WO2024047953A1 - 分析装置、測定方法 - Google Patents

分析装置、測定方法 Download PDF

Info

Publication number
WO2024047953A1
WO2024047953A1 PCT/JP2023/017741 JP2023017741W WO2024047953A1 WO 2024047953 A1 WO2024047953 A1 WO 2024047953A1 JP 2023017741 W JP2023017741 W JP 2023017741W WO 2024047953 A1 WO2024047953 A1 WO 2024047953A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
sample
analysis device
scattered waves
waves
Prior art date
Application number
PCT/JP2023/017741
Other languages
English (en)
French (fr)
Inventor
開鋒 張
正浩 渡辺
欣樹 與名本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024047953A1 publication Critical patent/WO2024047953A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to the configuration of an analyzer for analyzing the shape and condition of a part and a measurement method using the same, and particularly relates to a technique that is effective when applied to measuring the inner diameter inside the part and analyzing the surface condition.
  • target products are expected to make effective use of renewable resources in a wide range of fields, including IT equipment such as network equipment, construction machinery units, automotive electrical components, medical equipment, etc.
  • Patent Document 1 states, ⁇ It is possible to easily measure the amount of spectral reflected light from the outer surface of a substrate or the inner surface of a pipe that is facing another object, and also to obtain the amount of spectral reflected light from a desired measurement point in a short time.
  • An optical system for measuring the amount of spectral reflected light is disclosed. (Paragraph [0005] of Patent Document 1, etc.)
  • Shape measurements inside parts can be carried out using conventional inner diameter measurement probes, but shape measurement is the main focus, and it is necessary to measure corrosion, deterioration, residual stress, etc. of materials inside parts, which are necessary to determine whether recovered parts can be recycled. Information such as crystal state cannot be obtained.
  • Patent Document 1 by moving the casing 5 in the horizontal direction, a rectangular prism is formed in the gap between the upper surface of the substrate processing table B and the downwardly facing outer surface F of the substrate 12 floated above the substrate processing table B by a predetermined height. 6 is inserted, and the amount of spectral reflected light at a desired measurement location on the downward facing outer surface F of the substrate 12 is measured. (Summary of Patent Document 1, etc.)
  • a large-scale rotation is required to rotate the entire optical system for measuring the amount of spectral reflected light or the substrate 12 and substrate processing table B. A mechanism is required.
  • the surface condition is measured by image processing of the captured image obtained by the CCD camera 9, the information that can be measured is also limited.
  • an object of the present invention is to provide an analysis device and a measurement method using the same, which can measure the inner diameter inside a component and analyze the surface state at the same time while reducing the size of the measurement probe.
  • the present invention includes a first electromagnetic wave source that irradiates the surface of a sample with a first electromagnetic wave, a second electromagnetic wave that irradiates the surface of the sample, and a surface of the sample that is irradiated with the second electromagnetic wave.
  • a measurement light source and an interferometer that measure the shape; a condenser that focuses the electromagnetic wave beams of the first electromagnetic wave and the second electromagnetic wave on the irradiation location of the sample; and the first electromagnetic wave and the second electromagnetic wave from the sample.
  • a dichroic mirror that separates elastically scattered waves (mainly reflected waves) and inelastically scattered waves of electromagnetic waves, and a chemical composition and defects on the surface of the sample are determined based on the inelastically scattered waves separated by the dichroic mirror.
  • the present invention also provides the following steps: (a) oscillating a first electromagnetic wave from a first electromagnetic wave source and oscillating a second electromagnetic wave from a second electromagnetic wave source; (b) generating an electromagnetic wave beam of the first electromagnetic wave and the second electromagnetic wave. (c) separating the first electromagnetic wave and the second electromagnetic wave from the sample into elastic scattered waves (mainly reflected waves) and inelastic scattered waves; (d) (c) measuring the shape of the surface of the sample based on the elastically scattered waves (mainly reflected waves) separated in step (c); (e) measuring the inelastic scattering separated in step (c); The method further comprises the step of measuring the chemical composition and defects on the surface of the sample based on the waves.
  • an analysis device and a measurement method using the same which can measure the inner diameter inside a component and analyze the surface state at the same time while reducing the size of the measurement probe.
  • FIG. 1 is a diagram showing a schematic configuration of an analyzer according to Example 1 of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of an analyzer according to Example 2 of the present invention. It is a flowchart which shows the measuring method based on Example 3 of this invention.
  • 1 is a diagram showing a schematic configuration of a conventional inner diameter measuring device.
  • 1 is a diagram showing a schematic configuration of a conventional inner diameter measuring device.
  • FIGS. 4A and 4B are diagrams showing a schematic configuration of a conventional inner diameter measuring device.
  • FIG. 4A shows an example of in-line measurement
  • FIG. 4B shows a large control unit 30 and a measurement head 32 connected thereto. Note that the right diagram in FIG. 4A is an enlarged view of part A in the left diagram.
  • the conventional inner diameter measurement probe 25 inserts a measurement probe 26 into a part 28 to be measured that is mounted on a belt conveyor 27 and moves, and emits excitation light (laser light) from the tip of the measurement probe 26. ) 21 onto the inner wall surface of the component 28 while rotating the measuring probe 26 in the axial direction to measure the inner diameter and distance inside the component 28.
  • excitation light laser light
  • the conventional inner diameter measuring probe 25 shown in FIG. 4A mainly measures the shape, and cannot measure corrosion, deterioration, residual stress, crystalline state, etc. of the material inside the component 28.
  • the inner diameter measurement probe 29 of the type shown in FIG. 4B is composed of a large control unit 30 and a measurement head 32 connected to the control unit 30 via an optical fiber 31.
  • the control unit 30 has a size of, for example, about 500 mm x 500 mm x 500 mm, and includes a light source for oscillating excitation light (laser) 21 inside.
  • the inner diameter measurement probe 29 in FIG. 4B requires an optical fiber 31 for propagating the excitation light (laser) 21 from the control unit 30 to the measurement head 32, and is relatively large as a measurement probe. It's limited.
  • FIG. 1 is a diagram showing a schematic configuration of an analyzer 1 of this embodiment.
  • an example will be described in which the internal shape and condition of a pipe-shaped component 2 to be measured is measured.
  • the analyzer 1 of this embodiment mainly includes an excitation laser, a measurement light source, an interferometer 3, a dichroic mirror 8, a parabolic mirror 10 serving as a condenser, and a spectrophotometer. It includes a meter (spectroscope) 17 and a pipe-shaped probe section 9 that holds a parabolic mirror 10 and a dichroic mirror 8. Dichroic mirror 8 is also called a dichroic beam splitter.
  • the excitation laser, measurement light source, and interferometer 3 include a first electromagnetic wave source (excitation laser) that oscillates a first electromagnetic wave and irradiates the surface of the measurement target (sample) with the first electromagnetic wave, and a first electromagnetic wave source (excitation laser) that oscillates a second electromagnetic wave and irradiates the surface of the measurement target (sample) with the first electromagnetic wave. It is composed of a measurement light source and an interferometer that irradiate the surface of the sample with a second electromagnetic wave and measure the shape of the surface of the sample using the second electromagnetic wave.
  • FIG. 1 shows an example in which the first electromagnetic wave source (excitation laser) and the second electromagnetic wave source (measurement light source and interferometer) are housed in the same unit, they may be installed as separate units. Furthermore, although it is assumed that the first electromagnetic wave and the second electromagnetic wave are electromagnetic waves with different wavelengths, depending on the conditions of the measurement target (sample), it is possible to use electromagnetic waves with the same wavelength as the first electromagnetic wave and the second electromagnetic wave. It's okay.
  • the first electromagnetic wave and the second electromagnetic wave output from the excitation laser, the measurement light source, and the interferometer 3 propagate through the optical fiber 4 and are introduced into the collimator 5.
  • the first electromagnetic wave and the second electromagnetic wave introduced into the collimator 5 pass through an optical filter 6 as excitation light (laser) 21, have their paths changed by a mirror 7 and a dichroic mirror 8, and are placed at the tip of the probe section 9. It is guided to the parabolic mirror 10 which is shown in FIG.
  • the parabolic mirror 10 focuses excitation light (laser) 21 at a focusing angle ⁇ and irradiates it onto the inner wall surface of a pipe-shaped component 2 that is a measurement target (sample).
  • the parabolic mirror 10 is installed on the probe section 9 via a motor 11, and can be rotated in the circumferential direction of the probe section 9 by the motor 11. By rotating the parabolic mirror 10 by 360° using the motor 11, the entire circumference of the inner wall surface of the component 2 can be irradiated with excitation light (laser) 21.
  • the excitation light (laser) 21 irradiated on the inner wall surface of the component 2 generates elastically scattered waves (mainly reflected waves) of the first electromagnetic wave (excitation laser) and the second electromagnetic wave, and inelastic scattered waves on the inner wall surface of the component 2. released from.
  • the elastically scattered waves (mainly reflected waves) and inelastically scattered waves of the first electromagnetic wave (excitation laser) and the second electromagnetic wave are received by the parabolic mirror 10, and their course is changed in the direction toward the dichroic mirror 8.
  • the elastically scattered waves (mainly reflected waves) of the first electromagnetic wave (excitation laser) and the second electromagnetic wave that have reached the dichroic mirror 8 and the inelastically scattered waves are converted into elastically scattered waves of the first electromagnetic wave and the second electromagnetic wave by the dichroic mirror 8. (mainly reflected waves) and inelastic scattered waves.
  • the elastically scattered waves (mainly reflected waves) of the first electromagnetic wave and the second electromagnetic wave separated by the dichroic mirror 8 travel toward the mirror 7, and their course is changed by the mirror 7.
  • the elastically scattered waves (mainly reflected waves) of the first electromagnetic wave and the second electromagnetic wave whose courses have been changed by the mirror 7 pass through the optical filter 6 and the collimator 5 in the opposite order of the introduction path of the first electromagnetic wave and the second electromagnetic wave.
  • the light passes through the collimator 5, is focused by the collimator 5, and is propagated through the optical fiber 4 to the excitation laser, measurement light source, and interferometer 3.
  • the excitation laser, the measurement light source, and the second electromagnetic wave source (measurement light source and interferometer) built into the interferometer 3 generate the second electromagnetic wave introduced, specifically, the second electromagnetic wave emitted from the inner wall surface of the component 2.
  • the internal shape of the component 2, such as the inner diameter, is measured based on the elastic scattered waves (mainly reflected waves).
  • elastically scattered waves (mainly reflected waves) of the first electromagnetic wave are also introduced into the excitation laser, measurement light source, and interferometer 3, elastically scattered waves (mainly reflected waves) of both the first electromagnetic wave and the second electromagnetic wave are introduced. It is also possible to measure the internal shape of the component 2, such as the inner diameter, based on the wave). In this case, more accurate shape measurement can be expected.
  • the course of the inelastic scattered waves separated by the dichroic mirror 8 is changed by the mirrors 12 and 13.
  • the inelastic scattered waves whose paths have been changed by the mirrors 12 and 13 are collected as Raman light 22 by the condenser lens 14, received by the optical fiber adapter 15, and then sent to the spectrometer (spectroscope) 17 by the optical fiber 16. is propagated to
  • the spectrometer (spectroscope) 17 acquires information regarding the chemical composition and defects such as corrosion, deterioration, residual stress, and crystalline state of the material inside the component 2 by Raman spectroscopy based on the introduced inelastic scattered waves.
  • the dichroic mirror 8 and the spectrometer 17 may be configured to use other spectroscopy methods. For example, it is also possible to measure (analyze) the internal state of the component 2 by atomic spectroscopy (LIPS), fluorescence spectroscopy, molecular spectroscopy using infrared rays or near-infrared rays, or the like.
  • the dichroic mirror 8 is not limited to a specification that transmits and separates only inelastic scattered waves, but can be changed to a specification that can also transmit elastic scattered waves.
  • the analyzer 1 also includes a holding pipe 18 that holds the probe section 9 and rotates the probe section 9 in the circumferential direction by a motor 20.
  • a holding pipe 18 that holds the probe section 9 and rotates the probe section 9 in the circumferential direction by a motor 20.
  • the entire probe section 9 including the parabolic mirror 10 and the dichroic mirror 8 is rotated to irradiate the inner wall surface of the component 2 with the excitation light (laser) 21. Position can be controlled with higher precision.
  • the analysis device 1 also includes a tool stand 19 that holds the holding pipe 18 and can move the probe section 9 to a desired position.
  • the tool stand 19 includes a positioning stage, and can move the probe section 9 to any position inside the component 2. By moving the probe section 9 to a desired position using the tool stand 19, the amount of received elastic scattered waves (mainly reflected waves) and inelastic scattered waves of the first and second electromagnetic waves detected by the probe section 9 can be adjusted. Can be adjusted.
  • the analyzer 1 of this embodiment includes a first electromagnetic wave source that irradiates the surface of the inside (sample) of the component 2 with a first electromagnetic wave, and a second electromagnetic wave source that irradiates the surface of the inside (sample) of the component 2 with the first electromagnetic wave.
  • a measurement light source and an interferometer that irradiate and measure the shape of the surface of the inside (sample) of the part 2 using the second electromagnetic waves, and irradiate the inside (sample) of the part 2 with electromagnetic wave beams of the first electromagnetic wave and the second electromagnetic wave.
  • a light condensing unit that focuses light on a spot, and a dichroic mirror 8 that separates elastic scattered waves (mainly reflected waves) and inelastic scattered waves of the first electromagnetic wave and the second electromagnetic wave from the inside of the component 2 (sample).
  • a spectrometer 17 that measures the chemical composition and defects on the surface of the interior (sample) of the component 2 based on the inelastic scattered waves separated by the dichroic mirror 8.
  • the measurement probe can be made smaller, it can be used in the same system as a conventional measurement probe.
  • the optical component (parabolic mirror 10) at the tip of the probe is rotated by a small motor 11, it is possible to reduce distance measurement errors caused by rotational vibration of a large motor, and to downsize the probe housing. can.
  • FIG. 2 is a diagram showing a schematic configuration of the analyzer 1 of this example, and corresponds to a modification of Example 1 (FIG. 1).
  • a mirror 24 is used instead of the parabolic mirror 10 as the condenser.
  • the analyzer 1 of this embodiment has, as its main components, an excitation laser, a measurement light source, an interferometer 3, a dichroic mirror 8, a mirror 24 serving as a condensing section, and a spectrometer (spectrometer). 17, and a pipe-shaped probe section 9 that holds a mirror 24 and a dichroic mirror 8.
  • the other configurations are the same as in Example 1 (FIG. 1).
  • the mirror 24 is configured to be rotated in the circumferential direction of the probe section 9 by the motor 11, similar to the parabolic mirror 10 of the first embodiment (FIG. 1).
  • the parabolic mirror 10 requires high processing precision and is relatively expensive, so by using the mirror 24 as a light condensing part as in this embodiment, the cost can be reduced. .
  • a condenser lens 23 may be additionally placed between the dichroic mirror 8 and the mirror 24, which is a condenser.
  • FIG. 3 is a flowchart showing the measurement method of this example.
  • a method of measuring the inner diameter inside a component and analyzing the surface state using the analyzer 1 described in Examples 1 and 2 will be described.
  • step S1 After inserting the probe section 9 of the analyzer 1 into the component 2, first, in step S1, a first electromagnetic wave is oscillated from an excitation laser (first electromagnetic wave source).
  • step S2 a second electromagnetic wave is oscillated from the measurement light source and the interferometer (second electromagnetic wave source). Note that step S1 and step S2 may be performed simultaneously.
  • step S3 the electromagnetic wave beams of the first electromagnetic wave and the second electromagnetic wave are focused by a condenser (parabolic mirror 10 or mirror 24) and irradiated onto the inside of the component 2 (sample).
  • a condenser parabolic mirror 10 or mirror 24
  • step S4 the dichroic mirror 8 separates the first and second electromagnetic waves from the inside of the component 2 (sample) into elastically scattered waves (mainly reflected waves) and inelastic scattered waves.
  • step S5 the component 2 is measured using the measurement light source and the interferometer 3 (second electromagnetic wave source) based on the elastically scattered waves (mainly reflected waves) of the first electromagnetic wave and the second electromagnetic wave separated by the dichroic mirror 8. Measure the surface shape (inner diameter) of the inside (sample).
  • step S6 the chemical composition and defects on the surface of the interior (sample) of the component 2 are measured using the spectrometer 17 based on the inelastic scattered waves separated by the dichroic mirror 8.
  • step S5 and step S6 depend on the specifications and performance of the excitation laser, measurement light source, interferometer 3, and spectrometer (spectrometer) 17, so they may be performed at the same time, and there may be some time difference. may occur.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • SYMBOLS 1 ... Analyzer, 2, 28... Parts (measurement object), 3... Excitation laser, measurement light source, and interferometer, 4, 16, 31... Optical fiber, 5... Collimator, 6... Optical filter, 7, 12, 13, 24... Mirror, 8... Dichroic mirror, 9... Probe unit, 10... Parabolic mirror, 11, 20... Motor, 14, 23... Condensing lens, 15... Optical fiber adapter, 17... Spectrometer (spectroscope), 18... Holding pipe, 19... Tool stand, 21... Excitation light (laser), 22... Raman light, 25, 29... Inner diameter measurement probe, 26... Measurement probe, 27... Belt conveyor, 30... Control unit, 32... Measurement head .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

計測プローブを小型化しつつ、部品内部の内径計測と同時に表面状態の分析が可能な分析装置を提供する。試料の表面に第1電磁波を照射する第1電磁波源と、前記試料の表面に第2電磁波を照射し、当該第2電磁波により前記試料の表面の形状を計測する計測光源と干渉計と、前記第1電磁波と前記第2電磁波の電磁波ビームを前記試料の照射箇所に集光する集光部と、前記試料からの前記第1電磁波および前記第2電磁波の弾性散乱波(主に反射波)と非弾性散乱波とを分離するダイクロイックミラーと、前記ダイクロイックミラーで分離された前記非弾性散乱波に基づいて、前記試料の表面の化学組成および欠陥を計測する分光器と、を備えることを特徴とする。

Description

分析装置、測定方法
 本発明は、部品の形状及び状態を分析する分析装置の構成とそれを用いた測定方法に係り、特に、部品内部の内径計測と表面状態の分析に適用して有効な技術に関する。
 近年、地球規模での環境や資源の問題がクローズアップされており、資源の有効活用、地球温暖化ガスの排出抑制のため、サーキュラーエコノミー(資源の循環的利用)が加速している。
 対象製品には家電製品の他、ネットワーク装置等のIT機器、建設機械ユニット、自動車用電装品、医療機器等を含む幅広い分野において再生可能資源の有効活用が期待されている。
 一方、再生可能資源の再利用には、再生工程の効率化と再生率の向上が重要な課題となる。多くの分野では、部品の個々の損傷状態に対応するため、人手作業による非効率的な品質評価や再生工程のレシピ決定が行われており、使用状態の異なる回収部品の品質評価の効率化が望まれている。
 例えば、回収部品の損傷状態の計測診断結果をデジタル化することで、後工程の補修とデータを連携させることができ、再生工程の効率化と再生率向上を実現できる。
 本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には、「他物が対向している基板の外面やパイプの内面の分光反射光量を容易に測定できるようにするとともに、所望の測定箇所からの分光反射光量を短時間で得られる分光反射光量測定用光学系」が開示されている。(特許文献1の段落[0005]等)
特開平10-26514号公報
 ところで、回収部品の品質評価では、部品外部の形状や状態等の外観の評価に加えて、部品内部の形状や状態の評価も重要となる。
 例えば、パイプ状の回収部品では、再生品としての品質を維持するために、内部の摩耗状態、傷や亀裂の有無等を評価するための形状計測に加えて、内部の腐食、変質、残留応力、結晶状態等の状態の計測も必要となる。
 部品内部の形状計測には、従来の内径計測プローブを用いて行うことができるが、形状計測がメインであり、回収部品の再生可否判断に必要な部品内部の材料の腐食や変質、残留応力、結晶状態等の情報を得ることができない。
 また、従来の一般的な内径計測プローブは、大型の制御ボックスが必要であり、計測ヘッド(計測プローブ)も比較的大きなものが多いため、適用できる回収部品が限られてしまう。
 上記特許文献1では、ケーシング5を水平方向に移動することにより、基板処理台Bの上面と、基板処理台Bより所定高さ浮上された基板12の下向きの外面Fとの間隙内に直角プリズム6を挿入し、基板12の下向きの外面Fの所望の測定箇所での分光反射光量を測定する。(特許文献1の要約等)
 しかしながら、特許文献1の分光反射光量測定用光学系を用いて、回収部品の内径を測定しようとした場合、分光反射光量測定用光学系全体または基板12及び基板処理台Bを回転させる大掛かりな回転機構が必要となる。
 また、CCDカメラ9で得た撮像画像の画像処理により表面の状態を測定するため、測定できる情報も限られてしまう。
 そこで、本発明の目的は、計測プローブを小型化しつつ、部品内部の内径計測と同時に表面状態の分析が可能な分析装置及びそれを用いた測定方法を提供することにある。
 上記課題を解決するために、本発明は、試料の表面に第1電磁波を照射する第1電磁波源と、前記試料の表面に第2電磁波を照射し、当該第2電磁波により前記試料の表面の形状を計測する計測光源と干渉計と、前記第1電磁波と前記第2電磁波の電磁波ビームを前記試料の照射箇所に集光する集光部と、前記試料からの前記第1電磁波および前記第2電磁波の弾性散乱波(主に反射波)と非弾性散乱波とを分離するダイクロイックミラーと、前記ダイクロイックミラーで分離された前記非弾性散乱波に基づいて、前記試料の表面の化学組成および欠陥を計測する分光器と、を備えることを特徴とする。
 また、本発明は、(a)第1電磁波源から第1電磁波を発振し、第2電磁波源から第2電磁波を発振するステップ、(b)前記第1電磁波と前記第2電磁波の電磁波ビームを集光し、試料に照射するステップ、(c)前記試料からの前記第1電磁波および前記第2電磁波の弾性散乱波(主に反射波)と非弾性散乱波とを分離するステップ、(d)前記(c)ステップにおいて分離された前記弾性散乱波(主に反射波)に基づいて、前記試料の表面の形状を計測するステップ、(e)前記(c)ステップにおいて分離された前記非弾性散乱波に基づいて、前記試料の表面の化学組成および欠陥を計測するステップ、を有することを特徴とする。
 本発明によれば、計測プローブを小型化しつつ、部品内部の内径計測と同時に表面状態の分析が可能な分析装置及びそれを用いた測定方法を実現することができる。
 これにより、回収部品の高精度な品質評価が可能となり、部品の補修及び再生ビジネスに寄与できる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の実施例1に係る分析装置の概略構成を示す図である。 本発明の実施例2に係る分析装置の概略構成を示す図である。 本発明の実施例3に係る測定方法を示すフローチャートである。 従来の内径計測装置の概略構成を示す図である。 従来の内径計測装置の概略構成を示す図である。
 以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。
 本発明を分かり易くするために、先ず、図4A及び図4Bを参照して、上述した従来の一般的な内径計測プローブについて説明する。
 図4A及び図4Bは、いずれも従来の内径計測装置の概略構成を示す図である。図4Aは、インライン計測の例を示しており、図4Bは、大型の制御ユニット30とそれに接続された計測ヘッド32を示している。なお、図4Aの右図は、左図のA部拡大図である。
 図4Aに示すように、従来の内径計測プローブ25は、ベルトコンベア27上に搭載されて移動する測定対象の部品28の内部に計測プローブ26を挿入し、計測プローブ26の先端から励起光(レーザ)21を部品28の内壁面に照射しながら、計測プローブ26を軸方向に回転させることで、部品28の内部の内径や距離を計測する。
 図4Aに示す従来の内径計測プローブ25は、形状計測がメインであり、部品28の内部の材料の腐食や変質、残留応力、結晶状態等を測定することはできない。
 図4Bに示すタイプの内径計測プローブ29は、大型の制御ユニット30と、光ファイバ31を介して制御ユニット30に接続された計測ヘッド32とで構成されている。制御ユニット30は、例えば、500mm×500mm×500mm程度の大きさであり、励起光(レーザ)21を発振するための光源を内部に備えている。
 図4Bの内径計測プローブ29は、制御ユニット30から計測ヘッド32へ励起光(レーザ)21を伝搬するための光ファイバ31が必要であり、計測プローブとして比較的大きくなるため、適用できる回収部品が限られてしまう。
 次に、図1を参照して、本発明の実施例1に係る分析装置について説明する。図1は、本実施例の分析装置1の概略構成を示す図である。本実施例では、測定対象であるパイプ状の部品2の内部の形状及び状態測定を行う例を説明する。
 図1に示すように、本実施例の分析装置1は、主要な構成として、励起レーザ及び計測光源と干渉計3と、ダイクロイックミラー8と、集光部となる放物面ミラー10と、スペクトロメータ(分光器)17と、放物面ミラー10及びダイクロイックミラー8を保持するパイプ状のプローブ部9とを備えている。ダイクロイックミラー8は、ダイクロイックビームスプリッターとも呼ばれる。
 励起レーザ及び計測光源と干渉計3は、第1電磁波を発振し、測定対象(試料)の表面に第1電磁波を照射する第1電磁波源(励起レーザ)と、第2電磁波を発振し、試料の表面に第2電磁波を照射して、当該第2電磁波により試料の表面の形状を計測する計測光源と干渉計とで構成される。
 図1では、第1電磁波源(励起レーザ)と第2電磁波源(計測光源と干渉計)とを同一ユニットに収納した例を示しているが、それぞれ個別のユニットとして設置しても良い。
また、第1電磁波と第2電磁波は、互いに異なる波長の電磁波であることを前提としているが、測定対象(試料)等の条件によっては、第1電磁波と第2電磁波に同じ波長の電磁波を用いても良い。
 励起レーザ及び計測光源と干渉計3から出力された第1電磁波及び第2電磁波は、光ファイバ4を伝搬して、コリメータ5に導入される。コリメータ5に導入された第1電磁波及び第2電磁波は、励起光(レーザ)21として光学フィルタ6を通過し、ミラー7及びダイクロイックミラー8により進路が変更されて、プローブ部9の先端部に配置されている放物面ミラー10に導かれる。放物面ミラー10は、集光角度θで励起光(レーザ)21を集光し、測定対象(試料)であるパイプ状の部品2の内壁面に照射する。
 放物面ミラー10は、モータ11を介してプローブ部9に設置されており、モータ11によりプローブ部9の周方向に回転させることができる。モータ11により放物面ミラー10を360°回転させることで、部品2の内壁面の全周に励起光(レーザ)21を照射することができる。
 部品2の内壁面に照射された励起光(レーザ)21は、第1電磁波(励起レーザ)と第2電磁波の弾性散乱波(主に反射波)と、非弾性散乱波として部品2の内壁面から放出される。第1電磁波(励起レーザ)と第2電磁波の弾性散乱波(主に反射波)、非弾性散乱波は、放物面ミラー10により受光され、ダイクロイックミラー8に向かう方向に進路が変更される。
 ダイクロイックミラー8に到達した第1電磁波(励起レーザ)と第2電磁波の弾性散乱波(主に反射波)と、非弾性散乱波は、ダイクロイックミラー8により第1電磁波及び第2電磁波の弾性散乱波(主に反射波)と、非弾性散乱波とに分離される。
 ダイクロイックミラー8により分離された第1電磁波及び第2電磁波の弾性散乱波(主に反射波)は、ミラー7に向かって進行し、ミラー7により進路が変更される。ミラー7により進路が変更された第1電磁波及び第2電磁波の弾性散乱波(主に反射波)は、第1電磁波及び第2電磁波の導入経路とは逆に、光学フィルタ6、コリメータ5の順で通過し、コリメータ5で集光されて、光ファイバ4により励起レーザ及び計測光源と干渉計3に伝搬される。
 励起レーザ及び計測光源と干渉計3に内蔵された第2電磁波源(計測光源と干渉計)は、導入された第2電磁波、具体的には部品2の内壁面から放出された第2電磁波の弾性散乱波(主に反射波)に基づいて、内径等の部品2の内部の形状を計測する。
 なお、励起レーザ及び計測光源と干渉計3には、第1電磁波の弾性散乱波(主に反射波)も導入されるため、第1電磁波及び第2電磁波の両方の弾性散乱波(主に反射波)に基づいて、内径等の部品2の内部の形状を計測することも可能である。この場合、より高精度な形状計測が期待できる。
 一方、ダイクロイックミラー8により分離された非弾性散乱波は、ミラー12,13により進路が変更される。ミラー12,13により進路が変更された非弾性散乱波は、集光レンズ14によりラマン光22として集光され、光ファイバアダプタ15により受光された後、光ファイバ16によりスペクトロメータ(分光器)17に伝搬される。
 スペクトロメータ(分光器)17は、導入された非弾性散乱波に基づいて、ラマン分光により部品2内部の材料の腐食や変質、残留応力、結晶状態等の化学組成及び欠陥に関する情報を取得する。
 なお、ダイクロイックミラー8とスペクトロメータ(分光器)17は、他の分光方式を用いるように構成しても良い。例えば、原子分光(LIPS)、蛍光分光、赤外線または近赤外線による分子分光等により、部品2内部の状態を計測(分析)することも可能である。このときダイクロイックミラー8は、非弾性散乱波のみを透過・分離する仕様に限定されず、弾性散乱波も透過できる仕様に変更できる。
 また、分析装置1は、プローブ部9を保持し、モータ20によりプローブ部9を周方向に回転させる保持パイプ18を備えている。モータ11による放物面ミラー10の回転に加えて、放物面ミラー10及びダイクロイックミラー8を含むプローブ部9全体を回転させることにより、部品2の内壁面への励起光(レーザ)21の照射位置をより高精度に制御することができる。
 また、分析装置1は、保持パイプ18を保持し、かつ、プローブ部9を所望の位置に移動可能な工具台19を備えている。工具台19は、位置決めステージを含んで構成されており、プローブ部9を部品2の内部の任意の位置に移動することができる。工具台19によりプローブ部9を所望の位置に移動することで、プローブ部9により検出する第1電磁波及び第2電磁波の弾性散乱波(主に反射波)と、非弾性散乱波の受光量を調整することができる。
 以上説明したように、本実施例の分析装置1は、部品2の内部(試料)の表面に第1電磁波を照射する第1電磁波源と、部品2の内部(試料)の表面に第2電磁波を照射し、当該第2電磁波により部品2の内部(試料)の表面の形状を計測する計測光源と干渉計と、第1電磁波と第2電磁波の電磁波ビームを部品2の内部(試料)の照射箇所に集光する集光部と、部品2の内部(試料)からの第1電磁波及び第2電磁波の弾性散乱波(主に反射波)と、非弾性散乱波とを分離するダイクロイックミラー8と、ダイクロイックミラー8で分離された非弾性散乱波に基づいて、部品2の内部(試料)の表面の化学組成及び欠陥を計測するスペクトロメータ(分光器)17を備えている。
 これにより、計測プローブを小型化しつつ、部品内部の内径計測と表面状態の分析を同時に行うことができる。
 計測プローブを小型化できるため、従来の計測プローブと同一のシステムで使用することが可能である。
 また、プローブ先端の光学部品(放物面ミラー10)を小型のモータ11で回転させるため、大型モータの回転振れに起因する測距誤差を低減し、かつ、プローブ筐体を小型化することができる。
 図2を参照して、本発明の実施例2に係る分析装置について説明する。図2は、本実施例の分析装置1の概略構成を示す図であり、実施例1(図1)の変形例に相当する。本実施例では、集光部として、放物面ミラー10に替えてミラー24を用いる例を説明する。
 図2に示すように、本実施例の分析装置1は、主要な構成として、励起レーザ及び計測光源と干渉計3と、ダイクロイックミラー8と、集光部となるミラー24と、スペクトロメータ(分光器)17と、ミラー24及びダイクロイックミラー8を保持するパイプ状のプローブ部9とを備えている。その他の構成は、実施例1(図1)と同様である。
 ミラー24は、実施例1(図1)の放物面ミラー10と同様に、モータ11によりプローブ部9の周方向に回転できるように構成されている。
 一般的に、放物面ミラー10は、高い加工精度が要求され、比較的高価であるため、本実施例のように、集光部としてミラー24を用いることで、コストを低減することができる。
 なお、図2に示すように、ダイクロイックミラー8と集光部であるミラー24との間に、補助的に、集光レンズ23を配置しても良い。
 図3を参照して、本発明の実施例3に係る測定方法について説明する。図3は、本実施例の測定方法を示すフローチャートである。本実施例では、実施例1及び実施例2で説明した分析装置1を用いて、部品内部の内径計測と表面状態の分析を実施する方法を説明する。
 部品2の内部に分析装置1のプローブ部9を挿入した後、先ず、ステップS1において、励起レーザ(第1電磁波源)から第1電磁波を発振する。
 次に、ステップS2において、計測光源と干渉計(第2電磁波源)から第2電磁波を発振する。なお、ステップS1とステップS2は、同時に実施しても良い。
 続いて、ステップS3において、第1電磁波と第2電磁波の電磁波ビームを集光部(放物面ミラー10またはミラー24で集光し、部品2の内部(試料)に照射する。
 次に、ステップS4において、部品2の内部(試料)からの第1電磁波及び第2電磁波の弾性散乱波(主に反射波)と、非弾性散乱波とをダイクロイックミラー8で分離する。
 続いて、ステップS5において、ダイクロイックミラー8で分離された第1電磁波及び第2電磁波の弾性散乱波(主に反射波)に基づいて、計測光源と干渉計3(第2電磁波源)により部品2の内部(試料)の表面の形状(内径)を計測する。
 また、ステップS6において、ダイクロイックミラー8で分離された非弾性散乱波に基づいて、スペクトロメータ(分光器)17により部品2の内部(試料)の表面の化学組成及び欠陥を計測する。
 なお、ステップS5とステップS6のそれぞれのタイミングは、励起レーザ及び計測光源と干渉計3とスペクトロメータ(分光器)17の仕様や性能にも依存するため、同時に実施しても良く、多少の時間差が生じても良い。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…分析装置、2,28…部品(測定対象)、3…励起レーザ及び計測光源と干渉計、4,16,31…光ファイバ、5…コリメータ、6…光学フィルタ、7,12,13,24…ミラー、8…ダイクロイックミラー、9…プローブ部、10…放物面ミラー、11,20…モータ、14,23…集光レンズ、15…光ファイバアダプタ、17…スペクトロメータ(分光器)、18…保持パイプ、19…工具台、21…励起光(レーザ)、22…ラマン光、25,29…内径計測プローブ、26…計測プローブ、27…ベルトコンベア、30…制御ユニット、32…計測ヘッド。

Claims (10)

  1.  試料の表面に第1電磁波を照射する第1電磁波源と、
     前記試料の表面に第2電磁波を照射し、当該第2電磁波により前記試料の表面の形状を計測する計測光源と干渉計と、
     前記第1電磁波と前記第2電磁波の電磁波ビームを前記試料の照射箇所に集光する集光部と、
     前記試料からの前記第1電磁波および前記第2電磁波の弾性散乱波と非弾性散乱波とを分離するダイクロイックミラーと、
     前記ダイクロイックミラーで分離された前記非弾性散乱波に基づいて、前記試料の表面の化学組成および欠陥を計測する分光器と、
     を備えることを特徴とする分析装置。
  2.  請求項1に記載の分析装置であって、
     前記集光部および前記ダイクロイックミラーを保持するパイプ状のプローブ部を備えることを特徴とする分析装置。
  3.  請求項2に記載の分析装置であって、
     前記集光部は、放物面ミラーまたはミラーであることを特徴とする分析装置。
  4.  請求項3に記載の分析装置であって、
     前記放物面ミラーまたは前記ミラーを前記プローブ部の周方向に回転させるモータを備えることを特徴とする分析装置。
  5.  請求項4に記載の分析装置であって、
     前記プローブ部を保持し、当該プローブ部を周方向に回転させるパイプ部を備えることを特徴とする分析装置。
  6.  請求項5に記載の分析装置であって、
     前記パイプ部を保持し、かつ、前記プローブ部を所望の位置に移動可能な工具台を備え、
     前記工具台により前記プローブ部を移動することで、当該プローブ部により検出する前記弾性散乱波および前記非弾性散乱波の受光量を調整することを特徴とする分析装置。
  7.  請求項1に記載の分析装置であって、
     前記分光器は、ラマン分光、原子分光(LIPS)、蛍光分光、赤外線または近赤外線による分子分光のいずれかにより前記試料の表面の化学組成および欠陥を計測することを特徴とする分析装置。
  8.  以下のステップを有する測定方法:
     (a)第1電磁波源から第1電磁波を発振し、第2電磁波源から第2電磁波を発振するステップ、
     (b)前記第1電磁波と前記第2電磁波の電磁波ビームを集光し、試料に照射するステップ、
     (c)前記試料からの前記第1電磁波および前記第2電磁波の弾性散乱波と非弾性散乱波とを分離するステップ、
     (d)前記(c)ステップにおいて分離された前記弾性散乱波に基づいて、前記試料の表面の形状を計測するステップ、
     (e)前記(c)ステップにおいて分離された前記非弾性散乱波に基づいて、前記試料の表面の化学組成および欠陥を計測するステップ。
  9.  請求項8に記載の測定方法であって、
     前記(d)ステップと前記(e)ステップとが、同時に行われることを特徴とする測定方法。
  10.  請求項8に記載の測定方法であって、
     前記(d)ステップにおいて、前記試料の内部の内径を計測することを特徴とする測定方法。
PCT/JP2023/017741 2022-08-30 2023-05-11 分析装置、測定方法 WO2024047953A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022136937A JP2024033391A (ja) 2022-08-30 2022-08-30 分析装置、測定方法
JP2022-136937 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024047953A1 true WO2024047953A1 (ja) 2024-03-07

Family

ID=90099252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017741 WO2024047953A1 (ja) 2022-08-30 2023-05-11 分析装置、測定方法

Country Status (2)

Country Link
JP (1) JP2024033391A (ja)
WO (1) WO2024047953A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508097A (ja) * 2003-10-17 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 流体の特性を決定する方法及び分光システム
JP2008224568A (ja) * 2007-03-15 2008-09-25 Fujitsu Ltd 表面形状計測装置及び表面形状計測方法
US20090021724A1 (en) * 2007-07-20 2009-01-22 Vanderbilt University Combined raman spectroscopy-optical coherence tomography (rs-oct) system and applications of the same
JP2014074633A (ja) * 2012-10-04 2014-04-24 Hitachi Ltd 形状計測方法及び装置
JP2016118464A (ja) * 2014-12-22 2016-06-30 株式会社トプコンテクノハウス 平面分光干渉計
JP2021189003A (ja) * 2020-05-28 2021-12-13 株式会社日立製作所 形状測定装置および形状測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508097A (ja) * 2003-10-17 2007-04-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 流体の特性を決定する方法及び分光システム
JP2008224568A (ja) * 2007-03-15 2008-09-25 Fujitsu Ltd 表面形状計測装置及び表面形状計測方法
US20090021724A1 (en) * 2007-07-20 2009-01-22 Vanderbilt University Combined raman spectroscopy-optical coherence tomography (rs-oct) system and applications of the same
JP2014074633A (ja) * 2012-10-04 2014-04-24 Hitachi Ltd 形状計測方法及び装置
JP2016118464A (ja) * 2014-12-22 2016-06-30 株式会社トプコンテクノハウス 平面分光干渉計
JP2021189003A (ja) * 2020-05-28 2021-12-13 株式会社日立製作所 形状測定装置および形状測定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHETAN A. PATIL, HARISH KIRSHNAMOORTHI, DARREL L. ELLIS, TON G. VAN LEEUWEN, ANITA MAHADEVAN-JANSEN: "A clinical instrument for combined raman spectroscopy-optical coherence tomography of skin cancers", LASERS IN SURGERY AND MEDICINE, LISS, vol. 43, no. 2, 1 February 2011 (2011-02-01), pages 143 - 151, XP055176428, ISSN: 01968092, DOI: 10.1002/lsm.21041 *
PATIL C A, ET AL: "Combined Raman spectroscopy and optical coherence tomography device for tissue characterization", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, US, vol. 33, no. 10, 15 May 2008 (2008-05-15), US , pages 1135 - 1137, XP001514618, ISSN: 0146-9592, DOI: 10.1364/OL.33.001135 *

Also Published As

Publication number Publication date
JP2024033391A (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
US8643833B1 (en) System for inspecting surface defects of a specimen and a method thereof
JP2018163175A (ja) 検出感度改善のための検査ビームの成形
CN107783242B (zh) 自动对焦装置及采用该装置的块状物libs在线检测装置
JP4895109B2 (ja) 形状検査方法及び形状検査装置
JP2018530146A (ja) レーザ暗視野システムにおけるスペックル抑圧方法及び装置
CN112198169B (zh) 一种晶圆检测装置及线上成套设备
JP2011145277A (ja) 特に光学用途に用いられる、電磁放射透過性透明材料中欠陥の評価方法、該方法実施装置、及び該方法により選抜される材料
CN114839145A (zh) 一种激光损伤分析测试仪器
JP6215677B2 (ja) 顕微ラマン分光装置および顕微ラマン分光システム
US9587936B2 (en) Scanning inspection system with angular correction
WO2024047953A1 (ja) 分析装置、測定方法
JP6410902B2 (ja) 顕微ラマン分光装置および顕微ラマン分光システム
US11047675B2 (en) Method and apparatus for inspection of spherical surfaces
JP3746433B2 (ja) ガラス製品の製造方法及び製造装置
KR100926019B1 (ko) 결함 입자 측정 장치 및 결함 입자 측정 방법
JPH05113418A (ja) 表面分析装置
JP2010190595A (ja) レーザー分光分析装置およびそれを用いたレーザー分光分析方法
WO2008001731A1 (fr) Appareil d'examen de surface et procédé d'examen de surface
JPH02238338A (ja) レンズ検査装置
KR101664470B1 (ko) 빔 스플리터의 후면 반사를 이용한 다중 광경로 레이저 광학계
JPH0291504A (ja) 微細パターンの断面プロファイルの検査方法
JP2000055809A (ja) 顕微ラマン分光装置及び顕微ラマン分光測定方法
CN117491384B (zh) 晶圆检测系统及检测方法
CN221007330U (zh) 一种太赫兹硅片检测装置
US9739592B2 (en) Multiple beam path laser optical system using multiple beam reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859724

Country of ref document: EP

Kind code of ref document: A1