WO2024047740A1 - 導波路デバイス検査システム - Google Patents

導波路デバイス検査システム Download PDF

Info

Publication number
WO2024047740A1
WO2024047740A1 PCT/JP2022/032565 JP2022032565W WO2024047740A1 WO 2024047740 A1 WO2024047740 A1 WO 2024047740A1 JP 2022032565 W JP2022032565 W JP 2022032565W WO 2024047740 A1 WO2024047740 A1 WO 2024047740A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
waveguide
waveguide device
inspection
inspected
Prior art date
Application number
PCT/JP2022/032565
Other languages
English (en)
French (fr)
Inventor
雅 太田
慶太 山口
藍 柳原
祥江 森本
摂 森脇
賢哉 鈴木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/032565 priority Critical patent/WO2024047740A1/ja
Publication of WO2024047740A1 publication Critical patent/WO2024047740A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Definitions

  • the present disclosure relates to a waveguide device inspection system.
  • optical communication devices such as optical transceivers and optical switches are being put into practical use.
  • the optical devices mounted in these optical communication devices are formed on wafers made of silicon or compound semiconductors, and this is done by effectively applying techniques developed in the manufacturing of electronic devices such as photolithography and dry etching. This is because it has the characteristics of being easy to use and excellent in mass production.
  • Optical devices handle optical signals whose wavelength (approximately 1 ⁇ m) is much longer than the wavelength of electrons (approximately 0.1 nm, depending on the speed), so optical devices require a path for signal transmission (i.e., a waveguide). cannot be bent sharply. Therefore, the path of an optical device is overwhelmingly rougher than that of an electronic device, and the area occupied by the circuit pattern of an optical device (on the order of cm2 ) is much larger than that of an electronic device (on the order of mm2 ). becomes larger. For this reason, the computational cost required for automatic visual inspection during manufacturing of optical devices is an order of magnitude higher than that of electronic devices, which poses a problem in that inspection throughput deteriorates.
  • the required performance differs in appearance inspection during wafer manufacturing for electronic devices and optical devices.
  • high accuracy is required in inspection of the waveguide pattern including an evanescent field in a minute area.
  • An optical signal propagating along the waveguide pattern is confined within the core region by total reflection occurring at the interface between the core and cladding.
  • the optical electric field of the optical signal leaks into the cladding layer, and this seeping electric field is called an evanescent field.
  • the penetration length of the evanescent field into the cladding layer (hereinafter referred to as evanescent length) is usually several ⁇ m to several tens of ⁇ m, although it depends on the refractive index difference between the core and the cladding.
  • Foreign matter and defects existing in the region of the waveguide pattern containing this evanescent field affect the optical characteristics (propagation characteristics of optical signals, etc.) of the waveguide device. Therefore, the visual inspection of the waveguide pattern region containing this evanescent field is required to have high determination accuracy.
  • the present disclosure has been made in view of the above-mentioned problems, and its purpose is to inspect foreign substances and defects existing in a region containing an evanescent field of a waveguide pattern in a waveguide device.
  • the purpose of the present invention is to provide a waveguide device inspection system that achieves high precision and high efficiency.
  • the present disclosure provides a waveguide device inspection system that determines inspection results using differential images, which includes an imaging device that acquires an image of an inspection area of an inspection target, and an image pickup device that acquires an image of an inspection area of an inspection target, and
  • the calculation device includes a storage device for storing information, and a calculation device configured to generate a difference image by comparing the acquired image with a reference image acquired in advance by an imaging device, and the calculation device is configured to generate a difference image by comparing the acquired image with a reference image acquired in advance by an imaging device.
  • the system is further configured to refer to the design image of the waveguide device in which the pattern is formed, and generate a difference image in which only the parts that affect the performance of the waveguide device are extracted, thereby affecting the performance of the waveguide device.
  • the width of the part that affects the performance of the waveguide device is determined by the effective width (W + 2d), which is determined by the sum (W + 2d) of the waveguide width (W) and twice the evanescent length (d) of the waveguide pattern.
  • W + 2d the effective width
  • the waveguide width (We) is set using the waveguide width (We).
  • FIG. 2 is a diagram schematically illustrating an exemplary optical device wafer manufacturing process.
  • FIG. 2 is a block diagram illustrating an example of the configuration of a waveguide device inspection system 200 in the first and second embodiments of the present disclosure.
  • the waveguide device inspection system 200 of the first embodiment detects foreign matter or defects that unexpectedly occur in a pattern from images acquired in the photolithography pattern inspection (corresponding to step 4 in FIG. 1) described in FIG.
  • FIG. 3 is a diagram illustrating an example of a process to be executed.
  • FIG. 3 is a top view conceptually showing masking of a waveguide pattern to which an effective waveguide width We including an evanescent field is applied.
  • FIG. 1 is a diagram schematically illustrating an exemplary optical device wafer manufacturing process.
  • FIG. 2 is a block diagram illustrating an example of the configuration of a waveguide device inspection system 200 in the first and second embodiments of the present disclosure.
  • the waveguide device inspection system 200 of the first embodiment detects foreign matter or defects that unexpectedly occur in
  • FIG. 2 is a diagram showing a flow of processing executed by the waveguide device inspection system 200 according to the first embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating, as an example, processing for detecting foreign objects and defects by the waveguide device inspection system 200 in the second embodiment of the present disclosure.
  • FIG. 3 is a flow diagram of inspection processing executed by a waveguide device inspection system 200 in a second embodiment of the present disclosure.
  • FIG. 1 is a diagram schematically explaining the manufacturing process of an exemplary optical device wafer.
  • FIG. 1 illustrates a manufacturing process of a quartz-based waveguide as an example.
  • an exemplary manufacturing process for a quartz-based waveguide includes forming a glass film that will become the lower cladding 102 and core 103 forming the waveguide on a substrate 101 (step 1); Coating a photoresist 104 on the glass layer that will become the core 103 (step 2), transferring a circuit pattern by photolithography (step 3), and checking that the circuit pattern formed by photolithography is free of foreign matter or defects. (Step 4).
  • step 1 an additive such as germanium is added to the glass film that will become the core 103 so that it has a slightly higher refractive index than the glass that will become the lower cladding 102.
  • step 3 the portion indicated by a circle in step 3 is a top view of the wafer on which a circuit pattern has been formed in step 3.
  • FIG. 1 shows, as an example, a wafer to be inspected on which four circuit patterns 105-1 to 105-4 are formed.
  • the area to be inspected (the area from which images (reference images and images to be inspected) to be described later are obtained) is the entire circuit pattern transferred onto the wafer (in the example shown in FIG. 1, the four areas 106- 1 to 106-4), or may be divided regions (in the example shown in FIG. 1, for example, each of four regions 106-1 to 106-4).
  • An image of the region to be inspected may be taken using an imaging device that can observe the region to be inspected, such as a microscope or a camera. Then, using this photographed image, it is determined whether there are foreign objects or defects present on the wafer.
  • the detected foreign matter or defect may be caused by, for example, dust mixed in during resist coating in step 2, dust attached to the wafer during photolithography in step 3, or the like.
  • FIG. 2 is a block diagram illustrating an example of the configuration of a waveguide device inspection system 200 in the first embodiment of the present disclosure.
  • the waveguide device inspection system 200 used in step 4 includes an imaging device 201 that acquires an image (a reference image or an image to be inspected) of the inspection area to be inspected, and an image capture device 201 that stores the acquired image. It includes a storage device 205 and a calculation device 202 configured to generate a difference image (inspection image) by comparing the obtained inspection image and a reference image, and uses the generated inspection image to generate an inspection target.
  • This is an inspection system that detects foreign objects and defects in.
  • FIG. 2 exemplifies a configuration including a display device 203 for displaying images to be inspected, reference images, and the like.
  • the imaging device 201 is for photographing a reference image and an image to be inspected, and may be a device capable of observing an area to be inspected (for example, a camera, a magnifying glass such as an optical microscope, etc.).
  • the calculation device 202 is a device that controls the waveguide device inspection system 200, controls the imaging device 201 and the storage device 205, and performs various processing using the reference image and the image to be inspected (generation of a mask design image, which will be described later). , masking, generation of difference images, etc.).
  • the storage device 205 includes a design image storage section 206 , a mask design image storage section 207 , a to-be-inspected image storage section 208 , a reference image storage section 209 , and a difference image storage section 210 .
  • the imaging device 201, the computing device 202, the display device 203, and the storage device 205 are communicably connected to each other via a bus 212.
  • Computing device 202 includes one or more processing units, such as a central processing unit (CPU), a microprocessor unit (MPU), a graphics processing unit (GPU), or a CISC (Complex Instruction Set Computer).
  • a RISC (Reduced Instruction Set Computer) type CPU or the like can be used.
  • the display device 203 for example, a liquid crystal display (LCD) or a plasma display (PDP) can be used.
  • the storage device 204 can be a semiconductor memory, a hard disk, or the like.
  • FIG. 3 shows a waveguide device according to the first embodiment, which detects foreign matter or defects that unexpectedly occur in a pattern from an image obtained during the photolithography pattern inspection (corresponding to step 4 in FIG. 1) described in FIG.
  • FIG. 2 is a diagram illustrating an example of processing executed by the inspection system 200.
  • FIG. 3 illustrates an example in which each of the four divided regions 106-1 to 106-4 in FIG. 1 is used as an image to be inspected.
  • a mask design image 301 is first generated in order to mask portions other than the pattern that affect the optical device characteristics.
  • This mask design image 301 is generated using a design image created from design data that reflects the circuit design of the wafer to be inspected.
  • the pixel operation for generating the mask design image 301 from the design image is performed by setting all pixels corresponding to areas that do not affect the performance of the optical device to "0" (that is, “false") for each pixel in the design image.
  • the other parts are set to "1" (that is, "true”).
  • the mask is set so as to extract only the area that can be considered as a part that affects the performance of the optical device.
  • the width of the region (1") is set to be slightly wider than the width of the waveguide. Setting of the masking area for this waveguide pattern will be explained in detail later.
  • the reference image 302 can be, for example, an image obtained by visually inspecting the image taken in step 4 shown in FIG. 1 and taken by the imaging device 201 of the optical device in an ideal state without foreign objects or defects.
  • a masked reference image 303 is generated by performing a pixel-by-pixel multiplication process on this reference image 302 with the previously generated mask design image 301 .
  • images 304 and 307 to be inspected are acquired.
  • the images 304 and 307 to be inspected may be captured using the imaging device 201.
  • Masked images to be inspected 305 and 308 are generated by performing a pixel-by-pixel multiplication process on these images to be inspected 304 and 307 with the design image for mask 301, similarly to the reference image 302.
  • the integration process of the mask design image 301 and the reference image 302 or the images to be inspected 304 and 307 is performed based on the positions of the mask design image 301 and the reference image 302, and the positions of the mask design image 301 and the images to be inspected 304 and 307. It may be executed after performing the matching.
  • a pattern matching method is used for a circuit pattern of a design image having the same coordinate system as the mask design image 301 and a circuit pattern of a reference image 302 or images to be inspected 304 and 307 acquired from the imaging device 201. is used.
  • the positional deviation is detected by aligning the coordinate system of the reference image 302 or images to be inspected 304, 307 with the coordinate system of the design image so that the circuit patterns of the circuit patterns of the design image match.
  • the masked reference image 303 and the masked images to be inspected 305 and 307 are compared to obtain inspection images 306 and 309.
  • the first image to be inspected 304 is an image taken in step 4 shown in FIG. 1 of a wafer containing a foreign substance A that does not affect the performance of the optical device.
  • the first inspection is performed.
  • Image 306 is acquired.
  • foreign matter A that does not affect the performance of the optical device is not detected because it exists in the masked area. Note that in the first inspection image 306, the original circuit pattern is shown with a two-dot chain line for reference, but the circuit pattern is not displayed in the actual inspection image.
  • the second image to be inspected 307 is an image of a foreign object B that does not affect the performance of the optical device, a foreign object C that affects the performance of the optical device, and a wafer with a defect.
  • the second image to be inspected 307 is subjected to the product calculation process for each pixel with the design image, and a masked second image to be inspected 308 is generated.
  • a second inspection image 309 is obtained by performing a comparison process between the second inspection image 308 and the masked reference image 303.
  • the second inspection image 309 also shows the original circuit pattern with a chain double-dashed line.
  • the foreign substance B is present in the masked area and is therefore not detected.
  • the foreign matter C and the defect are detected because they are present in the unmasked area.
  • the optical device chip including the second image to be inspected 307 is appropriately determined to be rejected because only the foreign matter C and defects that affect the performance of the optical device are detected.
  • foreign matter B is determined to be a foreign matter that does not affect the performance of the optical device.
  • a difference image is simply obtained by performing a difference process for each pixel of each image. may be generated as the inspection images 306 and 309.
  • a test image may be generated by setting a certain threshold value for this difference image, and setting pixels with a value below the threshold value to "0" and setting pixels with a value above the threshold value to "1". Note that similar processing may be performed after the images 304 and 307 to be inspected are binarized in advance.
  • the waveguide device inspection system 200 shown in FIG. 3 uses a design image created from design data of a wafer to be inspected to mask areas that do not affect the performance of optical devices.
  • a design image created from design data of a wafer to be inspected to mask areas that do not affect the performance of optical devices. include.
  • the masking area is set to have a width slightly wider than the width of the waveguide.
  • the design data is a waveguide pattern, by setting the refractive index of the core and cladding of the waveguide in advance, effective guiding including the evanescent field of the optical electric field seeping into the cladding described above can be achieved.
  • the wave width We can be determined.
  • W is the waveguide width according to the design data
  • is the wavelength of the optical electric field
  • n eff is the effective refractive index of the waveguide
  • n clad is the refractive index of the cladding.
  • FIG. 4 is a top view conceptually showing masking of a waveguide pattern applying an effective waveguide width We including an evanescent field, where (a) is an image before masking, and (b) is an image after masking. Images are shown respectively.
  • the electric field of the optical signal propagating within the core 103 leaks out to the cladding side as an evanescent field, and if its length (evanescent length) is d, then the effective waveguide width including the evanescent field is We corresponds to W+2d.
  • the waveguide width on the design data is W
  • the design image shows a By setting the width of the region to be true (“We"), efficient masking of the waveguide pattern becomes possible.
  • FIG. 5 is a diagram showing a flow of processing executed by the waveguide device inspection system 200 in the first embodiment of the present disclosure.
  • a design image is generated from the design data (S401), and by referring to the generated design image, pixels in areas that affect the performance of the optical device are determined.
  • a mask design image C is obtained in which the value is set to "1" (ie, "true") and pixels in other areas are set to "0" (ie, "false”) (S402).
  • the value of each pixel expressed by the xy coordinates of the mask design image C is assumed to be C(x,y).
  • a region where the pixel value is "1" is set using the effective waveguide width We including the evanescent field.
  • an image of a good product that is confirmed to be free of foreign objects or defects is set as a reference image B for the inspection area (S403).
  • the value of each pixel expressed by the xy coordinates of the inspection image B is assumed to be B(x,y).
  • integration processing is performed for each pixel of the reference image B and the mask design image C.
  • the reference image B is masked and a masked reference image is generated (S404).
  • the value of each pixel expressed by the x, y coordinates of the masked reference image is expressed as B(x,y) ⁇ C(x, y).
  • an image of the inspection target is acquired and used as the inspection target image A (S405). Note that the order of obtaining mask design image C (S401, S402), obtaining reference image B (S403, S404), and obtaining image to be inspected A (S405) can be reversed. It's fine, and they can be done in parallel.
  • the image to be inspected A is masked and a masked image to be inspected is generated (S406).
  • the area where the pixel value is "1" ie, "true" is set using the effective waveguide width We including the evanescent field.
  • the image to be inspected A at this time is photographed using the imaging device 201 of the waveguide device inspection system 200 of this embodiment, for example, in step 4 of FIG.
  • each pixel of the image to be inspected A is A(x, y)
  • the value of each pixel of the masked image to be inspected is similarly A(x, y) ⁇ C(x, y) It can be defined as
  • the inspection result is determined using the inspection image. That is, a pass/fail determination is made based on whether a foreign object or defect exists in the inspection image, which is a difference image (S408).
  • This pass/fail determination may be made by calculating the areas of foreign objects and defects present in the inspection image, and determining whether there are foreign objects or defects whose areas exceed a predetermined threshold value. As a result, it is possible to inspect only the parts that affect the performance of the optical device, and to make a pass/fail determination on only the foreign objects and defects present in those parts.
  • both the image to be inspected A and the reference image B were masked by the mask design image C, but only the image to be inspected A was masked, and this masked image to be inspected and the reference image B were masked.
  • a similar inspection can be performed by extracting the inspection image based on the difference between the two.
  • the waveguide device inspection system 200 of the present embodiment only the portions that affect the performance of the optical device are to be inspected, and pass/fail judgments can be made only for foreign objects and defects present in those portions. Can be done. Therefore, the calculation cost required for automatic visual inspection during the manufacture of optical devices is suppressed, and deterioration in inspection throughput is reduced.
  • the masking area of the waveguide pattern is set using the effective waveguide width We that includes the evanescent field. Therefore, it becomes possible to efficiently and accurately inspect the region of the waveguide pattern that includes the evanescent field.
  • a first embodiment of a waveguide device inspection system according to the present disclosure will be described in detail with reference to the drawings. Note that this embodiment will also be described by taking as an example a case where the waveguide device inspection system of this embodiment is applied to inspection of a photolithography process in the wafer manufacturing process shown in FIG. 1. Similar to the first embodiment, the waveguide device inspection system in this embodiment has the same configuration as the waveguide device inspection system 200 shown in FIG. 2. Further, similarly to the first embodiment, a mask design image 301 and a reference image 302 are generated in advance by the method shown in FIG. In addition, the masking area of the waveguide pattern is also set using the effective waveguide width We including the evanescent field, which is similar to the first embodiment.
  • FIG. 6 is a diagram illustrating, as an example, the process of detecting foreign objects and defects by the waveguide device inspection system 200 in the second embodiment of the present disclosure.
  • comparison images 501 and 504 are generated by first performing a comparison process between images 304 and 307 to be inspected taken by the imaging device 201 and the reference image 302.
  • a pixel-by-pixel difference calculation may be used, or binarization may be performed in advance.
  • the comparison images 501 and 504 generated in this manner include foreign matter A or foreign matter B that does not affect the performance of the optical device.
  • masked comparison images 502 and 505 are generated by multiplying the comparison images 501 and 504 by the mask design image 301, and finally inspection images 503 and 506 are obtained.
  • Masked comparison images 502 and 505 may also be obtained.
  • a pattern matching method is used for alignment between a circuit pattern of a design image having the same coordinate system as the mask design image 301 and a circuit pattern of a reference image 302 or images to be inspected 304 and 307 acquired from the imaging device 201. used.
  • the positional deviation is detected by aligning the coordinate system of the reference image 302 or images to be inspected 304, 307 with the coordinate system of the design image so that the circuit patterns of the circuit patterns of the design image match.
  • circuit patterns are shown with dotted lines in comparison images 501 and 504, masked comparison images 502 and 505, and inspection images 503 and 506 for reference.
  • the circuit pattern is not displayed in the actual image.
  • the first image to be inspected 304 is an image taken in step 4 shown in FIG. 1 of a wafer containing a foreign substance A that does not affect the performance of the optical device.
  • the first comparison image 501 generated by comparing the first image to be inspected 304 and the reference image 302 there is a foreign substance A that does not affect the performance of the optical device.
  • the first inspection image 503 generated by multiplying the first comparison image 501 by the mask design image 301 the foreign matter A that does not affect the performance of the optical device is masked and removed. Therefore, similarly to the first embodiment, foreign matter A is not detected in the first inspection image 503.
  • a comparison is made with the reference image for a second image to be inspected 307, which is an image of a foreign object B that does not affect the performance of the optical device, a foreign object C that affects the performance of the optical device, and a wafer with defects.
  • the second comparison image 504 generated through the processing foreign objects B and C and defects are present.
  • the second inspection image 506 generated by multiplying the second comparison image 504 by the mask design image 301 the foreign matter B that does not affect the performance of the optical device is masked and removed. Therefore, only foreign matter C and defects that affect the performance of the optical device are finally detected.
  • the waveguide device inspection system 200 in this embodiment can appropriately determine that the optical device chip including the second image to be inspected 307 is rejected.
  • FIG. 7 is a flow diagram of the inspection process executed by the waveguide device inspection system 200 in the second embodiment of the present disclosure.
  • a design image is generated from design data prior to inspection (S601), and a mask design image C is obtained by referring to the generated design image (S602). ).
  • an image of a non-defective product that is confirmed to be free of foreign matter or defects is set as a reference image B (S603).
  • D(x, y) is the value of each pixel expressed by the xy coordinates of the inspection image D.
  • a masked difference image that is, an inspection image is generated by calculating D(x, y) ⁇ C(x, y), which is an integration process of the generated difference image D and the mask design image C ( S606).
  • " ⁇ " is used here as a symbol indicating a product operation for each pixel of the image.
  • obtaining the mask design image C (S601, S602), obtaining the reference image B (S603), obtaining the inspected image A (S604), and calculating the difference between the inspected image and the reference image.
  • Generating an inspection image may be performed in the reverse order or may be performed in parallel.
  • the inspection result is determined using the masked difference image. That is, a pass/fail determination is made based on whether a foreign object or defect exists in the inspection images 503 and 506, which are masked difference images. (S607). This pass/fail judgment may be made by calculating the area of foreign objects and defects present in the inspection images 503 and 506, and determining whether there are foreign objects or defects whose area exceeds a predetermined threshold value. good. This makes it possible to inspect only the portions that affect the performance of the optical device, and to perform pass/fail judgments targeting only foreign objects and defects present in those portions.
  • the waveguide device inspection system 200 sets the masking area of the waveguide pattern using the effective waveguide width We including the evanescent field. . Therefore, it becomes possible to efficiently and accurately inspect the region of the waveguide pattern that includes the evanescent field.
  • the waveguide device inspection system according to the present disclosure can be similarly used when inspecting a wafer having control wiring formed on the waveguide, such as an optical switch or an optical variable attenuator.
  • a wafer having control wiring formed on the waveguide such as an optical switch or an optical variable attenuator.
  • the unevenness of the lower layer at that location will be reflected in the pattern to be inspected, making it difficult to see the pattern in the upper layer to be inspected. may be different. In such a case, false detections may be reduced by masking portions of the upper layer pattern that appear differently.
  • the waveguide device inspection system is characterized by efficiently detecting foreign objects and defects by masking areas that do not affect the performance of the optical device. Furthermore, by setting the masking area of the waveguide pattern based on the effective waveguide width We that takes evanescent fields into consideration, the area of the waveguide pattern that includes the evanescent field can be inspected efficiently and with high precision. becomes possible.
  • the waveguide device inspection system according to the present disclosure which has such characteristics, is expected to be applied as a highly efficient and highly accurate inspection system during the manufacture of waveguide devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

導波路デバイスにおける異物や欠陥の検査を、高精度かつ高効率に実現するための導波路デバイス検査システムを提供する。本開示による導波路デバイス検査システムは、差分画像を用いて検査結果を判定する導波路デバイス検査システムであって、検査対象の被検査領域の画像を取得する撮像装置と、取得した画像を記憶する記憶装置と、取得した画像と撮像装置で予め取得した参照画像とを比較して差分画像を生成するように構成された計算装置とを含み、計算装置は、検査対象が構成する導波路パタンが形成された導波路デバイスの設計画像を参照し、導波路デバイスの性能に影響を及ぼす部分のみが抽出された差分画像を生成するようにさらに構成され、導波路デバイスの性能に影響を及ぼす部分のみを抽出することにおいて、当該部分の幅が、導波路パタンの導波路幅とエバネセント長の2倍の和で求められる実効的な導波路幅を用いて設定される。

Description

導波路デバイス検査システム
 本開示は、導波路デバイス検査システムに関する。
 光ファイバ通信の進展により、光トランシーバや光スイッチなどの光通信デバイスの実用化が進められている。これらの光通信デバイスに実装される光デバイスは、シリコンや化合物半導体などのウエハ上に形成されるが、これはフォトリソグラフィとドライエッチングなどの電子デバイスの製造技術で培われた技術を効果的に利用でき、量産性に優れるという特徴を持つためである。
 光デバイスは、それが扱う光信号の波長(約1μm)が電子の波長(速度にもよるが、約0.1nm)に比べて圧倒的に長いため、信号伝達を行う経路(すなわち導波路)を急峻に曲げることができない。したがって、光デバイスの経路は、電子デバイスの経路に比べて圧倒的に粗であり、回路パタンが占有する面積も、光デバイス(cmオーダー)は、電子デバイス(mmオーダー)に比べて非常に大きくなる。このことから、光デバイスでは、製造時の自動外見検査に必要な演算コストも電子デバイスに比べて1桁増大し、検査スループットが劣化するという課題があった。
 また、信号の搬送を担う素粒子の波長違いから、電子デバイスと光デバイスのウエハ製造における外観検査においても、求められる性能が異なる。とりわけ、導波路パタンが形成された導波路デバイスにおいては、微細領域であるエバネセント場を含む導波路パタン上の検査において、高い精度が要求される。
 導波路パタンに沿って伝搬する光信号は、コアとクラッドの界面で生じる全反射によってコア領域内に閉じ込められる。しかしながら、光信号の光電界はクラッド層に浸み出しており、この浸み出している電場はエバネセント場と呼ばれる。エバネセント場のクラッド層への侵入長(以下、エバネセント長という)は、コアとクラッドの屈折率差にもよるが、通常数μm~数十μmである。このエバネセント場を含んだ導波路パタンの領域に存在する異物や欠陥は、導波路デバイスの光学特性(光信号の伝播特性等)に影響を及ぼす。したがって、このエバネセント場を含んだ導波路パタン領域の外観検査は、高い判定精度を有することが求められる。
 このような導波路デバイスウエハの製造における導波路パタンの外観検査では、肉眼による目視観察によって合否を判定することも考えられる。しかしながら、肉眼による目視観察では微細領域であるエバネセント場まで含めた検査は、判定精度が低くなり、工程稼働の増加に伴ってコストも増加し得る。
特開平3-026945号公報
M. Ota, K. Yamaguchi, and K. Suzuki, "Generative-adversarial-network-based dimensional measurement of optical waveguides," Opt. Express  30, 6365-6373 (2022).
 本開示は、上記のような課題に対して鑑みてなされたものであり、その目的とするところは、導波路デバイスにおける導波路パタンのエバネセント場を含む領域に存在する異物や欠陥の検査を、高精度かつ高効率に実現するための導波路デバイス検査システムを提供することにある。
 上記のような課題に対し、本開示では、差分画像を用いて検査結果を判定する導波路デバイス検査システムであって、検査対象の被検査領域の画像を取得する撮像装置と、取得した画像を記憶する記憶装置と、取得した画像と撮像装置で予め取得した参照画像とを比較して差分画像を生成するように構成された計算装置とを含み、計算装置は、検査対象が構成する導波路パタンが形成された導波路デバイスの設計画像を参照し、導波路デバイスの性能に影響を及ぼす部分のみが抽出された差分画像を生成するようにさらに構成され、導波路デバイスの性能に影響を及ぼす部分のみを抽出することにおいて、導波路デバイスの性能に影響を及ぼす部分の幅が、導波路パタンの導波路幅(W)とエバネセント長(d)の2倍の和(W+2d)で求められる実効的な導波路幅(We)を用いて設定されることを特徴とする導波路デバイス検査システムを提供する。
例示的な光デバイスのウエハの製造工程を概略的に説明する図である。 図2は、本開示の第1および第2の実施形態における導波路デバイス検査システム200の構成の一例を示すブロック図である。 図1で説明したフォトリソグラフィパタン検査(図1における工程4に相当)において取得した画像から、パタンに予期せず発生した異物や欠損を検出する第1の実施形態の導波路デバイス検査システム200が実行する処理の一例を説明する図である。 エバネセント場を含む実効的な導波路幅Weを適用した導波路パタンのマスキングを概念的に示す上面図である。 本開示の第1の実施形態における導波路デバイス検査システム200が実行する処理をフローとして示した図である。 本開示の第2の実施形態における、導波路デバイス検査システム200による異物や欠損を検出する処理を一例として説明する図である。 本開示の第2の実施形態における導波路デバイス検査システム200が実行する検査処理のフロー図である。
 以下に、図面を参照しながら本開示の種々の実施形態について詳細に説明する。同一または類似の参照符号は同一または類似の要素を示し重複する説明を省略する場合がある。材料および数値は例示を目的としており本開示の技術的範囲の限定を意図していない。以下の説明は、一例であって本開示の一実施形態の要旨を逸脱しない限り、一部の構成を省略若しくは変形し、または追加の構成とともに実施することができる。
(第1の実施形態)
 以下に、本開示による導波路デバイス検査システムの第1の実施形態について、図面を参照して詳細に説明する。
 図1は、例示的な光デバイスのウエハの製造工程を概略的に説明する図である。尚、図1は例として、石英系導波路の製造工程を図示している。図1に示される通り、石英系導波路の例示的な製造工程は、基板101上に、導波路を形成する下部クラッド102及びコア103となるガラス膜を成膜すること(工程1)と、コア103となるガラス層の上にフォトレジスト104を塗布すること(工程2)と、フォトリソグラフィにより回路パタンを転写すること(工程3)と、フォトリソグラフィにより形成された回路パタンに異物や欠損がないかを確認するフォトリソグラフィパタン検査を行うこと(工程4)と、を含む。
 工程1において、コア103となるガラス膜には、下部クラッド102となるガラスより若干屈折率が高くなるように、ゲルマニウムなどの添加物が添加される。また、図1において、工程3の丸枠で示した部分は、工程3において回路パタンを形成した状態のウエハを上面から見た図を示している。図1では、検査対象となるウエハに、一例として、回路パタン105-1~105-4の4つを形成する被検査ウエハの場合を示している。
 工程4では、被検査領域(後述する画像(参照画像や被検査画像)を取得する領域)は、ウエハ上に複数転写された回路パタンの全体(図1に示す例では、4つの領域106-1~106-4のすべて)であってもよく、分割された領域(図1に示す例では、例えば、4つの領域106-1~106-4の各々)であってもよい。被検査領域の画像は、顕微鏡やカメラなど、被検査領域を観察可能な撮像装置を用いて撮影され得る。そして、この撮影された画像を用いて、ウエハ上に存在する異物や欠陥の有無を判定する。検出される異物や欠損は、例えば、工程2におけるレジスト塗布時に混入したごみや、工程3におけるフォトリソグラフィ時にウエハ上に付着したごみなどによって生じ得る。
 図2は、本開示の第1の実施形態における導波路デバイス検査システム200の構成の一例を示すブロック図である。図2に示される通り、工程4で用いられる導波路デバイス検査システム200は、検査対象の被検査領域の画像(参照画像や被検査画像)を取得する撮像装置201と、取得した画像を記憶する記憶装置205と、取得した被検査画像と参照画像とを比較して差分画像(検査画像)を生成するように構成された計算装置202と、を含み、生成された検査画像を用いて検査対象の異物や欠損を検出する検査システムである。尚、図2では、被検査画像や参照画像等を表示するための表示装置203を含む形態が例示されている。
 撮像装置201は、参照画像および被検査画像を撮影するものであって、被検査領域を観察可能なもの(例えば、カメラ、光学顕微鏡などの拡大鏡等)であり得る。計算装置202は、導波路デバイス検査システム200をコントロールする装置であり、撮像装置201や記憶装置205を制御し、参照画像や被検査画像を用いた様々な処理(後述するマスク用設計画像の生成、マスキング、差分画像の生成等)を実行する。
 記憶装置205は、設計画像記憶部206、マスク用設計画像記憶部207、被検査画像記憶部208、参照画像記憶部209、および差分画像記憶部210を含む。撮像装置201、計算装置202、表示装置203および記憶装置205は、互いにバス212によって通信可能に接続されている。計算装置202は、1つまたは複数の処理ユニットを含み、処理ユニットは、例えば、中央演算処理装置(CPU)、マイクロプロセッサユニット(MPU)、グラフィック処理装置(GPU)、CISC(Complex  Instruction  Set  Computer)型のCPUや、RISC(Reduced  Instruction  Set  Computer)型のCPUなどを使用することができる。表示装置203は、例えば、液晶ディスプレイ(LCD)やプラズマディスプレイ(PDP)などを使用することができる。記憶装置204は、半導体メモリ、ハードディスクなどを使用することができる。
 図3は、図1で説明したフォトリソグラフィパタン検査(図1における工程4に相当)において取得した画像から、パタンに予期せず発生した異物や欠損を検出する第1の実施形態の導波路デバイス検査システム200が実行する処理の一例を説明する図である。図3は、図1における分割された4つの領域106-1~106-4を一つずつ被検査画像として用いる場合を例にして説明している。図3に示される通り、本実施形態における導波路デバイス検査システム200が実行する処理では、まず、光デバイス特性に影響するパタン以外の部分をマスクするために、マスク用設計画像301を生成する。このマスク用設計画像301は、検査対象となるウエハの回路設計が反映された設計データから作成される設計画像を用いて生成される。設計画像からマスク用設計画像301を生成するためのピクセル演算は、設計画像の各ピクセルに対して、光デバイスの性能に影響しない領域に対応するピクセルをすべて“0”(すなわち“偽”)となるように設定し、それ以外の部分を“1”(すなわち“真”)となるように設定する。言い換えれば、光デバイスの性能に影響する部分として考え得る領域のみを抽出するようにマスクを設定する。
 本実施形態では、導波路パタンを形成する場合のフォトリソグラフィプロセスのパタン検査を例に説明しているが、このような場合には、光デバイスの性能に影響を与える(マスク用設計画像の“1”となる)領域は、上述のエバネセント場を考慮し、導波路の幅よりも少し広い幅を設定することが好ましい。この導波路パタンに対する、マスキングの領域の設定については、後述において詳細に説明する。
 参照画像302は、例えば、図1に示した工程4において撮影した画像を目視で検査し、異物や欠損のない理想的な状態の光デバイスを撮像装置201で撮影した画像とすることができる。この参照画像302に対して、先に生成したマスク用設計画像301とのピクセルごとの積演算処理を行うことで、マスクされた参照画像303を生成する。
 次いで、検査対象となる被検査画像304、307を取得する。被検査画像304、307は、撮像装置201を用いて撮影され得る。この被検査画像304、307に対して、参照画像302と同様に、マスク用設計画像301とのピクセルごとの積演算処理を行うことでマスクされた被検査画像305、308を生成する。
 マスク用設計画像301と参照画像302、または被検査画像304、307との積算処理は、マスク用設計画像301と参照画像302、および、マスク用設計画像301と被検査画像304、307との位置合わせを行なったうえで実行されてもよい。この位置合わせには、例えば、マスク用設計画像301と同じ座標系を持つ設計画像の回路パタンと、撮像装置201より取得された参照画像302または被検査画像304、307の回路パタンに対するパタンマッチング手法が使用される。具体的には、設計画像の回路パタンの回路パタンが一致するように設計画像の座標系に参照画像302または被検査画像304、307の座標系を合わせるようにして位置ずれを検出する。
 最後に、マスクされた参照画像303とマスクされた被検査画像305、307とを比較処理して検査画像306、309を得る。
 第1の被検査画像304は、光デバイスの性能に影響のない異物Aがあるウエハを図1に示す工程4において撮像した画像である。この第1の被検査画像304とマスク用設計画像301との積算処理により生成された、マスクされた被検査画像305と上述のマスクされた参照画像303とを比較することにより、第1の検査画像306が取得される。図3に示す例では、第1の検査画像306では、光デバイスの性能に影響のない異物Aは、マスクされた領域に存在しているため、検出されない。尚、第1の検査画像306には、参考のため、もとの回路パタンを二点鎖線で示しているが、実際の検査画像には、回路パタンは表示されない。
 一方、第2の被検査画像307は、光デバイスの性能に影響のない異物Bと光デバイスの性能に影響のある異物Cおよび欠損があるウエハを撮像した画像である。第2の被検査画像307に対しても同様に、設計画像とのピクセルごとの積演算処理を行い、マスクされた第2の被検査画像308を生成する。第1の検査画像306と同じく、第2の被検査画像308とマスクされた参照画像303との比較処理を行うことで、第2の検査画像309を得る。第2の検査画像309にも参考のため、もとの回路パタンを二点鎖線で示している。第2の検査画像309において、異物Bはマスクされる領域に存在しているため、検出はされない。一方、異物Cおよび欠損は、マスクされていない領域に存在しているため、検出される。このようにして、第2の被検査画像307を含む光デバイスチップは、当該光デバイスの性能に影響のある異物Cおよび欠陥のみが検出されるため、適切に不合格と判定される。一方、異物Bに対しては、光デバイスの性能に影響のない異物と判定される。
 上記のマスクされた参照画像303と、マスクされた第1の被検査画像305または第2の被検査画像308との比較処理としては、例えば、単純に各画像のピクセルごとの差分処理による差分画像を検査画像306,309として生成するようにしてもよい。また、この差分画像に対してある閾値を設け、閾値以下の値のピクセルを“0”に、閾値以上の値のピクセルを“1”にするようにして検査画像を生成してもよい。なお、被検査画像304,307をあらかじめ二値化したのちに、同様の処理を行っても構わない。
 以上述べた通り、図3に示される導波路デバイス検査システム200は、検査対象となるウエハの設計データから作成される設計画像を用いて、光デバイスの性能に影響のない領域をマスキングすることを含む。そして、導波路のコアパタンを形成するフォトリソグラフィプロセスのパタン検査の場合、マスキングの領域は、導波路の幅よりも少し広い幅を設定することが好ましい。ここで、当該設計データが導波路パタンである場合、導波路のコアとクラッドの屈折率をあらかじめ設定しておくことで、上述したクラッドに浸み出す光電界のエバネセント場を含む実効的な導波路幅Weを求めることができる。導波路パタンのマスキングの領域(ピクセルの値を“1”(すなわち“真”)とする領域)を設定する際、このエバネセント場を含む実効的な導波路幅Weを適用すれば、効率的に導波路パタンをマスキングすることができる。
 特に伝播損失の低き弱導波路におけるWeは、(式1)で求めることができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Wは設計データ上の導波路幅、λは光電界の波長、neffは導波路の実効屈折率、ncladはクラッドの屈折率を示す。また、伝播モードの偏光がTE(Transverse Electric)モードのときはσ=0、TM(Transverse Magnetic)モードのときはσ=1である。
 図4は、エバネセント場を含む実効的な導波路幅Weを適用した導波路パタンのマスキングを概念的に示す上面図であり、(a)はマスキング前の画像を、(b)はマスキング後の画像を、それぞれ示している。上述の通り、コア103内を伝播する光信号の電界は、クラッド側にエバネセント場として浸み出しており、その長さ(エバネセント長)をdとすると、エバネセント場を含む実効的な導波路幅Weは、W+2dに相当する。上述の通り、コア103およびエバネセント場の領域に存在する異物および欠損は、光の伝播特性に影響を及ぼすため、設計データ上での導波路幅がWである場合、設計画像で1(すなわち“真”)とする領域の幅をWeと設定することで、効率的な導波路パタンのマスキングが可能となる。
 次いで、図5を参照して、以下に本実施形態における導波路デバイス検査システム200が実行する処理のフローの一例を説明する。
 図5は、本開示の第1の実施形態における導波路デバイス検査システム200が実行する処理をフローとして示した図である。ウエハの検査(図1における工程4に相当)の実行に際して、設計データから、設計画像を生成し(S401)、生成した設計画像を参照して、光デバイスの性能に影響を及ぼす領域のピクセルの値を“1”(すなわち“真”)とし、それ以外の領域のピクセルを“0”(すなわち“偽”)に設定したマスク用設計画像Cを得る(S402)。このとき、マスク用設計画像Cのx-y座標によりあらわした各ピクセルの値をC(x,y)とする。加えて、導波路パタンのマスキングにおいてピクセルの値を“1”(すなわち“真”)とする領域は、エバネセント場を含む実効的な導波路幅Weを用いて設定する。
 また、検査対象となるウエハのいくつかに対して被検査領域を撮像した画像のうち、異物や欠損等のないことを確認した良品の画像を当該被検査領域における参照画像Bとする(S403)。このとき、検査画像Bのx-y座標によりあらわした各ピクセルの値をB(x,y)とする。
 つぎに、参照画像Bとマスク用設計画像Cの各ピクセルについて積算処理を行う。参照画像Bとマスク用設計画像Cの各ピクセルの積算処理を行うことで、参照画像Bをマスキングして、マスクされた参照画像を生成する(S404)。ここで、マスキングした参照画像のx,y座標によりあらわした各ピクセルの値は、画像のピクセルごとの積演算を示す記号として“∧”と用いて、B(x,y)∧C(x,y)と定義できる。検査を実行するにあたって、検査対象の画像を取得して被検査画像Aとする(S405)。なお、マスク設計画像Cを得ること(S401、S402)と、参照画像Bを取得すること(S403、S404)および被検査画像Aを取得すること(S405)とは、その順序が逆転してもよいし、並行に行われてもよい。
 次に、被検査画像Aとマスク用設計画像Cの各ピクセルについて積算処理を行うことで、被検査画像Aをマスキングし、マスクされた被検査画像を生成する(S406)。ここでも、導波路パタンのマスキングにおいて、ピクセルの値を“1”(すなわち“真”)とする領域はエバネセント場を含む実効的な導波路幅Weを用いて設定する。また、このときの被検査画像Aは、例えば、図1の工程4において、本実施形態の導波路デバイス検査システム200の撮像装置201を用いて撮影される。ここで、被検査画像Aの各ピクセルの値をA(x,y)とすると、マスクされた被検査画像の各ピクセルの値は、同様にA(x,y)∧C(x,y)と定義できる。
 そして、最後に、マスクされた被検査画像とマスクされた参照画像との差分、すなわち、B(x,y)∧C(x,y)とA(x,y)∧C(x,y)との差分をとることで、その差分画像である検査画像を生成する(S407)。
 この導波路デバイス検査システム200が実行する検査方法の処理では、検査画像を用いて検査結果を判定する。すなわち、差分画像である検査画像内に異物または欠損が存在するか否かで、合否判定を行う(S408)。この合否判定は、検査画像内に存在する異物および欠損の面積を算出し、その面積が所定の閾値を超える異物および欠損が存在するか否かで、合否判定を行うようにしてもよい。これにより、光デバイスの性能に影響のある部分のみを検査対象として、その部分に存在する異物および欠損のみを対象とした検査の合否判定を行うことができる。
 なお、上記の処理においては、被検査画像Aおよび参照画像Bの両方をマスク用設計画像Cによりマスキングしたが、被検査画像Aのみをマスキングし、このマスクされた被検査画像と参照画像Bとの差分により検査画像を抽出するようにしても同様の検査を実施することができる。
 以上のように、本実施形態における導波路デバイス検査システム200によれば、光デバイス性能に影響のある部分のみを検査対象とし、その部分に存在する異物および欠損のみを対象として合否判定を行うことができる。そのため、光デバイスの製造時における自動外見検査に必要な演算コストが抑制され、検査スループットの劣化が軽減される。
 さらに、本実施形態における導波路デバイス検査システム200では、導波路パタンのマスキングの領域を、エバネセント場を含む実効的な導波路幅Weを用いて設定する。そのため、エバネセント場を含む導波路パタンの領域を効率的かつ高精度に検査することが可能となる。
(第2の実施形態)
 以下に、本開示による導波路デバイス検査システムの第1の実施形態について、図面を参照して詳細に説明する。なお、本実施形態においても、図1に示したウエハの製造工程におけるフォトリソグラフィ工程の検査に本実施の形態の導波路デバイス検査システムを適用する場合を例にとって説明する。第1の実施形態と同様に、本実施形態における導波路デバイス検査システムは、図2に示される導波路デバイス検査システム200と同じ構成を有する。また、第1の実施形態と同様に、図3に示されるような方法で、マスク用設計画像301および参照画像302が予め生成される。加えて、導波路パタンのマスキングの領域は、エバネセント場を含む実効的な導波路幅Weを用いて設定されるという点においても、第1の実施形態と同様である。
 図6は、本開示の第2の実施形態における、導波路デバイス検査システム200による異物や欠損を検出する処理を一例として説明する図である。本実施形態では、第1の実施形態と異なり、まず、撮像装置201で撮影した被検査画像304、307と参照画像302の比較処理を行うことにより、比較画像501、504を生成する。比較処理に当たっては、第1の実施形態と同様に、ピクセルごとの差分演算を用いてもよく、予め二値化を施してもよい。このようにして生成した比較画像501、504には、光デバイス性能に影響を及ぼさない異物Aまたは異物Bが含まれる。次に、比較画像501、504にマスク用設計画像301を積演算することによってマスクされた比較画像502、505を生成し、最終的に検査画像503、506を得る。
 比較画像501、504とマスク用設計画像301との積算処理を行う際には、第1の実施形態と同様に、両画像の位置合わせを行ったうえで、比較画像のマスキングを行うことにより、マスクされた比較画像502、505を得るようにしてもよい。位置合わせには、例えば、マスク用設計画像301と同じ座標系を持つ設計画像の回路パタンと、撮像装置201より取得された参照画像302または被検査画像304、307の回路パタンに対するパタンマッチング手法が使用される。具体的には、設計画像の回路パタンの回路パタンが一致するように設計画像の座標系に参照画像302または被検査画像304、307の座標系を合わせるようにして位置ずれを検出する。
 なお、図3と同様に、比較画像501、504、マスクされた比較画像502、505、および検査画像503、506には、それぞれ参考のため、もとの回路パタンを点線で示しているが、実際の画像には、回路パタンは表示されない。
 第1の被検査画像304は、光デバイスの性能に影響のない異物Aがあるウエハを図1に示す工程4において撮像した画像である。この第1の被検査画像304と参照画像302とを比較処理して生成された第1の比較画像501には、光デバイスの性能に影響しない異物Aが存在している。しかしながら、この第1の比較画像501にマスク用設計画像301を積演算して生成された第1の検査画像503では、光デバイスの性能に影響しない異物Aがマスキングされて除去されている。したがって、第1の実施形態と同様に、第1の検査画像503では、異物Aは検出されない。
 また、光デバイスの性能に影響のない異物Bと、光デバイスの性能に影響のある異物Cおよび欠損が存在するエハの画像である第2の被検査画像307に対して、参照画像との比較処理を行い生成した第2の比較画像504においては、異物B、Cおよび欠損が存在している。しかしながら、第2の比較画像504にマスク用設計画像301を積演算することにより生成された第2の検査画像506では、光デバイスの性能に影響しない異物Bがマスキングされて除去される。したがって、光デバイスの性能に影響する異物Cおよび欠損のみが最終的に検出される。この結果、本実施形態における導波路デバイス検査システム200は、第2の被検査画像307を含む光デバイスチップは適切に不合格と判定することができる。
 次いで、図7を参照して、以下に本実施形態における導波路デバイス検査システム200が実行する処理のフローの一例を説明する。
 図7は、本開示の第2の実施形態における導波路デバイス検査システム200が実行する検査処理のフロー図である。本実施形態においても、第1の実施形態と同様に、検査に先立って、設計データから設計画像を生成し(S601)、生成した設計画像を参照して、マスク用設計画像Cを得る(S602)。また、検査対象となるウエハのいくつかに対して被検査領域を撮影した画像のうち、異物や欠損等のないことを確認した良品の画像を参照画像Bとする(S603)。
 つぎに、撮像装置201を用いて被検査画像Aを取得する(S604)。続いて、被検査画像Aと参照画像Bとを比較処理して差分画像D(x、y)=A(x,y)-B(x,y)を生成する(S605)。尚、第1の実施形態における説明と同様に、例えば、D(x,y)は、検査画像Dのx-y座標によりあらわした各ピクセルの値である。生成された差分画像Dとマスク用設計画像Cとの積算処理であるD(x、y)∧C(x,y)を演算することにより、マスクされた差分画像、すなわち検査画像を生成する(S606)。尚、ここでも第1の実施形態における説明と同様に、“∧”は、画像のピクセルごとの積演算を示す記号として用いている。
 なお、マスク設計画像Cを得ること(S601、S602)と、参照画像Bを取得すること(S603)および被検査画像Aを取得すること(S604)並びに被検査画像と参照画像の差分を演算し検査画像を生成すること(S605)とは、実行される順序が逆転してもよいし、並行に行われてもよい。
 本実施形態において導波路デバイス検査システム200が実行する検査方法の処理では、マスクされた差分画像を用いて検査結果を判定する。すなわち、マスクされた差分画像である検査画像503、506内に異物または欠損が存在するか否かで、合否判定を行う。(S607)。この合否判定は、検査画像503、506内に存在する異物および欠損の面積を算出し、その面積が所定の閾値を超える異物および欠損が存在するか否かで、合否判定を行うようにしてもよい。これにより、光デバイスの性能に影響のある部分のみを検査対象として、その部分に存在する異物および欠損のみを対象とした合否判定を行うことができる。
 以上述べたように、本実施形態によっても、光デバイス性能に影響のある部分のみを検査対象とし、その部分に存在する異物および欠損のみを対象として合否判定を行うことができる。そのため、光デバイスの製造時における自動外見検査に必要な演算コストが抑制され、検査スループットの劣化が軽減される。
 さらに、本実施形態においても、第1の実施形態と同様に、導波路デバイス検査システム200では、導波路パタンのマスキングの領域を、エバネセント場を含む実効的な導波路幅Weを用いて設定する。そのため、エバネセント場を含む導波路パタンの領域を効率的かつ高精度に検査することが可能となる。
 第1および第2の実施形態では、図1の導波路回路パタンのフォトリソグラフィ工程により生成された導波路コアパタンの外観検査を例示して説明したが、これに限らず、さらに導波路層の加工後や、光スイッチや光可変減衰器など、導波路上にその制御用の配線を形成したウエハを検査する場合などにも同様に本開示による導波路デバイス検査システムを用いることができる。特に、検査の対象とするパタンの下層にほかのパタンが形成されている場合などは、その個所の下層の凹凸が検査の対象とするパタンに反映されて、検査対象となる上層のパタンの見え方が異なる場合がある。このような場合において、見え方の異なる上層のパタンの部分をマスクすることにより誤検出を減らすようにしてもよい。
 以上述べた通り、本開示による導波路デバイス検査システムは、光デバイスの性能に影響を及ぼさない領域をマスキングすることにより、効率的に異物や欠陥を検出することを特徴とする。さらに、導波路パタンのマスキングの領域を、エバネセント場を考慮した実効的な導波路幅Weに基づいて設定することにより、エバネセント場を含む導波路パタンの領域を効率的かつ高精度に検査することが可能となる。このような特徴を有する、本開示による導波路デバイス検査システムは、導波路デバイスの製造時における高効率、高精度な検査システムとして適用が見込まれる。

Claims (4)

  1.  差分画像を用いて検査結果を判定する導波路デバイス検査システムであって、
     検査対象の被検査領域の画像を取得する撮像装置と、
     前記取得した画像を記憶する記憶装置と、
     前記取得した画像と前記撮像装置で予め取得した参照画像とを比較して差分画像を生成するように構成された計算装置と
    を備え、
     前記計算装置は、前記検査対象が構成する導波路パタンが形成された導波路デバイスの設計画像を参照し、前記導波路デバイスの性能に影響を及ぼす部分のみが抽出された前記差分画像を生成するようにさらに構成され、
     前記導波路デバイスの性能に影響を及ぼす部分のみを前記抽出することにおいて、前記導波路デバイスの性能に影響を及ぼす部分の幅が、前記導波路パタンの導波路幅(W)とエバネセント長(d)の2倍の和(W+2d)で求められる実効的な導波路幅(We)を用いて設定される、
    ことを特徴とする導波路デバイス検査システム。
  2.  前記計算装置は、前記設計画像を参照して抽出されたマスク設計画像を用いて前記導波路デバイスの性能に影響を及ぼす部分のみが抽出された前記差分画像を生成するようにさらに構成されており、
     前記マスク設計画像は、前記導波路デバイスに影響を及ぼす部分の各ピクセル座標の値が真ないしは1であり、それ以外の部分の各ピクセル座標の値が偽ないし0であり、
     前記取得した画像の各ピクセルの値をA(x,y)、前記参照画像の各ピクセルの値をB(x、y)、前記マスク設計画像の各ピクセルの値をC(x,y)、画像のピクセルごとの積演算を∧と表記したとき、
     前記計算装置は、
     A(x,y)∧C(x,y)の演算によって生成された画像と前記参照画像との差分、
    または、
     A(x,y)∧C(x,y)の演算によって生成された画像とB(x,y)∧C(x,y)の演算によって生成された画像との差分、
    のいずれかによって前記差分画像を生成する
    ことを特徴とする請求項1に記載された導波路デバイス検査システム。
  3.  前記計算装置は、
     前記設計画像を参照して抽出されたマスク設計画像を用いて前記導波路デバイスの性能に影響を及ぼす部分のみが抽出された前記差分画像を生成するようにさらに構成されており、
     前記マスク設計画像は、前記導波路デバイスの性能に影響を及ぼす部分の各ピクセル座標の値が真ないしは1であり、それ以外の部分の各ピクセル座標の値が偽ないし0であり、
     前記取得した画像と前記参照画像の画像との差分画像の各ピクセルの値をD(x、y)、前記マスク設計画像の各ピクセルの値をC(x,y)、画像のピクセルごとの積演算を∧と表記したとき、
     前記計算装置は、D(x,y)∧C(x,y)の演算によって、前記差分画像を生成する
    ことを特徴とする請求項1に記載された導波路デバイス検査システム。
  4.  前記検査対象の被検査領域の画像は、ウエハ上に形成されている導波路デバイスの画像であることを特徴とする請求項1から3のいずれか一項に記載の導波路デバイス検査システム。
PCT/JP2022/032565 2022-08-30 2022-08-30 導波路デバイス検査システム WO2024047740A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032565 WO2024047740A1 (ja) 2022-08-30 2022-08-30 導波路デバイス検査システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/032565 WO2024047740A1 (ja) 2022-08-30 2022-08-30 導波路デバイス検査システム

Publications (1)

Publication Number Publication Date
WO2024047740A1 true WO2024047740A1 (ja) 2024-03-07

Family

ID=90098924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032565 WO2024047740A1 (ja) 2022-08-30 2022-08-30 導波路デバイス検査システム

Country Status (1)

Country Link
WO (1) WO2024047740A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198641A (ja) * 1992-01-23 1993-08-06 Topcon Corp パターン検査装置
JP2014219536A (ja) * 2013-05-08 2014-11-20 日立化成株式会社 光導波路
CN104360438A (zh) * 2014-11-14 2015-02-18 四川飞阳科技有限公司 测量y结构分岔口刻蚀深度的方法及基材
WO2018235200A1 (ja) * 2017-06-21 2018-12-27 三菱電機株式会社 光導波路、光回路および半導体レーザ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198641A (ja) * 1992-01-23 1993-08-06 Topcon Corp パターン検査装置
JP2014219536A (ja) * 2013-05-08 2014-11-20 日立化成株式会社 光導波路
CN104360438A (zh) * 2014-11-14 2015-02-18 四川飞阳科技有限公司 测量y结构分岔口刻蚀深度的方法及基材
WO2018235200A1 (ja) * 2017-06-21 2018-12-27 三菱電機株式会社 光導波路、光回路および半導体レーザ

Similar Documents

Publication Publication Date Title
Wang et al. Single-shot isotropic differential interference contrast microscopy
JP4537467B2 (ja) 試料検査装置及び試料検査方法
CN104854677A (zh) 使用缺陷特定的信息检测晶片上的缺陷
KR20160045859A (ko) 블록-투-블록 레티클 검사
CN115825103B (zh) 一种基于图像技术的用于带角度端口光纤阵列的检端系统
JP2004251781A (ja) 画像認識による不良検査方法
US20160110859A1 (en) Inspection method for contact by die to database
WO2024047740A1 (ja) 導波路デバイス検査システム
JP4529365B2 (ja) 基板検査システムおよび基板検査方法
US9933370B2 (en) Inspection apparatus
JP4448181B2 (ja) パターン検査方法、パターン検査装置及びプログラム
WO2024042686A1 (ja) デバイス検査システム
JP2009294123A (ja) パターン識別装置、パターン識別方法及び試料検査装置
JP5318046B2 (ja) 試料検査装置及び試料検査方法
JP2001281161A (ja) 欠陥検査装置及び検査方法
JP2009222625A (ja) パターン検査装置及びパターン検査方法
JP2008076217A (ja) 電子デバイス用基板形状検査装置及び電子デバイス用基板形状検査方法、並びにマスクブランク用基板の製造方法
JP2004012365A (ja) 基板検査システムおよび基板検査方法
JP4634478B2 (ja) 試料検査装置及び試料検査方法
JP4542175B2 (ja) アシストパターン識別装置及び試料検査装置
JP4664996B2 (ja) 試料検査装置及び試料検査方法
CN110196504B (zh) 一种应用于lcd玻璃aoi测试的屏蔽干扰污点方法及系统
Yasuda et al. High-Resolution Defect Detection for Flat Panel Display Using Proximity Capacitance Image Sensor
US12135348B2 (en) Substrate testing with three-dimensional scanning
JP2006200944A (ja) 試料欠陥検査及び試料検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957343

Country of ref document: EP

Kind code of ref document: A1