WO2019142920A1 - Method for producing nonwoven fabric - Google Patents

Method for producing nonwoven fabric Download PDF

Info

Publication number
WO2019142920A1
WO2019142920A1 PCT/JP2019/001514 JP2019001514W WO2019142920A1 WO 2019142920 A1 WO2019142920 A1 WO 2019142920A1 JP 2019001514 W JP2019001514 W JP 2019001514W WO 2019142920 A1 WO2019142920 A1 WO 2019142920A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
woven fabric
producing
weight
web
Prior art date
Application number
PCT/JP2019/001514
Other languages
French (fr)
Japanese (ja)
Inventor
シティサラ
畑野貴典
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2019566532A priority Critical patent/JP7222923B2/en
Publication of WO2019142920A1 publication Critical patent/WO2019142920A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to a method of making a nonwoven comprising poly (3-hydroxyalkanoate) which is a biodegradable polyester.
  • plastic waste has become a cause of imposing a large load on the global environment, such as the impact on ecosystems, the generation of harmful gases at the time of combustion, and global warming due to a large amount of combustion heat.
  • development of biodegradable plastics has become active.
  • plant-derived biodegradable plastics do not increase carbon dioxide in the atmosphere because carbon dioxide emitted when the plant is burned is originally in the air. This is called carbon neutral, and it is considered important under the Kyoto Protocol that imposes a carbon dioxide reduction target value. Active use of plant-derived biodegradable plastics is desired.
  • polyhydroxyalkanoates hereinafter sometimes referred to as PHA
  • PHA polyhydroxyalkanoates
  • poly (3-hydroxyalkanoates) such as poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (hereinafter sometimes referred to as P3HA) and polylactic acid etc.
  • the PHA is slow in crystallization and has a glass transition temperature (about 0 to 4 ° C.) lower than room temperature, it is necessary to extend the cooling time for solidification after heating and melting during molding processing, and productivity It is bad.
  • the solidification of the resin is slow. This causes breakage, shrinkage of the web, etc., making it difficult to produce a stable non-woven fabric, and the quality of the obtained non-woven fabric also becomes low.
  • thermoplastic biodegradable polyester containing a butylene succinate unit added with a crystal nucleating agent As means for solving these problems, a method of producing a nonwoven fabric of thermoplastic biodegradable polyester containing a butylene succinate unit added with a crystal nucleating agent is disclosed (see Patent Document 1 and Patent Document 2).
  • a web obtained by melt spinning a thermoplastic biodegradable polyester and forming it into a web is heated to a temperature (Tm) -5 ° C or lower of the thermoplastic biodegradable polyester (Patent Document 1), or a melting point It is described that when heat pressing is performed by a roll set to a temperature lower than the temperature by 10 ° C. or more (Patent Document 2), a non-woven fabric capable of holding the shape can be obtained.
  • a web of core-sheath composite fiber comprising P3 HA resin as a core component and polybutylene succinate, polyethylene succinate or copolymer thereof as a sheath component has a temperature 30 ° C. lower than Tm and Tm A method of heat bonding at a temperature below is disclosed (see Patent Document 3).
  • Patent Documents 1 and 2 do not specifically describe a non-woven fabric using PHA as a thermoplastic biodegradable polyester, and when P3HA is used as a resin component, Patent Documents 1 and 2 In the above method, it is difficult to produce a non-woven fabric. In the method disclosed in Patent Document 3, there is a problem that a non-woven fabric made only of P3HA such as P3HB3HV can not be formed.
  • the present invention provides good moldability of the non-woven fabric containing poly (3-hydroxyalkanoate), and also produces non-woven fabric essentially containing only poly (3-hydroxyalkanoate) as a resin component. Provide a possible manufacturing method.
  • the present inventors diligently studied to solve such problems, and according to the manufacturing method including specific steps, the moldability of the non-woven fabric containing poly (3-hydroxyalkanoate) is good, and the resin component We have found that it is also possible to produce non-woven fabrics comprising essentially only poly (3-hydroxyalkanoate), as this completes the present invention.
  • the present invention provides, for example, the following method for producing a nonwoven fabric in one or more embodiments.
  • the pressure heat adhesion treatment temperature in the step C is (Tc-45) ° C. or more and (Tc + 5) ° C. or less
  • Tc crystallization temperature of poly (3-hydroxyalkanoate)] Production method.
  • the poly (3-hydroxyalkanoate) is poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-) At least one selected from the group consisting of 3-hydroxyhexanoate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) [1] to [6] The manufacturing method of the nonwoven fabric as described in any one of 10].
  • the present invention has the above constitution, the moldability of the non-woven fabric containing poly (3-hydroxyalkanoate) is good, and the non-woven fabric essentially containing only poly (3-hydroxyalkanoate) as a resin component Production is also possible.
  • the method for producing the nonwoven fabric of the present invention is a method including the following steps A to C as essential steps.
  • the method for producing the non-woven fabric of the present invention may include other steps.
  • Step A Melt spinning of a composition containing poly (3-hydroxyalkanoate) using a spinneret to obtain fibers
  • Step B Webizing the fibers obtained in Step A to obtain a web
  • Step C A step of applying pressure and heat adhesion to the web obtained in step B
  • step A a composition containing poly (3-hydroxyalkanoate) (hereinafter sometimes referred to as P3HA composition) is melt spun to obtain a fiber composed of the P3HA composition.
  • P3HA composition a composition containing poly (3-hydroxyalkanoate)
  • P3 HA composition is a composition containing P3HA as an essential component.
  • P3HA used in the present invention is a polymer containing 3-hydroxyalkanoic acid (3HA) as an essential monomer component.
  • P3HA is preferably a group represented by the formula (1): [-CHR-CH 2 -CO-O-] (wherein R is an alkyl group represented by C n H 2n + 1 in the formula (1), n is 1 Or P15 HA (aliphatic polyester) containing a repeating unit represented by the following formula:
  • P3HA is generally classified into microorganism-produced P3HA and chemically synthesized P3HA obtained by chemical synthesis such as ring-opening polymerization of lactone. These P3HAs are different in structure, and the microorganism-produced P3HA has optical activity because its monomer structural unit consists only of D form (R form), whereas chemically synthesized P3 HA has D form (R form) and L form (L form) The monomer structural units derived from the S form are randomly bonded and optically inactive.
  • P3HA containing a 3-hydroxybutyrate unit is preferable, and as such PHA, for example, poly (3-hydroxybutyrate) (P3HB), poly (3-hydroxybutyrate-co-3-hydroxyl) Valerate (P3HB3HV), poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (P3HB3HV3HH), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) Nooate) (P3HB3HH), poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate), poly (3-hydroxybutyrate) Butyrate-co-3-hydroxy octadeca Benzoate), etc., from the viewpoint industrial production is easy, preferably.
  • P3HB, P3HB3HV, P3HB3HV3HH, P3HB3HH and P3HB4HB are more
  • the average composition ratio of repeating units (monomer structural units) is not particularly limited, but from the viewpoint of balance between flexibility and strength, poly (3-hydroxybutyrate
  • the composition percentage of (rate) is preferably 80 to 99 mol%, more preferably 85 to 97 mol%.
  • P3HA can be produced by known or conventional methods.
  • the microorganism used for producing the P3HA is not particularly limited as long as it is a microorganism capable of producing P3HAs.
  • P3HB-producing bacteria Bacillus megaterium discovered in 1925 is the first to be used, as well as Capriavidus necator (old classification: Alcaligenes eutrophus (Alcaligenes eutrophus, Ralstonia eutropha), Natural microorganisms such as Alcaligenes latus are known, and in these microorganisms, P3HB is accumulated in the cells.
  • P3HB3HV and P3HB3HH producing bacteria Aeromonas caviae, P3HB4HB producing bacteria, Alkalinegenes eutrophus (Alcaligenes) eutrophus) etc. are known.
  • P3HB3HH Alkalinegenes eutrophus AC 32 strain (Alcaligenes eutrophus AC32, FERM BP-6038) into which a gene of P3HA synthetase group was introduced to increase the productivity of P3HB3HH (T. Fukui, Y. Doi, J.
  • the molecular weight of P3HA is not particularly limited as long as it exhibits substantially sufficient physical properties in the intended application. If the molecular weight is too low, the strength of the resulting molded article may be reduced. On the other hand, if it is too high, the processability may be reduced and the molding may be difficult. Considering them, the range of weight average molecular weight of P3HA is preferably 50,000 to 3,000,000, and more preferably 100,000 to 1,500,000. In addition, the weight average molecular weight here refers to what was measured from the polystyrene conversion molecular weight distribution using the gel permeation chromatography (GPC) using chloroform eluent. As a column in the said GPC, a column suitable for measuring the said molecular weight may be used.
  • GPC gel permeation chromatography
  • the melt flow rate of P3HA measured at 160 ° C. under a 5 kg load is preferably 0.1 to 100 g / 10 min, more preferably 1 to 50 g / 10 min, and 10 to 40 g / 10 min Is more preferred.
  • the melt flow rate is too low, the flowability of the molten resin is insufficient, and when it is too high, the flowability is too high, and in either case spinning of the fiber tends to be difficult.
  • P3 HA one type of P3 HA may be used alone, or two or more types may be used in combination. Also, for example, in the case of P3HB3HH, only one P3HB3HH may be used, and P3HB3HH may be a mixture of two or more different in composition percentage of 3HB.
  • the content of P3HA in the P3HA composition of the present invention is not particularly limited, but is preferably 80% by weight or more, more preferably 85% by weight or more, still more preferably 90% by weight or more, while the upper limit is 100% by weight For example, it may be 98 wt% or less or 95 wt% or less.
  • the content of P3HA is preferably 80% by weight or more, the biodegradability of the obtained nonwoven fabric tends to be further improved.
  • the method for producing the non-woven fabric of the present invention even when the content of P3HA is considerably large such as 80% by weight or more, it is very advantageous in that the non-woven fabric can be produced with excellent formability.
  • the proportion of P3HA in the resin component contained in the P3HA composition of the present invention is not particularly limited, but is preferably 80 to 100% by weight, more preferably 90 to 100% by weight, still more preferably 95 to 100% by weight . According to the method for producing the nonwoven fabric of the present invention, it is possible to produce the nonwoven fabric with good formability even when the proportion of P3HA in the resin component is high (for example, 80% by weight or more).
  • the P3HA composition of the present invention preferably further comprises a nucleating agent.
  • the crystal nucleating agent is not particularly limited as long as it is a compound having an effect of promoting the crystallization of P3HA, and, for example, boron nitride, titanium oxide, talc, layered silicate, calcium carbonate, chloride Inorganic substances such as sodium and metal phosphate; sugar alcohol compounds derived from natural products such as erythritol, galactitol, mannitol and arabitol; pentaerythritol; polyvinyl alcohol; chitin; chitosan; polyethylene oxide; aliphatic carboxylic acid amide; Carboxylic acid salts; aliphatic alcohols; aliphatic carboxylic acid esters; dicarboxylic acid derivatives such as dimethyl adipate, dibutyl adipate, diisodecyl adipate and dibutyl sebacate; C; O such as
  • pentaerythritol a sugar alcohol compound, polyvinyl alcohol, chitin, chitosan and the like are preferable, and pentaerythritol is more preferable, from the viewpoint of the effect of improving the crystallization rate and mixing with fibers.
  • pentaerythritol a sugar alcohol compound, polyvinyl alcohol, chitin, chitosan and the like are preferable, and pentaerythritol is more preferable, from the viewpoint of the effect of improving the crystallization rate and mixing with fibers.
  • pentaerythritol a sugar alcohol compound, polyvinyl alcohol, chitin, chitosan and the like are preferable, and pentaerythritol is more preferable, from the viewpoint of the effect of improving the crystallization rate and mixing with fibers.
  • One of these may be used alone, or two or more of these may be used in combination.
  • Pentaerythritol is not particularly limited as long as it is generally available, and reagent products or industrial products may be used.
  • reagent products include Wako Pure Chemical Industries, Ltd., Sigma-Aldrich, Tokyo Chemical Industry Co., Ltd., Merck & Co., Ltd., and if it is an industrial product, the product of Koei Chemical Industry Co., Ltd. (trade name: Pentalitt) and Toyo Chemicals Co., Ltd. products may be mentioned, but the present invention is not limited thereto.
  • Some commonly available reagents and products include, as impurities, oligomers such as dipentaerythritol and tripentaerythritol produced by dehydration condensation of pentaerythritol.
  • oligomers such as dipentaerythritol and tripentaerythritol produced by dehydration condensation of pentaerythritol.
  • the above-mentioned oligomer has no effect on the crystallization of polyhydroxyalkanoate but does not inhibit the crystallization effect of pentaerythritol. Therefore, an oligomer may be contained.
  • the content of the crystal nucleating agent in the P3 HA composition is not particularly limited, but preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, and more preferably 0.5 to 8 parts by weight with respect to 100 parts by weight of P3 HA. Parts are more preferred, particularly preferably 1 to 5 parts by weight.
  • the P3 HA composition further comprises a lubricant.
  • the lubricant is not particularly limited as long as it is a compound having an effect of imparting lubricity to PHA.
  • fatty acid amides such as behen acid amide, stearic acid amide, erucic acid amide and oleic acid amide
  • alkylene fatty acid amides such as methylenebisstearic acid amide and ethylenebisstearic acid amide
  • polyethylene wax oxidized polyester wax
  • glycerin monostearate Glycerin mono fatty acid esters such as glycerin mono behenate and glycerol mono laurate
  • Organic acid mono glycerides such as succinic acid saturated fatty acid mono glyceride
  • sorbitan fatty acid esters such as sorbitan behenate, sorbitan stearate and sorbitan laurate
  • diglycerin stearate Diglycerin laurate,
  • fatty acid amides and polyglycerin fatty acid esters are preferable as the compound having the effect of imparting external lubricity.
  • fatty acid amides include monoamides and bisamides of fatty acids.
  • the fatty acid (fatty acid portion) constituting the fatty acid amide is preferably one having a carbon number of 12 to 30, more preferably 18 to 18 from the viewpoint of suppressing the deterioration of processability during melt processing because the melting point is appropriately high.
  • 22 fatty acids such as higher fatty acids such as erucic acid, palmitic acid, oleic acid and the like.
  • fatty acid amide examples include behenic acid amide, erucic acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, methylenebisstearic acid amide, ethylenebisstearic acid amide, ethylenebisoleic acid amide, ethylenebis Erucic acid amide etc. are mentioned.
  • polyglycerin fatty acid esters examples include monoesters of glycerin, diesters of glycerin, triesters of glycerin (eg, glycerin diacetomonolaurate, glycerin diacetomonoolate, glycerin diacetomonostearate, glycerin diacetomonocaprylate, glycerine dia And glycerin diacetomonoesters such as cetomonodecanoate etc.
  • monoesters of glycerin diesters of glycerin
  • triesters of glycerin eglycerin diacetomonolaurate, glycerin diacetomonoolate, glycerin diacetomonostearate, glycerin diacetomonocaprylate, glycerine dia
  • glycerin diacetomonoesters such as cetomonodecanoate etc.
  • polyglycerin fatty acid ester for example, Rikemar PL-012 (manufactured by Riken Vitamin Co., Ltd.), DAIFATTY (manufactured by Daihachi Chemical Industry Co., Ltd.), etc. can be obtained.
  • fatty acid amides and polyglycerin fatty acid esters are more preferable from the viewpoint of easy availability and high effects.
  • the content of the lubricant in the P3 HA composition is not particularly limited as long as friction between the polyhydroxyalkanoate and the metal surface of the extruder or spinning machine can be reduced and mutual adhesion of fibers can be prevented, for example, P3 HA 100 weight
  • the amount is preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, still more preferably 0.5 to 8 parts by weight, and particularly preferably 3 to 10 parts by weight.
  • the P3 HA composition further contains other components such as plasticizers, inorganic fillers, organic fillers (such as cellulose), antioxidants, ultraviolet absorbers, colorants such as dyes and pigments, and antistatic agents. It may be any suitable plasticizers, inorganic fillers, organic fillers (such as cellulose), antioxidants, ultraviolet absorbers, colorants such as dyes and pigments, and antistatic agents. It may be
  • the plasticizer is not particularly limited, but, for example, adipic acid ester compounds such as diethylhexyl adipate, dioctyl adipate and diisononyl adipate; polyether ester such as polyethylene glycol dibenzoate, polyethylene glycol dicaprylate and polyethylene glycol diisostearate Compounds; benzoate ester compounds; epoxidized soybean oil; epoxidized fatty acid 2-ethylhexyl; sebacic acid monoesters and the like. One of these may be used alone, or two or more of these may be used in combination.
  • adipic acid ester compounds such as diethylhexyl adipate, dioctyl adipate and diisononyl adipate
  • polyether ester such as polyethylene glycol dibenzoate, polyethylene glycol dicaprylate and polyethylene glycol diisostearate Compounds
  • benzoate ester compounds ep
  • polyether ester compounds are preferred in view of easy availability and high degree of plasticizing effect.
  • the content of the plasticizer in the P3HA composition is not particularly limited, and can be appropriately selected, for example, in the range of 3 to 25 parts by weight with respect to 100 parts by weight of P3HA.
  • the inorganic filler is not particularly limited, for example, titanium oxide, calcium carbonate, talc, clay, synthetic silicon, carbon black, barium sulfate, mica, glass fiber, whisker, carbon fiber, magnesium carbonate, glass powder, metal powder, kaolin , Graphite, molybdenum disulfide, zinc oxide and the like.
  • titanium oxide calcium carbonate, talc, clay, synthetic silicon, carbon black, barium sulfate, mica, glass fiber, whisker, carbon fiber, magnesium carbonate, glass powder, metal powder, kaolin , Graphite, molybdenum disulfide, zinc oxide and the like.
  • titanium oxide calcium carbonate
  • talc clay
  • synthetic silicon carbon black
  • carbon black barium sulfate
  • mica barium sulfate
  • glass fiber glass fiber
  • whisker carbon fiber
  • magnesium carbonate glass powder
  • metal powder metal powder
  • kaolin kaolin
  • Graphite molybdenum disulfide
  • titanium oxide and / or calcium carbonate are preferable in terms of the strength increase and the effect of promoting the biodegradability.
  • the content of the inorganic filler in the P3HA composition is not particularly limited, and can be appropriately selected, for example, in the range of 1 to 10 parts by weight with respect to 100 parts by weight of P3HA.
  • the P3 HA composition may contain a resin component (other resin component) other than P3 HA.
  • resin components include biodegradable resins such as petroleum derived resins such as polylactic acid, polybutylene adipate terephthalate, polybutylene succinate adipate and polybutylene succinate, and natural polymers such as starch and cellulose.
  • biodegradable resins such as petroleum derived resins such as polylactic acid, polybutylene adipate terephthalate, polybutylene succinate adipate and polybutylene succinate, and natural polymers such as starch and cellulose.
  • thermoplastic resins polyvinyl chloride resins, polystyrene resins, ABS resins, etc.
  • thermosetting resins epoxy resins, etc.
  • general purpose engineering plastics such as polyethylene terephthalate resins, polybutylene terephthalate resins, polycarbonate resins and polyamide resins are also used as other resin components.
  • the content of the other resin component is preferably 20% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, based on the total amount (100% by weight) of the resin component.
  • the other resin components may be used alone or in combination of two or more.
  • the step A of melt spinning a composition containing at least poly (3-hydroxyalkanoate) in the step A of melt spinning a composition containing at least poly (3-hydroxyalkanoate), the step B of forming the web obtained in the step A, and the step B A step C of subjecting the obtained web to pressure and heat adhesion treatment is included in this order, whereby PHA is used to produce a biodegradable non-woven fabric.
  • a spunbond method fibers out of a spinneret are drawn through a portion such as an ejector called an ejector
  • stretched And meltblown methods methods of blowing fibers from a spinneret to form a web
  • a P3 HA composition is melted using a melt extruder, and continuously extruded from a spinneret (also called a spinning die) to form a fiber composed of the P3 HA composition.
  • the melt extruder may be a general device as long as it can appropriately maintain the molecular weight and melt viscosity of P3HA used, and a compression extruder in which the melt portion is kept at a constant temperature or a screw type capable of continuous supply Either of the extrusion devices may be used.
  • the former is suitable for small volume production and the latter is suitable for industrial production.
  • the cylinder temperature of the melt extruder and the die outlet temperature may be adjusted so that the melt viscosity of P3HA can be maintained appropriately depending on the molecular weight and monomer composition of P3HA used.
  • the melt spinning temperature of the fiber is preferably 145 to 190 ° C., more preferably 150 to 190 ° C., and still more preferably 150 to 180 ° C. By setting the spinning temperature to 145 ° C. or more, the spinning tends to be further stabilized because the PHA composition can be sufficiently dissolved. On the other hand, by setting the spinning temperature to 190 ° C. or less, the thermal decomposition of the resin is suppressed, the spinning is further stabilized, and the physical properties of the obtained fiber tend to be further improved.
  • melt-spinning temperature means the temperature of the highest temperature range among the temperatures added while P3HA composition is fiberized.
  • the P3 HA composition is melted and extruded from the spinning die while adjusting the flow rate to keep the discharge amount constant, and the opening area of the spinning die at this time is preferably 0.15 to 3.5 mm 2 .
  • the opening area By setting the opening area to 0.15 mm 2 or more, breakage during spinning tends to be further suppressed.
  • the opening area By setting the opening area to 3.5 mm 2 or less, the time required for solidification does not become too long because the fibers do not become too thick, relaxation of the formed extension chain is suppressed, and processability and strength are improved. There is a tendency to improve further.
  • the discharge amount can be arbitrarily selected based on the finally required fiber diameter and the spinning speed at the time of production
  • the discharge amount (discharge amount of P3HA composition per single hole of spinneret) is 0. It is preferably 2 to 1.2 g / min, more preferably 0.2 to 0.7 g / min.
  • the discharge amount is preferably 2 to 1.2 g / min, more preferably 0.2 to 0.7 g / min.
  • the residence time of the resin inside the spinning machine is preferably 30 minutes or less, and more preferably 15 minutes or less.
  • the atmosphere temperature extruded from the spinneret is not particularly limited, and can be suitably adjusted, for example, in the range of 5 to 40.degree.
  • step B the fibers composed of the P3HA composition extruded from the spinneret in step A, that is, the fibers obtained by melt-spinning the P3HA composition, are webbed to obtain a web.
  • the fibers (spun filaments) composed of the P3HA composition are drawn to be a target fineness (become drawn filaments), and a collection surface such as a conveyor moving in the longitudinal direction (MD) Deposit on top to form a long fiber web.
  • MD longitudinal direction
  • air drawing and draw thinning are carried out using a suction device such as an ejector.
  • a suction device such as an ejector 3 as shown in FIG. 1
  • the air pressure is preferably 0.2 to 7.0 kgf / cm 2 , more preferably 0.5 to 5.0 kgf / cm 2 .
  • the spinning speed by air drawing is preferably 500 to 7,000 m / minute, more preferably 700 to 7,000 m / minute, still more preferably 700 to 5,000 m / minute, and particularly preferably 700 to 3,000 m / minute. In this spinning speed range, solidification of fibers consisting of a P3 HA composition capable of ensuring spinnability is obtained.
  • the produced non-woven fabric may shrink on cooling, and a homogeneous and good non-woven fabric may not be obtained.
  • the upper limit value of the take-up speed is not particularly limited, but if it is larger than 7,000 m / min, the strength of the obtained fiber does not change, so there is no need to make it higher than 7,000 m / min.
  • the longer the distance from the suction device to the collection surface, the better, and the distance is preferably 80 cm or more. By setting the diameter to 80 cm or more, the solidification of the fibers proceeds rapidly, the fibers are less likely to adhere to each other in the suction device, and the yarn breakage tends to be suppressed. Moreover, it is easy to reduce shrinkage
  • step B before pulling and narrowing the fibers (spun filaments) extruded from the spinneret in step A, the straightening air is flowed with a device for giving a straightening air such as quench 2 as shown in FIG. It is preferable to give.
  • the rectified air is also called quench air, and has the function of stabilizing the flow of yarn.
  • the quench wind is preferably discharged through the net or mesh and uniformly sent to the yarn. In the case of the web manufacturing apparatus, it is preferable that the quenching air be blown from the same direction as the flow direction of the web forming conveyor, and the yarn may be blown from one side or both sides.
  • the temperature of the quench air is preferably 5 to 40 ° C., more preferably 10 to 30 ° C. If the temperature is lower than 5 ° C., residual stress may occur in the fibers, and the fibers may be crimped. If the temperature is higher than 40 ° C., the solidification of the resin becomes insufficient and the fibers stick.
  • the quenching air velocity is preferably 0.1 to 1.5 m / sec. If it is lower than 0.1 m / sec, the effect of rectification tends to be low, and if it is higher than 1.5 m / sec, the quench wind is too strong and conversely causes the disturbance of the yarn, causing the fibers to stick or break. May occur.
  • the fibers (drawn filaments) pulled by air by the ejector 3 are collected, for example, on the conveyor 4 as shown in FIG. 1, and a sheet-like web is formed as the conveyor travels.
  • a sheet-like web is formed as the conveyor travels.
  • the line speed which is the operating speed of the conveyor
  • the basis weight of the non-woven fabric can be adjusted when the discharge amount during melt spinning is the same.
  • the line speed By increasing the line speed, the basis weight becomes smaller, but if it is increased too much, there is a possibility that the shrinkage and the cutting of the web may occur.
  • step C the web obtained in step B is subjected to pressure heat adhesion treatment.
  • a heat embossing roll in which the surface of a pair of upper and lower rolls is engraved respectively, or a roll in which one roll surface is flat (smooth) and a surface of the other roll are engraved
  • thermocompression bonding with various rolls such as a heat embossing roll consisting of a combination of rolls and a heat calender roll consisting of a combination of upper and lower flat (smooth) rolls, and applying an air through system to pass hot air in the thickness direction of the nonwoven web It can.
  • heat bonding using a heat embossing roll capable of maintaining appropriate air permeability while improving mechanical strength can be preferably employed.
  • the pressure heat adhesion treatment temperature in step C that is, the surface temperature of the pressure heat adhesion roll is (Tc-45) ° C. or more, (Tc + 5) ° C. or less, (Tc-40) ° C. or more, (Tc + 0) ° C.
  • Tc is a crystallization temperature of P3HA measured by the below-mentioned method.
  • an embossing roll it is general to use an embossing roll having a engraved roll surface and a rubber backup roll having a flat (smooth) roll surface.
  • the pressure required for pressurization may be such that an engraving pattern can be applied to the non-woven fabric at an optimum temperature at which crystallization of P3HA proceeds, and mechanical strength can be maintained.
  • the pressure between effective pressurized heat bonding rolls is preferably 20 to 60 Kg / cm, more preferably 30 to 50 Kg / cm.
  • the pressure of the pressure heat adhesive roll is lower than 20 kg / cm, an engraving pattern is difficult to be applied, and the strength may be lowered.
  • it is higher than 60 kg / cm excessive stress is applied to the non-woven fabric, and the non-woven fabric may be broken.
  • the crystallization temperature of P3HA is a temperature measured by the following apparatus, conditions and method.
  • ⁇ Measurement method Differential scanning calorimetry (DSC, Differential Scanning Calorimetry)
  • Measurement equipment EXSTAR6000 series DSC6200 made by Hitachi Hightex Science
  • Measurement sample Put 5 to 10 mg of P3HA in an aluminum pan and crimp it with a lid.
  • Measurement conditions After raising the temperature from 25 ° C. to 180 ° C. at 10 ° C./min, decrease the temperature to 25 ° C. at 10 ° C./min. During the measurement, flow 50 mL / min of nitrogen gas.
  • -Identification of crystallization temperature The exothermic peak observed in the temperature lowering process is taken as the crystallization peak, and the peak top is taken as the crystallization temperature.
  • the shape of the engraving applied to the heat embossing roll is not particularly limited, and examples thereof include a circle, an ellipse, a square, a rectangle, a parallelogram, a rhomb, a regular hexagon, and an octagonal shape.
  • the pressing area ratio of the embossing roll it is preferable to set the pressing area ratio of the embossing roll to 5 to 50%.
  • the pressure contact area ratio By setting the pressure contact area ratio to 5% or more, a certain point-like fused area is secured, so that the mechanical strength of the non-woven fabric tends to be improved, and good dimensional stability tends to be obtained.
  • the pressure contact area ratio By setting the pressure contact area ratio to 50% or less, the rigidity of the non-woven fabric is suppressed, and the flexibility tends to be further improved.
  • step C a non-woven fabric composed of the P3HA composition is obtained.
  • the method for producing the non-woven fabric according to one or more embodiments of the present invention may include other steps in addition to the steps A to C as described above, and the other steps include, for example, before the step C.
  • step B the step of temporarily fixing the web obtained in step B. For example, as shown in FIG. 1, by installing the temporary fixing roll 5 on the conveyor, the flow of the web is stabilized, and the web can be guided to the pressure heat adhesive roll 6 in that state.
  • steps A to C may be performed continuously or may be performed discontinuously. In particular, it is preferable to continuously carry out the steps A to C in that the nonwoven fabric can be produced more efficiently.
  • the speed at which the steps A to C are carried out is not particularly limited. For example, it is preferable to set the time from obtaining the fiber in the step A to the end of the step C to be 30 seconds to 3 minutes, more preferably 40 Seconds to 1 minute.
  • the nonwoven can be made, for example, with the apparatus shown in FIG.
  • a composition containing P3HA is melted and extruded from the spinneret 1, thereby melt spinning to obtain fibers a (spun filaments).
  • the fibers a are formed into a web to obtain a web b.
  • the rectified air is applied to the fiber a at the quench 2.
  • the fiber a is pulled by air with the ejector 3 to draw and thin it to a predetermined fineness (stretched filament), and deposited on the conveyor 4 moving in the machine direction (MD) to form the long fiber web b Form.
  • MD machine direction
  • the long fiber web b is passed through the temporary fixing roll 5 installed on the conveyor 4 and led to the pressure bonding roll 6.
  • the long fiber web b is subjected to pressure heat bonding treatment at a predetermined temperature by the pressure heat bonding roll 6 to obtain a long fiber nonwoven fabric c.
  • the pressure heat bonding roll 6 one may be an embossing roll having a engraved roll surface, and the other may be a rubber backup roll having a flat (smooth) roll surface. Thereafter, the obtained long fiber non-woven fabric c is wound by a winding roll 7.
  • the nonwoven fabric obtained by the manufacturing method of one or more embodiments of the present invention may be determined appropriately depending on the application, purpose, etc., but from the viewpoint of enhancing the strength, MD measured according to JIS L 1096
  • the tensile strength in the direction is preferably 8 N / 50 mm or more, more preferably 10 N / 50 mm or more, still more preferably 15 N / 50 mm or more, and particularly preferably 20 N / 50 mm or more.
  • the tensile strength in the CD direction measured according to JIS L 1096 is preferably 5 N / 50 mm or more, more preferably 10 N / 50 mm or more, still more preferably 15 N / 50 mm or more, and 20 N It is further more preferable that it is / 50 mm or more, and it is particularly preferable that it is 40 N / 50 mm or more.
  • the nonwoven fabric obtained by the manufacturing method according to one or more embodiments of the present invention may be determined appropriately depending on the application, purpose, etc., but from the viewpoint of enhancing the strength, MD measured according to JIS L 1096
  • the tear strength in the direction is preferably 3 N / 50 mm or more, more preferably 5 N / 50 mm or more, still more preferably 10 N / 50 mm or more, and particularly preferably 15 N / 50 mm or more.
  • the tear strength in the CD direction measured according to JIS L 1096 is preferably 2 N / 50 mm or more, more preferably 5 N / 50 mm or more, still more preferably 10 N / 50 mm or more, 15 N It is especially preferable that it is / 50 mm or more.
  • the non-woven fabric obtained by the method for producing a non-woven fabric according to the present invention can be used in various known or customary applications such as agriculture, fishery, forestry, clothing, non-clothing textiles (eg curtains, carpets, rugs etc), hygiene products, horticulture, automobiles It can be suitably used in components, construction materials, medical care, food industry, other fields and the like.
  • Production Example 1 Production of P3HB3HH
  • strain KNK-005 see US Pat. No. 7,384,766
  • the composition of the seed culture medium is 1 w / v% Meat-extract, 1 w / v% Bacto-Tryptone, 0.2 w / v% Yeast-extract, 0.9 w / v% Na 2 HPO 4 ⁇ 12 H 2 O, 0.1. It was 15 w / v% KH 2 PO 4 (pH 6.8).
  • the composition of the preculture medium is 1.1 w / v% Na 2 HPO 4 ⁇ 12 H 2 O, 0.19 w / v% KH 2 PO 4 , 1.29 w / v% (NH 4 ) 2 SO 4 , 0.1 w / V% MgSO 4 ⁇ 7 H 2 O, 0.5 v / v% trace metal salt solution (in 0.1 N hydrochloric acid, 1.6 w / v% FeCl 3 ⁇ 6 H 2 O, 1 w / v% CaCl 2 ⁇ 2 H 2 O , 0.02 w / v% CoCl 2 ⁇ 6 H 2 O, 0.016 w / v% CuSO 4 ⁇ 5 H 2 O, 0.012 w / v% NiCl 2 ⁇ 6 H 2 O). Palm oil was used as a carbon source, and this was added all together at a concentration of 10 g / L.
  • composition of P3HB3HH production medium 0.385w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.067w / v% KH 2 PO 4, 0.291w / v% (NH 4) 2 SO 4, 0.1w / V% MgSO 4 ⁇ 7 H 2 O, 0.5 v / v% trace metal salt solution (in 0.1 N hydrochloric acid, 1.6 w / v% FeCl 3 ⁇ 6 H 2 O, 1 w / v% CaCl 2 ⁇ 2 H 2 O , 0.02 w / v% CoCl 2 ⁇ 6 H 2 O, 0.016 w / v% CuSO 4 ⁇ 5 H 2 O, 0.012 w / v% NiCl 2 ⁇ 6 H 2 O dissolved), 0.05 w / v % BIOSPUREX 200 K (defoamer: manufactured by Cognis Japan Ltd.).
  • a glycerol stock (50 ⁇ L) of strain KNK-005 was inoculated into a seed culture medium (10 mL) and cultured for 24 hours for seed mother culture.
  • the seed culture broth was inoculated at 1.0 v / v% into a 3 L jar fermenter (MDL-300, manufactured by Marubishi Bio Engineering Co., Ltd.) containing 1.8 L of preculture medium.
  • the culture temperature was 33 ° C.
  • the stirring speed was 500 rpm
  • the aeration amount was 1.8 L / min
  • the culture was performed for 28 hours while controlling the pH between 6.7 and 6.8 for 28 hours, and preculture was performed. 14% ammonium hydroxide aqueous solution was used for pH control.
  • 1.0 v / v% of the preculture liquid was inoculated into a 10 L jar fermenter (MDS-1000 manufactured by Marubishi Biotech) containing 6 L of a production medium.
  • the culture temperature was 28 ° C.
  • the stirring speed was 400 rpm
  • the aeration amount was 6.0 L / min
  • the pH was controlled between 6.7 and 6.8.
  • 14% ammonium hydroxide aqueous solution was used for pH control. Palm oil was used as a carbon source.
  • the culture was performed for 64 hours, and after completion of the culture, the cells were collected by centrifugation and washed with methanol. It was then lyophilized.
  • the 3HH composition of the obtained P3HB3HH was analyzed by gas chromatography as follows. To 20 mg of P3HB3HH, 2 mL of a mixed solution of sulfuric acid-methanol (15:85) and 2 mL of chloroform were added, sealed tightly, and heated at 100 ° C. for 140 minutes to obtain a methyl ester of P3HB3HH decomposition product. After cooling, 1.5 g of sodium hydrogencarbonate was added little by little to neutralize it, and the mixture was left until carbon dioxide gas evolution ceased. Furthermore, 4 mL of diisopropyl ether was added, mixed well, centrifuged, and the monomer unit composition of the polyester degradation product in the supernatant was analyzed by capillary gas chromatography.
  • the gas chromatograph used was GC-17A manufactured by Shimadzu Corporation, and the capillary column used was NEUTRA BOND-1 (column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 ⁇ m) manufactured by GL Science. He was used as a carrier gas, the column inlet pressure was 100 kPa, and 1 ⁇ L of the sample was injected. The temperature was raised to a temperature of 100 to 200 ° C. at a rate of 8 ° C./min, and further raised to a temperature of 200 to 290 ° C. at a rate of 30 ° C./min.
  • the obtained P3HB3HH was P3HB3HH in which the composition percentage ratio of the monomer of 3-hydroxyhexanoate (3HH) was 5.4 mol%. Further, the weight average molecular weight Mw measured by GPC was 350,000, the melting point was 141 ° C., and the crystallization temperature (Tc) was 80 ° C.
  • fusing point were measured by differential scanning calorimetry (DSC, Differential Scanning Calorimetry).
  • the apparatus used EXSTAR6000 series DSC6200 manufactured by Hitachi High-Tex Science.
  • a sample of 5 to 10 mg of P3HB3HH was put in an aluminum pan, covered, and crimped to obtain a measurement sample.
  • the temperature was raised from 25 ° C. to 180 ° C. at 10 ° C./min, and then lowered to 10 ° C./min to 25 ° C.
  • nitrogen gas was flowed at 50 mL / min.
  • the endothermic peak observed in the temperature rising process was taken as the melting peak, and the peak top temperature was taken as the melting point.
  • the exothermic peak observed in the temperature lowering process was taken as the crystallization peak, and the peak top temperature was taken as the crystallization temperature (Tc).
  • Example 12 to 13 To P3HB3HH (100 parts by weight) obtained in Production Example 1, 1.5 parts by weight of pentaerythritol (Neurizer P manufactured by Japan Synthetic Chemical Co., Ltd.), which is a crystal nucleating agent, and erucic acid amide (Nippon Seiyaku Co., Ltd.) as a lubricant. Dry blend of 0.5 parts by weight of Neutron S (manufactured by Chemical Industries, Ltd.) and 0.5 parts by weight of behenic acid amide (behenic acid amide, BNT-22H manufactured by Nippon Seika Co., Ltd.) as a lubricant The mixture was melt-kneaded at 130 to 160 ° C.
  • the formability of the non-woven fabric was evaluated based on the following criteria by visually evaluating the shrinkage of the web on the conveyor and the state of sticking to the pressure thermal adhesive roll.
  • A very good moldability: Non-shrinkage on the conveyor and sticking to the pressure heat bonding roll are not obtained, and a non-woven fabric can be taken.
  • B good formability: Shrinks slightly on the conveyor, but does not stick to the pressure heat bonding roll, and a non-woven fabric can be taken.
  • the obtained non-woven fabric is cut into 5 ⁇ 30 cm test pieces in the MD direction (the direction in which the non-woven fabric flows) and the CD direction (the direction in which the non-woven fabric flows) perpendicular to JIS L 1096, and a tensile tester (Shimadzu Corporation)
  • the elongation at break and the breaking strength were measured five times under the conditions of a test speed of 100 mm / min, using “AUTOGRAPH AG2000A” manufactured by Akira, Ltd., and the averaged values were taken as the tensile elongation and the tensile strength.
  • tear strength was measured by the single tongue method. A 10 cm cut was made in the center of the short side of the test piece of the same size at right angles to the short side, and the tear strength was measured five times at a tensile speed of 200 cm / min, and the averaged value was taken as the tear strength.
  • the obtained non-woven fabric was cut into test pieces of 25 ⁇ 20 cm based on JIS L 1096, the weight was measured, the weight per area was measured 5 times, and the averaged value was taken as the fabric weight.
  • the non-woven fabric was observed with an optical microscope to measure the diameter of the fibers (diameter of yarn).

Abstract

The present invention relates to a method for producing a nonwoven fabric, which comprises a step A for obtaining fibers by melt spinning a composition that contains a poly(3-hydroxyalkanoate) with use of a spinneret, a step B for obtaining a web by forming the fibers obtained in the step A into a web, and a step C for subjecting the web obtained in the step B to thermal bonding under pressure, and wherein the thermal bonding temperature under pressure in the step C is from (Tc - 45)°C to (Tc + 5)°C (inclusive) (wherein Tc is the crystallization temperature of the poly(3-hydroxyalkanoate)). Consequently, the present invention provides a production method which exhibits good formability of a nonwoven fabric that contains a poly(3-hydroxyalkanoate), and by which even a nonwoven fabric that substantially contains only a poly(3-hydroxyalkanoate) as the resin component is able to be produced.

Description

不織布の製造方法Method of manufacturing non-woven fabric
 本発明は、生分解性ポリエステルであるポリ(3-ヒドロキシアルカノエート)を含む不織布の製造方法に関する。 The present invention relates to a method of making a nonwoven comprising poly (3-hydroxyalkanoate) which is a biodegradable polyester.
 近年、プラスチック廃棄物が、生態系への影響、燃焼時の有害ガス発生、大量の燃焼熱量による地球温暖化等、地球環境へ大きな負荷を与える原因となっている。このような問題の解決策の一つとして、生分解性プラスチックの開発が盛んになっている。 In recent years, plastic waste has become a cause of imposing a large load on the global environment, such as the impact on ecosystems, the generation of harmful gases at the time of combustion, and global warming due to a large amount of combustion heat. As one of the solutions to such problems, development of biodegradable plastics has become active.
 中でも、植物由来の生分解性プラスチックは、これを燃焼させた際に出る二酸化炭素がもともと空気中にあったものであるため、大気中の二酸化炭素を増加させない。このことをカーボンニュートラルと称し、二酸化炭素削減目標値を課した京都議定書の下、重要視され、植物由来の生分解性プラスチックの積極的な使用が望まれている。 Among them, plant-derived biodegradable plastics do not increase carbon dioxide in the atmosphere because carbon dioxide emitted when the plant is burned is originally in the air. This is called carbon neutral, and it is considered important under the Kyoto Protocol that imposes a carbon dioxide reduction target value. Active use of plant-derived biodegradable plastics is desired.
 最近、生分解性及びカーボンニュートラルの観点から、植物由来のプラスチックとして脂肪族ポリエステル系樹脂が注目されており、特にポリヒドロキシアルカノエート(以下、PHAと称する場合がある。)、さらにはPHAの中でもポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(以下、P3HB3HHと称する場合がある。)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)等のポリ(3-ヒドロキシアルカノエート)(以下、P3HAと称する場合がある。)及びポリ乳酸等が注目されている。 Recently, aliphatic polyester resins have attracted attention as plant-derived plastics from the viewpoint of biodegradability and carbon neutrality, and in particular, polyhydroxyalkanoates (hereinafter sometimes referred to as PHA), and also PHAs. Poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter referred to as P3HB3HH) And poly (3-hydroxyalkanoates) such as poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (hereinafter sometimes referred to as P3HA) and polylactic acid etc. There is.
 しかしながら、前記PHAは結晶化が遅くしかもガラス転移温度(約0~4℃)が室温より低いことから、成形加工に際し、加熱溶融後、固化のための冷却時間を長くする必要があり、生産性が悪い。特に、PHAを溶融紡糸し、ウェブ化した後に加圧熱接着することで不織布を製造しようとした際には、樹脂の固化が遅いことから、繊維同士の互着、装置への貼り付き、糸切れ、ウェブの収縮などが発生し、安定した不織布製造が難しく、また得られる不織布の品質も低いものとなってしまう。 However, since the PHA is slow in crystallization and has a glass transition temperature (about 0 to 4 ° C.) lower than room temperature, it is necessary to extend the cooling time for solidification after heating and melting during molding processing, and productivity It is bad. In particular, when attempting to produce a non-woven fabric by melt-spinning PHA and forming a web and then applying pressure and heat to produce a non-woven fabric, the solidification of the resin is slow. This causes breakage, shrinkage of the web, etc., making it difficult to produce a stable non-woven fabric, and the quality of the obtained non-woven fabric also becomes low.
 これらの問題を解決する手段として、結晶核剤を添加したブチレンサクシネート単位を含む熱可塑性生分解性ポリエステルの不織布の製造方法が開示されている(特許文献1、特許文献2参照)。当該方法によれば、熱可塑性生分解性ポリエステルを溶融紡糸し、ウェブ化して得られたウェブを熱可塑性生分解性ポリエステルの融点(Tm)-5℃以下の温度(特許文献1)、或いは融点よりも10℃以上低い温度(特許文献2)に設定したロールで熱圧接させると、形態を保持できる不織布が得られることが記載されている。 As means for solving these problems, a method of producing a nonwoven fabric of thermoplastic biodegradable polyester containing a butylene succinate unit added with a crystal nucleating agent is disclosed (see Patent Document 1 and Patent Document 2). According to the method, a web obtained by melt spinning a thermoplastic biodegradable polyester and forming it into a web is heated to a temperature (Tm) -5 ° C or lower of the thermoplastic biodegradable polyester (Patent Document 1), or a melting point It is described that when heat pressing is performed by a roll set to a temperature lower than the temperature by 10 ° C. or more (Patent Document 2), a non-woven fabric capable of holding the shape can be obtained.
 また、別の先行事例として、P3HA樹脂を芯成分とし、ポリブチレンサクシネート、ポリエチレンサクシネート又はこれらの共重合体を鞘成分とする芯鞘複合繊維のウェブをTmより30℃低い温度以上かつTm未満の温度で熱接着をする方法が開示されている(特許文献3参照)。 Also, as another prior example, a web of core-sheath composite fiber comprising P3 HA resin as a core component and polybutylene succinate, polyethylene succinate or copolymer thereof as a sheath component has a temperature 30 ° C. lower than Tm and Tm A method of heat bonding at a temperature below is disclosed (see Patent Document 3).
特開平08-325916号公報Japanese Patent Application Publication No. 08-325916 特開平09-095848号公報Japanese Patent Laid-Open No. 09-095 848 特開2000-160466号公報JP 2000-160466 A
 しかしながら、特許文献1、2には熱可塑性生分解性ポリエステルとしてPHAを用いた不織布についての具体的な記載はなく、また、P3HAを樹脂成分として使用した場合には特許文献1、2に記載された方法では、不織布の作製が困難である。また、特許文献3に開示の方法では、P3HB3HVのようなP3HAのみからなる不織布は成形できないという課題がある。 However, Patent Documents 1 and 2 do not specifically describe a non-woven fabric using PHA as a thermoplastic biodegradable polyester, and when P3HA is used as a resin component, Patent Documents 1 and 2 In the above method, it is difficult to produce a non-woven fabric. In the method disclosed in Patent Document 3, there is a problem that a non-woven fabric made only of P3HA such as P3HB3HV can not be formed.
 したがって、本発明は、ポリ(3-ヒドロキシアルカノエート)を含有する不織布の成形性が良好であり、また、樹脂成分として本質的にポリ(3-ヒドロキシアルカノエート)のみを含む不織布の作製をも可能な製造方法を提供する。 Therefore, the present invention provides good moldability of the non-woven fabric containing poly (3-hydroxyalkanoate), and also produces non-woven fabric essentially containing only poly (3-hydroxyalkanoate) as a resin component. Provide a possible manufacturing method.
 本発明者は、かかる問題を解決すべく鋭意検討を行い、特定の工程を含む製造方法によると、ポリ(3-ヒドロキシアルカノエート)を含有する不織布の成形性が良好であり、また、樹脂成分として本質的にポリ(3-ヒドロキシアルカノエート)のみを含む不織布の作製も可能であることを見出し、本発明を完成させた。 The present inventors diligently studied to solve such problems, and according to the manufacturing method including specific steps, the moldability of the non-woven fabric containing poly (3-hydroxyalkanoate) is good, and the resin component We have found that it is also possible to produce non-woven fabrics comprising essentially only poly (3-hydroxyalkanoate), as this completes the present invention.
 すなわち、本発明は、1以上の実施形態において、例えば、下記の不織布の製造方法を提供する。 That is, the present invention provides, for example, the following method for producing a nonwoven fabric in one or more embodiments.
[1]ポリ(3-ヒドロキシアルカノエート)を含む組成物を紡糸口金を用いて溶融紡糸し、繊維を得る工程Aと、
 工程Aにて得られた繊維をウェブ化してウェブを得る工程Bと、
 工程Bにて得られたウェブを加圧熱接着処理する工程Cとを含み、
 前記工程Cにおける加圧熱接着処理温度が、(Tc-45)℃以上、(Tc+5)℃以下[Tc:ポリ(3-ヒドロキシアルカノエート)の結晶化温度]であることを特徴とする不織布の製造方法。
[1] Step A of melt spinning a composition containing poly (3-hydroxyalkanoate) using a spinneret to obtain a fiber;
Step B: obtaining the web by converting the fibers obtained in step A into a web;
Subjecting the web obtained in step B to pressure heat adhesion treatment step C,
In the nonwoven fabric characterized in that the pressure heat adhesion treatment temperature in the step C is (Tc-45) ° C. or more and (Tc + 5) ° C. or less [Tc: crystallization temperature of poly (3-hydroxyalkanoate)] Production method.
[2]前記加圧熱接着処理温度が(Tc-40)℃以上、(Tc+0)℃以下である[1]に記載の不織布の製造方法。 [2] The method for producing a non-woven fabric according to [1], wherein the pressure heat adhesion treatment temperature is (Tc-40) ° C. or more and (Tc + 0) ° C. or less.
[3]工程Aにおける紡糸口金からの単孔あたりの前記組成物の吐出量が0.2~1.2g/分である[1]又は[2]に記載の不織布の製造方法。 [3] The method for producing a non-woven fabric according to [1] or [2], wherein the discharge amount of the composition per single hole from the spinneret in step A is 0.2 to 1.2 g / min.
[4]工程Aにおける紡糸口金からの単孔あたりの前記組成物の吐出量が0.2~0.7g/分である[3]に記載の不織布の製造方法。 [4] The method for producing a non-woven fabric according to [3], wherein the discharge amount of the composition per single hole from the spinneret in step A is 0.2 to 0.7 g / min.
[5]工程Bにおけるウェブ化をスパンボンド法により実施する[1]~[4]のいずれか1つに記載の不織布の製造方法。 [5] The method for producing a non-woven fabric according to any one of [1] to [4], wherein web formation in step B is carried out by a spun bond method.
[6]工程Aにおける溶融紡糸温度が145~190℃である[1]~[5]のいずれか1つに記載の不織布の製造方法。 [6] The method for producing a nonwoven fabric according to any one of [1] to [5], wherein the melt-spinning temperature in step A is 145 to 190 ° C.
[7]前記組成物がさらに結晶核剤を含有する[1]~[6]のいずれか1つに記載の不織布の製造方法。 [7] The method for producing a non-woven fabric according to any one of [1] to [6], wherein the composition further contains a crystal nucleating agent.
[8]前記結晶核剤の含有量が、ポリ(3-ヒドロキシアルカノエート)100重量部に対して0.05~12重量部である[7]に記載の不織布の製造方法。 [8] The method for producing a nonwoven fabric according to [7], wherein a content of the crystal nucleating agent is 0.05 to 12 parts by weight with respect to 100 parts by weight of poly (3-hydroxyalkanoate).
[9]前記組成物がさらに滑剤を含有する[1]~[8]のいずれか1つに記載の不織布の製造方法。 [9] The method for producing a non-woven fabric according to any one of [1] to [8], wherein the composition further contains a lubricant.
[10]前記滑剤の含有量が、ポリ(3-ヒドロキシアルカノエート)100重量部に対して0.05~12重量部である[9]に記載の不織布の製造方法。 [10] The method for producing a non-woven fabric according to [9], wherein the content of the lubricant is 0.05 to 12 parts by weight with respect to 100 parts by weight of poly (3-hydroxyalkanoate).
[11]前記ポリ(3-ヒドロキシアルカノエート)が、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)及びポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)からなる群より選択される少なくとも1種である[1]~[10]のいずれか1つに記載の不織布の製造方法。 [11] The poly (3-hydroxyalkanoate) is poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-) At least one selected from the group consisting of 3-hydroxyhexanoate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) [1] to [6] The manufacturing method of the nonwoven fabric as described in any one of 10].
 本発明は上記構成を有するため、ポリ(3-ヒドロキシアルカノエート)を含有する不織布の成形性が良好であり、また、樹脂成分として本質的にポリ(3-ヒドロキシアルカノエート)のみを含む不織布の作製も可能である。 Since the present invention has the above constitution, the moldability of the non-woven fabric containing poly (3-hydroxyalkanoate) is good, and the non-woven fabric essentially containing only poly (3-hydroxyalkanoate) as a resin component Production is also possible.
実施例において不織布の製造に用いた装置の概略図である。It is the schematic of the apparatus used for manufacture of the nonwoven fabric in the Example.
 以下、本発明の1以上の実施形態を具体的に説明する。なお、本発明は、下記の実施形態に限定されない。 One or more embodiments of the present invention will now be described in detail. The present invention is not limited to the following embodiment.
 本発明の不織布の製造方法は、下記工程A~Cを必須の工程として含む方法である。本発明の不織布の製造方法は、その他の工程を含んでもよい。
 工程A:ポリ(3-ヒドロキシアルカノエート)を含む組成物を紡糸口金を用いて溶融紡糸し、繊維を得る工程
 工程B:工程Aにて得られた繊維をウェブ化し、ウェブを得る工程
 工程C:工程Bにて得られたウェブを加圧熱接着処理する工程
The method for producing the nonwoven fabric of the present invention is a method including the following steps A to C as essential steps. The method for producing the non-woven fabric of the present invention may include other steps.
Step A: Melt spinning of a composition containing poly (3-hydroxyalkanoate) using a spinneret to obtain fibers Step B: Webizing the fibers obtained in Step A to obtain a web Step C : A step of applying pressure and heat adhesion to the web obtained in step B
 [工程A]
 工程Aにおいては、ポリ(3-ヒドロキシアルカノエート)を含む組成物(以下、P3HA組成物と称する場合がある。)を溶融紡糸し、P3HA組成物で構成された繊維を得る。
[Step A]
In step A, a composition containing poly (3-hydroxyalkanoate) (hereinafter sometimes referred to as P3HA composition) is melt spun to obtain a fiber composed of the P3HA composition.
 (P3HA組成物)
 上記P3HA組成物は、P3HAを必須成分として含む組成物である。本発明で用いられるP3HAは、3-ヒドロキシアルカン酸(3HA)を必須のモノマー成分として含有する重合体である。中でも、P3HAは、好ましくは式(1):[-CHR-CH2-CO-O-](式(1)中、RはCn2n+1で表されるアルキル基で、nは1以上15以下の整数である。)で示される繰り返し単位を含むP3HA(脂肪族ポリエステル)である。
(P3 HA composition)
The P3HA composition is a composition containing P3HA as an essential component. P3HA used in the present invention is a polymer containing 3-hydroxyalkanoic acid (3HA) as an essential monomer component. Among them, P3HA is preferably a group represented by the formula (1): [-CHR-CH 2 -CO-O-] (wherein R is an alkyl group represented by C n H 2n + 1 in the formula (1), n is 1 Or P15 HA (aliphatic polyester) containing a repeating unit represented by the following formula:
 なお、一般的にP3HAは微生物産生P3HAと、ラクトンの開環重合といった化学合成により得られる化学合成P3HAとに分類される。これらP3HAは構造が異なり、微生物産生P3HAは、そのモノマー構造単位がD体(R体)のみからなり光学活性を有するのに対して、化学合成P3HAは、D体(R体)及びL体(S体)から誘導されたモノマー構造単位がランダムに結合したものであって光学的に不活性である。 P3HA is generally classified into microorganism-produced P3HA and chemically synthesized P3HA obtained by chemical synthesis such as ring-opening polymerization of lactone. These P3HAs are different in structure, and the microorganism-produced P3HA has optical activity because its monomer structural unit consists only of D form (R form), whereas chemically synthesized P3 HA has D form (R form) and L form (L form) The monomer structural units derived from the S form are randomly bonded and optically inactive.
 P3HAとしては、3-ヒドロキシブチレート単位を含むP3HAが好ましく、このようなPHAとしては、例えば、ポリ(3-ヒドロキシブチレート)(P3HB)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシバレレート)(P3HB3HV)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシバレレート-co-3-ヒドロキシヘキサノエート)(P3HB3HV3HH)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)(P3HB3HH)、ポリ(3-ヒドロキシブチレート-co-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシオクタデカノエート)等が、工業的に生産が容易である点から、好ましい。これらの中でも特に、P3HB、P3HB3HV、P3HB3HV3HH、P3HB3HH、P3HB4HBがより好ましく、より好ましくはP3HB3HHである。 As P3HA, P3HA containing a 3-hydroxybutyrate unit is preferable, and as such PHA, for example, poly (3-hydroxybutyrate) (P3HB), poly (3-hydroxybutyrate-co-3-hydroxyl) Valerate (P3HB3HV), poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (P3HB3HV3HH), poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) Nooate) (P3HB3HH), poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate), poly (3-hydroxybutyrate) Butyrate-co-3-hydroxy octadeca Benzoate), etc., from the viewpoint industrial production is easy, preferably. Among these, P3HB, P3HB3HV, P3HB3HV3HH, P3HB3HH and P3HB4HB are more preferable, and P3HB3HH is more preferable.
 P3HAが3-ヒドロキシブチレート単位構造を含むP3HAである場合、繰り返し単位(モノマー構造単位)の平均組成比は、特に限定されないが、柔軟性と強度のバランスの観点から、ポリ(3-ヒドロキシブチレート)の組成百分率が80~99モル%が好ましく、より好ましくは85~97モル%である。 When P3HA is a P3HA having a 3-hydroxybutyrate unit structure, the average composition ratio of repeating units (monomer structural units) is not particularly limited, but from the viewpoint of balance between flexibility and strength, poly (3-hydroxybutyrate The composition percentage of (rate) is preferably 80 to 99 mol%, more preferably 85 to 97 mol%.
 P3HAは、公知乃至慣用の方法により製造することができる。P3HAが微生物産生P3HAの場合、当該P3HAの生産に用いる微生物としては、P3HA類生産能を有する微生物であれば特に限定されない。例えば、P3HB生産菌としては、1925年に発見されたBacillus megateriumが最初で、他にもカプリアビダス・ネケイター(Cupriavidus necator)(旧分類:アルカリゲネス・ユートロファス(Alcaligenes eutrophus、ラルストニア・ユートロフア(Ralstonia eutropha))、アルカリゲネス・ラタス(Alcaligenes latus)などの天然微生物が知られており、これらの微生物ではP3HBが菌体内に蓄積される。 P3HA can be produced by known or conventional methods. When P3HA is a microorganism-produced P3HA, the microorganism used for producing the P3HA is not particularly limited as long as it is a microorganism capable of producing P3HAs. For example, as P3HB-producing bacteria, Bacillus megaterium discovered in 1925 is the first to be used, as well as Capriavidus necator (old classification: Alcaligenes eutrophus (Alcaligenes eutrophus, Ralstonia eutropha), Natural microorganisms such as Alcaligenes latus are known, and in these microorganisms, P3HB is accumulated in the cells.
 また、ヒドロキシブチレート単位とその他のヒドロキシアルカノエート単位とを含む共重合体の生産菌としては、P3HB3HV及びP3HB3HH生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、P3HB4HB生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)などが知られている。特に、P3HB3HHに関し、P3HB3HHの生産性を上げるために、P3HA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))などがより好ましく、これらの微生物を適切な条件で培養して菌体内にP3HB3HHを蓄積させた微生物菌体が用いられる。また上記以外にも、生産したいPHAに合わせて、各種P3HA合成関連遺伝子を導入した遺伝子組み替え微生物を用いても良いし、基質の種類を含む培養条件の最適化をすればよい。 Moreover, as bacteria for producing copolymers containing hydroxybutyrate units and other hydroxyalkanoate units, P3HB3HV and P3HB3HH producing bacteria, Aeromonas caviae, P3HB4HB producing bacteria, Alkalinegenes eutrophus (Alcaligenes) eutrophus) etc. are known. In particular, with regard to P3HB3HH, Alkalinegenes eutrophus AC 32 strain (Alcaligenes eutrophus AC32, FERM BP-6038) into which a gene of P3HA synthetase group was introduced to increase the productivity of P3HB3HH (T. Fukui, Y. Doi, J. Bateriol) , 179, p 482 1-4830 (1997)) and the like, and microbial cells obtained by culturing these microorganisms under appropriate conditions and accumulating P3HB3HH in the cells are used. In addition to the above, genetically modified microorganisms into which various P3HA synthesis related genes have been introduced may be used according to the PHA to be produced, or culture conditions including the type of substrate may be optimized.
 P3HAの分子量は、目的とする用途で、実質的に十分な物性を示すものであれば、その分子量は特に制限されない。分子量が低すぎると得られる成形品の強度が低下するおそれがある。逆に高すぎると加工性が低下し、成形が困難になるおそれがある。それらを勘案してP3HAの重量平均分子量の範囲は、50,000~3,000,000が好ましく、100,000~1,500,000がより好ましい。なお、ここでの重量平均分子量は、クロロホルム溶離液を用いたゲルバーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定されたものをいう。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。 The molecular weight of P3HA is not particularly limited as long as it exhibits substantially sufficient physical properties in the intended application. If the molecular weight is too low, the strength of the resulting molded article may be reduced. On the other hand, if it is too high, the processability may be reduced and the molding may be difficult. Considering them, the range of weight average molecular weight of P3HA is preferably 50,000 to 3,000,000, and more preferably 100,000 to 1,500,000. In addition, the weight average molecular weight here refers to what was measured from the polystyrene conversion molecular weight distribution using the gel permeation chromatography (GPC) using chloroform eluent. As a column in the said GPC, a column suitable for measuring the said molecular weight may be used.
 P3HAの160℃、5kg荷重で測定したメルトフローレートは0.1~100g/10分であることが好ましく、1~50g/10分であることがより好ましく、10~40g/10分であることがさらに好ましい。メルトフローレートが低すぎると、溶融樹脂の流動性が不十分で、高すぎると流動性が高すぎ、いずれにおいても繊維の紡糸が難しい傾向がある。 The melt flow rate of P3HA measured at 160 ° C. under a 5 kg load is preferably 0.1 to 100 g / 10 min, more preferably 1 to 50 g / 10 min, and 10 to 40 g / 10 min Is more preferred. When the melt flow rate is too low, the flowability of the molten resin is insufficient, and when it is too high, the flowability is too high, and in either case spinning of the fiber tends to be difficult.
 P3HAは上記P3HAの1種を単独で使用してもよいし、2種以上を組み合わせて用いてもよい。また、例えば、P3HB3HHの場合、1種のP3HB3HHのみを使用する場合であってもよく、P3HB3HHは、3HBの組成百分率が異なるものを2種以上混合したものでもよい。 As P3 HA, one type of P3 HA may be used alone, or two or more types may be used in combination. Also, for example, in the case of P3HB3HH, only one P3HB3HH may be used, and P3HB3HH may be a mixture of two or more different in composition percentage of 3HB.
 本発明のP3HA組成物におけるP3HAの含有量は、特に限定されないが、80重量%以上が好ましく、より好ましくは85重量%以上、さらに好ましくは90重量%以上であり、一方、上限は100重量%であってもよいが、例えば、98重量%以下や95重量%以下であってもよい。P3HAの含有量を80重量%以上とすることにより、得られる不織布の生分解性がいっそう向上する傾向がある。本発明の不織布の製造方法によると、P3HAの含有量が80重量%以上と相当多い場合であっても、優れた成形性で不織布を製造できる点で非常に有益である。 The content of P3HA in the P3HA composition of the present invention is not particularly limited, but is preferably 80% by weight or more, more preferably 85% by weight or more, still more preferably 90% by weight or more, while the upper limit is 100% by weight For example, it may be 98 wt% or less or 95 wt% or less. By setting the content of P3HA to 80% by weight or more, the biodegradability of the obtained nonwoven fabric tends to be further improved. According to the method for producing the non-woven fabric of the present invention, even when the content of P3HA is considerably large such as 80% by weight or more, it is very advantageous in that the non-woven fabric can be produced with excellent formability.
 本発明のP3HA組成物に含まれる樹脂成分中のP3HAの割合は、特に限定されないが、80~100重量%が好ましく、より好ましくは90~100重量%、さらに好ましくは95~100重量%である。本発明の不織布の製造方法によると、樹脂成分に占めるP3HAの割合が高い場合(例えば、80重量%以上)であっても、良好な成形性で不織布を製造することが可能である。 The proportion of P3HA in the resin component contained in the P3HA composition of the present invention is not particularly limited, but is preferably 80 to 100% by weight, more preferably 90 to 100% by weight, still more preferably 95 to 100% by weight . According to the method for producing the nonwoven fabric of the present invention, it is possible to produce the nonwoven fabric with good formability even when the proportion of P3HA in the resin component is high (for example, 80% by weight or more).
 本発明のP3HA組成物は、さらに結晶核剤を含むことが好ましい。当該結晶核剤としては、P3HAの結晶化を促進する効果を有する化合物であれば、特に限定されるものではないが、例えば、窒化ホウ素、酸化チタン、タルク、層状ケイ酸塩、炭酸カルシウム、塩化ナトリウム及び金属リン酸塩などの無機物;エリスリトール、ガラクチトール、マンニトール及びアラビトールのような天然物由来の糖アルコール化合物;ペンタエリスリトール;ポリビニルアルコール;キチン;キトサン;ポリエチレンオキシド;脂肪族カルボン酸アミド;脂肪族カルボン酸塩;脂肪族アルコール;脂肪族カルボン酸エステル;ジメチルアジペート、ジブチルアジペート、ジイソデシルアジペート及びジブチルセバケートのようなジカルボン酸誘導体;インジゴ、キナクリドン、キナクリドンマゼンタのようなC=Oと、NH、S及びOから選ばれる官能基とを分子内に有する環状化合物;ビスベンジリデンソルビトール及びビス(p-メチルベンジリデン)ソルビトールのようなソルビトール系誘導体;ピリジン、トリアジン、イミダゾールのような窒素含有ヘテロ芳香族核を含む化合物;リン酸エステル化合物;高級脂肪酸のビスアミド及び高級脂肪酸の金属塩;分岐状ポリ乳酸;低分子量ポリ3-ヒドロキシ酪酸などが例示できる。これらのうち、結晶化速度の改善効果や繊維に混合する観点から、ペンタエリスリトール、糖アルコール化合物、ポリビニルアルコール、キチン、キトサン等が好ましく、ペンタエリスリトールがより好ましい。これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 The P3HA composition of the present invention preferably further comprises a nucleating agent. The crystal nucleating agent is not particularly limited as long as it is a compound having an effect of promoting the crystallization of P3HA, and, for example, boron nitride, titanium oxide, talc, layered silicate, calcium carbonate, chloride Inorganic substances such as sodium and metal phosphate; sugar alcohol compounds derived from natural products such as erythritol, galactitol, mannitol and arabitol; pentaerythritol; polyvinyl alcohol; chitin; chitosan; polyethylene oxide; aliphatic carboxylic acid amide; Carboxylic acid salts; aliphatic alcohols; aliphatic carboxylic acid esters; dicarboxylic acid derivatives such as dimethyl adipate, dibutyl adipate, diisodecyl adipate and dibutyl sebacate; C; O such as indigo, quinacridone, quinacridone magenta Cyclic compounds having in their molecule a functional group selected from H, S and O; sorbitol-based derivatives such as bisbenzylidenesorbitol and bis (p-methylbenzylidene) sorbitol; nitrogen-containing heteroaromatics such as pyridine, triazine and imidazole Examples thereof include compounds having a group nucleus; phosphoric acid ester compounds; bisamides of higher fatty acids and metal salts of higher fatty acids; branched polylactic acids; low molecular weight poly 3-hydroxybutyric acid and the like. Among them, pentaerythritol, a sugar alcohol compound, polyvinyl alcohol, chitin, chitosan and the like are preferable, and pentaerythritol is more preferable, from the viewpoint of the effect of improving the crystallization rate and mixing with fibers. One of these may be used alone, or two or more of these may be used in combination.
 ペンタエリスリトールは通常、一般に入手可能であるものであれば特に制限されず、試薬品あるいは工業品を使用し得る。試薬品としては、和光純薬工業株式会社製、シグマ・アルドリッチ社製、東京化成工業株式会社製やメルク社製などが挙げられ、工業品であれば、広栄化学工業株式会社品(商品名:ペンタリット)や東洋ケミカルズ株式会社品などを挙げることができるが、これらに限定されるものではない。 Pentaerythritol is not particularly limited as long as it is generally available, and reagent products or industrial products may be used. Examples of reagent products include Wako Pure Chemical Industries, Ltd., Sigma-Aldrich, Tokyo Chemical Industry Co., Ltd., Merck & Co., Ltd., and if it is an industrial product, the product of Koei Chemical Industry Co., Ltd. (trade name: Pentalitt) and Toyo Chemicals Co., Ltd. products may be mentioned, but the present invention is not limited thereto.
 一般に入手できる試薬や商品の中には不純物として、ペンタエリスリトールが脱水縮合して生成するジペンタエリスリトールやトリペンタエリスリトールなどのオリゴマーが含まれているものがある。上記オリゴマーはポリヒドロキシアルカノエートの結晶化には効果を有しないが、ペンタエリスリトールの結晶化効果を阻害しない。従い、オリゴマーが含まれていても構わない。 Some commonly available reagents and products include, as impurities, oligomers such as dipentaerythritol and tripentaerythritol produced by dehydration condensation of pentaerythritol. The above-mentioned oligomer has no effect on the crystallization of polyhydroxyalkanoate but does not inhibit the crystallization effect of pentaerythritol. Therefore, an oligomer may be contained.
 P3HA組成物における結晶核剤の含有量は、特に限定されないが、P3HA100重量部に対し、0.05~12重量部が好ましく、0.1~10重量部がより好ましく、0.5~8重量部がさらに好ましく、特に好ましくは1~5重量部である。結晶核剤の含有量を0.05重量部以上とすることにより、いっそう優れた結晶化促進効果が得られるため不織布の生産性が向上する傾向がある。一方、結晶核剤の含有量を12重量部以下とすることにより、十分な結晶化速度促進効果を保持しつつ、また、加工時の粘度低下や繊維物性の低下などの悪影響を生じさせない傾向がある。 The content of the crystal nucleating agent in the P3 HA composition is not particularly limited, but preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, and more preferably 0.5 to 8 parts by weight with respect to 100 parts by weight of P3 HA. Parts are more preferred, particularly preferably 1 to 5 parts by weight. By setting the content of the crystal nucleating agent to 0.05 parts by weight or more, a further excellent crystallization promoting effect can be obtained, and the productivity of the non-woven fabric tends to be improved. On the other hand, by setting the content of the crystal nucleating agent to 12 parts by weight or less, while maintaining a sufficient crystallization rate promoting effect, there is a tendency not to produce adverse effects such as viscosity reduction at the time of processing and fiber physical properties. is there.
 P3HA組成物は、さらに滑剤を含むことが好ましい。当該滑剤としては、PHAに滑性を付与する効果を有する化合物であれば、特に限定されるものではない。例えば、ベヘン酸アミド、ステアリン酸アミド、エルカ酸アミド及びオレイン酸アミドなどの脂肪酸アミド;メチレンビスステアリン酸アミド及びエチレンビスステアリン酸アミドなどのアルキレン脂肪酸アミド;ポリエチレンワックス;酸化ポリエステルワックス;グリセリンモノステアレート、グリセリンモノベヘネート及びグリセリンモノラウレートなどのグリセリンモノ脂肪酸エステル;コハク酸飽和脂肪酸モノグリセライドなどの有機酸モノグリセライド;ソルビタンベヘネート、ソルビタンステアレート及びソルビタンラウレートなどのソルビタン脂肪酸エステル;ジグリセリンステアレート、ジグリセリンラウレート、テトラグリセリンステアレート、テトラグリセリンラウレート、デカグリセリンステアレート及びデカグリセリンラウレートなどのポリグリセリン脂肪酸エステル;ステアリルステアレートなどの高級アルコール脂肪酸エステルなどが挙げられる。これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 Preferably, the P3 HA composition further comprises a lubricant. The lubricant is not particularly limited as long as it is a compound having an effect of imparting lubricity to PHA. For example, fatty acid amides such as behen acid amide, stearic acid amide, erucic acid amide and oleic acid amide; alkylene fatty acid amides such as methylenebisstearic acid amide and ethylenebisstearic acid amide; polyethylene wax; oxidized polyester wax; glycerin monostearate Glycerin mono fatty acid esters such as glycerin mono behenate and glycerol mono laurate; Organic acid mono glycerides such as succinic acid saturated fatty acid mono glyceride; sorbitan fatty acid esters such as sorbitan behenate, sorbitan stearate and sorbitan laurate; diglycerin stearate , Diglycerin laurate, tetraglycerin stearate, tetraglycerin laurate, decaglycerin stearate and decaglycerin Polyglycerol fatty acid esters such as Rinraureto; and higher alcohol fatty acid esters such as stearyl stearate and the like. One of these may be used alone, or two or more of these may be used in combination.
 上記滑剤の中でも、特に外部滑性を付与する効果を有する化合物としては、具体的には例えば、脂肪酸アミド、ポリグリセリン脂肪酸エステルが好ましい。脂肪酸アミドとしては、脂肪酸のモノアミド、ビスアミド等が挙げられる。脂肪酸アミドを構成する脂肪酸(脂肪酸部分)は、融点が適度に高いものとなり、溶融加工時の加工性低下を抑止する観点から、炭素数12~30の脂肪酸が好ましく、より好ましくは炭素数18~22の脂肪酸であり、例えば、エルカ酸、パルミチン酸、オレイン酸等の高級脂肪酸等が挙げられる。脂肪酸アミドとしては、具体的には、ベヘン酸アミド、エルカ酸アミド、パルミチン酸アミド、オレイン酸アミド、ステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド等が挙げられる。ポリグリセリン脂肪酸エステルとしては、例えば、グリセリンのモノエステル、グリセリンのジエステル、グリセリンのトリエステル(例えば、グリセリンジアセトモノラウレート、グリセリンジアセトモノオレート、グリセリンジアセトモノステアレート、グリセリンジアセトモノカプリレート、グリセリンジアセトモノデカノエート等のグリセリンジアセトモノエステル等)が挙げられる。ポリグリセリン脂肪酸エステルの市販品としては、例えば、リケマールPL-012(理研ビタミン製)やDAIFATTY(大八化学工業製)等が入手可能である。また、入手のし易さや効果の高さの点でも、脂肪酸アミド、ポリグリセリン脂肪酸エステルがさらに好ましい。 Among the above-mentioned lubricants, in particular, for example, fatty acid amides and polyglycerin fatty acid esters are preferable as the compound having the effect of imparting external lubricity. Examples of fatty acid amides include monoamides and bisamides of fatty acids. The fatty acid (fatty acid portion) constituting the fatty acid amide is preferably one having a carbon number of 12 to 30, more preferably 18 to 18 from the viewpoint of suppressing the deterioration of processability during melt processing because the melting point is appropriately high. 22 fatty acids, such as higher fatty acids such as erucic acid, palmitic acid, oleic acid and the like. Specific examples of the fatty acid amide include behenic acid amide, erucic acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, methylenebisstearic acid amide, ethylenebisstearic acid amide, ethylenebisoleic acid amide, ethylenebis Erucic acid amide etc. are mentioned. Examples of polyglycerin fatty acid esters include monoesters of glycerin, diesters of glycerin, triesters of glycerin (eg, glycerin diacetomonolaurate, glycerin diacetomonoolate, glycerin diacetomonostearate, glycerin diacetomonocaprylate, glycerine dia And glycerin diacetomonoesters such as cetomonodecanoate etc. As a commercial product of polyglycerin fatty acid ester, for example, Rikemar PL-012 (manufactured by Riken Vitamin Co., Ltd.), DAIFATTY (manufactured by Daihachi Chemical Industry Co., Ltd.), etc. can be obtained. In addition, fatty acid amides and polyglycerin fatty acid esters are more preferable from the viewpoint of easy availability and high effects.
 P3HA組成物における滑剤の含有量は、ポリヒドロキシアルカノエートと押出機又は紡糸機の金属表面との摩擦を低減でき、繊維同士の互着も防ぐことができれば特に制限はないが、例えば、P3HA100重量部に対し、0.05~12重量部が好ましく、0.1~10重量部がより好ましく、0.5~8重量部がさらに好ましく、特に好ましくは3~10重量部である。滑剤の含有量を0.05重量部以上とすることにより、押出機や紡糸機内の摩擦が抑制され、せん断発熱によるP3HAの分解が抑制され、ノズルから出た繊維同士が互着することが防止される傾向がある。一方、滑剤の含有量を12重量部以下とすることにより、押出機内でのP3HAがより効率的に融解し、その結果、繊維が硬くなり過ぎることなく糸切れが抑制され、生産性がいっそう向上する傾向がある。 The content of the lubricant in the P3 HA composition is not particularly limited as long as friction between the polyhydroxyalkanoate and the metal surface of the extruder or spinning machine can be reduced and mutual adhesion of fibers can be prevented, for example, P3 HA 100 weight The amount is preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, still more preferably 0.5 to 8 parts by weight, and particularly preferably 3 to 10 parts by weight. By setting the content of the lubricant to 0.05 parts by weight or more, the friction in the extruder and the spinning machine is suppressed, the decomposition of P3HA due to shear heat generation is suppressed, and the fibers coming out of the nozzles are prevented from adhering to each other. It tends to be done. On the other hand, by setting the content of the lubricant to 12 parts by weight or less, P3HA in the extruder melts more efficiently, and as a result, fiber breakage is suppressed without becoming too hard, and productivity is further improved. There is a tendency to
 P3HA組成物は、さらに、可塑剤、無機充填剤、有機充填材(セルロースなど)、酸化防止剤、紫外線吸収剤、染料及び顔料などの着色剤、並びに帯電防止剤などの他の成分を含有していてもよい。 The P3 HA composition further contains other components such as plasticizers, inorganic fillers, organic fillers (such as cellulose), antioxidants, ultraviolet absorbers, colorants such as dyes and pigments, and antistatic agents. It may be
 可塑剤は特に限定されないが、例えば、ジエチルヘキシルアジペート、ジオクチルアジペート及びジイソノニルアジペートなどのアジピン酸エステル系化合物;ポリエチレングリコールジベンゾエート、ポリエチレングリコールジカプリレート及びポリエチレングリコールジイソステアレートなどのポリエーテルエステル系化合物;安息香酸エステル系化合物;エポキシ化大豆油;エポキシ化脂肪酸2-エチルヘキシル;セバシン酸系モノエステルなどが挙げられる。これらは1種を単独で用いても良く、2種以上を組み合わせて用いても良い。 The plasticizer is not particularly limited, but, for example, adipic acid ester compounds such as diethylhexyl adipate, dioctyl adipate and diisononyl adipate; polyether ester such as polyethylene glycol dibenzoate, polyethylene glycol dicaprylate and polyethylene glycol diisostearate Compounds; benzoate ester compounds; epoxidized soybean oil; epoxidized fatty acid 2-ethylhexyl; sebacic acid monoesters and the like. One of these may be used alone, or two or more of these may be used in combination.
 上記可塑剤の中でも、入手のし易さや可塑化効果の高さの点で、ポリエーテルエステル系化合物が好ましい。P3HA組成物における可塑剤の含有量は、特に限定されず、例えば、P3HA100重量部に対して、3~25重量部の範囲で適宜選択可能である。 Among the above-mentioned plasticizers, polyether ester compounds are preferred in view of easy availability and high degree of plasticizing effect. The content of the plasticizer in the P3HA composition is not particularly limited, and can be appropriately selected, for example, in the range of 3 to 25 parts by weight with respect to 100 parts by weight of P3HA.
 無機充填剤は特に限定されないが、例えば、酸化チタン、炭酸カルシウム、タルク、クレー、合成珪素、カーボンブラック、硫酸バリウム、マイカ、ガラス繊維、ウィスカー、炭素繊維、炭酸マグネシウム、ガラス粉末、金属粉末、カオリン、グラファイト、二硫化モリブデン、酸化亜鉛などを挙げることができる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いても良い。 Although the inorganic filler is not particularly limited, for example, titanium oxide, calcium carbonate, talc, clay, synthetic silicon, carbon black, barium sulfate, mica, glass fiber, whisker, carbon fiber, magnesium carbonate, glass powder, metal powder, kaolin , Graphite, molybdenum disulfide, zinc oxide and the like. One of these may be used alone, or two or more of these may be used in combination.
 上記無機充填剤の中でも、強度アップや生分解性促進の効果の高さの点で、酸化チタン及び/又は炭酸カルシウムが好ましい。P3HA組成物における無機充填剤の含有量は、特に限定されず、例えば、P3HA100重量部に対して、1~10重量部の範囲で適宜選択可能である。 Among the above-mentioned inorganic fillers, titanium oxide and / or calcium carbonate are preferable in terms of the strength increase and the effect of promoting the biodegradability. The content of the inorganic filler in the P3HA composition is not particularly limited, and can be appropriately selected, for example, in the range of 1 to 10 parts by weight with respect to 100 parts by weight of P3HA.
 P3HA組成物は、P3HA以外の樹脂成分(その他の樹脂成分)を含んでいてもよい。その他の樹脂成分としては、生分解性樹脂、例えば、ポリ乳酸、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネートなどの石油由来樹脂や、デンプン、セルロースなどの天然高分子等が挙げられる。また、公知の熱可塑性樹脂(ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ABS系樹脂等)、熱硬化性樹脂(エポキシ樹脂等)を添加することができる。その他に、ポリエチレンテレフタレート系樹脂、ポリブチレンテレフタレート系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂等の汎用エンプラもその他の樹脂成分として用いられる。その他の樹脂成分の含有量は、樹脂成分の全量(100重量%)に対して、20重量%以下が好ましく、より好ましくは10重量%以下、さらに好ましくは5重量%以下である。その他の樹脂成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 The P3 HA composition may contain a resin component (other resin component) other than P3 HA. Other resin components include biodegradable resins such as petroleum derived resins such as polylactic acid, polybutylene adipate terephthalate, polybutylene succinate adipate and polybutylene succinate, and natural polymers such as starch and cellulose. Be Further, known thermoplastic resins (polyvinyl chloride resins, polystyrene resins, ABS resins, etc.), thermosetting resins (epoxy resins, etc.) can be added. In addition, general purpose engineering plastics such as polyethylene terephthalate resins, polybutylene terephthalate resins, polycarbonate resins and polyamide resins are also used as other resin components. The content of the other resin component is preferably 20% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, based on the total amount (100% by weight) of the resin component. The other resin components may be used alone or in combination of two or more.
 本発明の不織布の製造方法は、少なくともポリ(3-ヒドロキシアルカノエート)を含む組成物を溶融紡糸する工程Aと、工程Aにて得られた繊維をウェブ化する工程Bと、工程Bにて得られたウェブを加圧熱接着処理する工程Cを、この順で含み、これにより、PHAを用いて、生分解性不織布を製造する。これらの工程を適応して不織布を加工する方法としては、一般的な方法では、例えばスパンボンド法(紡糸口金から出た繊維がエジェクターという吸引機のような部分を通り、延伸された状態でウェブ化する方法)、メルトブローン法(紡糸口金から繊維を噴出してウェブ化する方法)などが例示できる。 In the method for producing the non-woven fabric of the present invention, in the step A of melt spinning a composition containing at least poly (3-hydroxyalkanoate), the step B of forming the web obtained in the step A, and the step B A step C of subjecting the obtained web to pressure and heat adhesion treatment is included in this order, whereby PHA is used to produce a biodegradable non-woven fabric. As a method of processing non-woven fabric by adapting these steps, in a general method, for example, a spunbond method (fibers out of a spinneret are drawn through a portion such as an ejector called an ejector) and stretched And meltblown methods (methods of blowing fibers from a spinneret to form a web) and the like.
 まず工程Aでは、例えば、溶融押出機を用いて、P3HA組成物を溶融し、紡糸口金(紡糸ダイスとも称される。)から連続的に押出してP3HA組成物で構成された繊維を形成する。上記溶融押出機は、用いるP3HAの分子量や溶融粘度を適度に保つことが可能であれば一般的な装置でよく、溶融部分が一定温度に恒温される圧縮押出装置や連続供給が可能なスクリュー型押出装置のどちらを用いてもよい。少量生産には前者が適しており、工業的な生産には後者が適した装置である。 First, in step A, for example, a P3 HA composition is melted using a melt extruder, and continuously extruded from a spinneret (also called a spinning die) to form a fiber composed of the P3 HA composition. The melt extruder may be a general device as long as it can appropriately maintain the molecular weight and melt viscosity of P3HA used, and a compression extruder in which the melt portion is kept at a constant temperature or a screw type capable of continuous supply Either of the extrusion devices may be used. The former is suitable for small volume production and the latter is suitable for industrial production.
 溶融押出機のシリンダー温度及びダイ出口温度に関しては、使用するP3HAの分子量やモノマー組成に応じてP3HAの溶融粘度が適度に保たれるように調節すればよい。また、繊維の溶融紡糸温度は、好ましくは、145~190℃であり、より好ましくは150~190℃、さらに好ましくは150~180℃である。紡糸温度を145℃以上とすることにより、十分にPHA組成物を溶解させることができるために、紡糸がいっそう安定化する傾向がある。一方、紡糸温度を190℃以下とすることにより、樹脂の熱分解が抑制され、紡糸がいっそう安定化し、得られる繊維の物性がより向上する傾向がある。なお、溶融紡糸温度とは、P3HA組成物が繊維化される間に加えられる温度のうち、最も高い温度域の温度をいう。 The cylinder temperature of the melt extruder and the die outlet temperature may be adjusted so that the melt viscosity of P3HA can be maintained appropriately depending on the molecular weight and monomer composition of P3HA used. The melt spinning temperature of the fiber is preferably 145 to 190 ° C., more preferably 150 to 190 ° C., and still more preferably 150 to 180 ° C. By setting the spinning temperature to 145 ° C. or more, the spinning tends to be further stabilized because the PHA composition can be sufficiently dissolved. On the other hand, by setting the spinning temperature to 190 ° C. or less, the thermal decomposition of the resin is suppressed, the spinning is further stabilized, and the physical properties of the obtained fiber tend to be further improved. In addition, melt-spinning temperature means the temperature of the highest temperature range among the temperatures added while P3HA composition is fiberized.
 P3HA組成物を溶融し、流量を調整して吐出量を一定に保ちながら紡糸ダイスから押し出すが、この際の紡糸ダイスの開口面積は、0.15~3.5mm2であることが好ましい。開口面積を0.15mm2以上とすることにより、紡糸中の切れがいっそう抑制される傾向がある。一方、開口面積を3.5mm2以下とすることにより、繊維が太くなり過ぎないために固化に要する時間が長くなり過ぎず、成形された伸び切り鎖の緩和が抑制され、加工性や強度がいっそう向上する傾向がある。 The P3 HA composition is melted and extruded from the spinning die while adjusting the flow rate to keep the discharge amount constant, and the opening area of the spinning die at this time is preferably 0.15 to 3.5 mm 2 . By setting the opening area to 0.15 mm 2 or more, breakage during spinning tends to be further suppressed. On the other hand, by setting the opening area to 3.5 mm 2 or less, the time required for solidification does not become too long because the fibers do not become too thick, relaxation of the formed extension chain is suppressed, and processability and strength are improved. There is a tendency to improve further.
 吐出量は最終的に必要な繊維径と生産時の紡糸速度に基づいて任意に選定することが可能であるが、吐出量(紡糸口金の単孔あたりのP3HA組成物の吐出量)が0.2~1.2g/分が好ましく、0.2~0.7g/分がより好ましい。吐出量を0.2g/分以上とすることにより、繊維が細くなり過ぎず糸切れがいっそう抑制される傾向がある。一方、吐出量を1.2g/分以下とすることにより、糸が太くなり過ぎず、繊維の固化が速やかに進行し繊維同士の互着が抑制される傾向がある。 Although the discharge amount can be arbitrarily selected based on the finally required fiber diameter and the spinning speed at the time of production, the discharge amount (discharge amount of P3HA composition per single hole of spinneret) is 0. It is preferably 2 to 1.2 g / min, more preferably 0.2 to 0.7 g / min. By setting the discharge amount to 0.2 g / min or more, the fibers do not become too thin, and yarn breakage tends to be further suppressed. On the other hand, by setting the discharge amount to 1.2 g / min or less, the fibers do not become too thick, and the solidification of the fibers proceeds rapidly, and the mutual adhesion of the fibers tends to be suppressed.
 また、押出時の熱による樹脂の分解を抑制することから、紡糸機内部での樹脂の滞在時間が30分以下であることが好ましく、15分以下とするのがより好ましい。 Moreover, in order to suppress the decomposition of the resin due to the heat at the time of extrusion, the residence time of the resin inside the spinning machine is preferably 30 minutes or less, and more preferably 15 minutes or less.
 紡糸口金から押し出す雰囲気温度は、特に限定されず、例えば、5~40℃の範囲で適宜調整可能である。 The atmosphere temperature extruded from the spinneret is not particularly limited, and can be suitably adjusted, for example, in the range of 5 to 40.degree.
 [工程B]
 次に工程Bでは、工程Aで紡糸口金から押出されたP3HA組成物で構成された繊維、すなわちP3HA組成物を溶融紡糸して得られた繊維をウェブ化し、ウェブを得る。この工程において、P3HA組成物で構成された繊維(紡糸フィラメント)は、目的の繊度となるように牽引細化し(延伸フィラメントとなる。)、縦方向(MD)に移動するコンベヤなどの捕集面上に堆積させて長繊維ウェブを形成する。
[Step B]
Next, in step B, the fibers composed of the P3HA composition extruded from the spinneret in step A, that is, the fibers obtained by melt-spinning the P3HA composition, are webbed to obtain a web. In this step, the fibers (spun filaments) composed of the P3HA composition are drawn to be a target fineness (become drawn filaments), and a collection surface such as a conveyor moving in the longitudinal direction (MD) Deposit on top to form a long fiber web.
 スパンボンド法で不織布を作製する場合(つまり、工程Bにおけるウェブ化をスパンボンド法により実施する場合)は、エジェクターなどの吸引装置を用いて、空気延伸して牽引細化する。例えば、図1に示されているようなエジェクター3を用いる場合、空気牽引の圧力を調整することで、紡糸速度を調節することが可能である。空気圧を高くすることで、紡糸速度が上昇する。空気圧は、0.2~7.0Kgf/cm2が好ましく、より好ましくは、0.5~5.0Kgf/cm2である。0.2Kgf/cm2より低い場合、十分な紡糸速度が得られにくく、7Kgf/cm2より高い場合は、安定に紡糸できる紡糸速度である7000m/分より大きくなりやすい。空気延伸による紡糸速度は好ましくは、500~7000m/分であり、より好ましくは700~7000m/分、さらに好ましくは700~5000m/分、特に好ましくは700~3000m/分である。この紡糸速度範囲では、紡糸性が担保できるP3HA組成物からなる繊維の固化が得られる。紡糸速度が遅い場合は、作製した不織布が冷却時に収縮する場合があり、均質で良好な不織布が得られないことがある。引取り速度に上限値は特に限定されないが、7,000m/分より大きいと得られる繊維の強度が変わらなくなるので、7,000m/分より高くする必要は無い。吸引装置から捕集面までの距離は長いほど良くて80cm以上が好ましい。80cm以上とすることにより、繊維の固化が速やかに進行し、吸引装置内で繊維同士が互着しにくく、糸切れが抑制される傾向がある。また、捕集面の下から吸引することで、ウェブの収縮を低減しやすい。 In the case of producing a non-woven fabric by the spun bond method (that is, when the web formation in the step B is carried out by the spun bond method), air drawing and draw thinning are carried out using a suction device such as an ejector. For example, when using an ejector 3 as shown in FIG. 1, it is possible to adjust the spinning speed by adjusting the pressure of air traction. By increasing the air pressure, the spinning speed is increased. The air pressure is preferably 0.2 to 7.0 kgf / cm 2 , more preferably 0.5 to 5.0 kgf / cm 2 . When it is lower than 0.2 kgf / cm 2 , a sufficient spinning speed is difficult to obtain, and when it is higher than 7 kgf / cm 2, it tends to be higher than 7000 m / min which is a spinning speed at which stable spinning can be performed. The spinning speed by air drawing is preferably 500 to 7,000 m / minute, more preferably 700 to 7,000 m / minute, still more preferably 700 to 5,000 m / minute, and particularly preferably 700 to 3,000 m / minute. In this spinning speed range, solidification of fibers consisting of a P3 HA composition capable of ensuring spinnability is obtained. When the spinning speed is low, the produced non-woven fabric may shrink on cooling, and a homogeneous and good non-woven fabric may not be obtained. The upper limit value of the take-up speed is not particularly limited, but if it is larger than 7,000 m / min, the strength of the obtained fiber does not change, so there is no need to make it higher than 7,000 m / min. The longer the distance from the suction device to the collection surface, the better, and the distance is preferably 80 cm or more. By setting the diameter to 80 cm or more, the solidification of the fibers proceeds rapidly, the fibers are less likely to adhere to each other in the suction device, and the yarn breakage tends to be suppressed. Moreover, it is easy to reduce shrinkage | contraction of a web by attracting | sucking from under the collection surface.
 工程Bでは、工程Aで紡糸口金から押し出された繊維(紡糸フィラメント)を牽引細化する前に、図1に示されているようなクエンチ2等の整流風を与える装置にて、整流風を与えることが好ましい。整流風は、クエンチ風とも呼ばれ、糸条の流れを安定化させる働きがある。また、冷却した気体を用いることで紡糸フィラメントを冷却することも可能である。クエンチ風は、ネットやメッシュを通して放出され、均一に糸条に送られることが好ましい。ウェブ作製装置の場合、ウェブ形成用のコンベアの流れ方向と同一方向からクエンチ風が送風されることが好ましく、糸条に対し片面もしくは両面から送風されても良い。クエンチ風の温度は、5~40℃が好ましく、更に好ましくは、10~30℃である。5℃より低い場合は、繊維に残留応力が生じ、繊維が捲縮する場合がある。40℃より高い場合は、樹脂の固化が不十分となり、繊維が固着する。クエンチ風の風速は、0.1~1.5m/秒が好ましい。0.1m/秒より低い場合、整流の効果が低くなりやすく、1.5m/秒より高い場合は、クエンチ風が強すぎ、逆に糸条の乱れの原因となり、繊維同士の固着や糸切れが発生するおそれがある。 In step B, before pulling and narrowing the fibers (spun filaments) extruded from the spinneret in step A, the straightening air is flowed with a device for giving a straightening air such as quench 2 as shown in FIG. It is preferable to give. The rectified air is also called quench air, and has the function of stabilizing the flow of yarn. It is also possible to cool the spinning filaments by using a cooled gas. The quench wind is preferably discharged through the net or mesh and uniformly sent to the yarn. In the case of the web manufacturing apparatus, it is preferable that the quenching air be blown from the same direction as the flow direction of the web forming conveyor, and the yarn may be blown from one side or both sides. The temperature of the quench air is preferably 5 to 40 ° C., more preferably 10 to 30 ° C. If the temperature is lower than 5 ° C., residual stress may occur in the fibers, and the fibers may be crimped. If the temperature is higher than 40 ° C., the solidification of the resin becomes insufficient and the fibers stick. The quenching air velocity is preferably 0.1 to 1.5 m / sec. If it is lower than 0.1 m / sec, the effect of rectification tends to be low, and if it is higher than 1.5 m / sec, the quench wind is too strong and conversely causes the disturbance of the yarn, causing the fibers to stick or break. May occur.
 エジェクター3により空気牽引された繊維(延伸フィラメント)は、例えば、図1に示されているように、コンベア4上で捕集され、コンベアが走行することでシート状のウェブが形成される。コンベアの捕集面の内側から吸引することで、ウェブの収縮を低減しやすい。コンベアの作動速度であるラインスピードを変化させることで、溶融紡糸時の吐出量が同じ場合、不織布の目付を調節することができる。ラインスピードを上げることで、目付は小さくなるが、上げすぎるとウェブの収縮や切断が発生するおそれがある。 The fibers (drawn filaments) pulled by air by the ejector 3 are collected, for example, on the conveyor 4 as shown in FIG. 1, and a sheet-like web is formed as the conveyor travels. By suctioning from the inside of the collection surface of the conveyor, it is easy to reduce the shrinkage of the web. By changing the line speed, which is the operating speed of the conveyor, the basis weight of the non-woven fabric can be adjusted when the discharge amount during melt spinning is the same. By increasing the line speed, the basis weight becomes smaller, but if it is increased too much, there is a possibility that the shrinkage and the cutting of the web may occur.
 [工程C]
 次いで、工程Cでは、工程Bで得られたウェブを加圧熱接着処理する。加圧熱接着の方法としては、例えば、上下一対のロール表面にそれぞれ彫刻が施された熱エンボスロールや、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻が施されたロールの組み合わせからなる熱エンボスロール、上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど各種ロールによる熱圧着や、不織ウェブの厚み方向に熱風を通過させるエアスルー方式を適用することが出来る。中でも機械的強度を向上させながら適度な通気性も保持できる熱エンボスロールを用いた熱接着を好ましく採用することができる。
[Step C]
Next, in step C, the web obtained in step B is subjected to pressure heat adhesion treatment. As a method of pressure heat bonding, for example, a heat embossing roll in which the surface of a pair of upper and lower rolls is engraved respectively, or a roll in which one roll surface is flat (smooth) and a surface of the other roll are engraved Applying thermocompression bonding with various rolls such as a heat embossing roll consisting of a combination of rolls and a heat calender roll consisting of a combination of upper and lower flat (smooth) rolls, and applying an air through system to pass hot air in the thickness direction of the nonwoven web It can. Above all, heat bonding using a heat embossing roll capable of maintaining appropriate air permeability while improving mechanical strength can be preferably employed.
 工程Cにおける加圧熱接着処理温度、即ち、加圧熱接着ロールの表面温度は、(Tc-45)℃以上、(Tc+5)℃以下であり、(Tc-40)℃以上、(Tc+0)℃以下が好ましい。なお、Tcは、後述の方法で測定されるP3HAの結晶化温度である。加圧熱接着処理温度をこの温度範囲にすることで、PHA組成物からなる繊維を結晶化させながら繊維同士を接着させて不織布の形状を保つことができるとともに、シートの剥離や毛羽の発生を抑えることができる。一方、この温度範囲外で加圧熱接着すると、繊維が固化できず、ロールに張り付く以外に、不織布の形が維持できず、不織布が収縮したり破れたりする。 The pressure heat adhesion treatment temperature in step C, that is, the surface temperature of the pressure heat adhesion roll is (Tc-45) ° C. or more, (Tc + 5) ° C. or less, (Tc-40) ° C. or more, (Tc + 0) ° C. The following are preferred. In addition, Tc is a crystallization temperature of P3HA measured by the below-mentioned method. By setting the pressure and heat adhesion treatment temperature to this temperature range, it is possible to adhere the fibers to one another while crystallizing the fibers made of the PHA composition and maintain the shape of the non-woven fabric, and peeling of the sheet and generation of fluff. It can be suppressed. On the other hand, if the pressure heat bonding is performed outside this temperature range, the fibers can not be solidified, and besides being stuck to the roll, the shape of the non-woven fabric can not be maintained, and the non-woven fabric shrinks or breaks.
 また、加圧熱接着ロールの2つのロール間に一定の圧力を掛けることが有効である。エンボスロールを使用する場合は、ロール表面に彫刻が施されたエンボスロールとロール表面がフラット(平滑)なゴム製のバックアップロールを用いるのが一般的である。加圧に必要な圧力は、P3HAの結晶化が進行する最適な温度で彫刻模様が不織布に付与でき、機械強度を保持できれば良い。有効な加圧熱接着ロール間の圧力は、20~60Kg/cmであることが好ましく、より好ましくは30~50Kg/cmである。加圧熱接着ロールの圧力が、20Kg/cmより低い場合、彫刻模様が付与されにくく、強度も低下するおそれがある。一方、60Kg/cmより高い場合は、不織布に過剰な応力がかかり、不織布が破断するおそれがある。 Also, it is effective to apply a constant pressure between the two rolls of the pressure heat bonding roll. When using an embossing roll, it is general to use an embossing roll having a engraved roll surface and a rubber backup roll having a flat (smooth) roll surface. The pressure required for pressurization may be such that an engraving pattern can be applied to the non-woven fabric at an optimum temperature at which crystallization of P3HA proceeds, and mechanical strength can be maintained. The pressure between effective pressurized heat bonding rolls is preferably 20 to 60 Kg / cm, more preferably 30 to 50 Kg / cm. When the pressure of the pressure heat adhesive roll is lower than 20 kg / cm, an engraving pattern is difficult to be applied, and the strength may be lowered. On the other hand, when it is higher than 60 kg / cm, excessive stress is applied to the non-woven fabric, and the non-woven fabric may be broken.
 P3HAの結晶化温度は、以下の装置、条件、方法で測定される温度である。
・測定方法:示差走査熱分析(DSC,Differential Scannning Calorimetry)
・測定装置:日立ハイテックスサイエンス製EXSTAR6000シリーズDSC6200
・測定サンプル:P3HA5~10mgをアルミパンに入れて蓋をしてクリンプしたもの。
・測定条件:25℃から180℃まで10℃/minで昇温したあとに、10℃/minで25℃まで降温する。測定中、窒素ガスを50mL/minを流す。
・結晶化温度の特定:降温過程で見られる発熱ピークを結晶化ピークとし、ピークトップを結晶化温度とする。
The crystallization temperature of P3HA is a temperature measured by the following apparatus, conditions and method.
・ Measurement method: Differential scanning calorimetry (DSC, Differential Scanning Calorimetry)
・ Measurement equipment: EXSTAR6000 series DSC6200 made by Hitachi Hightex Science
Measurement sample: Put 5 to 10 mg of P3HA in an aluminum pan and crimp it with a lid.
Measurement conditions: After raising the temperature from 25 ° C. to 180 ° C. at 10 ° C./min, decrease the temperature to 25 ° C. at 10 ° C./min. During the measurement, flow 50 mL / min of nitrogen gas.
-Identification of crystallization temperature: The exothermic peak observed in the temperature lowering process is taken as the crystallization peak, and the peak top is taken as the crystallization temperature.
 熱エンボスロールに施される彫刻の形状としては、特に限定されず、例えば、円形、楕円形、正方形、長方形、平行四辺形、ひし形、正六角形及び正八角形などが挙げられる。 The shape of the engraving applied to the heat embossing roll is not particularly limited, and examples thereof include a circle, an ellipse, a square, a rectangle, a parallelogram, a rhomb, a regular hexagon, and an octagonal shape.
 加熱されたエンボスロールを用いてエンボスパターン部に存在する繊維どうしを部分的に熱接着させる場合は、エンボスロールの圧接面積率を5~50%とするのが好ましい。この圧接面積率を5%以上とすることにより、一定の点状融着区域が確保されるために不織布の機械的強度が向上し、また良好な寸法安定性を得ることができる傾向がある。一方、圧接面積率を50%以下とすることにより、不織布の硬直化が抑制され、いっそう柔軟性が向上する傾向がある。 In the case of partially thermally bonding the fibers present in the embossed pattern portion using a heated embossing roll, it is preferable to set the pressing area ratio of the embossing roll to 5 to 50%. By setting the pressure contact area ratio to 5% or more, a certain point-like fused area is secured, so that the mechanical strength of the non-woven fabric tends to be improved, and good dimensional stability tends to be obtained. On the other hand, by setting the pressure contact area ratio to 50% or less, the rigidity of the non-woven fabric is suppressed, and the flexibility tends to be further improved.
 工程Cを経て、P3HA組成物で構成された不織布が得られる。本発明の1以上の実施形態の不織布の製造方法は、上述のように工程A~Cに加えて、その他の工程を含んでいてもよく、当該他の工程としては、例えば、工程Cの前に、工程Bで得られたウェブを仮止めする工程等が挙げられる。例えば、図1に示すように、仮止めロール5をコンベア上に設置することで、ウェブの流れが安定し、その状態で加圧熱接着ロール6にウェブを導くことができる。 Through step C, a non-woven fabric composed of the P3HA composition is obtained. The method for producing the non-woven fabric according to one or more embodiments of the present invention may include other steps in addition to the steps A to C as described above, and the other steps include, for example, before the step C. And the step of temporarily fixing the web obtained in step B. For example, as shown in FIG. 1, by installing the temporary fixing roll 5 on the conveyor, the flow of the web is stabilized, and the web can be guided to the pressure heat adhesive roll 6 in that state.
 本発明の1以上の実施形態の不織布の製造方法において、工程A~Cは、連続的に実施してもよいし、非連続的に実施してもよい。特に工程A~Cを連続的に実施することが、より不織布を効率的に製造できる点で好ましい。工程A~Cを実施する速度は、特に限定されないが、例えば、工程Aにて繊維を得てから工程Cが終了するまでの時間を30秒~3分とすることが好ましく、より好ましくは40秒~1分である。 In the method of producing a nonwoven fabric according to one or more embodiments of the present invention, steps A to C may be performed continuously or may be performed discontinuously. In particular, it is preferable to continuously carry out the steps A to C in that the nonwoven fabric can be produced more efficiently. The speed at which the steps A to C are carried out is not particularly limited. For example, it is preferable to set the time from obtaining the fiber in the step A to the end of the step C to be 30 seconds to 3 minutes, more preferably 40 Seconds to 1 minute.
 本発明の1以上の実施形態において、不織布は、例えば、図1に示す装置で作製することができる。
 まず、工程Aにて、P3HAを含む組成物を溶融し、紡糸口金1から押し出すことで、溶融紡糸し、繊維a(紡糸フィラメント)を得る。
 次に、工程Bにて、繊維aをウェブ化してウェブbを得る。具体的には、まず、繊維aにクエンチ2にて整流風を与える。次に、繊維aをエジェクター3にて空気牽引して、所定の繊度になる(延伸フィラメント)ように牽引細化し、縦方向(MD)に移動するコンベヤ4上に堆積させて長繊維ウェブbを形成する。
 次に、工程Cを実施する前に、長繊維ウェブbをコンベア4上に設置した仮止めロール5を通し、加圧接着ロール6に導く。
 次に、工程Cにて、加圧熱接着ロール6にて所定の温度で長繊維ウェブbを加圧熱接着処理して長繊維不織布cを得る。加圧熱接着ロール6において、一方はロール表面に彫刻が施されたエンボスロールであり、他方はロール表面がフラット(平滑)なゴム製のバックアップロールを用いることができる。
 その後、得られた長繊維不織布cを巻取りロール7にて巻き取る。
In one or more embodiments of the present invention, the nonwoven can be made, for example, with the apparatus shown in FIG.
First, in step A, a composition containing P3HA is melted and extruded from the spinneret 1, thereby melt spinning to obtain fibers a (spun filaments).
Next, in step B, the fibers a are formed into a web to obtain a web b. Specifically, first, the rectified air is applied to the fiber a at the quench 2. Next, the fiber a is pulled by air with the ejector 3 to draw and thin it to a predetermined fineness (stretched filament), and deposited on the conveyor 4 moving in the machine direction (MD) to form the long fiber web b Form.
Next, before carrying out the step C, the long fiber web b is passed through the temporary fixing roll 5 installed on the conveyor 4 and led to the pressure bonding roll 6.
Next, in step C, the long fiber web b is subjected to pressure heat bonding treatment at a predetermined temperature by the pressure heat bonding roll 6 to obtain a long fiber nonwoven fabric c. In the pressure heat bonding roll 6, one may be an embossing roll having a engraved roll surface, and the other may be a rubber backup roll having a flat (smooth) roll surface.
Thereafter, the obtained long fiber non-woven fabric c is wound by a winding roll 7.
 本発明の1以上の実施形態の製造方法で得られた不織布は、用途や目的等に応じて、引張り強度を適宜決めればよいが、強度を高める観点から、JIS L 1096に準じて測定したMD方向の引張り強度が、8N/50mm以上であることが好ましく、10N/50mm以上であることがより好ましく、15N/50mm以上であることがさらに好ましく、20N/50mm以上であることが特に好ましい。また、JIS L 1096に準じて測定したCD方向の引張り強度が、5N/50mm以上であることが好ましく、10N/50mm以上であることがより好ましく、15N/50mm以上であることがさらに好ましく、20N/50mm以上であることがさらにより好ましく、40N/50mm以上であることが特に好ましい。 The nonwoven fabric obtained by the manufacturing method of one or more embodiments of the present invention may be determined appropriately depending on the application, purpose, etc., but from the viewpoint of enhancing the strength, MD measured according to JIS L 1096 The tensile strength in the direction is preferably 8 N / 50 mm or more, more preferably 10 N / 50 mm or more, still more preferably 15 N / 50 mm or more, and particularly preferably 20 N / 50 mm or more. Further, the tensile strength in the CD direction measured according to JIS L 1096 is preferably 5 N / 50 mm or more, more preferably 10 N / 50 mm or more, still more preferably 15 N / 50 mm or more, and 20 N It is further more preferable that it is / 50 mm or more, and it is particularly preferable that it is 40 N / 50 mm or more.
 本発明の1以上の実施形態の製造方法で得られた不織布は、用途や目的等に応じて、引裂き強度を適宜決めればよいが、強度を高める観点から、JIS L 1096に準じて測定したMD方向の引裂き強度が、3N/50mm以上であることが好ましく、5N/50mm以上であることがより好ましく、10N/50mm以上であることがさらに好ましく、15N/50mm以上であることが特に好ましい。また、JIS L 1096に準じて測定したCD方向の引裂き強度が、2N/50mm以上であることが好ましく、5N/50mm以上であることがより好ましく、10N/50mm以上であることがさらに好ましく、15N/50mm以上である特に好ましい。 The nonwoven fabric obtained by the manufacturing method according to one or more embodiments of the present invention may be determined appropriately depending on the application, purpose, etc., but from the viewpoint of enhancing the strength, MD measured according to JIS L 1096 The tear strength in the direction is preferably 3 N / 50 mm or more, more preferably 5 N / 50 mm or more, still more preferably 10 N / 50 mm or more, and particularly preferably 15 N / 50 mm or more. Further, the tear strength in the CD direction measured according to JIS L 1096 is preferably 2 N / 50 mm or more, more preferably 5 N / 50 mm or more, still more preferably 10 N / 50 mm or more, 15 N It is especially preferable that it is / 50 mm or more.
 本発明の不織布の製造方法により得られる不織布は、公知乃至慣用の各種用途、例えば、農業、漁業、林業、衣料、非衣料繊維製品(例えばカーテン、絨毯、鞄など)、衛生品、園芸、自動車部材、建材、医療、食品産業、その他の分野等において好適に使用することができる。 The non-woven fabric obtained by the method for producing a non-woven fabric according to the present invention can be used in various known or customary applications such as agriculture, fishery, forestry, clothing, non-clothing textiles (eg curtains, carpets, rugs etc), hygiene products, horticulture, automobiles It can be suitably used in components, construction materials, medical care, food industry, other fields and the like.
 以下、実施例により本発明を具体的に説明するが、本発明は、これらの実施例によりその技術的範囲を限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the technical scope by these examples.
 <製造例1>P3HB3HHの製造
 P3HB3HHの培養生産にはKNK-005株(米国特許第7384766号参照)を用いた。
Production Example 1 Production of P3HB3HH For culture production of P3HB3HH, strain KNK-005 (see US Pat. No. 7,384,766) was used.
 種母培地の組成は、1w/v% Meat-extract、1w/v% Bacto-Tryptone、0.2w/v% Yeast-extract、0.9w/v% Na2HPO4・12H2O、0.15w/v% KH2PO4、(pH6.8)とした。 The composition of the seed culture medium is 1 w / v% Meat-extract, 1 w / v% Bacto-Tryptone, 0.2 w / v% Yeast-extract, 0.9 w / v% Na 2 HPO 4 · 12 H 2 O, 0.1. It was 15 w / v% KH 2 PO 4 (pH 6.8).
 前培養培地の組成は、1.1w/v% Na2HPO4・12H2O、0.19w/v% KH2PO4、1.29w/v% (NH42SO4、0.1w/v% MgSO4・7H2O、0.5v/v% 微量金属塩溶液(0.1N塩酸に、1.6w/v% FeCl3・6H2O、1w/v% CaCl2・2H2O、0.02w/v% CoCl2・6H2O、0.016w/v% CuSO4・5H2O、0.012w/v% NiCl2・6H2Oを溶かしたもの)とした。炭素源としてはパーム油を用い、これを10g/Lの濃度で一括添加した。 The composition of the preculture medium is 1.1 w / v% Na 2 HPO 4 · 12 H 2 O, 0.19 w / v% KH 2 PO 4 , 1.29 w / v% (NH 4 ) 2 SO 4 , 0.1 w / V% MgSO 4 · 7 H 2 O, 0.5 v / v% trace metal salt solution (in 0.1 N hydrochloric acid, 1.6 w / v% FeCl 3 · 6 H 2 O, 1 w / v% CaCl 2 · 2 H 2 O , 0.02 w / v% CoCl 2 · 6 H 2 O, 0.016 w / v% CuSO 4 · 5 H 2 O, 0.012 w / v% NiCl 2 · 6 H 2 O). Palm oil was used as a carbon source, and this was added all together at a concentration of 10 g / L.
 P3HB3HH生産培地の組成は、0.385w/v% Na2HPO4・12H2O、0.067w/v% KH2PO4、0.291w/v% (NH42SO4、0.1w/v% MgSO4・7H2O、0.5v/v% 微量金属塩溶液(0.1N 塩酸に、1.6w/v% FeCl3・6H2O、1w/v% CaCl2・2H2O、0.02w/v% CoCl2・6H2O、0.016w/v% CuSO4・5H2O、0.012w/v% NiCl2・6H2Oを溶かしたもの)、0.05w/v% BIOSPUREX200K(消泡剤:コグニスジャパン社製)とした。 The composition of P3HB3HH production medium, 0.385w / v% Na 2 HPO 4 · 12H 2 O, 0.067w / v% KH 2 PO 4, 0.291w / v% (NH 4) 2 SO 4, 0.1w / V% MgSO 4 · 7 H 2 O, 0.5 v / v% trace metal salt solution (in 0.1 N hydrochloric acid, 1.6 w / v% FeCl 3 · 6 H 2 O, 1 w / v% CaCl 2 · 2 H 2 O , 0.02 w / v% CoCl 2 · 6 H 2 O, 0.016 w / v% CuSO 4 · 5 H 2 O, 0.012 w / v% NiCl 2 · 6 H 2 O dissolved), 0.05 w / v % BIOSPUREX 200 K (defoamer: manufactured by Cognis Japan Ltd.).
 まず、KNK-005株のグリセロールストック(50μL)を種母培地(10mL)に接種して24時間培養し種母培養を行なった。次に種母培養液を1.8Lの前培養培地を入れた3Lジャーファーメンター(丸菱バイオエンジ製MDL-300型)に1.0v/v%接種した。培養温度33℃、攪拌速度500rpm、通気量1.8L/minとし、pHは6.7~6.8の間でコントロールしながら28時間培養し、前培養を行なった。pHコントロールには14%水酸化アンモニウム水溶液を使用した。 First, a glycerol stock (50 μL) of strain KNK-005 was inoculated into a seed culture medium (10 mL) and cultured for 24 hours for seed mother culture. Next, the seed culture broth was inoculated at 1.0 v / v% into a 3 L jar fermenter (MDL-300, manufactured by Marubishi Bio Engineering Co., Ltd.) containing 1.8 L of preculture medium. The culture temperature was 33 ° C., the stirring speed was 500 rpm, the aeration amount was 1.8 L / min, and the culture was performed for 28 hours while controlling the pH between 6.7 and 6.8 for 28 hours, and preculture was performed. 14% ammonium hydroxide aqueous solution was used for pH control.
 次に、前培養液を6Lの生産培地を入れた10Lジャーファーメンター(丸菱バイオエンジ製MDS-1000型)に1.0v/v%接種した。培養温度28℃、攪拌速度400rpm、通気量6.0L/minとし、pHは6.7~6.8の間でコントロールした。pHコントロールには14%水酸化アンモニウム水溶液を使用した。炭素源としてパーム油を使用した。培養は64時間行い、培養終了後、遠心分離によって菌体を回収し、メタノールで洗浄した。その後、凍結乾燥した。 Next, 1.0 v / v% of the preculture liquid was inoculated into a 10 L jar fermenter (MDS-1000 manufactured by Marubishi Biotech) containing 6 L of a production medium. The culture temperature was 28 ° C., the stirring speed was 400 rpm, the aeration amount was 6.0 L / min, and the pH was controlled between 6.7 and 6.8. 14% ammonium hydroxide aqueous solution was used for pH control. Palm oil was used as a carbon source. The culture was performed for 64 hours, and after completion of the culture, the cells were collected by centrifugation and washed with methanol. It was then lyophilized.
 上記で得られた乾燥菌体1gに100mLのクロロホルムを加え、室温で一昼夜攪拌して、菌体内のP3HB3HHを抽出した。菌体残渣をろ別後、エバポレーターで総容量が30mLになるまで濃縮後、90mLのヘキサンを徐々に加え、ゆっくり攪拌しながら、1時間放置した。析出したP3HB3HHをろ別後、50℃で3時間真空乾燥し、ポリヒドロキシアルカノエートA1(P3HB3HH)を得た。 To 1 g of the dried cells obtained above, 100 mL of chloroform was added, and stirred overnight at room temperature to extract P3HB3HH in the cells. After filtering off the cell residue, the mixture was concentrated by an evaporator to a total volume of 30 mL, 90 mL of hexane was gradually added, and the mixture was left for 1 hour while being slowly stirred. The precipitated P3HB3HH was separated by filtration and vacuum dried at 50 ° C. for 3 hours to obtain polyhydroxyalkanoate A1 (P3HB3HH).
 得られたP3HB3HHの3HH組成は、以下のようにガスクロマトグラフィーによって分析した。P3HB3HH20mgに2mLの硫酸-メタノール混液(15:85)と2mLのクロロホルムを添加して密栓し、100℃で140分間加熱して、P3HB3HH分解物のメチルエステルを得た。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置した。さらに、4mLのジイソプロピルエーテルを添加してよく混合した後、遠心して、上清中のポリエステル分解物のモノマーユニット組成をキャピラリーガスクロマトグラフィーにより分析した。ガスクロマトグラフは島津製作所製のGC-17A、キャピラリーカラムはGLサイエンス社製のNEUTRA BOND-1(カラム長25m、カラム内径0.25mm、液膜厚0.4μm)を用いた。キャリアガスとしてHeを用い、カラム入口圧100kPaとし、サンプルは1μLを注入した。温度条件は、初発温度100~200℃まで8℃/分の速度で昇温、さらに200~290℃まで30℃/分の速度で昇温するという条件とした。上記条件にて分析した結果、得られたP3HB3HHは、3-ヒドロキシヘキサノエート(3HH)のモノマーの組成百分率率が5.4モル%のP3HB3HHであることを確認した。また、GPCで測定した重量平均分子量Mwは35万であり、融点は141℃、結晶化温度(Tc)は80℃であった。 The 3HH composition of the obtained P3HB3HH was analyzed by gas chromatography as follows. To 20 mg of P3HB3HH, 2 mL of a mixed solution of sulfuric acid-methanol (15:85) and 2 mL of chloroform were added, sealed tightly, and heated at 100 ° C. for 140 minutes to obtain a methyl ester of P3HB3HH decomposition product. After cooling, 1.5 g of sodium hydrogencarbonate was added little by little to neutralize it, and the mixture was left until carbon dioxide gas evolution ceased. Furthermore, 4 mL of diisopropyl ether was added, mixed well, centrifuged, and the monomer unit composition of the polyester degradation product in the supernatant was analyzed by capillary gas chromatography. The gas chromatograph used was GC-17A manufactured by Shimadzu Corporation, and the capillary column used was NEUTRA BOND-1 (column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 μm) manufactured by GL Science. He was used as a carrier gas, the column inlet pressure was 100 kPa, and 1 μL of the sample was injected. The temperature was raised to a temperature of 100 to 200 ° C. at a rate of 8 ° C./min, and further raised to a temperature of 200 to 290 ° C. at a rate of 30 ° C./min. As a result of analysis under the above conditions, it was confirmed that the obtained P3HB3HH was P3HB3HH in which the composition percentage ratio of the monomer of 3-hydroxyhexanoate (3HH) was 5.4 mol%. Further, the weight average molecular weight Mw measured by GPC was 350,000, the melting point was 141 ° C., and the crystallization temperature (Tc) was 80 ° C.
 なお、結晶化温度(Tc)、及び融点は、示差走査熱分析(DSC,Differential Scannning Calorimetry)により測定した。装置は日立ハイテックスサイエンス製EXSTAR6000シリーズDSC6200を用いた。P3HB3HH5~10mgをアルミパンに入れて蓋してクリンプしたものを測定サンプルとした。温度条件は25℃から180℃まで10℃/minで昇温したあとに、10℃/minで25℃まで降温する条件とした。測定中、窒素ガスを50mL/minを流した。昇温過程で見られる吸熱ピークを融解ピークとし、そのピークトップ温度を融点とした。降温過程で見られる発熱ピークを結晶化ピークとし、そのピークトップ温度を結晶化温度(Tc)とした。 In addition, crystallization temperature (Tc) and melting | fusing point were measured by differential scanning calorimetry (DSC, Differential Scanning Calorimetry). The apparatus used EXSTAR6000 series DSC6200 manufactured by Hitachi High-Tex Science. A sample of 5 to 10 mg of P3HB3HH was put in an aluminum pan, covered, and crimped to obtain a measurement sample. The temperature was raised from 25 ° C. to 180 ° C. at 10 ° C./min, and then lowered to 10 ° C./min to 25 ° C. During the measurement, nitrogen gas was flowed at 50 mL / min. The endothermic peak observed in the temperature rising process was taken as the melting peak, and the peak top temperature was taken as the melting point. The exothermic peak observed in the temperature lowering process was taken as the crystallization peak, and the peak top temperature was taken as the crystallization temperature (Tc).
 <実施例1~11、比較例1~3>
 製造例1で得られたP3HB3HH(100重量部)に対して、結晶核剤であるペンタエリスリトール(日本合成化学社製のノイライザーP)3重量部と、滑剤であるエルカ酸アミド(日本精化社製のニュートロンS)5重量部と、滑剤であるベヘン酸アミド(ベヘニン酸アミド、日本精化社製のBNT-22H)0.5重量部とをドライブレンドし、東芝機械社製の2軸押出機(TEM26SS)を用いて130~160℃で溶融混錬してペレット化した。得られた当該ペレットを、スクリュー径20mmの1軸押出機で溶融し、ギアポンプで流量を調整し、表1、2に示すように、溶融紡糸温度170℃で、直径が0.3mmの紡糸孔を815個有する紡糸ダイスから表1、2に記載の吐出量で押し出し、25℃の冷却空気流を用いて冷却した後、エジェクターにて表1、2に記載の圧力で延伸させ、移動するコンベヤ上に堆積させてウェブを形成した。その後、このウェブを引き続いて表1、2に記載のラインスピードと加圧熱接着ロール温度にて部分熱接着した。
 上記で不織布の製造に用いた装置の概略図を図1に示した。
Examples 1 to 11 and Comparative Examples 1 to 3
To P3HB3HH (100 parts by weight) obtained in Production Example 1, 3 parts by weight of pentaerythritol (Neurizer P manufactured by Japan Synthetic Chemical Co., Ltd.), which is a crystal nucleating agent, and erucic acid amide (Nippon Seika Co., Ltd.) as a lubricant Dry blend of 5 parts by weight of Neutron S (manufactured by Nippon Steel Co., Ltd.) and 0.5 parts by weight of behenic acid amide (behenic acid amide, BNT-22H manufactured by Nippon Seika Co., Ltd.) as a lubricant The mixture was melt-kneaded and pelletized at 130 to 160 ° C. using an extruder (TEM 26 SS). The obtained pellet is melted by a single screw extruder with a screw diameter of 20 mm, the flow rate is adjusted by a gear pump, and as shown in Tables 1 and 2, a spinning hole with a melt spinning temperature of 170 ° C. and a diameter of 0.3 mm. Is extruded from a spinning die having 815 pieces at a discharge amount shown in Tables 1 and 2 and cooled using a cooling air flow at 25 ° C., and is then drawn by an ejector at a pressure described in Tables 1 and 2 to move the conveyor Deposited on top to form a web. The web was then subsequently partially heat bonded at the line speeds and pressure heat bond roll temperatures described in Tables 1 and 2.
The schematic of the apparatus used for manufacture of the nonwoven fabric above was shown in FIG.
 (実施例12~13)
 製造例1で得られたP3HB3HH(100重量部)に対して、結晶核剤であるペンタエリスリトール(日本合成化学社製のノイライザーP)1.5重量部と、滑剤であるエルカ酸アミド(日本精化社製のニュートロンS)0.5重量部と、滑剤であるベヘン酸アミド(ベヘニン酸アミド、日本精化社製のBNT-22H)0.5重量部とをドライブレンドし、東芝機械社製の2軸押出機(TEM26SS)を用いて130~160℃で溶融混錬してペレット化した。得られた当該ペレットを、スクリュー径20mmの1軸押出機で溶融し、ギアポンプで流量を調整し、表1に示すように、溶融紡糸温度170℃で、直径が0.3mmの紡糸孔を815個有する紡糸ダイスから表に記載の吐出量で押し出し、25℃の冷却空気流を用いて冷却した後、エジェクターにて表1に記載の圧力で延伸させ、移動するコンベヤ上に堆積させてウェブを形成した。その後、このウェブを引き続いて表1に記載のラインスピードと加圧熱接着ロール温度にて部分熱接着した。
 上記で不織布の製造に用いた装置の概略図を図1に示した。
(Examples 12 to 13)
To P3HB3HH (100 parts by weight) obtained in Production Example 1, 1.5 parts by weight of pentaerythritol (Neurizer P manufactured by Japan Synthetic Chemical Co., Ltd.), which is a crystal nucleating agent, and erucic acid amide (Nippon Seiyaku Co., Ltd.) as a lubricant. Dry blend of 0.5 parts by weight of Neutron S (manufactured by Chemical Industries, Ltd.) and 0.5 parts by weight of behenic acid amide (behenic acid amide, BNT-22H manufactured by Nippon Seika Co., Ltd.) as a lubricant The mixture was melt-kneaded at 130 to 160 ° C. and pelletized using a twin screw extruder (TEM 26 SS) manufactured by Toray Industries, Ltd. The obtained pellet is melted by a single screw extruder having a screw diameter of 20 mm, the flow rate is adjusted by a gear pump, and as shown in Table 1, the spinning holes having a diameter of 0.3 mm at a melt spinning temperature of 170 ° C. After discharging from the spinning die having individual pieces at a discharge rate described in the table and cooling using a cooling air flow of 25 ° C., it is drawn by an ejector at the pressure described in Table 1 and deposited on a moving conveyor to deposit the web. It formed. The web was then subsequently partially heat bonded at the line speeds and pressure heat bond roll temperatures described in Table 1.
The schematic of the apparatus used for manufacture of the nonwoven fabric above was shown in FIG.
 (不織布の成形性)
 実施例及び比較例において、コンベヤ上のウェブの収縮と加圧熱接着ロールへの張り付きの状態を目視評価することにより、下記基準で不織布の成形性(不織布の成形可否)を評価した。
 A(成形性が極めて良好):コンベヤ上での収縮と加圧熱接着ロールへの張り付きがなく、不織布が取れる。
 B(成形性が良好):コンベヤ上で少し収縮するが、加圧熱接着ロールに張り付いていなく、不織布が取れる。
 C(成形性が不良):コンベヤ上で収縮し、加圧熱接着ロールにも張り付いて、不織布が取れない。
(Formability of non-woven fabric)
In Examples and Comparative Examples, the formability of the non-woven fabric (presence or non-ability of non-woven fabric) was evaluated based on the following criteria by visually evaluating the shrinkage of the web on the conveyor and the state of sticking to the pressure thermal adhesive roll.
A (very good moldability): Non-shrinkage on the conveyor and sticking to the pressure heat bonding roll are not obtained, and a non-woven fabric can be taken.
B (good formability): Shrinks slightly on the conveyor, but does not stick to the pressure heat bonding roll, and a non-woven fabric can be taken.
C (improper formability): Shrinks on a conveyor, adheres to a pressure heat adhesive roll, and can not take off the non-woven fabric.
 (不織布の引張り伸び、引張り強度、引裂き強度)
 得られた不織布はJIS L 1096に基づき、MD方向(不織布が流れる方向)とCD方向(不織布が流れに対し、垂直方向)方向の5×30cmの試験片にカットし、引張試験機(島津製作所製「AUTOGRAPH AG2000A」)を用いて、試験速度100mm/分の条件にて破断伸び及び破断強度を5回測定し、平均化した値を引張伸び及び引張り強度とした。また、同規格に基づき、シングルタング法により引裂き強度を測定した。同じ大きさの試験片の短辺尾中央に短辺と直角に10cmの切れ目を入れ、引張り速度200cm/minにて引裂き強度を5回測定し、平均化した値を引裂き強度とした。
(Tensile elongation, tensile strength, tear strength of nonwoven fabric)
The obtained non-woven fabric is cut into 5 × 30 cm test pieces in the MD direction (the direction in which the non-woven fabric flows) and the CD direction (the direction in which the non-woven fabric flows) perpendicular to JIS L 1096, and a tensile tester (Shimadzu Corporation) The elongation at break and the breaking strength were measured five times under the conditions of a test speed of 100 mm / min, using “AUTOGRAPH AG2000A” manufactured by Akira, Ltd., and the averaged values were taken as the tensile elongation and the tensile strength. Moreover, based on the same standard, tear strength was measured by the single tongue method. A 10 cm cut was made in the center of the short side of the test piece of the same size at right angles to the short side, and the tear strength was measured five times at a tensile speed of 200 cm / min, and the averaged value was taken as the tear strength.
 (不織布の糸径と目付)
 得られた不織布はJIS L 1096に基づき、25×20cmの試験片にカットし、重さを測定し、面積当たりの重さを5回測定し、平均化した値を目付とした。不織布の光学顕微鏡の観察を行い、繊維の直径(糸径)を測定した。
(Yarn diameter and weight of nonwoven fabric)
The obtained non-woven fabric was cut into test pieces of 25 × 20 cm based on JIS L 1096, the weight was measured, the weight per area was measured 5 times, and the averaged value was taken as the fabric weight. The non-woven fabric was observed with an optical microscope to measure the diameter of the fibers (diameter of yarn).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から分かるように、実施例では、P3HAを含有する不織布の成形性が良好であり、樹脂成分として本質的にP3HAをのみを含む不織布を成形性良く作製することができた。 As can be seen from Table 1, in the examples, the moldability of the non-woven fabric containing P3HA was good, and a non-woven fabric essentially containing only P3HA as a resin component could be produced with good moldability.
 一方、表2から分かるように、工程Cにおける加圧熱接着処理温度がTc-45℃未満である比較例1及び3では、加圧熱接着ロールの温度が低いため、結晶化が不十分で、加圧熱接着ロールに不織布が付着してしまい、不織布を得ることができなかった。工程Cにおける加圧熱接着処理温度がTc+5℃より高い比較例2は、加圧熱接着ロールの温度が高温のため、樹脂が軟化して、不織布が加圧熱接着ロールに付着てしまい、不織布を得ることができなかった。 On the other hand, as can be seen from Table 2, in Comparative Examples 1 and 3 in which the pressure heat adhesion treatment temperature in step C is less than Tc-45 ° C., the temperature of the pressure heat adhesion roll is low, so crystallization is insufficient. The nonwoven fabric adhered to the pressure heat adhesive roll, and the nonwoven fabric could not be obtained. In Comparative Example 2 in which the pressure heat adhesion treatment temperature in step C is higher than Tc + 5 ° C., the temperature of the pressure heat adhesion roll is high, so the resin is softened and the non-woven fabric adheres to the pressure heat adhesion roll. Could not get.
a  繊維
b  ウェブ
c  不織布
1  紡糸口金
2  クエンチ
3  エジェクター
4  コンベヤ
5  仮止めロール
6  加圧熱接着ロール
7  巻取りロール
a Fiber b Web c Non-woven fabric 1 Spinneret 2 Quench 3 Ejector 4 Conveyor 5 Temporary fixing roll 6 Pressure heat bonding roll 7 Winding roll

Claims (11)

  1.  ポリ(3-ヒドロキシアルカノエート)を含む組成物を紡糸口金を用いて溶融紡糸し、繊維を得る工程Aと、
     工程Aにて得られた繊維をウェブ化してウェブを得る工程Bと、
     工程Bにて得られたウェブを加圧熱接着処理する工程Cとを含み、
     前記工程Cにおける加圧熱接着処理温度が、(Tc-45)℃以上、(Tc+5)℃以下[Tc:ポリ(3-ヒドロキシアルカノエート)の結晶化温度]であることを特徴とする不織布の製造方法。
    Melt spinning a composition containing poly (3-hydroxyalkanoate) using a spinneret to obtain fibers, A
    Step B: obtaining the web by converting the fibers obtained in step A into a web;
    Subjecting the web obtained in step B to pressure heat adhesion treatment step C,
    In the nonwoven fabric characterized in that the pressure heat adhesion treatment temperature in the step C is (Tc-45) ° C. or more and (Tc + 5) ° C. or less [Tc: crystallization temperature of poly (3-hydroxyalkanoate)] Production method.
  2.  前記加圧熱接着処理温度が(Tc-40)℃以上、(Tc+0)℃以下である請求項1に記載の不織布の製造方法。 The method for producing a non-woven fabric according to claim 1, wherein the pressure heat adhesion treatment temperature is (Tc-40) ° C or more and (Tc + 0) ° C or less.
  3.  工程Aにおける紡糸口金からの単孔あたりの前記組成物の吐出量が0.2~1.2g/分である請求項1又は2に記載の不織布の製造方法。 The method for producing a non-woven fabric according to claim 1 or 2, wherein the discharge amount of the composition per single hole from the spinneret in step A is 0.2 to 1.2 g / min.
  4.  工程Aにおける紡糸口金からの単孔あたりの前記組成物の吐出量が0.2~0.7g/分である請求項3に記載の不織布の製造方法。 The method for producing a non-woven fabric according to claim 3, wherein the discharge amount of the composition per single hole from the spinneret in step A is 0.2 to 0.7 g / min.
  5.  工程Bにおけるウェブ化をスパンボンド法により実施する請求項1~4のいずれか1項に記載の不織布の製造方法。 The method for producing a nonwoven fabric according to any one of claims 1 to 4, wherein the web formation in step B is carried out by a spun bond method.
  6.  工程Aにおける溶融紡糸温度が145~190℃である請求項1~5のいずれか1項に記載の不織布の製造方法。 The method for producing a nonwoven fabric according to any one of claims 1 to 5, wherein the melt spinning temperature in step A is 145 to 190 ° C.
  7.  前記組成物がさらに結晶核剤を含有する請求項1~6のいずれか1項に記載の不織布の製造方法。 The method for producing a non-woven fabric according to any one of claims 1 to 6, wherein the composition further contains a crystal nucleating agent.
  8.  前記結晶核剤の含有量が、ポリ(3-ヒドロキシアルカノエート)100重量部に対して0.05~12重量部である請求項7に記載の不織布の製造方法。 The method for producing a nonwoven fabric according to claim 7, wherein a content of the crystal nucleating agent is 0.05 to 12 parts by weight with respect to 100 parts by weight of poly (3-hydroxyalkanoate).
  9.  前記組成物がさらに滑剤を含有する請求項1~8のいずれか1項に記載の不織布の製造方法。 The method for producing a non-woven fabric according to any one of claims 1 to 8, wherein the composition further contains a lubricant.
  10.  前記滑剤の含有量が、ポリ(3-ヒドロキシアルカノエート)100重量部に対して0.05~12重量部である請求項9に記載の不織布の製造方法。 The method for producing a non-woven fabric according to claim 9, wherein the content of the lubricant is 0.05 to 12 parts by weight with respect to 100 parts by weight of poly (3-hydroxyalkanoate).
  11.  前記ポリ(3-ヒドロキシアルカノエート)が、ポリ(3-ヒドロキシブチレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)及びポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)からなる群より選択される少なくとも1種である請求項1~10のいずれか1項に記載の不織布の製造方法。 The poly (3-hydroxyalkanoate) is poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxybutyrate-co-3-hydroxy) The compound according to any one of claims 1 to 10, which is at least one selected from the group consisting of hexanoate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate). The manufacturing method of the nonwoven fabric of a statement.
PCT/JP2019/001514 2018-01-22 2019-01-18 Method for producing nonwoven fabric WO2019142920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019566532A JP7222923B2 (en) 2018-01-22 2019-01-18 Nonwoven fabric manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-007993 2018-01-22
JP2018007993 2018-01-22

Publications (1)

Publication Number Publication Date
WO2019142920A1 true WO2019142920A1 (en) 2019-07-25

Family

ID=67301990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001514 WO2019142920A1 (en) 2018-01-22 2019-01-18 Method for producing nonwoven fabric

Country Status (2)

Country Link
JP (1) JP7222923B2 (en)
WO (1) WO2019142920A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111561030A (en) * 2020-05-18 2020-08-21 河北宝峰商贸有限公司 Corn fiber kitchen filter screen
WO2023106230A1 (en) * 2021-12-06 2023-06-15 株式会社カネカ Melt-blown nonwoven fabric, method for producing same, multilayer body, filter for masks, and mask
WO2023157915A1 (en) * 2022-02-17 2023-08-24 株式会社カネカ Biodegradable nonwoven fabric and manufacturing method therefor
WO2023167245A1 (en) * 2022-03-04 2023-09-07 株式会社カネカ Multifilament and method for producing same
WO2023171256A1 (en) * 2022-03-11 2023-09-14 株式会社カネカ Mask, method for producing same, and multilayer structure
WO2024005145A1 (en) * 2022-06-30 2024-01-04 株式会社カネカ Nonwoven fabric and production method therefor
WO2024048250A1 (en) * 2022-08-29 2024-03-07 株式会社カネカ Pile fabric and manufacturing method therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325916A (en) * 1995-05-30 1996-12-10 Unitika Ltd Biodegradable nonwoven fabric of long fiber and its production
JP2002129459A (en) * 2000-10-23 2002-05-09 Unitika Ltd Biodegradable nonwoven fabric and method for producing the same
JP2002532618A (en) * 1998-12-21 2002-10-02 ザ プロクター アンド ギャンブル カンパニー Plastic products containing biodegradable PHA copolymer
JP2004031460A (en) * 2002-06-21 2004-01-29 Technologue:Kk Light quantity measuring method and light quantity measurement device of light emitting diode
JP2013124424A (en) * 2011-12-14 2013-06-24 Kureha Corp Antibacterial nonwoven fabric formed of biodegradable aliphatic polyester fiber and antibacterial method
WO2014068943A1 (en) * 2012-10-29 2014-05-08 株式会社カネカ Aliphatic polyester resin composition and molded body containing aliphatic polyester resin composition
WO2017122679A1 (en) * 2016-01-12 2017-07-20 国立大学法人東京工業大学 Biodegradable aliphatic polyester-based fiber and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329350B2 (en) * 1992-11-11 2002-09-30 三井化学株式会社 Degradable nonwoven fabric and method for producing the same
US5780368A (en) * 1994-01-28 1998-07-14 Noda; Isao Spray processes using a gaseous flow for preparing biodegradable fibrils, nonwoven fabrics comprising biodegradable fibrils, and articles comprising such nonwoven fabrics
JP2003513130A (en) 1999-10-28 2003-04-08 ザ プロクター アンド ギャンブル カンパニー Polymer products comprising flexible elastic biodegradable polyhydroxyalkanoate copolymer compositions and methods of making such polymer products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325916A (en) * 1995-05-30 1996-12-10 Unitika Ltd Biodegradable nonwoven fabric of long fiber and its production
JP2002532618A (en) * 1998-12-21 2002-10-02 ザ プロクター アンド ギャンブル カンパニー Plastic products containing biodegradable PHA copolymer
JP2002129459A (en) * 2000-10-23 2002-05-09 Unitika Ltd Biodegradable nonwoven fabric and method for producing the same
JP2004031460A (en) * 2002-06-21 2004-01-29 Technologue:Kk Light quantity measuring method and light quantity measurement device of light emitting diode
JP2013124424A (en) * 2011-12-14 2013-06-24 Kureha Corp Antibacterial nonwoven fabric formed of biodegradable aliphatic polyester fiber and antibacterial method
WO2014068943A1 (en) * 2012-10-29 2014-05-08 株式会社カネカ Aliphatic polyester resin composition and molded body containing aliphatic polyester resin composition
WO2017122679A1 (en) * 2016-01-12 2017-07-20 国立大学法人東京工業大学 Biodegradable aliphatic polyester-based fiber and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111561030A (en) * 2020-05-18 2020-08-21 河北宝峰商贸有限公司 Corn fiber kitchen filter screen
WO2023106230A1 (en) * 2021-12-06 2023-06-15 株式会社カネカ Melt-blown nonwoven fabric, method for producing same, multilayer body, filter for masks, and mask
WO2023157915A1 (en) * 2022-02-17 2023-08-24 株式会社カネカ Biodegradable nonwoven fabric and manufacturing method therefor
WO2023167245A1 (en) * 2022-03-04 2023-09-07 株式会社カネカ Multifilament and method for producing same
WO2023171256A1 (en) * 2022-03-11 2023-09-14 株式会社カネカ Mask, method for producing same, and multilayer structure
WO2024005145A1 (en) * 2022-06-30 2024-01-04 株式会社カネカ Nonwoven fabric and production method therefor
WO2024048250A1 (en) * 2022-08-29 2024-03-07 株式会社カネカ Pile fabric and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2019142920A1 (en) 2021-01-28
JP7222923B2 (en) 2023-02-15

Similar Documents

Publication Publication Date Title
WO2019142920A1 (en) Method for producing nonwoven fabric
US10760183B2 (en) Biodegradable aliphatic polyester fiber and method for producing the same
JP6273627B2 (en) Polyester resin composition and molded article containing the resin composition
JP4562316B2 (en) Biodegradable fiber and method for producing the same
JP6473417B2 (en) Aliphatic polyester resin composition and aliphatic polyester resin molding
JP5924623B2 (en) Biodegradable polyester fiber excellent in thermal stability and strength and method for producing the same
EP0104731A2 (en) 3-Hydroxybutyrate polymers
WO2021206154A1 (en) Method for producing aliphatic polyester fiber, aliphatic polyester fiber, and multifilament
JP6592862B2 (en) Polyester fiber
WO2014068943A1 (en) Aliphatic polyester resin composition and molded body containing aliphatic polyester resin composition
FI108460B (en) Process for preparing a film of a polyhydroxyalkanoate polymer
JP6291488B2 (en) Polyester resin composition and molded article containing the resin composition
US20170198136A1 (en) Polyester resin composition, molded article formed from such resin composition, and method for manufacturing such molded article
JP2022114186A (en) Biodegradable staple fiber nonwoven fabric
JP7289475B2 (en) Method for producing biodegradable fiber
JP6675612B2 (en) Method for producing biodegradable fiber
JP2003328231A (en) Polyhydroxyalkanoic acid fiber having high strength and modulus and method for producing the same
WO2023106231A1 (en) Melt-blown nonwoven fabric and method for manufacturing same
WO2023167245A1 (en) Multifilament and method for producing same
CN117802595A (en) Polyhydroxyalkanoate monofilament and continuous preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19741071

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19741071

Country of ref document: EP

Kind code of ref document: A1