WO2024058076A1 - Stained p3hb3hh-based fibers, fiber aggregate including same, and methods for manufacturing these - Google Patents

Stained p3hb3hh-based fibers, fiber aggregate including same, and methods for manufacturing these Download PDF

Info

Publication number
WO2024058076A1
WO2024058076A1 PCT/JP2023/032906 JP2023032906W WO2024058076A1 WO 2024058076 A1 WO2024058076 A1 WO 2024058076A1 JP 2023032906 W JP2023032906 W JP 2023032906W WO 2024058076 A1 WO2024058076 A1 WO 2024058076A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
p3hb3hh
fiber
dyed
dyeing
Prior art date
Application number
PCT/JP2023/032906
Other languages
French (fr)
Japanese (ja)
Inventor
大関達郎
藤田正人
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024058076A1 publication Critical patent/WO2024058076A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/16General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dispersed, e.g. acetate, dyestuffs
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • D06P3/54Polyesters using dispersed dyestuffs

Definitions

  • the present invention relates to dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers, fiber aggregates containing the same, and methods for producing them.
  • polyester fibers composed of aromatic polyesters such as polyethylene terephthalate have been widely used in various textile products such as clothing, carpets, and pile fabrics.
  • biodegradable aliphatic polyester fibers that decompose in the natural environment have been used.
  • Patent Document 1 describes a fiber structure containing polylactic acid fibers.
  • Patent Document 2 describes a fabric containing an aliphatic polyester multifilament having a melting point of 130° C. or higher.
  • Polyester fibers are usually dyed under pressure at 130°C, or if a carrier is used, they are often dyed at 100°C under normal pressure.
  • Patent Documents 1 and 2 also dye aliphatic polyester fibers using a disperse dye at a temperature of 90° C. or higher, which poses a problem in that the energy required for dyeing is high. In the following, when there is no mention of pressure, normal pressure is meant.
  • the present invention aims to dye poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers with good dyeability while reducing the energy required for dyeing.
  • a method for producing a dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fiber, and a dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fiber A method for producing a fiber aggregate containing fibers, a dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber, and a fiber aggregate containing the same are provided.
  • One or more embodiments of the invention include dyeing poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers using a dye at a temperature of 85° C. or less.
  • the present invention relates to a method for producing dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers.
  • One or more embodiments of the present invention provide a method of making a fiber assembly comprising dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers, the method comprising:
  • the present invention relates to a method for producing a fiber aggregate, comprising a step of dyeing (co-3-hydroxyhexanoate) based fibers with a dye, the dyeing being carried out at a temperature of 85° C. or lower.
  • the maximum temperature T2 of the dyeing process calculated based on a thermomechanical analysis (TMA) curve measured from 30 to 180°C is 88°C or less, and the T2 is: Corresponds to the intersection of the straight line A passing through the two points of 30°C and 40°C on the TMA curve and the tangent line B whose tangent point is the point on the TMA curve that shows a heat shrinkage rate of 25% compared to the heat shrinkage rate at 120°C.
  • TMA thermomechanical analysis
  • One or more embodiments of the present invention relate to a fiber assembly comprising the dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers.
  • poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers can be dyed with good dyeability while reducing the energy required for dyeing.
  • a fiber assembly includes dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers that have good dyeability while reducing the energy required for dyeing. can be obtained.
  • TMA curve obtained by thermomechanical analysis of an example of dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber.
  • P3HB3HH-based fibers obtained by low-temperature dyeing and fiber aggregates containing the same have excellent soil degradability and ocean degradability, and are resistant to hydrolysis. In addition, the color fastness to washing is also good.
  • when a numerical range is indicated by " ⁇ ", the numerical range includes both end values (upper limit and lower limit).
  • a numerical range of "X to Y” is a range that includes both end values of X and Y.
  • a numerical range that is a combination of the upper and lower limits of different numerical ranges as appropriate is included.
  • biodegradability refers to properties that can be differentiated to the molecular level through the action of microorganisms and eventually become water and carbon dioxide
  • marine degradability refers to properties that can be differentiated to the molecular level by the action of microorganisms in the ocean, It means the property of being differentiated down to the molecular level and eventually becoming water and carbon dioxide.
  • Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) is widely used as a biodegradable bioplastic that is degradable in the ocean, and P3HB3HH fibers and fiber aggregates containing them are also highly degradable in soil. It can also have ocean degradability.
  • Dyed P3HB3HH fiber and its manufacturing method Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers dyed with dyes, that is, containing dyes, will be referred to as "dyed P3HB3HH fibers" and simply P3HB3HH.
  • P3HB3HH type fiber it means a P3HB3HH type fiber that does not contain dye.
  • Dyed P3HB3HH fibers can be produced by dyeing P3HB3HH fibers with a dye at a temperature of 85° C. or lower. That is, the dyed P3HB3HH fiber is a P3HB3HH fiber dyed at a temperature of 85° C. or lower. P3HB3HH fibers dyed at a low temperature of 85° C. or lower can be confirmed by TMA (thermo-mechanical analysis), as described below. Further, the residual shrinkage rate when dyed P3HB3HH fibers are heat treated at a specific temperature can be estimated from the TMA heat shrinkage curve.
  • TMA thermo-mechanical analysis
  • the P3HB3HH-based fiber preferably contains P3HB3HH in an amount of 80% by weight or more, more preferably 85% by weight or more, even more preferably 90% by weight or more, and even more preferably 95% by weight or more.
  • the monomer composition of P3HB3HH is not limited, but from the viewpoint of excellent strength and low-temperature dyeing properties, 50 to 98 mol% of 3-hydroxybutyrate (3HB) and 2 to 50 mol of 3-hydroxyhexanoate (3HH). %, and more preferably 50 to 97 mol% of 3HB and 3 to 50 mol% of 3HH.
  • One kind of P3HB3HH may be used alone, or two or more kinds having different molar contents of 3HB may be used in combination.
  • P3HB3HH is not particularly limited and can be produced by a known method, but from the viewpoint of easily obtaining P3HB3HH with high marine degradability, it is preferably produced by a production method using microorganisms.
  • a production method using microorganisms known methods can be used.
  • the microorganism is not particularly limited as long as it has the ability to produce P3HB3HH.
  • microorganisms capable of producing P3HB3HH include Aeromonas caviae, Cupriavidus necator, Ralstonia eutropha, and Alcaligenes ratus. enes latus), etc.
  • P3HB3HH In addition, in order to increase the productivity of P3HB3HH, the Alcaligenes eutrophus AC32 strain (FERM BP-6038) into which genes for the P3HB3HH synthase group were introduced (J. Bateriol., 179, p4821-4830) (1997) ) etc. may be used. Furthermore, as P3HB3HH, a commercially available product such as biodegradable polymer GP (Green Planet) (registered trademark) manufactured by Kaneka Corporation may be used.
  • biodegradable polymer GP Green Planet
  • the weight average molecular weight of P3HB3HH is not particularly limited, but from the viewpoint of moldability and strength, it is preferably 100,000 to 3,000,000, more preferably 150,000 to 1,500,000.
  • the weight average molecular weight refers to that measured from polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using chloroform as an eluent.
  • GPC gel permeation chromatography
  • a column suitable for measuring the molecular weight may be used as a column in the GPC.
  • the melt flow rate (MFR) of P3HB3HH is not particularly limited, but according to JIS K 7210-1:2014, the melt flow rate (MFR) measured under the conditions of a temperature of 165°C and a load of 5 kg (49 N) is 0.1. It may be ⁇ 100 g/10 minutes, it may be 1-50 g/10 minutes, it may be 10-40 g/10 minutes. When the melt flow rate is within the above-mentioned range, the fluidity of the molten resin will be within an appropriate range, and fiberization will be good. Note that, if fiberization is possible, the melt flow rate (MFR) of P3HB3HH may exceed 100 g/10 minutes.
  • the P3HB3HH fiber may contain a crystal nucleating agent from the viewpoint of fiber properties and productivity.
  • the crystal nucleating agent is not particularly limited as long as it is a compound that has the effect of promoting crystallization of P3HB3HH.
  • sugar alcohol compounds, polyvinyl alcohol, chitin, chitosan, etc. are preferred, sugar alcohol compounds are more preferred, and pentaerythritol is even more preferred.
  • One type of crystal nucleating agent may be used alone, or two or more types may be used in combination.
  • the content of the crystal nucleating agent in the P3HB3HH fiber is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HB3HH.
  • the amount is preferably 0.5 to 8 parts by weight, more preferably 0.5 to 8 parts by weight, and particularly preferably 1 to 5 parts by weight.
  • the content of the crystal nucleating agent is 0.05 part by weight or more, the crystallization promoting effect tends to be improved and the productivity of fibers tends to be improved.
  • the content of the crystal nucleating agent is set to 12 parts by weight or less, it is easy to suppress a decrease in the viscosity of P3HB3HH, a decrease in fiber physical properties, etc. during processing while maintaining a sufficient effect of accelerating the crystallization rate.
  • the P3HB3HH fiber may contain a lubricant from the viewpoint of productivity and fiber properties.
  • the lubricant is not particularly limited as long as it is a compound that has the effect of imparting lubricity to P3HB3HH. Examples include fatty acid amide, alkylene fatty acid amide, glycerin monofatty acid ester, organic acid monoglyceride, sorbitan fatty acid ester, polyglycerin fatty acid ester, and higher alcohol fatty acid ester.
  • fatty acid amides include monoamides and bisamides of fatty acids.
  • the fatty acid (fatty acid moiety) constituting the fatty acid amide preferably has a carbon number of 12 to 30, and more preferably has a carbon number of 12 to 30, from the viewpoint of giving the resin composition a suitably high melting point and suppressing deterioration of processability during melt processing. Preferably it is 18-22.
  • fatty acid amides include behenic acid amide, erucic acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, ethylene bis oleic acid amide, and ethylene bis oleic acid amide.
  • Examples include biserucic acid amide.
  • Examples of glycerin fatty acid esters include monoesters of fatty acids and glycerin, diesters of fatty acids and glycerin, and triesters of fatty acids and glycerin.
  • glycerin triesters include glycerin diacetomonoesters such as glycerin diacetomonolaurate, glycerin diacetomonooleate, glycerin diacetomonostearate, glycerin diacetomonocaprylate, and glycerin diacetomonodecanoate.
  • glycerin diacetomonoesters such as glycerin diacetomonolaurate, glycerin diacetomonooleate, glycerin diacetomonostearate, glycerin diacetomonocaprylate, and glycerin diacetomonodecanoate.
  • One type of lubricant may be used alone, or two or more types may be used in combination.
  • the content of the lubricant in the P3HB3HH fiber is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HB3HH. , more preferably 0.5 to 8 parts by weight, particularly preferably 1 to 5 parts by weight.
  • a lubricant content of 0.05 parts by weight or more friction between P3HB3HH and the metal surface inside the extruder or spinning machine during fiberization is suppressed, and decomposition of P3HB3HH due to shear heat generation is suppressed, and the nozzle It is also easy to prevent the fibers extruded from sticking to each other.
  • the P3HB3HH fibers may contain plasticizers, inorganic fillers, organic fillers (cellulose, etc.), antioxidants, ultraviolet absorbers, antistatic agents, etc. within the range that does not impede the effects of the present invention. It may also contain other additive components. The amount of other additive components added may be 5 parts by weight or less, or 1 part by weight or less with respect to 100 parts by weight of P3HB3HH.
  • the P3HB3HH-based fibers may contain resin components other than P3HB3HH (other resin components), if necessary, within a range that does not impede the effects of the present invention.
  • resin components include resin components other than P3HB3HH (other resin components), if necessary, within a range that does not impede the effects of the present invention.
  • biodegradable resins are preferred.
  • other biodegradable resins include petroleum-derived resins such as polylactic acid, polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate, and polybutylene succinate, and natural polymers such as starch and cellulose. Can be mentioned.
  • the content of other resin components is preferably 20% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, based on the total amount (100% by weight) of the resin components.
  • One type of other resin components can be used alone, or two or more types can be used in combination.
  • P3HB3HH-based fibers can be obtained, for example, by fiberizing a resin composition containing P3HB3HH.
  • the resin composition is not particularly limited, but preferably contains 80% by weight or more of P3HB3HH, more preferably 85% by weight or more, and even more preferably 90% by weight or more.
  • the upper limit may be 100% by weight, but may be, for example, 98% by weight or less or 95% by weight or less.
  • the resin composition is not particularly limited, from the viewpoint of productivity and fiber properties, it is preferable that the resin composition further contains a crystal nucleating agent.
  • a crystal nucleating agent those mentioned above can be used as appropriate, and pentaerythritol is particularly preferred.
  • One type of crystal nucleating agent may be used alone, or two or more types may be used in combination.
  • the content of the crystal nucleating agent in the resin composition is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, and preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HB3HH.
  • the amount is more preferably 0.5 to 8 parts by weight, and particularly preferably 1 to 5 parts by weight.
  • the content of the crystal nucleating agent is 0.05 part by weight or more, the crystallization promoting effect tends to be improved and the productivity of fibers tends to be improved.
  • by setting the content of the crystal nucleating agent to 12 parts by weight or less while maintaining a sufficient effect of accelerating the crystallization rate, it is easy to suppress a decrease in the viscosity of the resin composition and a decrease in fiber physical properties during processing.
  • the resin composition is not particularly limited, it is preferable from the viewpoint of productivity that it further contains a lubricant.
  • a lubricant those mentioned above can be used as appropriate, and fatty acid amides are particularly preferred.
  • the content of the lubricant in the resin composition is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HB3HH.
  • the amount is preferably 0.5 to 8 parts by weight, more preferably 0.5 to 8 parts by weight, and particularly preferably 1 to 5 parts by weight.
  • the resin composition may optionally contain a plasticizer, an inorganic filler, an organic filler (cellulose, etc.), an antioxidant, an ultraviolet absorber, an antistatic agent, etc., within a range that does not impede the effects of the present invention. It may also contain other additive components.
  • the amount of other additive components added may be 5 parts by weight or less, or 1 part by weight or less with respect to 100 parts by weight of P3HB3HH.
  • the above resin composition may contain resin components other than P3HB3HH (other resin components), if necessary, within a range that does not impede the effects of the present invention.
  • resin components biodegradable resins are preferred.
  • other biodegradable resins include petroleum-derived resins such as polylactic acid, polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate, and polybutylene succinate, and natural polymers such as starch and cellulose. It will be done.
  • the content of other resin components is preferably 20% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, based on the total amount (100% by weight) of the resin components.
  • One type of other resin components can be used alone, or two or more types can be used in combination.
  • P3HB3HH fibers can be obtained by melt spinning the resin composition.
  • a pellet-shaped resin composition obtained by melt-kneading the above resin composition is melted using a melt extruder, and the molten resin composition is continuously extruded from a nozzle to form fibers.
  • Spun filaments (undrawn filaments) can be produced.
  • the melt spinning temperature is not particularly limited as long as it is higher than the melting point of the resin composition and lower than the thermal decomposition temperature, but for example, when the melting point of the resin composition is Tm, it is [Tm+5°C] to [Tm+40°C]. It may be [Tm+10°C] to [Tm+30°C].
  • the temperature may be 145 to 180°C, 150 to 180°C, or 150 to 170°C.
  • the melt spinning temperature By setting the melt spinning temperature to 145° C. or higher, the resin composition can be sufficiently dissolved, so that spinning can be easily stabilized. Further, by setting the spinning temperature to 180° C. or lower, thermal decomposition of P3HB3HH is suppressed, the spinning is easily stabilized, and the physical properties of the resulting fiber tend to be further improved.
  • the melt spinning temperature refers to a temperature in the highest temperature range among the temperatures applied while the resin composition is fiberized.
  • the resin composition is not particularly limited, but for example, from the viewpoint of moldability and fiber strength, the weight average molecular weight is preferably 100,000 to 3,000,000, and preferably 150,000 to 1,500,000. It is more preferable that
  • the environmental temperature when extruding the molten resin composition from the spinneret is not particularly limited, and when the glass transition temperature of the resin composition is Tg, it may be [Tg + 5 ° C] to [Tg + 50 ° C], [ [Tg+10°C] to [Tg+40°C]. More specifically, the temperature can be adjusted as appropriate within the range of, for example, 5 to 40°C. It is preferable to apply rectified air to the fibers (spun filaments) extruded from the spinneret. The rectified air is also called quench air, and has the function of stabilizing the flow of yarn. It is also possible to cool the spun filaments by using cooled gas as quench air.
  • the temperature of the quench air is preferably 5 to 40°C, more preferably 10 to 30°C. When the temperature is 5°C or higher, it is easy to suppress generation of residual stress in the fibers. When the temperature is 40° C. or lower, the resin is sufficiently solidified, and it is easy to prevent the fibers from sticking.
  • the wind speed of the quench air is not particularly limited, but is preferably 0.1 to 3.0 m/sec, for example. When it is 0.1 m/sec or more, the rectifying effect is easily exhibited, and when it is 3.0 m/sec or less, the quenching wind is not too strong and the yarns are not disturbed, causing sticking of fibers to each other and yarn breakage. It is restrained from doing so.
  • the glass transition temperature, crystallization temperature, melting point, and thermal decomposition temperature of the resin or resin composition can be measured as described in the Examples.
  • the spun filaments can be drawn to obtain drawn filaments (multifilaments).
  • drawn filaments multifilaments
  • Stretching is not particularly limited, and may be carried out by a two-step spinning/drawing method or by a direct spinning/drawing method. In the two-stage spinning and drawing method, drawing is performed after the spun filament is wound up. In the direct spinning/drawing method, spinning and drawing are performed continuously without winding the spun filaments. Further, the stretching step may be performed in multiple stages by combining a plurality of roll pairs. The surface temperatures and speeds of the multiple rolls may be the same or different.
  • the stretching temperature is not particularly limited, but may be, for example, 30 to 100°C, or 40 to 90°C.
  • the stretching ratio may be, for example, 1.5 to 20 times. When the stretching ratio is 1.5 times or more, the strength of the fiber can be further increased. Before stretching, an oil agent may be applied to the spun filaments as necessary.
  • the single fiber tensile strength of the drawn filament is preferably 0.5 to 10 cN/dtex, more preferably 0.7 to 10 cN/dtex, and still more preferably 1.0 to 10 cN/dtex.
  • the single fiber tensile strength of the drawn filament can be measured based on JIS L 1013:2021.
  • a dyed P3HB3HH fiber may be obtained by dyeing the drawn filament as described below.
  • P3HB3HH short fibers can be obtained by crimping the drawn filaments and then cutting them into a predetermined length.
  • the crimping process is not particularly limited, and can be performed by, for example, a known crimping method such as a gear crimp method or a stuffing box method.
  • the obtained P3HB3HH fiber has crimps, specifically mechanical crimps.
  • the crimping process may be performed using a stuffing box after preheating the drawn filament.
  • the drawn filament may be preheated by, for example, wet heat treatment or dry heat treatment.
  • the moist heat treatment can be performed using, for example, steam.
  • the dry heat treatment may be performed using, for example, a hot air oven or an electric heater.
  • the preheating temperature of the drawn filament is preferably 60 to 120°C, more preferably 60 to 110°C, even more preferably 70 to 100°C, even more preferably 80 to 90°C.
  • the stuffing box pressure is more preferably 0.001 to 0.08 MPa, even more preferably 0.001 to 0.06 MPa, even more preferably 0.001 to 0.04 MPa.
  • the fiber length of the P3HB3HH short fibers is not particularly limited, but for example, from the viewpoint of suitability for use in spun yarn, it may be 20 to 176 mm, 25 to 138 mm, or 28 to 110 mm. good.
  • the P3HB3HH fiber has a single fiber fineness of preferably 0.1 to 100 dtex, more preferably 0.5 to 50 dtex, even more preferably 1.0 to 25 dtex, and 1. Even more preferably it is .0 to 15 dtex.
  • the P3HB3HH short fibers preferably have a tensile strength of 0.3 to 6.0 cN/dtex, more preferably 0.5 to 6.0 cN/dtex, and even more preferably It is 1.0 to 6.0 cN/dtex.
  • the tensile strength of P3HB3HH short fibers can be measured based on JIS L 1015:2021.
  • the weight average molecular weight of the P3HB3HH fiber is not particularly limited, but is preferably 100,000 to 3,000,000, more preferably 120,000 to 3,000,000, and even more preferably 150,000 to 3,000,000. ,000 to 1,500,000, more preferably 200,000 to 500,000.
  • the weight average molecular weight of a fiber can be measured as a polystyrene equivalent molecular weight using gel permeation chromatography (GPC) using chloroform as an eluent.
  • the P3HB3HH fiber preferably has a hot water shrinkage rate at 85°C of 15% or less, more preferably 10% or less, and even more preferably 5% or less. It is particularly preferably 3% or less.
  • the hot water shrinkage rate of a fiber is defined as the length of the fiber before the hot water treatment and the length of the fiber after the hot water treatment when the fiber is immersed in hot water at a predetermined temperature for 60 minutes. The length can be measured and calculated using the following formula (1).
  • the hot water may be a dye solution. When measuring the length of a fiber, the fiber is held at both ends with tweezers and stretched into a straight line.
  • Hot water shrinkage rate (%) (L0-L1)/L0 ⁇ 100 (1)
  • L0 is the length of the fiber before hot water treatment
  • L1 is the length of the fiber after hot water treatment.
  • the P3HB3HH fiber preferably has a hot water shrinkage rate at 80°C of 10% or less, more preferably 5% or less, and even more preferably 3% or less. It is.
  • Dyed P3HB3HH fibers can be obtained by immersing P3HB3HH fibers in a dye solution containing a dye at a temperature of 85° C. or lower. By dyeing at a temperature of 85° C. or lower, the energy required for dyeing can be reduced.
  • the dye may be a synthetic dye or a natural dye. Synthetic dyes are not particularly limited, and include, for example, disperse dyes, direct dyes, vat dyes, and metal-containing dyes (also referred to as metal complex dyes). One or more commercially available dyes can be appropriately selected and used depending on the desired color and the like.
  • the dyeing solution may contain a carrier from the viewpoint of improving low-temperature dyeability, and may not contain a carrier from the viewpoint of reducing the environmental load due to waste liquid treatment.
  • dyed P3HB3HH fibers can be obtained by dyeing P3HB3HH fibers using a disperse dye without using a carrier at a temperature of 85° C. or lower.
  • the dye concentration of the dye solution may be appropriately set depending on the desired hue and is not particularly limited.
  • the dye concentration may be 0.0001 to 4% by weight (% o.w.f.) based on the weight of the P3HB3HH fiber from the viewpoint of hue, cost, and color fastness.
  • the bath ratio is not particularly limited, but may be 1:10 or more, and from the viewpoint of reducing costs and environmental impact due to waste liquid treatment, it is preferably 1:30 or less, and 1:20 or less. More preferred.
  • the dyeing temperature (temperature of the dyeing solution) may be 85°C or lower and is not particularly limited, but from the viewpoint of dyeability, it is preferably 30°C or higher, more preferably 40°C or higher, and 50°C or higher. It is more preferable that the temperature is at least °C. Furthermore, from the viewpoint of more effectively reducing the energy required for dyeing, the dyeing temperature (temperature of the dyeing solution) is preferably 80°C or lower, more preferably 75°C or lower, and 70°C or lower. The temperature is even more preferably 65°C or lower, even more preferably 60°C or lower, and particularly preferably 60°C or lower.
  • the staining time is not particularly limited, but for example, from the viewpoint of productivity and suppression of staining spots, it may be 30 to 120 minutes or 60 to 120 minutes.
  • P3HB3HH fibers may be dyed (yarn dyed) in the form of fibers or spun yarns, or may be dyed (piece dyed) in the form of cloth. Piece dyeing is preferable from the viewpoint of reducing costs. Since P3HB3HH fibers have good low-temperature dyeability at temperatures of 85° C. or lower, they can be piece-dyed even in the case of fabrics that use cellulose fibers in combination.
  • the dyed P3HB3HH fiber has a maximum dyeing temperature T2 of 88°C or lower, which is calculated based on a thermomechanical analysis (TMA) curve that measures the thermal shrinkage rate from 30 to 180°C, and the T2 is 30°C on the TMA curve.
  • TMA thermomechanical analysis
  • the present inventors determined that when P3HB3HH fibers were dyed to produce dyed P3HB3HH fibers, the dyeing temperature T1 in the manufacturing process and the heat shrinkage rate of the obtained dyed P3HB3HH fibers from 30 to 180°C were measured.
  • the maximum temperature T2 of the dyeing process calculated based on the mechanical analysis (TMA) curve satisfies the following relational expression (I), that is, the relational expression (II), and more specifically, the following relational expression (III). I found something that satisfies me.
  • T2 of the dyed P3HB3HH fiber is preferably 85°C or lower, more preferably 80°C or lower, and even more preferably 75°C or lower.
  • the temperature is preferably 70°C or lower, even more preferably.
  • T2 of the dyed P3HB3HH fiber is preferably 53°C or higher, more preferably 55°C or higher, and even more preferably 60°C or higher.
  • the single fiber fineness of the dyed P3HB3HH fiber is not particularly limited, and can be appropriately set depending on the purpose, use, etc.
  • the single fiber fineness is preferably 0.1 to 100 dtex, more preferably 0.5 to 50 dtex, and 1.0 to 25 dtex. More preferably, it is 1.0 to 15 dtex, and even more preferably 1.0 to 15 dtex.
  • single fiber fineness can be measured by an autobibroscopy method.
  • the dyed P3HB3HH fibers may be filaments or short fibers.
  • the dyed P3HB3HH filament has a single fiber tensile strength of preferably 0.5 to 10 cN/dtex, more preferably 0.7 to 10 cN/dtex, and still more preferably 1.0 to 10 cN/dtex. It is. Thereby, the physical properties of the fiber aggregate using dyed P3HB3HH filaments can be improved.
  • the single fiber tensile strength of the dyed P3HB3HH filament can be measured based on JIS L 1013:2021.
  • the dyed P3HB3HH short fibers preferably have a tensile strength of 0.3 to 6.0 cN/dtex, more preferably 0.5 to 6.0 cN/dtex, and even more preferably is 1.0 to 6.0 cN/dtex.
  • the tensile strength of dyed P3HB3HH short fibers can be measured based on JIS L 1015:2021.
  • dyed P3HB3HH fibers have a knitted fabric made of 100% by mass of dyed P3HB3HH fibers as a measurement sample, and the dyeing fastness determined by the discoloration grade specified in JIS L 0844 No. A-2: 2011.
  • the degree is preferably 3rd class or higher, more preferably 3-4th class or higher, and even more preferably 4th class or higher.
  • dyed P3HB3HH fibers are measured using a knitted fabric consisting of 100% by mass of dyed P3HB3HH fibers, and the color fastness determined by the contamination grade specified in JIS L 0844 No. A-2: 2011. is preferably 3rd grade or higher, more preferably 3-4th grade or higher.
  • the dyed P3HB3HH fiber preferably has a weight average molecular weight of 100,000 to 3,000,000, more preferably 120,000 to 3,000,000. Yes, more preferably 150,000 to 1,500,000, even more preferably 200,000 to 500,000.
  • dyed P3HB3HH fibers preferably have a weight loss rate (decomposition rate) of 5% or more after being buried in soil at a temperature of 25°C or higher for 10 days, and 8% or more. It is more preferable that the amount is at least 12%, and even more preferably 12% or more.
  • the dyed P3HB3HH fiber preferably has a weight loss rate (decomposition rate) of 3% or more after being immersed in seawater at a temperature of 19° C. or higher for 4 weeks. , more preferably 4% or more, and still more preferably 5% or more.
  • dyed P3HB3HH fibers must have a weight average molecular weight retention rate of 60% or more after being left in a high humidity environment of 80°C and 90% RH (relative humidity) for 82 hours. is preferable, more preferably 65% or more, and still more preferably 70% or more.
  • the dyed P3HB3HH fibers preferably have a number average molecular weight retention rate of 60% or more after being left in a high humidity environment of 80° C. and 90% RH for 82 hours, and 65%. It is more preferably at least 70%, even more preferably at least 70%.
  • the dyed P3HB3HH fiber preferably has a z-average molecular weight retention rate of 60% or more after being left in a high humidity environment of 80° C. and 90% RH for 82 hours, preferably 65%. It is more preferably at least 70%, even more preferably at least 70%.
  • the dyed P3HB3HH fiber preferably has a hot water shrinkage rate at 85°C of 15% or less, more preferably 10% or less, still more preferably 5% or less, and particularly Preferably it is 3% or less.
  • the dyed P3HB3HH fiber preferably has a hot water shrinkage rate at 80° C. of 10% or less, more preferably 5% or less, and even more preferably 3% or less.
  • the dyed P3HB3HH fiber preferably has a dry heat shrinkage rate at 85° C. of 15% or less, more preferably 10% or less, still more preferably 5% or less, and particularly Preferably it is 3% or less.
  • the dry heat shrinkage rate of a fiber is defined as the length of the fiber before the dry heat treatment and the length of the fiber after the dry heat treatment when the fiber is left in a circulating air dryer at a predetermined temperature for 60 minutes and subjected to dry heat treatment. It can be calculated using the following formula (2).
  • Dry heat shrinkage rate (%) (L2-L3)/L2 ⁇ 100 (2)
  • L2 is the length of the fiber before the dry heat treatment
  • L3 is the length of the fiber after the dry heat treatment.
  • the dyed P3HB3HH fiber preferably has a dry heat shrinkage rate at 80° C. of 10% or less, more preferably 5% or less, and still more preferably 3% or less.
  • the dyed P3HB3HH fiber preferably has a residual dry heat shrinkage rate at 85°C of 15% or less, more preferably 10.5% or less, and still more preferably 5% or less. It is even more preferably 3% or less, particularly preferably 1.5% or less.
  • the residual dry heat shrinkage rate of dyed P3HB3HH fibers can be measured by thermomechanical analysis (TMA).
  • the dyed P3HB3HH fiber preferably has a residual dry heat shrinkage rate at 80° C. of 10% or less, more preferably 7% or less, and even more preferably 5% or less, Even more preferably it is 3% or less, particularly preferably 1.5% or less.
  • the fiber aggregate may be manufactured using dyed P3HB3HH fibers, but from the perspective of reducing costs, in the fiber aggregate containing P3HB3HH fibers, the P3HB3HH fibers may be manufactured using a dye at a temperature of 85°C or lower. Preferably, it is produced by dyeing.
  • the P3HB3HH fibers in the fiber assembly containing the P3HB3HH fibers can be dyed in the same manner as the P3HB3HH fibers described above, and the explanation will be omitted here.
  • the fiber aggregate may contain dyed P3HB3HH fibers, and the content of dyed P3HB3HH fibers is not particularly limited.
  • the fiber aggregate preferably contains 10% by weight or more of dyed P3HB3HH fibers, more preferably 20% by weight or more, still more preferably 30% by weight or more, from the viewpoint of increasing biodegradability such as marine degradability. Still more preferably 40% by weight or more, even more preferably 50% by weight or more, even more preferably 60% by weight or more, even more preferably 70% by weight or more, even more preferably 80% by weight or more, Even more preferably it contains 90% by weight or more, even more preferably 95% by weight or more.
  • the fiber aggregate may be composed of 100% by weight of dyed P3HB3HH fibers.
  • the fiber aggregate may contain other fibers in addition to the dyed P3HB3HH fibers.
  • Other fibers are not particularly limited, and include synthetic fibers, natural fibers, recycled fibers, and the like. From the viewpoint of biodegradability, the other fibers are preferably biodegradable fibers.
  • biodegradable synthetic fibers include synthetic fibers containing aliphatic polyesters other than P3HB3HH, and examples of aliphatic polyesters other than P3HB3HH include polylactic acid, polycaprolactone, polybutylene adipate terephthalate, and polybutylene succinate. Examples include adipate and polybutylene succinate.
  • natural fibers include natural cellulose fibers and natural animal fibers.
  • Examples of natural cellulose fibers include cotton fibers, kapok fibers, flax fibers, hemp fibers, ramie fibers, jute fibers, Manila hemp fibers, and kenaf fibers.
  • Examples of natural animal fibers include wool fibers, mohair fibers, cashmere fibers, camel fibers, alpaca fibers, and angora fibers.
  • Examples of regenerated fibers include regenerated cellulose fibers such as rayon, polynosic, cupro, and lyocell, and regenerated protein fibers such as regenerated collagen fibers.
  • the fiber assembly may, for example, contain 10-95% by weight of dyed P3HB3HH fibers and 5-90% by weight of other fibers, 20-90% by weight of dyed P3HB3HH fibers and 10-80% by weight of other fibers, 30-80% by weight of dyed P3HB3HH fibers and 20-70% by weight of other fibers, 40-70% by weight of dyed P3HB3HH fibers and 30-60% by weight of other fibers, or 50-70% by weight of dyed P3HB3HH fibers and 30-50% by weight of other fibers.
  • the form of the fiber aggregate is not particularly limited, and examples include thread, cloth, and nonwoven fabric.
  • the yarn may be a multifilament or a spun yarn.
  • the cloth may be knitted or woven.
  • Fabrics include plain weave, oblique weave, satin weave, variable plain weave, variable oblique weave, variable satin weave, variable weave, patterned weave, single layer weave, double weave, multiple weave, warp pile weave, weft pile weave, and Examples include twine weave.
  • Knitted fabrics also referred to as knits
  • Knitted fabrics include circular knitting, weft knitting, warp knitting, pile knitting, etc., as well as flat knitting, jersey knitting, rib knitting, smooth knitting (double-sided knitting), rubber knitting, pearl knitting, and denby knitting. Examples include tissue, cord tissue, atlas tissue, chain tissue, and insertion tissue.
  • the jersey knit and ribbed knit have an excellent texture as a product.
  • the nonwoven fabric may be a long fiber nonwoven fabric or a short fiber nonwoven fabric.
  • the fiber aggregate can be used for various textile products.
  • textile products include clothing, daily necessities, interior goods, and the like.
  • clothing include jackets, underwear, sweaters, vests, pants, gloves, socks, mufflers, hats, and the like.
  • daily necessities include bedding, pillows, cushions, stuffed animals, and hygiene materials.
  • Examples of the interior include curtains, carpets, etc.
  • other fibers may be dyed or may not be dyed. It may be set as appropriate depending on the purpose, use, etc. Further, the dyed P3HB3HH fiber and other fibers may be dyed in the same color or may be dyed in different colors.
  • Fiber aggregates such as spun yarn and cloth containing dyed P3HB3HH fibers and cellulose fibers have excellent ocean degradability and moisture absorption and quick drying properties, so they can be suitably used for daily necessities such as clothing and bedding products.
  • the cellulose fibers may be natural cellulose fibers or regenerated cellulose fibers. As the natural cellulose fibers and regenerated cellulose fibers, those mentioned above can be used as appropriate.
  • the fiber aggregate may contain 10 to 95% by weight of dyed P3HB3HH fibers, 5 to 90% by weight of cellulose fibers, and 20 to 90% by weight of dyed P3HB3HH fibers, from the viewpoint of excellent marine degradability and moisture absorption and quick drying properties.
  • % may contain 10 to 80% by weight of cellulose fibers, 30 to 80% by weight of dyed P3HB3HH fibers, 20 to 70% by weight of cellulose fibers, 40 to 70% by weight of dyed P3HB3HH fibers, It may contain 30 to 60% by weight of cellulose fibers, 50 to 70% by weight of dyed P3HB3HH fibers, and 30 to 50% by weight of cellulose fibers.
  • the weight loss rate (decomposition rate) after immersing a fiber aggregate containing dyed P3HB3HH fibers and cellulose fibers in seawater at a temperature of 19°C or higher for 4 weeks is It is preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more.
  • the cellulose fibers in the fiber assembly may be dyed with a dye at a temperature of 85° C. or lower. By performing dyeing at a temperature of 85° C. or lower, the energy required for dyeing can be reduced.
  • Natural dyes or synthetic dyes may be used for dyeing cellulose fibers. Examples of synthetic dyes include reactive dyes, direct dyes, vat dyes, basic dyes, naphthol dyes, sulfur dyes, and special disperse dyes.
  • the dyeing of cellulose fibers is not particularly limited, and can be carried out in the same manner as usual dyeing of cellulose fibers.
  • the fiber aggregate preferably has a color fastness of grade 3 or higher, as determined by the discoloration/fading grade specified in JIS L 0844 A-2: 2011, and is grade 3-4 or higher. It is more preferable that it is, and it is still more preferable that it is 4th grade or higher.
  • the fiber aggregate preferably has a color fastness of grade 3 or higher as determined by the contamination grade specified in JIS L 0844 No. A-2: 2011, and preferably has a color fastness of grade 3-4 or higher. It is more preferable that there be.
  • the spun yarn preferably has a tensile strength of 100 gf or more, more preferably 150 gf or more, even more preferably 200 gf or more, and even more preferably 250 gf or more. Further, from the viewpoint of process stability during fabric manufacturing, the tensile strength of the spun yarn may be 500 gf or less.
  • the thickness of the spun yarn is not particularly limited, but when used for clothing, it may be 2 to 50 or 5 to 40 in English cotton count.
  • the weight per unit area (fabric weight) of the fiber aggregate is not particularly limited and may be determined as appropriate depending on the use and purpose, and may be, for example, 10 to 2000 g/m 2 .
  • the fabric weight may be 100 to 800 g/m 2
  • the fabric weight may be 10 to 100 g/m 2
  • the fabric weight may be 100 to 2000 g/m 2 2 is fine.
  • Dyed P3HB3HH fibers and fiber aggregates and textile products using them biodegrade if left in an environment where microorganisms exist, so they do not require special disposal and are environmentally friendly.
  • shrinkage rate during dyeing of fiber The length of the fibers in the dyed object before dyeing and the length of the fibers in the dyed object after dyeing were measured, and the shrinkage rate of the fibers during dyeing was calculated using the following formula (3).
  • the fiber When measuring the length of the fiber, the fiber was held at both ends with tweezers and stretched into a straight line.
  • the shrinkage rate of the fibers in the spun yarn during dyeing was measured by untwisting the spun yarn and taking out only the P3HB3HH short fibers.
  • Shrinkage rate during staining (%) (Ls0-Ls1)/Ls0 ⁇ 100 (3)
  • Ls0 is the length of the P3HB3HH fiber in the dyed object before dyeing
  • Ls1 is the length of the dyed P3HB3HH fiber in the dyed object after dyeing.
  • thermomechanical analyzer TMA-7100 manufactured by Hitachi High-Technology Co., Ltd. .
  • TMA-7100 manufactured by Hitachi High-Technology Co., Ltd. .
  • TMA curve the horizontal axis shows the temperature, and the left vertical axis shows the dimensional change rate.
  • the maximum dyeing temperature (maximum processing temperature experienced during dyeing) T2 of the dyed P3HB3HH short fibers was calculated by the following procedure. (1) A straight line connecting 30°C and 40°C of the TMA curve was drawn to define straight line A. (2) When the thermal shrinkage rate at 120° C. on the TMA curve is assumed to be 100%, a tangent line with a point showing a thermal contraction rate of 25% as a tangent point was drawn to define tangent line B. (3) The temperature corresponding to the intersection of straight line A and tangent line B was determined, and was determined as the maximum temperature for dyeing process T2. FIG.
  • TMA curve obtained by thermomechanical analysis of a dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber of one example (Example 3).
  • a straight line connecting 30°C and 40°C of the TMA curve was drawn to define straight line A(1).
  • the temperature corresponding to the intersection point (5) of the straight line A (1) and the tangent line B (4) was determined and set as the maximum temperature T2 for the dyeing process.
  • dyeability The dyeability of the measurement sample (fiber or fiber aggregate) was visually evaluated based on the following criteria. Note that dyeability is one of the indicators for evaluating dyeability, and indicates how much dye has been adsorbed by the fiber. A: Sufficiently colored B: Colored C: Not colored
  • Example 2 dyed P3HB3HH short fibers were knitted with a flat knitting machine into a knit (rib knit) with a basis weight of about 300 g/m 2 , and Examples 3 to 5 and Comparative Example 2
  • a knit (rib knit) with a basis weight of approximately 300 g/m 2 was knitted from the dyed spun yarn using a flat knitting machine, and in the case of Example 6, the dyed knit was used as the measurement sample as it was.
  • ⁇ 4 a knit (rib knit) with a basis weight of approximately 300 g/m 2 was knitted from the dyed spun yarn using a flat knitting machine, and in the case of Example 6, the dyed knit was used as the measurement sample as it was.
  • the measurement sample (fiber) was placed in a mesh bag and immersed in seawater (Takasago, Hyogo Prefecture) for decomposition.
  • the water temperature during the test period varied between 19 and 25°C.
  • the weight (W0) was measured.
  • the decomposition rate of the measurement sample in seawater was calculated using the following formula (4).
  • Decomposition rate in seawater (%) (W0-W1)/W0 ⁇ 100 (4)
  • W0 is the dry weight of the measurement sample before being immersed in seawater
  • W1 is the dry weight of the measurement sample after being immersed in seawater for a predetermined time.
  • Decomposition rate in soil (%) (W2-W3)/W2 ⁇ 100 (5)
  • W2 is the dry weight of the measurement sample before being buried in the soil
  • W3 is the dry weight of the measurement sample after being buried in the soil for a predetermined time.
  • the tensile strength and elongation rate of the spun yarn were measured according to JIS L 1095:2010, and the tensile strength and elongation rate of the multifilament were measured according to JIS L 1095:2010.
  • Mw retention rate (%) Mwa/Mwb ⁇ 100 (6)
  • Mn retention rate (%) Mna/Mnb ⁇ 100 (7)
  • Mz retention rate (%) Mza/Mzb ⁇ 100 (8)
  • Mwa is the weight average molecular weight of the measurement sample after the accelerated test
  • Mwb is the weight average molecular weight of the measurement sample before the acceleration test
  • Mna is the number average molecular weight of the measurement sample after the accelerated test
  • Mnb is the number average molecular weight of the measurement sample before the acceleration test.
  • Mza is the z-average molecular weight of the measurement sample after the accelerated test
  • Mzb is the z-average molecular weight of the measurement sample before the acceleration test.
  • the resulting pellet-shaped resin composition had a glass transition temperature of 2°C, a crystallization temperature of 100°C, a melting point of 146°C, a thermal decomposition temperature of 180°C, and a weight average molecular weight of 350,000.
  • the glass transition temperature, crystallization temperature, melting point, and thermal decomposition temperature of the pelletized resin composition were measured using a differential scanning calorimeter (manufactured by TA Instruments, model number "DSC25”) within the measurement temperature range of 0 to 0.
  • the weight average molecular weight of the pellet-shaped resin composition was measured by differential scanning calorimetry under the conditions of 180°C, a temperature increase rate of 10°C/min, and a cooling rate of 10°C/min, using chloroform as an eluent. It was measured from polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC).
  • the obtained resin composition pellet was melted using a kneading extruder (single-screw extruder, screw diameter 25 mm).
  • the obtained melt was discharged from a spinning nozzle (temperature: 175° C., shape of discharge hole: circular, diameter of discharge hole: 0.3 mm, number of discharge holes: 368) to obtain a spun filament.
  • the flow rate of the melt was adjusted to 3.6 kg/h using a gear pump.
  • air at 20° C. was blown onto the spun filaments discharged from the circumferential direction at a speed of 0.7 m/s.
  • the cooled spun filament is taken up by a first take-up roll section (speed: 536 m/min) and transported in order by the first to fourth transport roll sections (speed: 562 m/min), and then the first winding is carried out. It was wound up with a take-up roll (speed: 546 m/min) and stored at room temperature (5 to 35°C) for 18 hours to obtain an undrawn filament with a single fiber fineness of 5.47 dtex.
  • the spun filament (undrawn filament) is taken up from the first take-up roll part by a second take-up roll part (speed: 50 m/min, roll temperature: 30°C), and the drawing roll part (115 m/min, roll Temperature: 90°C), conveyed by a take-off roll section (heat treatment roll section) (speed: 115 m/min, roll temperature: 90°C), and wound by a second winding roll section (speed: 106 m/min).
  • a drawn filament having a fineness of 2.53 dtex, a tensile strength of 2.58 cN/dtex, and a hot water shrinkage rate (80° C.) of 11.5% was obtained.
  • the stretching ratio was 2.3 times.
  • a roll part comprised of two rolls each having the same speed and the same temperature was used as the take-up roll part and the conveyance roll part.
  • the obtained P3HB3HH short fibers had a single fiber fineness of 2.5 dtex, a single fiber tensile strength of 1.51 cN/dtex, an 80°C hot water shrinkage rate of 11.5%, a melting point of 146°C, and a softening point of 125°C. there were.
  • the melting point and softening point of the P3HB3HH short fibers were determined using a differential scanning calorimeter (manufactured by TA Instruments, model number "DSC25”) at a temperature range of 0 to 180°C, a heating rate of 10°C/min, and a cooling rate of 10°C. It was measured by differential scanning calorimetry under the conditions of °C/min.
  • Example 1 The P3HB3HH multifilament obtained in Production Example 1 was used as an object to be dyed, and a dyeing solution (solution temperature: 60° The object to be dyed was placed in a bath (bath ratio 1:20) and dyed at 60°C for 60 minutes, then washed with water and hot water (40-50°C warm water). I got the filament. Note that the dyeing solution did not contain a dispersing agent, a leveling agent, and an auxiliary dye (carrier). Further, as treatments after dyeing, soaping using a surfactant and reduction cleaning using caustic soda, hydrosulfite, and a surfactant were not performed.
  • Example 2 Dyeing was carried out in the same manner as in Example 1 except that the P3HB3HH short fibers of Production Example 2 were used as the dyed material to obtain P3HB3HH short fibers dyed in blue.
  • Example 3 Dyeing was carried out in the same manner as in Example 1, except that the spun yarn A made of P3HB3HH short fibers of Production Example 3 was used as the object to be dyed, and a spun yarn made of P3HB3HH short fibers dyed blue was obtained.
  • Example 4 A spun yarn made of P3HB3HH short fibers dyed blue was obtained in the same manner as in Example 3, except that the temperature of the dyeing solution was adjusted to 80° C. and dyeing was carried out at 80° C. for 60 minutes.
  • Example 5 A spun yarn made of P3HB3HH short fibers dyed blue was obtained in the same manner as in Example 3, except that the temperature of the dyeing solution was adjusted to 85° C. and dyeing was carried out at 85° C. for 60 minutes.
  • Example 6 Dyeing was carried out in the same manner as in Example 1, except that spun yarn B containing the P3HB3HH short fibers and Lyocell fibers of Production Example 4 was used as the material to be dyed, and the P3HB3HH short fibers were dyed blue, and the Lyocell fibers were not dyed. No spun yarn was obtained.
  • Example 7 In the same manner as in Example 6, a spun yarn was obtained in which the P3HB3HH short fibers were dyed and the Lyocell fibers were not dyed.
  • the obtained spun yarn in which only the P3HB3HH short fibers were dyed blue, was used as a material to be dyed, and 1% by weight of blue reactive dye (Sumifix (registered trademark) Br.Blue R 150% gran. , manufactured by Sumika Chemtex), 40 g/L of sodium sulfate, and 15 g/L of sodium carbonate (bath ratio 1:20), and dyeing at 60°C for 60 minutes. Lyocell fibers were dyed with this method to obtain a spun yarn dyed entirely blue.
  • Example 8 Dyeing was carried out in the same manner as in Example 1, except that knit A of Production Example 5 was used as the object to be dyed, to obtain a knit in which P3HB3HH short fibers were dyed blue.
  • Example 9 Dyeing was carried out in the same manner as in Example 1, except that knit B of Production Example 6 was used as the dyed material, to obtain a knit in which only the P3HB3HH short fibers were dyed blue and the Lyocell fibers were not dyed.
  • Example 10 In the same manner as in Example 9, a knit was obtained in which the P3HB3HH short fibers were dyed and the Lyocell fibers were not dyed. Lyocell fibers were dyed in the same manner as in Example 7, except that a knit in which only the obtained P3HB3HH short fibers were dyed blue was used to obtain a knit dyed entirely in blue.
  • Example 1 Same as Example 1 except that 100% polylactic acid fiber spun yarn (100% polylactic acid spun yarn Terramac (registered trademark) manufactured by Unitika Co., Ltd., English cotton count 21/1) was used as the material to be dyed. Dispersion staining was performed.
  • 100% polylactic acid fiber spun yarn 100% polylactic acid spun yarn Terramac (registered trademark) manufactured by Unitika Co., Ltd., English cotton count 21/1) was used as the material to be dyed. Dispersion staining was performed.
  • Example 3 Dyeing was carried out in the same manner as in Example 3, except that the dyeing temperature was 95° C., to obtain a spun yarn made of P3HB3HH short fibers dyed blue.
  • Example 4 Dyeing was carried out in the same manner as in Example 3 except that the dyeing temperature was 100° C. to obtain a spun yarn made of P3HB3HH short fibers dyed blue.
  • the dyeing temperature T1 when dyeing P3HB3HH fibers and the maximum temperature T2 for dyeing processing calculated based on the TMA curve obtained by thermomechanical analysis of dyed P3HB3HH fibers are:
  • II T1+3°C ⁇ T2 ⁇ T1-2°C
  • Comparative Example 1 has a high L value and is insufficiently dyed. Furthermore, in any of the P3HB3HH fibers (short fibers) of Example 2, the spun yarns made of 100% by weight of P3HB3HH short fibers of Examples 3 to 5, and the knit made of 100% by weight of P3HB3HH short fibers of Example 8. The color fastness to washing was good.
  • the spun yarn of Comparative Example 4 dyed at 100° C. has a larger fiber diameter than the heat-shrinkable P3HB3HH staple fiber, and has an inferior texture.
  • P3HB3HH fibers are excellent in both seawater decomposition and soil decomposition. Furthermore, it can be seen that when P3HB3HH fibers are used in combination with cellulose fibers, the sea degradability is also excellent.
  • P3HB3HH fibers and fiber aggregates containing them are resistant to hydrolysis, and even when left in a high humidity environment of 80°C and 90% RH for 82 hours, the strength (tensile strength) ) and the decrease in molecular weight is suppressed.
  • PLA fibers have poor durability (hydrolysis) and cannot maintain their strength and shape when left in a high humidity environment of 80° C. and 90% RH for 82 hours.
  • a method for producing a fiber aggregate containing dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers comprising: Including the process of dyeing poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers with a dye, A method for producing a fiber aggregate, characterized in that the dyeing is carried out at a temperature of 85° C. or lower.
  • the dye includes at least one selected from the group consisting of synthetic dyes and natural dyes.
  • the synthetic dye includes at least one selected from the group consisting of disperse dyes and direct dyes.
  • the fiber aggregate further includes cellulose fibers, and includes a step of dyeing the cellulose fibers with a dye at a temperature of 85° C. or lower, according to any one of [5] to [9].
  • T2 of the dyeing process calculated based on the thermomechanical analysis (TMA) curve that measured the heat shrinkage rate from 30 to 180°C is 88°C or less, and the T2 is equal to 30°C and 40°C of the TMA curve. This is the temperature corresponding to the intersection of a straight line A passing through two points of °C and a tangent line B whose tangent point is a point on the TMA curve showing a heat shrinkage rate of 25% with respect to the heat shrinkage rate at 120°C.
  • Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber [12] A fiber assembly comprising the dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber according to [11].

Abstract

The present invention addresses the problem of staining, with excellent stain adhesion, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers while reducing the amount of energy required for staining. The present invention provides stained poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers, a fiber aggregate, and methods for manufacturing these, characterized by including a step for staining poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers, and further characterized in that the staining is carried out at a temperature of 85°C or lower using a dye.

Description

染色されたP3HB3HH系繊維、及びそれを含む繊維集合体、並びにそれらの製造方法Dyed P3HB3HH fibers, fiber aggregates containing the same, and methods for producing them
 本発明は、染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維、及びそれを含む繊維集合体、並びにそれらの製造方法に関する。 The present invention relates to dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers, fiber aggregates containing the same, and methods for producing them.
 従来から、衣料、カーペット、パイル布帛等の様々な繊維製品には、ポリエチレンテレフタレート等の芳香族ポリエステルで構成されたポリエステル繊維が広く使用されている。近年、環境保護の観点から、自然環境下で分解する生分解性を有する脂肪族ポリエステル系繊維を用いることが行われている。例えば、特許文献1には、ポリ乳酸系繊維を含む繊維構造物が記載されている。また、特許文献2には、融点が130℃以上の脂肪族ポリエステルマルチフィラメントを含む織物が記載されている。 Conventionally, polyester fibers composed of aromatic polyesters such as polyethylene terephthalate have been widely used in various textile products such as clothing, carpets, and pile fabrics. In recent years, from the viewpoint of environmental protection, biodegradable aliphatic polyester fibers that decompose in the natural environment have been used. For example, Patent Document 1 describes a fiber structure containing polylactic acid fibers. Further, Patent Document 2 describes a fabric containing an aliphatic polyester multifilament having a melting point of 130° C. or higher.
特開2003-253575号公報Japanese Patent Application Publication No. 2003-253575 特開2003-138450号公報Japanese Patent Application Publication No. 2003-138450
 ポリエステル繊維は、通常、加圧かつ130℃で染色を行うか、キャリアを用いた場合は、常圧下、100℃で染色を行うことが多い。特許文献1及び2でも、分散染料を用いて90℃以上の温度で脂肪族ポリエステル繊維を染色しており、染色に必要なエネルギーが高いという問題があった。以下において、圧力について言及がない場合は、常圧を意味する。 Polyester fibers are usually dyed under pressure at 130°C, or if a carrier is used, they are often dyed at 100°C under normal pressure. Patent Documents 1 and 2 also dye aliphatic polyester fibers using a disperse dye at a temperature of 90° C. or higher, which poses a problem in that the energy required for dyeing is high. In the following, when there is no mention of pressure, normal pressure is meant.
 本発明は、前記従来の問題を解決するため、染色に必要なエネルギーを低減しつつ、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を染着性よく染色することができる染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の製造方法、及び染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を含む繊維集合体の製造方法、並びに染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維及びそれを含む繊維集合体を提供する。 In order to solve the above-mentioned conventional problems, the present invention aims to dye poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers with good dyeability while reducing the energy required for dyeing. A method for producing a dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fiber, and a dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fiber. A method for producing a fiber aggregate containing fibers, a dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber, and a fiber aggregate containing the same are provided.
 本発明の1以上の実施形態は、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を染色する工程を含み、前記染色は、染料を用いて85℃以下の温度で行うことを特徴とする、染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の製造方法に関する。 One or more embodiments of the invention include dyeing poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers using a dye at a temperature of 85° C. or less. The present invention relates to a method for producing dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers.
 本発明の1以上の実施形態は、染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を含む繊維集合体の製造方法であって、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を染料で染色する工程を含み、前記染色は、85℃以下の温度で行うことを特徴とする、繊維集合体の製造方法に関する。 One or more embodiments of the present invention provide a method of making a fiber assembly comprising dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers, the method comprising: The present invention relates to a method for producing a fiber aggregate, comprising a step of dyeing (co-3-hydroxyhexanoate) based fibers with a dye, the dyeing being carried out at a temperature of 85° C. or lower.
 本発明の1以上の実施形態は、30~180℃の熱収縮率を測定した熱機械分析(TMA)曲線に基づいて算出した染色加工の最大温度T2が88℃以下であり、前記T2は、TMA曲線の30℃及び40℃の2点を通る直線Aと、TMA曲線上の120℃での熱収縮率に対して25%の熱収縮率を示す点を接点とする接線Bの交点に対応する温度である染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維に関する。 In one or more embodiments of the present invention, the maximum temperature T2 of the dyeing process calculated based on a thermomechanical analysis (TMA) curve measured from 30 to 180°C is 88°C or less, and the T2 is: Corresponds to the intersection of the straight line A passing through the two points of 30°C and 40°C on the TMA curve and the tangent line B whose tangent point is the point on the TMA curve that shows a heat shrinkage rate of 25% compared to the heat shrinkage rate at 120°C. The present invention relates to dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers having a temperature of
 本発明の1以上の実施形態は、前記染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を含む繊維集合体に関する。 One or more embodiments of the present invention relate to a fiber assembly comprising the dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers.
 本発明によれば、染色に必要なエネルギーを低減しつつ、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を染着性よく染色することができる。
 本発明によれば、染色に必要なエネルギーを低減しつつ、良好な染着性を有する染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を含む繊維集合体を得ることができる。
According to the present invention, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers can be dyed with good dyeability while reducing the energy required for dyeing.
According to the present invention, a fiber assembly includes dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers that have good dyeability while reducing the energy required for dyeing. can be obtained.
1例の染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の熱機械分析で得られるTMA曲線である。1 is a TMA curve obtained by thermomechanical analysis of an example of dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber.
 本発明者らは、前記課題を解決するために、鋭意検討を重ねた。その結果、脂肪族ポリエステル繊維としてポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(「P3HB3HH」とも記す。)系繊維を用い、85℃以下で染色を行うことで、染色に必要なエネルギーを低減しつつ、良好な染着性を有する染色されたP3HB3HH系繊維を得ることができた。特に、分散染料を用いた場合は、キャリアを用いなくても、85℃以下の低温染色により、良好な染着性を有する染色されたP3HB3HH系繊維を好適に得ることができた。
 また、本発明の1以上の実施形態において、低温染色で得られたP3HB3HH系繊維及びそれを含む繊維集合体は、優れた土壌分解性及び海洋分解性を有するとともに、加水分解には強い。また、洗濯に対する染色堅牢度も良好である。
The present inventors have made extensive studies in order to solve the above problems. As a result, we found that by using poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (also referred to as "P3HB3HH") fiber as the aliphatic polyester fiber and dyeing at 85°C or lower, It was possible to obtain dyed P3HB3HH fibers with good dyeability while reducing the required energy. In particular, when a disperse dye was used, dyed P3HB3HH fibers with good dyeability could be suitably obtained by low-temperature dyeing at 85° C. or lower without using a carrier.
Furthermore, in one or more embodiments of the present invention, P3HB3HH-based fibers obtained by low-temperature dyeing and fiber aggregates containing the same have excellent soil degradability and ocean degradability, and are resistant to hydrolysis. In addition, the color fastness to washing is also good.
 本明細書において、数値範囲が「~」で示されている場合、該数値範囲は両端値(上限及び下限)を含む。例えば、「X~Y」という数値範囲は、X及びYという両端値を含む範囲となる。また、本明細書において、数値範囲が複数記載されている場合、異なる数値範囲の上限及び下限を適宜組み合わせた数値範囲を含むものとする。 In this specification, when a numerical range is indicated by "~", the numerical range includes both end values (upper limit and lower limit). For example, a numerical range of "X to Y" is a range that includes both end values of X and Y. Furthermore, in this specification, when a plurality of numerical ranges are described, a numerical range that is a combination of the upper and lower limits of different numerical ranges as appropriate is included.
 本明細書において、生分解性は、微生物の働きにより、分子レベルまで分化し、最終的には水及び二酸化炭素をなり得る性質を意味し、海洋分解性は、海洋中の微生物の働きにより、分子レベルまで分化し、最終的には水及び二酸化炭素をなり得る性質を意味する。ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)は、海洋分解性を有する生分解性バイオプラスチックとして広く用いられ、P3HB3HH系繊維及びそれを含む繊維集合体も土壌分解性及び優れた海洋分解性を有することができる。 In this specification, biodegradability refers to properties that can be differentiated to the molecular level through the action of microorganisms and eventually become water and carbon dioxide, and marine degradability refers to properties that can be differentiated to the molecular level by the action of microorganisms in the ocean, It means the property of being differentiated down to the molecular level and eventually becoming water and carbon dioxide. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) is widely used as a biodegradable bioplastic that is degradable in the ocean, and P3HB3HH fibers and fiber aggregates containing them are also highly degradable in soil. It can also have ocean degradability.
 (染色P3HB3HH系繊維及びその製造方法)
 以下において、特に指摘がない場合、染料で染色された、すなわち染料を含むポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を「染色P3HB3HH系繊維」と記し、単にP3HB3HH系繊維と記した場合は、染料を含まないP3HB3HH系繊維を意味する。
(Dyed P3HB3HH fiber and its manufacturing method)
In the following, unless otherwise indicated, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers dyed with dyes, that is, containing dyes, will be referred to as "dyed P3HB3HH fibers" and simply P3HB3HH. When it is written as a P3HB3HH type fiber, it means a P3HB3HH type fiber that does not contain dye.
 染色P3HB3HH系繊維は、P3HB3HH系繊維を染料を用いて85℃以下の温度で染色することで作製することができる。すなわち、染色P3HB3HH系繊維は、85℃以下の温度で染色されたP3HB3HH系繊維である。85℃以下の低温で染色されたP3HB3HH系繊維は、後述するように、TMA(熱機械分析)にて確認することができる。また、染色P3HB3HH繊維を特定温度で熱処理した際の残留収縮率は、TMAの熱収縮曲線から推測することができる。 Dyed P3HB3HH fibers can be produced by dyeing P3HB3HH fibers with a dye at a temperature of 85° C. or lower. That is, the dyed P3HB3HH fiber is a P3HB3HH fiber dyed at a temperature of 85° C. or lower. P3HB3HH fibers dyed at a low temperature of 85° C. or lower can be confirmed by TMA (thermo-mechanical analysis), as described below. Further, the residual shrinkage rate when dyed P3HB3HH fibers are heat treated at a specific temperature can be estimated from the TMA heat shrinkage curve.
 <P3HB3HH系繊維>
 P3HB3HH系繊維は、P3HB3HHを80重量%以上含むことが好ましく、85重量%以上含むことがより好ましく、90重量%以上含むことがさらに好ましく、95重量%以上含むことがさらにより好ましい。
<P3HB3HH fiber>
The P3HB3HH-based fiber preferably contains P3HB3HH in an amount of 80% by weight or more, more preferably 85% by weight or more, even more preferably 90% by weight or more, and even more preferably 95% by weight or more.
 P3HB3HHのモノマー組成は、限定されないが、強度及び低温染色性に優れる観点から、3-ヒドロキシブチレート(3HB)を50~98モル%、及び3-ヒドロキシヘキサノエート(3HH)を2~50モル%含むことが好ましく、3HBを50~97モル%、及び3HHを3~50モル%含むことがさらに好ましい。P3HB3HHは、1種を単独で用いてもよく、3HBのモル含有量が異なるものを2種以上併用してもよい。 The monomer composition of P3HB3HH is not limited, but from the viewpoint of excellent strength and low-temperature dyeing properties, 50 to 98 mol% of 3-hydroxybutyrate (3HB) and 2 to 50 mol of 3-hydroxyhexanoate (3HH). %, and more preferably 50 to 97 mol% of 3HB and 3 to 50 mol% of 3HH. One kind of P3HB3HH may be used alone, or two or more kinds having different molar contents of 3HB may be used in combination.
 P3HB3HHにおけるモノマーの組成比は、下記のとおりに測定することができる。試料約20mgに2mLの硫酸-メタノール混合液(体積比、硫酸:メタノール=15:85)と2mLのクロロホルムを添加して密栓し、100℃で140分間加熱することでポリエステル分解物のメチルエステルを得る。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置する。4mLのジイソプロピルエーテルを添加してよく混合した後、遠心して、上澄み液中のポリエステル分解物のヒドロキシアルカン酸メチルエステルの組成をキャピラリーガスクロマトグラフィーにより分析し、P3HB3HHのモノマーユニットの組成比(モノマー比率)を求める。 The composition ratio of monomers in P3HB3HH can be measured as follows. Add 2 mL of sulfuric acid-methanol mixture (volume ratio, sulfuric acid: methanol = 15:85) and 2 mL of chloroform to approximately 20 mg of the sample, seal it tightly, and heat it at 100°C for 140 minutes to convert the methyl ester of the polyester decomposition product. obtain. After cooling, 1.5 g of sodium hydrogen carbonate is added little by little to neutralize it, and the mixture is left to stand until the generation of carbon dioxide gas stops. After adding 4 mL of diisopropyl ether and mixing well, centrifugation was performed, and the composition of the hydroxyalkanoic acid methyl ester of the polyester decomposition product in the supernatant was analyzed by capillary gas chromatography. ).
 P3HB3HHは、特に限定されず、公知の方法により製造することができるが、海洋分解性の高いP3HB3HHを容易に得られる観点から、微生物による製造方法で製造することが好ましい。微生物による製造方法は、公知の方法を用いることができる。微生物は、P3HB3HH生産能を有するものであればよく、特に限定されない。P3HB3HH生産能を有する微生物として、例えば、アエロモナス・キヤビエ(Aeromonas caviae)、カプリアビダス・ネカトール(Cupriavidus necator)、ラルストニア・ユートロファ(Ralstonia eutropha)、及びアルカリゲネス・ラタス(Alcaligenes latus)等が挙げられる。また、P3HB3HHの生産性を上げるために、P3HB3HHの合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(J.Bateriol.,179,p4821-4830(1997))等を用いてもよい。また、P3HB3HHとしては、株式会社カネカ製の生分解性ポリマーGP(Green Planet)(登録商標)等の市販品を用いてもよい。 P3HB3HH is not particularly limited and can be produced by a known method, but from the viewpoint of easily obtaining P3HB3HH with high marine degradability, it is preferably produced by a production method using microorganisms. As the production method using microorganisms, known methods can be used. The microorganism is not particularly limited as long as it has the ability to produce P3HB3HH. Examples of microorganisms capable of producing P3HB3HH include Aeromonas caviae, Cupriavidus necator, Ralstonia eutropha, and Alcaligenes ratus. enes latus), etc. In addition, in order to increase the productivity of P3HB3HH, the Alcaligenes eutrophus AC32 strain (FERM BP-6038) into which genes for the P3HB3HH synthase group were introduced (J. Bateriol., 179, p4821-4830) (1997) ) etc. may be used. Furthermore, as P3HB3HH, a commercially available product such as biodegradable polymer GP (Green Planet) (registered trademark) manufactured by Kaneka Corporation may be used.
 P3HB3HHの重量平均分子量は特に限定されないが、成形性及び強度の観点から、100,000~3,000,000であることが好ましく、150,000~1,500,000であることがより好ましい。本明細書において、重量平均分子量は、溶離液としてクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定されたものをいう。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。 The weight average molecular weight of P3HB3HH is not particularly limited, but from the viewpoint of moldability and strength, it is preferably 100,000 to 3,000,000, more preferably 150,000 to 1,500,000. In this specification, the weight average molecular weight refers to that measured from polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC) using chloroform as an eluent. As a column in the GPC, a column suitable for measuring the molecular weight may be used.
 P3HB3HHのメルトフローレート(MFR)は、特に限定されないが、JIS K 7210-1:2014に準じ、温度165℃、荷重5kg(49N)の条件下で測定したメルトフローレート(MFR)は0.1~100g/10分であってもよく、1~50g/10分であってもよく、10~40g/10分であってもよい。メルトフローレートが上述した範囲内であると、溶融樹脂の流動性が適切な範囲となり、繊維化が良好になる。なお、繊維化が可能であれば、P3HB3HHのメルトフローレート(MFR)は、100g/10分を超えてもよい。 The melt flow rate (MFR) of P3HB3HH is not particularly limited, but according to JIS K 7210-1:2014, the melt flow rate (MFR) measured under the conditions of a temperature of 165°C and a load of 5 kg (49 N) is 0.1. It may be ~100 g/10 minutes, it may be 1-50 g/10 minutes, it may be 10-40 g/10 minutes. When the melt flow rate is within the above-mentioned range, the fluidity of the molten resin will be within an appropriate range, and fiberization will be good. Note that, if fiberization is possible, the melt flow rate (MFR) of P3HB3HH may exceed 100 g/10 minutes.
 P3HB3HH系繊維は、繊維物性及び生産性の観点から、結晶核剤を含んでもよい。結晶核剤としては、P3HB3HHの結晶化を促進する効果を有する化合物であればよく、特に限定されるものではない。例えば、結晶化速度の改善効果や繊維に含有させる観点から、糖アルコール化合物、ポリビニルアルコール、キチン、及びキトサン等が好ましく、糖アルコール化合物がより好ましく、ペンタエリスリトールがさらに好ましい。結晶核剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The P3HB3HH fiber may contain a crystal nucleating agent from the viewpoint of fiber properties and productivity. The crystal nucleating agent is not particularly limited as long as it is a compound that has the effect of promoting crystallization of P3HB3HH. For example, from the viewpoint of improving crystallization rate and inclusion in fibers, sugar alcohol compounds, polyvinyl alcohol, chitin, chitosan, etc. are preferred, sugar alcohol compounds are more preferred, and pentaerythritol is even more preferred. One type of crystal nucleating agent may be used alone, or two or more types may be used in combination.
 P3HB3HH系繊維における結晶核剤の含有量は、特に限定されないが、例えば、P3HB3HH100重量部に対し、0.05~12重量部であることが好ましく、0.1~10重量部であることがより好ましく、0.5~8重量部であることがさらに好ましく、特に好ましくは1~5重量部である。結晶核剤の含有量が0.05重量部以上であることにより、結晶化促進効果が向上し、繊維の生産性が向上する傾向がある。また、結晶核剤の含有量が12重量部以下であることにより、十分な結晶化速度促進効果を保持しつつ、加工時のP3HB3HHの粘度低下や繊維物性の低下等を抑制しやすい。 The content of the crystal nucleating agent in the P3HB3HH fiber is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HB3HH. The amount is preferably 0.5 to 8 parts by weight, more preferably 0.5 to 8 parts by weight, and particularly preferably 1 to 5 parts by weight. When the content of the crystal nucleating agent is 0.05 part by weight or more, the crystallization promoting effect tends to be improved and the productivity of fibers tends to be improved. Further, by setting the content of the crystal nucleating agent to 12 parts by weight or less, it is easy to suppress a decrease in the viscosity of P3HB3HH, a decrease in fiber physical properties, etc. during processing while maintaining a sufficient effect of accelerating the crystallization rate.
 P3HB3HH系繊維は、生産性及び繊維物性の観点から、滑剤を含んでもよい。滑剤としては、P3HB3HHに滑性を付与する効果を有する化合物であればよく、特に限定されるものではない。例えば、脂肪酸アミド、アルキレン脂肪酸アミド、グリセリンモノ脂肪酸エステル、有機酸モノグリセライド、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、及び高級アルコール脂肪酸エステル等が挙げられる。 The P3HB3HH fiber may contain a lubricant from the viewpoint of productivity and fiber properties. The lubricant is not particularly limited as long as it is a compound that has the effect of imparting lubricity to P3HB3HH. Examples include fatty acid amide, alkylene fatty acid amide, glycerin monofatty acid ester, organic acid monoglyceride, sorbitan fatty acid ester, polyglycerin fatty acid ester, and higher alcohol fatty acid ester.
 上記滑剤の中でも、特に外部滑性を付与する効果を有する化合物、具体的には、脂肪酸アミド、及びグリセリン脂肪酸エステル等が好ましい。脂肪酸アミドとしては、脂肪酸のモノアミド、及びビスアミド等が挙げられる。脂肪酸アミドを構成する脂肪酸(脂肪酸部分)は、樹脂組成物の融点が適度に高いものとなり、溶融加工時の加工性低下を抑止する観点から、炭素数が12~30であることが好ましく、より好ましくは18~22である。脂肪酸アミドとしては、具体的には、ベヘン酸アミド、エルカ酸アミド、パルミチン酸アミド、オレイン酸アミド、ステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、及びエチレンビスエルカ酸アミド等が挙げられる。グリセリン脂肪酸エステルとしては、例えば、脂肪酸とグリセリンのモノエステル、脂肪酸とグリセリンのジエステル、及び脂肪酸とグリセリンのトリエステル等が挙げられる。グリセリンのトリエステルとしては、例えば、グリセリンジアセトモノラウレート、グリセリンジアセトモノオレート、グリセリンジアセトモノステアレート、グリセリンジアセトモノカプリレート、及びグリセリンジアセトモノデカノエート等のグリセリンジアセトモノエステル等が挙げられる。滑剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among the above-mentioned lubricants, compounds having the effect of imparting external lubricity, specifically fatty acid amides, glycerin fatty acid esters, and the like are preferred. Examples of fatty acid amides include monoamides and bisamides of fatty acids. The fatty acid (fatty acid moiety) constituting the fatty acid amide preferably has a carbon number of 12 to 30, and more preferably has a carbon number of 12 to 30, from the viewpoint of giving the resin composition a suitably high melting point and suppressing deterioration of processability during melt processing. Preferably it is 18-22. Specifically, fatty acid amides include behenic acid amide, erucic acid amide, palmitic acid amide, oleic acid amide, stearic acid amide, methylene bis stearic acid amide, ethylene bis stearic acid amide, ethylene bis oleic acid amide, and ethylene bis oleic acid amide. Examples include biserucic acid amide. Examples of glycerin fatty acid esters include monoesters of fatty acids and glycerin, diesters of fatty acids and glycerin, and triesters of fatty acids and glycerin. Examples of glycerin triesters include glycerin diacetomonoesters such as glycerin diacetomonolaurate, glycerin diacetomonooleate, glycerin diacetomonostearate, glycerin diacetomonocaprylate, and glycerin diacetomonodecanoate. One type of lubricant may be used alone, or two or more types may be used in combination.
 P3HB3HH系繊維における滑剤の含有量は、特に制限はないが、例えば、P3HB3HH100重量部に対し、0.05~12重量部であることが好ましく、0.1~10重量部であることがより好ましく、0.5~8重量部であることがさらに好ましく、特に好ましくは1~5重量部である。滑剤の含有量が0.05重量部以上であることにより、繊維化の際にP3HB3HHと押出機や紡糸機内部の金属表面との摩擦が抑制され、せん断発熱によるP3HB3HHの分解が抑制され、ノズルから押し出された繊維同士が互着することも防止されやすい。また、滑剤の含有量が12重量部以下であることにより、押出機中でP3HB3HHがより効率的に融解し、その結果、繊維が硬くなり過ぎることなく糸切れが抑制され、生産性が一層向上しやすい。 The content of the lubricant in the P3HB3HH fiber is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HB3HH. , more preferably 0.5 to 8 parts by weight, particularly preferably 1 to 5 parts by weight. By having a lubricant content of 0.05 parts by weight or more, friction between P3HB3HH and the metal surface inside the extruder or spinning machine during fiberization is suppressed, and decomposition of P3HB3HH due to shear heat generation is suppressed, and the nozzle It is also easy to prevent the fibers extruded from sticking to each other. In addition, by having a lubricant content of 12 parts by weight or less, P3HB3HH melts more efficiently in the extruder, and as a result, fiber breakage is suppressed without making the fiber too hard, further improving productivity. It's easy to do.
 P3HB3HH系繊維は、必要に応じて、本発明の効果を阻害しない範囲内で、可塑剤、無機充填剤、有機充填剤(セルロース等)、酸化防止剤、紫外線吸収剤、及び帯電防止剤等の他の添加剤成分を含有してもよい。他の添加剤成分の添加量は、100重量部のP3HB3HHに対し、5重量部以下であってもよく、1重量部以下であってもよい。 If necessary, the P3HB3HH fibers may contain plasticizers, inorganic fillers, organic fillers (cellulose, etc.), antioxidants, ultraviolet absorbers, antistatic agents, etc. within the range that does not impede the effects of the present invention. It may also contain other additive components. The amount of other additive components added may be 5 parts by weight or less, or 1 part by weight or less with respect to 100 parts by weight of P3HB3HH.
 P3HB3HH系繊維は、必要に応じて、本発明の効果を阻害しない範囲内で、P3HB3HH以外の樹脂成分(その他の樹脂成分)を含んでもよい。その他の樹脂成分としては、生分解性樹脂が好ましい。他の生分解性樹脂としては、例えば、ポリ乳酸、ポリカプロラクトン、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペート、及びポリブチレンサクシネート等の石油由来樹脂、並びにデンプン、セルロース等の天然高分子等が挙げられる。その他の樹脂成分の含有量は、樹脂成分の全量(100重量%)に対して、20重量%以下が好ましく、より好ましくは10重量%以下、さらに好ましくは5重量%以下である。その他の樹脂成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 The P3HB3HH-based fibers may contain resin components other than P3HB3HH (other resin components), if necessary, within a range that does not impede the effects of the present invention. As other resin components, biodegradable resins are preferred. Examples of other biodegradable resins include petroleum-derived resins such as polylactic acid, polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate, and polybutylene succinate, and natural polymers such as starch and cellulose. Can be mentioned. The content of other resin components is preferably 20% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, based on the total amount (100% by weight) of the resin components. One type of other resin components can be used alone, or two or more types can be used in combination.
 P3HB3HH系繊維は、例えば、P3HB3HHを含有する樹脂組成物を繊維化することで得ることができる。上記樹脂組成物は、特に限定されないが、P3HB3HHを80重量%以上含むことが好ましく、より好ましくは85重量%以上含み、さらに好ましくは90重量%以上含む。一方、上限は100重量%であってもよいが、例えば、98重量%以下又は95重量%以下であってもよい。P3HB3HHの含有量を80重量%以上とすることにより、P3HB3HH系繊維及びそれを含む繊維集合体の生分解性や海洋分解性がより向上する傾向がある。 P3HB3HH-based fibers can be obtained, for example, by fiberizing a resin composition containing P3HB3HH. The resin composition is not particularly limited, but preferably contains 80% by weight or more of P3HB3HH, more preferably 85% by weight or more, and even more preferably 90% by weight or more. On the other hand, the upper limit may be 100% by weight, but may be, for example, 98% by weight or less or 95% by weight or less. By setting the P3HB3HH content to 80% by weight or more, the biodegradability and marine degradability of the P3HB3HH fiber and the fiber aggregate containing the same tend to be further improved.
 上記樹脂組成物は、特に限定されないが、生産性及び繊維物性の観点から、さらに結晶核剤を含むことが好ましい。結晶核剤としては、上述したものを適宜用いることができ、ペンタエリスリトールが特に好ましい。結晶核剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Although the resin composition is not particularly limited, from the viewpoint of productivity and fiber properties, it is preferable that the resin composition further contains a crystal nucleating agent. As the crystal nucleating agent, those mentioned above can be used as appropriate, and pentaerythritol is particularly preferred. One type of crystal nucleating agent may be used alone, or two or more types may be used in combination.
 上記樹脂組成物における結晶核剤の含有量は、特に限定されないが、例えば、P3HB3HH100重量部に対し、0.05~12重量部であることが好ましく、0.1~10重量部であることがより好ましく、0.5~8重量部であることがさらに好ましく、特に好ましくは1~5重量部である。結晶核剤の含有量が0.05重量部以上であることにより、結晶化促進効果が向上し、繊維の生産性が向上する傾向がある。また、結晶核剤の含有量が12重量部以下であることにより、十分な結晶化速度促進効果を保持しつつ、加工時の樹脂組成物の粘度低下や繊維物性の低下等を抑制しやすい。 The content of the crystal nucleating agent in the resin composition is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, and preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HB3HH. The amount is more preferably 0.5 to 8 parts by weight, and particularly preferably 1 to 5 parts by weight. When the content of the crystal nucleating agent is 0.05 part by weight or more, the crystallization promoting effect tends to be improved and the productivity of fibers tends to be improved. Furthermore, by setting the content of the crystal nucleating agent to 12 parts by weight or less, while maintaining a sufficient effect of accelerating the crystallization rate, it is easy to suppress a decrease in the viscosity of the resin composition and a decrease in fiber physical properties during processing.
 上記樹脂組成物は、特に限定されないが、生産性の観点から、さらに滑剤を含むことが好ましい。滑剤としては、上述したものを適宜用いることができ、脂肪酸アミドが特に好ましい。 Although the resin composition is not particularly limited, it is preferable from the viewpoint of productivity that it further contains a lubricant. As the lubricant, those mentioned above can be used as appropriate, and fatty acid amides are particularly preferred.
 上記樹脂組成物における滑剤の含有量は、特に制限はないが、例えば、P3HB3HH100重量部に対し、0.05~12重量部であることが好ましく、0.1~10重量部であることがより好ましく、0.5~8重量部であることがさらに好ましく、特に好ましくは1~5重量部である。滑剤の含有量が0.05重量部以上であることにより、樹脂組成物と押出機や紡糸機内内部の金属表面との摩擦が抑制され、せん断発熱によるP3HB3HHの分解が抑制され、ノズルから押し出された繊維同士が互着することも防止されやすい。また、滑剤の含有量が12重量部以下であることにより、押出機中でP3HB3HHがより効率的に融解し、その結果、繊維が硬くなり過ぎることなく糸切れが抑制され、生産性が一層向上しやすい。 The content of the lubricant in the resin composition is not particularly limited, but for example, it is preferably 0.05 to 12 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of P3HB3HH. The amount is preferably 0.5 to 8 parts by weight, more preferably 0.5 to 8 parts by weight, and particularly preferably 1 to 5 parts by weight. When the content of the lubricant is 0.05 parts by weight or more, friction between the resin composition and the metal surface inside the extruder or spinning machine is suppressed, the decomposition of P3HB3HH due to shear heat generation is suppressed, and the P3HB3HH is extruded from the nozzle. It is also easy to prevent the fibers from sticking to each other. In addition, by having a lubricant content of 12 parts by weight or less, P3HB3HH melts more efficiently in the extruder, and as a result, fiber breakage is suppressed without making the fiber too hard, further improving productivity. It's easy to do.
 上記樹脂組成物は、必要に応じて、本発明の効果を阻害しない範囲内で、可塑剤、無機充填剤、有機充填材(セルロース等)、酸化防止剤、紫外線吸収剤、及び帯電防止剤等の他の添加剤成分を含有してもよい。他の添加剤成分の添加量は、100重量部のP3HB3HHに対し、5重量部以下であってもよく、1重量部以下であってもよい。 The resin composition may optionally contain a plasticizer, an inorganic filler, an organic filler (cellulose, etc.), an antioxidant, an ultraviolet absorber, an antistatic agent, etc., within a range that does not impede the effects of the present invention. It may also contain other additive components. The amount of other additive components added may be 5 parts by weight or less, or 1 part by weight or less with respect to 100 parts by weight of P3HB3HH.
 上記樹脂組成物は、必要に応じて、本発明の効果を阻害しない範囲内で、P3HB3HH以外の樹脂成分(その他の樹脂成分)を含んでもよい。その他の樹脂成分としては、生分解性樹脂が好ましい。他の生分解性樹脂としては、例えば、ポリ乳酸、ポリカプロラクトン、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペート、ポリブチレンサクシネート等の石油由来樹脂や、デンプン、セルロース等の天然高分子等が挙げられる。その他の樹脂成分の含有量は、樹脂成分の全量(100重量%)に対して、20重量%以下が好ましく、より好ましくは10重量%以下、さらに好ましくは5重量%以下である。その他の樹脂成分は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。 The above resin composition may contain resin components other than P3HB3HH (other resin components), if necessary, within a range that does not impede the effects of the present invention. As other resin components, biodegradable resins are preferred. Examples of other biodegradable resins include petroleum-derived resins such as polylactic acid, polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate, and polybutylene succinate, and natural polymers such as starch and cellulose. It will be done. The content of other resin components is preferably 20% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, based on the total amount (100% by weight) of the resin components. One type of other resin components can be used alone, or two or more types can be used in combination.
 樹脂組成物を溶融紡糸することでP3HB3HH系繊維を得ることができる。まず、上記樹脂組成物を溶融混練して得られたペレット状の樹脂組成物を、溶融押出機を用いて溶融し、溶融した樹脂組成物をノズルから連続的に押出して繊維を形成することで紡糸フィラメント(未延伸フィラメント)を作製することができる。溶融紡糸温度は、樹脂組成物の融点以上熱分解温度未満であればよく、特に限定されないが、例えば、樹脂組成物の融点をTmとした場合、[Tm+5℃]~[Tm+40℃]であってもよく、[Tm+10℃]~[Tm+30℃]であってもよい。より具体的には、145~180℃、150~180℃、又は150~170℃であってもよい。溶融紡糸温度を145℃以上とすることにより、十分に樹脂組成物を溶解させることができるために、紡糸が安定化しやすい。また、紡糸温度を180℃以下とすることにより、P3HB3HHの熱分解が抑制され、紡糸が安定化しやすく、得られる繊維の物性がより向上する傾向がある。なお、溶融紡糸温度とは、樹脂組成物が繊維化される間に加えられる温度のうち、最も高い温度域の温度をいう。 P3HB3HH fibers can be obtained by melt spinning the resin composition. First, a pellet-shaped resin composition obtained by melt-kneading the above resin composition is melted using a melt extruder, and the molten resin composition is continuously extruded from a nozzle to form fibers. Spun filaments (undrawn filaments) can be produced. The melt spinning temperature is not particularly limited as long as it is higher than the melting point of the resin composition and lower than the thermal decomposition temperature, but for example, when the melting point of the resin composition is Tm, it is [Tm+5°C] to [Tm+40°C]. It may be [Tm+10°C] to [Tm+30°C]. More specifically, the temperature may be 145 to 180°C, 150 to 180°C, or 150 to 170°C. By setting the melt spinning temperature to 145° C. or higher, the resin composition can be sufficiently dissolved, so that spinning can be easily stabilized. Further, by setting the spinning temperature to 180° C. or lower, thermal decomposition of P3HB3HH is suppressed, the spinning is easily stabilized, and the physical properties of the resulting fiber tend to be further improved. Note that the melt spinning temperature refers to a temperature in the highest temperature range among the temperatures applied while the resin composition is fiberized.
 上記樹脂組成物は、特に限定されないが、例えば、成形性及び繊維強度の観点から、重量平均分子量が100,000~3,000,000であることが好ましく、150,000~1,500,000であることがより好ましい。 The resin composition is not particularly limited, but for example, from the viewpoint of moldability and fiber strength, the weight average molecular weight is preferably 100,000 to 3,000,000, and preferably 150,000 to 1,500,000. It is more preferable that
 溶融した樹脂組成物を紡糸口金から押し出す際の環境温度は、特に限定されず、樹脂組成物のガラス転移温度をTgとした場合、[Tg+5℃]~[Tg+50℃]であってもよく、[Tg+10℃]~[Tg+40℃]であってもよい。より具体的には、例えば、5~40℃の範囲で適宜調整可能である。紡糸口金から押し出された繊維(紡糸フィラメント)には、整流風を与えることが好ましい。整流風は、クエンチエアとも呼ばれ、糸条の流れを安定化させる働きがある。また、クエンチエアとして冷却した気体を用いることで紡糸フィラメントを冷却することも可能である。クエンチエアの温度は、5~40℃であることが好ましく、より好ましくは10~30℃である。5℃以上であると、繊維に残留応力が生じることを抑制しやすい。40℃以下であると、樹脂の固化が十分となり、繊維が固着することを抑制しやすい。クエンチエアの風速は、特に限定されないが、例えば0.1~3.0m/秒であることが好ましい。0.1m/秒以上であると、整流の効果を発揮されやすく、3.0m/秒以下であると、クエンチ風が強すぎず、糸条が乱れず、繊維同士の固着や糸切れが発生することが抑制される。本明細書において、樹脂又は樹脂組成物のガラス転移温度、結晶化温度、融点及び熱分解温度は、実施例に記載のとおりに測定することができる。 The environmental temperature when extruding the molten resin composition from the spinneret is not particularly limited, and when the glass transition temperature of the resin composition is Tg, it may be [Tg + 5 ° C] to [Tg + 50 ° C], [ [Tg+10°C] to [Tg+40°C]. More specifically, the temperature can be adjusted as appropriate within the range of, for example, 5 to 40°C. It is preferable to apply rectified air to the fibers (spun filaments) extruded from the spinneret. The rectified air is also called quench air, and has the function of stabilizing the flow of yarn. It is also possible to cool the spun filaments by using cooled gas as quench air. The temperature of the quench air is preferably 5 to 40°C, more preferably 10 to 30°C. When the temperature is 5°C or higher, it is easy to suppress generation of residual stress in the fibers. When the temperature is 40° C. or lower, the resin is sufficiently solidified, and it is easy to prevent the fibers from sticking. The wind speed of the quench air is not particularly limited, but is preferably 0.1 to 3.0 m/sec, for example. When it is 0.1 m/sec or more, the rectifying effect is easily exhibited, and when it is 3.0 m/sec or less, the quenching wind is not too strong and the yarns are not disturbed, causing sticking of fibers to each other and yarn breakage. It is restrained from doing so. In this specification, the glass transition temperature, crystallization temperature, melting point, and thermal decomposition temperature of the resin or resin composition can be measured as described in the Examples.
 次に、紡糸フィラメントを延伸し、延伸フィラメント(マルチフィラメント)を得ることができる。延伸により、目的の繊度の繊維が得られるとともに、繊維の強度を高めることができる。延伸は、特に限定されず、紡糸延伸二段階方式で行ってもよく、直接紡糸延伸方式で行ってもよい。紡糸延伸二段階方式では、紡糸フィラメントを巻き取った後に延伸を行う。直接紡糸延伸方式では、紡糸フィラメントを巻き取らずに紡糸と延伸を連続的に行う。また、延伸工程は、複数のロール対の組合せなどにより多段階で行ってもよい。複数のロールの表面温度及び速度は、同じでもよく、異なってもよい。延伸温度、具体的にはロールの表面温度は、特に限定されないが、例えば、30~100℃でもよく、40~90℃でもよい。延伸倍率は、例えば、1.5~20倍でもよい。延伸倍率が1.5倍以上であると、繊維の強度をより高めることができる。延伸を行う前に、必要に応じて紡糸フィラメントに油剤を付与してもよい。 Next, the spun filaments can be drawn to obtain drawn filaments (multifilaments). By drawing, fibers with a desired fineness can be obtained and the strength of the fibers can be increased. Stretching is not particularly limited, and may be carried out by a two-step spinning/drawing method or by a direct spinning/drawing method. In the two-stage spinning and drawing method, drawing is performed after the spun filament is wound up. In the direct spinning/drawing method, spinning and drawing are performed continuously without winding the spun filaments. Further, the stretching step may be performed in multiple stages by combining a plurality of roll pairs. The surface temperatures and speeds of the multiple rolls may be the same or different. The stretching temperature, specifically the surface temperature of the roll, is not particularly limited, but may be, for example, 30 to 100°C, or 40 to 90°C. The stretching ratio may be, for example, 1.5 to 20 times. When the stretching ratio is 1.5 times or more, the strength of the fiber can be further increased. Before stretching, an oil agent may be applied to the spun filaments as necessary.
 延伸フィラメントの単繊維引張強さは、好ましくは0.5~10cN/dtex、より好ましくは0.7~10cN/dtex、さらに好ましくは1.0~10cN/dtexである。延伸フィラメントの単繊維引張強さが上述した範囲内であると、捲縮を付与しやすい。本明細書において、延伸フィラメントの単繊維引張強さは、JIS L 1013:2021に基づいて測定することができる。 The single fiber tensile strength of the drawn filament is preferably 0.5 to 10 cN/dtex, more preferably 0.7 to 10 cN/dtex, and still more preferably 1.0 to 10 cN/dtex. When the single fiber tensile strength of the drawn filament is within the above-mentioned range, crimp can be easily imparted. In this specification, the single fiber tensile strength of the drawn filament can be measured based on JIS L 1013:2021.
 延伸フィラメントを、後述するように染色することで、染色P3HB3HH系繊維を得てもよい。 A dyed P3HB3HH fiber may be obtained by dyeing the drawn filament as described below.
 延伸フィラメントは、捲縮加工した後に、所定の長さにカットすることで、P3HB3HH系短繊維を得ることができる。捲縮加工は、特に限定されないが、例えば、ギアクリンプ法やスタッフィングボックス法等の公知の捲縮加工方法で行うことができる。これにより、得られたP3HB3HH系繊維は、捲縮、具体的には機械捲縮を有することになる。 P3HB3HH short fibers can be obtained by crimping the drawn filaments and then cutting them into a predetermined length. The crimping process is not particularly limited, and can be performed by, for example, a known crimping method such as a gear crimp method or a stuffing box method. As a result, the obtained P3HB3HH fiber has crimps, specifically mechanical crimps.
 捲縮加工は、延伸フィラメントを予熱した後、スタッフィングボックスを用いて行ってもよい。延伸フィラメントの予熱は、例えば、湿熱処理でもよく、乾熱処理でもよい。湿熱処理は、例えば、スチーム等で行うことができる。乾熱処理は、例えば、熱風オーブンや電気ヒーター等で行ってもよい。延伸フィラメントの予熱温度は、60~120℃であることが好ましく、60~110℃であることがより好ましく、70~100℃であることがさらに好ましく、80~90℃であることがさらにより好ましい。スタッフィングボックス圧は、0.001~0.08MPaであることがより好ましく、0.001~0.06MPaであることがさらに好ましく、0.001~0.04MPaであることがさらにより好ましい。 The crimping process may be performed using a stuffing box after preheating the drawn filament. The drawn filament may be preheated by, for example, wet heat treatment or dry heat treatment. The moist heat treatment can be performed using, for example, steam. The dry heat treatment may be performed using, for example, a hot air oven or an electric heater. The preheating temperature of the drawn filament is preferably 60 to 120°C, more preferably 60 to 110°C, even more preferably 70 to 100°C, even more preferably 80 to 90°C. . The stuffing box pressure is more preferably 0.001 to 0.08 MPa, even more preferably 0.001 to 0.06 MPa, even more preferably 0.001 to 0.04 MPa.
 P3HB3HH系短繊維の繊維長は、特に限定されないが、例えば、紡績糸に好適に用いる観点から、20~176mmであってもよく、25~138mmであってもよく、28~110mmであってもよい。 The fiber length of the P3HB3HH short fibers is not particularly limited, but for example, from the viewpoint of suitability for use in spun yarn, it may be 20 to 176 mm, 25 to 138 mm, or 28 to 110 mm. good.
 P3HB3HH系繊維は、風合いの観点から、単繊維繊度が0.1~100dtexであることが好ましく、0.5~50dtexであることがより好ましく、1.0~25dtexであることがさらに好ましく、1.0~15dtexであることがさらにより好ましい。 From the viewpoint of texture, the P3HB3HH fiber has a single fiber fineness of preferably 0.1 to 100 dtex, more preferably 0.5 to 50 dtex, even more preferably 1.0 to 25 dtex, and 1. Even more preferably it is .0 to 15 dtex.
 P3HB3HH系短繊維は、機械的強度の観点から、引張強さが0.3~6.0cN/dtexであることが好ましく、より好ましくは0.5~6.0cN/dtexであり、さらに好ましくは1.0~6.0cN/dtexである。本明細書において、P3HB3HH系短繊維の引張強さは、JIS L 1015:2021に基づいて測定することができる。 From the viewpoint of mechanical strength, the P3HB3HH short fibers preferably have a tensile strength of 0.3 to 6.0 cN/dtex, more preferably 0.5 to 6.0 cN/dtex, and even more preferably It is 1.0 to 6.0 cN/dtex. In this specification, the tensile strength of P3HB3HH short fibers can be measured based on JIS L 1015:2021.
 P3HB3HH系繊維の重量平均分子量は、特に限定されないが、例えば、100,000~3,000,000であることが好ましく、より好ましくは120,000~3,000,000であり、さらに好ましくは150,000~1,500,000であり、さらに好ましくは200,000~500,000である。本明細書において、繊維の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用い、クロロホルムを溶離液として用い、ポリスチレン換算分子量として測定することができる。 The weight average molecular weight of the P3HB3HH fiber is not particularly limited, but is preferably 100,000 to 3,000,000, more preferably 120,000 to 3,000,000, and even more preferably 150,000 to 3,000,000. ,000 to 1,500,000, more preferably 200,000 to 500,000. In this specification, the weight average molecular weight of a fiber can be measured as a polystyrene equivalent molecular weight using gel permeation chromatography (GPC) using chloroform as an eluent.
 P3HB3HH系繊維は、染色整理加工時の寸法安定性の観点から、85℃での熱水収縮率が15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは5%以下であり、特に好ましくは3%以下である。本明細書において、繊維の熱水収縮率は、所定温度の熱水中に繊維を60分浸漬して熱水処理した際、熱水処理前の繊維の長さ及び熱水処理後の繊維の長さを測定し、下記数式(1)により算出することができる。前記熱水は、染色液でもよい。繊維の長さの計測に際し、繊維は両端をピンセットで把持し直線状に伸ばした状態で計測する。なお、紡績糸中の繊維の熱水収縮率は、紡績糸を撚り戻しして、P3HB3HH系短繊維のみを取り出して測定対象とする。
 熱水収縮率(%)=(L0-L1)/L0×100  (1)
 上記数式(1)において、L0は熱水処理前の繊維の長さであり、L1は熱水処理後の繊維の長さである。
From the viewpoint of dimensional stability during dyeing and processing, the P3HB3HH fiber preferably has a hot water shrinkage rate at 85°C of 15% or less, more preferably 10% or less, and even more preferably 5% or less. It is particularly preferably 3% or less. In this specification, the hot water shrinkage rate of a fiber is defined as the length of the fiber before the hot water treatment and the length of the fiber after the hot water treatment when the fiber is immersed in hot water at a predetermined temperature for 60 minutes. The length can be measured and calculated using the following formula (1). The hot water may be a dye solution. When measuring the length of a fiber, the fiber is held at both ends with tweezers and stretched into a straight line. Note that the hot water shrinkage rate of the fibers in the spun yarn is measured by untwisting the spun yarn and taking out only the P3HB3HH short fibers.
Hot water shrinkage rate (%) = (L0-L1)/L0×100 (1)
In the above formula (1), L0 is the length of the fiber before hot water treatment, and L1 is the length of the fiber after hot water treatment.
 P3HB3HH系繊維は、染色整理加工時の寸法安定性の観点から、80℃での熱水収縮率が10%以下であることが好ましく、より好ましくは5%以下であり、より好ましくは3%以下である。 From the viewpoint of dimensional stability during dyeing and processing, the P3HB3HH fiber preferably has a hot water shrinkage rate at 80°C of 10% or less, more preferably 5% or less, and even more preferably 3% or less. It is.
 <染色>
 P3HB3HH系繊維を85℃以下の温度の染料を含む染色液に浸漬することで、染色P3HB3HH系繊維を得ることができる。85℃以下の温度で染色することで、染色に必要なエネルギーを低減することができる。染料は、合成染料でもよく、天然染料でもよい。合成染料は、特に限定されず、例えば、分散染料、直接染料、バット染料、及び含金染料(金属錯塩染料とも称される。)等が挙げられる。所望の色味等に応じて、市販の染料の1以上を適宜選択して用いることができる。分散染料を用いる場合、染色液は、低温染色性を高める観点からは、キャリアを含んでもよく、廃液処理による環境負荷を低減する観点からは、キャリアを含まなくてもよい。例えば、P3HB3HH系繊維をキャリアを用いず分散染料を用いて85℃以下の温度で染色することで染色P3HB3HH系繊維を得ることができる。
<Dyeing>
Dyed P3HB3HH fibers can be obtained by immersing P3HB3HH fibers in a dye solution containing a dye at a temperature of 85° C. or lower. By dyeing at a temperature of 85° C. or lower, the energy required for dyeing can be reduced. The dye may be a synthetic dye or a natural dye. Synthetic dyes are not particularly limited, and include, for example, disperse dyes, direct dyes, vat dyes, and metal-containing dyes (also referred to as metal complex dyes). One or more commercially available dyes can be appropriately selected and used depending on the desired color and the like. When using a disperse dye, the dyeing solution may contain a carrier from the viewpoint of improving low-temperature dyeability, and may not contain a carrier from the viewpoint of reducing the environmental load due to waste liquid treatment. For example, dyed P3HB3HH fibers can be obtained by dyeing P3HB3HH fibers using a disperse dye without using a carrier at a temperature of 85° C. or lower.
 染色液の染料濃度は、目的の色相に応じて適宜に設定すればよく、特に限定されない。例えば、染料濃度は、色相、コスト及び染色堅牢度の観点から、P3HB3HH系繊維の重量に対し、0.0001~4重量%(%o.w.f)でもよい。 The dye concentration of the dye solution may be appropriately set depending on the desired hue and is not particularly limited. For example, the dye concentration may be 0.0001 to 4% by weight (% o.w.f.) based on the weight of the P3HB3HH fiber from the viewpoint of hue, cost, and color fastness.
 浴比は、特に制限はないが、1:10以上でもよく、コスト及び廃液処理による環境への負荷を低減する観点から、1:30以下であることが好ましく、1:20以下であることがより好ましい。 The bath ratio is not particularly limited, but may be 1:10 or more, and from the viewpoint of reducing costs and environmental impact due to waste liquid treatment, it is preferably 1:30 or less, and 1:20 or less. More preferred.
 染色温度(染色液の温度)は、85℃以下であればよく、特に限定されないが、染着性の観点から、30℃以上であることが好ましく、40℃以上であることがより好ましく、50℃以上であることがさらに好ましい。また、染色に必要なエネルギーをより効果的に低減する観点から、染色温度(染色液の温度)は80℃以下であることが好ましく、75℃以下であることがより好ましく、70℃以下であることがさらに好ましく、65℃以下であることがさらにより好ましく、60℃以下であることが特に好ましい。 The dyeing temperature (temperature of the dyeing solution) may be 85°C or lower and is not particularly limited, but from the viewpoint of dyeability, it is preferably 30°C or higher, more preferably 40°C or higher, and 50°C or higher. It is more preferable that the temperature is at least ℃. Furthermore, from the viewpoint of more effectively reducing the energy required for dyeing, the dyeing temperature (temperature of the dyeing solution) is preferably 80°C or lower, more preferably 75°C or lower, and 70°C or lower. The temperature is even more preferably 65°C or lower, even more preferably 60°C or lower, and particularly preferably 60°C or lower.
 染色時間は、特に限定されないが、例えば、生産性及び染色斑抑制の観点から、30~120分でもよく、60~120分でもよい。 The staining time is not particularly limited, but for example, from the viewpoint of productivity and suppression of staining spots, it may be 30 to 120 minutes or 60 to 120 minutes.
 P3HB3HH系繊維は、繊維や紡績糸の状態で染色(先染め)してもよく、布の状態で染色(後染め)してもよい。コストを低減する観点から後染めの方が好ましい。P3HB3HH系繊維は85℃以下の温度における低温染色性が良好であることから、セルロース系繊維を併用した布の場合でも、後染めすることができる。 P3HB3HH fibers may be dyed (yarn dyed) in the form of fibers or spun yarns, or may be dyed (piece dyed) in the form of cloth. Piece dyeing is preferable from the viewpoint of reducing costs. Since P3HB3HH fibers have good low-temperature dyeability at temperatures of 85° C. or lower, they can be piece-dyed even in the case of fabrics that use cellulose fibers in combination.
 <染色P3HB3HH系繊維>
 染色P3HB3HH系繊維は、30~180℃の熱収縮率を測定した熱機械分析(TMA)曲線に基づいて算出した染色加工の最大温度T2が88℃以下であり、前記T2は、TMA曲線の30℃及び40℃の2点を通る直線Aと、TMA曲線上の120℃での熱収縮率に対して25%の熱収縮率を示す点を接点とする接線Bの交点に対応する温度である。
 本発明者らは、P3HB3HH系繊維を染色して染色P3HB3HH系繊維を製造した場合、製造工程における染色温度T1と、得られた染色P3HB3HH系繊維の30~180℃の熱収縮率を測定した熱機械分析(TMA)曲線に基づいて算出した染色加工の最大温度T2は、下記の関係式(I)、すなわち関係式(II)を満たし、より具体的には、下記の関係式(III)を満たすことを見出した。
 T1+5℃≧T2+2℃≧T1-5℃  (I)
 T1+3℃≧T2≧T1-7℃  (II)
 T1+3℃≧T2≧T1-2℃  (III)
 そのため、染色P3HB3HH系繊維が、P3HB3HH系繊維を85℃以下の温度で染色したことで得られたものであるか否かは、染色P3HB3HH系繊維のT2が88℃以下を満たすか否かに基づいて確認することができ、本発明の1以上の染色P3HB3HH系繊維は、T2が88℃以下である。T2は、具体的には、実施例に記載のとおりに測定算出することができる。
<Dyed P3HB3HH fiber>
The dyed P3HB3HH fiber has a maximum dyeing temperature T2 of 88°C or lower, which is calculated based on a thermomechanical analysis (TMA) curve that measures the thermal shrinkage rate from 30 to 180°C, and the T2 is 30°C on the TMA curve. This is the temperature corresponding to the intersection of a straight line A passing through the two points ℃ and 40℃ and a tangent line B whose tangent point is a point on the TMA curve that shows a thermal contraction rate of 25% with respect to the thermal contraction rate at 120℃. .
The present inventors determined that when P3HB3HH fibers were dyed to produce dyed P3HB3HH fibers, the dyeing temperature T1 in the manufacturing process and the heat shrinkage rate of the obtained dyed P3HB3HH fibers from 30 to 180°C were measured. The maximum temperature T2 of the dyeing process calculated based on the mechanical analysis (TMA) curve satisfies the following relational expression (I), that is, the relational expression (II), and more specifically, the following relational expression (III). I found something that satisfies me.
T1+5℃≧T2+2℃≧T1-5℃ (I)
T1+3℃≧T2≧T1-7℃ (II)
T1+3℃≧T2≧T1-2℃ (III)
Therefore, whether dyed P3HB3HH fibers are obtained by dyeing P3HB3HH fibers at a temperature of 85°C or lower is based on whether the T2 of the dyed P3HB3HH fibers satisfies 88°C or lower. It can be confirmed that one or more dyed P3HB3HH fibers of the present invention have a T2 of 88°C or less. Specifically, T2 can be measured and calculated as described in the Examples.
 染色P3HB3HH系繊維のT2は、染色に必要なエネルギーをより効果的に低減する観点から、85℃以下であることが好ましく、80℃以下であることがより好ましく、75℃以下であることがさらに好ましく、70℃以下であることがさらにより好ましい。また、染色P3HB3HH系繊維のT2は、染着性の観点から、53℃以上であることが好ましく、55℃以上であることがより好ましく、60℃以上であることがさらに好ましい。 From the viewpoint of more effectively reducing the energy required for dyeing, T2 of the dyed P3HB3HH fiber is preferably 85°C or lower, more preferably 80°C or lower, and even more preferably 75°C or lower. The temperature is preferably 70°C or lower, even more preferably. Further, from the viewpoint of dyeability, T2 of the dyed P3HB3HH fiber is preferably 53°C or higher, more preferably 55°C or higher, and even more preferably 60°C or higher.
 染色P3HB3HH系繊維の単繊維繊度は特に限定されず、目的や用途等に応じて適宜設定することができる。衣類や、寝具製品等の日用品に用いる場合は、風合いの観点から、単繊維繊度が0.1~100dtexであることが好ましく、0.5~50dtexであることがより好ましく、1.0~25dtexであることがさらに好ましく、1.0~15dtexであることがさらにより好ましい。本明細書において、単繊維繊度は、オートバイブロスコープ法にて測定することができる。 The single fiber fineness of the dyed P3HB3HH fiber is not particularly limited, and can be appropriately set depending on the purpose, use, etc. When used for daily necessities such as clothing and bedding products, from the viewpoint of texture, the single fiber fineness is preferably 0.1 to 100 dtex, more preferably 0.5 to 50 dtex, and 1.0 to 25 dtex. More preferably, it is 1.0 to 15 dtex, and even more preferably 1.0 to 15 dtex. In this specification, single fiber fineness can be measured by an autobibroscopy method.
 染色P3HB3HH系繊維は、フィラメントでもよく、短繊維でもよい。染色P3HB3HH系フィラメントは、機械的強度の観点から、単繊維引張強さが好ましくは0.5~10cN/dtex、より好ましくは0.7~10cN/dtex、さらに好ましくは1.0~10cN/dtexである。これにより、染色P3HB3HH系フィラメントを用いた繊維集合体の物性を高めることができる。本明細書において、染色P3HB3HH系フィラメントの単繊維引張強さは、JIS L 1013:2021に基づいて測定することができる。染色P3HB3HH系短繊維は、機械的強度の観点から、引張強さが0.3~6.0cN/dtexであることが好ましく、より好ましくは0.5~6.0cN/dtexであり、さらに好ましくは1.0~6.0cN/dtexである。本明細書において、染色P3HB3HH系短繊維の引張強さは、JIS L 1015:2021に基づいて測定することができる。 The dyed P3HB3HH fibers may be filaments or short fibers. From the viewpoint of mechanical strength, the dyed P3HB3HH filament has a single fiber tensile strength of preferably 0.5 to 10 cN/dtex, more preferably 0.7 to 10 cN/dtex, and still more preferably 1.0 to 10 cN/dtex. It is. Thereby, the physical properties of the fiber aggregate using dyed P3HB3HH filaments can be improved. In this specification, the single fiber tensile strength of the dyed P3HB3HH filament can be measured based on JIS L 1013:2021. From the viewpoint of mechanical strength, the dyed P3HB3HH short fibers preferably have a tensile strength of 0.3 to 6.0 cN/dtex, more preferably 0.5 to 6.0 cN/dtex, and even more preferably is 1.0 to 6.0 cN/dtex. In this specification, the tensile strength of dyed P3HB3HH short fibers can be measured based on JIS L 1015:2021.
 染色P3HB3HH系繊維は、洗濯耐久性に優れる観点から、染色P3HB3HH系繊維100質量%からなる編物を測定サンプルとし、JIS L 0844 A-2号:2011に規定する、変退色等級で判定した染色堅牢度が3級以上であることが好ましく、3-4級以上であることがより好ましく、4級以上であることがさらに好ましい。 From the viewpoint of excellent washing durability, dyed P3HB3HH fibers have a knitted fabric made of 100% by mass of dyed P3HB3HH fibers as a measurement sample, and the dyeing fastness determined by the discoloration grade specified in JIS L 0844 No. A-2: 2011. The degree is preferably 3rd class or higher, more preferably 3-4th class or higher, and even more preferably 4th class or higher.
 染色P3HB3HH系繊維は、洗濯耐久性に優れる観点から、染色P3HB3HH系繊維100質量%からなる編物を測定サンプルとし、JIS L 0844 A-2号:2011に規定する、汚染等級で判定した染色堅牢度が3級以上であることが好ましく、3-4級以上であることがより好ましい。 From the viewpoint of excellent washing durability, dyed P3HB3HH fibers are measured using a knitted fabric consisting of 100% by mass of dyed P3HB3HH fibers, and the color fastness determined by the contamination grade specified in JIS L 0844 No. A-2: 2011. is preferably 3rd grade or higher, more preferably 3-4th grade or higher.
 染色P3HB3HH系繊維は、生分解性及び耐加水分解性の観点から、重量平均分子量が100,000~3,000,000であることが好ましく、より好ましくは120,000~3,000,000であり、さらに好ましくは150,000~1,500,000であり、さらにより好ましくは200,000~500,000である。 From the viewpoint of biodegradability and hydrolysis resistance, the dyed P3HB3HH fiber preferably has a weight average molecular weight of 100,000 to 3,000,000, more preferably 120,000 to 3,000,000. Yes, more preferably 150,000 to 1,500,000, even more preferably 200,000 to 500,000.
 染色P3HB3HH系繊維は、生分解性に優れる観点から、25℃以上の温度の土中に10日間埋設した後の重量減少率(分解率)が5%以上であることが好ましく、8%以上であることがより好ましく、12%以上であることがさらに好ましい。 From the viewpoint of excellent biodegradability, dyed P3HB3HH fibers preferably have a weight loss rate (decomposition rate) of 5% or more after being buried in soil at a temperature of 25°C or higher for 10 days, and 8% or more. It is more preferable that the amount is at least 12%, and even more preferably 12% or more.
 染色P3HB3HH系繊維は、生分解性、特に海洋分解性に優れる観点から、19℃以上の温度の海水中に4週間浸漬した後の重量減少率(分解率)が3%以上であることが好ましく、4%以上であることがより好ましく、5%以上であることがさらに好ましい。 From the viewpoint of excellent biodegradability, particularly marine degradability, the dyed P3HB3HH fiber preferably has a weight loss rate (decomposition rate) of 3% or more after being immersed in seawater at a temperature of 19° C. or higher for 4 weeks. , more preferably 4% or more, and still more preferably 5% or more.
 染色P3HB3HH系繊維は、耐加水分解性に優れる観点から、80℃かつRH(相対湿度)90%の高湿環境下で82時間放置した後の重量平均分子量の保持率が60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることがさらに好ましい。 From the viewpoint of excellent hydrolysis resistance, dyed P3HB3HH fibers must have a weight average molecular weight retention rate of 60% or more after being left in a high humidity environment of 80°C and 90% RH (relative humidity) for 82 hours. is preferable, more preferably 65% or more, and still more preferably 70% or more.
 染色P3HB3HH系繊維は、耐加水分解性に優れる観点から、80℃かつRH90%の高湿環境下で82時間放置した後の数平均分子量の保持率が60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることがさらに好ましい。 From the viewpoint of excellent hydrolysis resistance, the dyed P3HB3HH fibers preferably have a number average molecular weight retention rate of 60% or more after being left in a high humidity environment of 80° C. and 90% RH for 82 hours, and 65%. It is more preferably at least 70%, even more preferably at least 70%.
 染色P3HB3HH系繊維は、耐加水分解性に優れる観点から、80℃かつRH90%の高湿環境下で82時間放置した後のz平均分子量の保持率が60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることがさらに好ましい。 From the viewpoint of excellent hydrolysis resistance, the dyed P3HB3HH fiber preferably has a z-average molecular weight retention rate of 60% or more after being left in a high humidity environment of 80° C. and 90% RH for 82 hours, preferably 65%. It is more preferably at least 70%, even more preferably at least 70%.
 染色P3HB3HH系繊維は、寸法安定性の観点から、85℃での熱水収縮率が15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは5%以下であり、特に好ましくは3%以下である。85℃での熱水収縮率は低い程よいが、実用性の観点から、1%以上でもよい。 From the viewpoint of dimensional stability, the dyed P3HB3HH fiber preferably has a hot water shrinkage rate at 85°C of 15% or less, more preferably 10% or less, still more preferably 5% or less, and particularly Preferably it is 3% or less. The lower the hot water shrinkage rate at 85°C is, the better, but from the viewpoint of practicality, it may be 1% or more.
 染色P3HB3HH系繊維は、寸法安定性の観点から、80℃での熱水収縮率が10%以下であることが好ましく、より好ましくは5%以下であり、より好ましくは3%以下である。80℃での熱水収縮率は低い程よいが、実用性の観点から、1%以上でもよい。 From the viewpoint of dimensional stability, the dyed P3HB3HH fiber preferably has a hot water shrinkage rate at 80° C. of 10% or less, more preferably 5% or less, and even more preferably 3% or less. The lower the hot water shrinkage rate at 80°C is, the better, but from the viewpoint of practicality, it may be 1% or more.
 染色P3HB3HH系繊維は、寸法安定性の観点から、85℃での乾熱収縮率が15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは5%以下であり、特に好ましくは3%以下である。85℃での乾熱収縮率は低い程よいが、実用性の観点から、1%以上でもよい。本明細書において、繊維の乾熱収縮率は、所定温度の循風乾燥機中に繊維を60分放置して乾熱処理した際、乾熱処理前の繊維の長さ及び乾熱処理後の繊維の長さを測定し、下記数式(2)により算出することができる。繊維の長さの計測に際し、繊維は両端をピンセットで把持し直線状に伸ばした状態で計測する。なお、紡績糸中の繊維の乾熱収縮率は、紡績糸を撚り戻しして、染色P3HB3HH系短繊維のみを取り出して測定対象とする。
 乾熱収縮率(%)=(L2-L3)/L2×100  (2)
 上記数式(2)において、L2は乾熱処理前の繊維の長さであり、L3は乾熱処理後の繊維の長さである。
From the viewpoint of dimensional stability, the dyed P3HB3HH fiber preferably has a dry heat shrinkage rate at 85° C. of 15% or less, more preferably 10% or less, still more preferably 5% or less, and particularly Preferably it is 3% or less. The lower the dry heat shrinkage rate at 85°C is, the better, but from the viewpoint of practicality, it may be 1% or more. In this specification, the dry heat shrinkage rate of a fiber is defined as the length of the fiber before the dry heat treatment and the length of the fiber after the dry heat treatment when the fiber is left in a circulating air dryer at a predetermined temperature for 60 minutes and subjected to dry heat treatment. It can be calculated using the following formula (2). When measuring the length of a fiber, the fiber is held at both ends with tweezers and stretched into a straight line. The dry heat shrinkage rate of the fibers in the spun yarn is measured by untwisting the spun yarn and taking out only the dyed P3HB3HH short fibers.
Dry heat shrinkage rate (%) = (L2-L3)/L2×100 (2)
In the above formula (2), L2 is the length of the fiber before the dry heat treatment, and L3 is the length of the fiber after the dry heat treatment.
 染色P3HB3HH系繊維は、寸法安定性の観点から、80℃での乾熱収縮率が10%以下であることが好ましく、より好ましくは5%以下であり、さらに好ましくは3%以下である。80℃での乾熱収縮率は低い程よいが、実用性の観点から、1%以上でもよい。 From the viewpoint of dimensional stability, the dyed P3HB3HH fiber preferably has a dry heat shrinkage rate at 80° C. of 10% or less, more preferably 5% or less, and still more preferably 3% or less. The lower the dry heat shrinkage rate at 80°C is, the better, but from the viewpoint of practicality, it may be 1% or more.
 染色P3HB3HH系繊維は、寸法安定性の観点から、85℃での残留乾熱収縮率が15%以下であることが好ましく、より好ましくは10.5%以下であり、さらに好ましくは5%以下であり、さらにより好ましくは3%以下であり、特に好ましくは1.5%以下である。85℃での残留乾熱収縮率は低い程よいが、実用性の観点から、0.5%以上でもよい。本明細書において、染色P3HB3HH系繊維の残留乾熱収縮率は、熱機械分析(TMA)にて測定することができる。 From the viewpoint of dimensional stability, the dyed P3HB3HH fiber preferably has a residual dry heat shrinkage rate at 85°C of 15% or less, more preferably 10.5% or less, and still more preferably 5% or less. It is even more preferably 3% or less, particularly preferably 1.5% or less. The lower the residual dry heat shrinkage rate at 85°C, the better, but from the viewpoint of practicality, it may be 0.5% or more. In this specification, the residual dry heat shrinkage rate of dyed P3HB3HH fibers can be measured by thermomechanical analysis (TMA).
 染色P3HB3HH系繊維は、寸法安定性の観点から、80℃での残留乾熱収縮率が10%以下であることが好ましく、より好ましくは7%以下であり、さらに好ましくは5%以下であり、さらにより好ましくは3%以下であり、特に好ましくは1.5%以下である。80℃での残留乾熱収縮率は低い程よいが、実用性の観点から、0.5%以上でもよい。 From the viewpoint of dimensional stability, the dyed P3HB3HH fiber preferably has a residual dry heat shrinkage rate at 80° C. of 10% or less, more preferably 7% or less, and even more preferably 5% or less, Even more preferably it is 3% or less, particularly preferably 1.5% or less. The lower the residual dry heat shrinkage rate at 80° C., the better, but from the viewpoint of practicality, it may be 0.5% or more.
 (繊維集合体及びその製造方法)
 繊維集合体は、染色P3HB3HH系繊維を用いて製造してもよいが、コストを低減する観点から、P3HB3HH系繊維を含む繊維集合体において、P3HB3HH系繊維を染料を用いて85℃以下の温度で染色することで、作製することが好ましい。P3HB3HH系繊維を含む繊維集合体におけるP3HB3HH系繊維の染色は、上述したP3HB3HH系繊維の染色と同様の方法で行うことができ、ここでは説明を省略する。
(Fiber aggregate and its manufacturing method)
The fiber aggregate may be manufactured using dyed P3HB3HH fibers, but from the perspective of reducing costs, in the fiber aggregate containing P3HB3HH fibers, the P3HB3HH fibers may be manufactured using a dye at a temperature of 85°C or lower. Preferably, it is produced by dyeing. The P3HB3HH fibers in the fiber assembly containing the P3HB3HH fibers can be dyed in the same manner as the P3HB3HH fibers described above, and the explanation will be omitted here.
 繊維集合体は、染色P3HB3HH系繊維を含むものであればよく、染色P3HB3HH系繊維の含有量は特に限定されない。繊維集合体は、海洋分解性等の生分解性を高める観点から、染色P3HB3HH系繊維を10重量%以上含むことが好ましく、より好ましくは20重量%以上含み、さらに好ましくは30重量%以上含み、さらにより好ましくは40重量%以上含み、さらにより好ましくは50重量%以上含み、さらにより好ましくは60重量%以上含み、さらにより好ましくは70重量%以上含み、さらにより好ましくは80重量%以上含み、さらにより好ましくは90重量%以上含み、さらにより好ましくは95重量%以上含む。繊維集合体は、染色P3HB3HH系繊維100重量%からなるものでもよい。 The fiber aggregate may contain dyed P3HB3HH fibers, and the content of dyed P3HB3HH fibers is not particularly limited. The fiber aggregate preferably contains 10% by weight or more of dyed P3HB3HH fibers, more preferably 20% by weight or more, still more preferably 30% by weight or more, from the viewpoint of increasing biodegradability such as marine degradability. Still more preferably 40% by weight or more, even more preferably 50% by weight or more, even more preferably 60% by weight or more, even more preferably 70% by weight or more, even more preferably 80% by weight or more, Even more preferably it contains 90% by weight or more, even more preferably 95% by weight or more. The fiber aggregate may be composed of 100% by weight of dyed P3HB3HH fibers.
 繊維集合体は、染色P3HB3HH系繊維に加えて他の繊維を含んでもよい。他の繊維は、特に限定されず、合成繊維、天然繊維、及び再生繊維等が挙げられる。生分解性の観点から、他の繊維は、生分解性繊維であることが好ましい。生分解性合成繊維としては、例えば、P3HB3HH以外の脂肪族ポリエステルを含む合成繊維が挙げられ、P3HB3HH以外の脂肪族ポリエステルとしては、例えば、ポリ乳酸、ポリカプロラクトン、ポリブチレンアジペートテレフタレート、ポリブチレンサクシネートアジペート、及びポリブチレンサクシネート等が挙げられる。天然繊維としては、天然セルロース繊維、及び天然動物繊維等が挙げられる。天然セルロース繊維としては、例えば、木綿繊維、カポック繊維、亜麻繊維、大麻繊維、ラミー繊維、ジュート繊維、マニラ麻繊維、及びケナフ繊維等が挙げられる。天然動物繊維としては、例えば、羊毛繊維、モヘア繊維、カシミヤ繊維、ラクダ繊維、アルパカ繊維、及びアンゴラ繊維等が挙げられる。再生繊維としては、レーヨン、ポリノジック、キュプラ、及びリヨセル等の再生セルロース繊維、並びに再生コラーゲン繊維等の再生タンパク質繊維等が挙げられる。 The fiber aggregate may contain other fibers in addition to the dyed P3HB3HH fibers. Other fibers are not particularly limited, and include synthetic fibers, natural fibers, recycled fibers, and the like. From the viewpoint of biodegradability, the other fibers are preferably biodegradable fibers. Examples of biodegradable synthetic fibers include synthetic fibers containing aliphatic polyesters other than P3HB3HH, and examples of aliphatic polyesters other than P3HB3HH include polylactic acid, polycaprolactone, polybutylene adipate terephthalate, and polybutylene succinate. Examples include adipate and polybutylene succinate. Examples of natural fibers include natural cellulose fibers and natural animal fibers. Examples of natural cellulose fibers include cotton fibers, kapok fibers, flax fibers, hemp fibers, ramie fibers, jute fibers, Manila hemp fibers, and kenaf fibers. Examples of natural animal fibers include wool fibers, mohair fibers, cashmere fibers, camel fibers, alpaca fibers, and angora fibers. Examples of regenerated fibers include regenerated cellulose fibers such as rayon, polynosic, cupro, and lyocell, and regenerated protein fibers such as regenerated collagen fibers.
 繊維集合体は、例えば、染色P3HB3HH系繊維を10~95重量%、他の繊維を5~90重量%含んでもよく、染色P3HB3HH系繊維を20~90重量%、他の繊維を10~80重量%含んでもよく、染色P3HB3HH系繊維を30~80重量%、他の繊維を20~70重量%含んでもよく、染色P3HB3HH系繊維を40~70重量%、他の繊維を30~60重量%含んでもよく、染色P3HB3HH系繊維を50~70重量%、他の繊維を30~50重量%含んでもよい。 The fiber assembly may, for example, contain 10-95% by weight of dyed P3HB3HH fibers and 5-90% by weight of other fibers, 20-90% by weight of dyed P3HB3HH fibers and 10-80% by weight of other fibers, 30-80% by weight of dyed P3HB3HH fibers and 20-70% by weight of other fibers, 40-70% by weight of dyed P3HB3HH fibers and 30-60% by weight of other fibers, or 50-70% by weight of dyed P3HB3HH fibers and 30-50% by weight of other fibers.
 繊維集合体の形態は特に限定されず、例えば、糸、布、及び不織布等が挙げられる。糸は、マルチフィラメントでもよく、紡績糸でもよい。布は、編物でもよく、織物でもよい。織物としては、平織、斜文織、朱子織、変化平織、変化斜文織、変化朱子織、変わり織、紋織、片重ね織、二重組織、多重組織、経パイル織、緯パイル織、及び絡み織等が挙げられる。編物(ニットとも称される。)としては、丸編、緯編、経編、パイル編等を含み、平編、天竺編、リブ編、スムース編(両面編)、ゴム編、パール編、デンビー組織、コード組織、アトラス組織、鎖組織、及び挿入組織等が挙げられる。天竺編、及びリブ編が、商品としての風合いに優れる。不織布は、長繊維不織布でもよく、短繊維不織布でもよい。 The form of the fiber aggregate is not particularly limited, and examples include thread, cloth, and nonwoven fabric. The yarn may be a multifilament or a spun yarn. The cloth may be knitted or woven. Fabrics include plain weave, oblique weave, satin weave, variable plain weave, variable oblique weave, variable satin weave, variable weave, patterned weave, single layer weave, double weave, multiple weave, warp pile weave, weft pile weave, and Examples include twine weave. Knitted fabrics (also referred to as knits) include circular knitting, weft knitting, warp knitting, pile knitting, etc., as well as flat knitting, jersey knitting, rib knitting, smooth knitting (double-sided knitting), rubber knitting, pearl knitting, and denby knitting. Examples include tissue, cord tissue, atlas tissue, chain tissue, and insertion tissue. The jersey knit and ribbed knit have an excellent texture as a product. The nonwoven fabric may be a long fiber nonwoven fabric or a short fiber nonwoven fabric.
 繊維集合体は、様々な繊維製品に用いることができる。繊維製品としては、例えば、衣類、日用品、インテリア等が挙げられる。衣類としては、上着、下着、セーター、ベスト、ズボン、手袋、靴下、マフラー、帽子等が挙げられる。日用品としては、寝具、枕、クッション、ぬいぐるみ、衛材等が挙げられる。インテリアとしては、カーテン、カーペット等が挙げられる。 The fiber aggregate can be used for various textile products. Examples of textile products include clothing, daily necessities, interior goods, and the like. Examples of clothing include jackets, underwear, sweaters, vests, pants, gloves, socks, mufflers, hats, and the like. Examples of daily necessities include bedding, pillows, cushions, stuffed animals, and hygiene materials. Examples of the interior include curtains, carpets, etc.
 繊維集合体において、他の繊維は、染色されてもよく、染色されなくてもよい。目的や用途等に応じて適宜設定すればよい。また、染色P3HB3HH系繊維と他の繊維は、同じ色に染色されてもよく、異なる色に染色されてもよい。 In the fiber aggregate, other fibers may be dyed or may not be dyed. It may be set as appropriate depending on the purpose, use, etc. Further, the dyed P3HB3HH fiber and other fibers may be dyed in the same color or may be dyed in different colors.
 染色P3HB3HH系繊維とセルロース系繊維を含む紡績糸や布等の繊維集合体は、海洋分解性及び吸湿速乾性に優れることから、衣料や、寝具製品等の日用品に好適に用いることができる。セルロース系繊維は、天然セルロース繊維でもよく、再生セルロース繊維でもよい。天然セルロース繊維及び再生セルロース繊維としては、上述したものを適宜用いることができる。繊維集合体は、海洋分解性及び吸湿速乾性に優れる観点から、染色P3HB3HH系繊維を10~95重量%、セルロース系繊維を5~90重量%含んでもよく、染色P3HB3HH系繊維を20~90重量%、セルロース系繊維を10~80重量%含んでもよく、染色P3HB3HH系繊維を30~80重量%、セルロース系繊維を20~70重量%含んでもよく、染色P3HB3HH系繊維を40~70重量%、セルロース系繊維を30~60重量%含んでもよく、染色P3HB3HH系繊維を50~70重量%、セルロース系繊維を30~50重量%含んでもよい。生分解性、特に海洋分解性に優れる観点から、染色P3HB3HH系繊維とセルロース系繊維を含む繊維集合体を19℃以上の温度の海水中に4週間浸漬した後の重量減少率(分解率)が10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることがさらに好ましい。 Fiber aggregates such as spun yarn and cloth containing dyed P3HB3HH fibers and cellulose fibers have excellent ocean degradability and moisture absorption and quick drying properties, so they can be suitably used for daily necessities such as clothing and bedding products. The cellulose fibers may be natural cellulose fibers or regenerated cellulose fibers. As the natural cellulose fibers and regenerated cellulose fibers, those mentioned above can be used as appropriate. The fiber aggregate may contain 10 to 95% by weight of dyed P3HB3HH fibers, 5 to 90% by weight of cellulose fibers, and 20 to 90% by weight of dyed P3HB3HH fibers, from the viewpoint of excellent marine degradability and moisture absorption and quick drying properties. %, may contain 10 to 80% by weight of cellulose fibers, 30 to 80% by weight of dyed P3HB3HH fibers, 20 to 70% by weight of cellulose fibers, 40 to 70% by weight of dyed P3HB3HH fibers, It may contain 30 to 60% by weight of cellulose fibers, 50 to 70% by weight of dyed P3HB3HH fibers, and 30 to 50% by weight of cellulose fibers. From the viewpoint of excellent biodegradability, especially marine degradability, the weight loss rate (decomposition rate) after immersing a fiber aggregate containing dyed P3HB3HH fibers and cellulose fibers in seawater at a temperature of 19°C or higher for 4 weeks is It is preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more.
 繊維集合体がP3HB3HH系繊維に加えてセルロース系繊維を含む場合、繊維集合体におけるセルロース系繊維を染料を用いて85℃以下の温度で染色してもよい。85℃以下の温度で染色を行うことで、染色に必要なエネルギーを低減することができる。セルロース系繊維の染色には、天然染料を用いてもよく、合成染料を用いてもよい。合成染料としては、例えば、反応染料、直接染料、バット染料、塩基性染料、ナフトール染料、硫化染料、及び特殊分散染料等が挙げられる。本明細書において、セルロース系繊維の染色は、特に限定されず、通常のセルロース系繊維の染色と同様に行うことができる。 When the fiber assembly contains cellulose fibers in addition to P3HB3HH fibers, the cellulose fibers in the fiber assembly may be dyed with a dye at a temperature of 85° C. or lower. By performing dyeing at a temperature of 85° C. or lower, the energy required for dyeing can be reduced. Natural dyes or synthetic dyes may be used for dyeing cellulose fibers. Examples of synthetic dyes include reactive dyes, direct dyes, vat dyes, basic dyes, naphthol dyes, sulfur dyes, and special disperse dyes. In this specification, the dyeing of cellulose fibers is not particularly limited, and can be carried out in the same manner as usual dyeing of cellulose fibers.
 繊維集合体は、洗濯耐久性に優れる観点から、JIS L 0844 A-2号:2011に規定する、変退色等級で判定した染色堅牢度が3級以上であることが好ましく、3-4級以上であることがより好ましく、4級以上であることがさらに好ましい。 From the viewpoint of excellent washing durability, the fiber aggregate preferably has a color fastness of grade 3 or higher, as determined by the discoloration/fading grade specified in JIS L 0844 A-2: 2011, and is grade 3-4 or higher. It is more preferable that it is, and it is still more preferable that it is 4th grade or higher.
 繊維集合体は、洗濯耐久性に優れる観点から、JIS L 0844 A-2号:2011に規定する、汚染等級で判定した染色堅牢度が3級以上であることが好ましく、3-4級以上であることがより好ましい。 From the viewpoint of excellent washing durability, the fiber aggregate preferably has a color fastness of grade 3 or higher as determined by the contamination grade specified in JIS L 0844 No. A-2: 2011, and preferably has a color fastness of grade 3-4 or higher. It is more preferable that there be.
 紡績糸は、加工性の観点から、引張強さが100gf以上であることが好ましく、より好ましくは150gf以上であり、さらに好ましくは200gf以上であり、さらにより好ましくは250gf以上である。また、製布加工時の工程安定性の観点から、紡績糸の引張強さは500gf以下であってもよい。 From the viewpoint of processability, the spun yarn preferably has a tensile strength of 100 gf or more, more preferably 150 gf or more, even more preferably 200 gf or more, and even more preferably 250 gf or more. Further, from the viewpoint of process stability during fabric manufacturing, the tensile strength of the spun yarn may be 500 gf or less.
 紡績糸の太さは、特に限定されないが、衣料に用いる場合、英式綿番手で2~50であってもよく、5~40であってもよい。 The thickness of the spun yarn is not particularly limited, but when used for clothing, it may be 2 to 50 or 5 to 40 in English cotton count.
 繊維集合体の単位面積あたりの重量(目付)は特に限定されず、用途や目的に応じて適宜決めればよく、例えば10~2000g/m2でもよい。衣料に用いる場合、目付が100~800g/m2でもよく、レース生地や長繊維不織布の場合は、目付が10~100g/m2でもよく、パイル布帛の場合は、目付が100~2000g/m2でもよい。 The weight per unit area (fabric weight) of the fiber aggregate is not particularly limited and may be determined as appropriate depending on the use and purpose, and may be, for example, 10 to 2000 g/m 2 . When used for clothing, the fabric weight may be 100 to 800 g/m 2 , in the case of lace fabric or long fiber nonwoven fabric, the fabric weight may be 10 to 100 g/m 2 , and in the case of pile fabric, the fabric weight may be 100 to 2000 g/m 2 2 is fine.
 染色P3HB3HH系繊維、及びそれを用いた繊維集合体及び繊維製品は、微生物が存在する環境中に放置すれば生分解するため、特別な廃棄処理を必要とせず、地球環境に優しい。 Dyed P3HB3HH fibers and fiber aggregates and textile products using them biodegrade if left in an environment where microorganisms exist, so they do not require special disposal and are environmentally friendly.
 以下、本発明の1以上の実施形態を実施例に基づいてさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。 Hereinafter, one or more embodiments of the present invention will be described in more detail based on Examples. Note that the present invention is not limited to these examples.
 実施例及び比較例で用いた測定方法及び評価方法は、以下のとおりである。 The measurement methods and evaluation methods used in the Examples and Comparative Examples are as follows.
 (繊維の染色時収縮率)
 染色前の被染色物における繊維の長さ、及び染色後の染色物における繊維の長さを測定し、下記数式(3)により繊維の染色時収縮率を算出した。繊維の長さの計測に際し、繊維は両端をピンセットで把持し直線状に伸ばした状態で計測した。なお、紡績糸中の繊維の染色時収縮率は、紡績糸を撚り戻しして、P3HB3HH系短繊維のみを取り出して測定対象とした。
 染色時収縮率(%)=(Ls0-Ls1)/Ls0×100  (3)
 上記数式(3)において、Ls0は染色前の被染色物におけるP3HB3HH系繊維の長さであり、Ls1は染色後の染色物における染色P3HB3HH系繊維の長さである。
(Shrinkage rate during dyeing of fiber)
The length of the fibers in the dyed object before dyeing and the length of the fibers in the dyed object after dyeing were measured, and the shrinkage rate of the fibers during dyeing was calculated using the following formula (3). When measuring the length of the fiber, the fiber was held at both ends with tweezers and stretched into a straight line. The shrinkage rate of the fibers in the spun yarn during dyeing was measured by untwisting the spun yarn and taking out only the P3HB3HH short fibers.
Shrinkage rate during staining (%) = (Ls0-Ls1)/Ls0×100 (3)
In the above formula (3), Ls0 is the length of the P3HB3HH fiber in the dyed object before dyeing, and Ls1 is the length of the dyed P3HB3HH fiber in the dyed object after dyeing.
 (繊維の熱機械分析)
 染色後の紡績糸を撚り戻しして、染色P3HB3HH系短繊維のみを取り出し、日立ハイテク(株)製の熱機械分析装置TMA-7100を用いて、染色P3HB3HH系短繊維の熱収縮率を測定した。長さ4mm以上の染色P3HB3HH系短繊維10本を取り、測定長5mmで3mNの荷重をかけ、昇温速度5℃/分で30~180℃の範囲で染色P3HB3HH系短繊維の熱収縮率(残留乾熱収縮率)を測定した。得られたTMA曲線において、横軸は温度を示し、左縦軸は寸法変化率を示しており、寸法変化率が「-(マイナス)」の値で示されているが、「-(マイナス)」は収縮していることを意味し、数値は収縮率を意味する。染色P3HB3HH系短繊維の染色加工の最大温度(染色で受けた最大加工温度)T2は、下記手順で算出した。
(1)TMA曲線の30℃と40℃を結ぶ直線を引いて直線Aとした。
(2)TMA曲線上の120℃での熱収縮率を100%とした場合、25%の熱収縮率を示す点を接点とする接線を引いて接線Bとした。
(3)直線Aと接線Bの交点に対応する温度を求め、染色加工の最大温度T2とした。
 図1は、1例(実施例3)の染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の熱機械分析で得られるTMA曲線である。
(1)TMA曲線の30℃と40℃を結ぶ直線を引いて直線A(1)とした。
(2)TMA曲線上の120℃(2)での熱収縮率を100%とした場合、25%の熱収縮率を示す点(3)を接点とする接線を引いて接線B(4)とした。
(3)直線A(1)と接線B(4)の交点(5)に対応する温度を求め、染色加工の最大温度T2とした。
(Thermomechanical analysis of fibers)
The dyed spun yarn was twisted back to take out only the dyed P3HB3HH short fibers, and the thermal shrinkage rate of the dyed P3HB3HH short fibers was measured using a thermomechanical analyzer TMA-7100 manufactured by Hitachi High-Technology Co., Ltd. . Take 10 dyed P3HB3HH short fibers with a length of 4 mm or more, apply a load of 3 mN at a measurement length of 5 mm, and measure the heat shrinkage rate of the dyed P3HB3HH short fibers ( The residual dry heat shrinkage rate) was measured. In the obtained TMA curve, the horizontal axis shows the temperature, and the left vertical axis shows the dimensional change rate. ” means that it is shrinking, and the numerical value means the shrinkage rate. The maximum dyeing temperature (maximum processing temperature experienced during dyeing) T2 of the dyed P3HB3HH short fibers was calculated by the following procedure.
(1) A straight line connecting 30°C and 40°C of the TMA curve was drawn to define straight line A.
(2) When the thermal shrinkage rate at 120° C. on the TMA curve is assumed to be 100%, a tangent line with a point showing a thermal contraction rate of 25% as a tangent point was drawn to define tangent line B.
(3) The temperature corresponding to the intersection of straight line A and tangent line B was determined, and was determined as the maximum temperature for dyeing process T2.
FIG. 1 is a TMA curve obtained by thermomechanical analysis of a dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber of one example (Example 3).
(1) A straight line connecting 30°C and 40°C of the TMA curve was drawn to define straight line A(1).
(2) If the heat shrinkage rate at 120°C (2) on the TMA curve is 100%, draw a tangent line with the point (3) showing a 25% heat shrinkage rate as tangent line B (4). did.
(3) The temperature corresponding to the intersection point (5) of the straight line A (1) and the tangent line B (4) was determined and set as the maximum temperature T2 for the dyeing process.
 (染着性)
 測定試料(繊維又は繊維集合体)の染着性を、下記の基準に基づいて、目視評価した。なお、染着性とは、染色性を評価するための指標の一つであり、繊維がどの程度の染料を吸着したかを示す。
 A:十分に着色できている
 B:着色できている
 C:着色できていない
(Dyeability)
The dyeability of the measurement sample (fiber or fiber aggregate) was visually evaluated based on the following criteria. Note that dyeability is one of the indicators for evaluating dyeability, and indicates how much dye has been adsorbed by the fiber.
A: Sufficiently colored B: Colored C: Not colored
 (染色に必要なエネルギー)
 水の温度を30℃から染色温度になるまで加熱するのに必要な電力を測定し、水の温度を30℃から100℃になるまで加熱するのに必要な電力を基準値として基準値に対する相対値(%)を算出し、下記の基準で染色に必要なエネルギーの低減程度を評価した。
 A:相対値が60%以下であり、染色に必要なエネルギーの低減率がかなり良好である
 B:相対値が60%超え80%以下であり、染色に必要なエネルギーの低減率が良好である
 C:相対値が80%を超えており、染色に必要なエネルギーの低減効果が劣る
(Energy required for dyeing)
Measure the power required to heat the water from 30°C to the dyeing temperature, and use the power required to heat the water from 30°C to 100°C as the reference value and calculate the relative value to the standard value. The value (%) was calculated, and the degree of reduction in the energy required for staining was evaluated based on the following criteria.
A: The relative value is 60% or less, and the reduction rate of the energy required for dyeing is quite good. B: The relative value is more than 60% and 80% or less, and the reduction rate of the energy necessary for dyeing is good. C: The relative value exceeds 80%, and the effect of reducing the energy required for staining is poor.
 (測色)
 測定試料(繊維又は繊維集合体)のL***色空間における明度及び色度を、分光測色計(コニカミノルタ製「CM3600d」)を用いて求めた。L*値が小さいほど試料は濃染されていることを意味し、a*が大きいと赤身が強いことを意味し、b*が大きいと黄味が強いことを意味する。また、測色において、正反射光除去(SCI、見た目の色管理用)及び全反射光(SCE、素材管理用)を測定した。
(color measurement)
The lightness and chromaticity of the measurement sample (fiber or fiber aggregate) in the L * a * b * color space were determined using a spectrophotometer ("CM3600d" manufactured by Konica Minolta). A smaller L * value means that the sample is more deeply dyed, a larger a * means a stronger red meat, and a larger b * means a stronger yellow tinge. In addition, in the colorimetry, specular reflection light removal (SCI, for visual color management) and total reflection light (SCE, for material management) were measured.
 (染色堅牢度)
 JIS L 0844:2011 A-2号(洗濯に対する染色堅ろう度試験方法)に準じ、変退色、及び汚染(綿)を判定した。比較試料としてナイロン布帛を利用した。変退色、汚染(綿)ともに3以上が合格範囲である。実施例2又は比較例2の場合、染色済みのP3HB3HH短繊維を横編み機にて目付が約300g/m2のニット(リブ編み)を編成したものを用い、実施例3~5、比較例2~4の場合、染色済みの紡績糸を横編み機にて目付が約300g/m2のニット(リブ編み)を編成したものを用い、実施例6の場合、染色済みのニットをそのまま測定試料として用いた。
(color fastness)
Discoloration, fading, and staining (cotton) were determined in accordance with JIS L 0844:2011 A-2 (test method for dye fastness to washing). A nylon fabric was used as a comparison sample. A score of 3 or higher for both discoloration and staining (cotton) is within the acceptable range. In the case of Example 2 or Comparative Example 2, dyed P3HB3HH short fibers were knitted with a flat knitting machine into a knit (rib knit) with a basis weight of about 300 g/m 2 , and Examples 3 to 5 and Comparative Example 2 In the case of ~4, a knit (rib knit) with a basis weight of approximately 300 g/m 2 was knitted from the dyed spun yarn using a flat knitting machine, and in the case of Example 6, the dyed knit was used as the measurement sample as it was. Using.
 (海水分解試験)
 測定試料(繊維)をメッシュ袋に入れ、海水中(兵庫県高砂)に浸漬して分解させた。試験期間の水温は19~25℃で推移した。浸漬前に測定試料を60℃で12時間乾燥させた後、重量(W0)を測定した。浸漬後1週間毎に測定試料(n=2)を回収し、流水で十分洗浄した後、120℃で1.5時間乾燥させた後、重量(W1)を測定した。測定試料の海水中の分解率は、下記数式(4)により算出した。
 海水中の分解率(%)=(W0-W1)/W0×100  (4)
 上記数式(4)中、W0は海水中に浸漬する前の測定試料の乾燥重量であり、W1は海水中に所定時間浸漬した後の測定試料の乾燥重量である。
(Seawater decomposition test)
The measurement sample (fiber) was placed in a mesh bag and immersed in seawater (Takasago, Hyogo Prefecture) for decomposition. The water temperature during the test period varied between 19 and 25°C. After drying the measurement sample at 60° C. for 12 hours before immersion, the weight (W0) was measured. Measurement samples (n=2) were collected every week after immersion, thoroughly washed with running water, dried at 120° C. for 1.5 hours, and then weighed (W1). The decomposition rate of the measurement sample in seawater was calculated using the following formula (4).
Decomposition rate in seawater (%) = (W0-W1)/W0×100 (4)
In the above formula (4), W0 is the dry weight of the measurement sample before being immersed in seawater, and W1 is the dry weight of the measurement sample after being immersed in seawater for a predetermined time.
 (土壌分解試験)
 測定試料の繊維をメッシュ袋に入れ、培養土(タキイ種苗製)中に埋設し、水をかけて分解させた。試験期間中、培養土の温度は25~35℃、pHは6~7で推移した。埋設前に測定試料を60℃で12時間乾燥させた後、重量を測定した(W2)。埋設10日後に測定試料(n=2)を回収し、流水で十分洗浄した後、120℃で1.5時間乾燥させた後、重量を測定した(W3)。測定試料の土中の分解率は、下記式(5)により算出した。
 土中の分解率(%)=(W2-W3)/W2×100  (5)
 上記数式(5)中、W2は土中に埋設する前の測定試料の乾燥重量であり、W3は土中に所定時間埋設した後の測定試料の乾燥重量である。
(soil decomposition test)
The fibers of the measurement sample were placed in a mesh bag, buried in culture soil (manufactured by Takii Seeds), and water was poured over it to cause it to decompose. During the test period, the temperature of the culture soil remained between 25 and 35°C, and the pH between 6 and 7. After drying the measurement sample at 60° C. for 12 hours before embedding, the weight was measured (W2). Measurement samples (n=2) were recovered 10 days after burial, thoroughly washed with running water, dried at 120° C. for 1.5 hours, and then weighed (W3). The decomposition rate of the measurement sample in soil was calculated using the following formula (5).
Decomposition rate in soil (%) = (W2-W3)/W2×100 (5)
In the above formula (5), W2 is the dry weight of the measurement sample before being buried in the soil, and W3 is the dry weight of the measurement sample after being buried in the soil for a predetermined time.
 (引張強さ及び伸び率)
 紡績糸の引張強さ及び伸び率をJIS L 1095:2010に従って測定し、マルチフィラメントの引張強さ及び伸び率をJIS L 1095:2010に従って測定した。
(Tensile strength and elongation rate)
The tensile strength and elongation rate of the spun yarn were measured according to JIS L 1095:2010, and the tensile strength and elongation rate of the multifilament were measured according to JIS L 1095:2010.
 (糸むら)
 紡績糸の糸むらを、JIS L 1095:2010に従って測定した。
(uneven thread)
The yarn unevenness of the spun yarn was measured according to JIS L 1095:2010.
 (耐久試験)
 80℃、かつRH90%の恒温恒湿条件で湿度影響の加速試験を行った。加速試験前後の測定試料の重量平均分子量(Mw)、数量平均分子量(Mn)、及びz平均分子量(Mz)を、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した。溶離液としてクロロホルムを用い、ポリスチレン換算分子量として測定した。また、下記数式(6)~(8)により分子量の保持率を算出した。
 Mw保持率(%)=Mwa/Mwb×100  (6)
 Mn保持率(%)=Mna/Mnb×100  (7)
 Mz保持率(%)=Mza/Mzb×100  (8)
 上記数式(6)において、Mwaは加速試験後の測定試料の重量平均分子量であり、Mwbは加速試験前の測定試料の重量平均分子量である。
 上記数式(7)において、Mnaは加速試験後の測定試料の数平均分子量であり、Mnbは加速試験前の測定試料の数平均分子量である。
 上記数式(8)において、Mzaは加速試験後の測定試料のz平均分子量であり、Mzbは加速試験前の測定試料のz平均分子量である。
(An endurance test)
An accelerated test for humidity effects was conducted under constant temperature and humidity conditions of 80° C. and RH 90%. The weight average molecular weight (Mw), number average molecular weight (Mn), and z average molecular weight (Mz) of the measurement sample before and after the accelerated test were measured using gel permeation chromatography (GPC). Using chloroform as an eluent, it was measured as a polystyrene equivalent molecular weight. In addition, the molecular weight retention rate was calculated using the following formulas (6) to (8).
Mw retention rate (%) = Mwa/Mwb×100 (6)
Mn retention rate (%) = Mna/Mnb×100 (7)
Mz retention rate (%) = Mza/Mzb×100 (8)
In the above formula (6), Mwa is the weight average molecular weight of the measurement sample after the accelerated test, and Mwb is the weight average molecular weight of the measurement sample before the acceleration test.
In the above formula (7), Mna is the number average molecular weight of the measurement sample after the accelerated test, and Mnb is the number average molecular weight of the measurement sample before the acceleration test.
In the above formula (8), Mza is the z-average molecular weight of the measurement sample after the accelerated test, and Mzb is the z-average molecular weight of the measurement sample before the acceleration test.
 (製造例1)
 [マルチフィラメント]
 P3HB3HHとして、モノマーのモノマー組成比3HB単位/3HH単位が94/6、Mwが350,000、MFR(165℃、5kg)が12g/10分の共重合樹脂(株式会社カネカ製)を100重量部と、結晶核剤として、ペンタエリスリトール(日本合成化学社製、「ノイライザーP」)を1.0重量部と、滑剤として、エルカ酸アミド0.5重量部及びベヘン酸アミド0.5重量部とをドライブレンドし、混合物を押出機にて150℃で溶融混練してペレット化し、ペレット状の樹脂組成物を得た。得られたペレット状の樹脂組成物は、ガラス転移温度が2℃、結晶化温度が100℃、融点が146℃、熱分解温度は180℃であり、重量平均分子量は350,000であった。なお、ペレット状の樹脂組成物のガラス転移温度、結晶化温度、融点及び熱分解温度は、示差走査熱量計(ティーエーインスツルメント社製、型番「DSC25」)を用い、測定温度範囲0~180℃、昇温速度10℃/分、降温速度10℃/分の条件下で、示差走査熱量測定にて測定し、ペレット状の樹脂組成物の重量平均分子量は、溶離液としてクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算分子量分布より測定した。
 得られた樹脂組成物(ペレット)を、混練押出機(1軸押出機、スクリュー径25mm)で溶融した。得られた溶融物を、紡糸ノズル(温度:175℃、吐出孔の形状:円形、吐出孔の直径:0.3mm、吐出孔の数:368個)から吐出し、紡糸フィラメントを得た。溶融物の流量は、ギアポンプで3.6kg/hに調整した。次に、紡糸筒内において、20℃の空気を0.7m/sの速度で円周方向より吐出された紡糸フィラメントに吹き付けた。
 冷却された紡糸フィラメントを、第1の引取ロール部(速度:536m/分)で引き取り、第1~第4の搬送ロール部(速度:562m/分)で順番に搬送した後に、第1の巻取ロール部(速度:546m/分)で巻き取り、室温(5~35℃)で18時間保管し、単繊維繊度5.47dtexの未延伸フィラメントを取得した。
 次に、第1の巻取ロール部から紡糸フィラメント(未延伸フィラメント)を第2の引取ロール部(速度:50m/分、ロール温度:30℃)で引き取り、延伸ロール部(115m/分、ロール温度:90℃)で延伸し、テイクオフロール部(熱処理ロール部)(速度:115m/分、ロール温度:90℃)で搬送し、第2の巻取ロール部(速度:106m/分)で巻き取ることにより、繊度2.53dtex、引張強さ2.58cN/dtex、熱水収縮率(80℃)11.5%の延伸フィラメントを得た。延伸倍率は2.3倍とした。
 なお、引取ロール部及び搬送ロール部としては、それぞれが同一速度及び同一温度の2つのロールで構成されたロール部を用いた。
(Manufacturing example 1)
[Multifilament]
As P3HB3HH, 100 parts by weight of a copolymer resin (manufactured by Kaneka Corporation) with a monomer composition ratio of 3HB units/3HH units of 94/6, Mw of 350,000, and MFR (165°C, 5 kg) of 12 g/10 minutes. and 1.0 parts by weight of pentaerythritol (manufactured by Nippon Gosei Kagaku Co., Ltd., "Neurizer P") as a crystal nucleating agent, and 0.5 parts by weight of erucic acid amide and 0.5 parts by weight of behenic acid amide as lubricants. were dry blended, and the mixture was melt-kneaded using an extruder at 150°C to pelletize, to obtain a pellet-shaped resin composition. The resulting pellet-shaped resin composition had a glass transition temperature of 2°C, a crystallization temperature of 100°C, a melting point of 146°C, a thermal decomposition temperature of 180°C, and a weight average molecular weight of 350,000. The glass transition temperature, crystallization temperature, melting point, and thermal decomposition temperature of the pelletized resin composition were measured using a differential scanning calorimeter (manufactured by TA Instruments, model number "DSC25") within the measurement temperature range of 0 to 0. The weight average molecular weight of the pellet-shaped resin composition was measured by differential scanning calorimetry under the conditions of 180°C, a temperature increase rate of 10°C/min, and a cooling rate of 10°C/min, using chloroform as an eluent. It was measured from polystyrene equivalent molecular weight distribution using gel permeation chromatography (GPC).
The obtained resin composition (pellets) was melted using a kneading extruder (single-screw extruder, screw diameter 25 mm). The obtained melt was discharged from a spinning nozzle (temperature: 175° C., shape of discharge hole: circular, diameter of discharge hole: 0.3 mm, number of discharge holes: 368) to obtain a spun filament. The flow rate of the melt was adjusted to 3.6 kg/h using a gear pump. Next, in the spinning cylinder, air at 20° C. was blown onto the spun filaments discharged from the circumferential direction at a speed of 0.7 m/s.
The cooled spun filament is taken up by a first take-up roll section (speed: 536 m/min) and transported in order by the first to fourth transport roll sections (speed: 562 m/min), and then the first winding is carried out. It was wound up with a take-up roll (speed: 546 m/min) and stored at room temperature (5 to 35°C) for 18 hours to obtain an undrawn filament with a single fiber fineness of 5.47 dtex.
Next, the spun filament (undrawn filament) is taken up from the first take-up roll part by a second take-up roll part (speed: 50 m/min, roll temperature: 30°C), and the drawing roll part (115 m/min, roll Temperature: 90°C), conveyed by a take-off roll section (heat treatment roll section) (speed: 115 m/min, roll temperature: 90°C), and wound by a second winding roll section (speed: 106 m/min). By taking the filament, a drawn filament having a fineness of 2.53 dtex, a tensile strength of 2.58 cN/dtex, and a hot water shrinkage rate (80° C.) of 11.5% was obtained. The stretching ratio was 2.3 times.
In addition, as the take-up roll part and the conveyance roll part, a roll part comprised of two rolls each having the same speed and the same temperature was used.
 (製造例2)
 [短繊維]
 製造例1と同様にして得られた延伸フィラメントを適当な繊度に合糸した後、スチームで100℃になるように予熱した後、搬送速度8.7m/分でスタッフィングボックスに供給し、ニップ圧2.0Kg/cm2、スタッフィング圧0.04MPaの条件で捲縮を付与し、得られた捲縮糸をトウカッターを用いて繊維長が51mmになるように切断することで、P3HB3HH短繊維を得た。得られたP3HB3HH短繊維の単繊維繊度は2.5dtex、単繊維引張強さは1.51cN/dtex、80℃熱水収縮率は11.5%、融点は146℃、軟化点は125℃であった。P3HB3HH短繊維の融点及び軟化点は、示差走査熱量計(ティーエーインスツルメント社製、型番「DSC25」)を用い、測定温度範囲0~180℃、昇温速度10℃/分、降温速度10℃/分の条件下で、示差走査熱量測定にて測定した。
(Manufacturing example 2)
[Short fiber]
The drawn filaments obtained in the same manner as in Production Example 1 were mixed to an appropriate fineness, preheated with steam to 100°C, and then fed to a stuffing box at a conveyance speed of 8.7 m/min, and the nip pressure P3HB3HH staple fibers were obtained by applying crimping under the conditions of 2.0 Kg/cm 2 and stuffing pressure of 0.04 MPa, and cutting the obtained crimped yarn using a tow cutter so that the fiber length was 51 mm. Obtained. The obtained P3HB3HH short fibers had a single fiber fineness of 2.5 dtex, a single fiber tensile strength of 1.51 cN/dtex, an 80°C hot water shrinkage rate of 11.5%, a melting point of 146°C, and a softening point of 125°C. there were. The melting point and softening point of the P3HB3HH short fibers were determined using a differential scanning calorimeter (manufactured by TA Instruments, model number "DSC25") at a temperature range of 0 to 180°C, a heating rate of 10°C/min, and a cooling rate of 10°C. It was measured by differential scanning calorimetry under the conditions of ℃/min.
 (製造例3)
 [紡績糸]
 製造例2と同様にして得られた短繊維(単繊維繊度2.5dtex、繊維長51mm)を用い、リング紡績により英式綿番手21/1の紡績糸Aを得た。
(Manufacturing example 3)
[Spun yarn]
Using short fibers (single fiber fineness 2.5 dtex, fiber length 51 mm) obtained in the same manner as in Production Example 2, a spun yarn A having an English cotton count of 21/1 was obtained by ring spinning.
 (製造例4)
 [紡績糸]
 製造例2と同様にして得られた短繊維(単繊維繊度2.5dtex、繊維長51mm)50重量部と、リヨセル繊維(レンチング社製「テンセル(登録商標)」、単繊維繊度1.4dtex、繊維長38mm)50重量部を混合し、リング紡績により混紡して英式綿番手30/1の紡績糸Bを得た。
(Manufacturing example 4)
[Spun yarn]
50 parts by weight of short fibers (single fiber fineness 2.5 dtex, fiber length 51 mm) obtained in the same manner as in Production Example 2, Lyocell fiber (“TENCEL (registered trademark)” manufactured by Lenzing, single fiber fineness 1.4 dtex, 50 parts by weight (fiber length: 38 mm) were mixed and blended by ring spinning to obtain a spun yarn B having an English cotton count of 30/1.
 (製造例5)
 [編物]
 製造例3と同様にして得られた紡績糸Aを用い、横編み機にて、目付が約300g/m2のニットA(リブ編み)を作製した。
(Manufacturing example 5)
[knitting]
Using the spun yarn A obtained in the same manner as in Production Example 3, a knit A (rib knit) having a basis weight of about 300 g/m 2 was produced using a flat knitting machine.
 (製造例6)
 [編物]
 製造例4と同様にして得られた紡績糸Bを用い、横編み機にて、目付が約300g/m2のニットB(リブ編み)を作製した。
(Manufacturing example 6)
[knitting]
Using the spun yarn B obtained in the same manner as in Production Example 4, a knit B (rib knit) having a basis weight of about 300 g/m 2 was produced using a flat knitting machine.
 (実施例1)
 製造例1で得られたP3HB3HHマルチフィラメントを被染色物とし、被染色物の重量に対して1重量%の青色分散染料Dianix Blue PLUS 01(Dystar社製)を分散させた染色液(液温60℃)の中に被染色物を投入し(浴比1:20)、60℃で60分間染色した後、水洗、湯洗い(40~50℃の温水)を行い、青色に染色されたP3HB3HHマルチフィラメントを得た。なお、染色液は、分散剤、均染剤、助染剤(キャリア)は含まなかった。また、染色後の処理として、界面活性剤を用いたソーピング、及び苛性ソーダ、ハイドロサルファイト、及び界面活性剤を用いたリダクションクリーニングを行わなかった。
(Example 1)
The P3HB3HH multifilament obtained in Production Example 1 was used as an object to be dyed, and a dyeing solution (solution temperature: 60° The object to be dyed was placed in a bath (bath ratio 1:20) and dyed at 60°C for 60 minutes, then washed with water and hot water (40-50°C warm water). I got the filament. Note that the dyeing solution did not contain a dispersing agent, a leveling agent, and an auxiliary dye (carrier). Further, as treatments after dyeing, soaping using a surfactant and reduction cleaning using caustic soda, hydrosulfite, and a surfactant were not performed.
 (実施例2)
 被染色物として製造例2のP3HB3HH短繊維を用いた以外は、実施例1と同様に染色を行い、青色に染色されたP3HB3HH短繊維を得た。
(Example 2)
Dyeing was carried out in the same manner as in Example 1 except that the P3HB3HH short fibers of Production Example 2 were used as the dyed material to obtain P3HB3HH short fibers dyed in blue.
 (実施例3)
 被染色物として製造例3のP3HB3HH短繊維からなる紡績糸Aを用いた以外は、実施例1と同様に染色を行い、青色に染色されたP3HB3HH短繊維からなる紡績糸を得た。
(Example 3)
Dyeing was carried out in the same manner as in Example 1, except that the spun yarn A made of P3HB3HH short fibers of Production Example 3 was used as the object to be dyed, and a spun yarn made of P3HB3HH short fibers dyed blue was obtained.
 (実施例4)
 染色液の温度を80℃に調整し、80℃で60分間染色した以外は、実施例3と同様にして、青色に染色されたP3HB3HH短繊維からなる紡績糸を得た。
(Example 4)
A spun yarn made of P3HB3HH short fibers dyed blue was obtained in the same manner as in Example 3, except that the temperature of the dyeing solution was adjusted to 80° C. and dyeing was carried out at 80° C. for 60 minutes.
 (実施例5)
 染色液の温度を85℃に調整し、85℃で60分間染色した以外は、実施例3と同様にして、青色に染色されたP3HB3HH短繊維からなる紡績糸を得た。
(Example 5)
A spun yarn made of P3HB3HH short fibers dyed blue was obtained in the same manner as in Example 3, except that the temperature of the dyeing solution was adjusted to 85° C. and dyeing was carried out at 85° C. for 60 minutes.
 (実施例6)
 被染色物として製造例4のP3HB3HH短繊維及びリヨセル繊維を含む紡績糸Bを用いた以外は、実施例1と同様に染色を行い、P3HB3HH短繊維が青色に染色され、リヨセル繊維は染色されていない紡績糸を得た。
(Example 6)
Dyeing was carried out in the same manner as in Example 1, except that spun yarn B containing the P3HB3HH short fibers and Lyocell fibers of Production Example 4 was used as the material to be dyed, and the P3HB3HH short fibers were dyed blue, and the Lyocell fibers were not dyed. No spun yarn was obtained.
 (実施例7)
 実施例6と同様にして、P3HB3HH短繊維が染色され、リヨセル繊維は染色されていない紡績糸を得た。
 得られたP3HB3HH短繊維のみが青色に染色された紡績糸を被染色物とし、被染色物の重量に対して1重量%の青色反応染料(Sumifix(登録商標)Br.Blue R 150% gran.、住化ケムテックス社製)と、硫酸ナトリウム40g/L、及び炭酸ナトリウム15g/Lを含む染色液の中に被染色物を投入し(浴比1:20)、60℃で60分間染色することでリヨセル繊維を染色し、全体が青色に染色された紡績糸を得た。
(Example 7)
In the same manner as in Example 6, a spun yarn was obtained in which the P3HB3HH short fibers were dyed and the Lyocell fibers were not dyed.
The obtained spun yarn, in which only the P3HB3HH short fibers were dyed blue, was used as a material to be dyed, and 1% by weight of blue reactive dye (Sumifix (registered trademark) Br.Blue R 150% gran. , manufactured by Sumika Chemtex), 40 g/L of sodium sulfate, and 15 g/L of sodium carbonate (bath ratio 1:20), and dyeing at 60°C for 60 minutes. Lyocell fibers were dyed with this method to obtain a spun yarn dyed entirely blue.
 (実施例8)
 被染色物として製造例5のニットAを用いた以外は、実施例1と同様に染色を行い、P3HB3HH短繊維が青色に染色されたニットを得た。
(Example 8)
Dyeing was carried out in the same manner as in Example 1, except that knit A of Production Example 5 was used as the object to be dyed, to obtain a knit in which P3HB3HH short fibers were dyed blue.
 (実施例9)
 被染色物として製造例6のニットBを用いた以外は、実施例1と同様に染色を行い、P3HB3HH短繊維のみが青色に染色され、リヨセル繊維は染色されていないニットを得た。
(Example 9)
Dyeing was carried out in the same manner as in Example 1, except that knit B of Production Example 6 was used as the dyed material, to obtain a knit in which only the P3HB3HH short fibers were dyed blue and the Lyocell fibers were not dyed.
 (実施例10)
 実施例9と同様にして、P3HB3HH短繊維が染色され、リヨセル繊維は染色されていないニットを得た。
 得られたP3HB3HH短繊維のみが青色に染色されたニットを被染色物とした以外は、実施例7と同様にして、リヨセル繊維を染色し、全体が青色に染色されたニットを得た。
(Example 10)
In the same manner as in Example 9, a knit was obtained in which the P3HB3HH short fibers were dyed and the Lyocell fibers were not dyed.
Lyocell fibers were dyed in the same manner as in Example 7, except that a knit in which only the obtained P3HB3HH short fibers were dyed blue was used to obtain a knit dyed entirely in blue.
 (比較例1)
 被染色物として、ポリ乳酸繊維100%の紡績糸(ユニチカ株式会社製のポリ乳酸紡績糸テラマック(登録商標)100%、英式綿番手21/1)を用いた以外は、実施例1と同様に分散染色を行った。
(Comparative example 1)
Same as Example 1 except that 100% polylactic acid fiber spun yarn (100% polylactic acid spun yarn Terramac (registered trademark) manufactured by Unitika Co., Ltd., English cotton count 21/1) was used as the material to be dyed. Dispersion staining was performed.
 (比較例2)
 染色温度を90℃とした以外は、実施例3と同様に染色を行い、青色に染色されたP3HB3HH短繊維からなる紡績糸を得た。
(Comparative example 2)
Dyeing was carried out in the same manner as in Example 3, except that the dyeing temperature was 90° C., to obtain a spun yarn made of P3HB3HH short fibers dyed blue.
 (比較例3)
 染色温度を95℃とした以外は、実施例3と同様に染色を行い、青色に染色されたP3HB3HH短繊維からなる紡績糸を得た。
(Comparative example 3)
Dyeing was carried out in the same manner as in Example 3, except that the dyeing temperature was 95° C., to obtain a spun yarn made of P3HB3HH short fibers dyed blue.
 (比較例4)
 染色温度を100℃とした以外は、実施例3と同様に染色を行い、青色に染色されたP3HB3HH短繊維からなる紡績糸を得た。
(Comparative example 4)
Dyeing was carried out in the same manner as in Example 3 except that the dyeing temperature was 100° C. to obtain a spun yarn made of P3HB3HH short fibers dyed blue.
 実施例1~10、比較例1~4において、色相及び染着性を下記表1に示した。また、染色に必要なエネルギーを上述したとおりに評価し、その結果を下記表2に示した。 The hue and dyeability of Examples 1 to 10 and Comparative Examples 1 to 4 are shown in Table 1 below. In addition, the energy required for dyeing was evaluated as described above, and the results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表1及び表2の結果から分かるように、実施例では、先染め及び後染めのいずれにおいても、P3HB3HH系繊維を、85℃以下の低温において、染色に必要なエネルギーを効率よく削減しながら、染着性良く染色することができた。
 一方、比較例1の結果か分かるように、PLA繊維は60℃で染色することができなかった。また、比較例2~4では、P3HB3HH系繊維を染着性良く染色することができたが、染色に必要なエネルギーを効率よく削減することができなかった。
As can be seen from the results in Tables 1 and 2 above, in the examples, both yarn-dyed and piece-dyed P3HB3HH fibers were dyed at low temperatures of 85°C or lower while efficiently reducing the energy required for dyeing. It was possible to dye with good dyeability.
On the other hand, as can be seen from the results of Comparative Example 1, PLA fibers could not be dyed at 60°C. Furthermore, in Comparative Examples 2 to 4, P3HB3HH fibers could be dyed with good dyeability, but the energy required for dyeing could not be efficiently reduced.
 実施例及び比較例において、染色時収縮率の測定及び熱機械分析を上述したとおりに行い、その結果を下記表3に示した。実施例及び比較例において、上述したとおりに測色を行い、その結果を下記表4に示した。また、洗濯に対する染色堅牢度、糸物性、海分解性、土壌分解性を上述したとおりに評価し、その結果を表4~6に示した。また、上述したとおりに耐久試験を行い、耐久試験後の糸物性及び分子量を評価し、その結果を表7~9に示した。 In the Examples and Comparative Examples, measurement of shrinkage during dyeing and thermomechanical analysis were performed as described above, and the results are shown in Table 3 below. In the Examples and Comparative Examples, color measurements were performed as described above, and the results are shown in Table 4 below. In addition, the color fastness to washing, yarn properties, sea degradability, and soil degradability were evaluated as described above, and the results are shown in Tables 4 to 6. In addition, a durability test was conducted as described above, and the yarn physical properties and molecular weight were evaluated after the durability test, and the results are shown in Tables 7 to 9.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表3から分かるように、90℃以上の温度で染色を行った比較例2~4は、85℃以下で染色した実施例3~5に比べて、P3HB3HH繊維が染色時に大きく熱収縮している。そのため、比較例2~4の90℃以上の温度で染色されたP3HB3HH繊維を含む紡績糸は、実施例3~5の85℃以下の温度で染色されたP3HB3HH系繊維を含む紡績糸より風合いが劣る。また、実施例の染色P3HB3HH系繊維は、85℃及び80℃における残留乾熱収縮率が低く、寸法安定性に優れている。 As can be seen from Table 3 above, in Comparative Examples 2 to 4, which were dyed at a temperature of 90°C or higher, the P3HB3HH fibers showed greater heat shrinkage during dyeing than in Examples 3 to 5, which were dyed at a temperature of 85°C or lower. There is. Therefore, the spun yarns containing P3HB3HH fibers dyed at a temperature of 90°C or higher in Comparative Examples 2 to 4 have a better texture than the spun yarns containing P3HB3HH fibers dyed at a temperature of 85°C or lower in Examples 3 to 5. Inferior. Furthermore, the dyed P3HB3HH fibers of the examples have low residual dry heat shrinkage at 85° C. and 80° C. and have excellent dimensional stability.
 また、上記表3から分かるように、P3HB3HH繊維を染色する際の染色温度T1と、染色P3HB3HH系繊維を熱機械分析して得られたTMA曲線に基づいて算出した染色加工の最大温度T2は、下記の関係式(I)、すなわち関係式(II)を満たし、より具体的には、下記の関係式(III)を満たす。
 T1+5℃≧T2+2℃≧T1-5℃  (I)
 T1+3℃≧T2≧T1-7℃  (II)
 T1+3℃≧T2≧T1-2℃  (III)
In addition, as can be seen from Table 3 above, the dyeing temperature T1 when dyeing P3HB3HH fibers and the maximum temperature T2 for dyeing processing calculated based on the TMA curve obtained by thermomechanical analysis of dyed P3HB3HH fibers are: The following relational expression (I), that is, the following relational expression (II) is satisfied, and more specifically, the following relational expression (III) is satisfied.
T1+5℃≧T2+2℃≧T1-5℃ (I)
T1+3℃≧T2≧T1-7℃ (II)
T1+3℃≧T2≧T1-2℃ (III)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表4の測色結果から、比較例1はL値が高く、染色が不十分であることがわかる。また、実施例2のP3HB3HH系繊維(短繊維)、実施例3~5のP3HB3HH系短繊維100重量%からなる紡績糸及び実施例8のP3HB3HH系短繊維100重量%からなるニットのいずれにおいても、洗濯に対する染色堅牢度が良好であった。 From the color measurement results in Table 4 above, it can be seen that Comparative Example 1 has a high L value and is insufficiently dyed. Furthermore, in any of the P3HB3HH fibers (short fibers) of Example 2, the spun yarns made of 100% by weight of P3HB3HH short fibers of Examples 3 to 5, and the knit made of 100% by weight of P3HB3HH short fibers of Example 8. The color fastness to washing was good.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表5の製造例3の紡績糸と実施例3の紡績糸の糸物性の対比、及び製造例4の紡績糸と実施例6又は実施例7の紡績糸の糸物性の対比から、低温染色による糸の強度(引張強さ)に対する影響は低いことが分かる。
 一方、100℃で染色した比較例4の紡績糸は、P3HB3HH系短繊維の熱収縮より繊維径が太くなり、風合いが劣る。
Low-temperature dyeing It can be seen that the influence on the strength (tensile strength) of the yarn is low.
On the other hand, the spun yarn of Comparative Example 4 dyed at 100° C. has a larger fiber diameter than the heat-shrinkable P3HB3HH staple fiber, and has an inferior texture.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表6の結果から、P3HB3HH系繊維は海水分解性及び土壌分解性のいずれにも優れることが分かる。また、P3HB3HH系繊維をセルロース系繊維と併用した場合にも海分解性に優れることが分かる。 From the results in Table 6 above, it can be seen that P3HB3HH fibers are excellent in both seawater decomposition and soil decomposition. Furthermore, it can be seen that when P3HB3HH fibers are used in combination with cellulose fibers, the sea degradability is also excellent.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記表7~9から分かるように、P3HB3HH系繊維及びそれを含む繊維集合体は、加水分解に強く、80℃かつRH90%の高湿環境下で82時間放置した場合でも、強度(引張強さ)及び分子量の低下が抑制されている。
 一方、PLA繊維は、耐久性(加水分解)に弱く、80℃かつRH90%の高湿環境下で82時間放置した場合、強度及び形態を維持することができない。
As can be seen from Tables 7 to 9 above, P3HB3HH fibers and fiber aggregates containing them are resistant to hydrolysis, and even when left in a high humidity environment of 80°C and 90% RH for 82 hours, the strength (tensile strength) ) and the decrease in molecular weight is suppressed.
On the other hand, PLA fibers have poor durability (hydrolysis) and cannot maintain their strength and shape when left in a high humidity environment of 80° C. and 90% RH for 82 hours.
 本発明は、特に限定されないが、例えば、下記の実施形態を含むことが望ましい。 Although the present invention is not particularly limited, it is desirable to include, for example, the following embodiments.
[1]ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を染色する工程を含み、
 前記染色は、染料を用いて85℃以下の温度で行うことを特徴とする、染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の製造方法。
[2]前記染料は、合成染料及び天然染料からなる群から選ばれる少なくとも1種を含む、[1]に記載の染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の製造方法。
[3]前記合成染料は、分散染料及び直接染料からなる群から選ばれる少なくとも1種を含む、[2]に記載の染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の製造方法。
[4]前記染色は、キャリアを用いず分散染料を用いて85℃以下の温度で行う、[1]~[3]のいずれかに記載の染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の製造方法。
[5]染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を含む繊維集合体の製造方法であって、
 ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を染料で染色する工程を含み、
 前記染色は、85℃以下の温度で行うことを特徴とする、繊維集合体の製造方法。
[6]前記染料は、合成染料及び天然染料からなる群から選ばれる少なくとも1種を含む、[5]に記載の繊維集合体の製造方法。
[7]前記合成染料は、分散染料及び直接染料からなる群から選ばれる少なくとも1種を含む、[6]に記載の繊維集合体の製造方法。
[8]前記染色は、キャリアを用いず分散染料を用いて85℃以下の温度で行う、[5]~[7]のいずれかに記載の繊維集合体の製造方法。
[9]前記繊維集合体は、糸、織物、編物、及び不織布からなる群から選ばれる1以上を含む、[5]~[8]のいずれかに記載の繊維集合体の製造方法。
[10]前記繊維集合体は、さらにセルロース系繊維を含み、前記セルロース系繊維を染料を用いて85℃以下の温度で染色する工程を含む、[5]~[9]のいずれかに記載の繊維集合体の製造方法。
[11]30~180℃の熱収縮率を測定した熱機械分析(TMA)曲線に基づいて算出した染色加工の最大温度T2が88℃以下であり、前記T2は、TMA曲線の30℃及び40℃の2点を通る直線Aと、TMA曲線上の120℃での熱収縮率に対して25%の熱収縮率を示す点を接点とする接線Bの交点に対応する温度である染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維。
[12][11]に記載の染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を含む、繊維集合体。
[1] Including the step of dyeing poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers,
A method for producing dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber, characterized in that the dyeing is carried out at a temperature of 85° C. or lower using a dye.
[2] The dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) according to [1], wherein the dye contains at least one selected from the group consisting of synthetic dyes and natural dyes. Method for producing fibers.
[3] The dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) according to [2], wherein the synthetic dye contains at least one selected from the group consisting of disperse dyes and direct dyes. ) method for producing fibers.
[4] The dyed poly(3-hydroxybutyrate-coated) according to any one of [1] to [3], wherein the dyeing is performed using a disperse dye without using a carrier at a temperature of 85°C or lower. 3-Hydroxyhexanoate)-based fiber manufacturing method.
[5] A method for producing a fiber aggregate containing dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers, comprising:
Including the process of dyeing poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers with a dye,
A method for producing a fiber aggregate, characterized in that the dyeing is carried out at a temperature of 85° C. or lower.
[6] The method for producing a fiber aggregate according to [5], wherein the dye includes at least one selected from the group consisting of synthetic dyes and natural dyes.
[7] The method for producing a fiber aggregate according to [6], wherein the synthetic dye includes at least one selected from the group consisting of disperse dyes and direct dyes.
[8] The method for producing a fiber aggregate according to any one of [5] to [7], wherein the dyeing is performed using a disperse dye without using a carrier at a temperature of 85° C. or lower.
[9] The method for producing a fiber aggregate according to any one of [5] to [8], wherein the fiber aggregate includes one or more selected from the group consisting of yarn, woven fabric, knitted fabric, and nonwoven fabric.
[10] The fiber aggregate further includes cellulose fibers, and includes a step of dyeing the cellulose fibers with a dye at a temperature of 85° C. or lower, according to any one of [5] to [9]. Method for producing fiber aggregate.
[11] The maximum temperature T2 of the dyeing process calculated based on the thermomechanical analysis (TMA) curve that measured the heat shrinkage rate from 30 to 180°C is 88°C or less, and the T2 is equal to 30°C and 40°C of the TMA curve. This is the temperature corresponding to the intersection of a straight line A passing through two points of ℃ and a tangent line B whose tangent point is a point on the TMA curve showing a heat shrinkage rate of 25% with respect to the heat shrinkage rate at 120℃. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber.
[12] A fiber assembly comprising the dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber according to [11].
 1 直線A
 2 TMA曲線上の120℃に対応する点
 3 TMA曲線上の120℃における収縮率の25%の収縮率に対応する点
 4 接線B
 5 直線Aと接線Bの交点
1 straight line A
2 Point on the TMA curve corresponding to 120°C 3 Point on the TMA curve corresponding to a shrinkage rate of 25% of the shrinkage rate at 120°C 4 Tangent line B
5 Intersection of straight line A and tangent B

Claims (12)

  1.  ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を染色する工程を含み、
     前記染色は、染料を用いて85℃以下の温度で行うことを特徴とする、染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の製造方法。
    Including a step of dyeing poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fiber,
    A method for producing dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber, characterized in that the dyeing is carried out at a temperature of 85° C. or lower using a dye.
  2.  前記染料は、合成染料及び天然染料からなる群から選ばれる少なくとも1種を含む、請求項1に記載の染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の製造方法。 The dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber according to claim 1, wherein the dye includes at least one selected from the group consisting of synthetic dyes and natural dyes. Production method.
  3.  前記合成染料は、分散染料及び直接染料からなる群から選ばれる少なくとも1種を含む、請求項2に記載の染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の製造方法。 The dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber according to claim 2, wherein the synthetic dye includes at least one selected from the group consisting of disperse dyes and direct dyes. manufacturing method.
  4.  前記染色は、キャリアを用いず分散染料を用いて85℃以下の温度で行う、請求項1に記載の染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維の製造方法。 The dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber according to claim 1, wherein the dyeing is carried out using a disperse dye without using a carrier at a temperature of 85° C. or lower. Production method.
  5.  染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を含む繊維集合体の製造方法であって、
     ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を染料で染色する工程を含み、
     前記染色は、85℃以下の温度で行うことを特徴とする、繊維集合体の製造方法。
    A method for producing a fiber aggregate including dyed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fibers, the method comprising:
    Including the process of dyeing poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based fibers with a dye,
    A method for producing a fiber aggregate, characterized in that the dyeing is carried out at a temperature of 85° C. or lower.
  6.  前記染料は、合成染料及び天然染料からなる群から選ばれる少なくとも1種を含む、請求項5に記載の繊維集合体の製造方法。 The method for producing a fiber aggregate according to claim 5, wherein the dye includes at least one selected from the group consisting of synthetic dyes and natural dyes.
  7.  前記合成染料は、分散染料及び直接染料からなる群から選ばれる少なくとも1種を含む、請求項6に記載の繊維集合体の製造方法。 The method for producing a fiber aggregate according to claim 6, wherein the synthetic dye includes at least one selected from the group consisting of disperse dyes and direct dyes.
  8.  前記染色は、キャリアを用いず分散染料を用いて85℃以下の温度で行う、請求項5に記載の繊維集合体の製造方法。 The method for producing a fiber aggregate according to claim 5, wherein the dyeing is performed at a temperature of 85° C. or lower using a disperse dye without using a carrier.
  9.  前記繊維集合体は、糸、織物、編物、及び不織布からなる群から選ばれる1以上を含む、請求項5~8のいずれかに記載の繊維集合体の製造方法。 The method for producing a fiber aggregate according to any one of claims 5 to 8, wherein the fiber aggregate includes one or more selected from the group consisting of yarn, woven fabric, knitted fabric, and nonwoven fabric.
  10.  前記繊維集合体は、さらにセルロース系繊維を含み、前記セルロース系繊維を染料を用いて85℃以下の温度で染色する工程を含む、請求項9に記載の繊維集合体の製造方法。 The method for producing a fiber aggregate according to claim 9, wherein the fiber aggregate further includes cellulose fibers, and includes a step of dyeing the cellulose fibers using a dye at a temperature of 85° C. or lower.
  11.  30~180℃の熱収縮率を測定した熱機械分析(TMA)曲線に基づいて算出した染色加工の最大温度T2が88℃以下であり、前記T2は、TMA曲線の30℃及び40℃の2点を通る直線Aと、TMA曲線上の120℃での熱収縮率に対して25%の熱収縮率を示す点を接点とする接線Bの交点に対応する温度である染色されたポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維。 The maximum temperature T2 of the dyeing process calculated based on the thermomechanical analysis (TMA) curve that measured the heat shrinkage rate from 30 to 180°C is 88°C or less, and the T2 is equal to 2 of 30°C and 40°C of the TMA curve. The dyed poly(3 -hydroxybutyrate-co-3-hydroxyhexanoate) type fiber.
  12.  請求項11に記載のポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)系繊維を含む、繊維集合体。 A fiber assembly comprising the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) fiber according to claim 11.
PCT/JP2023/032906 2022-09-14 2023-09-08 Stained p3hb3hh-based fibers, fiber aggregate including same, and methods for manufacturing these WO2024058076A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-146058 2022-09-14
JP2022146058 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024058076A1 true WO2024058076A1 (en) 2024-03-21

Family

ID=90274872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032906 WO2024058076A1 (en) 2022-09-14 2023-09-08 Stained p3hb3hh-based fibers, fiber aggregate including same, and methods for manufacturing these

Country Status (1)

Country Link
WO (1) WO2024058076A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47797B1 (en) * 1968-10-08 1972-01-10
JPS50121581A (en) * 1974-03-01 1975-09-23
JP2004091962A (en) * 2002-08-30 2004-03-25 Unitika Textiles Ltd Biodegradable false-twist spun yarn and woven or knitted fabric
JP2005226183A (en) * 2004-02-12 2005-08-25 Nisshinbo Ind Inc Fiber product comprising biodegradable plastic
JP2022114186A (en) * 2021-01-26 2022-08-05 株式会社カネカ Biodegradable staple fiber nonwoven fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS47797B1 (en) * 1968-10-08 1972-01-10
JPS50121581A (en) * 1974-03-01 1975-09-23
JP2004091962A (en) * 2002-08-30 2004-03-25 Unitika Textiles Ltd Biodegradable false-twist spun yarn and woven or knitted fabric
JP2005226183A (en) * 2004-02-12 2005-08-25 Nisshinbo Ind Inc Fiber product comprising biodegradable plastic
JP2022114186A (en) * 2021-01-26 2022-08-05 株式会社カネカ Biodegradable staple fiber nonwoven fabric

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKANO KEIYUKI, YUKIO HIGASHIYAMA, YASUSHI SAEKI, TEIZO ISONO, HIROYUKI FUJITA, MINORU FURUYA: " Development of dyeing process optimization technology for bio-based polymer fibers", HYOGO PREFECTURAL INSTITUTE OF TECHNOLOGY, TECHNICAL SUPPORT CENTER FOR TEXTILES INDUSTRIES, no. 47, 1 January 2015 (2015-01-01), pages 1 - 3, XP093146004, ISSN: 1342-7709 *

Similar Documents

Publication Publication Date Title
KR101062831B1 (en) Polylactic Acid Fiber, Yarn Package and Textiles
JP5730782B2 (en) Normal pressure dyeable polyester fiber and method for producing the same
US6740276B2 (en) Process for preparing pigmented shaped articles comprising poly (trimethylene terephthalate)
JP5813747B2 (en) Cationic dyeable polyester fiber and composite fiber
JP2003238775A (en) Resin composition and molding
JP3982305B2 (en) Polylactic acid fiber with excellent hydrolysis resistance
JP2008057082A (en) Method for producing polylactic acid monofilament
JP2007284846A (en) Polyester conjugate fiber
WO2024058076A1 (en) Stained p3hb3hh-based fibers, fiber aggregate including same, and methods for manufacturing these
JP2004277931A (en) Polylactic acid fiber and fibrous structure using the same
JP5003266B2 (en) Spun yarn
JP2009185397A (en) Polylactic acid fiber, method for producing the same and fiber product
JP4114443B2 (en) Polylactic acid fiber excellent in wear resistance and method for producing the same
JP4269604B2 (en) Biodegradable ground yarn for pile knitted fabric and pile knitted fabric
US20100233390A1 (en) Vinyl chloride resin fiber and method for producing same
JP4059192B2 (en) Polylactic acid false twisted yarn and method for producing the same
JP2009084759A (en) Polylactic acid staple fiber and method for making the same
JP2002105752A (en) Bulky biodegradable yarn and method for producing the same
JP4571095B2 (en) Original polylactic acid false twisted yarn, method for producing the same, and carpet
JP4075611B2 (en) Polylactic acid crimped yarn for carpet
US20120244336A1 (en) Spun-dyed hmls monofilaments, production thereof and use thereof
WO2024048250A1 (en) Pile fabric and manufacturing method therefor
JP2005113343A (en) Net
WO2022148357A1 (en) Chemical fibre material made of mixed polyester
JP2004204365A (en) Woven or knitted fabric for bedding material