transition temperature of the resin composition is Tg, it may be [Tg + 5 ° C] to [Tg + 50 ° C], [ [Tg+10°C] to [Tg+40°C]. More specifically, the temperature can be adjusted as appropriate within the range of, for example, 5 to 40°C. It is preferable to apply rectified air to the fibers (spun filaments) extruded from the spinneret. The rectified air is also called quench air, and has the function of stabilizing the flow of yarn. It is also possible to cool the spun filaments by using cooled gas as quench air.
  • the temperature of the quench air is preferably 5 to 40°C, more preferably 10 to 30°C. When the temperature is 5° C. or higher, it is easy to suppress generation of residual stress in the fibers. When the temperature is 40° C. or lower, the resin is sufficiently solidified, and it is easy to prevent the fibers from sticking.
  • the wind speed of the quench air is not particularly limited, but is preferably 0.1 to 3.0 m/sec, for example. If it is 0.1 m/sec or more, the rectification effect will be easily exhibited, and if it is 3.0 m/sec or less, the quenching wind will not be too strong, the yarn will not be disturbed, and fibers will stick to each other or yarn breakage will occur. It is suppressed from doing so.
  • the spun filaments can be drawn to obtain drawn filaments (multifilaments).
  • drawn filaments multifilaments
  • Stretching is not particularly limited, and may be carried out by a two-step spinning/drawing method or by a direct spinning/drawing method. In the two-stage spinning and drawing method, drawing is performed after the spun filament is wound up. In the direct spinning/drawing method, spinning and drawing are performed continuously without winding the spun filaments. Further, the stretching step may be performed in multiple stages by combining a plurality of roll pairs. The surface temperatures and speeds of the multiple rolls may be the same or different.
  • the stretching temperature is not particularly limited, but may be, for example, 30 to 100°C, or 40 to 90°C.
  • the stretching ratio may be, for example, 1.5 to 20 times. When the stretching ratio is 1.5 times or more, the strength of the fiber can be further increased. Before stretching, an oil agent may be applied to the spun filaments as necessary.
  • the tensile strength of the drawn filament is preferably 0.5 to 10 cN/dtex, more preferably 0.7 to 10 cN/dtex, and even more preferably 1.0 to 10 cN/dtex.
  • crimping is easy to be imparted, and the texture and tensile strength of the pile fabric using short fibers obtained by cutting after crimping are further improved. can be increased.
  • the tensile strength of the drawn filament can be measured based on JIS L 1013:2021.
  • the drawn filament can be crimped to give it bulk.
  • the crimping process is not particularly limited, and can be performed by, for example, a known crimping method such as a gear crimp method or a stuffing box method.
  • the obtained P3HA-based fibers have crimps, specifically mechanical crimps.
  • the drawn filaments may be preheated before crimping.
  • the crimped drawn filament (crimped yarn) may be used as is as pile fiber, but from the viewpoint of productivity of pile fabric, it is desirable to use it as short fiber cut to a predetermined fiber length. That is, the P3HA-based fibers may be long fibers (drawn filaments) or short fibers.
  • crimped P3HA short fibers as pile fibers, it is possible to suitably obtain a pile fabric that is excellent in feel and heat retention, and is lightweight and has a fleece-like or poodle-like appearance.
  • the fiber length of the P3HA short fibers is not particularly limited, but from the viewpoint of easily obtaining a pile fabric with a large pile height, for example, a pile height of 8 mm or more, it may be 20 to 176 mm, or 25 to 138 mm. The length may be 28 to 110 mm.
  • the number of crimps of the P3HA fiber is preferably 5 to 25 crimps/25 mm, more preferably 6 to 20 crimps/25 mm, from the viewpoint of achieving both short fiber card passability and soft texture of the pile fabric. Preferably, the number is 7 to 18 pieces/25 mm, more preferably 8 to 17 pieces/25 mm.
  • the number of crimps in the entire length may be counted under microscope observation to obtain the number of crimps, and then the number may be converted into the number of crimps per 25 mm.
  • the drawn filament may be preheated by, for example, wet heat treatment or dry heat treatment.
  • the moist heat treatment can be performed using, for example, steam.
  • the dry heat treatment may be performed using, for example, a hot air oven or an electric heater.
  • the preheating temperature of the drawn filament is more preferably 60 to 110°C, even more preferably 70 to 100°C, even more preferably 80 to 90°C.
  • the stuffing box pressure is more preferably 0.001 to 0.08 MPa, even more preferably 0.001 to 0.06 MPa, even more preferably 0.001 to 0.04 MPa.
  • the P3HA-based fiber preferably has a single fiber fineness of 0.1 to 100 dtex, more preferably 0.5 to 50 dtex, even more preferably 1.0 to 25 dtex, and 1. Even more preferably it is .0 to 15 dtex.
  • the single fiber fineness of P3HA-based fibers can be measured by an autobibroscopy method.
  • the P3HA short fibers preferably have a tensile strength of 0.3 to 6.0 cN/dtex, more preferably 0.5 to 6.0 cN/dtex, and even more preferably It is 1.0 to 6.0 cN/dtex.
  • the tensile strength of P3HA-based short fibers can be measured based on JIS L 1015:2021.
  • the weight average molecular weight of the P3HA fiber is not particularly limited, but is preferably 50,000 to 3,000,000, more preferably 100,000 to 3,000,000, and even more preferably 100,000 to 3,000,000. ,000 to 1,500,000, more preferably 100,000 to 500,000.
  • the P3HA-based fibers preferably have a softening point of 100°C or higher, more preferably 110°C or higher, and 120°C or higher, from the viewpoint of easily increasing the temperature conditions in the pile fabric manufacturing process such as polishing. is even more preferable.
  • the upper limit of the softening point is not particularly limited, but may be, for example, 150° C. or lower, or 140° C. or lower from the viewpoint of imparting good hair loss prevention properties.
  • the softening point of the fiber can be specifically measured as described in the Examples.
  • the P3HA-based fiber preferably has a dry heat shrinkage rate of 10.0 to 30.0% at 100°C from the viewpoint of not causing fusion between the fibers and obtaining a soft and good texture. More preferably, it is between 20% and 20%.
  • the 100°C dry heat shrinkage rate of the P3HA-based fiber is defined as the fiber length of the P3HA-based fiber before and after the heat treatment of 100 mg when the P3HA-based fiber is heat-treated for 15 minutes in a dry heat atmosphere at 100°C with no load. /dtex load, and can be calculated based on the following formula (1).
  • L0 is the fiber length of the fiber before heat treatment
  • L1 is the fiber length of the fiber after heat treatment.
  • the ground yarn contains fibers having a higher softening point than P3HA-based fibers. This makes it possible to easily fuse at least a portion of the P3HA fibers present on the back side of the ground yarn while not fusing the P3HA fibers that are raised on the surface of the ground fabric in the thermocompression bonding process described below. Can be done. In addition, this prevents the ground structure from becoming hard during the thermocompression bonding process described below, making it easy to maintain good flexibility. From the viewpoint of biodegradability, it is preferable to use fibers that are biodegradable, particularly marine degradable, as the fibers that have a higher softening point than the P3HA fibers.
  • biodegradable fibers synthetic fibers containing aliphatic polyesters other than P3HA, natural fibers, regenerated fibers, and the like can be used.
  • aliphatic polyesters other than P3HA include polylactic acid.
  • natural fibers include natural cellulose fibers and natural animal fibers.
  • natural cellulose fibers include cotton fibers, kapok fibers, flax fibers, hemp fibers, ramie fibers, jute fibers, Manila hemp fibers, and kenaf fibers.
  • natural animal fibers include wool fibers, mohair fibers, cashmere fibers, camel fibers, alpaca fibers, and angora fibers.
  • regenerated fibers include regenerated cellulose fibers such as rayon, and regenerated protein fibers such as regenerated collagen fibers (for example, regenerated collagen fibers "Luxaire (registered trademark)" manufactured by Kaneka Corporation).
  • regenerated cellulose fibers such as rayon
  • regenerated protein fibers such as regenerated collagen fibers "Luxaire (registered trademark)" manufactured by Kaneka Corporation.
  • a spun yarn containing one or more of these biodegradable fibers can be used, and rayon, wool, cotton fiber, and regenerated collagen fiber, which do not have a softening point, or these fibers can be used.
  • Spun yarns containing one or more types can be suitably used.
  • the base yarn contains heat-fusible fibers in addition to fibers with a higher softening point than P3HA-based fibers, and the total of the fibers constituting the base yarn is 100%.
  • the content of the heat-fusible fibers may be 5% by weight or more or 10% by weight or more.
  • the heat-fusible fiber a fiber whose softening point is equal to or lower than the softening point of the poly(3-hydroxyalkanoate) fiber can be suitably used.
  • preferable examples include heat-fused polyester fibers, heat-fused nylon fibers, and the like.
  • P3HA fibers used for pile fibers may be used.
  • a fiber yarn containing cotton fiber and P3HA-based fiber is used as the ground thread
  • the P3HA-based fibers derived from pile fibers existing on the back side of the ground thread and the P3HA-based fibers constituting the ground thread are fused in the thermocompression bonding process. It can prevent hair loss more effectively.
  • the heat-fusible fibers may be used alone or in combination of two or more. From the viewpoint of increasing the flexibility of the pile fabric, the content of heat-fusible fibers is desirably 50% by weight or less, and 30% by weight or less, when the total amount of fibers constituting the ground yarn is 100% by weight. It is more preferable.
  • the bending stiffness of the ground structure of the pile fabric should be 1.00 ⁇ 10 -4 N ⁇ m 2 /m or less, and 3.00 ⁇ 10 ⁇ 5 N ⁇ m 2 /m or less. is preferable, more preferably 1.0 ⁇ 10 ⁇ 5 N ⁇ m 2 /m or less, and still more preferably 9.00 ⁇ 10 ⁇ 6 N ⁇ m 2 /m or less.
  • the lower the bending rigidity of the base structure of the pile fabric, the better, and the lower limit is not particularly limited, but for example, from the viewpoint of workability during product sewing, it is 5.00 ⁇ 10 -6 N. It may be m 2 /m or more.
  • the bending rigidity of the ground structure of a pile fabric is measured using the ground structure as a sample, and specifically, it can be measured as described in the Examples.
  • Pile fabric has pile fibers in the pile part that are not fused and has an excellent texture.
  • the rate of change (hereinafter also referred to as 140°C dry heat shrinkage rate) is preferably 15.0 to 40.0%, more preferably 18.0 to 38.0%, and 20.0 to 40.0%. More preferably, it is 35.0%.
  • the 140° C. dry heat shrinkage rate of the pile fabric can be specifically measured as described in Examples.
  • the amount of hair loss of the pile fabric is preferably 0.60 g/m 2 or less, more preferably 0.50 g/m 2 or less, and 0.40 g/m 2 or less. It is more preferably less than m 2 , and even more preferably less than 0.30 g/m 2 .
  • the lower limit of the shedding amount of the pile fabric is preferably as close to 0 g/m 2 as possible, but it may be 0.01 g/m 2 or more. In this specification, the amount of hair loss can be specifically measured as described in Examples.
  • the pile fabric is not particularly limited, but from the viewpoint of lightness and heat retention, the weight per unit length (fabric weight) is preferably 300 to 3500 g/m, more preferably 300 to 2000 g/m. , more preferably 300 to 1200 g/m. In this specification, the weight per unit length of the pile fabric can be measured as described in the Examples.
  • the pile height of the pile fabric is not particularly limited and can be set as appropriate depending on the intended use, and may be, for example, 2 to 120 mm. From the viewpoint of suitable use as clothing fabric, the thickness is preferably 2 to 70 mm, more preferably 5 to 60 mm.
  • Pile fabric is suitably used as eco-fur, and specifically can be used for clothing fabrics such as jackets and coats, fabrics for toys such as stuffed animals, and bedding products such as blankets and sheets.
  • the pile fabric may be a pile fabric or a pile knit fabric. When used as a clothing fabric, it is preferably a pile knitted fabric from the viewpoints of flexibility, bulk, heat retention, breathability, drapability, and the like.
  • the pile knitted fabric may have a fleece-like texture or a poodle-like texture from the viewpoints of flexibility, bulkiness, heat retention, and the like.
  • the pile knitted fabric may be a high pile knitted fabric with a pile height of 15 to 100 mm.
  • the ground texture may be a stockinette ground texture.
  • the pile knitted fabric includes a stockinette ground structure and pile fibers that are raised on the surface of the ground structure while being entwined with the ground yarns constituting the ground structure.
  • the ground texture is stockinette, it is possible to construct a texture with excellent elasticity.
  • Stockinette is generally a fabric made by creating a loop with one or more threads, hooking it to that loop, and continuing to create the next new loop, making the loops continuous in a plane. be.
  • Weft-knitted knitting is a process in which the yarn progresses in the horizontal direction, such as by making loops and reciprocating from side to side to form a flat fabric, or by progressing in a spiral to form a cylindrical fabric.
  • Warp-knitted knitting is a fabric in which a large number of warp threads arranged in an orderly manner create loops and are connected to adjacent left and right warp threads through the loops to form a fabric.
  • flat knitted stockinette includes knitting methods such as flat knitting, rubber knitting, and purl knitting, and warp knitted stockinette has knitting methods such as Denby knitting, cord knitting, atlas knitting, and chain knitting. As the method of knitting the ground structure of the pile knit, flat knit stockinette is preferable from the viewpoints of marketability and productivity.
  • the arrangement of the pile fibers with respect to the stockinette may be arranged so that the pile fibers are entwined with all loops of the ground yarn that constitutes the stockinette of the ground structure, or
  • the loops may be arranged so as to have portions in which pile fibers are not entangled in the wale direction and/or the course direction.
  • FIG. 1 is a schematic explanatory diagram of an example of pile fabric.
  • the pile fabric 1 is composed of a ground yarn 2 and pile fibers 4 that are spread around the ground yarn 2 (loop of the ground yarn) on the surface of the fabric structure to form a pile portion 3.
  • the pile fibers 4 are fused to the outside of the ground yarn 2 to form a fused portion 5, which is crimped to the ground yarn 2.
  • a method for manufacturing a pile fabric can include, for example, a process of producing a pile fabric, and a process of subjecting the pile fabric to thermocompression bonding from the back side of the ground structure.
  • the pile fabric can be produced by a general known method except for using the ground yarn and pile fibers described above.
  • thermocompression bonding process is carried out at a temperature of (1) above the softening point of the poly(3-hydroxyalkanoate)-based fiber and below the melting point of the poly(3-hydroxyalkanoate)-based fiber +10°C, and (2) on the poly(3-hydroxyalkanoate) fiber in the ground yarn.
  • -Hydroxyalkanoate)-based fibers is carried out under temperature conditions that satisfy the requirement that the softening point is lower than the softening point of the fiber, which is higher than that of the fiber.
  • the pile fibers entangled with the ground yarns in addition to the pile fibers on the back side of the pile fabric are inhibited from fusing. However, it is possible to suppress the ground tissue from becoming hard. If the temperature during the thermocompression bonding treatment is below the softening point of the fiber, which has a higher softening point than the poly(3-hydroxyalkanoate) fiber in the ground yarn, the P3HA fibers raised on the surface of the ground texture will not fuse.
  • the temperature conditions in the thermocompression bonding treatment are preferably at least the softening point of poly(3-hydroxyalkanoate) fibers +5°C and below the melting point of poly(3-hydroxyalkanoate) fibers, more preferably at The softening point of the poly(3-hydroxyalkanoate) fiber is +5°C or higher, and the melting point of the poly(3-hydroxyalkanoate) fiber is -10°C or lower.
  • the thermocompression bonding treatment can be carried out, for example, by placing the pile fabric so that its back side is in contact with a heating roll or hot plate, and applying pressure with a rubber roll or the like.
  • a heating roll or hot plate When using a heating roll or hot plate, a short-time thermocompression bonding process can be performed, and the pile fibers (poly(3-hydroxyalkanoate) fibers) arranged outside the ground threads on the back side of the ground texture. At least a portion of the material can be thermocompression bonded. Since the pile fibers (poly(3-hydroxyalkanoate) fibers) on the surface of the pile fabric are not heated to the extent that they are melted, the pile fibers raised on the surface of the base structure are not melted.
  • a metal roll whose surface is coated with a fluororesin such as polytetrafluoroethylene can be used.
  • thermocompression bonding the pile fabric from the back side it is preferable to cool the pile fiber side that is raised on the surface of the pile fabric. Further, after the pile fabric is subjected to thermocompression bonding from the back side, it is preferable that the back side of the pile fabric is cooled.
  • the cooling means it is preferable to cool the front and/or back surfaces of the pile fabric with a cooling roll through which water having a temperature of 50° C. or lower is passed.
  • the temperature of the water passed through the cooling roll is preferably 10 to 40°C, more preferably 10 to 35°C, and still more preferably 15 to 30°C, from the viewpoint of cooling efficiency and productivity.
  • thermocompression bonding process will be explained in more detail using the drawings.
  • FIG. 2 is a manufacturing process diagram schematically showing the process of thermocompression bonding a pile fabric from the back side at a predetermined temperature.
  • the processing device 10 used for the thermocompression bonding process includes a heating roll 11, a cooling rubber roll 12 that pressurizes the heating roll 11, and through which water at a temperature of 50°C or lower passes through the cooling rubber roll 12, and a cooling rubber roll 12 that pressurizes the cooling rubber roll 12 and allows water at 50°C or less to flow inside. It includes a metal cooling roll 13 through which water passes, a metal cooling roll 14 through which water at a temperature of 50° C. or below passes, and a guide roll 15.
  • the pile fabric raw material 18 is led out from the container 16 and supplied so that the back surface 18b is in contact with the heating roll 11 and the front surface (pile portion side) 18a is in contact with the cooling rubber roll 12. Further, after being subjected to the thermocompression bonding process, the back surface 18b is cooled by the metal cooling roll 14.
  • the pile fabric 19 that has been processed is stored in the container 17.
  • thermocompression bonding process is not limited to the processing apparatus shown in FIG. 2, and may be performed using a device with a partially modified configuration of the processing apparatus shown in FIG. 2, a hot plate, and other devices.
  • a rubber roll that does not have a cooling effect can be used instead of the cooling rubber roll 12, and the metal cooling roll 13 may be omitted.
  • the nip pressure is 0.01 to 100 Kgf/cm 2 (0.98 KPa to 9.8 MPa), the supply speed of the pile fabric is 0.1 to 20 m/min, and the heater (heating roll, etc.) is used.
  • the contact time is preferably 1 to 60 seconds.
  • the nip pressure should be 2.0 to 80 Kgf/cm 2 (0.20 to 7.84 MPa), and the heater contact time should be 1 to 10 seconds. is more preferable.
  • stretching treatment may be performed in the wale direction after the thermocompression bonding process.
  • stretching treatment can be performed using a known device such as a tenter.
  • a tenter is generally used to widen and heat set the fabric to a predetermined width by holding both edges of the fabric while heating it at a predetermined temperature. It may or may not be heated, as in
  • there are two methods for holding tenters a clip tenter method and a pin tenter method. Either method may be used, but from the viewpoint of process stability and/or productivity, the pin tenter method is used. It is preferable to do so.
  • the stretching treatment after the thermocompression bonding treatment is performed while heating the high pile knitted fabric, it is preferable to perform it at the minimum necessary temperature and minimum necessary air volume so as not to damage the surface of the high pile knitted fabric.
  • the temperature is preferably 0°C or higher and below the softening point of the poly(3-hydroxyalkanoate) fiber, or 10°C or higher and the softening point of the poly(3-hydroxyalkanoate) fiber.
  • the softening point of the poly(3-hydroxyalkanoate) fiber is more preferably -10°C or lower, more preferably 20°C or higher and the softening point of the poly(3-hydroxyalkanoate) fiber -20°C or lower.
  • the stretching treatment may also be performed before the thermocompression bonding treatment.
  • the stretching treatment before the thermocompression bonding treatment may be performed at room temperature (5 to 35°C).
  • the pile fibers raised on the surface of the fabric may be polished before and/or after the thermocompression bonding process.
  • polishing before the thermocompression bonding process is also referred to as pre-polishing. Polishing is not always necessary, but when polishing is performed, polishing is performed at a temperature equal to or higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber, and at a softening point of -40 It is necessary to carry out at a temperature below °C. As a result, the P3HA fibers standing on the surface of the ground structure are not fused and the soft feel of the pile portion can be maintained.
  • Polishing is preferably carried out at a temperature that is higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber by +30°C and lower than the softening point of the poly(3-hydroxyalkanoate) fiber by -40°C. It is more preferable to conduct the reaction at a temperature that is higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber by +35°C and lower than the softening point of the poly(3-hydroxyalkanoate) fiber by -45°C.
  • tumble treatment may be performed within a range that does not impede the object of the present invention.
  • the tumble treatment may be performed, for example, at a temperature above the glass transition temperature and below the softening point of the poly(3-hydroxyalkanoate) fiber.
  • the softening point of poly(3-hydroxyalkanoate) fibers -10°C or lower it is preferable to carry out at a temperature of 30°C or higher, the softening point of poly(3-hydroxyalkanoate) fibers -10°C or lower, and a temperature of 60°C or higher and a softening point of poly(3-hydroxyalkanoate) fibers of -20°C or lower. It is more preferable.
  • pile fabrics and products such as clothing made using them biodegrade if left in an environment where microorganisms exist, so they do not require special disposal and are environmentally friendly.
  • Fiber physical properties (1) Single fiber fineness Measured by autobibroscopic method. Specifically, 20 fibers were arbitrarily selected from drawn filaments or short fibers, and the fineness of each fiber was measured using an autobibro-type fineness measuring device "DENIER COMPUTER Type DC-11" (manufactured by Saatchi Corporation). The results were averaged to obtain the single fiber fineness. (2) Tensile strength The tensile strength of short fibers was measured based on JIS L 1015:2021.
  • L0 is the fiber length of the fiber before heat treatment
  • L1 is the fiber length of the fiber after heat treatment.
  • 100°C dry heat shrinkage rate (%) [(L0-L1)/L0] x 100 (1)
  • Softening point When 1g of fiber is opened, placed on a hot plate heated to an arbitrary temperature, and pressed for 3 seconds at a pressure of 0.07 Kgf/ cm2 , each single fiber on the surface in contact with the hot plate The temperature at which the fibers softened and bonded to form a plate shape was defined as the softening point of the fibers.
  • Glass transition temperature and melting point Using a differential scanning calorimeter (manufactured by TA Instruments, model number “DSC25”), the measurement temperature range is 0 to 180°C, the heating rate is 10°C/min, and the cooling rate is 10°C/min. The glass transition temperature and melting point of the fibers were measured by differential scanning calorimetry under conditions of 10 minutes.
  • Amount of hair loss The surface of the pile fabric was brushed with a rubber brush (product name "Prescale Mat” 5 mm (particle diameter), length 4 cm, width 10.5 cm, manufactured by Fuji Film Co., Ltd.), and a 600 g load ( While applying a constant load of 14.3 kg/cm 2 ), rub the hair 10 times in the forward direction and 10 times in the opposite direction with a stroke width of 30 cm, collect the loose hair with adhesive tape, and convert the weight to 1 m 2 .
  • the amount of hair loss was determined. (6) Evaluation of hair loss Based on the amount of hair loss, evaluation of hair loss was performed in the following four ranks. A: 0.3g/ m2 or less (very good level) B: More than 0.3g/ m2 and less than 0.6g/ m2 (good level) C: More than 0.6g/ m2 and less than 1.0g/ m2 (slightly poor level) D: Exceeding 1.0g/ m2 (defective level) (7) Fusion of the ends of the hair The pile fabric was placed on a horizontal table, and the fusion of the ends of the hair in the pile was confirmed visually and by touch. No fusion: No fusion was visually confirmed, and the tips of each pile fiber in the pile part were independent.
  • FIG. 5 is a photograph of the surface of the pile portion of an example of pile fabric in which the ends of the hair are not fused. Fusion: Fusion is visually confirmed, and the tips of multiple pile fibers in the pile part are fused. When you touch the surface of the fabric with your hand, you can see that the ends of the hair are fused together, and the fused areas give a rough and hard feel.
  • FIG. 6 is a photograph of the surface of the pile portion of an example of a pile fabric in which the ends of the hair are fused.
  • Dry heat shrinkage rate at 140°C A sample piece cut into a 5 cm x 5 cm square was taken from the pile fabric, and a mark was marked on the back side of the sample piece with a magic pen. Place the marked sample piece on a horizontal table, and as shown in FIG. , the distance 51 from the top 6 of the ground texture to the leading edge 9 of the pile fibers was measured. This distance was defined as the length L2 of the pile fiber before heat treatment. Subsequently, this sample piece was heat-treated for 15 minutes under a dry heat atmosphere at 140° C. without any load. The length L3 of the pile fibers at the marked locations after the heat treatment was measured in the same manner, and the dry heat shrinkage rate at 140° C. was calculated based on the following formula (2).
  • Pile fiber 1 P3HB3HH staple fibers from Production Example 1, which will be described later, were used.
  • Ground thread Ground yarn 1: Two cotton spun yarns with a cotton count of 40 were aligned and used. Spun cotton yarn has no softening point.
  • Ground yarn 2 Two spun yarns of cotton count 30 made by blending cotton fibers with a fiber length of 28.6 to 34.1 mm and P3HB3HH fibers of Production Example 1 described later in a ratio of 50 parts by weight: 50 parts by weight are aligned. I used it. Cotton fibers do not have a softening point.
  • the resulting pellet-shaped resin composition had a glass transition temperature of 2°C, a crystallization temperature of 100°C, a melting point of 146°C, a thermal decomposition temperature of 180°C, and a weight average molecular weight of 350,000.
  • the glass transition temperature, crystallization temperature, melting point, and thermal decomposition temperature of the pelletized resin composition were measured using a differential scanning calorimeter (manufactured by TA Instruments, model number "DSC25”) within the measurement temperature range of 0 to 0.
  • the weight average molecular weight of the pellet-shaped resin composition was determined by differential scanning calorimetry at 180°C, a temperature increase rate of 10°C/min, and a cooling rate of 10°C/min. It was measured from polystyrene equivalent molecular weight distribution using permeation chromatography (GPC).
  • the obtained resin composition pellet was melted using a kneading extruder (single-screw extruder, screw diameter 25 mm).
  • the obtained melt was discharged from a spinning nozzle (temperature: 175° C., shape of discharge hole: circular, diameter of discharge hole: 0.3 mm, number of discharge holes: 368) to obtain a spun filament.
  • the flow rate of the melt was adjusted to 12.2 kg/h using a gear pump.
  • air at 20° C. was blown onto the spun filaments discharged from the circumferential direction at a speed of 0.7 m/s.
  • the cooled spun filament is taken up by the first take-up roll section (speed: 448 m/min), transported in order by the first to fourth transport roll sections (speed: 471 m/min), and then the first winding is carried out. It was taken up by a take-up roll section (speed: 461 m/min) and stored at room temperature (5 to 35°C) for 18 hours.
  • the spun filament (undrawn filament) is taken up from the first take-up roll part by a second take-up roll part (speed: 50 m/min, roll temperature: 30°C), and the drawn roll part (110 m/min, roll
  • the film is stretched at a temperature of 90°C), transported by a take-off roll section (heat treatment roll section) (speed: 110 m/min, roll temperature: 100°C), and wound at a second winding roll section (speed: 100 m/min).
  • a drawn filament was obtained.
  • the stretching ratio was 2.0 times.
  • a roll part comprised of two rolls each having the same speed and the same temperature was used as the take-up roll part and the conveyance roll part.
  • P3HB3HH staple fibers were obtained by crimping the yarn under a stuffing pressure of 0.04 MPa and cutting the resulting crimped yarn using a tow cutter to have a fiber length of 51 mm.
  • the obtained P3HB3HH short fibers had a single fiber fineness of 6.0 dtex, a tensile strength of 1.51 cN/dtex, a 100°C dry heat shrinkage rate of 15.3%, a glass transition temperature of 2°C, a melting point of 146°C, and a softening point.
  • the temperature was 125° C. and the weight average molecular weight was 250,000.
  • Example 1 A sliver knitting machine (circular knitting machine) was used to produce eco-fur.
  • Ground yarn 1 and pile fiber sliver (10 to 14 g/m) consisting of the P3HB3HH short fibers of Production Example 1 were fed to the circular knitting machine to knit a high pile knitted fabric.
  • the number of loops in the wale of the ground texture was 16 to 17/inch, and the number of loops in the course was 22 to 33/inch.
  • the pile fibers on the raised side of the high pile knit were adjusted by pre-polishing and pressing. Specifically, first, pre-polishing was performed twice at 80° C., and then pressuring was performed twice.
  • the width of the high pile knitted fabric was stretched from 140 cm to 160 cm using a pin tenter dryer while keeping the temperature inside the dryer at room temperature (5 to 35° C.).
  • the high pile knitted fabric (width 160 cm) obtained above was bonded using the thermocompression bonding device shown in Fig. 2, with the temperature of the heating roll being 130°C, the contact time between the heating roll and the high pile knitting fabric being 5 seconds, and the heating roll and cooling.
  • a thermocompression bonding process was performed from the back side under the condition that the nip pressure between the rubber rolls was 50 Kgf/cm 2 (4.9 MPa). At that time, the width of the high pile knitted fabric shrank to 135 cm.
  • the high pile knitted fabric was dried for 3 minutes using a pin tenter dryer at a dryer internal temperature of 70° C. while being stretched to a width of 160 cm, and cooled to 50° C. or lower while maintaining the width at 160 cm.
  • the pile fibers on the surface of the pile fabric were adjusted by polishing, brushing and shirring. Specifically, first, brushing was performed twice, then polishing was performed twice at 80°C, then shearing was performed twice, and finally polishing was performed once at 80°C. Finally, a fleece-like high pile knitted fabric with a basis weight of 800 g/m and a pile height of 18 mm was obtained.
  • Example 2 A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1, except that the temperature of the heating roll was 140° C. during the thermocompression bonding process.
  • Example 3 A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1 except that the temperature of the heating roll was 150° C. during the thermocompression bonding process.
  • Example 4 The high pile knitted fabric obtained in the same manner as in Example 1 was further tumbled for 15 minutes in a tumble dryer heated to 110°C to obtain a poodle-like high pile knitted fabric with a basis weight of 800 g/m and a pile height of 15 mm. Ta.
  • Example 5 A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1 except that polishing was not performed.
  • Example 6 A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1 except that the above-mentioned ground yarn 2 (cotton-P3HB3HH blended yarn) was used as the ground yarn.
  • Example 1 A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1, except that the temperature of the heating roll was 120° C. during the thermocompression bonding process.
  • Example 2 A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1 except that the temperature of the heating roll was 160° C. during the thermocompression bonding process.
  • Example 5 A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1, except that backing treatment was performed instead of thermocompression bonding treatment to prevent shedding of the pile fabric.
  • the method of backing processing is as shown below.
  • the back surface of the obtained pile fabric was impregnated with a backing resin.
  • the backing resin an emulsion copolymer latex containing acrylic acid ester as a main component was used, and an aqueous solution (emulsion) with a latex concentration of 40 wt % was used, and the resin was impregnated with a solid content of 50 g/m 2 .
  • the high pile knitted fabric was dried for 3 minutes using a pin tenter dryer at a dryer internal temperature of 130° C. while being stretched to a width of 160 cm, and then cooled to 80° C. or lower while maintaining the width at 160 cm.
  • Example 6 in which cotton-P3HB3HH blended yarn was used as the ground yarn, had a shedding evaluation of A, and had particularly excellent shedding characteristics.
  • Comparative Example 1 in which the temperature of the heating roll during the thermocompression bonding process was set at 120° C., the pile fibers on the back side of the pile fabric were not fused, and the shedding was evaluated as D.
  • Comparative Example 2 in which the temperature of the heating roll during the thermocompression bonding process was set at 160°C, the bending rigidity of the ground structure exceeded 1.00 ⁇ 10 -4 , and in addition to the pile fibers on the back side of the pile fabric, The pile fibers entwined with the ground yarns were also fused, making the ground structure stiff and the flexibility of the pile fabric was rated C.
  • a pile fabric comprising a ground weave and pile fibers that are entwined with the ground threads constituting the ground weave and are raised on the surface of the ground weave,
  • the pile fibers include poly(3-hydroxyalkanoate) fibers
  • the ground yarn includes fibers having a higher softening point than the poly(3-hydroxyalkanoate)-based fibers,
  • the pile fibers entwined with the ground yarn at least a portion of the poly(3-hydroxyalkanoate) fibers present on the back side of the ground yarn are fused,
  • the pile fabric is heat treated in a dry heat atmosphere at 140° C.
  • the pile fabric is characterized in that the bending rigidity of the base structure of the pile fabric is 1.00 ⁇ 10 ⁇ 4 N ⁇ m 2 /m or less.
  • the fibers that have a higher softening point than the poly(3-hydroxyalkanoate) fibers contained in the ground yarn include biodegradable fibers.
  • the biodegradable fibers include one or more fibers selected from the group consisting of natural cellulose fibers, natural animal fibers, and regenerated cellulose fibers.
  • the ground yarn further includes a heat-fusible fiber, and the softening point of the heat-fusible fiber is equal to or lower than the softening point of the poly(3-hydroxyalkanoate)-based fiber, [1] to [3] ]
  • the ground yarn further contains poly(3-hydroxyalkanoate) fibers as heat-fusible fibers.
  • the pile fibers include poly(3-hydroxyalkanoate) fibers
  • the ground yarn includes fibers having a higher softening point than the poly(3-hydroxyalkanoate)-based fibers
  • the temperature conditions in the thermocompression bonding treatment are (1) above the softening point of the poly(3-hydroxyalkanoate)-based fiber and below the melting point of the poly(3-hydroxyalkanoate)-based fiber +10°C; and (2)
  • the softening point is lower than the softening point of the fiber having a higher softening point than the poly(3-hydroxyalkanoate) fiber in the ground yarn, If the polishing does not include the step of polishing the pile fibers that are raised on the surface of the ground structure, or if it includes the step of polishing the pile fibers that are raised on the surface of the ground structure, the polishing A method for producing a pile fabric, which is carried out at a temperature higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber and lower than the softening
  • the pile fabric according to any one of [10] to [12], wherein the fibers having a higher softening point than the poly(3-hydroxyalkanoate) fibers contained in the ground yarn include biodegradable fibers. manufacturing method.
  • the ground yarn further includes a heat-fusible fiber, and the softening point of the heat-fusible fiber is equal to or lower than the softening point of the poly(3-hydroxyalkanoate)-based fiber, [10] to [13] ]
  • the ground yarn further contains poly(3-hydroxyalkanoate) fibers as heat-fusible fibers.

Abstract

One or more embodiments of the present invention pertain to a pile fabric comprising: a base structure; and pile fibers that tangle with base threads constituting the base structure and that stand up on the surface of the base structure. The pile fibers include poly(3-hydroxyalkanoate)-based fibers, and the base thread includes fibers having a higher softening point than the poly(3-hydroxyalkanoate)-based fibers. Of the pile fibers tangling with the base thread, at least some of the poly(3-hydroxyalkanoate)-based fibers that are present on the back side of the base thread are fused. The dry heat shrinkage rate of the pile fabric at 140°C is 15.0% to 40.0%. The bending stiffness of the base structure is 1.00 × 10-4 N·m2/m or less.

Description

パイル布帛、及びその製造方法Pile fabric and its manufacturing method
 本発明は、生分解性を有するパイル布帛、及びその製造方法に関する。 The present invention relates to a biodegradable pile fabric and a method for producing the same.
 ポリエチレンテレフタレート等の合成樹脂で構成された合成繊維は、従来からパイル繊維として広く使用されている。近年、環境保護の観点から、自然環境下で分解する生分解性樹脂を用いることが行われている。例えば、特許文献1には、ポリ乳酸等の脂肪族ポリエステルを主成分とする生分解性重合体からなる生分解性繊維をパイルとして用いた生分解性カーペットが記載されている。また、特許文献2には、パイル糸がL-乳酸および/またはR-乳酸を主成分とする脂肪族ポリエステル系繊維を含むフィラメント糸からなるパイル布帛が記載されている。
 一方、パイル布帛の場合、通常、バッキング処理により毛抜けを防止している。また、特許文献3には、アクリル系繊維を用いたパイル布帛において、パイル布帛を裏面側から熱圧着することで毛抜けを防止することが記載されている。
Synthetic fibers made of synthetic resins such as polyethylene terephthalate have been widely used as pile fibers. In recent years, from the viewpoint of environmental protection, biodegradable resins that decompose in the natural environment have been used. For example, Patent Document 1 describes a biodegradable carpet in which piles are made of biodegradable fibers made of a biodegradable polymer whose main component is an aliphatic polyester such as polylactic acid. Further, Patent Document 2 describes a pile fabric in which the pile yarns are made of filament yarns containing aliphatic polyester fibers containing L-lactic acid and/or R-lactic acid as a main component.
On the other hand, in the case of pile fabrics, backing treatment is usually used to prevent shedding. Further, Patent Document 3 describes that in a pile fabric using acrylic fibers, hair loss is prevented by thermocompression bonding the pile fabric from the back side.
特開2002-248047号公報Japanese Patent Application Publication No. 2002-248047 特開2002-004151号公報JP2002-004151A 国際公開公報2011-055455号International Publication No. 2011-055455
 しかしながら、特許文献1及び2に記載のパイル布帛で用いたポリ乳酸は海洋分解性を有さず、環境保護の観点から、更なる改良が求められている。
 また、毛抜け防止をバッキング処理により行うと、パイル部のパイル繊維が収縮や融着することで、触感が硬く、粗硬な風合いになってしまう場合がある。また、特許文献3のようにパイル布帛を裏面側から熱圧着した場合、パイル布帛の地組織が硬くなり、ひいてはパイル布帛が硬くなる場合がある。
However, the polylactic acid used in the pile fabrics described in Patent Documents 1 and 2 does not have marine degradability, and further improvements are required from the viewpoint of environmental protection.
Furthermore, when backing treatment is used to prevent shedding, the pile fibers in the pile portion may shrink or fuse, resulting in a hard and rough texture. Further, when a pile fabric is thermocompression bonded from the back side as in Patent Document 3, the base structure of the pile fabric becomes hard, and the pile fabric may become hard.
 本発明は、前記従来の問題を解決するため、海洋分解性を有し、パイル部の風合いが良好であり、柔軟性に優れ、毛抜けが抑制されたパイル布帛及びその製造方法を提供する。 In order to solve the above-mentioned conventional problems, the present invention provides a pile fabric that is ocean-degradable, has a good feel in the pile portion, has excellent flexibility, and suppresses shedding, and a method for producing the same.
 本発明の1以上の実施形態は、地組織と、前記地組織を構成する地糸に絡みかつ前記地組織の表面に立毛するパイル繊維を含むパイル布帛であって、前記パイル繊維は、ポリ(3-ヒドロキシアルカノエート)系繊維を含み、前記地糸は、前記ポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維を含み、前記地糸に絡んだパイル繊維のうち、前記地糸より裏面側に存在するポリ(3-ヒドロキシアルカノエート)系繊維の少なくとも一部は融着され、前記パイル布帛を無荷重かつ140℃の乾熱雰囲気下で15分間熱処理した際に、熱処理前後のパイル繊維の長さの変化率が15.0~40.0%であり、前記パイル布帛の地組織の曲げ剛性は、1.00×10-4N・m2/m以下であることを特徴とするパイル布帛に関する。 One or more embodiments of the present invention are pile fabrics that include a ground weave and pile fibers that are entwined with ground yarns constituting the ground weave and are raised on the surface of the ground weave, the pile fibers comprising poly( 3-hydroxyalkanoate)-based fibers, the ground yarn includes fibers having a higher softening point than the poly(3-hydroxyalkanoate)-based fibers, and among the pile fibers entwined with the ground yarn, the ground yarn At least a portion of the poly(3-hydroxyalkanoate) fibers present on the back side of the threads are fused, and when the pile fabric is heat-treated for 15 minutes in a dry heat atmosphere at 140°C with no load, the difference between before and after heat treatment. The rate of change in the length of the pile fibers is 15.0 to 40.0%, and the bending stiffness of the base structure of the pile fabric is 1.00 × 10 -4 N m 2 /m or less. Regarding the characteristic pile fabric.
 本発明の1以上の実施形態は、地組織と、前記地組織を構成する地糸に絡みかつ前記地組織の表面に立毛するパイル繊維を含むパイル布帛を製造する工程、及び前記パイル布帛を裏面側から熱圧着処理する工程を含み、前記パイル繊維は、ポリ(3-ヒドロキシアルカノエート)系繊維を含み、前記地糸は、前記ポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維を含み、前記熱圧着処理における温度条件が、(1)前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以上、かつ前記ポリ(3-ヒドロキシアルカノエート)系繊維の融点+10℃以下、及び(2)前記地糸におけるポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維の軟化点未満であり、ポリッシング工程を含まないか、或いは、ポリッシング工程を含む場合は、ポリッシングは、前記ポリ(3-ヒドロキシアルカノエート)系繊維のガラス転移温度以上、かつ前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-40℃以下の温度で行うパイル布帛の製造方法に関する。 One or more embodiments of the present invention include a step of manufacturing a pile fabric including a ground texture and pile fibers that are entwined with ground yarns constituting the ground texture and are raised on the surface of the ground texture, and The pile fibers include a step of thermocompression bonding from the side, the pile fibers include poly(3-hydroxyalkanoate)-based fibers, and the ground yarn has a higher softening point than the poly(3-hydroxyalkanoate)-based fibers. containing fibers, and the temperature conditions during the thermocompression bonding treatment are (1) above the softening point of the poly(3-hydroxyalkanoate)-based fibers and below the melting point of the poly(3-hydroxyalkanoate)-based fibers +10°C; and (2) if the softening point is lower than the softening point of the fiber, which is higher than the poly(3-hydroxyalkanoate) fiber in the base yarn, and the polishing step is not included, or if the polishing step is included, the polishing is , relates to a method for producing a pile fabric carried out at a temperature higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber and lower than the softening point of the poly(3-hydroxyalkanoate) fiber -40°C.
 本発明は、海洋分解性を有し、パイル部の風合いが良好であり、柔軟性に優れ、毛抜けが抑制されたパイル布帛を提供することができる。
 本発明の製造方法によれば、海洋分解性を有し、パイル部の風合いが良好であり、柔軟性に優れ、毛抜けが抑制されたパイル布帛を好適に得ることができる。
INDUSTRIAL APPLICABILITY The present invention can provide a pile fabric that is marine degradable, has a good texture in the pile portion, has excellent flexibility, and has suppressed shedding.
According to the manufacturing method of the present invention, it is possible to suitably obtain a pile fabric that is marine degradable, has a good texture in the pile portion, has excellent flexibility, and has suppressed shedding.
1例のパイル布帛の概略説明図である。It is a schematic explanatory view of one example of pile fabric. パイル布帛を裏面側から所定温度で熱圧着処理する工程を模式的に示した製造工程図である。FIG. 2 is a manufacturing process diagram schematically showing a process of thermocompression bonding a pile fabric from the back side at a predetermined temperature. パイル布帛の柔軟性を評価する方法を説明する模式的断面図である。FIG. 2 is a schematic cross-sectional view illustrating a method for evaluating the flexibility of pile fabric. パイル布帛の柔軟性を評価する方法を説明する模式的断面図である。FIG. 2 is a schematic cross-sectional view illustrating a method for evaluating the flexibility of pile fabric. 毛先が融着されていない一例のパイル布帛のパイル部の表面を観察した写真である。This is a photograph showing the surface of the pile portion of an example of pile fabric in which the ends of the hair are not fused. 毛先が融着されている一例のパイル布帛のパイル部の表面を観察した写真である。This is a photograph showing the surface of the pile portion of an example of a pile fabric in which the ends of the hair are fused. パイル繊維の長さの測定方法の概略説明である。This is a schematic explanation of a method for measuring the length of pile fibers.
 本発明者らは、前記課題を解決するために、鋭意検討を重ねた。その結果、地組織と、地組織を構成する地糸に絡みかつ地組織の表面に立毛するパイル繊維を含むパイル布帛において、(1)パイル繊維としてポリ(3-ヒドロキシアルカノエート)系繊維(以下、単に「P3HA系繊維とも記す。」)を用い、(2)地糸にポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維を含む地糸を用い、地糸に絡んだパイル繊維のうち、地糸より裏面側に存在するポリ(3-ヒドロキシアルカノエート)系繊維の少なくとも一部を融着させ、(3)パイル布帛におけるパイル繊維を140℃の乾熱収縮率が所定の範囲を満たす残留収縮を有する状態にし、(4)パイル布帛における地組織の曲げ剛性を所定の範囲にすることで、パイル布帛に海洋分解性を付与し、パイル部の風合い及び地組織の柔軟性を高め、かつ毛抜けを抑制し得ることを見出した。 The present inventors have made extensive studies in order to solve the above problems. As a result, in pile fabrics that include a ground weave and pile fibers that are entwined with the ground yarns constituting the ground weave and are raised on the surface of the ground weave, (1) the pile fibers are poly(3-hydroxyalkanoate) fibers (hereinafter referred to as (2) using ground yarn containing fibers with a higher softening point than poly(3-hydroxyalkanoate)-based fibers, and creating piles entwined with the ground yarn; Among the fibers, at least a part of the poly(3-hydroxyalkanoate) fibers present on the back side of the base yarn is fused, and (3) the pile fibers in the pile fabric are made to have a predetermined dry heat shrinkage rate of 140°C. (4) By setting the bending rigidity of the ground structure in the pile fabric within a predetermined range, the pile fabric is made to have ocean degradability, and the texture of the pile part and the flexibility of the ground structure are improved. We have found that it can increase hair loss and suppress hair loss.
 ポリ(3-ヒドロキシアルカノエート)(以下、単に「P3HA」とも記す。)は、海洋分解性を有するものの、耐熱性が低く、100℃程度の温度で大きく収縮する。一方、パイル布帛の場合、パイル繊維の抜け(毛抜け)を防止するためバッキング処理、すなわちパイル布帛の裏面に接着剤を塗布し、テンターで100℃以上の温度(例えば、130℃)に加熱し、接着剤を乾燥固化させる処理を行うが、パイル繊維としてP3HA系繊維を用いた場合、テンター工程で熱によってP3HA系繊維が大きく収縮し、触感が硬く、粗硬な風合いのパイル布帛になりやすい。本発明者らは、バッキング処理を行わず、パイル布帛を地組織の裏面側から、(1)ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以上かつポリ(3-ヒドロキシアルカノエート)系繊維の融点+10℃以下、及び(2)地糸におけるポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維の軟化点未満という特定の温度条件下で熱圧着処理することで、地糸に絡んだパイル繊維のうち、地糸より裏面側に存在するP3HA系繊維の少なくとも一部を融着させ、地組織の表面に立毛するP3HA系繊維は融着させないことで、毛抜けを抑制し、パイル部の柔らかい風合いを維持し得るとともに、地組織の柔軟性も良好に保持し得ることを見出した。また、パイル布帛を作製する際、ポリッシングを含まなくてもよいが、ポリッシング工程を含む場合は、ポリッシングを特定の温度条件下で行うことで、パイル部の柔らかい風合いを維持し得る。 Although poly(3-hydroxyalkanoate) (hereinafter also simply referred to as "P3HA") has marine degradability, it has low heat resistance and shrinks significantly at a temperature of about 100°C. On the other hand, in the case of pile fabric, in order to prevent the pile fibers from falling out (shedding), backing treatment is performed, that is, adhesive is applied to the back side of the pile fabric and heated to a temperature of 100°C or higher (for example, 130°C) using a tenter. , the adhesive is dried and solidified, but when P3HA fibers are used as pile fibers, the P3HA fibers shrink greatly due to heat during the tenter process, resulting in pile fabrics that are hard to the touch and have a rough texture. . The present inventors examined the pile fabric from the back side of the ground structure without performing backing treatment. (2) The melting point of the base yarn is +10°C or lower, and (2) the base yarn is lower than the softening point of the fiber whose softening point is higher than that of the poly(3-hydroxyalkanoate) fiber. Among the pile fibers entangled in the fabric, at least a portion of the P3HA fibers present on the back side of the ground yarn are fused, and the P3HA fibers that stand on the surface of the ground texture are not fused, thereby suppressing hair loss. It has been found that the soft feel of the pile part can be maintained and the flexibility of the ground structure can also be maintained well. Further, when producing a pile fabric, polishing may not be included, but if a polishing step is included, the soft texture of the pile portion can be maintained by performing the polishing under specific temperature conditions.
 本明細書において、数値範囲が「~」で示されている場合、該数値範囲は両端値(上限及び下限)を含む。例えば、「X~Y」という数値範囲は、X及びYという両端値を含む範囲となる。また、本明細書において、数値範囲が複数記載されている場合、異なる数値範囲の上限及び下限を適宜組み合わせた数値範囲を含むものとする。 In this specification, when a numerical range is indicated by "~", the numerical range includes both end values (upper limit and lower limit). For example, the numerical range "X to Y" includes both extreme values of X and Y. Moreover, in this specification, when multiple numerical ranges are described, numerical ranges that are appropriately combined with the upper and lower limits of different numerical ranges are included.
 本明細書において、生分解性は、微生物の働きにより、分子レベルまで分化し、最終的には水及び二酸化炭素をなり得る性質を意味し、海洋分解性は、海洋中の微生物の働きにより、分子レベルまで分化し、最終的には水及び二酸化炭素をなり得る性質を意味する。ポリ(3-ヒドロキシアルカノエート)は、海洋分解性を有する生分解性バイオプラスチックとして広く用いられている。パイル繊維としてP3HA系繊維を用いることで、パイル布帛に優れた海洋分解性を付与することができる。 In this specification, biodegradability refers to properties that can be differentiated to the molecular level through the action of microorganisms and eventually become water and carbon dioxide, and marine degradability refers to properties that can be differentiated to the molecular level by the action of microorganisms in the ocean, It means the property of being differentiated down to the molecular level and eventually becoming water and carbon dioxide. Poly(3-hydroxyalkanoate) is widely used as a biodegradable bioplastic with marine degradability. By using P3HA-based fibers as the pile fibers, excellent ocean degradability can be imparted to the pile fabric.
 本明細書において、パイル布帛の生分解性は、好気または嫌気性条件、水系または固相系、微生物群や温度等により異なるが、具体的には、ISO14851、ISO14852、ISO17556、ISO14855、ISO14855-2、ISO14853、及びISO15985等のいずれかに基づいてて測定してもよい。また、海水中の微生物による生分解性は、酸素消費量で評価するBOD(Biochemical Oxygen Demand)試験法を適用してもよい。 In this specification, the biodegradability of pile fabrics varies depending on aerobic or anaerobic conditions, aqueous or solid phase systems, microbial groups, temperature, etc. 2, ISO14853, ISO15985, etc. Furthermore, biodegradability by microorganisms in seawater may be evaluated using the BOD (Biochemical Oxygen Demand) test method, which evaluates the amount of oxygen consumed.
 (パイル繊維)
 本発明の1以上の実施形態において、パイル繊維は、P3HA系繊維を含む。海洋分解性の観点から、パイル繊維の全量を100重量%とした場合、P3HA系繊維を80重量%以上含むことが好ましく、90重量%以上含むことがより好ましく、95重量%以上含むことがさらに好ましく、100重量%からなることが特に好ましい。パイル繊維は、必要に応じて、本発明の効果を阻害しない範囲内で、他の繊維を含むことができる。他の繊維としては、生分解性を有する生分解性繊維が好ましく、P3HA以外の脂肪族ポリエステルを含む合成繊維、天然繊維、及び再生繊維等を用いることができる。P3HA以外の脂肪族ポリエステルとしては、例えば、ポリ乳酸、ポリカプロラクトン、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペート、及びポリブチレンサクシネート等が挙げられる。天然繊維としては、天然セルロース繊維、及び天然動物繊維等が挙げられる。天然セルロース繊維としては、例えば、木綿繊維、カポック繊維、亜麻繊維、大麻繊維、ラミー繊維、ジュート繊維、マニラ麻繊維、及びケナフ繊維等が挙げられる。天然動物繊維としては、例えば、羊毛繊維、モヘア繊維、カシミヤ繊維、ラクダ繊維、アルパカ繊維、及びアンゴラ繊維等が挙げられる。再生繊維としては、例えば、レーヨン等の再生セルロース繊維、及び再生コラーゲン繊維等の再生タンパク質繊維等が挙げられる。
(pile fiber)
In one or more embodiments of the invention, the pile fibers include P3HA-based fibers. From the viewpoint of marine degradability, when the total amount of pile fibers is 100% by weight, it is preferable to contain P3HA fibers in an amount of 80% by weight or more, more preferably 90% by weight or more, and even more preferably 95% by weight or more. Preferably, it is particularly preferably composed of 100% by weight. The pile fibers can contain other fibers, if necessary, within a range that does not impede the effects of the present invention. As other fibers, biodegradable fibers are preferred, and synthetic fibers containing aliphatic polyesters other than P3HA, natural fibers, regenerated fibers, and the like can be used. Examples of aliphatic polyesters other than P3HA include polylactic acid, polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate, and polybutylene succinate. Examples of natural fibers include natural cellulose fibers and natural animal fibers. Examples of natural cellulose fibers include cotton fibers, kapok fibers, flax fibers, hemp fibers, ramie fibers, jute fibers, Manila hemp fibers, and kenaf fibers. Examples of natural animal fibers include wool fibers, mohair fibers, cashmere fibers, camel fibers, alpaca fibers, and angora fibers. Examples of regenerated fibers include regenerated cellulose fibers such as rayon, regenerated protein fibers such as regenerated collagen fibers, and the like.
 本発明の1以上の実施形態において、「P3HA系繊維」とは、P3HAを80重量%以上含む繊維を意味し、85重量%以上含むことが好ましく、90重量%以上含むことがより好ましく、95重量%以上含むことがさらに好ましい。本発明の1以上の実施形態において、P3HA系繊維は、必要に応じて、100重量%のP3HAで構成されてもよい。 In one or more embodiments of the present invention, "P3HA-based fiber" means a fiber containing 80% by weight or more of P3HA, preferably 85% by weight or more, more preferably 90% by weight or more, 95% by weight or more. It is more preferable that the content is at least % by weight. In one or more embodiments of the invention, the P3HA-based fibers may optionally be comprised of 100% by weight P3HA.
 P3HAは、3-ヒドロキシアルカノエート繰り返し単位を有する樹脂を用いることができ、具体的には、下記一般式(1)で表される3-ヒドロキシアルカノエート繰り返し単位を有する樹脂を用いることができる。 For P3HA, a resin having a 3-hydroxyalkanoate repeating unit can be used, and specifically, a resin having a 3-hydroxyalkanoate repeating unit represented by the following general formula (1) can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 但し、一般式(1)中、R1は、炭素数が1~15のアルキル基を表し、炭素数が1~10のアルキル基が好ましく、炭素数が1~8のアルキル基がさらに好ましい。アルキル基は、直鎖状でもよく、分岐鎖状でもよい。R1としては、例えば、メチル基、エチル基、プロピル基、メチルプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、及びヘキシル基等の直鎖状または分岐鎖状のアルキル基等が挙げられる。 However, in the general formula (1), R 1 represents an alkyl group having 1 to 15 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 8 carbon atoms. The alkyl group may be linear or branched. Examples of R 1 include linear or branched alkyl groups such as methyl group, ethyl group, propyl group, methylpropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, and hexyl group. can be mentioned.
 P3HAは、一般式(1)で表される3-ヒドロキシアルカノエート繰り返し単位を、全モノマー繰り返し単位(100モル%)に対して50モル%以上含むものが好ましく、より好ましくは70モル%以上含み、さらに好ましくは80モル%以上含み、さらにより好ましくは90モル%以上含み、さらにより好ましくは95モル%以上含み、100モル%からなるものでもよい。P3HAは、一般式(1)で表される3-ヒドロキシアルカノエート繰り返し単位に加えて、他の繰り返し単位として、例えば、4-ヒドロキシアルカノエート繰り返し単位等を含んでもよい。 P3HA preferably contains 50 mol% or more, more preferably 70 mol% or more of the 3-hydroxyalkanoate repeating unit represented by the general formula (1) based on the total monomer repeating units (100 mol%). , more preferably 80 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and may be 100 mol%. In addition to the 3-hydroxyalkanoate repeating unit represented by general formula (1), P3HA may contain other repeating units such as 4-hydroxyalkanoate repeating units.
 P3HAは、海洋分解性に優れる観点から、一般式(1)で表され、R1がメチル基である3-ヒドロキシアルカノエート繰り返し単位、すなわち3-ヒドロキシ酪酸(3-ヒドロキシブチレートとも称される、以下において、単に「3HB」とも記す。)繰り返し単位を全モノマー繰り返し単位(100モル%)に対して50モル%以上含むものが好ましく、より好ましくは70モル%以上含み、さらに好ましくは80モル%以上含み、さらにより好ましくは90モル%以上含み、さらにより好ましくは95モル%以上含み、100モル%からなるものでもよい。具体的には、例えば、ポリ(3-ヒドロキシブチレート)(「P3HB」とも称される。)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシバレレート)(「P3HB3HV」とも称される。)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)(「P3HB3HH」とも称される。)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシバレレート-co-3-ヒドロキシヘキサノエート)(「P3HB3HV3HH」とも称される。)、ポリ(3-ヒドロキシブチレート-co-4-ヒドロキシブチレート)(「P3HB4HB」とも称される。)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシオクタノエート)、及びポリ(3-ヒドロキシブチレート-co-3-ヒドロキシデカノエート)等が挙げられる。海洋分解性の観点から、P3HAを構成する3HBは、全てR体(D体)であることが好ましい。機械的特性の観点から、P3HB3HH及び/又はP3HB4HBであることが好ましく、P3HB3HHであることがより好ましい。 From the viewpoint of excellent marine degradability, P3HA is a 3-hydroxyalkanoate repeating unit represented by the general formula (1) in which R 1 is a methyl group, that is, 3-hydroxybutyric acid (also called 3-hydroxybutyrate). (hereinafter also simply referred to as "3HB") repeating units preferably contain 50 mol% or more based on the total monomer repeating units (100 mol%), more preferably 70 mol% or more, and still more preferably 80 mol%. % or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and may be 100 mol%. Specifically, for example, poly(3-hydroxybutyrate) (also referred to as "P3HB"), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (also referred to as "P3HB3HV") ), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (also referred to as "P3HB3HH"), poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3) -hydroxyhexanoate) (also referred to as “P3HB3HV3HH”), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (also referred to as “P3HB4HB”), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (also referred to as “P3HB4HB”), poly(3-hydroxybutyrate-co-3-hydroxydecanoate), and poly(3-hydroxybutyrate-co-3-hydroxydecanoate). From the viewpoint of ocean degradability, it is preferable that all 3HB constituting P3HA be in the R form (D form). From the viewpoint of mechanical properties, P3HB3HH and/or P3HB4HB are preferable, and P3HB3HH is more preferable.
 P3HB3HHの繰り返し単位(モノマー構造単位)の組成比は、特に限定されないが、柔軟性と強度のバランスの観点から、モル比で、3-ヒドロキシブチレート/3-ヒドロキシヘキサノエートが99/1~80/20であることが好ましく、97/3~85/15であることがより好ましい。P3HB3HHは、1種を単独で用いてもよく、3HBの組成百分率が異なるものを2種以上混合したものでもよい。 The composition ratio of repeating units (monomer structural units) of P3HB3HH is not particularly limited, but from the viewpoint of balance between flexibility and strength, the molar ratio of 3-hydroxybutyrate/3-hydroxyhexanoate is 99/1 to 3-hydroxybutyrate/3-hydroxyhexanoate. The ratio is preferably 80/20, and more preferably 97/3 to 85/15. One type of P3HB3HH may be used alone, or a mixture of two or more types having different composition percentages of 3HB may be used.
 本明細書において、P3HAにおけるモノマーの組成比は、下記のとおりに測定することができる。試料約20mgに2mLの硫酸-メタノール混合液(体積比、硫酸:メタノール=15:85)と2mLのクロロホルムを添加して密栓し、100℃で140分間加熱することでポリエステル分解物のメチルエステルを得る。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置する。4mLのジイソプロピルエーテルを添加してよく混合した後、遠心して、上澄み液中のポリエステル分解物のヒドロキシアルカン酸メチルエステルの組成をキャピラリーガスクロマトグラフィーにより分析し、P3HAのモノマーユニットの組成比(モノマー比率)を求める。 In this specification, the composition ratio of monomers in P3HA can be measured as follows. Add 2 mL of sulfuric acid-methanol mixture (volume ratio, sulfuric acid: methanol = 15:85) and 2 mL of chloroform to approximately 20 mg of the sample, seal it tightly, and heat it at 100°C for 140 minutes to convert the methyl ester of the polyester decomposition product. obtain. After cooling, 1.5 g of sodium hydrogen carbonate is added little by little to neutralize it, and the mixture is left to stand until the generation of carbon dioxide gas stops. After adding 4 mL of diisopropyl ether and mixing well, centrifugation was performed, and the composition of hydroxyalkanoic acid methyl ester of the polyester decomposition product in the supernatant was analyzed by capillary gas chromatography. ).
 P3HAは、特に限定されず、公知の方法により製造することができるが、海洋分解性の高いP3HAを容易に得られる観点から、微生物による製造方法で製造することが好ましい。微生物による製造方法は、公知の方法を用いることができる。微生物は、P3HA生産能を有するものであればよく、特に限定されない。P3HA生産能を有する微生物として、例えば、アエロモナス・キヤビエ(Aeromonas caviae)、カプリアビダス・ネカトール(Cupriavidus necator)、ラルストニア・ユートロファ(Ralstonia eutropha)、及びアルカリゲネス・ラタス(Alcaligenes latus)等が挙げられる。また、P3HAの生産性を上げるために、ポリ(3-ヒドロキシアルカノエート)の合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(J.Bateriol.,179,p4821-4830(1997))等を用いてもよい。また、P3HAとしては、株式会社カネカ製の生分解性ポリマーGP(Green Planet(登録商標))等の市販品を用いてもよい。 P3HA is not particularly limited and can be produced by a known method, but from the viewpoint of easily obtaining P3HA with high marine degradability, it is preferable to produce it by a production method using microorganisms. As the production method using microorganisms, known methods can be used. The microorganism is not particularly limited as long as it has the ability to produce P3HA. Examples of microorganisms capable of producing P3HA include Aeromonas caviae, Cupriavidus necator, Ralstonia eutropha, and Alcaligenes ratus. s latus), etc. In addition, in order to increase the productivity of P3HA, the Alcaligenes eutrophus AC32 strain (FERM BP-6038) into which genes for poly(3-hydroxyalkanoate) synthase group were introduced (J. Bateriol., 179 , p4821-4830 (1997)), etc. may be used. Furthermore, as P3HA, a commercially available product such as biodegradable polymer GP (Green Planet (registered trademark)) manufactured by Kaneka Corporation may be used.
 P3HAの重量平均分子量は特に限定されないが、成形性及び強度の観点から、50,000~3,000,000であることが好ましく、100,000~1,500,000であることがより好ましい。本明細書において、重量平均分子量は、クロロホルム溶離液を用いたゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定されたものをいう。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。 The weight average molecular weight of P3HA is not particularly limited, but from the viewpoint of moldability and strength, it is preferably 50,000 to 3,000,000, more preferably 100,000 to 1,500,000. In this specification, the weight average molecular weight refers to that measured from polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using a chloroform eluent. As a column in the GPC, a column suitable for measuring the molecular weight may be used.
 P3HAのメルトフローレート(MFR)は、特に限定されないが、JIS K 7210-1:2014に準じ、温度165℃、荷重5kg(49N)の条件下で測定したメルトフローレート(MFR)は0.1~100g/10分であることが好ましく、1~50g/10分であることがより好ましく、10~40g/10分であることがさらに好ましい。メルトフローレートが上述した範囲内であると、溶融樹脂の流動性が適切な範囲となり、繊維化が良好になる。 The melt flow rate (MFR) of P3HA is not particularly limited, but according to JIS K 7210-1:2014, the melt flow rate (MFR) measured under the conditions of a temperature of 165°C and a load of 5 kg (49 N) is 0.1. It is preferably 100 g/10 minutes, more preferably 1 to 50 g/10 minutes, even more preferably 10 to 40 g/10 minutes. When the melt flow rate is within the above-mentioned range, the fluidity of the molten resin will be within an appropriate range, and fiberization will be good.
 P3HA系繊維は、P3HAに加えて、結晶核剤及び/又は滑剤を含んでもよい。また、本発明の1以上の実施形態において、P3HA系繊維は、本発明の効果を阻害しない範囲内で、P3HAに加えて、他の樹脂成分や他の添加剤成分を含んでもよい。例えば、P3HA系繊維は、生産性及び繊維物性の観点から、P3HA100重量部に対し、結晶核剤を0.05~12重量部含むことが好ましく、0.1~10重量部含むことがより好ましく、0.5~8重量部含むことがさらに好ましく、特に好ましくは1~5重量部含む。また、P3HA系繊維は、生産性の観点から、P3HA100重量部に対し、滑剤を0.05~12重量部を含むことが好ましく、0.1~10重量部を含むことがより好ましく、0.5~8重量部を含むことがさらに好ましく、特に好ましくは1~5重量部含む。また、P3HA系繊維は、他の添加剤成分を、100重量部のP3HAに対し、5重量部以下、3重量部以下、又は1重量部以下含んでもよい。また、P3HA系繊維は、P3HA及び他の樹脂成分の全量(100重量%)に対して、他の樹脂成分を20重量%以下、10重量%以下、又は5重量%以下含んでもよい。 In addition to P3HA, the P3HA-based fiber may contain a crystal nucleating agent and/or a lubricant. Furthermore, in one or more embodiments of the present invention, the P3HA-based fiber may contain other resin components and other additive components in addition to P3HA within a range that does not impede the effects of the present invention. For example, from the viewpoint of productivity and fiber properties, the P3HA-based fiber preferably contains 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, of a crystal nucleating agent based on 100 parts by weight of P3HA. , more preferably 0.5 to 8 parts by weight, particularly preferably 1 to 5 parts by weight. In addition, from the viewpoint of productivity, the P3HA-based fiber preferably contains 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, and more preferably 0.1 to 10 parts by weight of a lubricant per 100 parts by weight of P3HA. It is more preferable to contain 5 to 8 parts by weight, particularly preferably 1 to 5 parts by weight. Further, the P3HA-based fiber may contain other additive components, based on 100 parts by weight of P3HA, at most 5 parts by weight, at most 3 parts by weight, or at most 1 part by weight. Further, the P3HA-based fiber may contain other resin components in an amount of 20% by weight or less, 10% by weight or less, or 5% by weight or less based on the total amount (100% by weight) of P3HA and other resin components.
 P3HA系繊維は、例えば、P3HAを含有する樹脂組成物で構成することができる。すなわち、P3HAを含有する樹脂組成物を繊維化することで、P3HA系繊維を得ることができる。前記樹脂組成物は、特に限定されないが、P3HAを80重量%以上含有することが好ましく、より好ましくは85重量%以上含み、さらに好ましくは90重量%以上含む。一方、上限は100重量%であってもよいが、例えば、98重量%以下又は95重量%以下であってもよい。P3HAの含有量を80重量%以上とすることにより、パイル布帛の生分解性や海洋分解性がより向上する傾向がある。 The P3HA-based fiber can be composed of a resin composition containing P3HA, for example. That is, P3HA-based fibers can be obtained by fiberizing a resin composition containing P3HA. The resin composition is not particularly limited, but preferably contains P3HA in an amount of 80% by weight or more, more preferably 85% by weight or more, and even more preferably 90% by weight or more. On the other hand, the upper limit may be 100% by weight, but may be, for example, 98% by weight or less or 95% by weight or less. By setting the content of P3HA to 80% by weight or more, the biodegradability and marine degradability of the pile fabric tend to be further improved.
 前記樹脂組成物は、特に限定されないが、生産性及び繊維物性の観点から、さらに結晶核剤を含むことが好ましい。結晶核剤としては、P3HAの結晶化を促進する効果を有する化合物であれば、特に限定されるものではない。例えば、結晶化速度の改善効果や繊維に含有させる観点から、糖アルコール化合物、ポリビニルアルコール、キチン、及びキトサン等が好ましく、糖アルコール化合物がより好ましく、ペンタエリスリトールがさらに好ましい。結晶核剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Although the resin composition is not particularly limited, from the viewpoint of productivity and fiber properties, it is preferable that the resin composition further contains a crystal nucleating agent. The crystal nucleating agent is not particularly limited as long as it is a compound that has the effect of promoting crystallization of P3HA. For example, from the viewpoint of improving crystallization rate and inclusion in fibers, sugar alcohol compounds, polyvinyl alcohol, chitin, chitosan, etc. are preferred, sugar alcohol compounds are more preferred, and pentaerythritol is even more preferred. One type of crystal nucleating agent may be used alone, or two or more types may be used in combination.
 前記樹脂組成物における結晶核剤の含有量は、特に限定されないが、例えば、P3HA100重量部に対し、0.05~12重量部であることが好ましく、0.1~10重量部であることがより好ましく、0.5~8重量部であることがさらに好ましく、特に好ましくは1~5重量部である。結晶核剤の含有量を0.05重量部以上とすることにより、結晶化促進効果が向上し、繊維の生産性が向上する傾向がある。また、結晶核剤の含有量を12重量部以下とすることにより、十分な結晶化速度促進効果を保持しつつ、加工時の粘度低下や繊維物性の低下等を抑制しやすい。 The content of the crystal nucleating agent in the resin composition is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, and preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HA. The amount is more preferably 0.5 to 8 parts by weight, and particularly preferably 1 to 5 parts by weight. By setting the content of the crystal nucleating agent to 0.05 part by weight or more, the crystallization promoting effect tends to be improved and the productivity of fibers tends to be improved. Further, by controlling the content of the crystal nucleating agent to 12 parts by weight or less, it is easy to suppress a decrease in viscosity and a decrease in fiber physical properties during processing while maintaining a sufficient effect of accelerating the crystallization rate.
 前記樹脂組成物は、特に限定されないが、生産性の観点から、さらに滑剤を含むことが好ましい。滑剤としては、P3HAに滑性を付与する効果を有する化合物であれば、特に限定されるものではない。例えば、脂肪酸アミド、アルキレン脂肪酸アミド、グリセリンモノ脂肪酸エステル、有機酸モノグリセライド、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、及び高級アルコール脂肪酸エステル等が挙げられる。 Although the resin composition is not particularly limited, from the viewpoint of productivity, it is preferable that the resin composition further contains a lubricant. The lubricant is not particularly limited as long as it is a compound that has the effect of imparting lubricity to P3HA. Examples include fatty acid amide, alkylene fatty acid amide, glycerin monofatty acid ester, organic acid monoglyceride, sorbitan fatty acid ester, polyglycerin fatty acid ester, and higher alcohol fatty acid ester.
 前記滑剤の中でも、特に外部滑性を付与する効果を有する化合物、具体的には、脂肪酸アミド、及びグリセリン脂肪酸エステル等が好ましい。脂肪酸アミドとしては、脂肪酸のモノアミド、ビスアミド等が挙げられる。脂肪酸アミドを構成する脂肪酸(脂肪酸部分)は、樹脂組成物の融点が適度に高いものとなり、溶融加工時の加工性低下を抑止する観点から、炭素数12~30であることが好ましく、より好ましくは炭素数18~22である。脂肪酸アミドとしては、具体的には、ベヘン酸アミド、エルカ酸アミド、パルミチン酸アミド、オレイン酸アミド、ステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、及びエチレンビスエルカ酸アミド等が挙げられる。グリセリン脂肪酸エステルとしては、例えば、グリセリンのモノエステル、グリセリンのジエステル、及びグリセリンのトリエステル等があげられる。グリセリンのトリエステルとしては、例えば、グリセリンジアセトモノラウレート、グリセリンジアセトモノオレート、グリセリンジアセトモノステアレート、グリセリンジアセトモノカプリレート、及びグリセリンジアセトモノデカノエート等のグリセリンジアセトモノエステル等が挙げられる。滑剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among the lubricants, compounds having the effect of imparting external lubricity, specifically fatty acid amides, glycerin fatty acid esters, and the like are preferred. Examples of fatty acid amides include monoamides and bisamides of fatty acids. The fatty acid (fatty acid moiety) constituting the fatty acid amide preferably has 12 to 30 carbon atoms, more preferably from the viewpoint of giving the resin composition a suitably high melting point and suppressing deterioration of processability during melt processing. has 18 to 22 carbon atoms. Specifically, fatty acid amides include behenic acid amide, erucic acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, ethylene bis oleic acid amide, and ethylene bis oleic acid amide. Examples include biserucic acid amide. Examples of glycerin fatty acid esters include glycerin monoesters, glycerin diesters, and glycerin triesters. Examples of glycerin triesters include glycerin diacetomonoesters such as glycerin diacetomonolaurate, glycerin diacetomonooleate, glycerin diacetomonostearate, glycerin diacetomonocaprylate, and glycerin diacetomonodecanoate. One type of lubricant may be used alone, or two or more types may be used in combination.
 前記樹脂組成物における滑剤の含有量は、特に制限はないが、例えば、P3HA100重量部に対し、0.05~12重量部であることが好ましく、0.1~10重量部であることがより好ましく、0.5~8重量部であることがさらに好ましく、特に好ましくは1~5重量部である。滑剤の含有量を0.05重量部以上とすることにより、樹脂組成物と押出機や紡糸機内における金属表面との摩擦が抑制され、せん断発熱によるP3HAの分解が抑制され、ノズルから押し出された繊維同士が互着することも防止されやすい。また、滑剤の含有量を12重量部以下とすることにより、押出機中でP3HAがより効率的に融解し、その結果、繊維が硬くなり過ぎることなく糸切れが抑制され、生産性が一層向上しやすい。 The content of the lubricant in the resin composition is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HA. The amount is preferably 0.5 to 8 parts by weight, more preferably 0.5 to 8 parts by weight, and particularly preferably 1 to 5 parts by weight. By setting the content of the lubricant to 0.05 parts by weight or more, the friction between the resin composition and the metal surface in the extruder or spinning machine is suppressed, the decomposition of P3HA due to shear heat generation is suppressed, and the P3HA is extruded from the nozzle. It is also easy to prevent fibers from adhering to each other. In addition, by setting the lubricant content to 12 parts by weight or less, P3HA melts more efficiently in the extruder, and as a result, fiber breakage is suppressed without making the fiber too hard, further improving productivity. It's easy to do.
 前記樹脂組成物は、必要に応じて、本発明の効果を阻害しない範囲内で、可塑剤、無機充填剤、有機充填材(セルロース等)、酸化防止剤、紫外線吸収剤、染料及び顔料等の着色剤、並びに帯電防止剤等の他の添加剤成分を含有してもよい。他の添加剤成分は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。他の添加剤成分の添加量は、100重量部のP3HAに対し、5重量部以下であってもよく、1重量部以下であってもよい。 The resin composition may contain plasticizers, inorganic fillers, organic fillers (cellulose, etc.), antioxidants, ultraviolet absorbers, dyes, pigments, etc., as necessary, within a range that does not impede the effects of the present invention. Other additive components such as colorants and antistatic agents may also be included. One type of other additive components may be used alone, or two or more types may be used in combination. The amount of other additive components added may be 5 parts by weight or less, or 1 part by weight or less with respect to 100 parts by weight of P3HA.
 前記樹脂組成物は、必要に応じて、本発明の効果を阻害しない範囲内で、P3HA以外の樹脂成分(その他の樹脂成分)を含んでもよい。その他の樹脂成分としては、生分解性樹脂が好ましい。他の生分解性樹脂としては、例えば、ポリ乳酸、ポリカプロラクトン、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペート、及びポリブチレンサクシネート等の石油由来樹脂、並びにデンプン、及びセルロース等の天然高分子等が挙げられる。その他の樹脂成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。その他の樹脂成分の含有量は、樹脂成分の全量(100重量%)に対して、20重量%以下が好ましく、より好ましくは10重量%以下、さらに好ましくは5重量%以下である。 The resin composition may contain resin components other than P3HA (other resin components), if necessary, within a range that does not impede the effects of the present invention. As other resin components, biodegradable resins are preferred. Examples of other biodegradable resins include petroleum-derived resins such as polylactic acid, polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate, and polybutylene succinate, and natural polymers such as starch and cellulose. can be mentioned. As for the other resin components, one kind can be used alone, or two or more kinds can be used in combination. The content of other resin components is preferably 20% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, based on the total amount (100% by weight) of the resin components.
 P3HA系繊維は、例えば、前記樹脂組成物を溶融紡糸して得ることができる。 P3HA-based fibers can be obtained, for example, by melt-spinning the resin composition.
 まず、前記樹脂組成物を溶融混練して得られたペレット状の樹脂組成物を、溶融押出機を用いて溶融し、溶融した樹脂組成物をノズルから連続的に押出して繊維を形成することで紡糸フィラメント(未延伸フィラメント)を作製することができる。溶融紡糸温度は、樹脂組成物の融点以上熱分解温度未満であればよく、特に限定されないが、例えば、樹脂組成物の融点をTmとした場合、[Tm+5℃]~[Tm+40℃]であってもよく、[Tm+10℃]~[Tm+30℃]であってもよい。より具体的には、145~180℃、150~180℃、又は150~170℃であってもよい。溶融紡糸温度を145℃以上とすることにより、十分に樹脂組成物を溶解させることができるために、紡糸が安定化しやすい。また、紡糸温度を180℃以下とすることにより、P3HAの熱分解が抑制され、紡糸が安定化しやすく、得られる繊維の物性がより向上する傾向がある。なお、溶融紡糸温度とは、樹脂組成物が繊維化される間に加えられる温度のうち、最も高い温度域の温度をいう。 First, a pellet-shaped resin composition obtained by melt-kneading the resin composition is melted using a melt extruder, and the molten resin composition is continuously extruded from a nozzle to form fibers. Spun filaments (undrawn filaments) can be produced. The melt spinning temperature is not particularly limited as long as it is higher than the melting point of the resin composition and lower than the thermal decomposition temperature, but for example, when the melting point of the resin composition is Tm, it is [Tm+5°C] to [Tm+40°C]. It may be [Tm+10°C] to [Tm+30°C]. More specifically, the temperature may be 145 to 180°C, 150 to 180°C, or 150 to 170°C. By setting the melt spinning temperature to 145° C. or higher, the resin composition can be sufficiently dissolved, so that spinning can be easily stabilized. Furthermore, by setting the spinning temperature to 180° C. or lower, thermal decomposition of P3HA is suppressed, the spinning is easily stabilized, and the physical properties of the resulting fiber tend to be further improved. Note that the melt spinning temperature refers to a temperature in the highest temperature range among the temperatures applied while the resin composition is fiberized.
 本明細書において、樹脂又は樹脂組成物のガラス転移温度、結晶化温度、融点及び熱分解温度は、示差走査熱量計(例えば、ティーエーインスツルメント社製、型番「DSC25」)を用い、測定温度範囲0~180℃、昇温速度10℃/分、降温速度10℃/分の条件下で、示差走査熱量測定にて測定することができる。具体的には、実施例に記載のとおりに測定することができる。
 本明細書において、繊維のガラス転移温度及び融点は、示差走査熱量計(例えば、ティーエーインスツルメント社製、型番「DSC25」)を用い、測定温度範囲0~180℃、昇温速度10℃/分、降温速度10℃/分の条件下で、示差走査熱量測定にて測定することができる。具体的には、実施例に記載のとおりに測定することができる。なお、繊維のガラス転移温度及び融点は、繊維を構成する樹脂又は樹脂組成物の融点と同等である。
In this specification, the glass transition temperature, crystallization temperature, melting point, and thermal decomposition temperature of the resin or resin composition are measured using a differential scanning calorimeter (for example, manufactured by TA Instruments, model number "DSC25"). It can be measured by differential scanning calorimetry under the conditions of a temperature range of 0 to 180°C, a temperature increase rate of 10°C/min, and a cooling rate of 10°C/min. Specifically, it can be measured as described in Examples.
In this specification, the glass transition temperature and melting point of the fibers are measured using a differential scanning calorimeter (for example, manufactured by TA Instruments, model number "DSC25") at a temperature range of 0 to 180°C and a heating rate of 10°C. It can be measured by differential scanning calorimetry under the conditions of a cooling rate of 10° C./min and a cooling rate of 10° C./min. Specifically, it can be measured as described in Examples. Note that the glass transition temperature and melting point of the fiber are equivalent to the melting point of the resin or resin composition constituting the fiber.
 前記樹脂組成物は、特に限定されないが、例えば、成形性及び繊維強度の観点から、重量平均分子量が50,000~3,000,000であることが好ましく、100,000~1,500,000であることがより好ましい。 The resin composition is not particularly limited, but for example, from the viewpoint of moldability and fiber strength, the weight average molecular weight is preferably 50,000 to 3,000,000, and preferably 100,000 to 1,500,000. It is more preferable that
 溶融した樹脂組成物を紡糸口金から押し出す際の環境温度は、特に限定されず、樹脂組成物のガラス転移温度をTgとした場合、[Tg+5℃]~[Tg+50℃]であってもよく、[Tg+10℃]~[Tg+40℃]であってもよい。より具体的には、例えば、5~40℃の範囲で適宜調整可能である。紡糸口金から押し出された繊維(紡糸フィラメント)には、整流風を与えることが好ましい。整流風は、クエンチエアとも呼ばれ、糸条の流れを安定化させる働きがある。また、クエンチエアとして冷却した気体を用いることで紡糸フィラメントを冷却することも可能である。クエンチエアの温度は、5~40℃であることが好ましく、より好ましくは10~30℃である。5℃以上であると、繊維に残留応力が生じることを抑制しやすい。40℃以下であると、樹脂の固化が十分となり、繊維が固着することを抑制しやすい。クエンチエアの風速は、特に限定されないが、例えば0.1~3.0m/秒であることが好ましい。0.1m/秒以上であると、整流の効果を発揮されやすく、3.0m/秒以下であると、クエンチ風が強すぎず、糸条が乱れず、繊維同士の固着や糸切れが発生することが抑制される。 The environmental temperature when extruding the molten resin composition from the spinneret is not particularly limited, and when the glass transition temperature of the resin composition is Tg, it may be [Tg + 5 ° C] to [Tg + 50 ° C], [ [Tg+10°C] to [Tg+40°C]. More specifically, the temperature can be adjusted as appropriate within the range of, for example, 5 to 40°C. It is preferable to apply rectified air to the fibers (spun filaments) extruded from the spinneret. The rectified air is also called quench air, and has the function of stabilizing the flow of yarn. It is also possible to cool the spun filaments by using cooled gas as quench air. The temperature of the quench air is preferably 5 to 40°C, more preferably 10 to 30°C. When the temperature is 5° C. or higher, it is easy to suppress generation of residual stress in the fibers. When the temperature is 40° C. or lower, the resin is sufficiently solidified, and it is easy to prevent the fibers from sticking. The wind speed of the quench air is not particularly limited, but is preferably 0.1 to 3.0 m/sec, for example. If it is 0.1 m/sec or more, the rectification effect will be easily exhibited, and if it is 3.0 m/sec or less, the quenching wind will not be too strong, the yarn will not be disturbed, and fibers will stick to each other or yarn breakage will occur. It is suppressed from doing so.
 次に、紡糸フィラメントを延伸し、延伸フィラメント(マルチフィラメント)を得ることができる。延伸により、目的の繊度の繊維が得られるとともに、繊維の強度を高めることができる。延伸は、特に限定されず、紡糸延伸二段階方式で行ってもよく、直接紡糸延伸方式で行ってもよい。紡糸延伸二段階方式では、紡糸フィラメントを巻き取った後に延伸を行う。直接紡糸延伸方式では、紡糸フィラメントを巻き取らずに紡糸と延伸を連続的に行う。また、延伸工程は、複数のロール対の組合せなどにより多段階で行ってもよい。複数のロールの表面温度及び速度は、同じでもよく、異なってもよい。延伸温度、具体的にはロールの表面温度は、特に限定されないが、例えば、30~100℃でもよく、40~90℃でもよい。延伸倍率は、例えば、1.5~20倍でもよい。延伸倍率が1.5倍以上であると、繊維の強度をより高めることができる。延伸を行う前に、必要に応じて紡糸フィラメントに油剤を付与してもよい。 Next, the spun filaments can be drawn to obtain drawn filaments (multifilaments). By drawing, fibers with a desired fineness can be obtained and the strength of the fibers can be increased. Stretching is not particularly limited, and may be carried out by a two-step spinning/drawing method or by a direct spinning/drawing method. In the two-stage spinning and drawing method, drawing is performed after the spun filament is wound up. In the direct spinning/drawing method, spinning and drawing are performed continuously without winding the spun filaments. Further, the stretching step may be performed in multiple stages by combining a plurality of roll pairs. The surface temperatures and speeds of the multiple rolls may be the same or different. The stretching temperature, specifically the surface temperature of the roll, is not particularly limited, but may be, for example, 30 to 100°C, or 40 to 90°C. The stretching ratio may be, for example, 1.5 to 20 times. When the stretching ratio is 1.5 times or more, the strength of the fiber can be further increased. Before stretching, an oil agent may be applied to the spun filaments as necessary.
 延伸フィラメントの引張強さは、好ましくは0.5~10cN/dtex、より好ましくは0.7~10cN/dtex、さらに好ましくは1.0~10cN/dtexである。延伸フィラメントの引張強さが上述した範囲内であると、捲縮を付与しやすい上、捲縮を付与した後にカットして得られた短繊維を用いたパイル布帛の風合い及び引張強さをさらに高めることができる。本明細書において、延伸フィラメントの引張強さは、JIS L 1013:2021に基づいて測定することができる。 The tensile strength of the drawn filament is preferably 0.5 to 10 cN/dtex, more preferably 0.7 to 10 cN/dtex, and even more preferably 1.0 to 10 cN/dtex. When the tensile strength of the drawn filament is within the above range, crimping is easy to be imparted, and the texture and tensile strength of the pile fabric using short fibers obtained by cutting after crimping are further improved. can be increased. In this specification, the tensile strength of the drawn filament can be measured based on JIS L 1013:2021.
 次に、延伸フィラメントは、捲縮加工して、嵩高性を付与することができる。捲縮加工は、特に限定されないが、例えば、ギアクリンプ法やスタッフィングボックス法等の公知の捲縮加工方法で行うことができる。これにより、得られたP3HA系繊維は、捲縮、具体的には機械捲縮を有することになる。必要に応じて、捲縮を付与する前に、延伸フィラメントを予熱してもよい。捲縮を付与した延伸フィラメント(捲縮糸)は、そのまま、パイル繊維として用いてもよいが、パイル布帛の生産性の観点から、所定の繊維長にカットした短繊維として用いることが望ましい。すなわち、P3HA系繊維は、長繊維(延伸フィラメント)でもよく、短繊維でもよい。パイル繊維として捲縮を有するP3HA系短繊維を用いることで、肌触り及び保温性に優れるとともに、軽量のフリース調やプードル調のパイル布帛を好適に得ることができる。 Next, the drawn filament can be crimped to give it bulk. The crimping process is not particularly limited, and can be performed by, for example, a known crimping method such as a gear crimp method or a stuffing box method. As a result, the obtained P3HA-based fibers have crimps, specifically mechanical crimps. If desired, the drawn filaments may be preheated before crimping. The crimped drawn filament (crimped yarn) may be used as is as pile fiber, but from the viewpoint of productivity of pile fabric, it is desirable to use it as short fiber cut to a predetermined fiber length. That is, the P3HA-based fibers may be long fibers (drawn filaments) or short fibers. By using crimped P3HA short fibers as pile fibers, it is possible to suitably obtain a pile fabric that is excellent in feel and heat retention, and is lightweight and has a fleece-like or poodle-like appearance.
 P3HA系短繊維の繊維長は、特に限定されないが、パイル高さが大きい、例えば、パイル高さが8mm以上のパイル布帛が得やすい観点から、20~176mmであってもよく、25~138mmであってもよく、28~110mmであってもよい。 The fiber length of the P3HA short fibers is not particularly limited, but from the viewpoint of easily obtaining a pile fabric with a large pile height, for example, a pile height of 8 mm or more, it may be 20 to 176 mm, or 25 to 138 mm. The length may be 28 to 110 mm.
 P3HA系繊維の捲縮数は、短繊維のカード通過性及びパイル布帛の柔らかい風合いを両立する観点から、5~25個/25mmであることが好ましく、6~20個/25mmであることがより好ましく、7~18個/25mmであることがさらに好ましく、8~17個/25mmであることが特に好ましい。P3HA系繊維の捲縮数は、下記のように測定することができる。捲縮糸又は短繊維を用い、試料長を30mmとし、長さ25mmにおける捲縮の山の数を顕微鏡観察下でカウントし、n=15とし、平均化した値を25mmあたりの捲縮数とする。なお、短繊維の繊維長が25mm未満の場合、全長における捲縮の山の数を顕微鏡観察下でカウントして捲縮数を得た後、25mmあたりの捲縮数に換算してもよい。 The number of crimps of the P3HA fiber is preferably 5 to 25 crimps/25 mm, more preferably 6 to 20 crimps/25 mm, from the viewpoint of achieving both short fiber card passability and soft texture of the pile fabric. Preferably, the number is 7 to 18 pieces/25 mm, more preferably 8 to 17 pieces/25 mm. The number of crimp of P3HA fiber can be measured as follows. Using crimped yarn or short fibers, the sample length is 30 mm, the number of crimp peaks in a length of 25 mm is counted under microscope observation, n = 15, and the averaged value is the number of crimp per 25 mm. do. In addition, when the fiber length of the short fiber is less than 25 mm, the number of crimps in the entire length may be counted under microscope observation to obtain the number of crimps, and then the number may be converted into the number of crimps per 25 mm.
 捲縮加工において、延伸フィラメントを60~120℃で予熱した後、スタッフィングボックスを用い、スタッフィングボックス圧0.001~0.1MPaの条件下で捲縮を付与することが好ましい。延伸フィラメントの予熱は、例えば、湿熱処理でもよく、乾熱処理でもよい。湿熱処理は、例えば、スチーム等で行うことができる。乾熱処理は、例えば、熱風オーブンや電気ヒーター等で行ってもよい。延伸フィラメントの予熱温度は、60~110℃であることがより好ましく、70~100℃であることがさらに好ましく、80~90℃であることがさらにより好ましい。スタッフィングボックス圧は、0.001~0.08MPaであることがより好ましく、0.001~0.06MPaであることがさらに好ましく、0.001~0.04MPaであることがさらにより好ましい。 In the crimping process, it is preferable to preheat the drawn filament at 60 to 120° C. and then apply crimps using a stuffing box at a stuffing box pressure of 0.001 to 0.1 MPa. The drawn filament may be preheated by, for example, wet heat treatment or dry heat treatment. The moist heat treatment can be performed using, for example, steam. The dry heat treatment may be performed using, for example, a hot air oven or an electric heater. The preheating temperature of the drawn filament is more preferably 60 to 110°C, even more preferably 70 to 100°C, even more preferably 80 to 90°C. The stuffing box pressure is more preferably 0.001 to 0.08 MPa, even more preferably 0.001 to 0.06 MPa, even more preferably 0.001 to 0.04 MPa.
 P3HA系繊維は、風合いの観点から、単繊維繊度が0.1~100dtexであることが好ましく、0.5~50dtexであることがより好ましく、1.0~25dtexであることがさらに好ましく、1.0~15dtexであることがさらにより好ましい。本明細書において、P3HA系繊維の単繊維繊度は、オートバイブロスコープ法にて測定することができる。 From the viewpoint of texture, the P3HA-based fiber preferably has a single fiber fineness of 0.1 to 100 dtex, more preferably 0.5 to 50 dtex, even more preferably 1.0 to 25 dtex, and 1. Even more preferably it is .0 to 15 dtex. In this specification, the single fiber fineness of P3HA-based fibers can be measured by an autobibroscopy method.
 P3HA系短繊維は、機械的強度の観点から、引張強さが0.3~6.0cN/dtexであることが好ましく、より好ましくは0.5~6.0cN/dtexであり、さらに好ましくは1.0~6.0cN/dtexである。本明細書において、P3HA系短繊維の引張強さは、JIS L 1015:2021に基づいて測定することができる。 From the viewpoint of mechanical strength, the P3HA short fibers preferably have a tensile strength of 0.3 to 6.0 cN/dtex, more preferably 0.5 to 6.0 cN/dtex, and even more preferably It is 1.0 to 6.0 cN/dtex. In this specification, the tensile strength of P3HA-based short fibers can be measured based on JIS L 1015:2021.
 P3HA系繊維の重量平均分子量は、特に限定されないが、例えば、50,000~3,000,000であることが好ましく、より好ましくは100,000~3,000,000であり、さらに好ましくは100,000~1,500,000であり、さらに好ましくは100,000~500,000である。 The weight average molecular weight of the P3HA fiber is not particularly limited, but is preferably 50,000 to 3,000,000, more preferably 100,000 to 3,000,000, and even more preferably 100,000 to 3,000,000. ,000 to 1,500,000, more preferably 100,000 to 500,000.
 P3HA系繊維は、ポリッシング等のパイル布帛の製造工程における温度条件を高めやすい観点から、軟化点が100℃以上であることが好ましく、110℃以上であることがより好ましく、120℃以上であることがさらに好ましい。また、軟化点の上限は、特に限定されないが、例えば、良好な毛抜け防止性を付与する観点から、150℃以下、又は140℃以下でもよい。本明細書において、繊維の軟化点は、具体的には、実施例に記載のとおりに測定することができる。 The P3HA-based fibers preferably have a softening point of 100°C or higher, more preferably 110°C or higher, and 120°C or higher, from the viewpoint of easily increasing the temperature conditions in the pile fabric manufacturing process such as polishing. is even more preferable. Further, the upper limit of the softening point is not particularly limited, but may be, for example, 150° C. or lower, or 140° C. or lower from the viewpoint of imparting good hair loss prevention properties. In this specification, the softening point of the fiber can be specifically measured as described in the Examples.
 P3HA系繊維は、繊維間に融着が発生しておらず、柔らかで良好な風合いが得られる観点から、100℃乾熱収縮率が10.0~30.0%であることが好ましく、12~20%であることがより好ましい。本明細書において、P3HA系繊維の100℃乾熱収縮率は、P3HA系繊維を無荷重かつ100℃の乾熱雰囲気下で15分間熱処理した際に、熱処理前後のP3HA系繊維の繊維長を100mg/dtex荷重下で測定し、下記数式(1)に基づいて算出することができる。下記数式(1)において、L0は熱処理前の繊維の繊維長であり、L1は熱処理後の繊維の繊維長である。本明細書において、P3HA系繊維の100℃乾熱収縮率は、具体的には、実施例に記載のとおりに測定することができる。
 100℃乾熱収縮率(%)=[(L0-L1)/L0]×100 (1)
The P3HA-based fiber preferably has a dry heat shrinkage rate of 10.0 to 30.0% at 100°C from the viewpoint of not causing fusion between the fibers and obtaining a soft and good texture. More preferably, it is between 20% and 20%. In this specification, the 100°C dry heat shrinkage rate of the P3HA-based fiber is defined as the fiber length of the P3HA-based fiber before and after the heat treatment of 100 mg when the P3HA-based fiber is heat-treated for 15 minutes in a dry heat atmosphere at 100°C with no load. /dtex load, and can be calculated based on the following formula (1). In the following formula (1), L0 is the fiber length of the fiber before heat treatment, and L1 is the fiber length of the fiber after heat treatment. In this specification, the 100° C. dry heat shrinkage rate of the P3HA-based fiber can be specifically measured as described in Examples.
100℃ dry heat shrinkage rate (%) = [(L0-L1)/L0] x 100 (1)
 (地糸)
 地糸は、P3HA系繊維よりも軟化点が高い繊維を含む。これにより、容易に、後述する熱圧着処理にて、地糸より裏面側に存在するP3HA系繊維の少なくとも一部を融着させつつ、地組織の表面に立毛するP3HA系繊維は融着させないことができる。また、これにより、後述する熱圧着処理にて、地組織が硬くならず、良好な柔軟性を維持しやすい。P3HA系繊維よりも軟化点が高い繊維としては、生分解性の観点から、生分解性、特に海洋分解性を有する繊維を用いることが好ましい。生分解性を有する生分解性繊維としては、P3HA以外の脂肪族ポリエステルを含む合成繊維、天然繊維、及び再生繊維等を用いることができる。P3HA以外の脂肪族ポリエステルとしては、例えば、ポリ乳酸等が挙げられる。天然繊維としては、天然セルロース繊維、及び天然動物繊維等が挙げられる。天然セルロース繊維としては、例えば、木綿繊維、カポック繊維、亜麻繊維、大麻繊維、ラミー繊維、ジュート繊維、マニラ麻繊維、及びケナフ繊維等が挙げられる。天然動物繊維としては、例えば、羊毛繊維、モヘア繊維、カシミヤ繊維、ラクダ繊維、アルパカ繊維、及びアンゴラ繊維等が挙げられる。再生繊維としては、レーヨン等の再生セルロース繊維、及び再生コラーゲン繊維(例えば、株式会社カネカ社製の再生コラーゲン繊維「Luxaire(登録商標)」)等の再生タンパク質繊維が挙げられる。地糸としては、例えば、これらの生分解性繊維の1種又は2種以上を含む紡績糸等を用いることができ、軟化点を有しないレーヨン、ウール、木綿繊維、及び再生コラーゲン繊維あるいはこれらの1種又は2種以上を含む紡績糸等を好適に用いることができる。
(ground thread)
The ground yarn contains fibers having a higher softening point than P3HA-based fibers. This makes it possible to easily fuse at least a portion of the P3HA fibers present on the back side of the ground yarn while not fusing the P3HA fibers that are raised on the surface of the ground fabric in the thermocompression bonding process described below. Can be done. In addition, this prevents the ground structure from becoming hard during the thermocompression bonding process described below, making it easy to maintain good flexibility. From the viewpoint of biodegradability, it is preferable to use fibers that are biodegradable, particularly marine degradable, as the fibers that have a higher softening point than the P3HA fibers. As biodegradable fibers, synthetic fibers containing aliphatic polyesters other than P3HA, natural fibers, regenerated fibers, and the like can be used. Examples of aliphatic polyesters other than P3HA include polylactic acid. Examples of natural fibers include natural cellulose fibers and natural animal fibers. Examples of natural cellulose fibers include cotton fibers, kapok fibers, flax fibers, hemp fibers, ramie fibers, jute fibers, Manila hemp fibers, and kenaf fibers. Examples of natural animal fibers include wool fibers, mohair fibers, cashmere fibers, camel fibers, alpaca fibers, and angora fibers. Examples of regenerated fibers include regenerated cellulose fibers such as rayon, and regenerated protein fibers such as regenerated collagen fibers (for example, regenerated collagen fibers "Luxaire (registered trademark)" manufactured by Kaneka Corporation). As the ground yarn, for example, a spun yarn containing one or more of these biodegradable fibers can be used, and rayon, wool, cotton fiber, and regenerated collagen fiber, which do not have a softening point, or these fibers can be used. Spun yarns containing one or more types can be suitably used.
 毛抜けをより効果的に抑制する観点から、地糸は、P3HA系繊維よりも軟化点が高い繊維に加えて、熱融着繊維を含むことが好ましく、地糸を構成する繊維の合計を100重量%とした場合、熱融着繊維の含有量は5重量%以上又は10重量%以上でもよい。熱融着繊維としては、軟化点が、前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以下である繊維を好適に用いることができる。例えば、好ましくは熱融着ポリエステル繊維、熱融着ナイロン繊維等が挙げられる。熱融着繊維としては、パイル繊維に用いるP3HA系繊維を用いてもよい。地糸として、木綿繊維及びP3HA系繊維を含む繊維糸を用いると、熱圧着工程において、地糸より裏面側に存在するパイル繊維由来のP3HA系繊維と地糸を構成するP3HA系繊維が融着し、毛抜けをより効果的に防止することができる。熱融着繊維は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。パイル布帛の柔軟性を高める観点から、地糸を構成する繊維の合計を100重量%とした場合、熱融着繊維の含有量は50重量%以下であることが望ましく、30重量%以下であることがより好ましい。 From the viewpoint of more effectively suppressing hair loss, it is preferable that the base yarn contains heat-fusible fibers in addition to fibers with a higher softening point than P3HA-based fibers, and the total of the fibers constituting the base yarn is 100%. In terms of weight%, the content of the heat-fusible fibers may be 5% by weight or more or 10% by weight or more. As the heat-fusible fiber, a fiber whose softening point is equal to or lower than the softening point of the poly(3-hydroxyalkanoate) fiber can be suitably used. For example, preferable examples include heat-fused polyester fibers, heat-fused nylon fibers, and the like. As the heat-fusible fibers, P3HA fibers used for pile fibers may be used. When a fiber yarn containing cotton fiber and P3HA-based fiber is used as the ground thread, the P3HA-based fibers derived from pile fibers existing on the back side of the ground thread and the P3HA-based fibers constituting the ground thread are fused in the thermocompression bonding process. It can prevent hair loss more effectively. The heat-fusible fibers may be used alone or in combination of two or more. From the viewpoint of increasing the flexibility of the pile fabric, the content of heat-fusible fibers is desirably 50% by weight or less, and 30% by weight or less, when the total amount of fibers constituting the ground yarn is 100% by weight. It is more preferable.
 (パイル布帛)
 パイル布帛の地組織の曲げ剛性は、柔軟性の観点から、1.00×10-4N・m2/m以下であり、3.00×10-5N・m2/m以下であることが好ましく、1.0×10-5N・m2/m以下であることがより好ましく、9.00×10-6N・m2/m以下であることがさらに好ましい。なお、柔軟性の観点から、パイル布帛の地組織の曲げ剛性は小さい程好ましく、その下限は特に限定されないが、例えば、製品縫製時の作業性の観点から、5.00×10-6N・m2/m以上でもよい。本明細書において、パイル布帛の地組織の曲げ剛性は、地組織を試料として測定するものであり、具体的には、実施例に記載のとおりに測定することができる。
(pile fabric)
From the viewpoint of flexibility, the bending stiffness of the ground structure of the pile fabric should be 1.00×10 -4 N・m 2 /m or less, and 3.00×10 −5 N・m 2 /m or less. is preferable, more preferably 1.0×10 −5 N·m 2 /m or less, and still more preferably 9.00×10 −6 N·m 2 /m or less. In addition, from the viewpoint of flexibility, the lower the bending rigidity of the base structure of the pile fabric, the better, and the lower limit is not particularly limited, but for example, from the viewpoint of workability during product sewing, it is 5.00 × 10 -6 N. It may be m 2 /m or more. In this specification, the bending rigidity of the ground structure of a pile fabric is measured using the ground structure as a sample, and specifically, it can be measured as described in the Examples.
 パイル布帛は、パイル部のパイル繊維が融着されておらず、風合いに優れる観点から、パイル布帛を140℃の乾熱雰囲気下で15分間熱処理した際に、熱処理前後のパイル繊維の長さの変化率(以下において、140℃乾熱収縮率とも記す。)が15.0~40.0%であることが好ましく、18.0~38.0%であることがより好ましく、20.0~35.0%であることがさらに好ましい。本明細書において、パイル布帛の140℃乾熱収縮率は、具体的には、実施例に記載のとおりに測定することができる。 Pile fabric has pile fibers in the pile part that are not fused and has an excellent texture. The rate of change (hereinafter also referred to as 140°C dry heat shrinkage rate) is preferably 15.0 to 40.0%, more preferably 18.0 to 38.0%, and 20.0 to 40.0%. More preferably, it is 35.0%. In this specification, the 140° C. dry heat shrinkage rate of the pile fabric can be specifically measured as described in Examples.
 パイル布帛は、毛抜けを効果的に抑制する観点から、毛抜け量が0.60g/m2以下であることが好ましく、0.50g/m2以下であることがより好ましく、0.40g/m2以下であることがさらに好ましく、0.30g/m2以下であることがさらにより好ましい。なお、パイル布帛の毛抜け量の下限は0g/m2に近いほど好ましいが、0.01g/m2以上でもよい。本明細書において、毛抜け量は、具体的には、実施例に記載のとおりに測定することができる。 From the viewpoint of effectively suppressing hair loss, the amount of hair loss of the pile fabric is preferably 0.60 g/m 2 or less, more preferably 0.50 g/m 2 or less, and 0.40 g/m 2 or less. It is more preferably less than m 2 , and even more preferably less than 0.30 g/m 2 . The lower limit of the shedding amount of the pile fabric is preferably as close to 0 g/m 2 as possible, but it may be 0.01 g/m 2 or more. In this specification, the amount of hair loss can be specifically measured as described in Examples.
 パイル布帛は、特に限定されないが、軽量性や保温性の観点から、単位長さあたりの重量(目付)が300~3500g/mであることが好ましく、300~2000g/mであることがより好ましく、300~1200g/mであることがさらに好ましい。本明細書において、パイル布帛の単位長さあたりの重量は、実施例に記載のとおりに測定することができる。 The pile fabric is not particularly limited, but from the viewpoint of lightness and heat retention, the weight per unit length (fabric weight) is preferably 300 to 3500 g/m, more preferably 300 to 2000 g/m. , more preferably 300 to 1200 g/m. In this specification, the weight per unit length of the pile fabric can be measured as described in the Examples.
 パイル布帛のパイル高さは、特に限定されず、用途等に応じて適宜設定することができるが、例えば、2~120mmでもよい。衣類用生地として好適に用いる観点から、2~70mmであることが好ましく、5~60mmであることがより好ましい。 The pile height of the pile fabric is not particularly limited and can be set as appropriate depending on the intended use, and may be, for example, 2 to 120 mm. From the viewpoint of suitable use as clothing fabric, the thickness is preferably 2 to 70 mm, more preferably 5 to 60 mm.
 パイル布帛は、エコファーとして好適に用いられ、具体的には、ジャケット、及びコート等の衣類用生地や、ぬいぐるみ等の玩具用生地、毛布、及びシーツ等の寝装製品等に用いることができる。 Pile fabric is suitably used as eco-fur, and specifically can be used for clothing fabrics such as jackets and coats, fabrics for toys such as stuffed animals, and bedding products such as blankets and sheets.
 パイル布帛は、パイル織物でもよく、パイル編物でもよい。衣類用生地として用いる場合、柔軟性、嵩高性、保温性、通気性、及びドレープ性等の観点から、パイル編物であることが好ましい。パイル編物は、柔軟性、嵩高性及び保温性等の観点から、フリース調やプードル調であってもよい。パイル編物は、パイル高さが15~100mmのハイパイル編物でもよい。 The pile fabric may be a pile fabric or a pile knit fabric. When used as a clothing fabric, it is preferably a pile knitted fabric from the viewpoints of flexibility, bulk, heat retention, breathability, drapability, and the like. The pile knitted fabric may have a fleece-like texture or a poodle-like texture from the viewpoints of flexibility, bulkiness, heat retention, and the like. The pile knitted fabric may be a high pile knitted fabric with a pile height of 15 to 100 mm.
 パイル編物において、地組織はメリヤスの地組織としても良い。より詳細には、パイル編物は、メリヤスの地組織と、該地組織を構成する地糸に絡みつつ前記地組織の表面に立毛するパイル繊維とを含む。パイル編物の場合、地組織がメリヤスであるので、伸縮性に優れる組織を構成することができる。メリヤスは、一般に、1本又は2本以上の糸がループをつくり、そのループに引っかけて、次の新しいループをつくることを継続し、順次ループを平面状に連続させて布地を形成したものである。そして、糸がループをつくりながら左右に往復して平面状の布地を形成するか、らせん状に進行して筒状の布地を形成する等により、横方向に進行していくものを横編みメリヤス、整然と配列した多数の各経(たて)糸がループをつくりながら、隣接する左右の経糸とループで連結されて布地を形成するものを経編みメリヤスという。また、横編みメリヤスには、平編み、ゴム編み、及びパール編み等の編み方があり、経編みメリヤスには、デンビー編み、コード編み、アトラス編み、及び鎖編み等の編み方がある。パイル編物の地組織の編み方としては、商品性、及び生産性等の観点から、横編みメリヤスが好ましい。 In pile knitting, the ground texture may be a stockinette ground texture. More specifically, the pile knitted fabric includes a stockinette ground structure and pile fibers that are raised on the surface of the ground structure while being entwined with the ground yarns constituting the ground structure. In the case of pile knitted fabrics, since the ground texture is stockinette, it is possible to construct a texture with excellent elasticity. Stockinette is generally a fabric made by creating a loop with one or more threads, hooking it to that loop, and continuing to create the next new loop, making the loops continuous in a plane. be. Weft-knitted knitting is a process in which the yarn progresses in the horizontal direction, such as by making loops and reciprocating from side to side to form a flat fabric, or by progressing in a spiral to form a cylindrical fabric. Warp-knitted knitting is a fabric in which a large number of warp threads arranged in an orderly manner create loops and are connected to adjacent left and right warp threads through the loops to form a fabric. Further, flat knitted stockinette includes knitting methods such as flat knitting, rubber knitting, and purl knitting, and warp knitted stockinette has knitting methods such as Denby knitting, cord knitting, atlas knitting, and chain knitting. As the method of knitting the ground structure of the pile knit, flat knit stockinette is preferable from the viewpoints of marketability and productivity.
 パイル編物において、パイル繊維の地組織のメリヤスに対する配置としては、地組織のメリヤスを構成する地糸の各ループの全てにパイル繊維が絡むように配置してもよいし、メリヤスを構成する地糸の各ループのうち、ウェール方向及び/又はコース方向においてパイル繊維の絡んでいない部分を有するように配置してもよい。 In pile knitted fabrics, the arrangement of the pile fibers with respect to the stockinette may be arranged so that the pile fibers are entwined with all loops of the ground yarn that constitutes the stockinette of the ground structure, or The loops may be arranged so as to have portions in which pile fibers are not entangled in the wale direction and/or the course direction.
 以下、図面を用いて本発明の1以上の実施形態のパイル布帛を説明する。図1は1例のパイル布帛の概略説明図である。パイル布帛1は、地糸2と、地糸2(地糸のループ)に絡み地組織の表面で開繊されパイル部3を形成しているパイル繊維4で構成される。加えて、パイル布帛1の裏面において、地糸2の外側でパイル繊維4の少なくとも一部は融着されて融着部5を構成し、地糸2に圧着されている。 Hereinafter, pile fabrics according to one or more embodiments of the present invention will be described using the drawings. FIG. 1 is a schematic explanatory diagram of an example of pile fabric. The pile fabric 1 is composed of a ground yarn 2 and pile fibers 4 that are spread around the ground yarn 2 (loop of the ground yarn) on the surface of the fabric structure to form a pile portion 3. In addition, on the back surface of the pile fabric 1, at least a portion of the pile fibers 4 are fused to the outside of the ground yarn 2 to form a fused portion 5, which is crimped to the ground yarn 2.
 (パイル布帛の製造方法)
 本発明の1以上の実施形態において、パイル布帛の製造方法は、例えば、パイル布帛を作製する工程と、パイル布帛を地組織の裏面側から熱圧着処理する工程を含むことができる。パイル布帛は、上述した地糸及びパイル繊維を用いる以外は、一般的な公知の方法にて作製することができる。
(Method for manufacturing pile fabric)
In one or more embodiments of the present invention, a method for manufacturing a pile fabric can include, for example, a process of producing a pile fabric, and a process of subjecting the pile fabric to thermocompression bonding from the back side of the ground structure. The pile fabric can be produced by a general known method except for using the ground yarn and pile fibers described above.
 熱圧着処理は、(1)ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以上、かつポリ(3-ヒドロキシアルカノエート)系繊維の融点+10℃以下、及び(2)地糸におけるポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維の軟化点未満という要件を満たす温度条件にて行う。これにより、地糸に絡んだパイル繊維のうち、地糸より裏面側に存在するP3HA系繊維の少なくとも一部を融着させつつ、地組織の表面に立毛するP3HA系繊維は融着させないことができ、それゆえ、毛抜けを防止し、パイル部の風合い及び地組織の柔軟性を良好にすることができる。熱圧着処理時の温度がポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以上であると、地糸より裏面側に存在するP3HA系繊維の少なくとも一部を融着させることができる。熱圧着処理時の温度がポリ(3-ヒドロキシアルカノエート)系繊維の融点+10℃以下であると、パイル布帛の裏面におけるパイル繊維に加えて地糸に絡んだパイル繊維が融着することを抑制し、地組織が硬くなることを抑制することができる。熱圧着処理時の温度が地糸におけるポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維の軟化点未満であると、地組織の表面に立毛するP3HA系繊維が融着しない。 The thermocompression bonding process is carried out at a temperature of (1) above the softening point of the poly(3-hydroxyalkanoate)-based fiber and below the melting point of the poly(3-hydroxyalkanoate)-based fiber +10°C, and (2) on the poly(3-hydroxyalkanoate) fiber in the ground yarn. -Hydroxyalkanoate)-based fibers) is carried out under temperature conditions that satisfy the requirement that the softening point is lower than the softening point of the fiber, which is higher than that of the fiber. This makes it possible to fuse at least a portion of the P3HA fibers that are present on the back side of the ground yarn among the pile fibers entwined with the ground yarn, while not fusing the P3HA fibers that are raised on the surface of the ground texture. Therefore, hair loss can be prevented and the texture of the pile portion and the flexibility of the ground structure can be improved. When the temperature during the thermocompression bonding treatment is equal to or higher than the softening point of the poly(3-hydroxyalkanoate) fibers, at least a portion of the P3HA fibers present on the back side of the ground yarn can be fused. If the temperature during the thermocompression bonding treatment is below the melting point of poly(3-hydroxyalkanoate) fibers by 10°C or less, the pile fibers entangled with the ground yarns in addition to the pile fibers on the back side of the pile fabric are inhibited from fusing. However, it is possible to suppress the ground tissue from becoming hard. If the temperature during the thermocompression bonding treatment is below the softening point of the fiber, which has a higher softening point than the poly(3-hydroxyalkanoate) fiber in the ground yarn, the P3HA fibers raised on the surface of the ground texture will not fuse.
 熱圧着処理における温度条件は、好ましくはポリ(3-ヒドロキシアルカノエート)系繊維の軟化点+5℃以上、かつポリ(3-ヒドロキシアルカノエート)系繊維の融点以下であり、より好ましくはポリ(3-ヒドロキシアルカノエート)系繊維の軟化点+5℃以上、かつポリ(3-ヒドロキシアルカノエート)系繊維の融点-10℃以下である。 The temperature conditions in the thermocompression bonding treatment are preferably at least the softening point of poly(3-hydroxyalkanoate) fibers +5°C and below the melting point of poly(3-hydroxyalkanoate) fibers, more preferably at The softening point of the poly(3-hydroxyalkanoate) fiber is +5°C or higher, and the melting point of the poly(3-hydroxyalkanoate) fiber is -10°C or lower.
 熱圧着処理は、例えば、パイル布帛を裏面が加熱ロール又はホットプレートに接触するように配置し、ゴムロールなどにより加圧することにより行うことができる。加熱ロール又はホットプレートを用いる場合、短時間の熱圧着処理を行うことができ、地組織の裏面において、地糸より外側に配置されているパイル繊維(ポリ(3-ヒドロキシアルカノエート)系繊維)の少なくとも一部を熱圧着することができる。そして、パイル布帛の表面のパイル繊維(ポリ(3-ヒドロキシアルカノエート)系繊維)が溶融するほどの加熱はしないため、地組織の表面に立毛するパイル繊維は溶融しない。加熱ロールとしては、表面をポリテトラフルオロエチレン等のフッ素樹脂をコーティングした金属ロールを用いることができる。 The thermocompression bonding treatment can be carried out, for example, by placing the pile fabric so that its back side is in contact with a heating roll or hot plate, and applying pressure with a rubber roll or the like. When using a heating roll or hot plate, a short-time thermocompression bonding process can be performed, and the pile fibers (poly(3-hydroxyalkanoate) fibers) arranged outside the ground threads on the back side of the ground texture. At least a portion of the material can be thermocompression bonded. Since the pile fibers (poly(3-hydroxyalkanoate) fibers) on the surface of the pile fabric are not heated to the extent that they are melted, the pile fibers raised on the surface of the base structure are not melted. As the heating roll, a metal roll whose surface is coated with a fluororesin such as polytetrafluoroethylene can be used.
 前記パイル布帛を裏面側から熱圧着処理する際及び/又は熱圧着処理した後、パイル布帛の表面に立毛するパイル繊維側は冷却することが好ましい。また、前記パイル布帛を裏面側から熱圧着処理した後、前記パイル布帛の裏面側を冷却することが好ましい。前記冷却手段として、パイル布帛の表面及び/又は裏面を水温50℃以下の水を通水させた冷却ロールで冷却することが好ましい。前記冷却ロールに通水させる水の水温は、冷却効率及び生産性の観点から、好ましくは10~40℃であり、より好ましくは10~35℃であり、さらに好ましくは15~30℃である。このような冷却を行うと、パイル布帛の寸法安定性が高く、かつパイル繊維への熱ダメージも軽減させることができる。 When and/or after thermocompression bonding the pile fabric from the back side, it is preferable to cool the pile fiber side that is raised on the surface of the pile fabric. Further, after the pile fabric is subjected to thermocompression bonding from the back side, it is preferable that the back side of the pile fabric is cooled. As the cooling means, it is preferable to cool the front and/or back surfaces of the pile fabric with a cooling roll through which water having a temperature of 50° C. or lower is passed. The temperature of the water passed through the cooling roll is preferably 10 to 40°C, more preferably 10 to 35°C, and still more preferably 15 to 30°C, from the viewpoint of cooling efficiency and productivity. By performing such cooling, the dimensional stability of the pile fabric is high, and thermal damage to the pile fibers can also be reduced.
 以下、熱圧着処理の一例を、図を用いてさらに詳細に説明する。 Hereinafter, an example of the thermocompression bonding process will be explained in more detail using the drawings.
 図2は、パイル布帛を裏面側から所定温度で熱圧着処理する工程を模式的に示した製造工程図である。熱圧着処理に使用する加工装置10は、加熱ロール11と、加熱ロール11に加圧し、内部に50℃以下の水が通水する冷却ゴムロール12と、冷却ゴムロール12に加圧し、内部に50℃以下の水が通水する金属冷却ロール13、内部に50℃以下の水が通水する金属冷却ロール14と、及びガイドロール15を含む。パイル布帛原反18は容器16から導き出され、裏面18bが加熱ロール11に接触し、表面(パイル部側)18aが冷却ゴムロール12に接触するように供給する。また、熱圧着処理された後、裏面18bは、金属冷却ロール14で冷却される。加工の終了したパイル布帛19は、容器17に収納される。 FIG. 2 is a manufacturing process diagram schematically showing the process of thermocompression bonding a pile fabric from the back side at a predetermined temperature. The processing device 10 used for the thermocompression bonding process includes a heating roll 11, a cooling rubber roll 12 that pressurizes the heating roll 11, and through which water at a temperature of 50°C or lower passes through the cooling rubber roll 12, and a cooling rubber roll 12 that pressurizes the cooling rubber roll 12 and allows water at 50°C or less to flow inside. It includes a metal cooling roll 13 through which water passes, a metal cooling roll 14 through which water at a temperature of 50° C. or below passes, and a guide roll 15. The pile fabric raw material 18 is led out from the container 16 and supplied so that the back surface 18b is in contact with the heating roll 11 and the front surface (pile portion side) 18a is in contact with the cooling rubber roll 12. Further, after being subjected to the thermocompression bonding process, the back surface 18b is cooled by the metal cooling roll 14. The pile fabric 19 that has been processed is stored in the container 17.
 熱圧着処理は、図2に示した加工装置に限定されず、図2に示した加工装置の一部の構成を変更した装置、ホットプレート、及びその他の装置を用いて行ってもよい。例えば、冷却ゴムロール12の代わりに冷却効果がないゴムロールを用いることが可能であり、金属冷却ロール13は省略してもよい。 The thermocompression bonding process is not limited to the processing apparatus shown in FIG. 2, and may be performed using a device with a partially modified configuration of the processing apparatus shown in FIG. 2, a hot plate, and other devices. For example, a rubber roll that does not have a cooling effect can be used instead of the cooling rubber roll 12, and the metal cooling roll 13 may be omitted.
 熱圧着処理において、加圧力はニップ圧で0.01~100Kgf/cm2(0.98KPa~9.8MPa)、パイル布帛原反の供給速度は0.1~20m/分、ヒーター(加熱ロールなど)接触時間は1~60秒間であることが好ましい。また、パイル布帛の表面のダメージを軽減するという観点から、加圧力はニップ圧で2.0~80Kgf/cm2(0.20~7.84MPa)、ヒーター接触時間は1~10秒間であることがより好ましい。 In the thermocompression bonding process, the nip pressure is 0.01 to 100 Kgf/cm 2 (0.98 KPa to 9.8 MPa), the supply speed of the pile fabric is 0.1 to 20 m/min, and the heater (heating roll, etc.) is used. ) The contact time is preferably 1 to 60 seconds. In addition, from the perspective of reducing damage to the surface of the pile fabric, the nip pressure should be 2.0 to 80 Kgf/cm 2 (0.20 to 7.84 MPa), and the heater contact time should be 1 to 10 seconds. is more preferable.
 ハイパイル編物等のパイル編物の場合、熱圧着処理の際、ハイパイル編物がウェール方向に収縮することから、熱圧着処理の後、ウェール方向に延伸処理してもよい。このような延伸処理は、例えばテンター等の公知の装置を用いて行うことができる。テンターは、一般的には、所定の温度で加熱しながら、布帛の両布耳部を保持して布帛を所定の幅に拡幅して熱セットするのに用いられるが、本明細書では、前記のように、加熱してもよく、加熱しなくてもよい。また、テンターでは、布帛の布耳部を保持する方式としてクリップテンター方式とピンテンター方式があり、いずれを採用してもよいが、工程の安定性及び/又は生産性の観点から、ピンテンター方式を採用するのが好ましい。 In the case of a pile knitted fabric such as a high pile knitted fabric, since the high pile knitted fabric contracts in the wale direction during the thermocompression bonding process, stretching treatment may be performed in the wale direction after the thermocompression bonding process. Such stretching treatment can be performed using a known device such as a tenter. A tenter is generally used to widen and heat set the fabric to a predetermined width by holding both edges of the fabric while heating it at a predetermined temperature. It may or may not be heated, as in In addition, there are two methods for holding tenters: a clip tenter method and a pin tenter method. Either method may be used, but from the viewpoint of process stability and/or productivity, the pin tenter method is used. It is preferable to do so.
 熱圧着処理の後の延伸処理を、ハイパイル編物を加熱しながら行う場合は、ハイパイル編物の表面にダメージを与えないよう、必要最小限の温度、必要最小限の風量で行うことが好ましい。例えば、延伸処理の際に温度は、0℃以上かつポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以下であることが好ましく、10℃以上かつポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-10℃以下であることがより好ましく、20℃以上かつポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-20℃以下であることがさらに好ましい。 If the stretching treatment after the thermocompression bonding treatment is performed while heating the high pile knitted fabric, it is preferable to perform it at the minimum necessary temperature and minimum necessary air volume so as not to damage the surface of the high pile knitted fabric. For example, during the stretching process, the temperature is preferably 0°C or higher and below the softening point of the poly(3-hydroxyalkanoate) fiber, or 10°C or higher and the softening point of the poly(3-hydroxyalkanoate) fiber. The softening point of the poly(3-hydroxyalkanoate) fiber is more preferably -10°C or lower, more preferably 20°C or higher and the softening point of the poly(3-hydroxyalkanoate) fiber -20°C or lower.
 延伸処理は、熱圧着処理の前にも行ってよい。熱圧着処理前の延伸処理は、室温(5~35℃)で行ってもよい。 The stretching treatment may also be performed before the thermocompression bonding treatment. The stretching treatment before the thermocompression bonding treatment may be performed at room temperature (5 to 35°C).
 パイル布帛の毛並みを揃えるために、熱圧着処理前及び/又は熱圧着処理後に、地組織の表面に立毛するパイル繊維をポリッシングしても良い。なお、熱圧着処理前のポリッシングはプレポリッシングとも称される。ポリッシングは必ずしも行う必要はないが、ポリッシングを行う場合、ポリッシングは、ポリ(3-ヒドロキシアルカノエート)系繊維のガラス転移温度以上、かつ前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-40℃以下の温度で行う必要がある。これにより、地組織の表面に立毛するP3HA系繊維を融着させず、パイル部の柔らかい風合いを維持することができる。ポリッシングは、ポリ(3-ヒドロキシアルカノエート)系繊維のガラス転移温度+30℃以上、かつ前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-40℃以下の温度で行うことが好ましく、ポリ(3-ヒドロキシアルカノエート)系繊維のガラス転移温度+35℃以上、かつ前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-45℃以下の温度で行うことがより好ましく、ポリ(3-ヒドロキシアルカノエート)系繊維のガラス転移温度+40℃以上、かつ前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-50℃以下の温度で行うことがさらに好ましい。 In order to make the pile fabric uniform, the pile fibers raised on the surface of the fabric may be polished before and/or after the thermocompression bonding process. Note that polishing before the thermocompression bonding process is also referred to as pre-polishing. Polishing is not always necessary, but when polishing is performed, polishing is performed at a temperature equal to or higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber, and at a softening point of -40 It is necessary to carry out at a temperature below ℃. As a result, the P3HA fibers standing on the surface of the ground structure are not fused and the soft feel of the pile portion can be maintained. Polishing is preferably carried out at a temperature that is higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber by +30°C and lower than the softening point of the poly(3-hydroxyalkanoate) fiber by -40°C. It is more preferable to conduct the reaction at a temperature that is higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber by +35°C and lower than the softening point of the poly(3-hydroxyalkanoate) fiber by -45°C. It is more preferable to carry out the heating at a temperature that is higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber by +40°C and lower than the softening point of the poly(3-hydroxyalkanoate) fiber by -50°C.
 熱圧着処理後のポリッシング処理後に、本発明の目的を阻害しない範囲内において、タンブラー処理を行ってもよい。タンブラー処理を行うことにより繊維を収束かつカールさせ、いわゆるシープ調、あるいはプードルボア調の商品を得ることができる。タンブラー処理は、例えば、ポリ(3-ヒドロキシアルカノエート)系繊維のガラス転移温度以上軟化点以下で行ってもよい。また、30℃以上ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-10℃以下で行うことが好ましく、60℃以上ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-20℃以下で行うことがより好ましい。 After the polishing treatment after the thermocompression bonding treatment, tumble treatment may be performed within a range that does not impede the object of the present invention. By performing the tumble treatment, the fibers are converged and curled, making it possible to obtain a product with a so-called sheep-like or poodle-boa look. The tumble treatment may be performed, for example, at a temperature above the glass transition temperature and below the softening point of the poly(3-hydroxyalkanoate) fiber. Further, it is preferable to carry out at a temperature of 30°C or higher, the softening point of poly(3-hydroxyalkanoate) fibers -10°C or lower, and a temperature of 60°C or higher and a softening point of poly(3-hydroxyalkanoate) fibers of -20°C or lower. It is more preferable.
 パイル布帛及びそれを用いた衣類等の製品は、使用後、微生物が存在する環境中に放置すれば生分解するため、特別な廃棄処理を必要とせず、地球環境に優しい。 After use, pile fabrics and products such as clothing made using them biodegrade if left in an environment where microorganisms exist, so they do not require special disposal and are environmentally friendly.
 以下、本発明の1以上の実施形態を実施例に基づいてさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。 Hereinafter, one or more embodiments of the present invention will be described in more detail based on Examples. Note that the present invention is not limited to these examples.
 実施例及び比較例で用いた測定方法及び評価方法は、以下のとおりである。 The measurement methods and evaluation methods used in the Examples and Comparative Examples are as follows.
 (繊維物性)
(1)単繊維繊度
 オートバイブロスコープ法にて測定した。具体的には、延伸フィラメント又は短繊維から任意に20本の繊維を選択し、各々の繊維の繊度を、オートバイブロ式繊度測定器「DENIER COMPUTER タイプDC-11」(サーチ社製)を使用して測定し、それらを平均し、単繊維繊度とした。
(2)引張強さ
 短繊維の引張強さは、JIS L 1015:2021に基づいて測定した。具体的には、短繊維から任意に20本の繊維を選択し、各々の繊維について、引張測定装置オートグラフAG-I(島津製作所社製)を用いて、引張速度20mm/分、つかみ間隔20mm、定格容量が5Nであるロードセルの条件下で、切断時の荷重を測定し、それらを平均して引張強さとした。
 (3)100℃乾熱収縮率
 繊維について、熱機械分析装置(TMA、日立ハイテクサイエンス社製、型番「TMA/SS6100」)を用いて、無荷重、100℃の乾熱雰囲気下、15分間熱処理し、熱処理前後の繊維長を100mg/dtex荷重下で測定し、下記数式(1)に基づいて100℃乾熱収縮率を算出した。下記数式(1)において、L0は熱処理前の繊維の繊維長であり、L1は熱処理後の繊維の繊維長である。
 100℃乾熱収縮率(%)=[(L0-L1)/L0]×100 (1)
 (4)軟化点
 繊維1gを開繊し、任意の温度に加熱したホットプレート上に置き、圧力0.07Kgf/cm2で3秒間加圧した時に、ホットプレートと接触した面の単繊維がそれぞれ軟化して結合し板状になる時の温度を繊維の軟化点とした。
 (5)ガラス転移温度及び融点
 示差走査熱量計(ティーエーインスツルメント社製、型番「DSC25」)を用い、測定温度範囲0~180℃、昇温速度10℃/分、降温速度10℃/分の条件下で、示差走査熱量測定にて、繊維のガラス転移温度及び融点を測定した。
(Fiber physical properties)
(1) Single fiber fineness Measured by autobibroscopic method. Specifically, 20 fibers were arbitrarily selected from drawn filaments or short fibers, and the fineness of each fiber was measured using an autobibro-type fineness measuring device "DENIER COMPUTER Type DC-11" (manufactured by Saatchi Corporation). The results were averaged to obtain the single fiber fineness.
(2) Tensile strength The tensile strength of short fibers was measured based on JIS L 1015:2021. Specifically, 20 fibers were arbitrarily selected from the short fibers, and each fiber was measured using a tensile measuring device Autograph AG-I (manufactured by Shimadzu Corporation) at a tensile speed of 20 mm/min and a grip interval of 20 mm. The load at the time of cutting was measured under the conditions of a load cell with a rated capacity of 5N, and the results were averaged to determine the tensile strength.
(3) 100°C dry heat shrinkage rate The fibers were heat-treated for 15 minutes in a dry heat atmosphere at 100°C with no load using a thermomechanical analyzer (TMA, manufactured by Hitachi High-Tech Science, model number "TMA/SS6100"). The fiber length before and after the heat treatment was measured under a load of 100 mg/dtex, and the dry heat shrinkage rate at 100° C. was calculated based on the following formula (1). In the following formula (1), L0 is the fiber length of the fiber before heat treatment, and L1 is the fiber length of the fiber after heat treatment.
100℃ dry heat shrinkage rate (%) = [(L0-L1)/L0] x 100 (1)
(4) Softening point When 1g of fiber is opened, placed on a hot plate heated to an arbitrary temperature, and pressed for 3 seconds at a pressure of 0.07 Kgf/ cm2 , each single fiber on the surface in contact with the hot plate The temperature at which the fibers softened and bonded to form a plate shape was defined as the softening point of the fibers.
(5) Glass transition temperature and melting point Using a differential scanning calorimeter (manufactured by TA Instruments, model number “DSC25”), the measurement temperature range is 0 to 180°C, the heating rate is 10°C/min, and the cooling rate is 10°C/min. The glass transition temperature and melting point of the fibers were measured by differential scanning calorimetry under conditions of 10 minutes.
 (パイル布帛物性)
 (1)目付
 パイル布帛から30cm×30cm角にカットしたサンプルを採取し、n=5とし、それぞれのサンプルの重さを測定し、平均化した値をw(g)とし、下記数式により、パイル布帛の目付W(g/m)を算出した。
   W(g/m)=w×16.67
 (2)パイル高さ
 パイル布帛を水平な台の上に置き、パイル繊維を手で整えた。図1に示すように、地組織の最上部6からパイル繊維の最上部7までの距離8を定規で測定した。これを任意の5か所で測定した平均値をパイル布帛のパイル高さとした。
 (3)曲げ剛性
 パイル布帛を5cm×5cm角にカットした後、パイル繊維部を根元からハサミで切り取り、地組織部のみからなるサンプルを作製した。KBS-FB2純曲げ試験機(カトーテック株式会社製)にサンプルをセットし、曲げ曲率2.5cm-1の条件にてB値(曲げかたさ)を測定した。N=2で測定し、その平均値をパイル布帛の地組織の曲げ剛性(N・m2/m)とした。
 (4)柔軟性
 (a)パイル布帛を縦方向へ20mm幅に切り、長さ200mm、幅20mmの生地片を得た。
 (b)図3に示しているように、パイル布帛の生地片21をメラミン樹脂製の水平な台22(幅600mm、長さ600mm)の上に配置した。次に、パイル布帛の毛並み方向に沿って、パイル布帛の生地片21を水平な台22から少しずつ水平な台22の外へスライドさせた。
 (c)図4に示しているように、水平な台22から外に出たパイル布帛の生地片21の先端に引いた接線31と、水平な台22との角度aが90°になるまでパイル布帛の生地片21をスライドさせた。
 (d)パイル布帛の生地片21が水平な台22からスライドした距離L(90°距離)を計測し、下記の基準で柔軟性を評価した。
A:90°距離が50mm未満である(パイル布帛がかなり柔らかい)
B:90°距離が50mm以上55mm以下である(パイル布帛が柔らかい)
C:90°距離が55mmを超えている(パイル布帛が硬い;不合格)
 (5)毛抜け量
 パイル布帛の表面をゴム製の刷毛(商品名"プレスケールマット"5mm(粒の直径)、縦4cm、横10.5cm、富士フィルム社製)を使用し、600g荷重(14.3kg/cm2)の一定荷重をかけながら、ストローク幅30cm、毛並の順方向に10回、逆方向に10回こすり、粘着テープで抜け毛を回収し、その重量を1m2あたりに換算して毛抜け量とした。
 (6)毛抜け評価
 毛抜け量に基いて、以下のように4段階のランクで毛抜け評価を行った。
A:0.3g/m2以下(非常に良好なレベル)
B:0.3g/m2を超え0.6g/m2以下(良好なレベル)
C:0.6g/m2を超え1.0g/m2以下(やや不良レベル)
D:1.0g/m2を超える(不良レベル)
 (7)毛先の融着
 パイル布帛を水平な台の上に置き、目視と触感によりパイル部の毛先の融着を確認した。
 融着なし:目視で融着が確認されず、パイル部の1本1本のパイル繊維の毛先が独立している。布帛表面を手で触った時、毛先の融着が確認されずスムーズな触感である。図5は、毛先が融着されていない一例のパイル布帛のパイル部の表面を観察した写真である。
 融着あり:目視で融着が確認され、パイル部の複数のパイル繊維の毛先が融着している。布帛表面を手で触った時、毛先の融着が確認でき、融着部が粗硬な触感を与える。図6は、毛先が融着されている一例のパイル布帛のパイル部の表面を観察した写真である。
 (8)140℃乾熱収縮率
 パイル布帛から5cm×5cm角にカットしたサンプル片を採取し、サンプル片の裏面にマジックペンで目印を付した。目印を付したサンプル片を水平な台の上に置き、図7に示すように、目印を付けた箇所のパイル繊維4の上部41をピンセットでつまみ、パイル部3のたるみを取るように引き伸ばしながら、地組織の最上部6からパイル繊維の最先端9までの距離51を測定した。この距離を熱処理前のパイル繊維の長さL2とした。続いて、このサンプル片を、無荷重かつ140℃の乾熱雰囲気下で、15分間熱処理した。熱処理後の目印を付けた箇所のパイル繊維の長さL3を、同様の手順で測定し、下記数式(2)に基づいて140℃乾熱収縮率を算出した。n=5とし、平均化した値をパイル布帛の140℃乾熱収縮率(%)とした。
 140℃乾熱収縮率(%)=[(L2-L3)/L2]×100 (2)
 (9)風合い
 下記のように4段階のランクで風合いを評価した。
A:地組織の表面に立毛するパイル繊維には融着はなく、熱処理をしないパイル布帛と同等レベル
B:ランクAに比べるとやや劣るが地組織の表面に立毛するパイル繊維には融着はなく、実用的には問題ないレベル
C:やや粗硬であり、実用的に問題あり(不合格)
D:極めて粗硬であり、実用化できない(不合格)
(Physical properties of pile fabric)
(1) Weight: Collect samples cut into 30cm x 30cm squares from the pile fabric, set n = 5, measure the weight of each sample, take the averaged value as w (g), and calculate the pile size using the following formula. The fabric weight W (g/m) was calculated.
W (g/m)=w×16.67
(2) Pile height The pile fabric was placed on a horizontal table and the pile fibers were adjusted by hand. As shown in FIG. 1, the distance 8 from the top 6 of the ground texture to the top 7 of the pile fibers was measured with a ruler. The average value measured at five arbitrary locations was defined as the pile height of the pile fabric.
(3) Bending rigidity After cutting the pile fabric into a 5 cm x 5 cm square, the pile fiber portion was cut from the root with scissors to prepare a sample consisting only of the ground texture portion. The sample was set in a KBS-FB2 pure bending tester (manufactured by Kato Tech Co., Ltd.), and the B value (bending hardness) was measured under the condition of a bending curvature of 2.5 cm -1 . Measurements were made with N=2, and the average value was taken as the bending rigidity (N·m 2 /m) of the ground structure of the pile fabric.
(4) Flexibility (a) The pile fabric was cut lengthwise into 20 mm width pieces to obtain fabric pieces with a length of 200 mm and a width of 20 mm.
(b) As shown in FIG. 3, a pile fabric piece 21 was placed on a horizontal table 22 (width 600 mm, length 600 mm) made of melamine resin. Next, the fabric piece 21 of the pile fabric was slid little by little from the horizontal table 22 to the outside of the horizontal table 22 along the direction of the pile fabric.
(c) As shown in Figure 4, until the angle a between the tangent 31 drawn to the tip of the pile fabric piece 21 that has come out from the horizontal table 22 and the horizontal table 22 becomes 90°. A fabric piece 21 of pile fabric was slid.
(d) The distance L (90° distance) that the fabric piece 21 of the pile fabric slid from the horizontal table 22 was measured, and the flexibility was evaluated according to the following criteria.
A: 90° distance is less than 50mm (pile fabric is quite soft)
B: 90° distance is 50 mm or more and 55 mm or less (pile fabric is soft)
C: 90° distance exceeds 55 mm (pile fabric is hard; fail)
(5) Amount of hair loss The surface of the pile fabric was brushed with a rubber brush (product name "Prescale Mat" 5 mm (particle diameter), length 4 cm, width 10.5 cm, manufactured by Fuji Film Co., Ltd.), and a 600 g load ( While applying a constant load of 14.3 kg/cm 2 ), rub the hair 10 times in the forward direction and 10 times in the opposite direction with a stroke width of 30 cm, collect the loose hair with adhesive tape, and convert the weight to 1 m 2 . The amount of hair loss was determined.
(6) Evaluation of hair loss Based on the amount of hair loss, evaluation of hair loss was performed in the following four ranks.
A: 0.3g/ m2 or less (very good level)
B: More than 0.3g/ m2 and less than 0.6g/ m2 (good level)
C: More than 0.6g/ m2 and less than 1.0g/ m2 (slightly poor level)
D: Exceeding 1.0g/ m2 (defective level)
(7) Fusion of the ends of the hair The pile fabric was placed on a horizontal table, and the fusion of the ends of the hair in the pile was confirmed visually and by touch.
No fusion: No fusion was visually confirmed, and the tips of each pile fiber in the pile part were independent. When you touch the surface of the fabric with your hand, it feels smooth to the touch, with no visible fusion of the tips of the hair. FIG. 5 is a photograph of the surface of the pile portion of an example of pile fabric in which the ends of the hair are not fused.
Fusion: Fusion is visually confirmed, and the tips of multiple pile fibers in the pile part are fused. When you touch the surface of the fabric with your hand, you can see that the ends of the hair are fused together, and the fused areas give a rough and hard feel. FIG. 6 is a photograph of the surface of the pile portion of an example of a pile fabric in which the ends of the hair are fused.
(8) Dry heat shrinkage rate at 140°C A sample piece cut into a 5 cm x 5 cm square was taken from the pile fabric, and a mark was marked on the back side of the sample piece with a magic pen. Place the marked sample piece on a horizontal table, and as shown in FIG. , the distance 51 from the top 6 of the ground texture to the leading edge 9 of the pile fibers was measured. This distance was defined as the length L2 of the pile fiber before heat treatment. Subsequently, this sample piece was heat-treated for 15 minutes under a dry heat atmosphere at 140° C. without any load. The length L3 of the pile fibers at the marked locations after the heat treatment was measured in the same manner, and the dry heat shrinkage rate at 140° C. was calculated based on the following formula (2). n=5, and the averaged value was taken as the 140°C dry heat shrinkage rate (%) of the pile fabric.
140℃ dry heat shrinkage rate (%) = [(L2-L3)/L2] x 100 (2)
(9) Texture Texture was evaluated in four ranks as shown below.
A: There is no fusion in the pile fibers that are raised on the surface of the ground texture, and the level is equivalent to pile fabric that is not heat treated.B: Slightly inferior to rank A, but there is no fusion in the pile fibers that are raised on the surface of the ground texture. Level C: Slightly rough and hard, causing a practical problem (fail)
D: Extremely rough and hard and cannot be put to practical use (fail)
 実施例及び比較例にて、下記の繊維を用いた。
 (パイル繊維)
パイル繊維1:後述する製造例1のP3HB3HH短繊維を使用した。
 (地糸)
地糸1:綿番手40番の木綿紡績糸を2本引き揃えて使用した。木綿紡績糸は、軟化点がない。
地糸2:繊維長28.6~34.1mmの木綿繊維と後述する製造例1のP3HB3HH繊維を50重量部:50重量部の割合で混紡した綿番手30番の紡績糸を2本引き揃えて使用した。木綿繊維は、軟化点がない。
The following fibers were used in the Examples and Comparative Examples.
(pile fiber)
Pile fiber 1: P3HB3HH staple fibers from Production Example 1, which will be described later, were used.
(ground thread)
Ground yarn 1: Two cotton spun yarns with a cotton count of 40 were aligned and used. Spun cotton yarn has no softening point.
Ground yarn 2: Two spun yarns of cotton count 30 made by blending cotton fibers with a fiber length of 28.6 to 34.1 mm and P3HB3HH fibers of Production Example 1 described later in a ratio of 50 parts by weight: 50 parts by weight are aligned. I used it. Cotton fibers do not have a softening point.
 (製造例1)
 P3HB3HHとして、3HB単位/3HH単位のモル組成比が94/6、Mwが350,000、MFR(165℃、5kg)が12g/10分の共重合樹脂(株式会社カネカ製)を100重量部と、結晶核剤として、ペンタエリスリトール(日本合成化学社製、「ノイライザーP」)を1.0重量部と、滑剤として、エルカ酸アミド0.5重量部及びベヘン酸アミド0.5重量部とをドライブレンドし、混合物を押出機にて150℃で溶融混練してペレット化し、ペレット状の樹脂組成物を得た。得られたペレット状の樹脂組成物は、ガラス転移温度が2℃、結晶化温度が100℃、融点が146℃、熱分解温度は180℃であり、重量平均分子量は350,000であった。なお、ペレット状の樹脂組成物のガラス転移温度、結晶化温度、融点及び熱分解温度は、示差走査熱量計(ティーエーインスツルメント社製、型番「DSC25」)を用い、測定温度範囲0~180℃、昇温速度10℃/分、降温速度10℃/分の条件下で、示差走査熱量測定にて測定し、ペレット状の樹脂組成物の重量平均分子量は、クロロホルム溶離液を用いたゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定した。
 得られた樹脂組成物(ペレット)を、混練押出機(1軸押出機、スクリュー径25mm)で溶融した。得られた溶融物を、紡糸ノズル(温度:175℃、吐出孔の形状:円形、吐出孔の直径:0.3mm、吐出孔の数:368個)から吐出し、紡糸フィラメントを得た。溶融物の流量は、ギアポンプで12.2kg/hに調整した。次に、紡糸筒内において、20℃の空気を0.7m/sの速度で円周方向より吐出された紡糸フィラメントに吹き付けた。
 冷却された紡糸フィラメントを、第1の引取ロール部(速度:448m/分)で引き取り、第1~第4の搬送ロール部(速度:471m/分)で順番に搬送した後に、第1の巻取ロール部(速度:461m/分)で巻き取り、室温(5~35℃)で18時間保管した。
 次に、第1の巻取ロール部から紡糸フィラメント(未延伸フィラメント)を第2の引取ロール部(速度:50m/分、ロール温度:30℃)で引き取り、延伸ロール部(110m/分、ロール温度:90℃)で延伸し、テイクオフロール部(熱処理ロール部)(速度:110m/分、ロール温度:100℃)で搬送し、第2の巻取ロール部(速度:100m/分)で巻き取ることにより、延伸フィラメントを得た。延伸倍率は2.0倍とした。なお、引取ロール部及び搬送ロール部としては、それぞれが同一速度及び同一温度の2つのロールで構成されたロール部を用いた。
 得られた延伸フィラメントを適当な繊度に合糸した後、スチームで100℃になるように予熱した後、搬送速度8.7m/分でスタッフィングボックスに供給し、ニップ圧2.0Kg/cm2、スタッフィング圧0.04MPaの条件で捲縮を付与し、得られた捲縮糸をトウカッターを用いて繊維長が51mmになるように切断することで、P3HB3HH短繊維を得た。得られたP3HB3HH短繊維の単繊維繊度は6.0dtex、引張強さは1.51cN/dtex、100℃乾熱収縮率は15.3%、ガラス転移温度は2℃、融点は146℃、軟化点は125℃、重量平均分子量は250,000であった。
(Manufacturing example 1)
As P3HB3HH, 100 parts by weight of a copolymer resin (manufactured by Kaneka Co., Ltd.) with a molar composition ratio of 3HB units / 3HH units of 94/6, Mw of 350,000, and MFR (165 ° C., 5 kg) of 12 g / 10 minutes. , 1.0 parts by weight of pentaerythritol (manufactured by Nippon Gosei Kagaku Co., Ltd., "Neurizer P") as a crystal nucleating agent, and 0.5 parts by weight of erucic acid amide and 0.5 parts by weight of behenic acid amide as lubricants. Dry blending was performed, and the mixture was melt-kneaded using an extruder at 150° C. to pelletize, thereby obtaining a pellet-shaped resin composition. The resulting pellet-shaped resin composition had a glass transition temperature of 2°C, a crystallization temperature of 100°C, a melting point of 146°C, a thermal decomposition temperature of 180°C, and a weight average molecular weight of 350,000. The glass transition temperature, crystallization temperature, melting point, and thermal decomposition temperature of the pelletized resin composition were measured using a differential scanning calorimeter (manufactured by TA Instruments, model number "DSC25") within the measurement temperature range of 0 to 0. The weight average molecular weight of the pellet-shaped resin composition was determined by differential scanning calorimetry at 180°C, a temperature increase rate of 10°C/min, and a cooling rate of 10°C/min. It was measured from polystyrene equivalent molecular weight distribution using permeation chromatography (GPC).
The obtained resin composition (pellets) was melted using a kneading extruder (single-screw extruder, screw diameter 25 mm). The obtained melt was discharged from a spinning nozzle (temperature: 175° C., shape of discharge hole: circular, diameter of discharge hole: 0.3 mm, number of discharge holes: 368) to obtain a spun filament. The flow rate of the melt was adjusted to 12.2 kg/h using a gear pump. Next, in the spinning cylinder, air at 20° C. was blown onto the spun filaments discharged from the circumferential direction at a speed of 0.7 m/s.
The cooled spun filament is taken up by the first take-up roll section (speed: 448 m/min), transported in order by the first to fourth transport roll sections (speed: 471 m/min), and then the first winding is carried out. It was taken up by a take-up roll section (speed: 461 m/min) and stored at room temperature (5 to 35°C) for 18 hours.
Next, the spun filament (undrawn filament) is taken up from the first take-up roll part by a second take-up roll part (speed: 50 m/min, roll temperature: 30°C), and the drawn roll part (110 m/min, roll The film is stretched at a temperature of 90°C), transported by a take-off roll section (heat treatment roll section) (speed: 110 m/min, roll temperature: 100°C), and wound at a second winding roll section (speed: 100 m/min). By taking the sample, a drawn filament was obtained. The stretching ratio was 2.0 times. In addition, as the take-up roll part and the conveyance roll part, a roll part comprised of two rolls each having the same speed and the same temperature was used.
After the obtained drawn filaments were doubled to a suitable fineness and preheated to 100°C with steam, they were fed to a stuffing box at a conveyance speed of 8.7 m/min, and a nip pressure of 2.0 Kg/cm 2 was applied. P3HB3HH staple fibers were obtained by crimping the yarn under a stuffing pressure of 0.04 MPa and cutting the resulting crimped yarn using a tow cutter to have a fiber length of 51 mm. The obtained P3HB3HH short fibers had a single fiber fineness of 6.0 dtex, a tensile strength of 1.51 cN/dtex, a 100°C dry heat shrinkage rate of 15.3%, a glass transition temperature of 2°C, a melting point of 146°C, and a softening point. The temperature was 125° C. and the weight average molecular weight was 250,000.
 (実施例1)
 エコファーを作製するためのスライバーニット機(丸編機)を使用した。該丸編機に、地糸1及び製造例1のP3HB3HH短繊維からなるパイル繊維スライバー(10~14g/m)を供給し、ハイパイル編物を編み立てた。地組織のウェールのループ数は16~17個/インチ、コースのループ数は22~33個/インチとした。次に、ハイパイル編物の立毛面のパイル繊維をプレポリッシング及びプレシャーリングにより整えた。具体的には、先ずは80℃でプレポリッシングを2回行い、次いでプレシャーリングを2回行った。その後、ピンテンター乾燥機を用いて、乾燥機内温度は室温(5~35℃)のまま、ハイパイル編物の幅を140cmから160cmに延伸した。
 前記で得られたハイパイル編物(幅160cm)に対して、図2に示した熱圧着装置を用いて加熱ロールの温度が130℃、加熱ロールとハイパイル編物の接触時間が5秒、加熱ロールと冷却ゴムロール間のニップ圧が50Kgf/cm2(4.9MPa)の条件で、裏面側から熱圧着処理を行なった。その際、ハイパイル編物の生地幅は135cmに収縮した。その後、ピンテンター乾燥機を用いて、乾燥機内温度70℃で、幅を160cmに延伸しながら、ハイパイル編物を3分間乾燥させ、幅を160cmに保持したまま50℃以下に冷却した。
 得られたハイパイル編物において、パイル布帛の表面のパイル繊維をポリッシング、ブラッシング及びシャーリングにより整えた。具体的には、先ずはブラッシングを2回行ない、続いて80℃で2回ポリッシングを行い、その後シャーリングを2回行い、最後に80℃でポリッシングを1回行った。最終的に、目付800g/m、パイル高さが18mmのフリース調ハイパイル編物を得た。
(Example 1)
A sliver knitting machine (circular knitting machine) was used to produce eco-fur. Ground yarn 1 and pile fiber sliver (10 to 14 g/m) consisting of the P3HB3HH short fibers of Production Example 1 were fed to the circular knitting machine to knit a high pile knitted fabric. The number of loops in the wale of the ground texture was 16 to 17/inch, and the number of loops in the course was 22 to 33/inch. Next, the pile fibers on the raised side of the high pile knit were adjusted by pre-polishing and pressing. Specifically, first, pre-polishing was performed twice at 80° C., and then pressuring was performed twice. Thereafter, the width of the high pile knitted fabric was stretched from 140 cm to 160 cm using a pin tenter dryer while keeping the temperature inside the dryer at room temperature (5 to 35° C.).
The high pile knitted fabric (width 160 cm) obtained above was bonded using the thermocompression bonding device shown in Fig. 2, with the temperature of the heating roll being 130°C, the contact time between the heating roll and the high pile knitting fabric being 5 seconds, and the heating roll and cooling. A thermocompression bonding process was performed from the back side under the condition that the nip pressure between the rubber rolls was 50 Kgf/cm 2 (4.9 MPa). At that time, the width of the high pile knitted fabric shrank to 135 cm. Thereafter, the high pile knitted fabric was dried for 3 minutes using a pin tenter dryer at a dryer internal temperature of 70° C. while being stretched to a width of 160 cm, and cooled to 50° C. or lower while maintaining the width at 160 cm.
In the obtained high pile knitted fabric, the pile fibers on the surface of the pile fabric were adjusted by polishing, brushing and shirring. Specifically, first, brushing was performed twice, then polishing was performed twice at 80°C, then shearing was performed twice, and finally polishing was performed once at 80°C. Finally, a fleece-like high pile knitted fabric with a basis weight of 800 g/m and a pile height of 18 mm was obtained.
 (実施例2)
 熱圧着処理時を行う際、加熱ロールの温度を140℃とした以外は実施例1と同様にして、目付800g/m、パイル高さが18mmのフリース調ハイパイル編物を得た。
(Example 2)
A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1, except that the temperature of the heating roll was 140° C. during the thermocompression bonding process.
 (実施例3)
 熱圧着処理時を行う際、加熱ロールの温度を150℃とした以外は実施例1と同様にして、目付800g/m、パイル高さが18mmのフリース調ハイパイル編物を得た。
(Example 3)
A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1 except that the temperature of the heating roll was 150° C. during the thermocompression bonding process.
 (実施例4)
 実施例1と同様にして得たハイパイル編物に、さらに110℃に加温したタンブラー乾燥機で15分間タンブラー処理を加えることで、目付800g/m、パイル高さが15mmのプードル調ハイパイル編物を得た。
(Example 4)
The high pile knitted fabric obtained in the same manner as in Example 1 was further tumbled for 15 minutes in a tumble dryer heated to 110°C to obtain a poodle-like high pile knitted fabric with a basis weight of 800 g/m and a pile height of 15 mm. Ta.
 (実施例5)
 ポリッシングを行わなかった以外は実施例1と同様にして、目付800g/m、パイル高さ18mmのフリース調ハイパイル編物を得た。
(Example 5)
A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1 except that polishing was not performed.
 (実施例6)
 地糸に上述した地糸2(木綿-P3HB3HH混紡糸)を用いた以外は実施例1と同様にして、目付800g/m、パイル高さが18mmのフリース調ハイパイル編物を得た。
(Example 6)
A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1 except that the above-mentioned ground yarn 2 (cotton-P3HB3HH blended yarn) was used as the ground yarn.
 (比較例1)
 熱圧着処理時を行う際、加熱ロールの温度を120℃とした以外は実施例1と同様にして、目付800g/m、パイル高さが18mmのフリース調ハイパイル編物を得た。
(Comparative example 1)
A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1, except that the temperature of the heating roll was 120° C. during the thermocompression bonding process.
 (比較例2)
 熱圧着処理時を行う際、加熱ロールの温度を160℃とした以外は実施例1と同様にして、目付800g/m、パイル高さが18mmのフリース調ハイパイル編物を得た。
(Comparative example 2)
A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1 except that the temperature of the heating roll was 160° C. during the thermocompression bonding process.
 (比較例3)
 熱圧着処理後にパイル布帛の表面のパイル繊維をポリッシング、ブラッシング及びシャーリングにより整える際、先ずはブラッシング後を2回行い、続いて90℃で3回のポリッシングを行い、その後シャーリングを2回行い、最後に90℃で2回のポリッシングを行った以外は、実施例3と同様にして、目付800g/m、パイル高さが18mmのフリース調ハイパイル編物を得た。
(Comparative example 3)
When preparing the pile fibers on the surface of the pile fabric by polishing, brushing and shirring after thermocompression bonding, first brushing is done twice, then polishing is done 3 times at 90℃, then shirring is done twice, and finally A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 3, except that polishing was performed twice at 90°C.
 (比較例4)
 熱圧着処理後にパイル布帛の表面のパイル繊維をポリッシング、ブラッシング及びシャーリングにより整える際、先ずはブラッシング後を2回行い、続いて110℃で3回のポリッシングを行い、その後シャーリングを2回行い、最後に110℃で2回のポリッシングを行った以外は、実施例3と同様にして、目付800g/m、パイル高さが18mmのフリース調ハイパイル編物を得た。
(Comparative example 4)
When preparing the pile fibers on the surface of the pile fabric by polishing, brushing and shirring after thermocompression bonding, first brushing is performed twice, then polishing is performed 3 times at 110°C, then shirring is performed twice, and finally A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 3, except that polishing was performed twice at 110°C.
 (比較例5)
 パイル布帛の毛抜け防止処理として、熱圧着処理を行う代わりにバッキング処理を行った以外は実施例1と同様にして、目付800g/m、パイル高さが18mmのフリース調ハイパイル編物を得た。バッキング処理の方法は以下に示すとおりである。プレシャーリング及びプレポリッシングの終了後、得られたパイル布帛の裏面にバッキング樹脂を含浸させた。バッキング樹脂はアクリル酸エステルを主成分とする乳化共重合体ラテックスを使用し、ラテックス濃度が40wt%の水溶液(乳化物)とし、樹脂固形分濃度で50g/m2含浸付着させた。その後、ピンテンター乾燥機を用いて、乾燥機内温度130℃で、幅を160cmに延伸しながら、ハイパイル編物を3分間乾燥させ、幅を160cmに保持したまま80℃以下に冷却した。
(Comparative example 5)
A fleece-like high pile knitted fabric having a basis weight of 800 g/m and a pile height of 18 mm was obtained in the same manner as in Example 1, except that backing treatment was performed instead of thermocompression bonding treatment to prevent shedding of the pile fabric. The method of backing processing is as shown below. After finishing the pressing and pre-polishing, the back surface of the obtained pile fabric was impregnated with a backing resin. As the backing resin, an emulsion copolymer latex containing acrylic acid ester as a main component was used, and an aqueous solution (emulsion) with a latex concentration of 40 wt % was used, and the resin was impregnated with a solid content of 50 g/m 2 . Thereafter, the high pile knitted fabric was dried for 3 minutes using a pin tenter dryer at a dryer internal temperature of 130° C. while being stretched to a width of 160 cm, and then cooled to 80° C. or lower while maintaining the width at 160 cm.
 実施例及び比較例のパイル布帛の製造条件を下記表1に示した。実施例及び比較例のパイル布帛の柔軟性、毛抜け量、毛抜け評価、毛先融着、140℃乾熱収縮率及び風合い、並びにパイル布帛の地組織の曲げ剛性を上述したとおりに測定評価し、その結果を下記表2に示した。 The manufacturing conditions for the pile fabrics of Examples and Comparative Examples are shown in Table 1 below. The flexibility, hair loss amount, hair loss evaluation, hair tip fusion, 140 ° C. dry heat shrinkage rate and texture of the pile fabrics of Examples and Comparative Examples, and the bending rigidity of the ground structure of the pile fabrics were measured and evaluated as described above, The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~6のパイル布帛は、パイル布帛の柔軟性、毛抜け、風合いの評価がいずれもA~Bで、パイル布帛に要求される各特性を満たしていた。中でも、地糸に木綿-P3HB3HH混紡糸を用いた実施例6は毛抜け評価がAとなり、特に優れた毛抜け特性となった。 The pile fabrics of Examples 1 to 6 were evaluated as A to B in terms of softness, shedding, and texture, and satisfied each characteristic required of pile fabrics. Among them, Example 6, in which cotton-P3HB3HH blended yarn was used as the ground yarn, had a shedding evaluation of A, and had particularly excellent shedding characteristics.
 一方、熱圧着処理時の加熱ロールの温度を120℃に設定した比較例1では、パイル布帛の裏面におけるパイル繊維が融着しておらず、毛抜けの評価がDとなった。また、熱圧着処理時の加熱ロールの温度を160℃に設定した比較例2は、地組織の曲げ剛性が1.00×10-4を超えており、パイル布帛の裏面におけるパイル繊維に加えて地糸に絡んだパイル繊維も融着したことで、地組織が硬くなり、パイル布帛の柔軟性がC評価となった。さらに、ポリッシングを90℃で行った比較例3及びポリッシングを110℃で行った比較例4のパイル布帛は、毛先が融着しているとともに、風合いがD評価となった。熱圧着処理の代わりにテンター温度130℃でのバッキング処理を行った比較例5のパイル布帛は、パイル部の繊維が収縮、融着しているとともに、風合いがD評価となった。 On the other hand, in Comparative Example 1 in which the temperature of the heating roll during the thermocompression bonding process was set at 120° C., the pile fibers on the back side of the pile fabric were not fused, and the shedding was evaluated as D. In addition, in Comparative Example 2 in which the temperature of the heating roll during the thermocompression bonding process was set at 160°C, the bending rigidity of the ground structure exceeded 1.00 × 10 -4 , and in addition to the pile fibers on the back side of the pile fabric, The pile fibers entwined with the ground yarns were also fused, making the ground structure stiff and the flexibility of the pile fabric was rated C. Furthermore, the pile fabrics of Comparative Example 3, which was polished at 90° C., and Comparative Example 4, which was polished at 110° C., had fused hair tips and was rated D in feel. In the pile fabric of Comparative Example 5, which was subjected to backing treatment at a tenter temperature of 130° C. instead of thermocompression bonding treatment, the fibers in the pile portion were shrunk and fused, and the texture was rated D.
 本発明は、特に限定されないが、下記の実施形態を含んでもよい。
 [1] 地組織と、前記地組織を構成する地糸に絡みかつ前記地組織の表面に立毛するパイル繊維を含むパイル布帛であって、
 前記パイル繊維は、ポリ(3-ヒドロキシアルカノエート)系繊維を含み、
 前記地糸は、前記ポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維を含み、
 前記地糸に絡んだパイル繊維のうち、前記地糸より裏面側に存在するポリ(3-ヒドロキシアルカノエート)系繊維の少なくとも一部は融着され、
 前記パイル布帛を無荷重かつ140℃の乾熱雰囲気下で15分間熱処理した際に、熱処理前後のパイル繊維の長さの変化率が15.0~40.0%であり、
 前記パイル布帛の地組織の曲げ剛性は、1.00×10-4N・m2/m以下であることを特徴とするパイル布帛。
 [2] 前記地糸に含まれるポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維は、生分解性繊維を含む、[1]に記載のパイル布帛。
 [3] 前記生分解性繊維は、天然セルロース繊維、天然動物繊維、及び再生セルロース繊維からなる群から選ばれる1以上の繊維を含む、[2]に記載のパイル布帛。
 [4] 前記地糸は、さらに熱融着繊維を含み、前記熱融着繊維の軟化点が、前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以下である、[1]~[3]のいずれかに記載のパイル布帛。
 [5] 前記地糸は、生分解性繊維として木綿繊維、レーヨン、ウール及び再生コラーゲン繊維からなる群から選ばれる1以上の繊維を含む、[2]又は[3]に記載のパイル布帛。
 [6] 前記地糸は、さらに熱融着繊維としてポリ(3-ヒドロキシアルカノエート)系繊維を含む、[5]に記載のパイル布帛。
 [7] パイル編物である、[1]~[6]のいずれかに記載のパイル布帛。
 [8] パイル高さが8mm以上である、[1]~[7]のいずれかに記載のパイル布帛。
 [9] 前記熱融着繊維がポリ(3-ヒドロキシアルカノエート)系繊維を含む、[4]に記載のパイル布帛。
 [10] 地組織と、前記地組織を構成する地糸に絡みかつ前記地組織の表面に立毛するパイル繊維を含むパイル布帛を製造する工程、及び
 前記パイル布帛を裏面側から熱圧着処理する工程を含み、
 前記パイル繊維は、ポリ(3-ヒドロキシアルカノエート)系繊維を含み、
 前記地糸は、前記ポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維を含み、
 前記熱圧着処理における温度条件が、(1)前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以上、かつ前記ポリ(3-ヒドロキシアルカノエート)系繊維の融点+10℃以下、及び(2)前記地糸におけるポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維の軟化点未満であり、
 前記地組織の表面に立毛するパイル繊維をポリッシングする工程を含まないか、或いは、前記地組織の表面に立毛するパイル繊維をポリッシングする工程を含む場合は、前記ポリッシングは、前記ポリ(3-ヒドロキシアルカノエート)系繊維のガラス転移温度以上、かつ前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-40℃以下の温度で行う、パイル布帛の製造方法。
 [11] 前記地組織の表面に立毛するパイル繊維をポリッシングする工程を含む、[10]に記載のパイル布帛の製造方法。
 [12] 前記ポリッシングは、熱圧着処理前及び/又は熱処理圧着処理後に行う、[10]又は[11]に記載のパイル布帛の製造方法。
 [13] 前記地糸に含まれるポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維は、生分解性繊維を含む、[10]~[12]のいずれかに記載のパイル布帛の製造方法。
 [14] 前記地糸は、さらに熱融着繊維を含み、前記熱融着繊維の軟化点が、前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以下である、[10]~[13]のいずれかに記載のパイル布帛の製造方法。
 [15] 前記地糸は、生分解性繊維として木綿繊維、レーヨン、ウール及び再生コラーゲン繊維からなる群から選ばれる1以上の繊維を含む、[13]に記載のパイル布帛の製造方法。
 [16] 前記地糸は、さらに熱融着性繊維としてポリ(3-ヒドロキシアルカノエート)系繊維を含む、[15]に記載のパイル布帛の製造方法。
 [17] 前記熱融着繊維がポリ(3-ヒドロキシアルカノエート)系繊維を含む、[14]に記載のパイル布帛の製造方法。
 [18] パイル編物である、[10]~[17]のいずれかに記載のパイル布帛の製造方法。
The present invention is not particularly limited, but may include the following embodiments.
[1] A pile fabric comprising a ground weave and pile fibers that are entwined with the ground threads constituting the ground weave and are raised on the surface of the ground weave,
The pile fibers include poly(3-hydroxyalkanoate) fibers,
The ground yarn includes fibers having a higher softening point than the poly(3-hydroxyalkanoate)-based fibers,
Among the pile fibers entwined with the ground yarn, at least a portion of the poly(3-hydroxyalkanoate) fibers present on the back side of the ground yarn are fused,
When the pile fabric is heat treated in a dry heat atmosphere at 140° C. for 15 minutes without any load, the change rate of the length of the pile fibers before and after the heat treatment is 15.0 to 40.0%,
The pile fabric is characterized in that the bending rigidity of the base structure of the pile fabric is 1.00×10 −4 N·m 2 /m or less.
[2] The pile fabric according to [1], wherein the fibers that have a higher softening point than the poly(3-hydroxyalkanoate) fibers contained in the ground yarn include biodegradable fibers.
[3] The pile fabric according to [2], wherein the biodegradable fibers include one or more fibers selected from the group consisting of natural cellulose fibers, natural animal fibers, and regenerated cellulose fibers.
[4] The ground yarn further includes a heat-fusible fiber, and the softening point of the heat-fusible fiber is equal to or lower than the softening point of the poly(3-hydroxyalkanoate)-based fiber, [1] to [3] ] The pile fabric according to any one of the above.
[5] The pile fabric according to [2] or [3], wherein the ground yarn contains one or more fibers selected from the group consisting of cotton fibers, rayon, wool, and regenerated collagen fibers as biodegradable fibers.
[6] The pile fabric according to [5], wherein the ground yarn further contains poly(3-hydroxyalkanoate) fibers as heat-fusible fibers.
[7] The pile fabric according to any one of [1] to [6], which is a pile knitted fabric.
[8] The pile fabric according to any one of [1] to [7], which has a pile height of 8 mm or more.
[9] The pile fabric according to [4], wherein the heat-fusible fibers include poly(3-hydroxyalkanoate) fibers.
[10] A step of manufacturing a pile fabric including a ground texture and pile fibers that are entwined with the ground threads constituting the ground texture and raised on the surface of the ground texture, and a step of subjecting the pile fabric to thermocompression bonding from the back side. including;
The pile fibers include poly(3-hydroxyalkanoate) fibers,
The ground yarn includes fibers having a higher softening point than the poly(3-hydroxyalkanoate)-based fibers,
The temperature conditions in the thermocompression bonding treatment are (1) above the softening point of the poly(3-hydroxyalkanoate)-based fiber and below the melting point of the poly(3-hydroxyalkanoate)-based fiber +10°C; and (2) The softening point is lower than the softening point of the fiber having a higher softening point than the poly(3-hydroxyalkanoate) fiber in the ground yarn,
If the polishing does not include the step of polishing the pile fibers that are raised on the surface of the ground structure, or if it includes the step of polishing the pile fibers that are raised on the surface of the ground structure, the polishing A method for producing a pile fabric, which is carried out at a temperature higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber and lower than the softening point of the poly(3-hydroxyalkanoate) fiber by -40°C.
[11] The method for producing a pile fabric according to [10], which includes a step of polishing pile fibers raised on the surface of the ground texture.
[12] The method for producing a pile fabric according to [10] or [11], wherein the polishing is performed before the thermocompression bonding treatment and/or after the heat treatment compression bonding treatment.
[13] The pile fabric according to any one of [10] to [12], wherein the fibers having a higher softening point than the poly(3-hydroxyalkanoate) fibers contained in the ground yarn include biodegradable fibers. manufacturing method.
[14] The ground yarn further includes a heat-fusible fiber, and the softening point of the heat-fusible fiber is equal to or lower than the softening point of the poly(3-hydroxyalkanoate)-based fiber, [10] to [13] ] The method for producing a pile fabric according to any one of the above.
[15] The method for producing a pile fabric according to [13], wherein the ground yarn contains one or more fibers selected from the group consisting of cotton fibers, rayon, wool, and regenerated collagen fibers as biodegradable fibers.
[16] The method for producing a pile fabric according to [15], wherein the ground yarn further contains poly(3-hydroxyalkanoate) fibers as heat-fusible fibers.
[17] The method for producing a pile fabric according to [14], wherein the heat-fusible fibers include poly(3-hydroxyalkanoate) fibers.
[18] The method for producing a pile fabric according to any one of [10] to [17], which is a pile knitted fabric.
1、19 パイル布帛
2 地糸
3 パイル部
4 パイル繊維
5 融着部
6 地組織の最上部
7 パイル繊維の最上部
8 距離(パイル高さ)
9 パイル繊維の最先端
10 加工装置
11 加熱ロール
12 冷却ゴムロール
13、14 金属冷却ロール
15 ガイドロール
16、17 容器
18 パイル布帛原反
18a パイル布帛原反表面
18b パイル布帛原反裏面
21 パイル布帛の生地片
22 水平な台
31 パイル布帛の生地片の先端に引いた接線
41 パイル繊維の上部
51 距離(パイル繊維の長さ)
1, 19 Pile fabric 2 Ground thread 3 Pile part 4 Pile fiber 5 Fused part 6 Top of ground structure 7 Top of pile fiber 8 Distance (pile height)
9 Cutting edge of pile fiber 10 Processing device 11 Heating roll 12 Cooling rubber rolls 13, 14 Metal cooling roll 15 Guide rolls 16, 17 Container 18 Pile fabric raw fabric 18a Pile fabric raw fabric surface 18b Pile fabric raw fabric reverse side 21 Fabric of pile fabric Piece 22 Horizontal stand 31 Tangent line drawn to the tip of the fabric piece of pile fabric 41 Top of pile fiber 51 Distance (length of pile fiber)

Claims (16)

  1.  地組織と、前記地組織を構成する地糸に絡みかつ前記地組織の表面に立毛するパイル繊維を含むパイル布帛であって、
     前記パイル繊維は、ポリ(3-ヒドロキシアルカノエート)系繊維を含み、
     前記地糸は、前記ポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維を含み、
     前記地糸に絡んだパイル繊維のうち、前記地糸より裏面側に存在するポリ(3-ヒドロキシアルカノエート)系繊維の少なくとも一部は融着され、
     前記パイル布帛を無荷重かつ140℃の乾熱雰囲気下で15分間熱処理した際に、熱処理前後のパイル繊維の長さの変化率が15.0~40.0%であり、
     前記パイル布帛の地組織の曲げ剛性は、1.00×10-4N・m2/m以下であることを特徴とするパイル布帛。
    A pile fabric comprising a ground weave and pile fibers that are entwined with ground yarns constituting the ground weave and are raised on the surface of the ground weave,
    The pile fibers include poly(3-hydroxyalkanoate) fibers,
    The ground yarn includes fibers having a higher softening point than the poly(3-hydroxyalkanoate)-based fibers,
    Among the pile fibers entwined with the ground yarn, at least a portion of the poly(3-hydroxyalkanoate) fibers present on the back side of the ground yarn are fused,
    When the pile fabric is heat treated in a dry heat atmosphere at 140° C. for 15 minutes without any load, the change rate of the length of the pile fibers before and after the heat treatment is 15.0 to 40.0%,
    The pile fabric is characterized in that the bending rigidity of the base structure of the pile fabric is 1.00×10 −4 N·m 2 /m or less.
  2.  前記地糸に含まれるポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維は、生分解性繊維を含む、請求項1に記載のパイル布帛。 The pile fabric according to claim 1, wherein the fibers that have a higher softening point than the poly(3-hydroxyalkanoate) fibers contained in the ground yarn include biodegradable fibers.
  3.  前記生分解性繊維は、天然セルロース繊維、天然動物繊維、及び再生セルロース繊維からなる群から選ばれる1以上の繊維を含む、請求項2に記載のパイル布帛。 The pile fabric according to claim 2, wherein the biodegradable fibers include one or more fibers selected from the group consisting of natural cellulose fibers, natural animal fibers, and regenerated cellulose fibers.
  4.  前記地糸は、さらに熱融着繊維を含み、前記熱融着繊維の軟化点が、前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以下である、請求項1又は2に記載のパイル布帛。 The pile according to claim 1 or 2, wherein the ground yarn further includes a heat-fusible fiber, and the softening point of the heat-fusible fiber is equal to or lower than the softening point of the poly(3-hydroxyalkanoate)-based fiber. fabric.
  5.  前記地糸は、生分解性繊維として木綿繊維、レーヨン、ウール及び再生コラーゲン繊維からなる群から選ばれる1以上の繊維を含む、請求項2に記載のパイル布帛。 The pile fabric according to claim 2, wherein the ground yarn contains one or more fibers selected from the group consisting of cotton fibers, rayon, wool, and regenerated collagen fibers as biodegradable fibers.
  6.  前記地糸は、さらに熱融着繊維としてポリ(3-ヒドロキシアルカノエート)系繊維を含む、請求項5に記載のパイル布帛。 The pile fabric according to claim 5, wherein the ground yarn further contains poly(3-hydroxyalkanoate) fibers as heat-fusible fibers.
  7.  パイル編物である、請求項1又は2に記載のパイル布帛。 The pile fabric according to claim 1 or 2, which is a pile knitted fabric.
  8.  パイル高さが8mm以上である、請求項1又は2に記載のパイル布帛。 The pile fabric according to claim 1 or 2, having a pile height of 8 mm or more.
  9.  地組織と、前記地組織を構成する地糸に絡みかつ前記地組織の表面に立毛するパイル繊維を含むパイル布帛を製造する工程、及び
     前記パイル布帛を裏面側から熱圧着処理する工程を含み、
     前記パイル繊維は、ポリ(3-ヒドロキシアルカノエート)系繊維を含み、
     前記地糸は、前記ポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維を含み、
     前記熱圧着処理における温度条件が、(1)前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以上、かつ前記ポリ(3-ヒドロキシアルカノエート)系繊維の融点+10℃以下、及び(2)前記地糸におけるポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維の軟化点未満であり、
     前記地組織の表面に立毛するパイル繊維をポリッシングする工程を含まないか、或いは、前記地組織の表面に立毛するパイル繊維をポリッシングする工程を含む場合は、前記ポリッシングは、前記ポリ(3-ヒドロキシアルカノエート)系繊維のガラス転移温度以上、かつ前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点-40℃以下の温度で行う、パイル布帛の製造方法。
    A step of manufacturing a pile fabric including a ground weave and pile fibers entwined with the ground threads constituting the ground weave and raised on the surface of the ground weave, and a step of subjecting the pile fabric to thermocompression bonding from the back side,
    The pile fibers include poly(3-hydroxyalkanoate) fibers,
    The ground yarn includes fibers having a higher softening point than the poly(3-hydroxyalkanoate)-based fibers,
    The temperature conditions in the thermocompression bonding treatment are (1) above the softening point of the poly(3-hydroxyalkanoate)-based fiber and below the melting point of the poly(3-hydroxyalkanoate)-based fiber +10°C; and (2) The softening point is lower than the softening point of the fiber having a higher softening point than the poly(3-hydroxyalkanoate) fiber in the ground yarn,
    If the polishing does not include the step of polishing the pile fibers that are raised on the surface of the ground structure, or if it includes the step of polishing the pile fibers that are raised on the surface of the ground structure, the polishing A method for producing a pile fabric, which is carried out at a temperature higher than the glass transition temperature of the poly(3-hydroxyalkanoate) fiber and lower than the softening point of the poly(3-hydroxyalkanoate) fiber by -40°C.
  10.  前記地組織の表面に立毛するパイル繊維をポリッシングする工程を含む、請求項9に記載のパイル布帛の製造方法。 The method for manufacturing a pile fabric according to claim 9, comprising a step of polishing pile fibers raised on the surface of the ground texture.
  11.  前記ポリッシングは、熱圧着処理前及び/又は熱処理圧着処理後に行う、請求項9又は10に記載のパイル布帛の製造方法。 The method for manufacturing a pile fabric according to claim 9 or 10, wherein the polishing is performed before the thermocompression bonding treatment and/or after the heat treatment compression bonding treatment.
  12.  前記地糸に含まれるポリ(3-ヒドロキシアルカノエート)系繊維よりも軟化点が高い繊維は、生分解性繊維を含む、請求項9又は10に記載のパイル布帛の製造方法。 The method for producing a pile fabric according to claim 9 or 10, wherein the fibers having a higher softening point than the poly(3-hydroxyalkanoate)-based fibers contained in the ground yarn include biodegradable fibers.
  13.  前記地糸は、さらに熱融着繊維を含み、前記熱融着繊維の軟化点が、前記ポリ(3-ヒドロキシアルカノエート)系繊維の軟化点以下である、請求項9又は10に記載のパイル布帛の製造方法。 The pile according to claim 9 or 10, wherein the ground yarn further includes a heat-fusible fiber, and the softening point of the heat-fusible fiber is equal to or lower than the softening point of the poly(3-hydroxyalkanoate)-based fiber. Fabric manufacturing method.
  14.  前記地糸は、生分解性繊維として木綿繊維、レーヨン、ウール及び再生コラーゲン繊維からなる群から選ばれる1以上の繊維を含む、請求項12に記載のパイル布帛の製造方法。 13. The method for manufacturing a pile fabric according to claim 12, wherein the ground yarn contains one or more fibers selected from the group consisting of cotton fibers, rayon, wool, and regenerated collagen fibers as biodegradable fibers.
  15.  前記地糸は、さらに熱融着性繊維としてポリ(3-ヒドロキシアルカノエート)系繊維を含む、請求項14に記載のパイル布帛の製造方法。 15. The method for producing a pile fabric according to claim 14, wherein the ground yarn further contains poly(3-hydroxyalkanoate) fibers as heat-fusible fibers.
  16.  パイル編物である、請求項9又は10に記載のパイル布帛の製造方法。 The method for producing a pile fabric according to claim 9 or 10, which is a pile knitted fabric.
PCT/JP2023/029296 2022-08-29 2023-08-10 Pile fabric and manufacturing method therefor WO2024048250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022135967 2022-08-29
JP2022-135967 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024048250A1 true WO2024048250A1 (en) 2024-03-07

Family

ID=90099297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029296 WO2024048250A1 (en) 2022-08-29 2023-08-10 Pile fabric and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2024048250A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053745A (en) * 2000-06-09 2002-02-19 Trw Inc Biodegradable vehicle parts
WO2019142920A1 (en) * 2018-01-22 2019-07-25 株式会社カネカ Method for producing nonwoven fabric
JP2022114186A (en) * 2021-01-26 2022-08-05 株式会社カネカ Biodegradable staple fiber nonwoven fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053745A (en) * 2000-06-09 2002-02-19 Trw Inc Biodegradable vehicle parts
WO2019142920A1 (en) * 2018-01-22 2019-07-25 株式会社カネカ Method for producing nonwoven fabric
JP2022114186A (en) * 2021-01-26 2022-08-05 株式会社カネカ Biodegradable staple fiber nonwoven fabric

Similar Documents

Publication Publication Date Title
KR101062831B1 (en) Polylactic Acid Fiber, Yarn Package and Textiles
KR102213562B1 (en) Process for the preparation of a fiber, a fiber and a yarn made from such a fiber
US20090068463A1 (en) Crimped Yarn, Method for Manufacture thereof, and Fiber Structure
JP4498001B2 (en) Polyester composite fiber
JP5700048B2 (en) Manufacturing method of polyvinyl chloride resin fiber
JP4872339B2 (en) Core-sheath type composite fiber, crimped yarn, and fiber structure using them
JP2003238775A (en) Resin composition and molding
JP2001049533A (en) Polylactic acid-based conjugate short fiber, nonwoven fabric comprising the same short fiber and production thereof
JP2008106410A (en) Crimped yarn and fiber structure using the same
JP4617872B2 (en) Polylactic acid fiber
JP4862605B2 (en) Interior material with excellent wear resistance
JP2003171536A (en) Polyester resin composition
WO2024048250A1 (en) Pile fabric and manufacturing method therefor
JP4487973B2 (en) Polyester resin composition
JP2011208346A (en) Polyester fiber structure
JP4100063B2 (en) Composite fibers and fiber structures
JP4269604B2 (en) Biodegradable ground yarn for pile knitted fabric and pile knitted fabric
JP5003266B2 (en) Spun yarn
JP4586390B2 (en) Yarn package
JP2007143945A (en) Primary ground fabric for tufted carpet
JP4075611B2 (en) Polylactic acid crimped yarn for carpet
JP2008297648A (en) Polytrimethylene terephthalate staple fiber
WO2024058076A1 (en) Stained p3hb3hh-based fibers, fiber aggregate including same, and methods for manufacturing these
KR101427795B1 (en) Biodegradable Polyester Yarns with Natural Fiber-like Characteristics and Process of preparing same
KR102122101B1 (en) Spun yarn with enhanced stretch and Preparation method of the same