WO2024005145A1 - Nonwoven fabric and production method therefor - Google Patents

Nonwoven fabric and production method therefor Download PDF

Info

Publication number
WO2024005145A1
WO2024005145A1 PCT/JP2023/024191 JP2023024191W WO2024005145A1 WO 2024005145 A1 WO2024005145 A1 WO 2024005145A1 JP 2023024191 W JP2023024191 W JP 2023024191W WO 2024005145 A1 WO2024005145 A1 WO 2024005145A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
poly
hydroxyalkanoate
resin
yarn
Prior art date
Application number
PCT/JP2023/024191
Other languages
French (fr)
Japanese (ja)
Inventor
仁志 島本
貴幸 宮本
武和 前田
正信 田村
俊介 大谷
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024005145A1 publication Critical patent/WO2024005145A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters

Definitions

  • the present invention relates to a nonwoven fabric and a method for manufacturing the same.
  • Nonwoven fabrics are used, for example, as base materials for various products (eg, masks, filters, disposable diapers, sanitary napkins, taping materials, patches, wrapping bags, gloves, clothing, etc.).
  • fibers of the nonwoven fabric fibers containing poly(3-hydroxyalkanoate) resin, which is a biodegradable resin, are used from the viewpoint of suppressing the burden on the global environment (for example, Patent Document 1).
  • nonwoven fabrics are required to be resistant to tearing, sufficient studies have not been made on nonwoven fabrics that are resistant to tearing.
  • an object of the present invention is to provide a nonwoven fabric that is hard to tear.
  • the first aspect of the present invention is a nonwoven fabric containing fibers,
  • the fiber is formed from a resin composition containing a poly(3-hydroxyalkanoate) resin,
  • the poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
  • the content ratio of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more and 92.0 mol% or less
  • the nonwoven fabric has a tensile elongation at break in the MD direction of 100% or more
  • the present invention relates to a nonwoven fabric having a tensile elongation at break in the CD direction of the nonwoven fabric of 100% or more.
  • the second aspect of the present invention is a method for producing a nonwoven fabric, which includes producing a nonwoven fabric containing fibers using a nozzle having a nozzle hole. a step (A) of obtaining a raw yarn by discharging the melt from the nozzle hole; and a step (B) of stretching the yarn,
  • the melt contains a poly(3-hydroxyalkanoate) resin
  • the poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units, The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less
  • the present invention relates to a method for producing a meltblown nonwoven fabric, wherein the ratio of the opening area of the nozzle holes to the cross-sectional area of the fibers is 300 or more.
  • the third aspect of the present invention is a method for producing a nonwoven fabric, which includes producing a nonwoven fabric containing fibers using a nozzle having a nozzle hole. a step (A) of obtaining a raw yarn by discharging the melt from the nozzle hole; and a step (B) of stretching the yarn,
  • the raw material composition contains a poly(3-hydroxyalkanoate) resin
  • the poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units, The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less
  • the present invention relates to a method for producing a spunbond nonwoven fabric, wherein the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 150 or more.
  • a tear-resistant nonwoven fabric can be provided.
  • a schematic diagram of a nonwoven fabric manufacturing device A schematic perspective view of a nozzle. A schematic cross-sectional view of a nozzle hole and a conveyor belt. Photographs of the two first specimens. Photo of mask.
  • the nonwoven fabric according to this embodiment includes fibers.
  • the fibers are made of a resin composition containing a poly(3-hydroxyalkanoate) resin.
  • the poly(3-hydroxyalkanoate) resin includes a copolymer having 3-hydroxybutyrate units.
  • the content ratio of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more and 92.0 mol% or less.
  • the tensile elongation at break in the MD direction of the nonwoven fabric is 100% or more.
  • the nonwoven fabric has a tensile elongation at break in the CD direction of 100% or more.
  • the resin composition contains a polymer component. Moreover, the resin composition may further contain an additive.
  • the polymer component contains a poly(3-hydroxyalkanoate) resin.
  • the polymer component may contain other polymers in addition to the poly(3-hydroxyalkanoate) resin.
  • the poly(3-hydroxyalkanoate) resin is a polyester containing 3-hydroxyalkanoic acid as a monomer. That is, the poly(3-hydroxyalkanoate) resin is a resin containing 3-hydroxyalkanoic acid as a structural unit. Further, the poly(3-hydroxyalkanoate) resin is a biodegradable polymer.
  • biodegradability in this embodiment refers to a property that can be decomposed into low molecular weight compounds by microorganisms in the natural world. Specifically, we use ISO 14855 (compost) and ISO 14851 (activated sludge) for aerobic conditions, and ISO 14853 (aqueous phase) and ISO 15985 (solid phase) for anaerobic conditions. The presence or absence of degradability can be determined. Furthermore, the degradability of microorganisms in seawater can be evaluated by measuring biochemical oxygen demand.
  • the poly(3-hydroxyalkanoate) resin includes a copolymer having 3-hydroxybutyrate units.
  • monomer units other than 3-hydroxybutyrate units include, for example, hydroxyalkanoate units other than 3-hydroxybutyrate units.
  • hydroxyalkanoate units other than 3-hydroxybutyrate units include 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxyoctadecanoate, 3-hydroxyvalerate, and 4-hydroxybutyrate. Examples include.
  • Copolymers having 3-hydroxybutyrate units include P3HB3HH, P3HB3HV, P3HB4HB, poly(3-hydroxybutyrate-co-3-hydroxyoctanoate), poly(3-hydroxybutyrate-co-3- Hydroxyoctadecanoate) and the like.
  • P3HB3HH means poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • P3HB3HV means poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
  • P3HB4HB means poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
  • the poly(3-hydroxyalkanoate) resin may contain only one type of copolymer having 3-hydroxybutyrate units, or may contain two or more types. As the copolymer having 3-hydroxybutyrate units, P3HB3HH is preferred.
  • the resin composition preferably contains a copolymer having 3-hydroxybutyrate units in an amount of 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
  • the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more and 92.0 mol% or less, preferably 80.0 mol% or more. It is 92.0 mol % or less, more preferably 82.0 mol or more and 92.0 mol or less, still more preferably 85.0 mol or more and 91.6 mol or less.
  • the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more, the rigidity of the fiber becomes high.
  • the nonwoven fabric according to the present embodiment becomes difficult to tear. Further, since the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 92.0 mol% or less, the nonwoven fabric according to the present embodiment does not have fuzz. Less likely to occur.
  • the content ratio of the 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is the same as that of the 3-hydroxybutyrate unit in the entire poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric. It means the content ratio of 3-hydroxybutyrate units.
  • the first reaction solution containing methyl ester, which is a decomposition product of poly(3-hydroxyalkanoate)-based resin, is obtained by sealing the sample and heating the sample at 100° C. for 140 minutes in the sealed state.
  • the first reaction liquid is cooled, 1.5 g of sodium hydrogen carbonate is added little by little to the cooled first reaction liquid to neutralize it, and the second reaction liquid is left to stand until the generation of carbon dioxide gas stops.
  • a reaction solution is obtained.
  • a mixture is obtained by thoroughly mixing the second reaction solution and 4 mL of diisopropyl ether. Next, the mixture is centrifuged to obtain a supernatant. Then, the content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate)-based resin is determined by analyzing the monomer unit composition of the decomposed product in the supernatant liquid by capillary gas chromatography under the following conditions. .
  • the content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition is determined by It may also be the content ratio of 3-hydroxybutyrate units in the (3-hydroxyalkanoate)-based resin.
  • the content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition is determined by using the dried poly(3-hydroxyalkanoate) resin of the raw material composition, It can be determined in the same manner as the above-mentioned "content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric.”
  • the poly(3-hydroxyalkanoate) resin has a content of 3-hydroxybutyrate units of 76 mol% or less. It is preferable to include the following components.
  • the content of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin component is 0 to 76 mol%, preferably 1 to 76 mol%, and more preferably 50 to 76 mol%.
  • Examples of the poly(3-hydroxyalkanoate) resin component include poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), etc. is preferred.
  • MIBK fractionation method The fact that the poly(3-hydroxyalkanoate)-based resin contains the poly(3-hydroxyalkanoate)-based resin component can be achieved by, for example, a solvent fractionation method using the difference in solubility in methyl isobutyl ketone (MIBK). (Also referred to as "MIBK fractionation method.") That is, poly(3-hydroxyalkanoate)-based resin is fractionated into an MIBK-soluble fraction and an MIBK-insoluble fraction by the MIBK fractionation method, and the content ratio of 3-hydroxybutyrate units in either fraction is 76. If the amount is mol % or less, it can be confirmed that the poly(3-hydroxyalkanoate)-based resin contains the poly(3-hydroxyalkanoate)-based resin component.
  • MIBK fractionation method a solvent fractionation method using the difference in solubility in methyl isobutyl ketone
  • the specific fractionation procedure is described below. First, measure approximately 100 mg of poly(3-hydroxyalkanoate) resin into a screw cap test tube, add 10 ml of MIBK, and close the cap. Thereafter, the mixture is heated at 140° C. for about 1 to 3 hours with shaking to completely dissolve the poly(3-hydroxyalkanoate) resin. After complete dissolution, leave the solution at 25° C. for 1 minute to lower the temperature below the boiling point, immediately transfer all the dissolved solution to a pre-weighed centrifuge tube, and close the cap. The capped centrifuge tube is left at 25° C. for an additional 15 minutes to precipitate a portion of the lysate.
  • the precipitate and the solution are separated by centrifugation (9000 rpm, 5 minutes), and all the solution is transferred to an aluminum cup whose weight has been measured in advance.
  • the aluminum cup is heated at 120° C. for 30 minutes to volatilize MIBK and precipitate the melt. Further, the precipitate remaining in the aluminum cup and the precipitate remaining in the centrifuge tube are each vacuum-dried at 100° C. for 6 hours.
  • the precipitate remaining in the aluminum cup is weighed as the MIBK-soluble fraction, and the precipitate remaining in the centrifuge tube is weighed as the MIBK-insoluble fraction. Confirm that the difference between the total weight of the MIBK soluble fraction and the MIBK insoluble fraction and the initially measured weight of the poly(3-hydroxyalkanoate) resin is within ⁇ 3%.
  • the content ratio of 3-hydroxybutyrate units in each of the MIBK soluble fraction and MIBK insoluble fraction can be measured by the method described above.
  • the content of 3-hydroxybutyrate units in either the MIBK-soluble fraction or the MIBK-insoluble fraction is preferably 0 to 76 mol%, more preferably 1 to 76 mol%, and still more preferably 50 to 76 mol%. It is 76 mol%.
  • poly(3-hydroxyalkanoate) resins other than copolymers having 3-hydroxybutyrate units examples include P3HB, poly(3-hydroxyvalerate), poly(3-hydroxyhexanoate), etc. Can be mentioned.
  • P3HB means poly(3-hydroxybutyrate) which is a homopolymer.
  • P3HB has a function of promoting crystallization of P3HB itself and poly(3-hydroxyalkanoate) resins other than P3HB.
  • the other polymer is biodegradable.
  • biodegradable polymers examples include polycaprolactone, polylactic acid, polybutylene succinate, polybutylene succinate adipate, polybutylene adipate terephthalate, polyethylene succinate, polyvinyl alcohol, polyglycolic acid, unmodified starch, Examples include modified starch, cellulose acetate, chitosan, and the like.
  • the polycaprolactone is a polymer obtained by ring-opening polymerization of ⁇ -caprolactone.
  • the resin composition may contain one type of other polymer, or may contain two or more types of other polymers.
  • the nonwoven fabric according to this embodiment contains a biodegradable polymer, even if the nonwoven fabric is discarded in the environment, it is easily decomposed in the environment, so that the load on the environment can be suppressed. .
  • the resin composition may further contain an additive.
  • additives include crystal nucleating agents, lubricants, stabilizers (antioxidants, ultraviolet absorbers, etc.), colorants (dyes, pigments, etc.), plasticizers, inorganic fillers, organic fillers, antistatic agents, etc. can be mentioned.
  • the resin composition preferably contains a crystal nucleating agent as an additive.
  • the crystal nucleating agent is a compound that can promote crystallization of poly(3-hydroxyalkanoate) resin. Further, the crystal nucleating agent has a higher melting point than the poly(3-hydroxyalkanoate) resin.
  • crystal nucleating agent examples include inorganic substances (e.g., boron nitride, titanium oxide, talc, layered silicates, calcium carbonate, sodium chloride, metal phosphates, etc.); sugar alcohol compounds derived from natural products (e.g., pentane, etc.); Erythritol, erythritol, galactitol, mannitol, arabitol, etc.); polyvinyl alcohol; chitin; chitosan; polyethylene oxide; aliphatic carboxylate; aliphatic alcohol; aliphatic carboxylic acid ester; dicarboxylic acid derivative (e.g.
  • inorganic substances e.g., boron nitride, titanium oxide, talc, layered silicates, calcium carbonate, sodium chloride, metal phosphates, etc.
  • sugar alcohol compounds derived from natural products e.g., pentane, etc.
  • sorbitol derivatives e.g., (bisbenzylidene sorbitol, bis(p-methylbenzylidene) sorbitol, etc.
  • Compounds containing a nitrogen-containing heteroaromatic nucleus e.g., pyridine ring, triazine ring, imidazole ring, etc.
  • Phosphoric acid Examples include ester compounds; bisamides of higher fatty acids; metal salts of higher fatty acids; and branched polylactic acids. Note that P3HB, which is the poly
  • the crystal nucleating agent from the viewpoint of improving the crystallization rate of the poly(3-hydroxyalkanoate)-based resin, and from the viewpoint of compatibility and affinity with the poly(3-hydroxyalkanoate)-based resin, Sugar alcohol compounds, polyvinyl alcohol, chitin, and chitosan are preferred. Furthermore, among the sugar alcohol compounds, pentaerythritol is preferred.
  • the crystal nucleating agent preferably has a crystal structure at room temperature (25° C.). Since the crystal nucleating agent has a crystal structure at room temperature (25° C.), there is an advantage that crystallization of the poly(3-hydroxyalkanoate) resin is further promoted. Further, the crystal nucleating agent having a crystal structure at room temperature (25°C) is preferably in a powder form at room temperature (25°C). Furthermore, the average particle diameter of the crystal nucleating agent that is in powder form at room temperature (25° C.) is preferably 10 ⁇ m or less.
  • the resin composition preferably contains 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and still more preferably 0. Contains .5 parts by mass or more.
  • the resin composition contains 0.1 parts by mass or more of a crystal nucleating agent based on 100 parts by mass of poly(3-hydroxyalkanoate) resin, poly(3-hydroxyalkanoate) can be used when producing a nonwoven fabric. ) has the advantage that the crystallization of the resin is more easily promoted.
  • the resin composition preferably contains a crystal nucleating agent at 2.5 parts by mass or less, more preferably at most 2.0 parts by mass, based on 100 parts by mass of the poly(3-hydroxyalkanoate) resin.
  • the resin composition contains 2.5 parts by mass or less of a crystal nucleating agent per 100 parts by mass of poly(3-hydroxyalkanoate) resin, the advantage is that fibers can be easily obtained when producing a nonwoven fabric.
  • P3HB is a poly(3-hydroxyalkanoate)-based resin and can also function as a crystal nucleating agent
  • the amount of P3HB is It is included in both the amount of the hydroxyalkanoate (hydroxyalkanoate) resin and the amount of the crystal nucleating agent.
  • the resin composition contains the lubricant.
  • the presence of a lubricant in the fibers improves the lubricity of the fibers, making it possible to suppress fusion between the fibers.
  • the resin composition does not contain a lubricant or contains a very small amount of a lubricant, there are advantages such as improved tape adhesion of the nonwoven fabric and ease of handling in the process of manufacturing the nonwoven fabric. be.
  • a lubricant include compounds having an amide bond.
  • the compound having an amide bond preferably contains one or more selected from lauric acid amide, myristic acid amide, stearic acid amide, behenic acid amide, and erucic acid amide.
  • the content of the lubricant in the resin composition is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and even more preferably 0.5 parts by mass or more, based on 100 parts by mass of the polymer component.
  • the content of the lubricant in the resin composition is 0.05 parts by mass or more per 100 parts by mass of the polymer component, there is an advantage that fusion between fibers can be further suppressed when producing a nonwoven fabric. be.
  • the content of the lubricant in the resin composition is 0 to 0.2 parts by mass based on 100 parts by mass of the polymer component, the tape adhesion of the nonwoven fabric improves, making it easier to handle during the manufacturing process of the nonwoven fabric.
  • the content of the lubricant in the resin composition is preferably 12 parts by mass or less, more preferably 10 parts by mass or less, even more preferably 8 parts by mass or less, and most preferably 5 parts by mass or less, based on 100 parts by mass of the polymer component. .
  • the content of the lubricant in the resin composition is 12 parts by mass or less per 100 parts by mass of the polymer component, there is an advantage that the lubricant can be prevented from bleeding out onto the surface of the fibers.
  • the melt mass flow rate (MFR) of the resin composition at 165° C. is preferably 20 to 1500 g/10 min, more preferably 30 to 1500 g/10 min, even more preferably 40 to 1300 g/10 min, particularly preferably 50 to 1200 g/10 min. It is 10 minutes.
  • the melt mass flow rate at 165° C. of the resin composition in the fiber is 1500 g/10 min or less, the strength and elongation of the nonwoven fabric are increased.
  • the tension applied to the raw yarn (the “raw yarn” will be described later) can be lowered when the yarn is drawn. This makes it easier to reduce the fiber diameter of the fibers in the resulting nonwoven fabric. As a result, it becomes easier to increase the efficiency of particle collection by the nonwoven fabric. Further, since the melt mass flow rate at 165° C.
  • the productivity of nonwoven fabrics is improved.
  • the melt mass flow rate at 165° C. of the resin composition in the fiber is 20 g/10 min or more, the nozzle hole of the nozzle (the “nozzle hole” will be described later) is used when producing the nonwoven fabric. ) clogging can be suppressed. As a result, the productivity of nonwoven fabrics is improved.
  • melt mass flow rate (MFR) of the resin composition at 165°C the melt volume flow rate (MFR) of the resin composition at 165°C is determined by method B of ASTM-D1238 (ISO1133-1, JIS K7210-1:2011).
  • the melt mass flow rate (MFR) of the resin composition at 165°C is determined from the melt volume flow rate (MVR) of the resin composition at 165°C and the density of the resin composition. Further, the melt volume flow rate (MVR) at 165° C. of the resin composition is measured by heating 5 g or more of the resin composition at 165° C. for 4 minutes, and then applying a load of 5 kg to the heated resin composition.
  • the weight average molecular weight of the resin composition is preferably 50,000 to 350,000, more preferably 70,000 to 300,000, even more preferably 80,000 to 250,000, particularly preferably 150,000 to 250. ,000.
  • the weight average molecular weight of the resin composition in the fiber is 50,000 or more
  • the strength and elongation of the nonwoven fabric are increased.
  • the weight average molecular weight of the resin composition in the fiber is 150,000 or more
  • the nonwoven fabric becomes even more difficult to tear.
  • the weight average molecular weight of the resin composition in the fiber is 350,000 or less
  • the tension applied to the yarn during drawing can be lowered, making it easier to reduce the fiber diameter of the fibers in the resulting nonwoven fabric. As a result, it becomes easier to increase the efficiency of particle collection by the nonwoven fabric.
  • the weight average molecular weight of the resin composition in the fiber is 350,000 or less, it is possible to suppress the formation of lumps of polymer components when producing a nonwoven fabric.
  • the productivity of nonwoven fabrics is improved. Furthermore, since the weight average molecular weight of the resin composition in the fiber is 350,000 or less, the nozzle hole of the nozzle (the "nozzle hole" will be described later) is prevented from clogging when producing a nonwoven fabric. It can be suppressed. As a result, the productivity of nonwoven fabrics is improved.
  • the weight average molecular weight in this embodiment is measured from polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using a chloroform eluent.
  • GPC gel permeation chromatography
  • a column in the GPC a column suitable for measuring the molecular weight may be used.
  • the average fiber diameter of the fibers is preferably 30.0 ⁇ m or less, more preferably 25.0 ⁇ m or less, even more preferably 20.0 ⁇ m or less, even more preferably 0.50 to 20.0 ⁇ m, particularly preferably 0.0 ⁇ m or less. It is 80 to 15.0 ⁇ m, most preferably 1.0 to 15.0 ⁇ m.
  • the coefficient of variation of the fiber diameter of the fiber is preferably 0.40 or less, more preferably 0.36 or less, and even more preferably 0.32 or less. Further, the coefficient of variation of the fiber diameter of the fiber is, for example, 0.10 or more.
  • the efficiency of particle collection by the nonwoven fabric increases. Further, by setting the average fiber diameter of the fibers to 20.0 ⁇ m or less, the stiffness of the fibers can be lowered, and as a result, the texture (for example, texture, touch, etc.) of the nonwoven fabric is improved.
  • the average fiber diameter of the fibers is 0.50 ⁇ m or more, the strength and elongation of the nonwoven fabric are increased.
  • the coefficient of variation of the fiber diameter of the fibers is 0.40 or less, the number of extremely thick fibers is reduced, and as a result, the efficiency of particle collection by the nonwoven fabric is increased. Further, since the coefficient of variation of the fiber diameter of the fibers is 0.40 or less, the number of extremely thin fibers is reduced, and as a result, the strength and elongation of the nonwoven fabric are increased.
  • the basis weight of the nonwoven fabric according to this embodiment is preferably 20 to 150 g/m 2 , more preferably 30 to 140 g/m 2 , and still more preferably 40 to 120 g/m 2 .
  • the basis weight of the nonwoven fabric according to this embodiment is 20 g/m 2 or more, the strength and elongation of the nonwoven fabric are increased.
  • the nonwoven fabric according to the present embodiment has a basis weight of 20 g/m 2 or more, the particle collection efficiency of the nonwoven fabric increases. Further, by setting the basis weight of the nonwoven fabric according to the present embodiment to 150 g/m 2 or less, liquid permeability (water permeability, etc.) or air permeability can be improved.
  • the basis weight of the nonwoven fabric according to this embodiment can be determined as follows. First, a test piece is obtained from the nonwoven fabric according to this embodiment. The size of the test piece can be, for example, 100 mm x 100 mm, 200 mm x 200 mm, etc. Next, the weight of the test piece is measured using an electronic balance or the like. Then, the basis weight is calculated by dividing the weight of the test piece by the area of the test piece.
  • the thickness of the nonwoven fabric according to this embodiment is preferably 0.10 to 0.80 mm, more preferably 0.15 to 0.60 mm. Since the thickness of the nonwoven fabric according to this embodiment is 0.10 to 0.80 mm, it becomes easier to obtain a homogeneous nonwoven fabric when producing the nonwoven fabric. Further, since the thickness of the nonwoven fabric according to this embodiment is 0.10 mm or more, the strength and elongation of the nonwoven fabric are increased. Further, since the thickness of the nonwoven fabric according to the present embodiment is 0.10 mm or more, the efficiency of collecting particles by the nonwoven fabric increases. Furthermore, since the thickness of the nonwoven fabric according to this embodiment is 0.80 mm or less, the liquid permeability (water permeability, etc.) or air permeability of the nonwoven fabric can be improved.
  • the thickness of the nonwoven fabric at three or more locations can be measured using a thickness meter, and the arithmetic mean value thereof can be taken as the thickness of the nonwoven fabric.
  • the thickness gauge include "PEACOCK” manufactured by Ozaki Seisakusho Co., Ltd.
  • the average pore diameter of the nonwoven fabric according to the present embodiment is preferably 2.5 ⁇ m or more and 30.0 ⁇ m or less, more preferably 3.0 ⁇ m or more and 25.0 ⁇ m or less, and still more preferably 3.0 ⁇ m or more and 20.0 ⁇ m or less.
  • the average pore diameter of the nonwoven fabric according to this embodiment is 2.5 ⁇ m or more, the liquid permeability (water permeability, etc.) or air permeability of the nonwoven fabric can be improved.
  • the average pore diameter of the nonwoven fabric according to this embodiment is 30.0 ⁇ m or less, the efficiency of particle collection by the nonwoven fabric increases.
  • the average pore diameter of the nonwoven fabric according to the present embodiment is the average flow pore diameter determined according to JIS K3832-1990 "Bubble point test method for microfiltration membrane elements and modules.”
  • the average flow pore diameter can be measured using, for example, a palm porometer (manufactured by PMI).
  • the tensile elongation at break in the MD direction of the nonwoven fabric according to the present embodiment (also simply referred to as "MD elongation") is 100% or more, preferably 120% or more, and more preferably 150% or more.
  • the MD elongation of the nonwoven fabric according to this embodiment is, for example, 800% or less.
  • the nonwoven fabric according to the present embodiment is difficult to tear even when stretched in the MD direction.
  • the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin By controlling the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin to 92.0 mol% or less, the MD elongation can be easily increased.
  • the tensile elongation at break in the CD direction (also simply referred to as "CD elongation") of the nonwoven fabric according to the present embodiment is 100% or more, preferably 120% or more, and more preferably 150% or more.
  • the CD elongation of the nonwoven fabric according to this embodiment is, for example, 800% or less.
  • the CD elongation is 100% or more, the nonwoven fabric according to the present embodiment is difficult to tear even when stretched in the CD direction.
  • the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin By controlling the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin to 92.0 mol% or less, the CD elongation can be easily increased.
  • the MD direction is a direction (Machine Direction) in which the nonwoven fabric moves when manufacturing the nonwoven fabric.
  • the CD direction is a direction perpendicular to the MD direction.
  • Tensile elongation at break is also called tensile elongation at break.
  • the ratio of the tensile elongation at break in the CD direction of the nonwoven fabric to the tensile elongation at break in the MD direction of the nonwoven fabric is preferably 0.50 to 2.00, more preferably It is 0.56 to 1.80. Since the CD elongation/MD elongation is 0.50 to 2.00, when stress is applied to the nonwoven fabric according to this embodiment, stress is applied only in either the CD direction or the MD direction. Concentration is suppressed, and as a result, the nonwoven fabric becomes difficult to tear.
  • the tensile elongation at break can be measured using a constant speed extension type tensile testing machine that complies with JIS B7721:2018 "Tensile testing machine/compression testing machine - Calibration method and verification method of force measurement system".
  • a constant speed extension type tensile testing machine a universal testing machine (RTG-1210 manufactured by A&D Co., Ltd.) or the like can be used.
  • the tensile elongation at break can be determined as follows. First, a test piece (width: 8 mm, length: 40 mm) is cut out from a nonwoven fabric.
  • the test piece is attached to a constant speed extension type tensile tester with an initial load at a grip interval of 20 mm.
  • the gripping interval when the initial load is applied to the test piece is 20 mm.
  • the test piece should be pulled by hand to the extent that no slack occurs.
  • a load is applied at a tensile speed of 20 mm/min until the test piece breaks.
  • the tensile elongation at break is determined using the following formula.
  • Tensile elongation at break (%) [(grabbing interval at break - gripping interval when the initial load is applied to the test piece) / gripping interval when the initial load is applied to the test piece] x 100 (%)
  • the 50% elongation recovery rate in the MD direction of the nonwoven fabric according to this embodiment is preferably 50% or more, more preferably 55% or more.
  • the 50% elongation recovery rate in the MD direction of the nonwoven fabric according to this embodiment is 100% or less, for example, 90% or less. Since the 50% elongation recovery rate in the MD direction of the nonwoven fabric according to the present embodiment is 50% or more, the nonwoven fabric according to the present embodiment has excellent stretchability in the MD direction.
  • the 50% elongation recovery rate in the CD direction of the nonwoven fabric according to this embodiment is preferably 50% or more, more preferably 55% or more.
  • the 50% elongation recovery rate in the CD direction of the nonwoven fabric according to this embodiment is 100% or less, for example, 90% or less. Since the nonwoven fabric according to the present embodiment has a 50% elongation recovery rate in the CD direction of 50% or more, the nonwoven fabric according to the present embodiment has excellent stretchability in the CD direction.
  • the 50% elongation recovery rate of the nonwoven fabric in the MD direction is 50% or more, and/or the 50% elongation recovery rate of the nonwoven fabric in the CD direction is 50% or more. Moreover, it is more preferable that the 50% elongation recovery rate of the nonwoven fabric in the MD direction is 50% or more, and the 50% elongation recovery rate of the nonwoven fabric in the CD direction is 50% or more.
  • the 50% elongation recovery rate is measured in accordance with JIS L1096:2010 "Fabric testing method for woven and knitted fabrics". Specifically, the 50% elongation recovery rate can be determined as follows. First, a test piece (width: 50 mm, length: 300 mm) is cut out from a nonwoven fabric. Next, the test piece is attached to a constant speed extension type tensile tester with an initial load and a grip interval of 200 mm. In other words, the gripping interval when the initial load is applied to the test piece is 200 mm. However, for the initial load, the test piece should be pulled by hand to the extent that no slack occurs.
  • 50% elongation recovery rate (%) [(grabbing interval at 50% elongation - gripping interval at which the load becomes 0 during unloading) / (grabbing interval at 50% elongation - when the initial load is applied to the test piece) Grasp interval)] x 100 (%)
  • the nonwoven fabric according to this embodiment is preferably a directly spun nonwoven fabric.
  • the direct-spinning nonwoven fabric means "a nonwoven fabric obtained by directly intertwining raw yarns obtained by melt spinning to form a sheet, and solidifying the raw yarns.” Note that "to directly intertwine the yarns to form a sheet” means “to intertwine the yarns to form a sheet before the yarns solidify.”
  • Examples of the directly spun nonwoven fabric include melt blown nonwoven fabric, spunbond nonwoven fabric, flash spun nonwoven fabric, and electrospun nonwoven fabric. Note that the concept of the melt-blown nonwoven fabric includes a nonwoven fabric obtained by the spun-blown (registered trademark) method.
  • the nonwoven fabric according to this embodiment is more preferably a meltblown nonwoven fabric or a spunbond nonwoven fabric, and even more preferably a meltblown nonwoven fabric.
  • the nonwoven fabric according to this embodiment can be suitably used as a base material for various products (e.g., masks, filters, disposable diapers, sanitary napkins, taping materials, patches, wrapping bags, gloves, clothing, etc.).
  • the base material is a concept that includes a reinforcing material.
  • the filters include removal filters (e.g., mask filters) that remove particles (e.g., particles with viruses and the like, pollen, etc.), blood filters that collect blood cells, and beverage extraction filters (e.g., coffee drip filters). filters, tea bags, etc.).
  • the nonwoven fabric according to this embodiment is particularly suitably used as a base material for an ear hook part of a mask or a reinforcing material for a mask.
  • the method for manufacturing a nonwoven fabric according to the present embodiment uses a nozzle having a nozzle hole to manufacture a nonwoven fabric containing fibers.
  • the method for manufacturing a nonwoven fabric according to the present embodiment includes a step (A) of obtaining a yarn by discharging a melt from the nozzle hole, and a step (B) of stretching the yarn.
  • the melt contains a poly(3-hydroxyalkanoate) resin.
  • the poly(3-hydroxyalkanoate) resin includes a copolymer having 3-hydroxybutyrate units.
  • the content of the 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less.
  • the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 300 or more.
  • the method for manufacturing a nonwoven fabric according to the present embodiment will be explained using, as an example, a method for obtaining a nonwoven fabric by a melt blown method.
  • the melt blown method is a concept that also includes the spun blown (registered trademark) method.
  • the melt is obtained from a raw material composition.
  • a raw material composition is melted by heating to obtain a melt, and the melt is discharged from the nozzle hole to obtain a yarn.
  • the melt mass flow rate (MFR) of the raw material composition at 165° C. is preferably 1.0 to 1500 g/10 min, more preferably 2.0 to 1000 g/10 min, even more preferably 5.0 to 1000 g/10 min, especially Preferably it is 10 to 800 g/10 min.
  • the melt mass flow rate at 165° C. of the raw material composition is 1500 g/10 min or less, the strength and elongation of the nonwoven fabric are further increased.
  • the tension applied to the yarn during stretching can be lowered, and the fiber diameter of the fibers in the resulting nonwoven fabric can be easily reduced. Become.
  • the efficiency of particle collection by the nonwoven fabric increases.
  • the melt mass flow rate at 165° C. of the raw material composition is 1.0 g/10 min or more, it is possible to suppress the formation of lumps of polymer components when producing a nonwoven fabric. As a result, the productivity of nonwoven fabrics is improved.
  • the melt mass flow rate at 165° C. of the raw material composition is 1.0 g/10 min or more, clogging of the nozzle hole of the nozzle can be suppressed when producing a nonwoven fabric. As a result, the productivity of nonwoven fabrics is improved.
  • melt mass flow rate (MFR) of the raw material composition at 165°C is determined by method B of ASTM-D1238 (ISO1133-1, JIS K7210-1:2011).
  • the melt mass flow rate (MFR) of the raw material composition at 165° C. is determined from the melt volume flow rate (MVR) of the raw material composition at 165° C. and the density of the raw material composition.
  • the melt volume flow rate (MVR) at 165° C. of the raw material composition is measured by heating 5 g or more of the raw material composition at 165° C. for 4 minutes, and then applying a load of 5 kg to the heated resin composition.
  • the weight average molecular weight of the raw material composition is preferably 100,000 to 550,000, more preferably 110,000 to 500,000, even more preferably 110,000 to 450,000, particularly preferably 200,000 to 450. ,000.
  • the weight average molecular weight of the raw material composition is 100,000 or more, the strength and elongation of the nonwoven fabric are increased. Furthermore, when the weight average molecular weight of the raw material composition is 200,000 or more, the nonwoven fabric becomes even more difficult to tear. When the weight average molecular weight of the raw material composition is 550,000 or less, the tension applied to the yarn during drawing can be lowered, making it easier to reduce the fiber diameter of the fibers in the resulting nonwoven fabric. As a result, the efficiency of particle collection by the nonwoven fabric increases. Moreover, since the weight average molecular weight of the raw material composition is 550,000 or less, the generation of lumps of polymer components can be suppressed when producing a nonwoven fabric. As a result, the productivity of nonwoven fabrics is improved. Moreover, since the weight average molecular weight of the raw material composition is 550,000 or less, clogging of the nozzle hole of the nozzle can be suppressed when producing the nonwoven fabric. As a result, the productivity of nonwoven fabrics is improved.
  • the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70.0 mol% or more and 92.0 mol% or less, preferably 80.0 mol%.
  • the content is 92.0 mol % or more, more preferably 82.0 mol or more and 92.0 mol % or less, even more preferably 85.0 mol or more and 91.6 mol % or less.
  • the content of the 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the melt is 70.0 mol % or more, the rigidity of the fiber becomes high.
  • the nonwoven fabric according to the present embodiment becomes difficult to tear. . Further, since the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin is 92.0 mol% or less, the nonwoven fabric according to the present embodiment is less likely to become fluffy.
  • the content ratio of the 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the melt is the same as the content of the 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric. It means the content ratio of the 3-hydroxybutyrate unit.
  • the content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the melt is determined by using the dried poly(3-hydroxyalkanoate) resin contained in the melt, It can be determined in the same manner as the above-mentioned "content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric.”
  • the content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition (the "raw material composition" will be described later) is determined by It may also be the content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin.
  • a nonwoven fabric is obtained from the raw material composition using a nonwoven fabric manufacturing apparatus.
  • the nonwoven fabric manufacturing apparatus 1 includes an extruder 3 that obtains a melt by melting a raw material composition, a hopper 2 that supplies the raw material composition to the extruder 3, and a hopper 2 that supplies the raw material composition to the extruder 3.
  • a kneader 6 that obtains a melted material in a kneaded state by kneading, a nozzle 7 that obtains a raw yarn by discharging the melt in the form of fibers, and a nozzle 7 that collects and cools the raw yarn.
  • a collection machine 8 for obtaining a first nonwoven fabric B, and a winding device 9 for winding up the first nonwoven fabric B are provided.
  • the nonwoven fabric manufacturing apparatus 1 may include a gear pump 4 for supplying the melt from the extruder 3 to the kneader 6, if necessary.
  • the gear pump 4 the nonwoven fabric manufacturing apparatus 1 can suppress fluctuations in the amount of melt supplied to the kneader 6.
  • the nonwoven fabric manufacturing apparatus 1 may include a filter 5 for removing foreign matter from the melt on the upstream side of the kneader 6, if necessary.
  • the raw material composition is supplied to the extruder 3 via the hopper 2, and the raw material composition is melted to obtain a melt.
  • the raw material composition supplied to the extruder 3 is preferably in the form of a solid, more preferably in the form of pellets.
  • the raw material composition supplied to the extruder 3 is heated and dried from the viewpoint of suppressing hydrolysis of the resin of the raw material composition and suppressing oxidative deterioration of the resin of the raw material composition.
  • the The amount of water in the raw material composition supplied to the extruder 3 is preferably 200 ppmw or less.
  • the atmosphere during drying is preferably an atmosphere of inert gas (eg, nitrogen gas, etc.).
  • the raw material composition may be dried before being supplied to the hopper 2, or the hopper 2 may be a hopper type dryer and the raw material composition may be dried in the hopper 2. Good too.
  • the extruder 3 examples include a single-screw extruder, a co-direction meshing twin-screw extruder, a co-direction non-meshing twin-screw extruder, a different-direction non-meshing twin-screw extruder, and a multi-screw extruder. It will be done.
  • a single-screw extruder is preferable from the viewpoints that thermal deterioration of the raw material composition during extrusion is easily suppressed due to the small resin retention part in the extruder, and from the viewpoint that equipment costs are low. .
  • the melt is supplied to the kneader 6 via the filter 5 by the gear pump 4, and the melt is kneaded by the kneader 6, thereby obtaining the melt in a kneaded state.
  • the filter 5 examples include a screen mesh, a pleated filter, a leaf disk filter, and the like.
  • a leaf disk type filter is preferable from the viewpoints of filtration accuracy, filtration area, and pressure resistance performance, and from the viewpoint of being less likely to be clogged by foreign matter.
  • a sintered nonwoven fabric of metal fibers can be used as the filter medium of the filter 5, for example.
  • the melt is discharged from the nozzle 7 in the form of fibers to obtain raw yarn.
  • the nozzle 7 is a spinning die head.
  • the nozzle 7 has a plurality of nozzle holes 7a from which raw yarn A is obtained by discharging the melt in the form of fibers. Then, as shown in FIG. 2, the nozzle 7 discharges a plurality of yarns A.
  • the nozzle 7 may have only one nozzle hole 7a. That is, the nozzle 7 may discharge only one yarn A.
  • the plurality of nozzle holes 7a are open downward.
  • the shape of the opening of the nozzle hole 7a is, for example, circular (a concept including circular, substantially circular, elliptical, and substantially elliptical).
  • the opening diameter of the nozzle hole 7a is appropriately selected depending on the fiber diameter of the fibers of the nonwoven fabric.
  • the opening diameter of the nozzle hole 7a is preferably 0.05 mm or more, more preferably 0.10 mm or more, and still more preferably 0.12 mm or more.
  • the opening diameter of the nozzle hole 7a is preferably 1.0 mm or less, more preferably 0.50 mm or less, still more preferably less than 0.30 mm, particularly preferably 0.25 mm or less.
  • the aperture diameter means the arithmetic mean value of the aperture diameters.
  • the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 300 or more, preferably 300 to 20,000, more preferably 400 to 20,000, still more preferably 500 to 15,000.
  • the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber serves as an index of the stretching ratio.
  • the cross-sectional area of the fiber can be determined from the average fiber diameter of the fiber, assuming that the cross-section of the fiber is circular.
  • the opening area of the nozzle hole means the average value of the opening area of the nozzle hole. Note that when the opening is circular, the opening area of the nozzle hole can be determined from the arithmetic mean value of the opening diameters.
  • a plurality of nozzle holes 7a are arranged in a row at intervals.
  • a plurality of nozzle holes 7a are lined up in one row.
  • the number of rows of the plurality of nozzle holes 7a may be two or more.
  • the melt blown method may be a spun blown (registered trademark) method.
  • the distance between adjacent nozzle holes 7a (hereinafter also referred to as "interval") is, for example, preferably 0.05 mm or more, more preferably 0.1 mm or more, and even more preferably 0.25 mm or more.
  • the distance (interval) between adjacent nozzle holes 7a is preferably 1.0 mm or less, more preferably 0.7 mm or less, and even more preferably 0.5 mm or less. Although the distances between adjacent nozzle holes 7a may or may not be equal, it is preferable that the distances be equal because it facilitates the production of a homogeneous nonwoven fabric.
  • the distance (interval) between adjacent nozzle holes 7a means the arithmetic average value of the distance (interval) between adjacent nozzle holes 7a.
  • the collector 8 has a collection surface that collects the yarn A.
  • the collector 8 is a conveyor.
  • the conveyor includes a conveyor belt 8a having the collection surface and a plurality of rollers 8b that drive the conveyor belt 8a.
  • the collection surface is arranged directly below the nozzle hole 7a.
  • the conveyor belt 8a has air permeability.
  • the conveyor belt 8a is made of a mesh material. That is, the collection surface has a mesh shape. Note that the collector 8 only needs to have a collector, and instead of the conveyor, it may be a collection drum or a collection net.
  • the distance between the nozzle hole 7a and the collection surface (hereinafter also referred to as "DCD") is preferably 20 mm or more, more preferably 50 mm or more, and still more preferably 80 mm or more. Further, the distance (DCD) between the nozzle hole 7a and the conveyor belt 8a serving as the collecting section is preferably 250 mm or less.
  • the distance (DCD) between the nozzle hole 7a and the collection surface means the arithmetic mean value of the distance (DCD) between the nozzle hole 7a and the collection surface.
  • the nonwoven fabric manufacturing apparatus 1 is configured to stretch the yarn A by spraying gas C onto the yarn A, as shown in FIG.
  • step (B) gas C is blown onto the yarn A, and the gas C blown onto the yarn A is passed through a mesh conveyor belt 8a.
  • the gas C blown onto the yarn A be sucked by a suction (not shown) so that the gas C can easily pass through the mesh conveyor belt 8a. This makes it easier to prevent the yarn from bouncing back on the collecting surface of the mesh-like conveyor belt 8a, and as a result, it becomes easier to form the first nonwoven fabric B in which the fibers are well fused together.
  • the air volume of the gas C blown onto the yarn A is preferably 500 NL/min or more, more preferably 1000 NL/min or more, and still more preferably 2000 NL/min or more. Moreover, the air volume of the gas C blown onto the yarn A is preferably 12,000 NL/min or less, more preferably 10,000 NL/min or less.
  • the gas C blown onto the yarn A is a high temperature gas.
  • the temperature of the gas C blown onto the yarn A is preferably 150°C to 195°C, more preferably 155°C to 190°C, even more preferably 160°C to 185°C.
  • Examples of the gas C include air and inert gas (nitrogen gas, etc.).
  • Examples of the method of spraying the high temperature gas C include a method of heating the gas C pressurized by a compressor (not shown) with a heater (not shown).
  • step (B) the temperature and air volume of gas C are appropriately controlled in order to obtain a nonwoven fabric with a high degree of crystallinity.
  • the drawn yarn A is collected by the conveyor belt 8a and cooled while being conveyed by the conveyor belt 8a, thereby obtaining the first nonwoven fabric B.
  • the material constituting the mesh-like collection surface has heat resistance against the temperature conditions related to the production of the first nonwoven fabric B, does not excessively fuse with the first nonwoven fabric B, and peels off the first nonwoven fabric B. There is no particular limitation as long as the material is possible.
  • the moving speed at which the first nonwoven fabric B is moved by the conveyor belt 8a (the moving speed of the conveyor belt 8a) is determined by taking into consideration the discharge amount of the raw material composition and the apparent density of the obtained first nonwoven fabric B. It will be decided as appropriate.
  • the moving speed is preferably within a range of 0.2 m/min or more and 6.0 m/min or less.
  • the first nonwoven fabric B is transferred to the winding device 9 using the conveyor belt 8a, and the first nonwoven fabric B is wound up into a roll by the winding device 9.
  • the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is increased by lowering the amount of melt per unit time discharged from the nozzle hole. be able to. Note that by lowering the rotational speed of the gear pump, the amount of melt discharged from the nozzle hole per unit time can be lowered.
  • the method for manufacturing a nonwoven fabric according to the present embodiment may include a step (C) of heating the first nonwoven fabric B obtained in the step (B) to obtain a second nonwoven fabric.
  • the second nonwoven fabric is the nonwoven fabric.
  • the method for manufacturing a nonwoven fabric according to the present embodiment does not include the step (C)
  • the first nonwoven fabric becomes the nonwoven fabric.
  • the nonwoven fabric has excellent elasticity through the step (C). Further, in the method for manufacturing a nonwoven fabric according to the present embodiment, the 50% elongation recovery rate in the CD direction of the nonwoven fabric and the 50% elongation recovery rate in the MD direction of the nonwoven fabric can be increased by the step (C). Furthermore, in the method for manufacturing a nonwoven fabric according to the present embodiment, the fibers are partially fused to each other in the step (C), and as a result, the fluffing of the nonwoven fabric can be easily suppressed.
  • the heating temperature range in step (C) is preferably 80°C to 135°C.
  • the range of heating time within the preferred heating temperature range in step (C) is preferably 2 to 300 minutes, more preferably 5 to 100 minutes, and even more preferably 10 to 50 minutes.
  • a 50% elongation recovery rate in the CD direction of the nonwoven fabric and a 50% elongation recovery rate in the MD direction of the nonwoven fabric are achieved. It can be further improved.
  • the productivity of the second nonwoven fabric is improved by heating the first nonwoven fabric within the preferable heating temperature range for 300 minutes or less.
  • the first nonwoven fabric may be heated with a gas within the preferable heating temperature range.
  • the gas include air and inert gas (nitrogen gas, etc.).
  • the method of heating the first nonwoven fabric with a gas within the preferable heating temperature range includes heating the first nonwoven fabric in a heating furnace with a gas within the preferable heating temperature range, and/or a preferable method. Examples include heating the first nonwoven fabric by spraying a gas within the heating temperature range onto the first nonwoven fabric.
  • the first nonwoven fabric may be heated within the preferable heating temperature range by sandwiching the first nonwoven fabric between a pair of heating rolls.
  • the step (C) it is preferable to heat the first nonwoven fabric in a non-contact manner within the preferable heating temperature range.
  • the first nonwoven fabric when the first nonwoven fabric is heated while being sandwiched between a pair of heating rolls, there is a concern that the first nonwoven fabric may be welded to the heating rolls.
  • the first nonwoven fabric is heated within the preferable heating temperature range without contact with the heating roll etc., thereby suppressing welding of the first nonwoven fabric to the heating roll etc. It has the advantage of being able to Examples of a method of heating the first nonwoven fabric in a non-contact manner within the preferable heating temperature range include a method of heating the first nonwoven fabric with a gas within the preferable heating temperature range.
  • the first nonwoven fabric may be heated while it is wound into a roll.
  • the first nonwoven fabric may be heated in a sheet form without being wound into a roll.
  • the elongated first nonwoven fabric may be heated continuously while being conveyed.
  • a second nonwoven fabric is obtained by cooling the heated first nonwoven fabric.
  • the method for cooling the heated first nonwoven fabric may be a method of naturally cooling the heated first nonwoven fabric at room temperature and normal pressure, or a method of cooling the heated first nonwoven fabric with a gas (for example, a gas at room temperature)
  • the heated first nonwoven fabric may be forcedly cooled by spraying the heated first nonwoven fabric.
  • the method for manufacturing a nonwoven fabric according to the present embodiment includes a step (D) of pressurizing the first nonwoven fabric B obtained in the step (B) for the purpose of fixing the shape of the nonwoven fabric, making it thin, and shaping the nonwoven fabric. May contain.
  • the first nonwoven fabric B obtained in the step (B) is subjected to pressure treatment.
  • Pressure methods include, for example, a pair of upper and lower rolls with embossed rolls with engravings on their surfaces, or a combination of one roll with a flat (smooth) surface and the other roll with engravings. It is possible to apply pressure using various rolls, such as an embossing roll consisting of an emboss roll, a thermal calendar roll consisting of a pair of upper and lower flat (smooth) rolls, or an air-through method in which hot air is passed through the thickness of the nonwoven fabric.
  • pressurization using an embossing roll can be preferably employed from the viewpoint that it is possible to maintain appropriate air permeability while improving mechanical strength.
  • the pressure treatment temperature in step (D), ie, the surface temperature of the pressure roll, is preferably 20°C to 120°C, more preferably 30°C to 100°C, even more preferably 30°C to 80°C.
  • the pressure treatment temperature within this temperature range, the shape of the nonwoven fabric containing poly(3-hydroxyalkanoate) resin can be maintained, and peeling of the sheet and generation of fuzz can be suppressed.
  • the strength and elongation will decrease due to heat, the fibers will not be able to solidify, and the shape of the nonwoven fabric will not be maintained other than sticking to the roll, and the nonwoven fabric will tend to shrink or tear. There is.
  • the pressure required for pressurization is not particularly limited, but is preferably 20 to 60 Kg/cm, more preferably 30 to 50 Kg/cm, from the viewpoint of shape retention.
  • the pressure of the pressurized thermal adhesive roll is 20 kg/cm or more, effects such as fixation of shape and thinning of the film can be sufficiently obtained.
  • 60 Kg/cm or less it becomes difficult to apply excessive stress to the nonwoven fabric, and it becomes easy to suppress breakage of the nonwoven fabric.
  • step (A), step (B), step (C), and step (D) may be performed continuously or discontinuously. However, it is preferable to carry out the process continuously because the nonwoven fabric can be manufactured more efficiently.
  • the present invention is not limited to the above embodiments. Further, the present invention is not limited to the above-described effects. Furthermore, the present invention can be modified in various ways without departing from the gist of the present invention.
  • a nonwoven fabric is manufactured by a melt-blown method, but in the method for manufacturing a nonwoven fabric according to this embodiment, a nonwoven fabric is manufactured by a spunbonding method, a flash spinning method, or an electrospinning method. may be manufactured. In the method for manufacturing a nonwoven fabric according to the present embodiment, it is preferable that the nonwoven fabric is manufactured by a melt blown method or a spunbond method.
  • the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 150 or more, preferably 150 to 15,000, more preferably 160 to 15,000, particularly preferably 165-12,000, most preferably 200-10,000.
  • the ratio of the opening area of the nozzle holes to the cross-sectional area of the fibers is 150 or more, it is possible to increase the tensile elongation at break in the MD direction of the nonwoven fabric and the tensile elongation at break in the CD direction of the nonwoven fabric. can.
  • the raw material composition is melted by heating to obtain the melt, and the raw yarn is obtained by discharging the melt from the nozzle hole.
  • the yarn is drawn by blowing gas onto the yarn.
  • the temperature of the gas is preferably 2 to 40°C, more preferably 2 to 30°C, even more preferably 5 to 25°C.
  • the temperature of the gas is 2° C. or higher, the resin is sufficiently solidified, and fusion between the yarns is easily suppressed.
  • the temperature of the gas is 40° C. or lower, solidification of the resin progresses slowly, making it easier to prevent the yarn from breaking during air stretching.
  • the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased by increasing the amount of gas blown onto the yarn. Further, by lowering the amount of melt per unit time discharged from the nozzle hole, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased.
  • the raw yarn may be stretched using a stretching roll. In that case, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased by increasing the number of rotations of the drawing roll.
  • step (B) in the method for producing a spunbond nonwoven fabric the fibers are stretched using, for example, a suction device such as an ejector.
  • a suction device such as an ejector
  • rectified air may be applied to the raw yarn using a device that applies rectified air such as quench air.
  • the rectified wind also called quench wind, has the function of stabilizing the flow of the raw yarn.
  • the rectified air may be blown from one side or both sides of the yarn intertwined with each other, or may be blown circumferentially.
  • the temperature of the quench air is preferably 2 to 40°C, more preferably 2 to 30°C, and even more preferably 5 to 25°C.
  • the temperature of the quench air is 2° C. or higher, the resin is sufficiently solidified, and fusion between the raw yarns is easily suppressed.
  • the temperature of the quench air is 40° C. or less, solidification of the resin progresses slowly, and it becomes easier to suppress yarn breakage of the raw yarn during air stretching.
  • the wind speed of the quench wind is preferably 0.1 to 3 m/sec. When the wind speed of the quench wind is 0.1 m/sec or more, the effect of rectification is more likely to be exhibited.
  • the temperature of gas C blown onto the yarn A is preferably 2° C. to 80° C., more preferably is 5°C to 60°C, more preferably 10°C to 40°C.
  • the material of the raw material composition and a solvent are mixed under high temperature and high pressure to obtain a molten product under high temperature and high pressure.
  • the yarn is obtained, and the obtained yarn is stretched.
  • the solvent include alcohol (eg, methanol, ethanol, etc.), acetone, and the like.
  • the flash spinning method by increasing the pressure applied to the melt, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased. Further, by lowering the amount of melt per unit time discharged from the nozzle hole, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased.
  • the raw material composition is heated and melted by irradiating the raw material composition with a laser beam while a high voltage is applied. As a result, the melt can be obtained.
  • a raw yarn is obtained by discharging the melted material from the nozzle hole. Then, the yarn is stretched by electrostatic force.
  • the electrospinning method by increasing the electrostatic force, it is possible to increase the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber. Further, by lowering the amount of melt per unit time discharged from the nozzle hole, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased.
  • a nonwoven fabric containing fibers The fiber is formed from a resin composition containing a poly(3-hydroxyalkanoate) resin,
  • the poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
  • the content ratio of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more and 92.0 mol% or less
  • the nonwoven fabric has a tensile elongation at break in the MD direction of 100% or more
  • the nonwoven fabric has a tensile elongation at break in the CD direction of 100% or more.
  • the poly(3-hydroxyalkanoate) resin is a poly(3-hydroxyalkanoate) resin component in which the content of 3-hydroxybutyrate units is 76 mol% or less.
  • a method for producing a nonwoven fabric comprising producing a nonwoven fabric containing fibers using a nozzle having a nozzle hole, a step (A) of obtaining a raw yarn by discharging the melt from the nozzle hole; and a step (B) of stretching the yarn,
  • the raw material composition contains a poly(3-hydroxyalkanoate) resin
  • the poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units, The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less,
  • a method for producing a meltblown nonwoven fabric wherein the ratio of the opening area of the nozzle holes to the cross-sectional area of the fibers is 300 or more.
  • a method for producing a nonwoven fabric comprising producing a nonwoven fabric containing fibers using a nozzle having a nozzle hole, a step (A) of obtaining a raw yarn by discharging the melt from the nozzle hole; and a step (B) of stretching the yarn,
  • the raw material composition contains a poly(3-hydroxyalkanoate) resin
  • the poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units, The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less
  • a method for producing a spunbond nonwoven fabric wherein the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 150 or more.
  • P3HA Poly(3-hydroxyalkanoate) resin
  • P3HA-1 P3HB3HH (3-hydroxybutyrate unit content: 94.5 mol%, 3-hydroxyhexanoate (3HH) unit content: 5.5 mol%)
  • P3HA-2 was produced according to the method described in Example 6 of International Publication No. 2021/206155.
  • P3HA-2 P3HB3HH (content ratio of 3-hydroxybutyrate units: 85.0 mol%, content ratio of 3-hydroxyhexanoate (3HH) units: 15.0 mol%) (weight ratio of MIBK soluble fraction : 54% by weight, content of 3-hydroxybutyrate units in MIBK soluble fraction: 74.0 mol%, content of 3-hydroxyhexanoate (3HH) units in MIBK soluble fraction: 26.0 mol% ) (Weight percentage of MIBK-insoluble fraction: 46% by weight, Content percentage of 3-hydroxybutyrate units in MIBK-insoluble fraction: 98.0 mol%, 3-hydroxyhexanoate (3HH) units in MIBK-insoluble fraction content ratio: 2.0 mol%)
  • P3HA-1 and P3HA-2 are heat-treated at high temperature and humidity (temperature: 120°C, humidity: 100%) using a highly accelerated life test device (manufactured by ESPEC, EHS-222MD).
  • the weight average molecular weight (Mw) and melt mass flow rate (MFR) at 165° C. of P3HA-1 and P3HA-2 were adjusted. That is, by increasing the heat treatment time, the weight average molecular weight (Mw) was lowered and the melt mass flow rate (MFR) at 165°C was increased.
  • the first reaction liquid is cooled, 1.5 g of sodium hydrogen carbonate is added little by little to the cooled first reaction liquid to neutralize it, and the second reaction liquid is left to stand until the generation of carbon dioxide gas stops.
  • a reaction solution was obtained.
  • a mixture was obtained by thoroughly mixing the second reaction solution and 4 mL of diisopropyl ether. Next, the mixture was centrifuged to obtain a supernatant. Then, by analyzing the monomer unit composition of the decomposed product in the supernatant liquid by capillary gas chromatography under the following conditions, the content of 3-hydroxybutyrate units in P3HA-1 and 3-hydroxyhexanoate (3HH ) unit content was determined.
  • the content ratio of 3-hydroxybutyrate units and the content ratio of 3-hydroxyhexanoate (3HH) units in P3HA-2 are also the same as the content ratio of 3-hydroxybutyrate units in P3HA-1 and the content ratio of 3-hydroxyhexanoate (3HH) units. It was determined in the same manner as the content of ate (3HH) units.
  • P3HA-2 was fractionated into an MIBK-soluble fraction and an MIBK-insoluble fraction using the MIBK fractionation method described above.
  • the content of 3-hydroxybutyrate units and the content of 3-hydroxyhexanoate (3HH) units in the MIBK-soluble fraction and MIBK-insoluble fraction were also determined by the 3-hydroxybutyrate units in P3HA-1. It was determined in the same manner as the content ratio of rate units and the content ratio of 3-hydroxyhexanoate (3HH) units.
  • (Lubricant) BA Behenic acid amide (also referred to as “behenic acid amide”) (manufactured by Nippon Fine Chemical Co., Ltd., BNT-22H)
  • EA Erucic acid amide (manufactured by Nippon Fine Chemical Co., Ltd., Neutron S)
  • PETL Pentaerythritol (manufactured by Taisei Kayaku Co., Ltd., Neurizer P)
  • Example 1 A raw material composition was obtained by melting and kneading the above materials at the mixing ratios shown in Table 1 below.
  • the content of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition is the content of 3-hydroxybutyrate units in P3HA-1 and 3-hydroxybutyrate units in P3HA-2. It was calculated from the content ratio of butyrate units and the blending ratio of P3HA-1 and P3HA-2. Furthermore, the content ratio of 3-hydroxyhexanoate (3HH) units in the entire poly(3-hydroxyalkanoate)-based resin contained in the raw material composition was calculated in the same manner.
  • the content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition refers to the “content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric". It also means “the content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the melt”.
  • the “content ratio of 3-hydroxyhexanoate (3HH) units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition” is the “content ratio of 3-hydroxyhexanoate (3HH) units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition".
  • 3-hydroxyhexanoate (3HH) unit content in the entire poly(3-hydroxyalkanoate) resin contained in the melt. ) also means the content ratio of units. The calculated values are shown in Table 1 below.
  • a first nonwoven fabric was manufactured from the raw material composition by the melt blowing method under the conditions shown in Table 2 below. Note that a nozzle with a width of 600 mm was used to manufacture the nonwoven fabric.
  • the first nonwoven fabric was heated using a box-type hot air dryer (manufactured by ESPEC, PH-202) under the heating conditions shown in Table 2 below, and then at room temperature and pressure (20°C, 1 atm). By natural cooling, the second nonwoven fabrics of Examples 1 to 9 and Comparative Examples 1 to 2 were obtained.
  • a box-type hot air dryer manufactured by ESPEC, PH-202
  • Example 10 The first nonwoven fabric of Example 4 was made into the nonwoven fabric of Example 10.
  • Examples 11, 12, 15, 16 and Comparative Examples 3 and 4 The spunbond method was used instead of the melt-blown method, the materials were melt-kneaded in the proportions shown in Table 1 below, and the first nonwoven fabric was manufactured from the raw material composition under the conditions shown in Table 2 below.
  • the raw yarn discharged from the spinning nozzle was blown with rectified wind (quench wind) at 12.5°C from both sides of the entangled yarn at a wind speed of 0.5 m/sec, using an ejector.
  • a nonwoven fabric was obtained in the same manner as in Example 10, except that the yarn was air-pulled by blowing air at 25° C. onto the yarn, and the nonwoven fabric was manufactured under the conditions shown in Table 2 below.
  • Example 13 and 14 The first nonwoven fabric was manufactured from the raw material composition under the conditions shown in Table 2 below, and the first nonwoven fabric was pressure-treated (embossed) using an embossing roll set at the temperature shown in Table 2 below. A nonwoven fabric was obtained in the same manner as in Example 11 except for the above.
  • the basis weight, thickness, average fiber diameter of the fibers, coefficient of variation of the fiber diameter of the fibers, and weight average molecular weight (Mw) of the resin composition were measured. Each measured value is shown in Table 3 below. Note that the average value of the fiber diameter of the fibers and the coefficient of variation of the fiber diameter of the fibers were determined using a tabletop scanning electron microscope JCM-6000 manufactured by JEOL. Moreover, the weight average molecular weight (Mw) of the resin composition was measured in the same manner as the weight average molecular weight (Mw) of the raw material composition.
  • Maximum load in CD direction and MD direction of nonwoven fabric, tensile elongation at maximum load point, and tensile elongation at break For the nonwoven fabric, the maximum load in the CD direction and MD direction, the tensile elongation at the maximum load point, and the tensile elongation at the break point were measured.
  • the maximum load in the CD direction and MD direction, the tensile elongation at the maximum load point, and the tensile elongation at the break point are determined according to JIS B7721:2018 "Tensile testing machine/compression testing machine - Calibration method and verification method of force measurement system" It was measured using a constant-speed extension type tensile tester based on .
  • a universal testing machine (RTG-1210 manufactured by A&D Co., Ltd.) or the like was used.
  • a test piece (width: 8 mm, length: 40 mm) was cut out from the nonwoven fabric.
  • the test piece was attached to a tensile testing machine with an initial load at a grip interval of 20 mm.
  • the gripping interval when the initial load was applied to the test piece was 20 mm.
  • the test piece was pulled by hand to an extent that no sagging occurred.
  • a load was applied at a tensile speed of 20 mm/min until the test piece broke, and the maximum loads in the CD direction and MD direction were measured.
  • Maximum load point tensile elongation (%) [(grabbing interval at maximum load - gripping interval when initial load is applied to the test piece) / gripping interval when initial load is applied to the test piece) x 100 (%)
  • Tensile elongation at break (%) [(grabbing interval at break - gripping interval when the initial load is applied to the test piece) / gripping interval when the initial load is applied to the test piece] x 100 (%)
  • the measured values are shown in Table 3 below.
  • the 50% elongation recovery rate of the nonwoven fabric was measured by the method described above. The measured values are shown in Table 3 below. In addition, regarding Comparative Example 1, the nonwoven fabric broke during the measurement of the 50% elongation recovery rate, and the 50% elongation recovery rate could not be measured.
  • ⁇ Tear resistance> 3 No cracks occurred in the mask, and no tears occurred in the welded portions of the mask. 2: A crack of less than 1 cm has occurred in the mask, or a tear of less than 1 cm has occurred in the welded part of the mask (no crack of 1 cm or more has occurred in the mask, and a tear of 1 cm or more has occurred in the welded part of the mask) did not occur). 1: A crack of 1 cm or more occurred in the mask, or a tear of 1 cm or more occurred in the welded part of the mask.
  • Comparative Example 1 in which the content of 3-hydroxybutyrate units is 94.5% and the tensile elongation at break in the MD direction of the nonwoven fabric is 49%, and the tensile elongation at break in the CD direction of the nonwoven fabric is 95%.
  • Comparative Example 3 in which the tensile elongation at break in the CD direction of the nonwoven fabric is 83%, and the nonwoven fabric contains The content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin is 94.7%, the tensile elongation at break in the CD direction of the nonwoven fabric is 66%, and the MD direction of the nonwoven fabric is 66%.
  • the nonwoven fabric was less likely to tear than Comparative Example 4, which had a tensile elongation at break of 72%.
  • a tear-resistant nonwoven fabric can be provided.
  • the weight average molecular weight (Mw) of the raw material composition is 200,000 or more
  • the weight average molecular weight (Mw) of the raw material composition is The nonwoven fabric was less likely to tear than Examples 6 and 7, which had a molecular weight of 198,000 or less. Therefore, it can be seen that when the weight average molecular weight (Mw) of the raw material composition is 200,000 or more, the nonwoven fabric becomes difficult to tear.
  • Example 4 in which a second nonwoven fabric was obtained by heating the first nonwoven fabric of Example 10, the nonwoven fabric had superior elasticity compared to Example 10. Ta. Therefore, it can be seen that by heating the nonwoven fabric, the nonwoven fabric has excellent elasticity.
  • Example 4 in which a second nonwoven fabric was obtained by heating the first nonwoven fabric of Example 10, the 50% elongation recovery rate in the CD direction of the nonwoven fabric and the MD of the nonwoven fabric The 50% elongation recovery rate in the direction was high. Therefore, it can be seen that heating the nonwoven fabric increases the 50% elongation recovery rate of the nonwoven fabric in the CD direction and the 50% elongation recovery rate of the nonwoven fabric in the MD direction.
  • the nonwoven fabric had less fluff.
  • Nonwoven fabric manufacturing equipment 2: hopper, 3: extruder, 4: gear pump, 5: filter, 6: kneader, 7: nozzle, 7a: nozzle hole, 8: collector, 8a: conveyor belt, 8b : Roller, 9: Winding device, A: Yarn, B: First nonwoven fabric, C: Gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

The present invention provides a nonwoven fabric that is difficult to tear. The present invention is a nonwoven fabric comprising fibers, wherein: the fibers are formed from a resin composition containing a poly(3-hydroxyalkanoate)-based resin; the poly(3-hydroxyalkanoate)-based resin contains a copolymer that has a 3-hydroxybutyrate unit; the content ratio of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate)-based resin included in the nonwoven fabric is 70.0-92.0 mol%; the tensile elongation at break point in the MD of the nonwoven fabric is not less than 100%; and the tensile elongation at break point in the CD of the nonwoven fabric is not less than 100%.

Description

不織布、及び、その製造方法Nonwoven fabric and its manufacturing method
 本発明は、不織布、及び、その製造方法に関する。 The present invention relates to a nonwoven fabric and a method for manufacturing the same.
 不織布は、例えば、様々な製品(例えば、マスク、フィルター、使い捨ておむつ、生理用ナプキン、テーピング材、貼付剤、包袋、手袋、衣料など)の基材として用いられている。
 不織布の繊維としては、地球環境への負荷を抑制するという観点から、生分解性樹脂であるポリ(3-ヒドロキシアルカノエート)系樹脂を含む繊維が用いられている(例えば、特許文献1)。
Nonwoven fabrics are used, for example, as base materials for various products (eg, masks, filters, disposable diapers, sanitary napkins, taping materials, patches, wrapping bags, gloves, clothing, etc.).
As the fibers of the nonwoven fabric, fibers containing poly(3-hydroxyalkanoate) resin, which is a biodegradable resin, are used from the viewpoint of suppressing the burden on the global environment (for example, Patent Document 1).
国際公開第2019/142920号International Publication No. 2019/142920
 不織布は、破れにくいことが求められ得るが、破れにくい不織布については、これまで十分に検討がなされていない。 Although nonwoven fabrics are required to be resistant to tearing, sufficient studies have not been made on nonwoven fabrics that are resistant to tearing.
 そこで、本発明は、破れにくい不織布を提供することを課題とする。 Therefore, an object of the present invention is to provide a nonwoven fabric that is hard to tear.
 本発明の第一は、繊維を含む不織布であって、
前記繊維は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有する樹脂組成物で形成され、
前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含み、
前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が、70.0モル%以上92.0モル%以下であり、
前記不織布のMD方向の破断点引張伸度が100%以上であり、
前記不織布のCD方向の破断点引張伸度が100%以上である、不織布に関する。
The first aspect of the present invention is a nonwoven fabric containing fibers,
The fiber is formed from a resin composition containing a poly(3-hydroxyalkanoate) resin,
The poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
The content ratio of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more and 92.0 mol% or less,
The nonwoven fabric has a tensile elongation at break in the MD direction of 100% or more,
The present invention relates to a nonwoven fabric having a tensile elongation at break in the CD direction of the nonwoven fabric of 100% or more.
 本発明の第二は、ノズル孔を有するノズルを用いて、繊維を含む不織布を製造する、不織布の製造方法であって、
溶融物を前記ノズル孔から吐出することにより、原糸を得る工程(A)と、
前記原糸を延伸する工程(B)とを有し、
前記溶融物は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有し、
前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含み、
前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が、70モル%以上92モル%以下であり、
前記繊維の断面積に対する、前記ノズル孔の開口面積の比が、300以上である、メルトブローン不織布の製造方法に関する。
The second aspect of the present invention is a method for producing a nonwoven fabric, which includes producing a nonwoven fabric containing fibers using a nozzle having a nozzle hole.
a step (A) of obtaining a raw yarn by discharging the melt from the nozzle hole;
and a step (B) of stretching the yarn,
The melt contains a poly(3-hydroxyalkanoate) resin,
The poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less,
The present invention relates to a method for producing a meltblown nonwoven fabric, wherein the ratio of the opening area of the nozzle holes to the cross-sectional area of the fibers is 300 or more.
 本発明の第三は、ノズル孔を有するノズルを用いて、繊維を含む不織布を製造する、不織布の製造方法であって、
溶融物を前記ノズル孔から吐出することにより、原糸を得る工程(A)と、
前記原糸を延伸する工程(B)とを有し、
前記原料組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有し、
前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含み、
前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が、70モル%以上92モル%以下であり、
前記繊維の断面積に対する、前記ノズル孔の開口面積の比が、150以上である、スパンボンド不織布の製造方法に関する。
The third aspect of the present invention is a method for producing a nonwoven fabric, which includes producing a nonwoven fabric containing fibers using a nozzle having a nozzle hole.
a step (A) of obtaining a raw yarn by discharging the melt from the nozzle hole;
and a step (B) of stretching the yarn,
The raw material composition contains a poly(3-hydroxyalkanoate) resin,
The poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less,
The present invention relates to a method for producing a spunbond nonwoven fabric, wherein the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 150 or more.
 本発明によれば、破れにくい不織布を提供し得る。 According to the present invention, a tear-resistant nonwoven fabric can be provided.
不織布の製造装置の概略図。A schematic diagram of a nonwoven fabric manufacturing device. ノズルの概略斜視図。A schematic perspective view of a nozzle. ノズル孔とコンベアベルトとの概略断面図。A schematic cross-sectional view of a nozzle hole and a conveyor belt. 2つの第1の試験片の写真。Photographs of the two first specimens. マスクの写真。Photo of mask.
 以下、添付図面を参照しつつ、本発明の一実施形態について説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.
<不織布>
 まず、本実施形態に係る不織布について説明する。
 本実施形態に係る不織布は、繊維を含む。
 前記繊維は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有する樹脂組成物で形成されている。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含む。
 前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合は、70.0モル%以上92.0モル%以下である。
 前記不織布のMD方向の破断点引張伸度は、100%以上である。
 前記不織布のCD方向の破断点引張伸度は、100%以上である。
<Nonwoven fabric>
First, the nonwoven fabric according to this embodiment will be explained.
The nonwoven fabric according to this embodiment includes fibers.
The fibers are made of a resin composition containing a poly(3-hydroxyalkanoate) resin.
The poly(3-hydroxyalkanoate) resin includes a copolymer having 3-hydroxybutyrate units.
The content ratio of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more and 92.0 mol% or less.
The tensile elongation at break in the MD direction of the nonwoven fabric is 100% or more.
The nonwoven fabric has a tensile elongation at break in the CD direction of 100% or more.
 前記樹脂組成物は、ポリマー成分を含有する。また、前記樹脂組成物は、添加剤を更に含有してもよい。 The resin composition contains a polymer component. Moreover, the resin composition may further contain an additive.
 前記ポリマー成分は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有する。
 前記ポリマー成分は、ポリ(3-ヒドロキシアルカノエート)系樹脂以外に、他のポリマーを含有してもよい。
The polymer component contains a poly(3-hydroxyalkanoate) resin.
The polymer component may contain other polymers in addition to the poly(3-hydroxyalkanoate) resin.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシアルカン酸をモノマーとして含むポリエステルである。
 すなわち、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、構成単位として3-ヒドロキシアルカン酸を含む樹脂である。
 また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、生分解性を有するポリマーである。
 なお、本実施形態における「生分解性」とは、自然界において微生物によって低分子化合物に分解され得る性質をいう。具体的には、好気条件ではISO 14855(compost)及びISO 14851(activated sludge)、嫌気条件ではISO 14853(aqueous phase)及びISO 15985(solid phase)等、各環境に適合した試験に基づいて生分解性の有無が判断できる。また、海水中における微生物の分解性については、生物化学的酸素要求量(Biochemical oxygen demand)の測定により評価できる。
The poly(3-hydroxyalkanoate) resin is a polyester containing 3-hydroxyalkanoic acid as a monomer.
That is, the poly(3-hydroxyalkanoate) resin is a resin containing 3-hydroxyalkanoic acid as a structural unit.
Further, the poly(3-hydroxyalkanoate) resin is a biodegradable polymer.
Note that "biodegradability" in this embodiment refers to a property that can be decomposed into low molecular weight compounds by microorganisms in the natural world. Specifically, we use ISO 14855 (compost) and ISO 14851 (activated sludge) for aerobic conditions, and ISO 14853 (aqueous phase) and ISO 15985 (solid phase) for anaerobic conditions. The presence or absence of degradability can be determined. Furthermore, the degradability of microorganisms in seawater can be evaluated by measuring biochemical oxygen demand.
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含む。 The poly(3-hydroxyalkanoate) resin includes a copolymer having 3-hydroxybutyrate units.
 3-ヒドロキシブチレート単位を有する共重合体において、3-ヒドロキシブチレート単位以外のモノマー単位としては、例えば、3-ヒドロキシブチレート単位以外のヒドロキシアルカノエート単位などが挙げられる。
 3-ヒドロキシブチレート単位以外のヒドロキシアルカノエート単位としては、例えば、3-ヒドロキシヘキサノエート、3-ヒドロキシオクタノエート、3-ヒドロキシオクタデカノエート、3-ヒドロキシバレレート、4-ヒドロキシブチレートなどが挙げられる。
In the copolymer having 3-hydroxybutyrate units, monomer units other than 3-hydroxybutyrate units include, for example, hydroxyalkanoate units other than 3-hydroxybutyrate units.
Examples of hydroxyalkanoate units other than 3-hydroxybutyrate units include 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxyoctadecanoate, 3-hydroxyvalerate, and 4-hydroxybutyrate. Examples include.
 3-ヒドロキシブチレート単位を有する共重合体としては、P3HB3HH、P3HB3HV、P3HB4HB、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)等が挙げられる。
 ここで、P3HB3HHは、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)を意味する。
 P3HB3HVは、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート)を意味する。
 P3HB4HBは、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)を意味する。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を1種のみ含んでもよく、2種以上含んでもよい。
 3-ヒドロキシブチレート単位を有する共重合体としては、P3HB3HHが好ましい。
Copolymers having 3-hydroxybutyrate units include P3HB3HH, P3HB3HV, P3HB4HB, poly(3-hydroxybutyrate-co-3-hydroxyoctanoate), poly(3-hydroxybutyrate-co-3- Hydroxyoctadecanoate) and the like.
Here, P3HB3HH means poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
P3HB3HV means poly(3-hydroxybutyrate-co-3-hydroxyvalerate).
P3HB4HB means poly(3-hydroxybutyrate-co-4-hydroxybutyrate).
The poly(3-hydroxyalkanoate) resin may contain only one type of copolymer having 3-hydroxybutyrate units, or may contain two or more types.
As the copolymer having 3-hydroxybutyrate units, P3HB3HH is preferred.
 前記樹脂組成物は、3-ヒドロキシブチレート単位を有する共重合体を、好ましくは50質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上含有する。 The resin composition preferably contains a copolymer having 3-hydroxybutyrate units in an amount of 50% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
 前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合は、70.0モル%以上92.0モル%以下、好ましくは80.0モル%以上92.0モル%以下、より好ましくは82.0モル以上92.0以下、更に好ましくは85.0モル以上91.6以下である。
 前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が70.0モル%以上であることにより、前記繊維の剛性が高くなる。
 前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が92.0モル%以下であることにより、本実施形態に係る不織布が破れにくくなる。また、前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が92.0モル%以下であることにより、本実施形態に係る不織布に毛羽立ちが生じにくくなる。
 なお、前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合は、前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂全体における前記3-ヒドロキシブチレート単位の含有割合を意味する。
The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more and 92.0 mol% or less, preferably 80.0 mol% or more. It is 92.0 mol % or less, more preferably 82.0 mol or more and 92.0 mol or less, still more preferably 85.0 mol or more and 91.6 mol or less.
When the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more, the rigidity of the fiber becomes high.
When the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 92.0 mol% or less, the nonwoven fabric according to the present embodiment becomes difficult to tear. Further, since the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 92.0 mol% or less, the nonwoven fabric according to the present embodiment does not have fuzz. Less likely to occur.
The content ratio of the 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is the same as that of the 3-hydroxybutyrate unit in the entire poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric. It means the content ratio of 3-hydroxybutyrate units.
 前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合は、以下のようにして求めることができる。
 まず、前記不織布の乾燥したポリ(3-ヒドロキシアルカノエート)系樹脂20mgに、硫酸とメタノールとの混合液(硫酸の体積:メタノールの体積=15:85)2mL、及び、クロロホルム2mLを添加した試料を密栓し、密栓した状態で該試料を100℃で140分間加熱することにより、ポリ(3-ヒドロキシアルカノエート)系樹脂の分解物であるメチルエステルを含む第1の反応液を得る。
 そして、該第1の反応液を冷却し、冷却した第1の反応液に1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置することにより、第2の反応液を得る。
 さらに、第2の反応液と、4mLのジイソプロピルエーテルとをよく混合することにより、混合物を得る。
 次に、該混合物を遠心分離することにより、上清液を得る。
 そして、上清液中の前記分解物のモノマーユニット組成をキャピラリーガスクロマトグラフィーにより下記条件で分析することにより、ポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合を求める。
  ガスクロマトグラフ:島津製作所製のGC-17A
  キャピラリーカラム:GLサイエンス社製のNEUTRA BOND-1(カラム長:25m、カラム内径:0.25mm、液膜厚:0.4μm)
  キャリアガス:He
  カラム入口圧:100kPa
  サンプルの量:1μL
 温度条件については、100~200℃では8℃/分の速度で昇温し、さらに200~290℃では30℃/分の速度で昇温する。
The content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric can be determined as follows.
First, a sample was prepared by adding 2 mL of a mixed solution of sulfuric acid and methanol (volume of sulfuric acid: volume of methanol = 15:85) and 2 mL of chloroform to 20 mg of the dried poly(3-hydroxyalkanoate) resin of the nonwoven fabric. The first reaction solution containing methyl ester, which is a decomposition product of poly(3-hydroxyalkanoate)-based resin, is obtained by sealing the sample and heating the sample at 100° C. for 140 minutes in the sealed state.
Then, the first reaction liquid is cooled, 1.5 g of sodium hydrogen carbonate is added little by little to the cooled first reaction liquid to neutralize it, and the second reaction liquid is left to stand until the generation of carbon dioxide gas stops. A reaction solution is obtained.
Furthermore, a mixture is obtained by thoroughly mixing the second reaction solution and 4 mL of diisopropyl ether.
Next, the mixture is centrifuged to obtain a supernatant.
Then, the content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate)-based resin is determined by analyzing the monomer unit composition of the decomposed product in the supernatant liquid by capillary gas chromatography under the following conditions. .
Gas chromatograph: GC-17A manufactured by Shimadzu Corporation
Capillary column: NEUTRA BOND-1 manufactured by GL Science (column length: 25 m, column inner diameter: 0.25 mm, liquid film thickness: 0.4 μm)
Carrier gas: He
Column inlet pressure: 100kPa
Sample amount: 1μL
Regarding the temperature conditions, the temperature is raised at a rate of 8°C/min from 100 to 200°C, and further at a rate of 30°C/min from 200 to 290°C.
 また、原料組成物(「原料組成物」については、後述する。)に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシブチレート単位の含有割合を、前記不織布に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合としてもよい。
 原料組成物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシブチレート単位の含有割合は、原料組成物の乾燥したポリ(3-ヒドロキシアルカノエート)系樹脂を用いて、上述した「前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合」と同様に求めることができる。
In addition, the content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition (the "raw material composition" will be described later) is determined by It may also be the content ratio of 3-hydroxybutyrate units in the (3-hydroxyalkanoate)-based resin.
The content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition is determined by using the dried poly(3-hydroxyalkanoate) resin of the raw material composition, It can be determined in the same manner as the above-mentioned "content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric."
 不織布の機械特性を向上させるという観点から、前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位の含有割合が76モル%以下であるポリ(3-ヒドロキシアルカノエート)系樹脂成分を含むことが好ましい。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分における3-ヒドロキシブチレート単位の含有割合は、0~76モル%、好ましくは1~76モル%、より好ましくは50~76モル%である。 前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分としては、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)などが好ましい。
From the viewpoint of improving the mechanical properties of the nonwoven fabric, the poly(3-hydroxyalkanoate) resin has a content of 3-hydroxybutyrate units of 76 mol% or less. It is preferable to include the following components.
The content of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin component is 0 to 76 mol%, preferably 1 to 76 mol%, and more preferably 50 to 76 mol%. Examples of the poly(3-hydroxyalkanoate) resin component include poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate), etc. is preferred.
(MIBK分画法)
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂が前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分を含むことは、例えば、メチルイソブチルケトン(MIBK)への溶解度の差を利用した溶媒分画法(「MIBK分画法」ともいう。)を用いて確認することができる。
 すなわち、MIBK分画法でポリ(3-ヒドロキシアルカノエート)系樹脂をMIBK可溶性画分とMIBK不溶性画分とに分画し、何れかの画分において3-ヒドロキシブチレート単位の含有割合が76モル%以下であることで、前記ポリ(3-ヒドロキシアルカノエート)系樹脂が前記ポリ(3-ヒドロキシアルカノエート)系樹脂成分を含むことを確認することができる。
(MIBK fractionation method)
The fact that the poly(3-hydroxyalkanoate)-based resin contains the poly(3-hydroxyalkanoate)-based resin component can be achieved by, for example, a solvent fractionation method using the difference in solubility in methyl isobutyl ketone (MIBK). (Also referred to as "MIBK fractionation method.")
That is, poly(3-hydroxyalkanoate)-based resin is fractionated into an MIBK-soluble fraction and an MIBK-insoluble fraction by the MIBK fractionation method, and the content ratio of 3-hydroxybutyrate units in either fraction is 76. If the amount is mol % or less, it can be confirmed that the poly(3-hydroxyalkanoate)-based resin contains the poly(3-hydroxyalkanoate)-based resin component.
 具体的な分画手順を以下に記す。まずポリ(3-ヒドロキシアルカノエート)系樹脂約100mgをねじ口試験管に測り取り、MIBK10mlを加えてキャップを閉める。その後、140℃で1~3時間程度振り混ぜながら加温し、ポリ(3-ヒドロキシアルカノエート)系樹脂を完全に溶解させる。完全に溶解した後、25℃で1分間放置して沸点以下に温度を低下させ、速やかに全ての溶解液を、あらかじめ重量を測定した遠沈管へ移し、キャップを閉める。キャップをした遠沈管をさらに25℃で15分間放置し、溶解物の一部を析出させる。遠心分離(9000rpm、5分間)により、析出物と溶解液を分離し、溶解液を全て、あらかじめ重量を測定したアルミカップへ移す。析出物の残った遠沈管に、MIBKを10ml加えてボルテックスミキサーで混合し、再度遠心分離(9000rpm、5分間)を行い、溶液を前記溶解液の入ったアルミカップへ移す。アルミカップを120℃で30分加熱し、MIBKを揮発させ、溶解物を析出させる。さらに、アルミカップに残った析出物と、遠沈管に残った析出物をそれぞれ、100℃で6時間真空乾燥する。アルミカップに残った析出物をMIBK可溶性画分として、また、遠沈管に残った析出物をMIBK不溶性画分としてそれぞれ秤量する。MIBK可溶性画分及びMIBK不溶性画分の合計重量と、初めに測定したポリ(3-ヒドロキシアルカノエート)系樹脂の重量との差が±3%以内であることを確認する。 The specific fractionation procedure is described below. First, measure approximately 100 mg of poly(3-hydroxyalkanoate) resin into a screw cap test tube, add 10 ml of MIBK, and close the cap. Thereafter, the mixture is heated at 140° C. for about 1 to 3 hours with shaking to completely dissolve the poly(3-hydroxyalkanoate) resin. After complete dissolution, leave the solution at 25° C. for 1 minute to lower the temperature below the boiling point, immediately transfer all the dissolved solution to a pre-weighed centrifuge tube, and close the cap. The capped centrifuge tube is left at 25° C. for an additional 15 minutes to precipitate a portion of the lysate. The precipitate and the solution are separated by centrifugation (9000 rpm, 5 minutes), and all the solution is transferred to an aluminum cup whose weight has been measured in advance. Add 10 ml of MIBK to the centrifuge tube in which the precipitate remains, mix with a vortex mixer, centrifuge again (9000 rpm, 5 minutes), and transfer the solution to the aluminum cup containing the solution. The aluminum cup is heated at 120° C. for 30 minutes to volatilize MIBK and precipitate the melt. Further, the precipitate remaining in the aluminum cup and the precipitate remaining in the centrifuge tube are each vacuum-dried at 100° C. for 6 hours. The precipitate remaining in the aluminum cup is weighed as the MIBK-soluble fraction, and the precipitate remaining in the centrifuge tube is weighed as the MIBK-insoluble fraction. Confirm that the difference between the total weight of the MIBK soluble fraction and the MIBK insoluble fraction and the initially measured weight of the poly(3-hydroxyalkanoate) resin is within ±3%.
 MIBK可溶性画分及びMIBK不溶性画分それぞれにおける3-ヒドロキシブチレート単位の含有割合は、上述した方法で測定することができる。
 MIBK可溶性画分とMIBK不溶性画分との何れかの画分における3-ヒドロキシブチレート単位の含有割合は、好ましくは0~76モル%、より好ましくは1~76モル%、更に好ましくは50~76モル%である。
The content ratio of 3-hydroxybutyrate units in each of the MIBK soluble fraction and MIBK insoluble fraction can be measured by the method described above.
The content of 3-hydroxybutyrate units in either the MIBK-soluble fraction or the MIBK-insoluble fraction is preferably 0 to 76 mol%, more preferably 1 to 76 mol%, and still more preferably 50 to 76 mol%. It is 76 mol%.
 3-ヒドロキシブチレート単位を有する共重合体以外のポリ(3-ヒドロキシアルカノエート)系樹脂としては、例えば、P3HB、ポリ(3-ヒドロキシバレレート)、ポリ(3-ヒドロキシヘキサノエート)などが挙げられる。
 ここで、P3HBは、単独重合体たるポリ(3-ヒドロキシブチレート)を意味する。
Examples of poly(3-hydroxyalkanoate) resins other than copolymers having 3-hydroxybutyrate units include P3HB, poly(3-hydroxyvalerate), poly(3-hydroxyhexanoate), etc. Can be mentioned.
Here, P3HB means poly(3-hydroxybutyrate) which is a homopolymer.
 なお、P3HBは、P3HB自体、及び、P3HB以外のポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化を促進する機能を有する。 Note that P3HB has a function of promoting crystallization of P3HB itself and poly(3-hydroxyalkanoate) resins other than P3HB.
 他のポリマーは、生分解性を有することが好ましい。 It is preferable that the other polymer is biodegradable.
 生分解性を有する他のポリマーとしては、例えば、ポリカプロラクトン、ポリ乳酸、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリブチレンアジペートテレフタレート、ポリエチレンサクシネート、ポリビニルアルコール、ポリグリコール酸、未変性デンプン、変性デンプン、酢酸セルロース、キトサン等が挙げられる。
 前記ポリカプロラクトンは、ε-カプロラクトンが開環重合したポリマーである。
 前記樹脂組成物は、他のポリマーを1種含んでよく、また、2種以上含んでもよい。
Examples of other biodegradable polymers include polycaprolactone, polylactic acid, polybutylene succinate, polybutylene succinate adipate, polybutylene adipate terephthalate, polyethylene succinate, polyvinyl alcohol, polyglycolic acid, unmodified starch, Examples include modified starch, cellulose acetate, chitosan, and the like.
The polycaprolactone is a polymer obtained by ring-opening polymerization of ε-caprolactone.
The resin composition may contain one type of other polymer, or may contain two or more types of other polymers.
 本実施形態に係る不織布は、生分解性を有するポリマーを含むことにより、不織布が環境中に廃棄されたとしても、不織布が環境中で分解されやすいため、環境への負荷を抑制することができる。 Since the nonwoven fabric according to this embodiment contains a biodegradable polymer, even if the nonwoven fabric is discarded in the environment, it is easily decomposed in the environment, so that the load on the environment can be suppressed. .
 前記樹脂組成物は、添加剤を更に含有してもよい。 The resin composition may further contain an additive.
 添加剤としては、例えば、結晶核剤、滑剤、安定剤(酸化防止剤、紫外線吸収剤等)、着色剤(染料、顔料等)、可塑剤、無機充填剤、有機充填剤、帯電防止剤等が挙げられる。 Examples of additives include crystal nucleating agents, lubricants, stabilizers (antioxidants, ultraviolet absorbers, etc.), colorants (dyes, pigments, etc.), plasticizers, inorganic fillers, organic fillers, antistatic agents, etc. can be mentioned.
 前記樹脂組成物は、添加剤たる結晶核剤を含有することが好ましい。
 前記結晶核剤は、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化を促進できる化合物である。また、前記結晶核剤は、ポリ(3-ヒドロキシアルカノエート)系樹脂よりも融点が高い。
 前記樹脂組成物は結晶核剤を含有することにより、不織布を作製する際に、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化が促進され、隣接する繊維同士が融着し難くなる。その結果、繊維における繊維径の変動係数を小さくしやすくなる。
 前記結晶核剤としては、例えば、無機物(例えば、窒化ホウ素、酸化チタン、タルク、層状ケイ酸塩、炭酸カルシウム、塩化ナトリウム、金属リン酸塩など);天然物由来の糖アルコール化合物(例えば、ペンタエリスリトール、エリスリトール、ガラクチトール、マンニトール、アラビトール等);ポリビニルアルコール;キチン;キトサン;ポリエチレンオキシド;脂肪族カルボン酸塩;脂肪族アルコール;脂肪族カルボン酸エステル;ジカルボン酸誘導体(例えば、ジメチルアジペート、ジブチルアジペート、ジイソデシルアジペート、ジブチルセバケート等);C=OとNH、S及びOから選ばれる官能基とを分子内に有する環状化合物(例えば、インジゴ、キナクリドン、キナクリドンマゼンタなど);ソルビトール系誘導体(例えば、ビスベンジリデンソルビトール、ビス(p-メチルベンジリデン)ソルビトールなど);窒素含有ヘテロ芳香族核(例えば、ピリジン環、トリアジン環、イミダゾール環など)を含む化合物(例えば、ピリジン、トリアジン、イミダゾールなど);リン酸エステル化合物;高級脂肪酸のビスアミド;高級脂肪酸の金属塩;分岐状ポリ乳酸等が例示できる。
 なお、前記ポリ(3-ヒドロキシアルカノエート)系樹脂であるP3HBは、結晶核剤として使用することも可能である。
 これらは単独で用いても良く、2種以上を組み合わせて用いても良い。
The resin composition preferably contains a crystal nucleating agent as an additive.
The crystal nucleating agent is a compound that can promote crystallization of poly(3-hydroxyalkanoate) resin. Further, the crystal nucleating agent has a higher melting point than the poly(3-hydroxyalkanoate) resin.
By containing a crystal nucleating agent in the resin composition, crystallization of the poly(3-hydroxyalkanoate) resin is promoted and adjacent fibers become difficult to fuse together when producing a nonwoven fabric. As a result, it becomes easier to reduce the coefficient of variation of the fiber diameter in the fiber.
Examples of the crystal nucleating agent include inorganic substances (e.g., boron nitride, titanium oxide, talc, layered silicates, calcium carbonate, sodium chloride, metal phosphates, etc.); sugar alcohol compounds derived from natural products (e.g., pentane, etc.); Erythritol, erythritol, galactitol, mannitol, arabitol, etc.); polyvinyl alcohol; chitin; chitosan; polyethylene oxide; aliphatic carboxylate; aliphatic alcohol; aliphatic carboxylic acid ester; dicarboxylic acid derivative (e.g. dimethyl adipate, dibutyl adipate) , diisodecyl adipate, dibutyl sebacate, etc.); cyclic compounds having in the molecule C=O and a functional group selected from NH, S, and O (e.g., indigo, quinacridone, quinacridone magenta, etc.); sorbitol derivatives (e.g., (bisbenzylidene sorbitol, bis(p-methylbenzylidene) sorbitol, etc.); Compounds containing a nitrogen-containing heteroaromatic nucleus (e.g., pyridine ring, triazine ring, imidazole ring, etc.) (e.g., pyridine, triazine, imidazole, etc.); Phosphoric acid Examples include ester compounds; bisamides of higher fatty acids; metal salts of higher fatty acids; and branched polylactic acids.
Note that P3HB, which is the poly(3-hydroxyalkanoate) resin, can also be used as a crystal nucleating agent.
These may be used alone or in combination of two or more.
 前記結晶核剤としては、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化速度の改善効果の観点、並びに、ポリ(3-ヒドロキシアルカノエート)系樹脂との相溶性及び親和性の観点から、糖アルコール化合物、ポリビニルアルコール、キチン、キトサンが好ましい。
 また、該糖アルコール化合物のうち、ペンタエリスリトールが好ましい。
As the crystal nucleating agent, from the viewpoint of improving the crystallization rate of the poly(3-hydroxyalkanoate)-based resin, and from the viewpoint of compatibility and affinity with the poly(3-hydroxyalkanoate)-based resin, Sugar alcohol compounds, polyvinyl alcohol, chitin, and chitosan are preferred.
Furthermore, among the sugar alcohol compounds, pentaerythritol is preferred.
 前記結晶核剤は、好ましくは、常温(25℃)で結晶構造を有する。
 前記結晶核剤が常温(25℃)で結晶構造を有することにより、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化がより促進されるという利点がある。
 また、常温(25℃)で結晶構造を有する結晶核剤は、好ましくは、常温(25℃)で粉末状となっている。
 さらに、常温(25℃)で粉末状となっている結晶核剤の平均粒子径は、好ましくは10μm以下である。
The crystal nucleating agent preferably has a crystal structure at room temperature (25° C.).
Since the crystal nucleating agent has a crystal structure at room temperature (25° C.), there is an advantage that crystallization of the poly(3-hydroxyalkanoate) resin is further promoted.
Further, the crystal nucleating agent having a crystal structure at room temperature (25°C) is preferably in a powder form at room temperature (25°C).
Furthermore, the average particle diameter of the crystal nucleating agent that is in powder form at room temperature (25° C.) is preferably 10 μm or less.
 前記樹脂組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂100質量部に対して結晶核剤を、好ましくは0.1質量部以上、より好ましくは0.3質量部以上、更に好ましくは0.5質量部以上含有する。
 前記樹脂組成物がポリ(3-ヒドロキシアルカノエート)系樹脂100質量部に対して結晶核剤を0.1質量部以上含有することにより、不織布を作製する際に、ポリ(3-ヒドロキシアルカノエート)系樹脂の結晶化がより一層促進されやすくなるという利点がある。
 また、前記樹脂組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂100質量部に対して結晶核剤を、好ましくは2.5質量部以下、より好ましくは2.0質量部以下含有する。
 前記樹脂組成物がポリ(3-ヒドロキシアルカノエート)系樹脂100質量部に対して結晶核剤を2.5質量部以下含有することにより、不織布を作製する際に、繊維が得やすくなるという利点がある。
 なお、P3HBは、ポリ(3-ヒドロキシアルカノエート)系樹脂であり、且つ、結晶核剤としても機能し得るので、樹脂組成物がP3HBを含む場合には、P3HBの量は、ポリ(3-ヒドロキシアルカノエート)系樹脂の量にも、結晶核剤の量にも含まれる。
The resin composition preferably contains 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and still more preferably 0. Contains .5 parts by mass or more.
When the resin composition contains 0.1 parts by mass or more of a crystal nucleating agent based on 100 parts by mass of poly(3-hydroxyalkanoate) resin, poly(3-hydroxyalkanoate) can be used when producing a nonwoven fabric. ) has the advantage that the crystallization of the resin is more easily promoted.
Further, the resin composition preferably contains a crystal nucleating agent at 2.5 parts by mass or less, more preferably at most 2.0 parts by mass, based on 100 parts by mass of the poly(3-hydroxyalkanoate) resin.
When the resin composition contains 2.5 parts by mass or less of a crystal nucleating agent per 100 parts by mass of poly(3-hydroxyalkanoate) resin, the advantage is that fibers can be easily obtained when producing a nonwoven fabric. There is.
In addition, since P3HB is a poly(3-hydroxyalkanoate)-based resin and can also function as a crystal nucleating agent, when the resin composition contains P3HB, the amount of P3HB is It is included in both the amount of the hydroxyalkanoate (hydroxyalkanoate) resin and the amount of the crystal nucleating agent.
 前記樹脂組成物は、前記滑剤を含有することが好ましい。
 不織布を作製する際に、繊維が滑剤を含むことにより繊維の滑性が良好となり、繊維同士の融着を抑制することが出来る。
 一方で、前記樹脂組成物が滑剤を含まない場合、又は、ごく微量の滑剤を含む場合、例えば、不織布のテープ接着性が向上し、不織布製造時の工程での取り扱いが容易となるという利点がある。
 滑剤の添加有無や添加量は、不織布(例えば、メルトブローン不織布)の使用用途に応じて適宜決定し得る。
 該滑剤としては、例えば、アミド結合を有する化合物などが挙げられる。
 前記アミド結合を有する化合物は、ラウリン酸アミド、ミリスチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、及び、エルカ酸アミドから選ばれる1種以上を含むことが好ましい。
It is preferable that the resin composition contains the lubricant.
When producing a nonwoven fabric, the presence of a lubricant in the fibers improves the lubricity of the fibers, making it possible to suppress fusion between the fibers.
On the other hand, when the resin composition does not contain a lubricant or contains a very small amount of a lubricant, there are advantages such as improved tape adhesion of the nonwoven fabric and ease of handling in the process of manufacturing the nonwoven fabric. be.
Whether or not a lubricant is added and the amount thereof can be determined as appropriate depending on the intended use of the nonwoven fabric (for example, melt-blown nonwoven fabric).
Examples of the lubricant include compounds having an amide bond.
The compound having an amide bond preferably contains one or more selected from lauric acid amide, myristic acid amide, stearic acid amide, behenic acid amide, and erucic acid amide.
 樹脂組成物における滑剤の含有量は、前記ポリマー成分100質量部に対し、0.05質量部以上が好ましく、0.1質量部以上がより好ましく、0.5質量部以上がさらに好ましい。樹脂組成物における滑剤の含有量がポリマー成分100質量部に対し0.05質量部以上であることにより、不織布を作製する際に、繊維同士の融着をより一層抑制することが出来るという利点がある。
 一方で、樹脂組成物における滑剤の含有量が、前記ポリマー成分100質量部に対し、0~0.2質量部である場合、不織布のテープ接着性が向上し、不織布製造時の工程での取り扱いが容易となるという利点がある。
 また、樹脂組成物における滑剤の含有量は、ポリマー成分100質量部に対し、12質量部以下が好ましく、10質量部以下がより好ましく、8質量部以下がさらに好ましく、5質量部以下が最も好ましい。樹脂組成物における滑剤の含有量がポリマー成分100質量部に対し12質量部以下であることにより、滑剤が繊維の表面にブリードアウトするのを抑制できるという利点がある。
The content of the lubricant in the resin composition is preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and even more preferably 0.5 parts by mass or more, based on 100 parts by mass of the polymer component. When the content of the lubricant in the resin composition is 0.05 parts by mass or more per 100 parts by mass of the polymer component, there is an advantage that fusion between fibers can be further suppressed when producing a nonwoven fabric. be.
On the other hand, when the content of the lubricant in the resin composition is 0 to 0.2 parts by mass based on 100 parts by mass of the polymer component, the tape adhesion of the nonwoven fabric improves, making it easier to handle during the manufacturing process of the nonwoven fabric. This has the advantage that it is easy to do.
The content of the lubricant in the resin composition is preferably 12 parts by mass or less, more preferably 10 parts by mass or less, even more preferably 8 parts by mass or less, and most preferably 5 parts by mass or less, based on 100 parts by mass of the polymer component. . When the content of the lubricant in the resin composition is 12 parts by mass or less per 100 parts by mass of the polymer component, there is an advantage that the lubricant can be prevented from bleeding out onto the surface of the fibers.
 前記樹脂組成物の165℃でのメルトマスフローレート(MFR)は、好ましくは20~1500g/10min、より好ましくは30~1500g/10min、更に好ましくは40~1300g/10min、特に好ましくは50~1200g/10minである。 The melt mass flow rate (MFR) of the resin composition at 165° C. is preferably 20 to 1500 g/10 min, more preferably 30 to 1500 g/10 min, even more preferably 40 to 1300 g/10 min, particularly preferably 50 to 1200 g/10 min. It is 10 minutes.
 前記繊維における樹脂組成物の165℃でのメルトマスフローレートが1500g/10min以下であることにより、不織布の強度及び伸度が高まる。
 前記繊維における樹脂組成物の165℃でのメルトマスフローレートが20g/10min以上であることにより、原糸(「原糸」については、後述する。)の延伸時に原糸にかかる張力を低くでき、得られる不織布における繊維の繊維径を細くしやすくなる。その結果、不織布による粒子の捕集効率を高めやすくなる。
 また、前記繊維における樹脂組成物の165℃でのメルトマスフローレートが20g/10min以上であることにより、不織布を作製する際に、ポリマー成分の塊の発生を抑制できる。その結果、不織布の生産性が向上する。また、前記繊維における樹脂組成物の165℃でのメルトマスフローレートが20g/10min以上であることにより、不織布を作製する際に、ノズルのノズル孔(「ノズルのノズル孔」については、後述する。)の詰まりを抑制できる。その結果、不織布の生産性が向上する。
When the melt mass flow rate at 165° C. of the resin composition in the fiber is 1500 g/10 min or less, the strength and elongation of the nonwoven fabric are increased.
By having a melt mass flow rate at 165° C. of the resin composition in the fibers of 20 g/10 min or more, the tension applied to the raw yarn (the “raw yarn” will be described later) can be lowered when the yarn is drawn. This makes it easier to reduce the fiber diameter of the fibers in the resulting nonwoven fabric. As a result, it becomes easier to increase the efficiency of particle collection by the nonwoven fabric.
Further, since the melt mass flow rate at 165° C. of the resin composition in the fiber is 20 g/10 min or more, it is possible to suppress the formation of lumps of polymer components when producing a nonwoven fabric. As a result, the productivity of nonwoven fabrics is improved. Further, since the melt mass flow rate at 165° C. of the resin composition in the fiber is 20 g/10 min or more, the nozzle hole of the nozzle (the “nozzle hole” will be described later) is used when producing the nonwoven fabric. ) clogging can be suppressed. As a result, the productivity of nonwoven fabrics is improved.
 なお、前記樹脂組成物の165℃でのメルトマスフローレート(MFR)については、ASTM-D1238(ISO1133-1、JIS K7210-1:2011)のB法で樹脂組成物の165℃でのメルトボリュームフローレート(MVR)を求め、樹脂組成物の165℃でのメルトボリュームフローレート(MVR)及び樹脂組成物の密度から、樹脂組成物の165℃でのメルトマスフローレート(MFR)を求める。
 また、樹脂組成物の165℃でのメルトボリュームフローレート(MVR)は、樹脂組成物5g以上を165℃で4分間加熱した後、加熱した樹脂組成物に5kgの荷重をかけて測定する。
Regarding the melt mass flow rate (MFR) of the resin composition at 165°C, the melt volume flow rate (MFR) of the resin composition at 165°C is determined by method B of ASTM-D1238 (ISO1133-1, JIS K7210-1:2011). The melt mass flow rate (MFR) of the resin composition at 165°C is determined from the melt volume flow rate (MVR) of the resin composition at 165°C and the density of the resin composition.
Further, the melt volume flow rate (MVR) at 165° C. of the resin composition is measured by heating 5 g or more of the resin composition at 165° C. for 4 minutes, and then applying a load of 5 kg to the heated resin composition.
 前記樹脂組成物の重量平均分子量は、好ましくは50,000~350,000、より好ましくは70,000~300,000、さらに好ましくは80,000~250,000、特に好ましくは150,000~250,000である。 The weight average molecular weight of the resin composition is preferably 50,000 to 350,000, more preferably 70,000 to 300,000, even more preferably 80,000 to 250,000, particularly preferably 150,000 to 250. ,000.
 前記繊維における樹脂組成物の重量平均分子量が50,000以上であることにより、不織布の強度及び伸度が高まる。
 また、前記繊維における樹脂組成物の重量平均分子量が150,000以上であることにより、不織布がより一層破れにくくなる。
 前記繊維における樹脂組成物の重量平均分子量が350,000以下であることにより、原糸の延伸時に原糸にかかる張力を低くでき、得られる不織布における繊維の繊維径を細くしやすくなる。その結果、不織布による粒子の捕集効率を高めやすくなる。
 また、前記繊維における樹脂組成物の重量平均分子量が350,000以下であることにより、不織布を作製する際に、ポリマー成分の塊の発生を抑制できる。その結果、不織布の生産性が向上する。また、前記繊維における樹脂組成物の重量平均分子量が350,000以下であることにより、不織布を作製する際に、ノズルのノズル孔(「ノズルのノズル孔」については、後述する。)の詰まりを抑制できる。その結果、不織布の生産性が向上する。
When the weight average molecular weight of the resin composition in the fiber is 50,000 or more, the strength and elongation of the nonwoven fabric are increased.
Further, since the weight average molecular weight of the resin composition in the fiber is 150,000 or more, the nonwoven fabric becomes even more difficult to tear.
When the weight average molecular weight of the resin composition in the fiber is 350,000 or less, the tension applied to the yarn during drawing can be lowered, making it easier to reduce the fiber diameter of the fibers in the resulting nonwoven fabric. As a result, it becomes easier to increase the efficiency of particle collection by the nonwoven fabric.
Further, since the weight average molecular weight of the resin composition in the fiber is 350,000 or less, it is possible to suppress the formation of lumps of polymer components when producing a nonwoven fabric. As a result, the productivity of nonwoven fabrics is improved. Furthermore, since the weight average molecular weight of the resin composition in the fiber is 350,000 or less, the nozzle hole of the nozzle (the "nozzle hole" will be described later) is prevented from clogging when producing a nonwoven fabric. It can be suppressed. As a result, the productivity of nonwoven fabrics is improved.
 なお、本実施形態における重量平均分子量は、クロロホルム溶離液を用いたゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定されたものをいう。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。 Note that the weight average molecular weight in this embodiment is measured from polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using a chloroform eluent. As a column in the GPC, a column suitable for measuring the molecular weight may be used.
 前記繊維における繊維径の平均値は、好ましくは30.0μm以下、より好ましくは25.0μm以下、更に好ましくは20.0μm以下、更により好ましくは0.50~20.0μm、特に好ましくは0.80~15.0μmであり、最も好ましくは1.0~15.0μmである。
 前記繊維における繊維径の変動係数は、好ましくは0.40以下、より好ましくは0.36以下、更に好ましくは0.32以下である。また、前記繊維における繊維径の変動係数は、例えば、0.10以上である。
The average fiber diameter of the fibers is preferably 30.0 μm or less, more preferably 25.0 μm or less, even more preferably 20.0 μm or less, even more preferably 0.50 to 20.0 μm, particularly preferably 0.0 μm or less. It is 80 to 15.0 μm, most preferably 1.0 to 15.0 μm.
The coefficient of variation of the fiber diameter of the fiber is preferably 0.40 or less, more preferably 0.36 or less, and even more preferably 0.32 or less. Further, the coefficient of variation of the fiber diameter of the fiber is, for example, 0.10 or more.
 前記繊維における繊維径の平均値が20.0μm以下であることにより、不織布による粒子の捕集効率が高まる。
 また、前記繊維における繊維径の平均値が20.0μm以下であることにより、繊維の剛性を低くでき、その結果、不織布の風合い(例えば、肌ざわり、手触りなど)が向上する。
 前記繊維における繊維径の平均値が0.50μm以上であることにより、不織布の強度及び伸度が高まる。
 前記繊維における繊維径の変動係数が0.40以下であることにより、極端に太い繊維が少なくなり、その結果、不織布による粒子の捕集効率が高まる。また、前記繊維における繊維径の変動係数が0.40以下であることにより、極端に細い繊維が少なくなり、その結果、不織布の強度及び伸度が高まる。
When the average fiber diameter of the fibers is 20.0 μm or less, the efficiency of particle collection by the nonwoven fabric increases.
Further, by setting the average fiber diameter of the fibers to 20.0 μm or less, the stiffness of the fibers can be lowered, and as a result, the texture (for example, texture, touch, etc.) of the nonwoven fabric is improved.
When the average fiber diameter of the fibers is 0.50 μm or more, the strength and elongation of the nonwoven fabric are increased.
When the coefficient of variation of the fiber diameter of the fibers is 0.40 or less, the number of extremely thick fibers is reduced, and as a result, the efficiency of particle collection by the nonwoven fabric is increased. Further, since the coefficient of variation of the fiber diameter of the fibers is 0.40 or less, the number of extremely thin fibers is reduced, and as a result, the strength and elongation of the nonwoven fabric are increased.
 なお、繊維における繊維径の平均値及び変動係数は、以下のようにして求めることができる。
 まず、不織布から試験片を取得する。
 次に、走査電子顕微鏡で試験片の面において5箇所の写真(1700倍)を撮影する。
 そして、1つ写真につき無作為に選択した繊維20本以上の直径(幅)を測定する。
 次に、測定した全ての繊維の直径(幅)の値から算術平均値及び変動係数(=標準偏差/算術平均値)を求める。
Note that the average value and coefficient of variation of the fiber diameter of the fibers can be determined as follows.
First, a test piece is obtained from a nonwoven fabric.
Next, photographs (1700x) are taken at five locations on the surface of the test piece using a scanning electron microscope.
Then, the diameter (width) of 20 or more randomly selected fibers for each photograph is measured.
Next, the arithmetic mean value and coefficient of variation (=standard deviation/arithmetic mean value) are determined from the diameter (width) values of all the measured fibers.
 本実施形態に係る不織布の目付は、好ましくは20~150g/m、より好ましくは30~140g/m、更に好ましくは40~120g/mである。
 本実施形態に係る不織布の目付が20g/m以上であることにより、不織布の強度及び伸度が高まる。また、本実施形態に係る不織布の目付が20g/m以上であることにより、不織布による粒子の捕集効率が高まる。
 また、本実施形態に係る不織布の目付が150g/m以下であることにより、通液性(通水性等)又は通気性を高めることができる。
The basis weight of the nonwoven fabric according to this embodiment is preferably 20 to 150 g/m 2 , more preferably 30 to 140 g/m 2 , and still more preferably 40 to 120 g/m 2 .
When the basis weight of the nonwoven fabric according to this embodiment is 20 g/m 2 or more, the strength and elongation of the nonwoven fabric are increased. Further, since the nonwoven fabric according to the present embodiment has a basis weight of 20 g/m 2 or more, the particle collection efficiency of the nonwoven fabric increases.
Further, by setting the basis weight of the nonwoven fabric according to the present embodiment to 150 g/m 2 or less, liquid permeability (water permeability, etc.) or air permeability can be improved.
 なお、本実施形態に係る不織布の目付は、以下のようにして求めることができる。
 まず、本実施形態に係る不織布から試験片を取得する。
 試験片の大きさは、例えば100mm×100mm、200mm×200mm等とすることができる。
 次に、電子天秤などにより試験片の重量を測定する。
 そして、試験片の重量を試験片の面積で除して目付を算出する。
Note that the basis weight of the nonwoven fabric according to this embodiment can be determined as follows.
First, a test piece is obtained from the nonwoven fabric according to this embodiment.
The size of the test piece can be, for example, 100 mm x 100 mm, 200 mm x 200 mm, etc.
Next, the weight of the test piece is measured using an electronic balance or the like.
Then, the basis weight is calculated by dividing the weight of the test piece by the area of the test piece.
 また、本実施形態に係る不織布の厚みは、好ましくは0.10~0.80mm、より好ましくは0.15~0.60mmである。
 本実施形態に係る不織布の厚みが0.10~0.80mmであることにより、不織布を作製する際に、均質な不織布を得やすくなる。
 また、本実施形態に係る不織布の厚みが0.10mm以上であることにより、不織布の強度及び伸度が高まる。また、本実施形態に係る不織布の厚みが0.10mm以上であることにより、不織布による粒子の捕集効率が高まる。
 さらに、本実施形態に係る不織布の厚みが0.80mm以下であることにより、不織布の通液性(通水性等)又は通気性を高めることができる。
Further, the thickness of the nonwoven fabric according to this embodiment is preferably 0.10 to 0.80 mm, more preferably 0.15 to 0.60 mm.
Since the thickness of the nonwoven fabric according to this embodiment is 0.10 to 0.80 mm, it becomes easier to obtain a homogeneous nonwoven fabric when producing the nonwoven fabric.
Further, since the thickness of the nonwoven fabric according to this embodiment is 0.10 mm or more, the strength and elongation of the nonwoven fabric are increased. Further, since the thickness of the nonwoven fabric according to the present embodiment is 0.10 mm or more, the efficiency of collecting particles by the nonwoven fabric increases.
Furthermore, since the thickness of the nonwoven fabric according to this embodiment is 0.80 mm or less, the liquid permeability (water permeability, etc.) or air permeability of the nonwoven fabric can be improved.
 なお、本実施形態に係る不織布の厚みについては、厚み計で不織布の3箇所以上の厚みを測定し、その算術平均値を不織布の厚みとすることができる。
 厚み計としては、例えば、尾崎製作所社製の「PEACOCK」などが挙げられる。
In addition, regarding the thickness of the nonwoven fabric according to the present embodiment, the thickness of the nonwoven fabric at three or more locations can be measured using a thickness meter, and the arithmetic mean value thereof can be taken as the thickness of the nonwoven fabric.
Examples of the thickness gauge include "PEACOCK" manufactured by Ozaki Seisakusho Co., Ltd.
 さらに、本実施形態に係る不織布の平均孔径は、好ましくは2.5μm以上30.0μm以下、より好ましくは3.0μm以上25.0μm以下、更に好ましくは3.0μm以上20.0μm以下である。
 本実施形態に係る不織布の平均孔径が2.5μm以上であることにより、不織布の通液性(通水性等)又は通気性を高めることができる。
 本実施形態に係る不織布の平均孔径が30.0μm以下であることにより、不織布による粒子の捕集効率が高まる。
Furthermore, the average pore diameter of the nonwoven fabric according to the present embodiment is preferably 2.5 μm or more and 30.0 μm or less, more preferably 3.0 μm or more and 25.0 μm or less, and still more preferably 3.0 μm or more and 20.0 μm or less.
When the average pore diameter of the nonwoven fabric according to this embodiment is 2.5 μm or more, the liquid permeability (water permeability, etc.) or air permeability of the nonwoven fabric can be improved.
When the average pore diameter of the nonwoven fabric according to this embodiment is 30.0 μm or less, the efficiency of particle collection by the nonwoven fabric increases.
 本実施形態に係る不織布の平均孔径は、JIS K3832-1990「精密ろ過膜エレメント及びモジュールのバブルポイント試験方法」に従って求めた平均流量孔径である。
 平均流量孔径は、例えば、パームポロメータ―(PMI社製)等を用いて測定することができる。
The average pore diameter of the nonwoven fabric according to the present embodiment is the average flow pore diameter determined according to JIS K3832-1990 "Bubble point test method for microfiltration membrane elements and modules."
The average flow pore diameter can be measured using, for example, a palm porometer (manufactured by PMI).
 本実施形態に係る不織布のMD方向の破断点引張伸度(単に「MD伸度」ともいう。)は、100%以上、好ましくは120%以上、より好ましくは150%以上である。本実施形態に係る不織布のMD伸度は、例えば、800%以下である。
 MD伸度が100%以上であることにより、本実施形態に係る不織布は、MD方向に引っ張られても破れにくくなる。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合を92.0モル%以下にすることにより、MD伸度が高まりやすくなる。
The tensile elongation at break in the MD direction of the nonwoven fabric according to the present embodiment (also simply referred to as "MD elongation") is 100% or more, preferably 120% or more, and more preferably 150% or more. The MD elongation of the nonwoven fabric according to this embodiment is, for example, 800% or less.
When the MD elongation is 100% or more, the nonwoven fabric according to the present embodiment is difficult to tear even when stretched in the MD direction.
By controlling the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin to 92.0 mol% or less, the MD elongation can be easily increased.
 本実施形態に係る不織布のCD方向の破断点引張伸度(単に「CD伸度」ともいう。)は、100%以上、好ましくは120%以上、より好ましくは150%以上である。本実施形態に係る不織布のCD伸度は、例えば、800%以下である。
 CD伸度が100%以上であることにより、本実施形態に係る不織布は、CD方向に引っ張られても破れにくくなる。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合を92.0モル%以下にすることにより、CD伸度が高まりやすくなる。
The tensile elongation at break in the CD direction (also simply referred to as "CD elongation") of the nonwoven fabric according to the present embodiment is 100% or more, preferably 120% or more, and more preferably 150% or more. The CD elongation of the nonwoven fabric according to this embodiment is, for example, 800% or less.
When the CD elongation is 100% or more, the nonwoven fabric according to the present embodiment is difficult to tear even when stretched in the CD direction.
By controlling the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin to 92.0 mol% or less, the CD elongation can be easily increased.
 ここで、MD方向は、不織布を製造する際に、不織布が移動する方向(Machine Direction)である。
 CD方向は、MD方向に対して垂直な方向である。
 破断点引張伸度は、引張破断伸度とも呼ばれる。
Here, the MD direction is a direction (Machine Direction) in which the nonwoven fabric moves when manufacturing the nonwoven fabric.
The CD direction is a direction perpendicular to the MD direction.
Tensile elongation at break is also called tensile elongation at break.
 前記不織布のMD方向の破断点引張伸度に対する、前記不織布のCD方向の破断点引張伸度の比(CD伸度/MD伸度)は、好ましくは0.50~2.00、より好ましくは0.56~1.80である。
 CD伸度/MD伸度が0.50~2.00であることにより、本実施形態に係る不織布に応力が掛かった際に、該不織布においてCD方向及びMD方向の何れか一方のみに応力が集中するのが抑制され、その結果、該不織布が破れにくくなる。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合を92.0モル%以下にすることにより、CD伸度/MD伸度が0.50~2.00の範囲内となりやすくなる。
The ratio of the tensile elongation at break in the CD direction of the nonwoven fabric to the tensile elongation at break in the MD direction of the nonwoven fabric (CD elongation/MD elongation) is preferably 0.50 to 2.00, more preferably It is 0.56 to 1.80.
Since the CD elongation/MD elongation is 0.50 to 2.00, when stress is applied to the nonwoven fabric according to this embodiment, stress is applied only in either the CD direction or the MD direction. Concentration is suppressed, and as a result, the nonwoven fabric becomes difficult to tear.
By controlling the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin to 92.0 mol% or less, a CD elongation/MD elongation of 0.50 to 2.00 can be obtained. It will be easier to fall within the range.
 なお、破断点引張伸度は、JIS B7721:2018「引張試験機・圧縮試験機-力計測系の校正方法及び検証方法」に準拠した定速伸長形引張試験機を用いて測定することができる。なお、定速伸長形引張試験機としては、万能試験機(エー・アンド・ディ社製のRTG-1210)等を用いることができる。
 破断点引張伸度は、具体的には以下のようにして求めることができる。
 まず、不織布から試験片(幅:8mm、長さ:40mm)を切り出す。
 次に、試験片を初荷重で定速伸長形引張試験機につかみ間隔を20mmで取り付ける。言い換えれば、初荷重を試験片にかけた時のつかみ間隔を、20mmとする。ただし、初荷重では、試験片を手でたるみが生じない程度に引っ張った状態とする。
 そして、20mm/分の引張速度で試験片が破断するまで荷重を加える。
 次に、下記式により破断点引張伸度を求める。
  破断点引張伸度(%) = 〔(破断時のつかみ間隔-初荷重を試験片にかけた時のつかみ間隔)/初荷重を試験片にかけた時のつかみ間隔〕×100(%)
In addition, the tensile elongation at break can be measured using a constant speed extension type tensile testing machine that complies with JIS B7721:2018 "Tensile testing machine/compression testing machine - Calibration method and verification method of force measurement system". . As the constant speed extension type tensile testing machine, a universal testing machine (RTG-1210 manufactured by A&D Co., Ltd.) or the like can be used.
Specifically, the tensile elongation at break can be determined as follows.
First, a test piece (width: 8 mm, length: 40 mm) is cut out from a nonwoven fabric.
Next, the test piece is attached to a constant speed extension type tensile tester with an initial load at a grip interval of 20 mm. In other words, the gripping interval when the initial load is applied to the test piece is 20 mm. However, for the initial load, the test piece should be pulled by hand to the extent that no slack occurs.
Then, a load is applied at a tensile speed of 20 mm/min until the test piece breaks.
Next, the tensile elongation at break is determined using the following formula.
Tensile elongation at break (%) = [(grabbing interval at break - gripping interval when the initial load is applied to the test piece) / gripping interval when the initial load is applied to the test piece] x 100 (%)
 本実施形態に係る不織布のMD方向の50%伸長回復率は、好ましくは50%以上、より好ましくは55%以上である。本実施形態に係る不織布のMD方向の50%伸長回復率は、100%以下であり、例えば90%以下である。
 本実施形態に係る不織布のMD方向の50%伸長回復率が50%以上であることにより、本実施形態に係る不織布は、MD方向に対して伸縮性に優れる。
The 50% elongation recovery rate in the MD direction of the nonwoven fabric according to this embodiment is preferably 50% or more, more preferably 55% or more. The 50% elongation recovery rate in the MD direction of the nonwoven fabric according to this embodiment is 100% or less, for example, 90% or less.
Since the 50% elongation recovery rate in the MD direction of the nonwoven fabric according to the present embodiment is 50% or more, the nonwoven fabric according to the present embodiment has excellent stretchability in the MD direction.
 本実施形態に係る不織布のCD方向の50%伸長回復率は、好ましくは50%以上、より好ましくは55%以上である。本実施形態に係る不織布のCD方向の50%伸長回復率は、100%以下であり、例えば90%以下である。
 本実施形態に係る不織布のCD方向の50%伸長回復率が50%以上であることにより、本実施形態に係る不織布は、CD方向に対して伸縮性に優れる。
The 50% elongation recovery rate in the CD direction of the nonwoven fabric according to this embodiment is preferably 50% or more, more preferably 55% or more. The 50% elongation recovery rate in the CD direction of the nonwoven fabric according to this embodiment is 100% or less, for example, 90% or less.
Since the nonwoven fabric according to the present embodiment has a 50% elongation recovery rate in the CD direction of 50% or more, the nonwoven fabric according to the present embodiment has excellent stretchability in the CD direction.
 前記不織布のMD方向の50%伸長回復率が50%以上であり、及び/又は、前記不織布のCD方向の50%伸長回復率が50%以上であることが好ましい。
 また、前記不織布のMD方向の50%伸長回復率が50%以上であり、且つ、前記不織布のCD方向の50%伸長回復率が50%以上であることがより好ましい。
It is preferable that the 50% elongation recovery rate of the nonwoven fabric in the MD direction is 50% or more, and/or the 50% elongation recovery rate of the nonwoven fabric in the CD direction is 50% or more.
Moreover, it is more preferable that the 50% elongation recovery rate of the nonwoven fabric in the MD direction is 50% or more, and the 50% elongation recovery rate of the nonwoven fabric in the CD direction is 50% or more.
 なお、50%伸長回復率の測定では、JIS L1096:2010「織物及び編物の生地試験方法」に準拠して、50%伸長回復率を測定する。
 50%伸長回復率は、具体的には以下のようにして求めることができる。
 まず、不織布から試験片(幅:50mm、長さ:300mm)を切り出す。
 次に、試験片を初荷重で定速伸長形引張試験機につかみ間隔を200mmで取り付ける。言い換えれば、初荷重を試験片にかけた時のつかみ間隔を、200mmとする。ただし、初荷重では、試験片を手でたるみが生じない程度に引っ張った状態とする。
 そして、200mm/分の引張速度でつかみ間隔の50%まで荷重を加えた後、1分間保持し、同じ速度で除荷しながら元の位置まで戻す。
  50%伸長回復率(%) = 〔(50%伸長時のつかみ間隔-除荷中に荷重が0となるつかみ間隔)/(50%伸長時のつかみ間隔-初荷重を試験片にかけた時のつかみ間隔)〕×100(%)
In the measurement of the 50% elongation recovery rate, the 50% elongation recovery rate is measured in accordance with JIS L1096:2010 "Fabric testing method for woven and knitted fabrics".
Specifically, the 50% elongation recovery rate can be determined as follows.
First, a test piece (width: 50 mm, length: 300 mm) is cut out from a nonwoven fabric.
Next, the test piece is attached to a constant speed extension type tensile tester with an initial load and a grip interval of 200 mm. In other words, the gripping interval when the initial load is applied to the test piece is 200 mm. However, for the initial load, the test piece should be pulled by hand to the extent that no slack occurs.
Then, after applying a load to 50% of the grip interval at a pulling speed of 200 mm/min, it is held for 1 minute, and then returned to the original position while unloading at the same speed.
50% elongation recovery rate (%) = [(grabbing interval at 50% elongation - gripping interval at which the load becomes 0 during unloading) / (grabbing interval at 50% elongation - when the initial load is applied to the test piece) Grasp interval)] x 100 (%)
 本実施形態に係る不織布は、紡糸直結不織布であることが好ましい。
 前記紡糸直結不織布は、「溶融紡糸により得られた原糸を絡み合わせて直接シート状にし、該原糸を固化させることにより得られた不織布」を意味する。なお、「原糸を絡み合わせて直接シート状にする」とは、「原糸が固化する前に原糸を絡み合わせてシート状にする」ことを意味する。
 前記紡糸直結不織布としては、例えば、メルトブローン不織布、スパンボンド不織布、フラッシュ紡糸不織布、エレクトロスピニング不織布などが挙げられる。
 なお、前記メルトブローン不織布は、スパンブローン(登録商標)法により得られた不織布も含む概念である。
 本実施形態に係る不織布は、メルトブローン不織布、又は、スパンボンド不織布であることがより好ましく、メルトブローン不織布であることが更に好ましい。
The nonwoven fabric according to this embodiment is preferably a directly spun nonwoven fabric.
The direct-spinning nonwoven fabric means "a nonwoven fabric obtained by directly intertwining raw yarns obtained by melt spinning to form a sheet, and solidifying the raw yarns." Note that "to directly intertwine the yarns to form a sheet" means "to intertwine the yarns to form a sheet before the yarns solidify."
Examples of the directly spun nonwoven fabric include melt blown nonwoven fabric, spunbond nonwoven fabric, flash spun nonwoven fabric, and electrospun nonwoven fabric.
Note that the concept of the melt-blown nonwoven fabric includes a nonwoven fabric obtained by the spun-blown (registered trademark) method.
The nonwoven fabric according to this embodiment is more preferably a meltblown nonwoven fabric or a spunbond nonwoven fabric, and even more preferably a meltblown nonwoven fabric.
 本実施形態に係る不織布は、例えば、様々な製品(例えば、マスク、フィルター、使い捨ておむつ、生理用ナプキン、テーピング材、貼付剤、包袋、手袋、衣料など)の基材として好適に用いることができる。
 なお、基材は、補強材を含む概念である。
 前記フィルターとしては、粒子(例えば、ウイルス等が付着した粒子、花粉など)を除去する除去フィルター(例えば、マスク用フィルターなど)、血球を捕集する血液フィルター、飲料抽出用フィルター(例えば、コーヒードリップ用フィルター、ティーバッグなど)等が挙げられる。
 本実施形態に係る不織布は、マスクの耳掛け部の基材やマスクの補強材として特に好適に用いられる。
The nonwoven fabric according to this embodiment can be suitably used as a base material for various products (e.g., masks, filters, disposable diapers, sanitary napkins, taping materials, patches, wrapping bags, gloves, clothing, etc.). can.
Note that the base material is a concept that includes a reinforcing material.
Examples of the filters include removal filters (e.g., mask filters) that remove particles (e.g., particles with viruses and the like, pollen, etc.), blood filters that collect blood cells, and beverage extraction filters (e.g., coffee drip filters). filters, tea bags, etc.).
The nonwoven fabric according to this embodiment is particularly suitably used as a base material for an ear hook part of a mask or a reinforcing material for a mask.
<不織布の製造方法>
 本実施形態に係る不織布は、上記の如く構成されているが、次に、本実施形態に係る不織布の製造方法について説明する。
<Method for manufacturing nonwoven fabric>
Although the nonwoven fabric according to this embodiment is configured as described above, next, a method for manufacturing the nonwoven fabric according to this embodiment will be described.
 本実施形態に係る不織布の製造方法は、ノズル孔を有するノズルを用いて、繊維を含む不織布を製造する。
 本実施形態に係る不織布の製造方法は、溶融物を前記ノズル孔から吐出することにより、原糸を得る工程(A)と、前記原糸を延伸する工程(B)とを有する。
 前記溶融物は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有する。
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含む。
 前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が、70モル%以上92モル%以下である。
 前記繊維の断面積に対する、前記ノズル孔の開口面積の比が、300以上である。
The method for manufacturing a nonwoven fabric according to the present embodiment uses a nozzle having a nozzle hole to manufacture a nonwoven fabric containing fibers.
The method for manufacturing a nonwoven fabric according to the present embodiment includes a step (A) of obtaining a yarn by discharging a melt from the nozzle hole, and a step (B) of stretching the yarn.
The melt contains a poly(3-hydroxyalkanoate) resin.
The poly(3-hydroxyalkanoate) resin includes a copolymer having 3-hydroxybutyrate units.
The content of the 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less.
The ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 300 or more.
 以下では、本実施形態に係る不織布の製造方法について、メルトブローン法により不織布を得る方法を例に挙げて説明する。
 なお、前記メルトブローン法は、スパンブローン(登録商標)法も含む概念である。
Below, the method for manufacturing a nonwoven fabric according to the present embodiment will be explained using, as an example, a method for obtaining a nonwoven fabric by a melt blown method.
Note that the melt blown method is a concept that also includes the spun blown (registered trademark) method.
 前記溶融物は、原料組成物から得られる。
 前記工程(A)では、原料組成物を加熱により溶融させることにより溶融物を得、該溶融物を前記ノズル孔から吐出することにより原糸を得る。
The melt is obtained from a raw material composition.
In the step (A), a raw material composition is melted by heating to obtain a melt, and the melt is discharged from the nozzle hole to obtain a yarn.
 前記原料組成物の165℃でのメルトマスフローレート(MFR)は、好ましくは1.0~1500g/10min、より好ましくは2.0~1000g/10min、更に好ましくは5.0~1000g/10min、特に好ましくは10~800g/10minである。 The melt mass flow rate (MFR) of the raw material composition at 165° C. is preferably 1.0 to 1500 g/10 min, more preferably 2.0 to 1000 g/10 min, even more preferably 5.0 to 1000 g/10 min, especially Preferably it is 10 to 800 g/10 min.
 前記原料組成物の165℃でのメルトマスフローレートが1500g/10min以下であることにより、不織布の強度及び伸度がより一層高まる。
 前記原料組成物の165℃でのメルトマスフローレートが1.0g/10min以上であることにより、原糸の延伸時に原糸にかかる張力を低くでき、得られる不織布における繊維の繊維径を細くしやすくなる。その結果、不織布による粒子の捕集効率が高まる。
 また、前記原料組成物の165℃でのメルトマスフローレートが1.0g/10min以上であることにより、不織布を作製する際に、ポリマー成分の塊の発生を抑制できる。その結果、不織布の生産性が向上する。また、前記原料組成物の165℃でのメルトマスフローレートが1.0g/10min以上であることにより、不織布を作製する際に、ノズルのノズル孔の詰まりを抑制できる。その結果、不織布の生産性が向上する。
When the melt mass flow rate at 165° C. of the raw material composition is 1500 g/10 min or less, the strength and elongation of the nonwoven fabric are further increased.
By having a melt mass flow rate of 1.0 g/10 min or more at 165° C. of the raw material composition, the tension applied to the yarn during stretching can be lowered, and the fiber diameter of the fibers in the resulting nonwoven fabric can be easily reduced. Become. As a result, the efficiency of particle collection by the nonwoven fabric increases.
Further, since the melt mass flow rate at 165° C. of the raw material composition is 1.0 g/10 min or more, it is possible to suppress the formation of lumps of polymer components when producing a nonwoven fabric. As a result, the productivity of nonwoven fabrics is improved. Moreover, since the melt mass flow rate at 165° C. of the raw material composition is 1.0 g/10 min or more, clogging of the nozzle hole of the nozzle can be suppressed when producing a nonwoven fabric. As a result, the productivity of nonwoven fabrics is improved.
 なお、前記原料組成物の165℃でのメルトマスフローレート(MFR)については、ASTM-D1238(ISO1133-1、JIS K7210-1:2011)のB法で原料組成物の165℃でのメルトボリュームフローレート(MVR)を求め、原料組成物の165℃でのメルトボリュームフローレート(MVR)及び原料組成物の密度から、原料組成物の165℃でのメルトマスフローレート(MFR)を求める。
 また、原料組成物の165℃でのメルトボリュームフローレート(MVR)は、原料組成物5g以上を165℃で4分間加熱した後、加熱した樹脂組成物に5kgの荷重をかけて測定する。
Regarding the melt mass flow rate (MFR) of the raw material composition at 165°C, the melt volume flow rate (MFR) of the raw material composition at 165°C is determined by method B of ASTM-D1238 (ISO1133-1, JIS K7210-1:2011). The melt mass flow rate (MFR) of the raw material composition at 165° C. is determined from the melt volume flow rate (MVR) of the raw material composition at 165° C. and the density of the raw material composition.
Moreover, the melt volume flow rate (MVR) at 165° C. of the raw material composition is measured by heating 5 g or more of the raw material composition at 165° C. for 4 minutes, and then applying a load of 5 kg to the heated resin composition.
 前記原料組成物の重量平均分子量は、好ましくは100,000~550,000、より好ましくは110,000~500,000、さらに好ましくは110,000~450,000、特に好ましくは200,000~450,000である。 The weight average molecular weight of the raw material composition is preferably 100,000 to 550,000, more preferably 110,000 to 500,000, even more preferably 110,000 to 450,000, particularly preferably 200,000 to 450. ,000.
 前記原料組成物の重量平均分子量が100,000以上であることにより、不織布の強度及び伸度が高まる。
 また、前記原料組成物の重量平均分子量が200,000以上であることにより、不織布がより一層破れにくくなる。
 前記原料組成物の重量平均分子量が550,000以下であることにより、原糸の延伸時に原糸にかかる張力を低くでき、得られる不織布における繊維の繊維径を細くしやすくなる。その結果、不織布による粒子の捕集効率が高まる。
 また、前記原料組成物の重量平均分子量が550,000以下であることにより、不織布を作製する際に、ポリマー成分の塊の発生を抑制できる。その結果、不織布の生産性が向上する。また、前記原料組成物の重量平均分子量が550,000以下であることにより、不織布を作製する際に、ノズルのノズル孔の詰まりを抑制できる。その結果、不織布の生産性が向上する。
When the weight average molecular weight of the raw material composition is 100,000 or more, the strength and elongation of the nonwoven fabric are increased.
Furthermore, when the weight average molecular weight of the raw material composition is 200,000 or more, the nonwoven fabric becomes even more difficult to tear.
When the weight average molecular weight of the raw material composition is 550,000 or less, the tension applied to the yarn during drawing can be lowered, making it easier to reduce the fiber diameter of the fibers in the resulting nonwoven fabric. As a result, the efficiency of particle collection by the nonwoven fabric increases.
Moreover, since the weight average molecular weight of the raw material composition is 550,000 or less, the generation of lumps of polymer components can be suppressed when producing a nonwoven fabric. As a result, the productivity of nonwoven fabrics is improved. Moreover, since the weight average molecular weight of the raw material composition is 550,000 or less, clogging of the nozzle hole of the nozzle can be suppressed when producing the nonwoven fabric. As a result, the productivity of nonwoven fabrics is improved.
 前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合は、70.0モル%以上92.0モル%以下、好ましくは80.0モル%以上92.0モル%以下、より好ましくは82.0モル以上92.0以下、更に好ましくは85.0モル以上91.6以下である。
 前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が70.0モル%以上であることにより、前記繊維の剛性が高くなる。
 前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が92.0モル%以下であることにより、本実施形態に係る不織布が破れにくくなる。また、前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が92.0モル%以下であることにより、本実施形態に係る不織布に毛羽立ちが生じにくくなる。
The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70.0 mol% or more and 92.0 mol% or less, preferably 80.0 mol%. The content is 92.0 mol % or more, more preferably 82.0 mol or more and 92.0 mol % or less, even more preferably 85.0 mol or more and 91.6 mol % or less.
When the content of the 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the melt is 70.0 mol % or more, the rigidity of the fiber becomes high.
When the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 92.0 mol% or less, the nonwoven fabric according to the present embodiment becomes difficult to tear. . Further, since the content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin is 92.0 mol% or less, the nonwoven fabric according to the present embodiment is less likely to become fluffy.
 なお、前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合は、前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂全体における前記3-ヒドロキシブチレート単位の含有割合を意味する。
 溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシブチレート単位の含有割合は、溶融物に含まれる乾燥したポリ(3-ヒドロキシアルカノエート)系樹脂を用いて、上述した「前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合」と同様に求めることができる。
 また、原料組成物(「原料組成物」については、後述する。)に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシブチレート単位の含有割合を、前記溶融物に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合としてもよい。
The content ratio of the 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the melt is the same as the content of the 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric. It means the content ratio of the 3-hydroxybutyrate unit.
The content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the melt is determined by using the dried poly(3-hydroxyalkanoate) resin contained in the melt, It can be determined in the same manner as the above-mentioned "content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric."
In addition, the content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition (the "raw material composition" will be described later) is determined by It may also be the content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin.
 本実施形態に係る不織布の製造方法では、不織布の製造装置を用いて、前記原料組成物から不織布を得る。 In the method for manufacturing a nonwoven fabric according to the present embodiment, a nonwoven fabric is obtained from the raw material composition using a nonwoven fabric manufacturing apparatus.
 図1に示すように、前記不織布の製造装置1は、原料組成物を溶融することにより溶融物を得る押出機3と、該押出機3に原料組成物を供給するホッパー2と、該溶融物を混練することにより、混練状態の溶融物を得る混練機6と、該溶融物を繊維状に吐出することにより原糸を得るノズル7と、該原糸を捕集し、冷却させることにより、第1の不織布Bを得る捕集機8と、該第1の不織布Bを巻き取る巻取装置9とを備える。 As shown in FIG. 1, the nonwoven fabric manufacturing apparatus 1 includes an extruder 3 that obtains a melt by melting a raw material composition, a hopper 2 that supplies the raw material composition to the extruder 3, and a hopper 2 that supplies the raw material composition to the extruder 3. A kneader 6 that obtains a melted material in a kneaded state by kneading, a nozzle 7 that obtains a raw yarn by discharging the melt in the form of fibers, and a nozzle 7 that collects and cools the raw yarn. A collection machine 8 for obtaining a first nonwoven fabric B, and a winding device 9 for winding up the first nonwoven fabric B are provided.
 また、前記不織布の製造装置1は、必要に応じて、溶融物を押出機3から混練機6に供給するギアポンプ4を備えてもよい。
 前記不織布の製造装置1は、ギアポンプ4を備えることにより、混練機6に供給する溶融物の量が変動するのを抑制することができる。
Further, the nonwoven fabric manufacturing apparatus 1 may include a gear pump 4 for supplying the melt from the extruder 3 to the kneader 6, if necessary.
By including the gear pump 4, the nonwoven fabric manufacturing apparatus 1 can suppress fluctuations in the amount of melt supplied to the kneader 6.
 さらに、前記不織布の製造装置1は、必要に応じて、混練機6の上流側で溶融物から異物を除去するフィルター5を備えてもよい。 Further, the nonwoven fabric manufacturing apparatus 1 may include a filter 5 for removing foreign matter from the melt on the upstream side of the kneader 6, if necessary.
 前記工程(A)では、ホッパー2を介して原料組成物を押出機3に供給し、原料組成物を溶融することにより溶融物を得る。 In the step (A), the raw material composition is supplied to the extruder 3 via the hopper 2, and the raw material composition is melted to obtain a melt.
 前記押出機3に供給する原料組成物は、好ましくは固体状、より好ましくはペレット状である。
 また、前記押出機3に供給する原料組成物は、原料組成物の樹脂が加水分解するのを抑制するという観点や、原料組成物の樹脂が酸化劣化するのを抑制するという観点から、加熱乾燥されていることが好ましい。
 前記押出機3に供給する原料組成物中の水分量は、200ppmw以下が好ましい。
 原料組成物を乾燥する際には、雰囲気中の酸素を取り除いたり、原料組成物中の酸素を除去したりすることが好ましい。乾燥時の雰囲気は、不活性ガス(例えば、窒素ガス等)の雰囲気とすることが好ましい。
 前記工程(A)では、原料組成物の乾燥をホッパー2に供給する前に実施してもよく、また、ホッパー2をホッパー型乾燥機にして、原料組成物の乾燥をホッパー2で実施してもよい。
The raw material composition supplied to the extruder 3 is preferably in the form of a solid, more preferably in the form of pellets.
In addition, the raw material composition supplied to the extruder 3 is heated and dried from the viewpoint of suppressing hydrolysis of the resin of the raw material composition and suppressing oxidative deterioration of the resin of the raw material composition. It is preferable that the
The amount of water in the raw material composition supplied to the extruder 3 is preferably 200 ppmw or less.
When drying the raw material composition, it is preferable to remove oxygen in the atmosphere or in the raw material composition. The atmosphere during drying is preferably an atmosphere of inert gas (eg, nitrogen gas, etc.).
In the step (A), the raw material composition may be dried before being supplied to the hopper 2, or the hopper 2 may be a hopper type dryer and the raw material composition may be dried in the hopper 2. Good too.
 前記押出機3としては、例えば、単軸押出機、同方向噛合型2軸押出機、同方向非噛合型2軸押出機、異方向非噛合型2軸押出機、多軸押出機等が挙げられる。
 前記押出機3としては、押出機内における樹脂滞留部が少ないため押出中における原料組成物の熱劣化を抑制しやすいという観点、及び、設備費が安価となるという観点から、単軸押出機が好ましい。
Examples of the extruder 3 include a single-screw extruder, a co-direction meshing twin-screw extruder, a co-direction non-meshing twin-screw extruder, a different-direction non-meshing twin-screw extruder, and a multi-screw extruder. It will be done.
As the extruder 3, a single-screw extruder is preferable from the viewpoints that thermal deterioration of the raw material composition during extrusion is easily suppressed due to the small resin retention part in the extruder, and from the viewpoint that equipment costs are low. .
 また、前記工程(A)では、溶融物をギアポンプ4によりフィルター5を介して混練機6に供給し、溶融物を混練機6で混練することにより、混練状態の溶融物を得る。 Further, in the step (A), the melt is supplied to the kneader 6 via the filter 5 by the gear pump 4, and the melt is kneaded by the kneader 6, thereby obtaining the melt in a kneaded state.
 前記フィルター5としては、例えば、スクリーンメッシュ、プリーツ型フィルター、リーフディスク型フィルター等が挙げられる。
 前記フィルター5としては、濾過精度、濾過面積、及び、耐圧性能の観点や、異物による目詰まりが生じ難いという観点から、リーフディスク型フィルターが好ましい。
 フィルター5の濾材としては、例えば、金属繊維の焼結不織布を用いることができる。
Examples of the filter 5 include a screen mesh, a pleated filter, a leaf disk filter, and the like.
As the filter 5, a leaf disk type filter is preferable from the viewpoints of filtration accuracy, filtration area, and pressure resistance performance, and from the viewpoint of being less likely to be clogged by foreign matter.
As the filter medium of the filter 5, for example, a sintered nonwoven fabric of metal fibers can be used.
 前記工程(A)では、溶融物をノズル7から繊維状に吐出することにより、原糸を得る。 In the step (A), the melt is discharged from the nozzle 7 in the form of fibers to obtain raw yarn.
 前記ノズル7は、スピニングダイヘッドである。
 図2においては、前記ノズル7は、溶融物を繊維状に吐出することにより原糸Aを得るノズル孔7aを複数有する。そして、図2に示すように、前記ノズル7は、原糸Aを複数本吐出する。
 なお、前記ノズル7は、ノズル孔7aを1つのみ有してもよい。すなわち、前記ノズル7は、原糸Aを1本のみ吐出してもよい。
The nozzle 7 is a spinning die head.
In FIG. 2, the nozzle 7 has a plurality of nozzle holes 7a from which raw yarn A is obtained by discharging the melt in the form of fibers. Then, as shown in FIG. 2, the nozzle 7 discharges a plurality of yarns A.
Note that the nozzle 7 may have only one nozzle hole 7a. That is, the nozzle 7 may discharge only one yarn A.
 複数の前記ノズル孔7aは、下方に向けて開口している。
 前記ノズル孔7aの開口の形状は、例えば、円形状(円形、略円形、楕円形、及び、略楕円形を含む概念)である。
 前記ノズル孔7aの開口径は、不織布の繊維の繊維径に応じて適宜選択される。
 前記ノズル孔7aの開口径は、好ましくは0.05mm以上、より好ましくは0.10mm以上、更に好ましくは0.12mm以上である。
 また、前記ノズル孔7aの開口径は、好ましくは1.0mm以下、より好ましくは0.50mm以下、更に好ましくは0.30mm未満、特に好ましくは0.25mm以下である。
 前記開口径は、前記開口径の算術平均値を意味する。
The plurality of nozzle holes 7a are open downward.
The shape of the opening of the nozzle hole 7a is, for example, circular (a concept including circular, substantially circular, elliptical, and substantially elliptical).
The opening diameter of the nozzle hole 7a is appropriately selected depending on the fiber diameter of the fibers of the nonwoven fabric.
The opening diameter of the nozzle hole 7a is preferably 0.05 mm or more, more preferably 0.10 mm or more, and still more preferably 0.12 mm or more.
Further, the opening diameter of the nozzle hole 7a is preferably 1.0 mm or less, more preferably 0.50 mm or less, still more preferably less than 0.30 mm, particularly preferably 0.25 mm or less.
The aperture diameter means the arithmetic mean value of the aperture diameters.
 前記繊維の断面積に対する、前記ノズル孔の開口面積の比は、300以上、好ましくは300~20,000、より好ましくは400~20,000、更に好ましくは500~15,000である。
 前記繊維の断面積に対する、前記ノズル孔の開口面積の比が300以上であることにより、前記不織布のMD方向の破断点引張伸度及び前記不織布のCD方向の破断点引張伸度を高めることができる。
 なお、前記繊維の断面積に対する、前記ノズル孔の開口面積の比は、延伸倍率の指標となる。
The ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 300 or more, preferably 300 to 20,000, more preferably 400 to 20,000, still more preferably 500 to 15,000.
By setting the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber to be 300 or more, it is possible to increase the tensile elongation at break in the MD direction of the nonwoven fabric and the tensile elongation at break in the CD direction of the nonwoven fabric. can.
Note that the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber serves as an index of the stretching ratio.
 前記繊維の断面積は、繊維の断面が円形であるとして、前記繊維における繊維径の平均値から求めることができる。 The cross-sectional area of the fiber can be determined from the average fiber diameter of the fiber, assuming that the cross-section of the fiber is circular.
 前記ノズル孔の開口面積は、前記ノズル孔の開口面積の平均値を意味する。なお、開口が円形である場合には、前記ノズル孔の開口面積は、前記開口径の算術平均値から求めることができる。 The opening area of the nozzle hole means the average value of the opening area of the nozzle hole. Note that when the opening is circular, the opening area of the nozzle hole can be determined from the arithmetic mean value of the opening diameters.
 前記ノズル7では、複数のノズル孔7aが間隔を空けて列をなしている。
 図2においては、複数のノズル孔7aが1列に並んでいる。
 なお、複数のノズル孔7aの列は、2列以上であってもよい。言い換えれば、前記メルトブローン法は、スパンブローン(登録商標)法であってもよい。
 隣接するノズル孔7aどうしの距離(以下「間隔」ともいう。)は、例えば、0.05mm以上が好ましく、0.1mm以上がより好ましく、0.25mm以上がより更に好ましい。
 隣接するノズル孔7aどうしの距離(間隔)が0.05mm以上であることにより、隣接する原糸同士が融着するのを抑制することができ、その結果、繊維の繊維径の変動係数を小さくすることができる。
 また、隣接するノズル孔7aどうしの距離(間隔)は、例えば、1.0mm以下が好ましく、0.7mm以下がより好ましく、0.5mm以下がより更に好ましい。
 隣接するノズル孔7aどうしの距離は、均等であってもよく、均等でなくてもよいが、均質な不織布を製造しやすい点で均等であるのが好ましい。
 隣接するノズル孔7aどうしの距離(間隔)は、隣接するノズル孔7aどうしの距離(間隔)の算術平均値を意味する。
In the nozzle 7, a plurality of nozzle holes 7a are arranged in a row at intervals.
In FIG. 2, a plurality of nozzle holes 7a are lined up in one row.
Note that the number of rows of the plurality of nozzle holes 7a may be two or more. In other words, the melt blown method may be a spun blown (registered trademark) method.
The distance between adjacent nozzle holes 7a (hereinafter also referred to as "interval") is, for example, preferably 0.05 mm or more, more preferably 0.1 mm or more, and even more preferably 0.25 mm or more.
By setting the distance (interval) between adjacent nozzle holes 7a to 0.05 mm or more, it is possible to suppress the adjoining raw yarns from fusing together, and as a result, the coefficient of variation of the fiber diameter of the fiber can be reduced. can do.
Further, the distance (interval) between adjacent nozzle holes 7a is preferably 1.0 mm or less, more preferably 0.7 mm or less, and even more preferably 0.5 mm or less.
Although the distances between adjacent nozzle holes 7a may or may not be equal, it is preferable that the distances be equal because it facilitates the production of a homogeneous nonwoven fabric.
The distance (interval) between adjacent nozzle holes 7a means the arithmetic average value of the distance (interval) between adjacent nozzle holes 7a.
 前記捕集機8は、原糸Aを捕集する捕集面を有する。
 前記捕集機8は、コンベアとなっている。
 前記コンベアは、前記捕集面を有するコンベアベルト8aと、該コンベアベルト8aを駆動する複数のローラ8bとを備える。
 前記捕集面は、前記ノズル孔7aの真下に配置されている。
 前記コンベアベルト8aは、通気性を有する。具体的には、前記コンベアベルト8aは、網目状の材料で形成されている。すなわち、捕集面が網目状となっている。
 なお、前記捕集機8は、捕集部を有していればよく、前記コンベアの代わりに、捕集ドラム又は捕集ネットであってもよい。
The collector 8 has a collection surface that collects the yarn A.
The collector 8 is a conveyor.
The conveyor includes a conveyor belt 8a having the collection surface and a plurality of rollers 8b that drive the conveyor belt 8a.
The collection surface is arranged directly below the nozzle hole 7a.
The conveyor belt 8a has air permeability. Specifically, the conveyor belt 8a is made of a mesh material. That is, the collection surface has a mesh shape.
Note that the collector 8 only needs to have a collector, and instead of the conveyor, it may be a collection drum or a collection net.
 前記ノズル孔7aと前記捕集面との距離(以下「DCD」ともいう。)は、好ましくは20mm以上、より好ましくは50mm以上、更に好ましく80mm以上である。
 また、前記ノズル孔7aと捕集部たるコンベアベルト8aとの距離(DCD)は、好ましくは250mm以下である。
 ノズル孔7aと前記捕集面との距離(DCD)は、ノズル孔7aと前記捕集面との距離(DCD)の算術平均値を意味する。
The distance between the nozzle hole 7a and the collection surface (hereinafter also referred to as "DCD") is preferably 20 mm or more, more preferably 50 mm or more, and still more preferably 80 mm or more.
Further, the distance (DCD) between the nozzle hole 7a and the conveyor belt 8a serving as the collecting section is preferably 250 mm or less.
The distance (DCD) between the nozzle hole 7a and the collection surface means the arithmetic mean value of the distance (DCD) between the nozzle hole 7a and the collection surface.
 前記不織布の製造装置1は、図3に示すように、気体Cを原糸Aに吹き付けることにより、原糸Aを延伸するように構成されている。 The nonwoven fabric manufacturing apparatus 1 is configured to stretch the yarn A by spraying gas C onto the yarn A, as shown in FIG.
 前記工程(B)では、原糸Aに気体Cを吹き付け、原糸Aに吹き付けられた気体Cを、網目状のコンベアベルト8aを通過させる。
 前記工程(B)では、原糸Aに吹き付けられた気体Cを、網目状のコンベアベルト8aを通過させやすくすべく、気体Cをサクション(図示せず)で吸引することが好ましい。これにより、網目状のコンベアベルト8aの捕集面上において、原糸の跳ね返りを防止しやすくなり、その結果、繊維同士が良好に融着した第1の不織布Bを形成し易くなる。
In the step (B), gas C is blown onto the yarn A, and the gas C blown onto the yarn A is passed through a mesh conveyor belt 8a.
In the step (B), it is preferable that the gas C blown onto the yarn A be sucked by a suction (not shown) so that the gas C can easily pass through the mesh conveyor belt 8a. This makes it easier to prevent the yarn from bouncing back on the collecting surface of the mesh-like conveyor belt 8a, and as a result, it becomes easier to form the first nonwoven fabric B in which the fibers are well fused together.
 原糸Aに吹き付ける気体Cの風量は、好ましくは500NL/min以上、より好ましくは1000NL/min以上、更に好ましくは2000NL/min以上である。
 また、原糸Aに吹き付ける気体Cの風量は、好ましくは12000NL/min以下、より好ましくは10000NL/min以下である。
The air volume of the gas C blown onto the yarn A is preferably 500 NL/min or more, more preferably 1000 NL/min or more, and still more preferably 2000 NL/min or more.
Moreover, the air volume of the gas C blown onto the yarn A is preferably 12,000 NL/min or less, more preferably 10,000 NL/min or less.
 原糸Aに吹き付ける気体Cは、高温の気体である。
 原糸Aに吹き付ける気体Cの温度は、好ましくは150℃~195℃、より好ましくは155℃~190℃、更に好ましくは160℃~185℃である。
The gas C blown onto the yarn A is a high temperature gas.
The temperature of the gas C blown onto the yarn A is preferably 150°C to 195°C, more preferably 155°C to 190°C, even more preferably 160°C to 185°C.
 前記気体Cとしては、空気、不活性ガス(窒素ガス等)が挙げられる。
 高温の気体Cを吹き付ける方法としては、コンプレッサー(図示せず)で加圧された気体Cをヒーター(図示せず)で加熱する方法などが挙げられる。
Examples of the gas C include air and inert gas (nitrogen gas, etc.).
Examples of the method of spraying the high temperature gas C include a method of heating the gas C pressurized by a compressor (not shown) with a heater (not shown).
 前記工程(B)では、結晶化度の高い不織布を得るために、気体Cの温度と風量とを適切に制御する。 In step (B), the temperature and air volume of gas C are appropriately controlled in order to obtain a nonwoven fabric with a high degree of crystallinity.
 そして、前記工程(B)では、延伸した原糸Aをコンベアベルト8aで捕集し、コンベアベルト8aで搬送させながら冷却することにより、第1の不織布Bを得る。 In the step (B), the drawn yarn A is collected by the conveyor belt 8a and cooled while being conveyed by the conveyor belt 8a, thereby obtaining the first nonwoven fabric B.
 前記網目状の捕集面を構成する材質は、第1の不織布Bの製造に関する温度条件に対する耐熱性を有し、且つ第1の不織布Bと過度に融着せず、第1の不織布Bを剥離可能な材質であれば特に限定されない。 The material constituting the mesh-like collection surface has heat resistance against the temperature conditions related to the production of the first nonwoven fabric B, does not excessively fuse with the first nonwoven fabric B, and peels off the first nonwoven fabric B. There is no particular limitation as long as the material is possible.
 前記コンベアベルト8aで第1の不織布Bを移動させる移動速度(コンベアベルト8aの移動速度)は、原料組成物の吐出量を勘案した上で、得られる第1の不織布Bの見かけ密度を考慮して適宜決定される。
 前記移動速度は、好ましくは0.2m/分以上6.0m/分以下の範囲内である。
The moving speed at which the first nonwoven fabric B is moved by the conveyor belt 8a (the moving speed of the conveyor belt 8a) is determined by taking into consideration the discharge amount of the raw material composition and the apparent density of the obtained first nonwoven fabric B. It will be decided as appropriate.
The moving speed is preferably within a range of 0.2 m/min or more and 6.0 m/min or less.
 前記工程(B)では、前記コンベアベルト8aで第1の不織布Bを巻取装置9に移送させ、第1の不織布Bを巻取装置9でロール状に巻き取る。 In the step (B), the first nonwoven fabric B is transferred to the winding device 9 using the conveyor belt 8a, and the first nonwoven fabric B is wound up into a roll by the winding device 9.
 本実施形態に係る不織布の製造方法では、前記原糸に吹き付ける気体に風量を高めることにより、前記繊維の断面積に対する、前記ノズル孔の開口面積の比を高めることができる。
 また、本実施形態に係る不織布の製造方法では、ノズル孔から吐出させる溶融物の単位時間当たりの量を低くすることによっても、前記繊維の断面積に対する、前記ノズル孔の開口面積の比を高めることができる。なお、ギアポンプの回転数を低くすることによって、ノズル孔から吐出させる溶融物の単位時間当たりの量を低くすることができる。
In the method for manufacturing a nonwoven fabric according to the present embodiment, by increasing the air volume of the gas blown onto the yarn, it is possible to increase the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber.
Further, in the method for manufacturing a nonwoven fabric according to the present embodiment, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is increased by lowering the amount of melt per unit time discharged from the nozzle hole. be able to. Note that by lowering the rotational speed of the gear pump, the amount of melt discharged from the nozzle hole per unit time can be lowered.
 本実施形態に係る不織布の製造方法は、前記工程(B)で得られた第1の不織布Bを加熱することにより、第2の不織布を得る工程(C)を有してもよい。 The method for manufacturing a nonwoven fabric according to the present embodiment may include a step (C) of heating the first nonwoven fabric B obtained in the step (B) to obtain a second nonwoven fabric.
 なお、本実施形態に係る不織布の製造方法が前記工程(C)を有する場合には、第2の不織布が前記不織布となる。一方で、本実施形態に係る不織布の製造方法が前記工程(C)を有さない場合には、第1の不織布が前記不織布となる。 Note that when the method for manufacturing a nonwoven fabric according to the present embodiment includes the step (C), the second nonwoven fabric is the nonwoven fabric. On the other hand, when the method for manufacturing a nonwoven fabric according to the present embodiment does not include the step (C), the first nonwoven fabric becomes the nonwoven fabric.
 本実施形態に係る不織布の製造方法は、前記工程(C)により、不織布が伸縮性に優れたものとなる。
 また、本実施形態に係る不織布の製造方法は、前記工程(C)により、不織布のCD方向の50%伸長回復率及び不織布のMD方向の50%伸長回復率を高めることができる。
 さらに、本実施形態に係る不織布の製造方法は、前記工程(C)により、繊維同士を部分的に融着させ、その結果、不織布の毛羽立ちを抑えやすくなる。
In the method for manufacturing a nonwoven fabric according to the present embodiment, the nonwoven fabric has excellent elasticity through the step (C).
Further, in the method for manufacturing a nonwoven fabric according to the present embodiment, the 50% elongation recovery rate in the CD direction of the nonwoven fabric and the 50% elongation recovery rate in the MD direction of the nonwoven fabric can be increased by the step (C).
Furthermore, in the method for manufacturing a nonwoven fabric according to the present embodiment, the fibers are partially fused to each other in the step (C), and as a result, the fluffing of the nonwoven fabric can be easily suppressed.
 前記工程(C)の加熱温度の範囲は、好ましくは80℃~135℃である。
 前記工程(C)の好ましい加熱温度の範囲内での加熱時間の範囲は、好ましくは2~300分、より好ましくは5~100分、さらにより好ましくは10~50分である。
 前記工程(C)では、好ましい加熱温度の範囲内で前記第1の不織布を2分以上加熱することにより、不織布のCD方向の50%伸長回復率及び不織布のMD方向の50%伸長回復率をより一層高めることができる。
 また、前記工程(C)では、好ましい前記加熱温度の範囲内で前記第1の不織布を300分以下で加熱することにより、第2の不織布の生産性が向上する。
The heating temperature range in step (C) is preferably 80°C to 135°C.
The range of heating time within the preferred heating temperature range in step (C) is preferably 2 to 300 minutes, more preferably 5 to 100 minutes, and even more preferably 10 to 50 minutes.
In the step (C), by heating the first nonwoven fabric for 2 minutes or more within a preferred heating temperature range, a 50% elongation recovery rate in the CD direction of the nonwoven fabric and a 50% elongation recovery rate in the MD direction of the nonwoven fabric are achieved. It can be further improved.
Moreover, in the step (C), the productivity of the second nonwoven fabric is improved by heating the first nonwoven fabric within the preferable heating temperature range for 300 minutes or less.
 前記工程(C)では、好ましい前記加熱温度の範囲内の気体で前記第1の不織布を加熱してもよい。
 前記気体としては、空気、不活性ガス(窒素ガス等)が挙げられる。
 好ましい前記加熱温度の範囲内の気体で前記第1の不織布を加熱する方法としては、好ましい前記加熱温度の範囲内の気体で加熱炉内において前記第1の不織布を加熱し、及び/又は、好ましい前記加熱温度の範囲内の気体を前記第1の不織布に吹き付けることにより前記第1の不織布を加熱すること等が挙げられる。
In the step (C), the first nonwoven fabric may be heated with a gas within the preferable heating temperature range.
Examples of the gas include air and inert gas (nitrogen gas, etc.).
The method of heating the first nonwoven fabric with a gas within the preferable heating temperature range includes heating the first nonwoven fabric in a heating furnace with a gas within the preferable heating temperature range, and/or a preferable method. Examples include heating the first nonwoven fabric by spraying a gas within the heating temperature range onto the first nonwoven fabric.
 また、前記工程(C)では、前記第1の不織布を、一対の加熱ロールで挟むことにより、好ましい前記加熱温度の範囲内で前記第1の不織布を加熱してもよい。 Furthermore, in the step (C), the first nonwoven fabric may be heated within the preferable heating temperature range by sandwiching the first nonwoven fabric between a pair of heating rolls.
 前記工程(C)では、好ましい前記加熱温度の範囲内で非接触で第1の不織布を加熱することが好ましい。
 前記工程(C)において、一対の加熱ロールで挟んで前記第1の不織布を加熱した場合には、前記第1の不織布が加熱ロールに溶着してしまうことが懸念される。
 前記工程(C)では、前記加熱ロール等と非接触で、好ましい前記加熱温度の範囲内で第1の不織布を加熱することにより、第1の不織布が加熱ロール等に溶着するのを抑制することができるという利点がある。
 好ましい前記加熱温度の範囲内で非接触で第1の不織布を加熱する方法としては、好ましい前記加熱温度の範囲内の気体で前記第1の不織布を加熱する方法などが挙げられる。
In the step (C), it is preferable to heat the first nonwoven fabric in a non-contact manner within the preferable heating temperature range.
In the step (C), when the first nonwoven fabric is heated while being sandwiched between a pair of heating rolls, there is a concern that the first nonwoven fabric may be welded to the heating rolls.
In the step (C), the first nonwoven fabric is heated within the preferable heating temperature range without contact with the heating roll etc., thereby suppressing welding of the first nonwoven fabric to the heating roll etc. It has the advantage of being able to
Examples of a method of heating the first nonwoven fabric in a non-contact manner within the preferable heating temperature range include a method of heating the first nonwoven fabric with a gas within the preferable heating temperature range.
 前記工程(C)では、前記第1の不織布をロールに巻いた状態で、前記第1の不織布を加熱してもよい。 In the step (C), the first nonwoven fabric may be heated while it is wound into a roll.
 また、前記工程(C)では、前記第1の不織布をロールに巻かずに、前記第1の不織布をシート状にして、前記第1の不織布を加熱してもよい。例えば、長尺状の前記第1の不織布を搬送しながら連続的に加熱してもよい。 Moreover, in the step (C), the first nonwoven fabric may be heated in a sheet form without being wound into a roll. For example, the elongated first nonwoven fabric may be heated continuously while being conveyed.
 前記工程(C)では、加熱した第1の不織布を冷却することにより、第2の不織布を得る。
 加熱した第1の不織布の冷却方法としては、加熱した第1の不織布を常温常圧下で自然冷却する方法であってもよく、また、加熱した第1の不織布に気体(例えば、常温の気体)を吹き付けることにより、加熱した第1の不織布を強制冷却してもよい。
 本実施形態に係る不織布の製造方法は、不織布の形状固定化、薄膜化、賦形することを目的にして、前記工程(B)で得られた第1の不織布Bを加圧する工程(D)を含んでいてもよい。
 前記工程(D)では、工程(B)で得られた第1の不織布Bを加圧処理する。加圧方法としては、例えば、上下一対のロール表面にそれぞれ彫刻が施されたエンボスロールや、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻が施されたロールとの組み合わせからなるエンボスロール、上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど各種ロールによる加圧や、不織布の厚み方向に熱風を通過させるエアスルー方式などを適用することが出来る。中でも、機械的強度を向上させながら適度な通気性も保持できるという観点から、エンボスロールを用いた加圧を好ましく採用することができる。
 工程(D)における加圧処理温度、即ち、加圧ロールの表面温度は、好ましくは20℃~120℃、より好ましくは30℃~100℃、さらに好ましくは30℃~80℃である。加圧処理温度をこの温度範囲にすることで、ポリ(3-ヒドロキシアルカノエート)系樹脂を含む不織布の形状を保つことができるとともに、シートの剥離や毛羽の発生を抑えることができる。一方、この温度範囲外で加圧すると、熱による強度や伸度の低下や、繊維が固化できず、ロールに張り付く以外に、不織布の形が維持できず、不織布が収縮したり破れたりする傾向がある。
 加圧に必要な圧力(ロール間圧力)は、特に限定されないが、形状の保持性などの点で20~60Kg/cmであることが好ましく、30~50Kg/cmであることがより好ましい。加圧熱接着ロールの圧力が、20Kg/cm以上であることにより、形状の固定化や薄膜化等の効果が十分に得られやすくなる。60Kg/cm以下であることにより、不織布に過剰な応力がかかり難くなり、不織布の破断を抑制しやすくなる。
 本実施形態の不織布の製造方法において、工程(A)、工程(B)、工程(C)、工程(D)は、連続的に実施してもよいし、非連続的に実施してもよいが、連続的に実施することが、より不織布を効率的に製造できる点で好ましい。
In the step (C), a second nonwoven fabric is obtained by cooling the heated first nonwoven fabric.
The method for cooling the heated first nonwoven fabric may be a method of naturally cooling the heated first nonwoven fabric at room temperature and normal pressure, or a method of cooling the heated first nonwoven fabric with a gas (for example, a gas at room temperature) The heated first nonwoven fabric may be forcedly cooled by spraying the heated first nonwoven fabric.
The method for manufacturing a nonwoven fabric according to the present embodiment includes a step (D) of pressurizing the first nonwoven fabric B obtained in the step (B) for the purpose of fixing the shape of the nonwoven fabric, making it thin, and shaping the nonwoven fabric. May contain.
In the step (D), the first nonwoven fabric B obtained in the step (B) is subjected to pressure treatment. Pressure methods include, for example, a pair of upper and lower rolls with embossed rolls with engravings on their surfaces, or a combination of one roll with a flat (smooth) surface and the other roll with engravings. It is possible to apply pressure using various rolls, such as an embossing roll consisting of an emboss roll, a thermal calendar roll consisting of a pair of upper and lower flat (smooth) rolls, or an air-through method in which hot air is passed through the thickness of the nonwoven fabric. Among these, pressurization using an embossing roll can be preferably employed from the viewpoint that it is possible to maintain appropriate air permeability while improving mechanical strength.
The pressure treatment temperature in step (D), ie, the surface temperature of the pressure roll, is preferably 20°C to 120°C, more preferably 30°C to 100°C, even more preferably 30°C to 80°C. By setting the pressure treatment temperature within this temperature range, the shape of the nonwoven fabric containing poly(3-hydroxyalkanoate) resin can be maintained, and peeling of the sheet and generation of fuzz can be suppressed. On the other hand, if pressure is applied outside this temperature range, the strength and elongation will decrease due to heat, the fibers will not be able to solidify, and the shape of the nonwoven fabric will not be maintained other than sticking to the roll, and the nonwoven fabric will tend to shrink or tear. There is.
The pressure required for pressurization (pressure between rolls) is not particularly limited, but is preferably 20 to 60 Kg/cm, more preferably 30 to 50 Kg/cm, from the viewpoint of shape retention. When the pressure of the pressurized thermal adhesive roll is 20 kg/cm or more, effects such as fixation of shape and thinning of the film can be sufficiently obtained. By being 60 Kg/cm or less, it becomes difficult to apply excessive stress to the nonwoven fabric, and it becomes easy to suppress breakage of the nonwoven fabric.
In the method for manufacturing a nonwoven fabric of this embodiment, step (A), step (B), step (C), and step (D) may be performed continuously or discontinuously. However, it is preferable to carry out the process continuously because the nonwoven fabric can be manufactured more efficiently.
 なお、本発明は、上記実施形態に限定されるものではない。また、本発明は、上記した作用効果によって限定されるものでもない。さらに、本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 Note that the present invention is not limited to the above embodiments. Further, the present invention is not limited to the above-described effects. Furthermore, the present invention can be modified in various ways without departing from the gist of the present invention.
 例えば、上記実施形態に係る不織布の製造方法では、メルトブローン法により不織布を製造しているが、本実施形態に係る不織布の製造方法では、スパンボンド法、フラッシュ紡糸法、又は、エレクトロスピニング法により不織布を製造してもよい。
 本実施形態に係る不織布の製造方法では、メルトブローン法、又は、スパンボンド法により前記不織布を製造することが好ましい。
For example, in the method for manufacturing a nonwoven fabric according to the above embodiment, a nonwoven fabric is manufactured by a melt-blown method, but in the method for manufacturing a nonwoven fabric according to this embodiment, a nonwoven fabric is manufactured by a spunbonding method, a flash spinning method, or an electrospinning method. may be manufactured.
In the method for manufacturing a nonwoven fabric according to the present embodiment, it is preferable that the nonwoven fabric is manufactured by a melt blown method or a spunbond method.
 スパンボンド法を用いる不織布の製造方法(スパンボンド不織布の製造方法)では、前記繊維の断面積に対する、前記ノズル孔の開口面積の比が、150以上、好ましくは150~15000、更に好ましくは160~15000、特に好ましくは165~12000、最も好ましくは200~10000である。
 前記繊維の断面積に対する、前記ノズル孔の開口面積の比が150以上であることにより、前記不織布のMD方向の破断点引張伸度及び前記不織布のCD方向の破断点引張伸度を高めることができる。
In the method for manufacturing a nonwoven fabric using a spunbond method (method for manufacturing a spunbond nonwoven fabric), the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 150 or more, preferably 150 to 15,000, more preferably 160 to 15,000, particularly preferably 165-12,000, most preferably 200-10,000.
By setting the ratio of the opening area of the nozzle holes to the cross-sectional area of the fibers to be 150 or more, it is possible to increase the tensile elongation at break in the MD direction of the nonwoven fabric and the tensile elongation at break in the CD direction of the nonwoven fabric. can.
 前記スパンボンド法では、前記原料組成物を加熱で溶融させることにより前記溶融物を得、該溶融物を前記ノズル孔から吐出することにより前記原糸を得る。
 次に、気体を前記原糸に吹き付けることにより、該原糸を延伸する。
 前記気体の温度は、好ましくは2~40℃、より好ましくは2~30℃、さらに好ましくは5~25℃である。気体の温度が2℃以上であることにより、樹脂の固化が十分となり、原糸同士の融着が抑制されやすくなる。気体の温度が40℃以下であることにより、樹脂の固化がゆっくり進行し、空気延伸時に原糸が糸切れするのを抑制しやすくなる。
 前記スパンボンド法では、前記原糸に吹き付ける気体に風量を高めることにより、前記繊維の断面積に対する、前記ノズル孔の開口面積の比を高めることができる。また、ノズル孔から吐出させる溶融物の単位時間当たりの量を低くすることによっても、前記繊維の断面積に対する、前記ノズル孔の開口面積の比を高めることができる。
 なお、前記スパンボンド法では、延伸ロールを用いて前記原糸を延伸してもよい。その場合では、延伸ロールの回転数を高めることにより、前記繊維の断面積に対する、前記ノズル孔の開口面積の比を高めることができる。また、ノズル孔から吐出させる溶融物の単位時間当たりの量を低くすることによっても、前記繊維の断面積に対する、前記ノズル孔の開口面積の比を高めることができる。
 スパンボンド不織布の製造方法における工程(B)では、例えば、エジェクターなどの吸引装置を用いて、繊維を延伸する。エジェクターを用いる場合、空気牽引の圧力を調整することで、紡糸速度を調節することが可能である。吹きつける空気の風量を大きくする(空気圧を高くする)ことで、紡糸速度が上昇し、繊維はより延伸される。
 工程(B)において、工程(A)で紡糸ノズルから押し出された原糸を牽引細化する前に、クエンチ風等の整流風を与える装置にて、原糸に整流風を与えてもよい。整流風は、クエンチ風とも呼ばれ、糸条たる原糸の流れを安定化させる働きがある。また、冷却した気体を用いることで紡糸フィラメントたる原糸を冷却することも可能である。クエンチ風は、ネットやメッシュを通して放出され、均一に糸条に送られることが好ましい。整流風は、糸条に対し、糸条が絡み合ったものの片面もしくは両面から送風されても良く、円周状に送風してもよい。スパンボンド不織布の製造方法において、クエンチ風の温度は、好ましくは2~40℃、より好ましくは2~30℃、さらに好ましくは5~25℃である。クエンチ風の温度が2℃以上であることにより、樹脂の固化が十分となり、原糸同士の融着が抑制されやすくなる。クエンチ風の温度が40℃以下であることにより、樹脂の固化がゆっくり進行し、空気延伸時に原糸が糸切れするのを抑制しやすくなる。クエンチ風の風速は、0.1~3m/秒が好ましい。クエンチ風の風速が0.1m/秒以上であることにより、整流の効果が発揮されやすくなる。クエンチ風の風速が、3m/秒以下であることにより、糸条の乱れを抑制しやすくなる。
 スパンボンド法で不織布を製造する方法においては、原糸Aに吹き付ける気体C(例えば、エジェクターで空気牽引する際に、原糸に吹き付ける気体)の温度は、好ましくは2℃~80℃、より好ましくは、5℃~60℃、さらに好ましくは、10℃~40℃である。
In the spunbonding method, the raw material composition is melted by heating to obtain the melt, and the raw yarn is obtained by discharging the melt from the nozzle hole.
Next, the yarn is drawn by blowing gas onto the yarn.
The temperature of the gas is preferably 2 to 40°C, more preferably 2 to 30°C, even more preferably 5 to 25°C. When the temperature of the gas is 2° C. or higher, the resin is sufficiently solidified, and fusion between the yarns is easily suppressed. When the temperature of the gas is 40° C. or lower, solidification of the resin progresses slowly, making it easier to prevent the yarn from breaking during air stretching.
In the spunbonding method, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased by increasing the amount of gas blown onto the yarn. Further, by lowering the amount of melt per unit time discharged from the nozzle hole, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased.
In addition, in the spunbonding method, the raw yarn may be stretched using a stretching roll. In that case, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased by increasing the number of rotations of the drawing roll. Further, by lowering the amount of melt per unit time discharged from the nozzle hole, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased.
In step (B) in the method for producing a spunbond nonwoven fabric, the fibers are stretched using, for example, a suction device such as an ejector. When using an ejector, it is possible to adjust the spinning speed by adjusting the pressure of air traction. By increasing the amount of air blown (increasing the air pressure), the spinning speed increases and the fibers are drawn more.
In step (B), before pulling and thinning the raw yarn extruded from the spinning nozzle in step (A), rectified air may be applied to the raw yarn using a device that applies rectified air such as quench air. The rectified wind, also called quench wind, has the function of stabilizing the flow of the raw yarn. Moreover, it is also possible to cool the raw yarn, which is a spun filament, by using a cooled gas. It is preferable that the quench air is emitted through a net or mesh and is uniformly sent to the yarn. The rectified air may be blown from one side or both sides of the yarn intertwined with each other, or may be blown circumferentially. In the method for producing spunbond nonwoven fabric, the temperature of the quench air is preferably 2 to 40°C, more preferably 2 to 30°C, and even more preferably 5 to 25°C. When the temperature of the quench air is 2° C. or higher, the resin is sufficiently solidified, and fusion between the raw yarns is easily suppressed. When the temperature of the quench air is 40° C. or less, solidification of the resin progresses slowly, and it becomes easier to suppress yarn breakage of the raw yarn during air stretching. The wind speed of the quench wind is preferably 0.1 to 3 m/sec. When the wind speed of the quench wind is 0.1 m/sec or more, the effect of rectification is more likely to be exhibited. When the wind speed of the quench wind is 3 m/sec or less, it becomes easier to suppress yarn disturbance.
In the method of producing a nonwoven fabric by the spunbond method, the temperature of gas C blown onto the yarn A (for example, the gas blown onto the yarn when air-pulled by an ejector) is preferably 2° C. to 80° C., more preferably is 5°C to 60°C, more preferably 10°C to 40°C.
 前記フラッシュ紡糸法では、前記原料組成物の材料と溶剤とを高温高圧下で混合することにより、高温高圧下の溶融物を得る。
 次に、高温高圧下の溶融物を前記ノズル孔から常温常圧下に吐出することにより、前記原糸が得られるとともに、得られた該原糸が延伸される。
 前記溶剤としては、例えば、アルコール(例えば、メタノール、エタノール等)、アセトンなどが挙げられる。
 なお、前記フラッシュ紡糸法では、前記溶融物にかける圧力を高めることにより、前記繊維の断面積に対する、前記ノズル孔の開口面積の比を高めることができる。また、ノズル孔から吐出させる溶融物の単位時間当たりの量を低くすることによっても、前記繊維の断面積に対する、前記ノズル孔の開口面積の比を高めることができる。
In the flash spinning method, the material of the raw material composition and a solvent are mixed under high temperature and high pressure to obtain a molten product under high temperature and high pressure.
Next, by discharging the molten material under high temperature and high pressure from the nozzle hole at room temperature and normal pressure, the yarn is obtained, and the obtained yarn is stretched.
Examples of the solvent include alcohol (eg, methanol, ethanol, etc.), acetone, and the like.
In addition, in the flash spinning method, by increasing the pressure applied to the melt, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased. Further, by lowering the amount of melt per unit time discharged from the nozzle hole, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased.
 前記エレクトロスピニング法では、高電圧が印加された状態の前記原料組成物にレーザー光を照射することにより、前記原料組成物を加熱溶融させる。その結果、前記溶融物を得ることができる。
 次に、該溶融物を前記ノズル孔から吐出することにより、原糸を得る。
 そして、静電力によって前記原糸を延伸する。
 なお、前記エレクトロスピニング法では、前記静電力を高めることにより、前記繊維の断面積に対する、前記ノズル孔の開口面積の比を高めることができる。また、ノズル孔から吐出させる溶融物の単位時間当たりの量を低くすることによっても、前記繊維の断面積に対する、前記ノズル孔の開口面積の比を高めることができる。
In the electrospinning method, the raw material composition is heated and melted by irradiating the raw material composition with a laser beam while a high voltage is applied. As a result, the melt can be obtained.
Next, a raw yarn is obtained by discharging the melted material from the nozzle hole.
Then, the yarn is stretched by electrostatic force.
In addition, in the electrospinning method, by increasing the electrostatic force, it is possible to increase the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber. Further, by lowering the amount of melt per unit time discharged from the nozzle hole, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber can be increased.
〔開示項目〕
 以下の項目のそれぞれは、好ましい実施形態の開示である。
[Disclosure items]
Each of the following items is a disclosure of a preferred embodiment.
〔項目1〕
 繊維を含む不織布であって、
前記繊維は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有する樹脂組成物で形成され、
前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含み、
前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が、70.0モル%以上92.0モル%以下であり、
前記不織布のMD方向の破断点引張伸度が100%以上であり、
前記不織布のCD方向の破断点引張伸度が100%以上である、不織布。
[Item 1]
A nonwoven fabric containing fibers,
The fiber is formed from a resin composition containing a poly(3-hydroxyalkanoate) resin,
The poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
The content ratio of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more and 92.0 mol% or less,
The nonwoven fabric has a tensile elongation at break in the MD direction of 100% or more,
The nonwoven fabric has a tensile elongation at break in the CD direction of 100% or more.
〔項目2〕
 前記不織布のMD方向の50%伸長回復率が50%以上であり、及び/又は、前記不織布のCD方向の50%伸長回復率が50%以上である、項目1に記載の不織布。
[Item 2]
The nonwoven fabric according to item 1, wherein a 50% elongation recovery rate in the MD direction of the nonwoven fabric is 50% or more, and/or a 50% elongation recovery rate of the nonwoven fabric in the CD direction is 50% or more.
〔項目3〕
 前記不織布の目付が20~150g/mである、項目1又は2に記載の不織布。
[Item 3]
The nonwoven fabric according to item 1 or 2, wherein the nonwoven fabric has a basis weight of 20 to 150 g/m 2 .
〔項目4〕
 前記不織布が紡糸直結不織布である、項目1~3の何れか1項に記載の不織布。
[Item 4]
The nonwoven fabric according to any one of items 1 to 3, wherein the nonwoven fabric is a directly spun nonwoven fabric.
〔項目5〕
 前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位の含有割合が76モル%以下であるポリ(3-ヒドロキシアルカノエート)系樹脂ポリ(3-ヒドロキシアルカノエート)系樹脂成分を含む、項目1~4の何れか1項に記載の不織布。
[Item 5]
The poly(3-hydroxyalkanoate) resin is a poly(3-hydroxyalkanoate) resin component in which the content of 3-hydroxybutyrate units is 76 mol% or less. The nonwoven fabric according to any one of items 1 to 4, comprising:
〔項目6〕
 ノズル孔を有するノズルを用いて、繊維を含む不織布を製造する、不織布の製造方法であって、
溶融物を前記ノズル孔から吐出することにより、原糸を得る工程(A)と、
前記原糸を延伸する工程(B)とを有し、
前記原料組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有し、
前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含み、
前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が、70モル%以上92モル%以下であり、
前記繊維の断面積に対する、前記ノズル孔の開口面積の比が、300以上である、メルトブローン不織布の製造方法。
[Item 6]
A method for producing a nonwoven fabric, the method comprising producing a nonwoven fabric containing fibers using a nozzle having a nozzle hole,
a step (A) of obtaining a raw yarn by discharging the melt from the nozzle hole;
and a step (B) of stretching the yarn,
The raw material composition contains a poly(3-hydroxyalkanoate) resin,
The poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less,
A method for producing a meltblown nonwoven fabric, wherein the ratio of the opening area of the nozzle holes to the cross-sectional area of the fibers is 300 or more.
〔項目7〕
 前記工程(B)では、前記原糸に150℃~195℃の気体を吹き付けることにより、前記原糸を延伸する、項目6に記載のメルトブローン不織布の製造方法。
[Item 7]
The method for producing a meltblown nonwoven fabric according to item 6, wherein in the step (B), the raw yarn is stretched by blowing gas at 150° C. to 195° C. onto the raw yarn.
〔項目8〕
 ノズル孔を有するノズルを用いて、繊維を含む不織布を製造する、不織布の製造方法であって、
溶融物を前記ノズル孔から吐出することにより、原糸を得る工程(A)と、
前記原糸を延伸する工程(B)とを有し、
前記原料組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有し、
前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含み、
前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が、70モル%以上92モル%以下であり、
前記繊維の断面積に対する、前記ノズル孔の開口面積の比が、150以上である、スパンボンド不織布の製造方法。
[Item 8]
A method for producing a nonwoven fabric, the method comprising producing a nonwoven fabric containing fibers using a nozzle having a nozzle hole,
a step (A) of obtaining a raw yarn by discharging the melt from the nozzle hole;
and a step (B) of stretching the yarn,
The raw material composition contains a poly(3-hydroxyalkanoate) resin,
The poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less,
A method for producing a spunbond nonwoven fabric, wherein the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 150 or more.
〔項目9〕
 前記工程(B)では、前記原糸に2℃~40℃の気体を吹き付けることにより、前記原糸を延伸する、項目8に記載のスパンボンド不織布の製造方法。
[Item 9]
The method for producing a spunbond nonwoven fabric according to item 8, wherein in the step (B), the yarn is stretched by blowing gas at 2° C. to 40° C. onto the yarn.
 次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。なお、本発明はこれらの実施例に何ら限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. Note that the present invention is not limited to these Examples at all.
 下記材料を用意した。 The following materials were prepared.
(ポリ(3-ヒドロキシアルカノエート)系樹脂(P3HA))
 国際公開第2019/142845号の実施例1に記載の方法に準じて、下記P3HA-1を作製した。
  P3HA-1:P3HB3HH(3-ヒドロキシブチレート単位の含有割合:94.5モル%、3-ヒドロキシヘキサノエート(3HH)単位の含有割合:5.5モル%)
 国際公開第2021/206155号の実施例6に記載の方法に準じて、下記P3HA-2を作製した。
  P3HA-2:P3HB3HH(3-ヒドロキシブチレート単位の含有割合:85.0モル%、3-ヒドロキシヘキサノエート(3HH)単位の含有割合:15.0モル%)(MIBK可溶性画分の重量割合:54重量%、MIBK可溶性画分における3-ヒドロキシブチレート単位の含有割合:74.0モル%、MIBK可溶性画分における3-ヒドロキシヘキサノエート(3HH)単位の含有割合:26.0モル%)(MIBK不溶性画分の重量割合:46重量%、MIBK不溶性画分における3-ヒドロキシブチレート単位の含有割合:98.0モル%、MIBK不溶性画分における3-ヒドロキシヘキサノエート(3HH)単位の含有割合:2.0モル%)
 また、必要に応じて、高度加速寿命試験装置(ESPEC社製、EHS-222MD)を用いて高温多湿下(温度:120℃、湿度:100%)でP3HA-1及びP3HA-2を加熱処理することにより、P3HA-1及びP3HA-2の重量平均分子量(Mw)及び165℃でのメルトマスフローレート(MFR)を調整した。
 すなわち、加熱処理の時間を長くすることにより、前記重量平均分子量(Mw)を低下させ、且つ、165℃でのメルトマスフローレート(MFR)を高めた。
(Poly(3-hydroxyalkanoate) resin (P3HA))
The following P3HA-1 was produced according to the method described in Example 1 of International Publication No. 2019/142845.
P3HA-1: P3HB3HH (3-hydroxybutyrate unit content: 94.5 mol%, 3-hydroxyhexanoate (3HH) unit content: 5.5 mol%)
The following P3HA-2 was produced according to the method described in Example 6 of International Publication No. 2021/206155.
P3HA-2: P3HB3HH (content ratio of 3-hydroxybutyrate units: 85.0 mol%, content ratio of 3-hydroxyhexanoate (3HH) units: 15.0 mol%) (weight ratio of MIBK soluble fraction : 54% by weight, content of 3-hydroxybutyrate units in MIBK soluble fraction: 74.0 mol%, content of 3-hydroxyhexanoate (3HH) units in MIBK soluble fraction: 26.0 mol% ) (Weight percentage of MIBK-insoluble fraction: 46% by weight, Content percentage of 3-hydroxybutyrate units in MIBK-insoluble fraction: 98.0 mol%, 3-hydroxyhexanoate (3HH) units in MIBK-insoluble fraction content ratio: 2.0 mol%)
In addition, if necessary, P3HA-1 and P3HA-2 are heat-treated at high temperature and humidity (temperature: 120°C, humidity: 100%) using a highly accelerated life test device (manufactured by ESPEC, EHS-222MD). By this, the weight average molecular weight (Mw) and melt mass flow rate (MFR) at 165° C. of P3HA-1 and P3HA-2 were adjusted.
That is, by increasing the heat treatment time, the weight average molecular weight (Mw) was lowered and the melt mass flow rate (MFR) at 165°C was increased.
 なお、P3HA-1における3-ヒドロキシブチレート単位の含有割合及び3-ヒドロキシヘキサノエート(3HH)単位の含有割合は、以下のようにして求めた。
 まず、乾燥した20mgのP3HA-1に、硫酸とメタノールとの混合液(硫酸の体積:メタノールの体積=15:85)2mL、及び、クロロホルム2mLを添加した試料を密栓し、密栓した状態で該試料を100℃で140分間加熱することにより、P3HA-1の分解物であるメチルエステルを含む第1の反応液を得た。
 そして、該第1の反応液を冷却し、冷却した第1の反応液に1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置することにより、第2の反応液を得た。
 さらに、第2の反応液と、4mLのジイソプロピルエーテルとをよく混合することにより、混合物を得た。
 次に、該混合物を遠心分離することにより、上清液を得た。
 そして、上清液中の前記分解物のモノマーユニット組成をキャピラリーガスクロマトグラフィーにより下記条件で分析することにより、P3HA-1における3-ヒドロキシブチレート単位の含有割合及び3-ヒドロキシヘキサノエート(3HH)単位の含有割合を求めた。
  ガスクロマトグラフ:島津製作所製のGC-17A
  キャピラリーカラム:GLサイエンス社製のNEUTRA BOND-1(カラム長:25m、カラム内径:0.25mm、液膜厚:0.4μm)
  キャリアガス:He
  カラム入口圧:100kPa
  サンプルの量:1μL
 温度条件については、100~200℃では8℃/分の速度で昇温し、さらに200~290℃では30℃/分の速度で昇温した。
The content ratio of 3-hydroxybutyrate units and the content ratio of 3-hydroxyhexanoate (3HH) units in P3HA-1 were determined as follows.
First, 2 mL of a mixed solution of sulfuric acid and methanol (volume of sulfuric acid: volume of methanol = 15:85) and 2 mL of chloroform were added to 20 mg of dried P3HA-1, and the sample was sealed. By heating the sample at 100° C. for 140 minutes, a first reaction solution containing methyl ester, which is a decomposition product of P3HA-1, was obtained.
Then, the first reaction liquid is cooled, 1.5 g of sodium hydrogen carbonate is added little by little to the cooled first reaction liquid to neutralize it, and the second reaction liquid is left to stand until the generation of carbon dioxide gas stops. A reaction solution was obtained.
Furthermore, a mixture was obtained by thoroughly mixing the second reaction solution and 4 mL of diisopropyl ether.
Next, the mixture was centrifuged to obtain a supernatant.
Then, by analyzing the monomer unit composition of the decomposed product in the supernatant liquid by capillary gas chromatography under the following conditions, the content of 3-hydroxybutyrate units in P3HA-1 and 3-hydroxyhexanoate (3HH ) unit content was determined.
Gas chromatograph: GC-17A manufactured by Shimadzu Corporation
Capillary column: NEUTRA BOND-1 manufactured by GL Science (column length: 25 m, column inner diameter: 0.25 mm, liquid film thickness: 0.4 μm)
Carrier gas: He
Column inlet pressure: 100kPa
Sample amount: 1μL
Regarding the temperature conditions, the temperature was raised at a rate of 8°C/min from 100 to 200°C, and further at a rate of 30°C/min from 200 to 290°C.
 また、P3HA-2における3-ヒドロキシブチレート単位の含有割合及び3-ヒドロキシヘキサノエート(3HH)単位の含有割合も、P3HA-1における3-ヒドロキシブチレート単位の含有割合及び3-ヒドロキシヘキサノエート(3HH)単位の含有割合と同様にして求めた。
 また、上述したMIBK分画法でP3HA-2をMIBK可溶性画分とMIBK不溶性画分とに分画した。そして、MIBK可溶性画分、及び、MIBK不溶性画分それぞれにおける3-ヒドロキシブチレート単位の含有割合、及び、3-ヒドロキシヘキサノエート(3HH)単位の含有割合も、P3HA-1における3-ヒドロキシブチレート単位の含有割合、及び、3-ヒドロキシヘキサノエート(3HH)単位の含有割合と同様にして求めた。
In addition, the content ratio of 3-hydroxybutyrate units and the content ratio of 3-hydroxyhexanoate (3HH) units in P3HA-2 are also the same as the content ratio of 3-hydroxybutyrate units in P3HA-1 and the content ratio of 3-hydroxyhexanoate (3HH) units. It was determined in the same manner as the content of ate (3HH) units.
Furthermore, P3HA-2 was fractionated into an MIBK-soluble fraction and an MIBK-insoluble fraction using the MIBK fractionation method described above. The content of 3-hydroxybutyrate units and the content of 3-hydroxyhexanoate (3HH) units in the MIBK-soluble fraction and MIBK-insoluble fraction were also determined by the 3-hydroxybutyrate units in P3HA-1. It was determined in the same manner as the content ratio of rate units and the content ratio of 3-hydroxyhexanoate (3HH) units.
(滑剤)
  BA:ベヘン酸アミド(「ベヘニン酸アミド」ともいう。)(日本精化社製、BNT-22H)
  EA:エルカ酸アミド(日本精化社製、ニュートロンS)
(Lubricant)
BA: Behenic acid amide (also referred to as "behenic acid amide") (manufactured by Nippon Fine Chemical Co., Ltd., BNT-22H)
EA: Erucic acid amide (manufactured by Nippon Fine Chemical Co., Ltd., Neutron S)
(結晶核剤)
  PETL:ペンタエリスリトール(大成化薬社製、ノイライザーP)
(crystal nucleating agent)
PETL: Pentaerythritol (manufactured by Taisei Kayaku Co., Ltd., Neurizer P)
(実施例1~9、及び、比較例1、2)
 上記材料を下記表1の配合割合で溶融混錬することにより原料組成物を得た。
(Examples 1 to 9 and Comparative Examples 1 and 2)
A raw material composition was obtained by melting and kneading the above materials at the mixing ratios shown in Table 1 below.
(ポリ(3-ヒドロキシアルカノエート)系樹脂全体における各モノマー単位の含有割合)
 原料組成物に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシブチレート単位の含有割合は、P3HA-1における3-ヒドロキシブチレート単位の含有割合、P3HA-2における3-ヒドロキシブチレート単位の含有割合、及び、P3HA-1とP3HA-2との配合割合から算出した。
 また、原料組成物に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシヘキサノエート(3HH)単位の含有割合も同様に算出した。
 なお、「原料組成物に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシブチレート単位の含有割合」は、「不織布に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシブチレート単位の含有割合」を意味し、また、「溶融物に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシブチレート単位の含有割合」も意味する。
 また、「原料組成物に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシヘキサノエート(3HH)単位の含有割合」は、「不織布に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシヘキサノエート(3HH)単位の含有割合」を意味し、また、「溶融物に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂全体における3-ヒドロキシヘキサノエート(3HH)単位の含有割合」も意味する。
 算出値を下記表1に示す。
(Content ratio of each monomer unit in the entire poly(3-hydroxyalkanoate) resin)
The content of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition is the content of 3-hydroxybutyrate units in P3HA-1 and 3-hydroxybutyrate units in P3HA-2. It was calculated from the content ratio of butyrate units and the blending ratio of P3HA-1 and P3HA-2.
Furthermore, the content ratio of 3-hydroxyhexanoate (3HH) units in the entire poly(3-hydroxyalkanoate)-based resin contained in the raw material composition was calculated in the same manner.
Note that "the content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition" refers to the "content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric". It also means "the content ratio of 3-hydroxybutyrate units in the entire poly(3-hydroxyalkanoate) resin contained in the melt".
In addition, the "content ratio of 3-hydroxyhexanoate (3HH) units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition" is the "content ratio of 3-hydroxyhexanoate (3HH) units in the entire poly(3-hydroxyalkanoate) resin contained in the raw material composition". 3-hydroxyhexanoate (3HH) unit content in the entire poly(3-hydroxyalkanoate) resin contained in the melt. ) also means the content ratio of units.
The calculated values are shown in Table 1 below.
(原料組成物における物性の測定)
 原料組成物について、重量平均分子量(Mw)、及び、165℃でのメルトマスフローレート(MFR)を測定した。
 各測定値を下記表1に示す。
 なお、原料組成物の重量平均分子量(Mw)は、GPC測定により算出した。GPC測定の条件を下記に示す。
  測定装置:島津製作所製の島津20A
  カラム:昭和電工製のShodexK-806M
  検出器:RI検出器
  標準物質:ポリスチレン
  溶離液:クロロホルム(HPLCグレード)
  流速:1mL/min
  温度:40℃
(Measurement of physical properties in raw material composition)
The weight average molecular weight (Mw) and melt mass flow rate (MFR) at 165°C were measured for the raw material composition.
Each measured value is shown in Table 1 below.
Note that the weight average molecular weight (Mw) of the raw material composition was calculated by GPC measurement. The conditions for GPC measurement are shown below.
Measuring device: Shimadzu 20A manufactured by Shimadzu Corporation
Column: ShodexK-806M manufactured by Showa Denko
Detector: RI detector Standard material: Polystyrene Eluent: Chloroform (HPLC grade)
Flow rate: 1mL/min
Temperature: 40℃
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図1~3に示されている不織布の製造装置を用い、メルトブローン法により下記表2に示す条件で前記原料組成物から第1の不織布を製造した。なお、不織布の製造には、幅が600mmであるノズルを用いた。 Using the nonwoven fabric manufacturing apparatus shown in FIGS. 1 to 3, a first nonwoven fabric was manufactured from the raw material composition by the melt blowing method under the conditions shown in Table 2 below. Note that a nozzle with a width of 600 mm was used to manufacture the nonwoven fabric.
 次に、箱型熱風乾燥機(ESPEC社製、PH-202)を用いて、下記表2の加熱条件で前記第1の不織布を加熱し、その後、常温常圧下(20℃、1気圧)で自然冷却することにより、第2の不織布たる実施例1~9、及び、比較例1~2の不織布を得た。 Next, the first nonwoven fabric was heated using a box-type hot air dryer (manufactured by ESPEC, PH-202) under the heating conditions shown in Table 2 below, and then at room temperature and pressure (20°C, 1 atm). By natural cooling, the second nonwoven fabrics of Examples 1 to 9 and Comparative Examples 1 to 2 were obtained.
(実施例10)
 実施例4の第1の不織布を実施例10の不織布とした。
(Example 10)
The first nonwoven fabric of Example 4 was made into the nonwoven fabric of Example 10.
(実施例11、12、15,16、及び、比較例3、4)
 メルトブローン法の代わりにスパンボンド法を用いたこと、上記材料を下記表1の配合割合で溶融混錬したこと、下記表2に示す条件で前記原料組成物から第1の不織布を製造したこと、紡糸ノズルから吐出された原糸に対して、原糸が絡み合ったものの両面から12.5℃の整流風(クエンチ風)を0.5m/秒の風速で吹き当てたこと、エジェクターを使用して25℃の空気を原糸に吹き当てることによって原糸を空気牽引し、下記表2に示す条件で不織布を製造したこと以外は、実施例10と同様にして不織布を得た。
(Examples 11, 12, 15, 16 and Comparative Examples 3 and 4)
The spunbond method was used instead of the melt-blown method, the materials were melt-kneaded in the proportions shown in Table 1 below, and the first nonwoven fabric was manufactured from the raw material composition under the conditions shown in Table 2 below. The raw yarn discharged from the spinning nozzle was blown with rectified wind (quench wind) at 12.5°C from both sides of the entangled yarn at a wind speed of 0.5 m/sec, using an ejector. A nonwoven fabric was obtained in the same manner as in Example 10, except that the yarn was air-pulled by blowing air at 25° C. onto the yarn, and the nonwoven fabric was manufactured under the conditions shown in Table 2 below.
(実施例13、14)
 下記表2に示す条件で前記原料組成物から第1の不織布を製造したこと、及び、下記表2の温度に設定したエンボスロールを用いて、第一の不織布を加圧処理(エンボス加工)したこと以外は、実施例11と同様にして不織布を得た。
(Examples 13 and 14)
The first nonwoven fabric was manufactured from the raw material composition under the conditions shown in Table 2 below, and the first nonwoven fabric was pressure-treated (embossed) using an embossing roll set at the temperature shown in Table 2 below. A nonwoven fabric was obtained in the same manner as in Example 11 except for the above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(不織布における各物性の測定)
 不織布について、目付、厚み、繊維における繊維径の平均値、繊維における繊維径の変動係数、及び、樹脂組成物の重量平均分子量(Mw)を測定した。
 各測定値を下記表3に示す。
 なお、繊維における繊維径の平均値および繊維における繊維径の変動係数は、JEOL製の卓上走査電子顕微鏡JCM-6000を用いて求めた。
 また、樹脂組成物の重量平均分子量(Mw)は、原料組成物の重量平均分子量(Mw)と同じように測定した。
(Measurement of various physical properties in nonwoven fabric)
Regarding the nonwoven fabric, the basis weight, thickness, average fiber diameter of the fibers, coefficient of variation of the fiber diameter of the fibers, and weight average molecular weight (Mw) of the resin composition were measured.
Each measured value is shown in Table 3 below.
Note that the average value of the fiber diameter of the fibers and the coefficient of variation of the fiber diameter of the fibers were determined using a tabletop scanning electron microscope JCM-6000 manufactured by JEOL.
Moreover, the weight average molecular weight (Mw) of the resin composition was measured in the same manner as the weight average molecular weight (Mw) of the raw material composition.
(不織布のCD方向及びMD方向の最大荷重、最大荷重点引張伸度、及び、破断点引張伸度)
 不織布について、CD方向及びMD方向の最大荷重、最大荷重点引張伸度、及び、破断点引張伸度を測定した。
 なお、CD方向及びMD方向の最大荷重、最大荷重点引張伸度、及び、破断点引張伸度は、JIS B7721:2018「引張試験機・圧縮試験機-力計測系の校正方法及び検証方法」に準拠した定速伸長形引張試験機を用いて測定した。
 定速伸長形引張試験機としては、万能試験機(エー・アンド・ディ社製のRTG-1210)等を用いた。
 まず、不織布から試験片(幅:8mm、長さ:40mm)を切り出した。
 次に、試験片を初荷重で引張試験機につかみ間隔を20mmで取り付けた。言い換えれば、初荷重を試験片にかけた時のつかみ間隔を、20mmとした。ただし、初荷重では、試験片を手でたるみが生じない程度に引っ張った状態とした。
 そして、20mm/分の引張速度で試験片が破断するまで荷重を加え、CD方向及びMD方向の最大荷重を測定した。
 また、下記式により、CD方向及びMD方向の最大荷重点引張伸度、及び、破断点引張伸度を求めた。
  最大荷重点引張伸度(%) = 〔(最大荷重時のつかみ間隔-初荷重を試験片にかけた時のつかみ間隔)/初荷重を試験片にかけた時のつかみ間隔)×100(%)
  破断点引張伸度(%) = 〔(破断時のつかみ間隔-初荷重を試験片にかけた時のつかみ間隔)/初荷重を試験片にかけた時のつかみ間隔〕×100(%)
 測定値を下記表3に示す。
(Maximum load in CD direction and MD direction of nonwoven fabric, tensile elongation at maximum load point, and tensile elongation at break)
For the nonwoven fabric, the maximum load in the CD direction and MD direction, the tensile elongation at the maximum load point, and the tensile elongation at the break point were measured.
The maximum load in the CD direction and MD direction, the tensile elongation at the maximum load point, and the tensile elongation at the break point are determined according to JIS B7721:2018 "Tensile testing machine/compression testing machine - Calibration method and verification method of force measurement system" It was measured using a constant-speed extension type tensile tester based on .
As a constant speed extension type tensile tester, a universal testing machine (RTG-1210 manufactured by A&D Co., Ltd.) or the like was used.
First, a test piece (width: 8 mm, length: 40 mm) was cut out from the nonwoven fabric.
Next, the test piece was attached to a tensile testing machine with an initial load at a grip interval of 20 mm. In other words, the gripping interval when the initial load was applied to the test piece was 20 mm. However, during the initial load, the test piece was pulled by hand to an extent that no sagging occurred.
Then, a load was applied at a tensile speed of 20 mm/min until the test piece broke, and the maximum loads in the CD direction and MD direction were measured.
Further, the maximum load point tensile elongation and the break point tensile elongation in the CD direction and MD direction were determined using the following formulas.
Maximum load point tensile elongation (%) = [(grabbing interval at maximum load - gripping interval when initial load is applied to the test piece) / gripping interval when initial load is applied to the test piece) x 100 (%)
Tensile elongation at break (%) = [(grabbing interval at break - gripping interval when the initial load is applied to the test piece) / gripping interval when the initial load is applied to the test piece] x 100 (%)
The measured values are shown in Table 3 below.
(CD方向の破断点引張伸度/MD方向の破断点引張伸度)
 CD方向の破断点引張伸度/MD方向の破断点引張伸度(CD伸度/MD伸度)を算出した。
 CD伸度/MD伸度を下記表3に示す。
(Tensile elongation at break in CD direction/Tensile elongation at break in MD direction)
The tensile elongation at break in the CD direction/the tensile elongation at break in the MD direction (CD elongation/MD elongation) was calculated.
The CD elongation/MD elongation is shown in Table 3 below.
(50%伸長回復率)
 不織布の50%伸長回復率を上述した方法で測定した。
 測定値を下記表3に示す。
 なお、比較例1については、50%伸長回復率の測定中に不織布が破断して50%伸長回復率を測定できなかった。
(50% elongation recovery rate)
The 50% elongation recovery rate of the nonwoven fabric was measured by the method described above.
The measured values are shown in Table 3 below.
In addition, regarding Comparative Example 1, the nonwoven fabric broke during the measurement of the 50% elongation recovery rate, and the 50% elongation recovery rate could not be measured.
(ノズル孔の開口面積/繊維の断面積)
 ノズル孔の開口面積/繊維の断面積を上述した方法で算出した。
 計算値を下記表3に示す。
(Opening area of nozzle hole/cross-sectional area of fiber)
The opening area of the nozzle hole/the cross-sectional area of the fiber was calculated by the method described above.
The calculated values are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(不織布の破れにくさ、不織布の伸縮性、及び、不織布の毛羽立ちの少なさ)
 不織布を切断することにより、図4に示すように、第1の試験片を2枚得た。
 次に、該第1の試験片どうしを溶着させることにより、図5に示す形状のマスクを作製した。
 次に、専門技術者が該マスクを3時間着用し、下記基準で評価をした。
 結果を下記表4に示す。
(Resistance to tearing of non-woven fabric, elasticity of non-woven fabric, and less fluff of non-woven fabric)
By cutting the nonwoven fabric, two first test pieces were obtained as shown in FIG. 4.
Next, a mask having the shape shown in FIG. 5 was produced by welding the first test pieces together.
Next, a professional engineer wore the mask for 3 hours and evaluated it according to the following criteria.
The results are shown in Table 4 below.
<破れにくさ>
  3:マスクにひび割れが発生せず、且つ、マスクの溶着部分に裂けが発生しなかった。
  2:マスクに1cm未満のひび割れが発生し、或いは、マスクの溶着部分に1cm未満の裂けが発生した(マスクに1cm以上のひび割れが発生せず、且つ、マスクの溶着部分に1cm以上の裂けが発生しなかった。)。
  1:マスクに1cm以上のひび割れが発生し、或いは、マスクの溶着部分に1cm以上の裂けが発生した。
<Tear resistance>
3: No cracks occurred in the mask, and no tears occurred in the welded portions of the mask.
2: A crack of less than 1 cm has occurred in the mask, or a tear of less than 1 cm has occurred in the welded part of the mask (no crack of 1 cm or more has occurred in the mask, and a tear of 1 cm or more has occurred in the welded part of the mask) did not occur).
1: A crack of 1 cm or more occurred in the mask, or a tear of 1 cm or more occurred in the welded part of the mask.
<伸縮性(密着性)>
  3:マスクの密着性がほとんど変化せず、マスクが顔からずれなかった。
  2:マスクの密着性が少し低下し、マスクが顔からずれることがあったが、使用上の問題はなかった。
  1:マスクの密着性が大きく低下し、マスクが破れる等して装着が困難となった。
<Stretchability (adhesion)>
3: There was almost no change in the adhesion of the mask, and the mask did not shift from the face.
2: The adhesion of the mask was slightly reduced and the mask sometimes slipped from the face, but there were no problems in use.
1: The adhesion of the mask was greatly reduced, and the mask was torn, making it difficult to wear.
<毛羽立ちの少なさ>
  3:目視では、マスクに毛羽立ちが確認できなかった。
  2:マスクに小さな毛羽立ちが確認されたが、専門技術者が毛羽による痒みを感じなかった。
  1:マスクに毛羽立ちがひどく発生し、専門技術者が毛羽による痒みを感じた。
<Low fluff>
3: Visually, no fluff was observed on the mask.
2: Small fuzz was observed on the mask, but the expert technician did not feel itching due to the fuzz.
1: Severe fuzz occurred on the mask, and the expert technician felt itching due to the fuzz.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1、3、4に示すように、本発明の範囲内である実施例1、3、4、6~8、10~16では、不織布に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合が94.5%であり、且つ、不織布のMD方向の破断点引張伸度が49%である比較例1、不織布のCD方向の破断点引張伸度が95%であり、且つ、不織布のMD方向の破断点引張伸度が93%である比較例2、不織布のCD方向の破断点引張伸度が83%である比較例3、及び、不織布に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合が94.7%であり、不織布のCD方向の破断点引張伸度が66%であり、且つ、不織布のMD方向の破断点引張伸度が72%である比較例4に比べて、不織布が破れにくかった。 As shown in Tables 1, 3, and 4, in Examples 1, 3, 4, 6 to 8, and 10 to 16, which are within the scope of the present invention, in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric, Comparative Example 1 in which the content of 3-hydroxybutyrate units is 94.5% and the tensile elongation at break in the MD direction of the nonwoven fabric is 49%, and the tensile elongation at break in the CD direction of the nonwoven fabric is 95%. % and the tensile elongation at break in the MD direction of the nonwoven fabric is 93%, Comparative Example 3 in which the tensile elongation at break in the CD direction of the nonwoven fabric is 83%, and the nonwoven fabric contains The content ratio of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin is 94.7%, the tensile elongation at break in the CD direction of the nonwoven fabric is 66%, and the MD direction of the nonwoven fabric is 66%. The nonwoven fabric was less likely to tear than Comparative Example 4, which had a tensile elongation at break of 72%.
 また、表1、3、4に示すように、メルトブローン不織布の製造方法において、本発明の範囲内である実施例1、3、4、6~8、10では、溶融物に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合が94.5%である比較例1、及び、繊維の断面積に対するノズル孔の開口面積の比が238である比較例2に比べて、不織布が破れにくかった。
 また、表1、3、4に示すように、スパンボンド不織布の製造方法において、本発明の範囲内である実施例11~16では、繊維の断面積に対するノズル孔の開口面積の比が113である比較例3、及び、溶融物に含まれるポリ(3-ヒドロキシアルカノエート)系樹脂における3-ヒドロキシブチレート単位の含有割合が94.7%である比較例4に比べて、不織布が破れにくかった。
In addition, as shown in Tables 1, 3, and 4, in Examples 1, 3, 4, 6 to 8, and 10, which are within the scope of the present invention, in the manufacturing method of melt blown nonwoven fabric, poly(3 Comparative Example 1 in which the content of 3-hydroxybutyrate units in the -hydroxyalkanoate)-based resin was 94.5%, and Comparative Example 2 in which the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber was 238. In comparison, non-woven fabric was less likely to tear.
Further, as shown in Tables 1, 3, and 4, in Examples 11 to 16, which are within the scope of the present invention, in the method for producing spunbond nonwoven fabric, the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber was 113. Compared to Comparative Example 3 and Comparative Example 4 in which the content of 3-hydroxybutyrate units in the poly(3-hydroxyalkanoate) resin contained in the melt was 94.7%, the nonwoven fabric was less likely to tear. Ta.
 表3に示すように、本発明の範囲内である実施例1~10では、比較例1、2に比べて、CD方向の破断点引張伸度及びMD方向の破断点引張伸度が高かった。
 よって、実施例2、5、9でも、実施例1、3、4、6~8、10と同様に、比較例1、2に比べて、不織布が破れにくいと推測される。
As shown in Table 3, in Examples 1 to 10, which are within the scope of the present invention, the tensile elongation at break in the CD direction and the tensile elongation at break in the MD direction were higher than in Comparative Examples 1 and 2. .
Therefore, in Examples 2, 5, and 9 as well as in Examples 1, 3, 4, 6 to 8, and 10, it is presumed that the nonwoven fabrics are less likely to tear than in Comparative Examples 1 and 2.
 従って、本発明によれば、破れにくい不織布を提供し得ることが分かる。 Therefore, it can be seen that according to the present invention, a tear-resistant nonwoven fabric can be provided.
 さらに、表3、4に示すように、樹脂組成物の重量平均分子量(Mw)が150,000以上である実施例1、3、4、10では、樹脂組成物の重量平均分子量(Mw)が147,000以下である実施例6、7に比べて、不織布が破れにくかった。
 従って、樹脂組成物の重量平均分子量(Mw)が150,000以上であることにより、不織布が破れにくくなることがわかる。
Furthermore, as shown in Tables 3 and 4, in Examples 1, 3, 4, and 10 in which the weight average molecular weight (Mw) of the resin composition is 150,000 or more, the weight average molecular weight (Mw) of the resin composition is Compared to Examples 6 and 7, which had a molecular weight of 147,000 or less, the nonwoven fabric was less likely to tear.
Therefore, it can be seen that when the weight average molecular weight (Mw) of the resin composition is 150,000 or more, the nonwoven fabric becomes difficult to tear.
 また、表1、4に示すように、原料組成物の重量平均分子量(Mw)が200,000以上である実施例1、3、4、10では、原料組成物の重量平均分子量(Mw)が198,000以下である実施例6、7に比べて、不織布が破れにくかった。
 従って、原料組成物の重量平均分子量(Mw)が200,000以上であることにより、不織布が破れにくくなることがわかる。
Furthermore, as shown in Tables 1 and 4, in Examples 1, 3, 4, and 10 in which the weight average molecular weight (Mw) of the raw material composition is 200,000 or more, the weight average molecular weight (Mw) of the raw material composition is The nonwoven fabric was less likely to tear than Examples 6 and 7, which had a molecular weight of 198,000 or less.
Therefore, it can be seen that when the weight average molecular weight (Mw) of the raw material composition is 200,000 or more, the nonwoven fabric becomes difficult to tear.
 また、表4に示すように、実施例1、3、4、10では、実施例8に比べて、不織布が破れにくかった。 Furthermore, as shown in Table 4, in Examples 1, 3, 4, and 10, the nonwoven fabrics were less likely to tear than in Example 8.
 また、表4に示すように、本発明の範囲内である実施例1、3、4、6~8、10~16では、比較例1~4に比べて、不織布が伸縮性に優れていた。 Furthermore, as shown in Table 4, in Examples 1, 3, 4, 6 to 8, and 10 to 16, which are within the scope of the present invention, the nonwoven fabrics had excellent elasticity compared to Comparative Examples 1 to 4. .
 また、表4に示すように、実施例10の不織布たる第1の不織布を加熱することにより第2の不織布を得た実施例4では、実施例10に比べて、不織布が伸縮性に優れていた。
 従って、不織布を加熱することにより、不織布が伸縮性に優れることがわかる。
Furthermore, as shown in Table 4, in Example 4, in which a second nonwoven fabric was obtained by heating the first nonwoven fabric of Example 10, the nonwoven fabric had superior elasticity compared to Example 10. Ta.
Therefore, it can be seen that by heating the nonwoven fabric, the nonwoven fabric has excellent elasticity.
 また、表3に示すように、実施例10の不織布たる第1の不織布を加熱することにより第2の不織布を得た実施例4では、不織布のCD方向の50%伸長回復率及び不織布のMD方向の50%伸長回復率が高かった。
 従って、不織布を加熱することにより、不織布のCD方向の50%伸長回復率及び不織布のMD方向の50%伸長回復率が高くなることがわかる。
In addition, as shown in Table 3, in Example 4 in which a second nonwoven fabric was obtained by heating the first nonwoven fabric of Example 10, the 50% elongation recovery rate in the CD direction of the nonwoven fabric and the MD of the nonwoven fabric The 50% elongation recovery rate in the direction was high.
Therefore, it can be seen that heating the nonwoven fabric increases the 50% elongation recovery rate of the nonwoven fabric in the CD direction and the 50% elongation recovery rate of the nonwoven fabric in the MD direction.
 また、表4に示すように、本発明の範囲内である実施例1、3、4、6~8、10~16では、比較例1、4に比べて、不織布の毛羽立ちが少なかった。 Furthermore, as shown in Table 4, in Examples 1, 3, 4, 6 to 8, and 10 to 16, which are within the scope of the present invention, the fluff of the nonwoven fabrics was less than in Comparative Examples 1 and 4.
 さらに、表4に示すように、第1の不織布を加圧処理した実施例13、14では、不織布の毛羽立ちが少なかった。 Furthermore, as shown in Table 4, in Examples 13 and 14 in which the first nonwoven fabric was pressure-treated, the nonwoven fabric had less fluff.
1:不織布の製造装置、2:ホッパー、3:押出機、4:ギアポンプ、5:フィルター、6:混練機、7:ノズル、7a:ノズル孔、8:捕集機、8a:コンベアベルト、8b:ローラ、9:巻取装置、
A:原糸、B:第1の不織布、C:気体
 
1: Nonwoven fabric manufacturing equipment, 2: hopper, 3: extruder, 4: gear pump, 5: filter, 6: kneader, 7: nozzle, 7a: nozzle hole, 8: collector, 8a: conveyor belt, 8b : Roller, 9: Winding device,
A: Yarn, B: First nonwoven fabric, C: Gas

Claims (9)

  1.  繊維を含む不織布であって、
    前記繊維は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有する樹脂組成物で形成され、
    前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含み、
    前記不織布に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が、70.0モル%以上92.0モル%以下であり、
    前記不織布のMD方向の破断点引張伸度が100%以上であり、
    前記不織布のCD方向の破断点引張伸度が100%以上である、不織布。
    A nonwoven fabric containing fibers,
    The fiber is formed from a resin composition containing a poly(3-hydroxyalkanoate) resin,
    The poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
    The content ratio of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the nonwoven fabric is 70.0 mol% or more and 92.0 mol% or less,
    The nonwoven fabric has a tensile elongation at break in the MD direction of 100% or more,
    The nonwoven fabric has a tensile elongation at break in the CD direction of 100% or more.
  2.  前記不織布のMD方向の50%伸長回復率が50%以上であり、及び/又は、前記不織布のCD方向の50%伸長回復率が50%以上である、請求項1に記載の不織布。 The nonwoven fabric according to claim 1, wherein a 50% elongation recovery rate in the MD direction of the nonwoven fabric is 50% or more, and/or a 50% elongation recovery rate of the nonwoven fabric in the CD direction is 50% or more.
  3.  前記不織布の目付が20~150g/mである、請求項1又は2に記載の不織布。 The nonwoven fabric according to claim 1 or 2, wherein the nonwoven fabric has a basis weight of 20 to 150 g/m 2 .
  4.  前記不織布が紡糸直結不織布である、請求項1又は2に記載の不織布。 The nonwoven fabric according to claim 1 or 2, wherein the nonwoven fabric is a directly spun nonwoven fabric.
  5.  前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位の含有割合が76モル%以下であるポリ(3-ヒドロキシアルカノエート)系樹脂成分を含む、請求項1又は2に記載の不織布。 The poly(3-hydroxyalkanoate)-based resin includes a poly(3-hydroxyalkanoate)-based resin component having a content of 3-hydroxybutyrate units of 76 mol% or less, according to claim 1 or 2. non-woven fabric.
  6.  ノズル孔を有するノズルを用いて、繊維を含む不織布を製造する、不織布の製造方法であって、
    溶融物を前記ノズル孔から吐出することにより、原糸を得る工程(A)と、
    前記原糸を延伸する工程(B)とを有し、
    前記原料組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有し、
    前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含み、
    前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が、70モル%以上92モル%以下であり、
    前記繊維の断面積に対する、前記ノズル孔の開口面積の比が、300以上である、メルトブローン不織布の製造方法。
    A method for producing a nonwoven fabric, the method comprising producing a nonwoven fabric containing fibers using a nozzle having a nozzle hole,
    a step (A) of obtaining a raw yarn by discharging the melt from the nozzle hole;
    and a step (B) of stretching the yarn,
    The raw material composition contains a poly(3-hydroxyalkanoate) resin,
    The poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
    The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less,
    A method for producing a meltblown nonwoven fabric, wherein the ratio of the opening area of the nozzle holes to the cross-sectional area of the fibers is 300 or more.
  7.  前記工程(B)では、前記原糸に150℃~195℃の気体を吹き付けることにより、前記原糸を延伸する、請求項6に記載のメルトブローン不織布の製造方法。 The method for producing a meltblown nonwoven fabric according to claim 6, wherein in the step (B), the yarn is stretched by blowing gas at 150° C. to 195° C. to the yarn.
  8.  ノズル孔を有するノズルを用いて、繊維を含む不織布を製造する、不織布の製造方法であって、
    溶融物を前記ノズル孔から吐出することにより、原糸を得る工程(A)と、
    前記原糸を延伸する工程(B)とを有し、
    前記原料組成物は、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有し、
    前記ポリ(3-ヒドロキシアルカノエート)系樹脂は、3-ヒドロキシブチレート単位を有する共重合体を含み、
    前記溶融物に含まれる前記ポリ(3-ヒドロキシアルカノエート)系樹脂における前記3-ヒドロキシブチレート単位の含有割合が、70モル%以上92モル%以下であり、
    前記繊維の断面積に対する、前記ノズル孔の開口面積の比が、150以上である、スパンボンド不織布の製造方法。
    A method for producing a nonwoven fabric, the method comprising producing a nonwoven fabric containing fibers using a nozzle having a nozzle hole,
    a step (A) of obtaining a raw yarn by discharging the melt from the nozzle hole;
    a step (B) of stretching the yarn,
    The raw material composition contains a poly(3-hydroxyalkanoate) resin,
    The poly(3-hydroxyalkanoate)-based resin includes a copolymer having 3-hydroxybutyrate units,
    The content of the 3-hydroxybutyrate unit in the poly(3-hydroxyalkanoate) resin contained in the melt is 70 mol% or more and 92 mol% or less,
    A method for producing a spunbond nonwoven fabric, wherein the ratio of the opening area of the nozzle hole to the cross-sectional area of the fiber is 150 or more.
  9.  前記工程(B)では、前記原糸に2℃~40℃の気体を吹き付けることにより、前記原糸を延伸する、請求項8に記載のスパンボンド不織布の製造方法。
     
    The method for producing a spunbond nonwoven fabric according to claim 8, wherein in the step (B), the yarn is stretched by blowing gas at 2° C. to 40° C. onto the yarn.
PCT/JP2023/024191 2022-06-30 2023-06-29 Nonwoven fabric and production method therefor WO2024005145A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022106105 2022-06-30
JP2022-106105 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024005145A1 true WO2024005145A1 (en) 2024-01-04

Family

ID=89382434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024191 WO2024005145A1 (en) 2022-06-30 2023-06-29 Nonwoven fabric and production method therefor

Country Status (1)

Country Link
WO (1) WO2024005145A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532360A (en) * 2001-03-27 2004-10-21 ザ プロクター アンド ギャンブル カンパニー Fibers containing polyhydroxyalkanoate copolymer / polylactic acid polymer or copolymer blend
JP2016513153A (en) * 2013-02-18 2016-05-12 ユー.エス.パシフィック ノンウーブンス インダストリー リミテッドU.S.Pacific Nonwovens Industry Limited Biodegradable thin film and laminated material
WO2017122679A1 (en) * 2016-01-12 2017-07-20 国立大学法人東京工業大学 Biodegradable aliphatic polyester-based fiber and method for producing same
WO2019142920A1 (en) * 2018-01-22 2019-07-25 株式会社カネカ Method for producing nonwoven fabric
WO2022097528A1 (en) * 2020-11-05 2022-05-12 株式会社カネカ Method for manufacturing biodegradable fibers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004532360A (en) * 2001-03-27 2004-10-21 ザ プロクター アンド ギャンブル カンパニー Fibers containing polyhydroxyalkanoate copolymer / polylactic acid polymer or copolymer blend
JP2016513153A (en) * 2013-02-18 2016-05-12 ユー.エス.パシフィック ノンウーブンス インダストリー リミテッドU.S.Pacific Nonwovens Industry Limited Biodegradable thin film and laminated material
WO2017122679A1 (en) * 2016-01-12 2017-07-20 国立大学法人東京工業大学 Biodegradable aliphatic polyester-based fiber and method for producing same
WO2019142920A1 (en) * 2018-01-22 2019-07-25 株式会社カネカ Method for producing nonwoven fabric
WO2022097528A1 (en) * 2020-11-05 2022-05-12 株式会社カネカ Method for manufacturing biodegradable fibers

Similar Documents

Publication Publication Date Title
KR100563799B1 (en) Polyhydroxyalkanoate copolymer and polylactic acid polymer compositions for laminates and films
US6808795B2 (en) Polyhydroxyalkanoate copolymer and polylactic acid polymer compositions for laminates and films
JP6901594B2 (en) Polyamide nanofiber non-woven fabric
US20180044828A1 (en) Laminated nonwoven fabric
TWI772777B (en) Nonwoven multilayer structures having nanofiber layers
JP2006512506A (en) Biodegradable composite fibers with improved thermal dimensional stability
AU2002254207A1 (en) Polyhydroxyalkanoate copolymer and polylactic acid polymer compositions for laminates and films
WO2007070075A1 (en) Biodegradable continuous filament web
JP2010007221A (en) Polylactic acid-based long fiber nonwoven fabric and its manufacturing method
JP2015178692A (en) Method for producing nanofiber and nanofiber
JP3816828B2 (en) Non-woven fabric for three-dimensional molding capable of high temperature thermoforming and sound absorbing material
WO2024005145A1 (en) Nonwoven fabric and production method therefor
JP7299316B2 (en) Meltblown nonwoven fabric, filter, and method for producing meltblown nonwoven fabric
JP2004263344A (en) Nonwoven fabric for simple mask and simple mask
JP6652855B2 (en) Continuous fiber nonwoven fabric and method for producing the same
WO2024005146A1 (en) Melt-blown nonwoven fabric, laminate, filter for mask, and mask
KR102548677B1 (en) porous polyester material
JP2009263800A (en) Spun-bonded nonwoven fabric and method for producing the same
WO2024071236A1 (en) Method for producing non-woven fabric and melt-blown non-woven fabric, hot-melted body and method for producing same, coffee filter, and coffee capsule
WO2023106231A1 (en) Melt-blown nonwoven fabric and method for manufacturing same
EP4278032A1 (en) Biologically degradable multi-component polymer fibres
WO2023106230A1 (en) Melt-blown nonwoven fabric, method for producing same, multilayer body, filter for masks, and mask
US20230304192A1 (en) Prodegradation in nonwovens
WO2022237925A1 (en) Nonwoven fabric with enhanced strength
JP2011162925A (en) Polylactic acid-based filament nonwoven fabric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831584

Country of ref document: EP

Kind code of ref document: A1