JP2011162925A - Polylactic acid-based filament nonwoven fabric - Google Patents

Polylactic acid-based filament nonwoven fabric Download PDF

Info

Publication number
JP2011162925A
JP2011162925A JP2010029611A JP2010029611A JP2011162925A JP 2011162925 A JP2011162925 A JP 2011162925A JP 2010029611 A JP2010029611 A JP 2010029611A JP 2010029611 A JP2010029611 A JP 2010029611A JP 2011162925 A JP2011162925 A JP 2011162925A
Authority
JP
Japan
Prior art keywords
polylactic acid
nonwoven fabric
sheath
based polymer
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010029611A
Other languages
Japanese (ja)
Inventor
Yusuke Nagatsuka
裕介 永塚
Atsushi Matsunaga
篤 松永
Akihiko Gondo
壮彦 権藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2010029611A priority Critical patent/JP2011162925A/en
Publication of JP2011162925A publication Critical patent/JP2011162925A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding excellent in moldability at high temperature in nonwoven fabric employing polylactic acid-based polymer. <P>SOLUTION: The molding includes a polylactic acid-based filament nonwoven fabric comprising a conjugate filament containing a polylactic acid-based polymer and polypropylene-based polymer as a constitutional fiber. The conjugate form of the conjugate filament is of a sheath/core-type where the polylactic acid-based polymer forms the core and the polypropylene-based polymer forms the sheath. The elongation at break of the polylactic acid-based filament nonwoven fabric at 130&deg;C is 150% or more in both longitudinal and transverse directions. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明はポリ乳酸系長繊維不織布に関する。   The present invention relates to a polylactic acid-based long fiber nonwoven fabric.

従来から、生活資材や産業・土木資材、農業資材などの素材として、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂などの熱可塑性重合体からなる種々の不織布が知られている。   Conventionally, various non-woven fabrics made of thermoplastic polymers such as polyolefin resins, polyester resins, polyamide resins and the like are known as materials for daily life, industrial / civil engineering materials, agricultural materials, and the like.

しかしながら、これらの不織布は石油由来の原料より製造されているものであるため、焼却時の高い燃焼熱、焼却時に発生する二酸化炭素による温室効果、および自然環境保護の観点から見直しが必要とされている。したがって、近年、植物由来のトウモロコシやサツマイモなどを原料としたポリ乳酸がバイオマスの観点から注目されており、ポリ乳酸系重合体を用いた不織布が種々開発されている。   However, since these nonwoven fabrics are manufactured from petroleum-derived raw materials, they need to be reviewed from the viewpoints of high combustion heat during incineration, the greenhouse effect due to carbon dioxide generated during incineration, and protection of the natural environment. Yes. Therefore, in recent years, polylactic acid using plant-derived corn or sweet potato as a raw material has attracted attention from the viewpoint of biomass, and various nonwoven fabrics using polylactic acid-based polymers have been developed.

例えば、ポリ乳酸系重合体からなる単相断面の長繊維から形成され、該長繊維同士が部分的に熱圧着されてなる不織布が検討されている(特許文献1)。
また、ポリ乳酸系重合体と他の重合体とを複合したものとして、芯部にポリ乳酸系重合体、鞘部にポリオレフィン系重合体を用いた芯鞘型複合長繊維からなる不織布が検討されている(特許文献2)。しかしながら、特許文献2で得られた不織布は、折り曲げに弱い(すなわち、耐屈曲磨耗性に劣る)という問題点があった。
For example, a non-woven fabric formed from long fibers having a single-phase cross section made of a polylactic acid-based polymer and in which the long fibers are partially thermocompression-bonded has been studied (Patent Document 1).
In addition, as a composite of a polylactic acid polymer and another polymer, a nonwoven fabric comprising a core-sheath type composite long fiber using a polylactic acid polymer in the core and a polyolefin polymer in the sheath has been studied. (Patent Document 2). However, the nonwoven fabric obtained in Patent Document 2 has a problem that it is weak against bending (that is, inferior in abrasion resistance).

特開2003−64569号公報JP 2003-64569 A 特開2002−88630号公報JP 2002-88630 A

本発明は、ポリ乳酸系重合体が用いられる不織布において、耐屈曲磨耗性、耐候性が共に優れたポリ乳酸系長繊維不織布を提供することを課題とする。   This invention makes it a subject to provide the polylactic acid type | system | group long-fiber nonwoven fabric excellent in both bending abrasion resistance and a weather resistance in the nonwoven fabric in which a polylactic acid type polymer is used.

本発明者らは、上記問題を解決するため、鋭意検討した結果、本発明に到達した。すなわち、本発明の要旨は、下記の通りである。
(1)ポリ乳酸系重合体とポリプロピレン系重合体とを含む複合長繊維を構成繊維とするポリ乳酸系長繊維不織布であって、前記複合長繊維の複合形態はポリ乳酸系重合体が鞘部を形成し、ポリプロピレン系重合体が芯部を形成する芯鞘型複合長繊維であることを特徴とするポリ乳酸系長繊維不織布。
(2)JIS P 8115に従って折り曲げ強度試験を実施した際に、試料が切断するまでの折り曲げ回数が10000以上となることを特徴とする(1)のポリ乳酸系長繊維不織布。
(3)(1)または(2)のポリ乳酸系長繊維不織布を用いたことを特徴とする成型体。
(4)(1)または(2)のポリ乳酸系長繊維不織布を用いたことを特徴とするフィルター。
(5)(1)または(2)のポリ乳酸系長繊維不織布を用いたことを特徴とするブラインドカーテン。
The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above problems. That is, the gist of the present invention is as follows.
(1) A polylactic acid-based long-fiber nonwoven fabric comprising a composite long fiber containing a polylactic acid-based polymer and a polypropylene-based polymer as a constituent fiber, wherein the composite form of the composite long fiber is a sheath portion of the polylactic acid-based polymer A polylactic acid-based long-fiber nonwoven fabric, wherein the polypropylene-based polymer is a core-sheath type composite continuous fiber in which a core is formed.
(2) The polylactic acid-based long fiber nonwoven fabric according to (1), wherein when the bending strength test is carried out in accordance with JIS P 8115, the number of bending until the sample is cut is 10,000 or more.
(3) A molded article using the polylactic acid-based long fiber nonwoven fabric of (1) or (2).
(4) A filter using the polylactic acid-based long fiber nonwoven fabric according to (1) or (2).
(5) A blind curtain characterized by using the polylactic acid-based long fiber nonwoven fabric of (1) or (2).

本発明によれば、不織布を構成する繊維の構造を、ポリ乳酸系重合体が鞘部に配され、ポリプロピレン系重合体が芯部に配された芯鞘型とすることにより、耐屈曲磨耗性に優れ、耐候剤を添加しなくても耐候性に優れたポリ乳酸系長繊維不織布を提供することができる。また、該ポリ乳酸系長繊維不織布を用いることにより、耐屈曲磨耗性および耐候性に優れた成型体、フィルターおよびブラインドカーテンを提供することができる。   According to the present invention, the structure of the fibers constituting the nonwoven fabric is a core-sheath type in which a polylactic acid-based polymer is arranged in the sheath and a polypropylene-based polymer is arranged in the core, thereby providing bending wear resistance. It is possible to provide a polylactic acid-based continuous fiber non-woven fabric having excellent weather resistance without being added with a weathering agent. In addition, by using the polylactic acid-based long fiber nonwoven fabric, it is possible to provide a molded article, a filter, and a blind curtain having excellent bending wear resistance and weather resistance.

以下、本発明を詳細に説明する。
本発明のポリ乳酸系長繊維不織布(以下、単に「不織布」と称する場合がある)は、ポリプロピレン系重合体が芯部に配され、ポリ乳酸系重合体が鞘部に配された芯鞘型の複合長繊維を構成繊維とする複合長繊維不織布である。ポリプロピレン系重合体を芯部に配置することにより、芯部の結晶化度が向上し、折れ曲がりに強く耐屈曲磨耗性に優れる複合長繊維を得ることができる。また、ポリ乳酸系重合体を鞘部に配置することにより耐候性が向上するため、耐候剤を別途用いなくても、耐候性に優れた不織布を得ることができるためコスト的にも良好である。
Hereinafter, the present invention will be described in detail.
The polylactic acid-based long-fiber nonwoven fabric of the present invention (hereinafter sometimes simply referred to as “nonwoven fabric”) has a core-sheath type in which a polypropylene-based polymer is disposed in a core portion and a polylactic acid-based polymer is disposed in a sheath portion. This is a composite long fiber nonwoven fabric comprising the composite long fibers as constituent fibers. By disposing the polypropylene polymer in the core part, the crystallization degree of the core part is improved, and a composite long fiber that is strong against bending and excellent in bending wear resistance can be obtained. In addition, since the weather resistance is improved by disposing the polylactic acid-based polymer in the sheath, it is possible to obtain a non-woven fabric excellent in weather resistance without using a weathering agent separately, which is favorable in terms of cost. .

本発明に用いられるポリプロピレン系重合体は、プロピレン単体でもよいし、主たる繰り返し単位がプロピレン単位である共重合ポリプロピレンでもよい。
ポリプロピレンを重合して、ポリプロピレン系重合体を得る場合には、チーグラーナッタ触媒やメタロセン触媒などの触媒が用いられるが、本発明においては、いずれの触媒も用いることができる。
The polypropylene-based polymer used in the present invention may be propylene alone or a copolymerized polypropylene whose main repeating unit is a propylene unit.
When a polypropylene polymer is obtained by polymerizing polypropylene, a catalyst such as a Ziegler-Natta catalyst or a metallocene catalyst is used. In the present invention, any catalyst can be used.

本発明において、ポリプロピレン系重合体のASTM−D−1238(L)に従って測定したメルトフローレート(MFR)は、5〜90g/10分であることが好ましく、20〜80g/10分であることがより好ましい。MFRが5g/10分未満であると、溶融紡糸の際に、溶融温度を極端に高くする必要が生じ、高温下における紡糸では原料であるポリプロピレン系重合体の熱分解が促進される。そのため、紡糸口金に汚れが付着しやすくなり、操業性の悪化を招く場合がある。一方、MFRが90g/10分を超えると、強力の高い繊維を得ることが困難となり、本発明の目的とする不織布を得ることができない。   In the present invention, the melt flow rate (MFR) measured according to ASTM-D-1238 (L) of the polypropylene polymer is preferably 5 to 90 g / 10 minutes, and preferably 20 to 80 g / 10 minutes. More preferred. When the MFR is less than 5 g / 10 minutes, it is necessary to extremely increase the melting temperature during melt spinning, and the thermal decomposition of the polypropylene polymer as a raw material is promoted when spinning at a high temperature. For this reason, dirt tends to adhere to the spinneret, which may lead to deterioration in operability. On the other hand, if the MFR exceeds 90 g / 10 min, it becomes difficult to obtain high-strength fibers, and the nonwoven fabric intended by the present invention cannot be obtained.

本発明に用いられるポリ乳酸系重合体としては、ポリ(D−乳酸)、ポリ(L−乳酸)、(D−乳酸)と(L−乳酸)の共重合体、(D−乳酸)とヒドロキシカルボン酸との共重合体、(L−乳酸)とヒドロキシカルボン酸との共重合体、(D−乳酸)と(L−乳酸)とヒドロキシカルボン酸との共重合体、これらのブレンド体が挙げられる。   Examples of the polylactic acid polymer used in the present invention include poly (D-lactic acid), poly (L-lactic acid), a copolymer of (D-lactic acid) and (L-lactic acid), and (D-lactic acid) and hydroxy. A copolymer of carboxylic acid, a copolymer of (L-lactic acid) and hydroxycarboxylic acid, a copolymer of (D-lactic acid), (L-lactic acid) and hydroxycarboxylic acid, and a blend thereof. It is done.

上記のヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシカプリル酸などが挙げられる。なかでも、低コスト化の観点からは、ヒドロキシカプロン酸やグリコール酸が好ましい。   Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxyheptanoic acid, and hydroxycaprylic acid. Of these, hydroxycaproic acid and glycolic acid are preferable from the viewpoint of cost reduction.

本発明においては、ポリ乳酸系重合体の融点が150℃以上であることが好ましく、160℃以上であることがより好ましい。融点が150℃以上であると、結晶性が高くなるため耐熱性が良好となる。そのため、高温における熱処理加工時の収縮が小さく、熱加工による安定性に優れた不織布を得ることができる。また、融点が150℃以上のポリ乳酸系重合体のブレンド体であってもよい。   In the present invention, the polylactic acid polymer preferably has a melting point of 150 ° C. or higher, and more preferably 160 ° C. or higher. When the melting point is 150 ° C. or higher, the crystallinity increases and the heat resistance is improved. Therefore, a non-woven fabric having a small shrinkage during heat treatment at a high temperature and excellent in stability by heat processing can be obtained. Further, it may be a blend of polylactic acid polymers having a melting point of 150 ° C. or higher.

ポリ乳酸のホモポリマーであるポリ(L−乳酸)や、ポリ(D−乳酸)の融点は、約180℃である。そのため、ポリ乳酸系重合体として、ホモポリマーではなく、共重合体を用いる場合には、共重合体の融点が150℃以上となるように、モノマー成分の共重合比率を調整する必要がある。   The melting point of poly (L-lactic acid), which is a homopolymer of polylactic acid, and poly (D-lactic acid) is about 180 ° C. Therefore, when using a copolymer as the polylactic acid polymer instead of a homopolymer, it is necessary to adjust the copolymerization ratio of the monomer components so that the melting point of the copolymer is 150 ° C. or higher.

(L−乳酸)と(D−乳酸)の共重合比は、モル比で、(L−乳酸)/(D−乳酸)=5/95〜0/100、あるいは、(L−乳酸)/(D−乳酸)=95/5〜100/0であることが好ましい。共重合比が上記の範囲を外れると、ポリ乳酸系重合体の融点が150℃未満となり、非晶性が高くなるため耐熱性に劣り、得られた不織布には高温における熱処理加工時の収縮が発生する。   The copolymerization ratio of (L-lactic acid) and (D-lactic acid) is a molar ratio of (L-lactic acid) / (D-lactic acid) = 5/95 to 0/100, or (L-lactic acid) / ( D-lactic acid) = 95/5 to 100/0 is preferable. If the copolymerization ratio is out of the above range, the melting point of the polylactic acid polymer is less than 150 ° C., and the amorphous property becomes high, so that the heat resistance is inferior. appear.

上記のポリプロピレン系重合体やポリ乳酸系重合体には、本発明の効果を損なわない限りにおいて、顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、末端封鎖剤、可塑剤、滑剤、離型剤、帯電防止剤、充填材、結晶核剤などを添加してもよい。   As long as the effects of the present invention are not impaired, the above polypropylene-based polymer and polylactic acid-based polymer have pigments, heat stabilizers, antioxidants, weathering agents, flame retardants, end-capping agents, plasticizers, lubricants, Release agents, antistatic agents, fillers, crystal nucleating agents, and the like may be added.

複合長繊維における芯部と鞘部の複合比(質量比)は、(芯部)/(鞘部)=1/5〜5/1であることが好ましく、1/3〜3/1であることがより好ましい。(芯部)/(鞘部)の複合比が1/5を下回ると、ポリ乳酸系重合体の性質がポリプロピレン系重合体の性質より強く発現するため、ポリプロピレン系重合体の特性である耐屈曲磨耗性に劣る場合がある。一方、(芯部)/(鞘部)の複合比が5/1を超えると、鞘部のポリ乳酸系重合体の被覆が薄くなりすぎるため、十分な耐候性が得られず、糸条の冷却が進みにくくなることから、糸条の密着が生じやすくなるため好ましくない。   The composite ratio (mass ratio) of the core part and the sheath part in the composite long fiber is preferably (core part) / (sheath part) = 1/5 to 5/1, and preferably 1/3 to 3/1. It is more preferable. When the composite ratio of (core part) / (sheath part) is less than 1/5, the properties of the polylactic acid polymer are expressed more strongly than the properties of the polypropylene polymer. It may be inferior to wear. On the other hand, when the composite ratio of (core part) / (sheath part) exceeds 5/1, the sheath of the polylactic acid polymer in the sheath part becomes too thin, so that sufficient weather resistance cannot be obtained, Since it becomes difficult for the cooling to proceed, it is not preferable because the yarn tends to be closely adhered.

本発明において、複合長繊維の単糸繊度は、1〜10dtexであることが好ましく、1.5〜8dtexであることがより好ましい。単糸繊度が1dtex未満であると、製糸工程において糸切れが発生するなど操業性を損なう場合がある。単糸繊度が10dtexを超えると、紡出糸条の冷却性に劣るため、糸条の密着が起こりやすく、また得られる不織布の柔軟性を損なう場合がある。   In the present invention, the single yarn fineness of the composite continuous fiber is preferably 1 to 10 dtex, and more preferably 1.5 to 8 dtex. If the single yarn fineness is less than 1 dtex, the operability may be impaired, for example, yarn breakage may occur in the yarn making process. When the single yarn fineness exceeds 10 dtex, the spinning yarn is inferior in cooling property, so that the yarn is likely to be closely adhered and the flexibility of the resulting nonwoven fabric may be impaired.

複合長繊維の断面形状は、特に限定されず、円形、楕円形、多角形、多葉形、中空形などの形状が挙げられる。   The cross-sectional shape of the composite long fiber is not particularly limited, and examples thereof include a circular shape, an elliptical shape, a polygonal shape, a multileaf shape, and a hollow shape.

本発明のポリ乳酸系長繊維不織布は、上述の複合長繊維を用いて、公知の方法により得ることができる。公知の方法は、特に制限されず、例えば、熱により接着する熱接着法、ニードルパンチ法やスパンレース法などの機械的交絡法、ボンディング法などが挙げられる。なかでも、生産性、得られる不織布の機械的強力の観点から、熱接着法が好ましい。   The polylactic acid-based long fiber nonwoven fabric of the present invention can be obtained by a known method using the above-described composite long fiber. The known method is not particularly limited, and examples thereof include a thermal bonding method in which bonding is performed by heat, a mechanical entanglement method such as a needle punch method and a spunlace method, and a bonding method. Of these, the thermal bonding method is preferred from the viewpoint of productivity and mechanical strength of the resulting nonwoven fabric.

以下に、熱接着法による製造方法について説明する。
熱接着法としては、具体的には、加熱されたエンボスロールと表面が平滑なフラットロールとの間、もしくは一対のエンボスロールの間、一対のフラットロールの間に、長繊維ウェブを通して、熱により繊維を軟化または溶融させて繊維間を接着する方法である。エンボスロールの柄は、そのまま接着部の形状となるが、その形状は特に限定されるものではなく、散点状であってもよいし、直線状や格子状などの直線的な形状であってもよい。散点状の場合は、丸形、楕円形、菱形、三角形、T字形、井形、長方形、正方形などいかなる形態であってもよい。
Below, the manufacturing method by a heat bonding method is demonstrated.
Specifically, as the thermal bonding method, heat is applied between a heated embossing roll and a flat roll having a smooth surface, or between a pair of embossing rolls, between a pair of flat rolls, through a long fiber web. In this method, fibers are softened or melted to bond the fibers. The pattern of the embossing roll becomes the shape of the bonding portion as it is, but the shape is not particularly limited, and may be a dotted shape, or a linear shape such as a linear shape or a lattice shape. Also good. In the case of a scattered dot shape, any shape such as a round shape, an oval shape, a rhombus shape, a triangle shape, a T-shape shape, a well shape, a rectangular shape, or a square shape may be used.

接着点の大きさは、目的に応じて適宜選択すればよいが、0.1〜1.0mmであることが好ましい。接着点の大きさが0.1mm未満であると、接着点面積が小さくなりすぎるために機械的強力に劣る傾向となる。一方、1.0mmを超えると、接着点面積が大きくなりすぎるため、不織布の柔軟性や嵩高性が低下する傾向となる。 The size of the adhesion point may be appropriately selected according to the purpose, but is preferably 0.1 to 1.0 mm 2 . If the size of the adhesion point is less than 0.1 mm 2 , the adhesion point area becomes too small and the mechanical strength tends to be inferior. On the other hand, when it exceeds 1.0 mm 2, since the point of attachment area is too large, it tends to decrease the flexibility and bulkiness of the nonwoven fabric.

接着点の密度は、目的に応じて適宜選択すればよいが、2〜80個/cmであることが好ましい。接着点の密度が2個/cm未満であると、接着点面積が小さくなりすぎるために機械的強力に劣る傾向となる。一方、80個/cmを超えると、接着点面積が大きくなりすぎるため、不織布の柔軟性や嵩高性が低下する傾向となる。 The density of the adhesion points may be appropriately selected according to the purpose, but is preferably 2 to 80 / cm 2 . When the density of the adhesion points is less than 2 pieces / cm 2 , the adhesion point area becomes too small, so that the mechanical strength tends to be poor. On the other hand, when it exceeds 80 pieces / cm 2 , since the adhesion point area becomes too large, the flexibility and bulkiness of the nonwoven fabric tend to decrease.

本発明のポリ乳酸系長繊維不織布の目付は、特に制限されず、用途に応じて適宜選択すればよいが、10〜400g/m程度でよい。 The basis weight of the polylactic acid-based long fiber nonwoven fabric of the present invention is not particularly limited and may be appropriately selected depending on the application, but may be about 10 to 400 g / m 2 .

次に、本発明のポリ乳酸系長繊維不織布の製造方法について説明する。
まず、芯部となるポリプロピレン系重合体と鞘部となるポリ乳酸系重合体の複合比(質量比)が、(芯部)/(鞘部)=1/5〜5/1となるように個別に計量した後、芯部がポリプロピレン系重合体、鞘部がポリ乳酸系重合体となるように、芯鞘型複合紡糸口金より紡出する。紡出された糸条は、冷却空気流などの公知の冷却装置によって冷却され、エアーサッカーなどの公知の引き取り手段によって所望の繊度となるように牽引細化して引き取る。牽引細化された複合長繊維は、公知の開繊装置にて開繊せしめられた後に、スクリーンコンベアなどの移動式捕集面上に開繊堆積させて長繊維ウェブとする。この得られた長繊維ウェブを熱接着装置に通して、部分的に熱接着することで目的とするポリ乳酸系長繊維不織布を得る。
Next, the manufacturing method of the polylactic acid-type long fiber nonwoven fabric of this invention is demonstrated.
First, the composite ratio (mass ratio) of the polypropylene polymer serving as the core and the polylactic acid polymer serving as the sheath is (core) / (sheath) = 1/5 to 5/1. After weighing individually, spinning is performed from a core-sheath type composite spinneret so that the core part is a polypropylene polymer and the sheath part is a polylactic acid polymer. The spun yarn is cooled by a known cooling device such as a cooling air flow, and is pulled and thinned to a desired fineness by a known take-up means such as air soccer. The drawn and drawn composite long fibers are opened by a known opening device, and then spread and deposited on a movable collection surface such as a screen conveyor to form a long fiber web. The obtained long fiber web is passed through a thermal bonding apparatus and partially thermally bonded to obtain a target polylactic acid-based long fiber nonwoven fabric.

本発明において、牽引速度は、2500〜5500m/分であることが好ましく、3500〜5000m/分であることがより好ましい。牽引速度が2500m/分未満であると、糸条において十分に分子配向が促進されず、得られる不織布の寸法安定性、機械的特性に劣る傾向となる。一方、牽引速度が5500m/分を超えると、紡糸安定性に劣り、糸切れが発生しやすくなり、操業性が悪化する傾向がある。   In the present invention, the pulling speed is preferably 2500 to 5500 m / min, and more preferably 3500 to 5000 m / min. When the pulling speed is less than 2500 m / min, molecular orientation is not sufficiently promoted in the yarn, and the resulting nonwoven fabric tends to be inferior in dimensional stability and mechanical properties. On the other hand, if the pulling speed exceeds 5500 m / min, the spinning stability is inferior, yarn breakage tends to occur, and the operability tends to deteriorate.

熱接着時における加熱ロールの表面温度は鞘部に配されるポリ乳酸系重合体の融点Tmに対して、(Tm−60)℃〜Tm℃の範囲であることが好ましい。加熱ロールの表面温度が(Tm−60)℃未満である場合、熱接着が十分に行われず、機械的性能および寸法安定性の低下を招く場合がある。一方、加熱ロールの表面温度がTm℃を超えると、繊維が溶融しロール表面に付着するため、操業性が損なわれる場合がある。   The surface temperature of the heating roll at the time of heat bonding is preferably in the range of (Tm-60) ° C. to Tm ° C. with respect to the melting point Tm of the polylactic acid polymer disposed in the sheath. When the surface temperature of the heating roll is less than (Tm-60) ° C., the thermal bonding is not sufficiently performed, and mechanical performance and dimensional stability may be reduced. On the other hand, when the surface temperature of the heating roll exceeds Tm ° C., the fibers melt and adhere to the roll surface, so that the operability may be impaired.

本発明においては、必要に応じて、熱接着処理後に、バインダー樹脂などをディップ法、コーティング法、泡含浸法などの方法で付与してもよい。また、付与するバインダー樹脂はその目的に合わせて適宜選択すればよい。   In the present invention, if necessary, a binder resin or the like may be applied by a method such as a dipping method, a coating method, or a foam impregnation method after the thermal bonding treatment. Moreover, what is necessary is just to select the binder resin to provide suitably according to the objective.

本発明のポリ乳酸系長繊維不織布は、優れた機械的強力の観点から、JIS L 1096 6.12.1 B法(グラブ法)に従って測定した機械方向と直交する方向(ヨコ方向)に従って測定した引張強力が4.0N/5cm幅以上であることが好ましい。   From the viewpoint of excellent mechanical strength, the polylactic acid-based long fiber nonwoven fabric of the present invention was measured according to a direction (horizontal direction) orthogonal to the machine direction measured according to JIS L 1096 6.12.1 B method (grab method). The tensile strength is preferably 4.0 N / 5 cm width or more.

また、本発明のポリ乳酸系長繊維不織布は、優れた耐屈曲磨耗性の観点から、JIS P 8115に従って折り曲げ強度試験を実施した際に、試料が切断するまでの折り曲げ回数が10000以上となることが好ましい。   In addition, the polylactic acid-based long-fiber nonwoven fabric of the present invention has a folding number of 10,000 or more until the sample is cut when a bending strength test is performed according to JIS P 8115 from the viewpoint of excellent bending wear resistance. Is preferred.

さらにまた、本発明のポリ乳酸系長繊維不織布は、優れた耐候性の観点から、実施例において後述する引張強力保持率、破断伸度保持率、引裂強力保持率が、いずれも60%以上であることが好ましい。   Furthermore, from the viewpoint of excellent weather resistance, the polylactic acid-based long fiber nonwoven fabric of the present invention has a tensile strength retention rate, a breaking elongation retention rate, and a tear strength retention rate described later in Examples of 60% or more. Preferably there is.

なお、上記試験の測定は、いずれも測定値が小さくなる方向で評価している。これは、長繊維不織布において、繊維は機械方向(タテ方向)に配列しやすいためである。すなわち、引張強力、破断伸度はヨコ方向で測定しており、引裂強力はタテ方向において測定している。   In addition, all the measurements of the above test are evaluated in the direction of decreasing the measured value. This is because in the long-fiber nonwoven fabric, the fibers are easily arranged in the machine direction (vertical direction). That is, the tensile strength and breaking elongation are measured in the horizontal direction, and the tear strength is measured in the vertical direction.

本発明の成型体は、ポリ乳酸系長繊維不織布をプレス成型などに付して成型することにより得られる。成型体は容器形状品であってもよいし、シート状品であってもよい。また、プリーツ加工を施したものでもよい。本発明において、成型体を得る方法は特に制限されない。例えば、ポリ乳酸系長繊維不織布をまず予熱し、その後に適宜の形状の金型などを用いてプレス成型して、成型体を得る。   The molded body of the present invention can be obtained by subjecting a polylactic acid-based long fiber nonwoven fabric to press molding or the like and molding. The molded body may be a container-shaped product or a sheet-shaped product. Moreover, what gave the pleating process may be used. In the present invention, the method for obtaining a molded body is not particularly limited. For example, a polylactic acid-based long fiber nonwoven fabric is first preheated and then press-molded using a mold having an appropriate shape to obtain a molded body.

このようにして得られた種々の形態の成型体は、種々の製品に用いられるが、フィルター用途や室内のブラインドカーテンに特に好適に用いられる。   The molded articles of various forms thus obtained are used for various products, but are particularly preferably used for filter applications and indoor blind curtains.

以下、本発明を実施例により、さらに具体的に説明する。実施例および比較例の評価に用いた測定法は次の通りである。
(1)メルトフローレート(g/10分)
ASTM−D−1238(E)に従い、温度210℃、荷重2160gfで測定した。
Hereinafter, the present invention will be described more specifically with reference to examples. The measurement methods used for evaluating the examples and comparative examples are as follows.
(1) Melt flow rate (g / 10 min)
According to ASTM-D-1238 (E), the temperature was 210 ° C. and the load was 2160 gf.

(2)融点(℃)
示差走査型熱量計(パーキンエルマ社製、商品名「DSC−2型」)を用いて、試料質量を5g、昇温速度を10℃/分で測定し、得られた融解吸熱曲線の最大値を与える温度を融点とした。
(2) Melting point (° C)
Using a differential scanning calorimeter (trade name “DSC-2”, manufactured by Perkin Elma Co., Ltd.), the sample mass was measured at 5 g and the rate of temperature increase was 10 ° C./min. The temperature at which is given is the melting point.

(3)繊度(dtex)
実施例および比較例で得られた不織布の任意の50本の繊維の繊維径を光学顕微鏡で測定し、密度補正して求めた平均値を繊度とした。
(3) Fineness (dtex)
The fiber diameter of any 50 fibers of the nonwoven fabric obtained in Examples and Comparative Examples was measured with an optical microscope, and the average value obtained by correcting the density was defined as the fineness.

(4)目付(g/m
実施例および比較例で得られた不織布の標準状態から、試料長が10cm、試料幅が5cmの試料片10点を作成し、各試料片の質量(g)を秤量し、得られた値の平均値を単位面積あたりに換算して、目付とした。
(4) Weight per unit (g / m 2 )
From the standard state of the nonwoven fabric obtained in Examples and Comparative Examples, 10 sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared, and the mass (g) of each sample piece was weighed, and the obtained values The average value was converted per unit area and used as the basis weight.

(5)引張強力(N/5cm幅)、破断伸度(%)
JIS L 1096 6.12.1 B法(グラブ法)に基づき、初期荷重を0.02kgfとして測定した。
(5) Tensile strength (N / 5 cm width), elongation at break (%)
Based on JIS L 1096 6.12.1 B method (grab method), the initial load was measured as 0.02 kgf.

(6)引裂強力(N/5cm幅)
JIS L 1906(ペンジュラム法)に基づいて測定した。
(7)引張強力保持率(耐候性)(%)
JIS B 7753に準じたカーボンアーク橙サンシャインウェザーメーター(スガ試験機社製、型式「S80DHB」、放射照度:255W/m、波長:300〜700nm)を用いた耐候性試験(温度:63±3℃、湿度:65±5%RH(噴霧が無い状態)、噴霧条件:120分毎に8分間噴霧する)において、150時間および300時間暴露後の不織布の引張強力を、上記(5)に従って測定した。暴露前の引張強力をS1とし、暴露後の引張強力をS0として、下式に従い、強力保持率を算出した。
引張強力保持率(%)=[S1/S0]×100
(8)破断伸度保持率(耐候性)(%)
上述のカーボンアーク橙サンシャインウェザーメーターを用いた耐候性試験(温度:63±3℃、湿度:65±5%RH(噴霧が無い状態)、噴霧条件:120分毎に8分間噴霧する)において、150時間および300時間暴露後の不織布の破断伸度を、上記(5)に従って測定した。暴露前の破断伸度をT1とし、暴露後の破断伸度をT0として、下式に従い、破断伸度保持率を算出した。
破断伸度保持率(%)=[T1/T0]×100
(9)引裂強力保持率(耐候性)(%)
上述のカーボンアーク橙サンシャインウェザーメーターを用いた耐候性試験(温度:63±3℃、湿度:65±5%RH(噴霧が無い状態)、噴霧条件:120分毎に8分間噴霧する)において、150時間および300時間暴露後の不織布の引裂強力を、上記(6)に従って測定した。暴露前の引裂強力をU1とし、暴露後の引裂強力をU0として、下式に従い、引裂強度保持率を算出した。
引裂強力保持率(%)=[U1/U0]×100
(10)折り曲げ回数(耐屈曲磨耗性)
JIS P 8115に従って測定した。すなわち、幅15cmの試験片を10個作成し、屈曲疲労試験機(東洋精機社製、商品名「MIT屈曲疲労試験機」)を用いて、荷重:1kgf、振れ回数:175回/分、振れ角度約270度(左右に各135度)の条件にて、試験片が切断するまでの折り曲げ回数を測定し、その平均値を求めた。
(6) Tear strength (N / 5cm width)
Measurement was performed based on JIS L 1906 (Pendulum Method).
(7) Tensile strength retention (weather resistance) (%)
Weather resistance test (temperature: 63 ± 3) using a carbon arc orange sunshine weather meter according to JIS B 7753 (manufactured by Suga Test Instruments Co., Ltd., model “S80DHB”, irradiance: 255 W / m 2 , wavelength: 300 to 700 nm) The tensile strength of the non-woven fabric after 150 hours and 300 hours exposure was measured according to the above (5) at ° C., humidity: 65 ± 5% RH (no spraying), spraying condition: spraying every 120 minutes for 8 minutes) did. The tensile strength before exposure was set to S1, the tensile strength after exposure was set to S0, and the strength retention was calculated according to the following formula.
Tensile strength retention (%) = [S1 / S0] × 100
(8) Breaking elongation retention rate (weather resistance) (%)
In the weather resistance test using the above-mentioned carbon arc orange sunshine weather meter (temperature: 63 ± 3 ° C., humidity: 65 ± 5% RH (no spraying), spraying condition: spraying every 120 minutes for 8 minutes) The breaking elongation of the nonwoven fabric after 150 hours and 300 hours exposure was measured according to the above (5). The breaking elongation retention was calculated according to the following equation, where T1 was the elongation at break before exposure and T0 was the elongation after exposure.
Breaking elongation retention rate (%) = [T1 / T0] × 100
(9) Tear strength retention (weather resistance) (%)
In the weather resistance test using the above-mentioned carbon arc orange sunshine weather meter (temperature: 63 ± 3 ° C., humidity: 65 ± 5% RH (no spraying), spraying condition: spraying every 120 minutes for 8 minutes) The tear strength of the nonwoven fabric after exposure for 150 hours and 300 hours was measured according to (6) above. The tear strength retention rate was calculated according to the following equation, with the tear strength before exposure as U1 and the tear strength after exposure as U0.
Tearing strength retention (%) = [U1 / U0] × 100
(10) Number of bendings (flexible wear resistance)
Measured according to JIS P 8115. That is, ten test pieces having a width of 15 cm were prepared, and using a bending fatigue tester (trade name “MIT bending fatigue tester” manufactured by Toyo Seiki Co., Ltd.), load: 1 kgf, number of swings: 175 times / minute, runout Under the condition of an angle of about 270 degrees (each left and right 135 degrees), the number of bending until the test piece was cut was measured, and the average value was obtained.

(実施例1)
ポリプロピレン系重合体(融点:160℃、MFR:55g/10分)(以下、「PP」と称する場合がある)を用意した。一方で、ポリ乳酸系重合体(融点:174℃、MFR:21g/10分、D体含有率:0.4モル%)(以下、「PLA」と称する場合がある)を用意した。
Example 1
A polypropylene-based polymer (melting point: 160 ° C., MFR: 55 g / 10 min) (hereinafter sometimes referred to as “PP”) was prepared. On the other hand, a polylactic acid polymer (melting point: 174 ° C., MFR: 21 g / 10 min, D-form content: 0.4 mol%) (hereinafter sometimes referred to as “PLA”) was prepared.

PPを芯部とし、PLAを鞘部として、芯部/鞘部=1/1(質量比)である芯鞘複合断面となるように、さらに、鞘成分のPLA中にはタルク0.5質量%を含有するように個別に計量した後、それぞれを個別のエクストルーダー型溶融押出機を用いて、温度210℃で溶融し、単孔吐出量1.3g/分の条件で溶融紡糸した。   In addition, the core of the sheath component PLA has 0.5 mass of talc so that the core / sheath portion is 1/1 (mass ratio) with PP as the core and PLA as the sheath. After being individually weighed so as to contain%, each was melted at a temperature of 210 ° C. and melt-spun at a single-hole discharge rate of 1.3 g / min using an individual extruder-type melt extruder.

紡出糸条を公知の冷却装置にて冷却した後、引き続いて紡糸口金の下方に設けたエアーサッカーを用いて牽引速度4500m/分で牽引細化し、公知の開繊器具を用いて開繊した。開繊した糸状を移動するスクリーンコンベア上にウェブとして捕集堆積させた。堆積させた芯鞘型複合長繊維の単糸繊度は3.0dtexであった。   After cooling the spun yarn with a known cooling device, it was subsequently subjected to pulverization at a traction speed of 4500 m / min using an air soccer provided below the spinneret and opened using a known fiber opening device. . The opened yarn was collected and deposited as a web on a moving screen conveyor. The single yarn fineness of the deposited core-sheath type composite continuous fiber was 3.0 dtex.

次いで、このウェブをロール温度130℃としたエンボスロールからなる部分熱圧着装置に通して部分的に熱圧着し、目付50g/mのポリ乳酸系長繊維不織布を得、評価に付した。該不織布の折り曲げ強度は10000回を超えるものであった。 Next, this web was partially thermocompression-bonded through a partial thermocompression bonding apparatus composed of an embossing roll having a roll temperature of 130 ° C. to obtain a polylactic acid-based long fiber nonwoven fabric having a basis weight of 50 g / m 2 and was subjected to evaluation. The bending strength of the nonwoven fabric exceeded 10,000 times.

(比較例1)
PLAを芯部とし、PPを鞘部として、芯部/鞘部=1/1(質量比)である芯鞘複合断面となるように、さらに、鞘成分のPPの溶融重合体中にタルク0.5質量%を含有するように個別に計量した後、それぞれを個別のエクストルーダー型溶融押出機を用いて、温度210℃で溶融し、単孔吐出量1.3g/分の条件で溶融紡糸した。
(Comparative Example 1)
Further, talc is added to the melt polymer of the sheath component PP so that the core-sheath composite section is obtained by using PLA as the core, PP as the sheath, and core / sheath = 1/1 (mass ratio). After individually weighing to contain 5 mass%, each was melted at a temperature of 210 ° C. using an individual extruder-type melt extruder, and melt-spun at a single-hole discharge rate of 1.3 g / min. did.

紡出糸条を公知の冷却装置にて冷却した後、引き続いて紡糸口金の下方に設けたエアーサッカーに牽引速度2500m/分で牽引細化し、公知の開繊器具を用いて開繊し、移動するスクリーンコンベア上にウェブとして捕集堆積させた。堆積させた芯鞘型複合長繊維の単糸繊度は5.1dtexであった。   After cooling the spun yarn with a known cooling device, it is subsequently pulled and thinned at a pulling speed of 2500 m / min into an air soccer provided below the spinneret, and then opened using a known spreader and moved. It was collected and deposited as a web on a screen conveyor. The single-filament fineness of the deposited core-sheath type composite continuous fiber was 5.1 dtex.

次いで、このウェブをロール温度130℃としたエンボスロールからなる部分熱圧着装置に通して部分的に熱圧着し、目付50g/mの不織布を得、評価に付した。折り曲げ回数は4445回であった。 Subsequently, this web was partially thermocompression-bonded through a partial thermocompression bonding apparatus composed of an embossing roll having a roll temperature of 130 ° C. to obtain a non-woven fabric having a basis weight of 50 g / m 2 and subjected to evaluation. The number of bendings was 4445.

(比較例2)
実施例1において、芯成分を用いずに、鞘成分として用いたタルクを0.5質量%添加したPLAを温度210℃、単孔吐出量1.6g/分の条件で溶融紡糸した。紡出糸条を公知の冷却装置にて冷却した後、引き続いて紡糸口金の下方に設けたエアーサッカーを用いて牽引速度4500m/分で牽引細化し、公知の開繊器具を用いて開繊し、移動するスクリーンコンベア上にウェブとして捕集堆積させた。堆積させた長繊維ウェブの単糸繊度は3.0dtexであった。
(Comparative Example 2)
In Example 1, without using the core component, PLA added with 0.5% by mass of talc used as the sheath component was melt-spun at a temperature of 210 ° C. and a single-hole discharge rate of 1.6 g / min. After cooling the spun yarn with a known cooling device, it is subsequently pulverized at a traction speed of 4500 m / min using an air soccer provided below the spinneret and opened using a known fiber opening device. And collected as a web on a moving screen conveyor. The single yarn fineness of the deposited long fiber web was 3.0 dtex.

次いで、この長繊維ウェブをロール温度130℃としたエンボスロールからなる部分熱圧着装置に通して部分的に熱圧着し、目付50g/mの不織布を得、評価に付した。折り曲げ回数は2741回であった。
(比較例3)
実施例1において、鞘成分を用いずに、芯成分として用いたPPを温度200℃、単孔吐出量1.4g/分の条件で溶融紡糸した。紡出糸条を公知の冷却装置にて冷却した後、引き続いて紡糸口金の下方に設けたエアーサッカーを用いて牽引速度4000m/分で牽引細化し、公知の開繊器具を用いて開繊し、移動するスクリーンコンベア上にウェブとして捕集堆積させた。堆積させた長繊維ウェブの単糸繊度は2.2dtexであった。
Next, this long fiber web was partially thermocompression-bonded through a partial thermocompression bonding apparatus composed of an embossing roll having a roll temperature of 130 ° C. to obtain a nonwoven fabric having a basis weight of 50 g / m 2 and subjected to evaluation. The number of bendings was 2741.
(Comparative Example 3)
In Example 1, without using the sheath component, PP used as the core component was melt-spun at a temperature of 200 ° C. and a single-hole discharge rate of 1.4 g / min. After cooling the spun yarn with a known cooling device, it is subsequently pulverized with a pulling speed of 4000 m / min using an air soccer provided below the spinneret, and opened using a known fiber opening device. And collected as a web on a moving screen conveyor. The single yarn fineness of the deposited long fiber web was 2.2 dtex.

次いで、この長繊維ウェブをロール温度135℃としたエンボスロールからなる部分熱圧着装置に通して部分的に熱圧着し、目付50g/mの長繊維不織布を得、評価に付した。折り曲げ回数は10000回を超えるものであった。 Subsequently, this long fiber web was partially thermocompression-bonded through a partial thermocompression bonding apparatus composed of an embossing roll having a roll temperature of 135 ° C. to obtain a long-fiber nonwoven fabric having a basis weight of 50 g / m 2 and was subjected to evaluation. The number of folds exceeded 10,000.

実施例1、比較例1〜3の評価結果を表1に示す。   The evaluation results of Example 1 and Comparative Examples 1 to 3 are shown in Table 1.

Figure 2011162925
実施例1において得られたポリ乳酸系不織布は、実用的な引張強力、破断伸度、引裂強力を有しており、耐候性および耐屈曲磨耗性において優れたものであった。
Figure 2011162925
The polylactic acid-based nonwoven fabric obtained in Example 1 had practical tensile strength, breaking elongation, and tear strength, and was excellent in weather resistance and bending wear resistance.

比較例1において得られたポリ乳酸系不織布は、ポリ乳酸系重合体が芯部を形成し、ポリプロピレン系重合体が鞘部を形成する芯鞘型複合長繊維からなるため、折り曲げ回数が顕著に少なく、耐屈曲磨耗性に劣っていた。   The polylactic acid-based nonwoven fabric obtained in Comparative Example 1 is composed of core-sheath type composite continuous fibers in which a polylactic acid-based polymer forms a core part and a polypropylene-based polymer forms a sheath part. There were few, and it was inferior to bending abrasion resistance.

比較例2において得られた不織布は、ポリ乳酸系重合体のみからなる単相繊維からなるため、引張強力、引裂強力に劣っていた。また、折り曲げ回数が顕著に少なく、耐屈曲磨耗性に劣っていた。   The nonwoven fabric obtained in Comparative Example 2 was inferior in tensile strength and tearing strength because it was composed of single-phase fibers composed only of a polylactic acid polymer. Further, the number of bendings was remarkably small, and the bending wear resistance was poor.

比較例3に得られた不織布は、ポリプロピレン系重合体のみからなる単相繊維からなるため、耐候性に劣っていた。   The nonwoven fabric obtained in Comparative Example 3 was inferior in weather resistance because it was composed of single-phase fibers composed only of a polypropylene polymer.

Claims (5)

ポリ乳酸系重合体とポリプロピレン系重合体とを含む複合長繊維を構成繊維とするポリ乳酸系長繊維不織布であって、前記複合長繊維の複合形態はポリ乳酸系重合体が鞘部を形成し、ポリプロピレン系重合体が芯部を形成する芯鞘型複合長繊維であることを特徴とするポリ乳酸系長繊維不織布。   A polylactic acid-based long fiber nonwoven fabric comprising a composite long fiber comprising a polylactic acid-based polymer and a polypropylene-based polymer as a constituent fiber, wherein the polylactic acid-based polymer forms a sheath portion in the composite form of the composite long fiber. A polylactic acid-based long-fiber nonwoven fabric, wherein the polypropylene-based polymer is a core-sheath type composite continuous fiber forming a core part. JIS P 8115に従って折り曲げ強度試験を実施した際に、試料が切断するまでの折り曲げ回数が10000以上となることを特徴とする請求項1に記載のポリ乳酸系長繊維不織布。   The polylactic acid-based long-fiber nonwoven fabric according to claim 1, wherein when the bending strength test is carried out according to JIS P 8115, the number of bending until the sample is cut is 10,000 or more. 請求項1または請求項2に記載のポリ乳酸系長繊維不織布を用いたことを特徴とする成型体。   A molded product comprising the polylactic acid-based long fiber nonwoven fabric according to claim 1 or 2. 請求項1または請求項2に記載のポリ乳酸系長繊維不織布を用いたことを特徴とするフィルター。   A filter using the polylactic acid-based long-fiber nonwoven fabric according to claim 1 or 2. 請求項1または請求項2に記載のポリ乳酸系長繊維不織布を用いたことを特徴とするブラインドカーテン。
A blind curtain using the polylactic acid-based long-fiber nonwoven fabric according to claim 1.
JP2010029611A 2010-02-15 2010-02-15 Polylactic acid-based filament nonwoven fabric Pending JP2011162925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029611A JP2011162925A (en) 2010-02-15 2010-02-15 Polylactic acid-based filament nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029611A JP2011162925A (en) 2010-02-15 2010-02-15 Polylactic acid-based filament nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2011162925A true JP2011162925A (en) 2011-08-25

Family

ID=44593949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029611A Pending JP2011162925A (en) 2010-02-15 2010-02-15 Polylactic acid-based filament nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2011162925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087388A (en) * 2011-10-18 2013-05-13 Masako Oka Method for producing irregularities forming fabrics, irregularities forming fabrics, and product using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000136478A (en) * 1998-10-27 2000-05-16 Unitika Ltd Nonwoven fabric for molding having biodegradability, its production and article having vessel shape using the same nonwoven fabric
JP2001522412A (en) * 1997-05-02 2001-11-13 カーギル インコーポレイテッド Methods, products and uses of degradable polymer fibers
JP2003275093A (en) * 2002-03-25 2003-09-30 Unitika Ltd Flame-retardant interior product
JP2003336159A (en) * 2002-05-13 2003-11-28 Toyobo Co Ltd Filament nonwoven fabric and filter using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522412A (en) * 1997-05-02 2001-11-13 カーギル インコーポレイテッド Methods, products and uses of degradable polymer fibers
JP2000136478A (en) * 1998-10-27 2000-05-16 Unitika Ltd Nonwoven fabric for molding having biodegradability, its production and article having vessel shape using the same nonwoven fabric
JP2003275093A (en) * 2002-03-25 2003-09-30 Unitika Ltd Flame-retardant interior product
JP2003336159A (en) * 2002-05-13 2003-11-28 Toyobo Co Ltd Filament nonwoven fabric and filter using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087388A (en) * 2011-10-18 2013-05-13 Masako Oka Method for producing irregularities forming fabrics, irregularities forming fabrics, and product using the same

Similar Documents

Publication Publication Date Title
JP2009022747A (en) Sanitary commodity
JP5355225B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP3432340B2 (en) Biodegradable long-fiber nonwoven fabric for molding and method for producing the same
JP2005048350A (en) Biodegradable nonwoven fabric and sanitary material, wrapping material and agricultural material using the same
JP6652855B2 (en) Continuous fiber nonwoven fabric and method for producing the same
JP5484112B2 (en) Molded body
JP5361420B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP2006207105A (en) Polylactic acid-based filament nonwoven fabric and method for producing the same
JPH0995847A (en) Nonwoven fabric of polylactate-based filament and its production
WO2023032763A1 (en) Biodegradable nonwoven fabric and use of same
EP2261410B1 (en) Polylactic acid filament nonwoven fabric and production method thereof
JPH0995849A (en) Nonwoven fabric of polylactate-based filament and its production
JP2011162925A (en) Polylactic acid-based filament nonwoven fabric
JP4582886B2 (en) Weatherproof long fiber nonwoven fabric
JP2005206984A (en) Heat-resistant polylactic acid-based filament nonwoven fabric
JP2007143945A (en) Primary ground fabric for tufted carpet
US20240102217A1 (en) Biodegradable Non-Woven Fabric and Method for Producing Molded Body
JP2007297723A (en) Formable filament nonwoven fabric
JP3516291B2 (en) Method for producing biodegradable nonwoven fabric with excellent elasticity
JP4212264B2 (en) Method for producing polylactic acid-based long fiber nonwoven fabric and method for producing polylactic acid-based long fiber
JP2011174193A (en) Polylactic acid-based filament nonwovwn fabric
JP4000022B2 (en) Method for producing polylactic acid-based long fiber nonwoven fabric
JP3160277U (en) Polylactic acid-based spunbond nonwoven fabric
JP2006057197A (en) Polylactic acid-based nonwoven fabric
JP5394667B2 (en) Primary fabric for tufted carpet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20121114

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029