WO2024046220A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2024046220A1
WO2024046220A1 PCT/CN2023/114834 CN2023114834W WO2024046220A1 WO 2024046220 A1 WO2024046220 A1 WO 2024046220A1 CN 2023114834 W CN2023114834 W CN 2023114834W WO 2024046220 A1 WO2024046220 A1 WO 2024046220A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
switch
branch
sub
control module
Prior art date
Application number
PCT/CN2023/114834
Other languages
English (en)
French (fr)
Inventor
严魁锡
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024046220A1 publication Critical patent/WO2024046220A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular to an electronic equipment.
  • the electronic device may include two screens. When the screen of the electronic device is in an unfolded state, the two screens may be combined into one screen; when the screen of the electronic device is in a folded state, the two screens may be combined into one screen. Two independent screens. When the folding terminal is in the folded state and the antennas corresponding to the two screens work on the same frequency, the antennas located in the two screens will affect each other.
  • Embodiments of the present application provide an electronic device to solve the problem in the related art that when the electronic device is in a folded state, two antennas working in the same frequency state will affect each other.
  • An embodiment of the present application provides an electronic device, which includes: a first housing, a second housing, and a rotating component;
  • the first housing and the second housing are movably connected through the rotating assembly so that the electronic device can be folded; a first antenna is provided on the first housing, and a first antenna is provided on the second housing. A second antenna is provided, and the second antenna coincides with at least part of the projection area of the first antenna on the second housing;
  • the first antenna When the electronic device is in a folded state and the operating frequency band of the first antenna is the same as the operating frequency band of the second antenna, the first antenna is in the first operating state and the second antenna is in the third operating state. In the second working state, the current flow direction in the first antenna is opposite to the current flow direction in the second antenna.
  • the electronic device includes a first housing, a second housing and a rotating component.
  • the first housing and the second housing can rotate relative to the rotating component, so that the electronic device can be in a folded state and an unfolded state.
  • the current flow direction in the antenna is opposite to that in the human antenna in the second working state, thereby avoiding mutual influence between the first antenna and the second antenna and ensuring the same-frequency high isolation performance between the first antenna and the second antenna.
  • Figure 1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Figure 2 shows a schematic diagram of a first housing rotating relative to a second housing provided by an embodiment of the present application
  • Figure 3 shows a schematic diagram of an electronic device folded inward according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of an electronic device folded outward according to an embodiment of the present application
  • Figure 5 shows a schematic diagram of a first antenna provided by an embodiment of the present application
  • Figure 6 shows a schematic diagram of a second antenna provided by an embodiment of the present application.
  • Figure 7 shows a schematic diagram of an antenna in which the first antenna is in state one provided by the embodiment of the present application
  • Figure 8 shows a schematic diagram of an antenna in which the first antenna is in state two provided by the embodiment of the present application
  • Figure 9 shows a schematic diagram of an antenna in which the first antenna is in state three provided by the embodiment of the present application.
  • Figure 10 shows a schematic diagram of an antenna in state four of the second antenna provided by the embodiment of the present application.
  • Figure 11 shows a schematic diagram of the second antenna in state five provided by the embodiment of the present application.
  • FIG. 1 a schematic diagram showing an electronic device provided by an embodiment of the present application is shown;
  • FIG. 2 a schematic diagram showing A schematic diagram showing the rotation of a first housing relative to a second housing provided by an embodiment of the present application;
  • Figure 3 a schematic diagram showing an inward folding of an electronic device provided by an embodiment of the present application is shown;
  • Figure 4 A schematic diagram showing an outward folding of an electronic device provided by an embodiment of the present application is shown;
  • FIG. 5 a schematic diagram showing a first antenna provided by an embodiment of the present application is shown;
  • FIG. 6 a schematic diagram showing the present invention is shown.
  • FIG. 11 shows an antenna diagram showing a second antenna provided by an embodiment of the present application in state four. Referring to FIG. 11 , a simplified antenna diagram showing a second antenna provided by an embodiment of the present application in state five is shown. As shown in FIGS.
  • the electronic device 100 includes: a first housing 10 , a second housing 20 and a rotating component 30 ; the first housing 10 and the second housing 20 are movably connected through the rotating component 30 .
  • the electronic device 100 is made foldable; the first antenna 12 is provided on the first housing 10 , the second antenna 22 is provided on the second housing 20 , and the second antenna 22 and the first antenna 12 are on the second housing 20 At least part of the projection areas overlap; when the electronic device 100 is in the folded state, and the operating frequency band of the first antenna 12 is the same as the operating frequency band of the second antenna 22, the first antenna 12 is in the first operating state, and the second antenna 22 In the second working state, the current flow direction in the first antenna 12 is opposite to the current flow direction in the second antenna 22 .
  • the electronic device 100 includes a first housing 10, a second housing 20 and a rotating component 30.
  • the first housing 10 and the second housing 20 can rotate relative to the rotating component 30, so that the electronic device can 100 switches between the folded state and the expanded state.
  • the first antenna 12 is provided on the first housing 10 and the second antenna 22 is provided on the second housing 20, at least part of the projection area of the second antenna 22 and the first antenna 12 on the second housing 20 overlaps. , therefore, when the electronic device 100 is in the folded state, and the working frequency band of the first antenna 12 and the second antenna 22 are the same, the first antenna 12 can be controlled to be in the first working state, and the second antenna 22 can be controlled to be in the first working state.
  • the current flows in the first antenna 12 in the first working state and in the human antenna in the second working state are opposite, thereby avoiding mutual influence between the first antenna 12 and the second antenna 22 and ensuring the first High isolation performance at the same frequency between the antenna 12 and the second antenna 22.
  • first housing and the second housing can rotate relative to the rotating assembly 30 so that the electronic device 100 is in a folded state or an unfolded state, as shown in Figure 2.
  • the angle ⁇ in Figure 2 is the difference between the first housing and the second housing.
  • the folding state of the electronic device 100 can be inward folding or outward folding.
  • the folding mode is inward folding, as shown in Figure 3
  • this folding method is outward folding, as shown in Figure 4.
  • the embodiment of the present application does not specifically limit the folded state of the electronic device 100 .
  • the first screen 11 is provided on the first housing
  • the second screen 21 is provided on the second housing
  • the first antenna 12 may be located in the non-screen area between the first housing and the first screen 11
  • the corresponding second antenna 22 can be located in any area in the non-screen area between the second housing and the second screen 21 , and there is an overlapping area between the second antenna 22 and the first antenna 12 .
  • FIG. 1 the schematic positions of the first antenna 12 and the second antenna 22 are shown.
  • the first antenna 12 may include a first radiating structure 121 and a first feeding module 122
  • the first radiating structure 121 is connected to the first feeding module 122
  • the second antenna 22 may include a second radiating structure 221 and the second feeding module 222.
  • the second radiating structure 221 is connected to the second feeding module 222.
  • the second feeding module 222 includes a phase control module 229; when the electronic device 100 is in a folded state, the phase control module 229 controls the phase difference of the two feed signals entering the second radiating structure 221 to be 180°, so that the current flow direction in the second antenna 22 is opposite to the current flow direction in the first antenna 12 .
  • the first antenna 12 includes a first radiating structure 121 and a first feeding module 122.
  • the first radiating structure 121 is connected to the first feeding module 122.
  • the second antenna 22 includes a second radiating structure 221 and a second feeding module 222.
  • the second radiating structure 221 and the second feeding module 222 are connected, so that the feeding signal can be fed to the first antenna 12 through the first feeding module 122, and the feeding signal can be fed to the second antenna 22 through the second feeding module 222. signal so that the first antenna 12 and the second antenna 22 can operate normally.
  • the second feed module 222 includes a phase control module 229.
  • the phase control module 229 can control the phase of the feed signal in the second feed module 222, so that the second feed module 222 feeds the two feeds of the second radiating structure 221.
  • the phase difference of the signals is 180°, so that the current in the second antenna 22 flows in the opposite direction to the current in the first antenna 12 . Since the current in the second antenna 22 flows in the opposite direction to the current in the first antenna 12 , when the first antenna 12 and the second antenna 22 operate in the same frequency band, the first antenna 12 and the second antenna can be avoided. 22 interact with each other to improve the same-frequency band isolation between the two antennas of the electronic device 100 in the folded state.
  • the first feed module 122 includes a first excitation source 126, a first switch and a first matching circuit 127.
  • the first switch includes a first sub-switch 1281, a second sub-switch 1282 and the third sub-switch 1283.
  • the first sub-switch 1281 is connected to the first contact point of the first radiation structure 121.
  • One end of the second sub-switch 1282 is respectively connected to the second contact point and the third contact point of the first radiation structure 121.
  • the other end of the second sub-switch 1282 is connected to ground, the third sub-switch 1283 is connected to the fourth contact point of the first radiation structure 121; one end of the first matching circuit 127 is connected to the first excitation source 126, and the first matching circuit 127 The other end is connected to the first sub-switch 1281 and the third sub-switch 1283.
  • the first feeding module 122 includes a first excitation source 126, a first switch and a first matching circuit 127.
  • the first switch includes a first sub-switch 1281, a second sub-switch 1282 and a third sub-switch 1283.
  • the first matching circuit One end of the circuit 127 is connected to the first excitation source 126 , and the other end of the first matching circuit 127 is connected to the first sub-switch 1281 and the second sub-switch 1282 .
  • the first sub-switch 1281 is connected to the first contact point on the first radiating structure 121
  • the third sub-switch 1283 is connected to the fourth contact point on the first radiating structure 121
  • one end of the second sub-switch 1282 is connected to the first radiating structure.
  • the second contact point and the third contact point on 121 are connected, and the other end of the second sub-switch 1282 is grounded. Therefore, the connection modes between the first matching circuit 127 and the first radiation structure 121 can be different by controlling the opening and closing of the first sub-switch 1281, the second sub-switch 1282 and the third sub-switch 1283. That is, the connection mode between the first feed module 122 and the first radiation structure 121 can be changed by controlling the first switch to be in different states, so that the first antenna 12 can be in different modes.
  • the first switch can also be a single-pole multi-throw switch. By controlling the single-pole multi-throw switch, no The same lines are in the conductive state, so that the first feeding module 122 is in different states.
  • the first shell 10 may be provided with a first break 123 , and the first break 123 separates the first shell 10 into a first branch 124 and a second branch. 125, the first branch 124 and the second branch 125 are both grounded, the first break 123 and the first branch 124 and the second branch 125 form the first radiation structure 121; wherein, the first contact point and the third contact point are both Located on the first branch 124 , the second contact point and the fourth contact point are both located on the second branch 125 .
  • the first shell 10 is provided with a first fracture 123.
  • the first fracture 123 divides the first shell 10 into a first branch 124 and a second branch 125, and the first branch 124 and the second branch 125 are both Grounded, so that the first slit 123 and the first branches 124 and the second branches 125 can form the first radiation structure 121 . Since the first contact point and the third contact point are located on the first branch 124, and the second contact point and the fourth contact point are located on the second branch 125, that is, the first sub-switch 1281 is connected to the first branch 124.
  • the third sub-switch 1283 is connected to the second branch 125, and one end of the second sub-switch 1282 is connected to the first branch 124 and the second branch 125, so that the second radiation structure 221 and the second feed module 222 can be connected.
  • the second feeding module 222 may also include a second excitation source 226 , a second switch 228 and a second matching circuit 227
  • the phase control module 229 includes a first phase control module 2291 And the second phase control module 2292
  • the first phase control module 2291 is connected to the second phase control module 2292
  • one end of the second matching circuit 227 is connected to the second excitation source 226, and the other end of the second matching circuit 227 is connected to the first phase
  • the control module 2291 and the second phase control module 2292 are connected, the first phase control module 2291 is connected to the fifth contact point of the second radiating structure 221, and the second phase control module 2292 is connected to the sixth contact point of the second radiating structure 221,
  • the second switch 228 is connected between the second phase control module 2292 and the second matching circuit 227; when the second switch 228 is closed, the first phase control module 2291 and the second phase control module 2292 work, and the first phase control module 2291 and the second phase control module 2292
  • the second feeding module 222 includes a second excitation source 226, a second switch 228, a second matching circuit 227 and a phase control module 229.
  • One end of the second matching circuit 227 is connected to the second excitation source 226. The other end is connected to the first phase control module 2291 and the second phase control module 2292.
  • the first phase control module 2291 is connected to the fifth contact point on the second radiating structure 221.
  • the second phase control module 2292 is connected to the second radiating structure 221. Connect on the sixth contact point.
  • the second switch 228 is located between the second matching circuit 227 and the second phase control module 2292. Therefore, by controlling the opening and closing of the second switch 228, there is a gap between the second phase control module 2292 and the second radiation structure 221. A short circuit or connection is made so that the second antenna 22 can be in a different mode.
  • first phase control module 2291 and the second phase control module 2292 are connected, so that the first phase control module 2291 and the second phase control module 2292 can control the phase difference of the two feed signals as a whole.
  • first phase control module 2291 and the second phase control module 2292 may not be connected. That is, the first phase control module 2291 and the second phase control module 2292 are independent of each other, and the first phase control module 2291 controls one channel.
  • the phase of the feed signal, the second phase control module 2292 controls another feed signal
  • the phase of the signal is such that the phase difference between the two feed signals meets the conditions.
  • the second housing 20 may be provided with a second break 223 , and the second break 223 separates the second housing 20 into a third branch 224 and a fourth branch.
  • the third branch 224 and the fourth branch 225 are both grounded, and the second break 223, the third branch 224, and the fourth branch 225 form the second radiating structure 221; wherein, the fifth contact point is located at the third branch 224 on, the sixth contact point is located on the fourth branch 225.
  • the second shell 20 is provided with a second fracture 223.
  • the second fracture 223 can separate the second shell 20 into a third branch 224 and a fourth branch 225, and the third branch 224 and the fourth branch 225 are all grounded, so that the second break 223 and the third branch 224 and the fourth branch 225 can form the second radiation structure 221 .
  • the fifth contact point is located on the third branch 224 and the sixth contact point is located on the fourth branch 225, that is, the first phase control module 2291 is connected to the third branch 224, and the second phase control module 2292 is connected to the fourth branch.
  • the branches 225 are connected, so that the connection between the second radiating structure 221 and the second feeding module 222 can be realized.
  • first housing 10 and the second housing 20 may be metal housings, such as magnesium alloy, stainless steel and other metals.
  • the material of the casing in the embodiment of the present application is not limited to this, and can also be made in other ways.
  • the casing can be a plastic casing, or the casing can be a ceramic casing, etc.
  • the first housing 10 and the second housing 20 are metal housings
  • the first housing 10 can be used as the first radiation structure 121 and the second housing 20 can be used as the second radiation structure 221 , that is, the first shell 10 described in this application is provided with a first fracture 123.
  • the first fracture 123 separates the first shell 10 into a first branch 124 and a second branch 125.
  • the second shell A second fracture 223 is provided on the second housing 20 , and the second fracture 223 separates the second housing 20 into a third branch 224 and a fourth branch 225 . That is, when the first housing 10 and the second housing 20 are metal housings, the first housing 10 and the second housing 20 can serve as the radiation structure of the antenna.
  • the first radiation structure 121 may be formed of metal with a radiation function provided in a certain area within the first housing 10, and the second radiation structure 121 may be formed of metal with a radiation function.
  • the structure 221 may be formed of a metal with radiation function that is disposed in a corresponding area in the second housing 20 , wherein a certain area in the first housing 10 has an overlapping portion with a corresponding area in the second housing 20 .
  • the first radiation structure 121 may also be formed of metal with radiation function provided in a certain area of the first housing 10.
  • the two radiating structures 221 may also be formed of metal with radiation function provided in corresponding areas within the second housing 20 .
  • the embodiment of the present application does not specifically limit the specific forms of the first radiating structure 121 and the second radiating structure 221 .
  • both the first sub-switch 1281 and the third sub-switch 1283 can be closed, and the second sub-switch 1282 can be opened, so that the first antenna 12 is in the third state.
  • a working state; and the second switch 228 can be closed, the first phase control module 2291 and the second phase control module 2292 are in the working state, and the first phase control module 2291 and the second phase control module 2292 control the entry into the third branch 224
  • the phase difference between the feed signal and the feed signal entering the fourth branch 225 is 180°, so that the second antenna 22 is in the second working state.
  • the first The matching circuit 127 is in a connected state with the first branch 124 and the second branch 125, the second sub-switch 1282 is disconnected from the second contact point, the first antenna 12 constitutes a slot antenna, and the first antenna 12 is in a half-wave mode. , at this time, the first antenna 12 is in the first working state, and the current flow directions in the first branch 124 and the second branch 125 are opposite.
  • the direction of the arrow in Figure 8 is the direction of the current.
  • the current in the first branch 124 flows to the left relative to the first fracture 123
  • the current in the second branch 125 flows to the right relative to the first fracture 123 . That is, when the first antenna 12 is in the first working state, the first antenna 12 forms a slot antenna and is in the half-wave mode, and the currents in the first branch 124 and the second branch 125 are reversed.
  • the second matching circuit 227 is connected to both the third branch 224 and the fourth branch 225, and the feed signal of the second excitation source 226 is fed into the third branch 224 in two ways.
  • the fourth branch 225, the first phase control module 2291 and the second phase control module 2292 can control the phase difference of the two feed signals to satisfy 180°.
  • the second antenna 22 is in the second working state, and the second antenna 22 is in the second working state. 22 constitutes a slot antenna, and the second antenna 22 is in half-wave mode.
  • the third branch 224 has the same current flow direction in the fourth branch 225. Refer to Figure 10. The direction of the arrow in Figure 10 is the direction of the current.
  • the third branch 224 The current phase in the fourth branch 225 flows to the right relative to the second fracture 223 , and the current in the fourth branch 225 also flows to the right relative to the second fracture 223 . That is, when the second antenna 22 is in the second working state, the second antenna 22 forms a slot antenna and is in the half-wave mode, and the current in the third branch 224 and the fourth branch 225 flows through.
  • the first sub-switch 1281 and the third sub-switch 1283 are closed, the second sub-switch 1282 is opened, and the second switch 228 is closed, so that the first antenna 12 is in the first working state.
  • the second antenna 22 is in the second working state.
  • the currents between the first working state of the first antenna 12 and the second working state of the second antenna 22 are reversed, and the modes are naturally orthogonal, which can avoid the influence between the first antenna 12 and the second antenna 22 .
  • the second sub-switch 1282 when the electronic device 100 is in the unfolded state, the second sub-switch 1282 can be turned off, the first sub-switch 1281 or the third sub-switch 1283 can be turned on, the first antenna 12 is an IFA antenna, and the first The antenna 12 is in half-wave mode; or, the first sub-switch 1281 and the third sub-switch 1283 can both be closed, the second sub-switch 1282 can be opened, the first antenna 12 is a slot antenna, and the antenna mode of the first antenna 12 is half-wave mode; or, the first sub-switch 1281, the second sub-switch 1282 and the third sub-switch 1283 can all be closed, and the first antenna 12 is in the full-wave mode.
  • the first antenna 12 When the electronic device 100 is in the unfolded state, the first antenna 12 has three working states, namely state one, state two and state three.
  • the first antenna 12 can work in any one of the three states.
  • the first antenna 12 When the second sub-switch 1282 is turned off and the first sub-switch 1281 or the third sub-switch 1283 is turned on, the first antenna 12 is in state one. At this time, the first antenna 12 constitutes an IFA antenna (inverted F antenna). Refer to FIG. 7 shows a schematic diagram of the antenna mode when the first antenna 12 is in state 1. At this time, the first antenna 12 is in the half-wave mode.
  • the first antenna 12 is in state two, that is, the first working state of the first antenna 12. At this time, the first antenna 12 is in state two. 12 constitutes a slot antenna and is in a half-wave mode, and the currents in the first branch 124 and the second branch 125 are reversed. Referring to FIG. 8 , a diagram of the antenna mode when the first antenna 12 is in state two is shown.
  • the first antenna 12 is in state three.
  • the first antenna 12 is a Loop antenna, and the first antenna 12 is in full wave mode. model.
  • FIG. 9 a simplified diagram of the antenna mode when the first antenna 12 is in state three is shown.
  • the second switch 228 when the electronic device 100 is in the unfolded state, the second switch 228 may be closed, and the first phase control module 2291 and the second phase control module 2292 control the feed signal entering the third branch 224 and the power entering the third branch 224 .
  • the phase difference of the feed signals of the four branches 225 is 180°
  • the second antenna 22 is a slot antenna
  • the second antenna 22 is in the half-wave mode; or the second switch 228 can be turned off, and the second antenna 22 is an IFA antenna.
  • the second antenna 22 is in half-wave mode.
  • the second antenna 22 When the electronic device 100 is in the unfolded state, the second antenna 22 has two working states, namely state four and state five, and the second antenna 22 can work in any one of the two states.
  • the second antenna 22 When the second switch 228 is closed, the second antenna 22 is in state four, that is, the second working state of the second antenna 22. At this time, the second antenna 22 forms a slot antenna and is in the half-wave mode. The second branch 125 And the current in the fourth branch 225 is in the same direction. Referring to Figure 10, a simplified diagram of the antenna mode when the second antenna 22 is in state four is shown.
  • the second antenna 22 When the second switch 228 is turned off, the second antenna 22 is in state five. At this time, the second antenna 22 constitutes an IFA antenna. Referring to Figure 11, a schematic diagram of the antenna mode when the second antenna 22 is in state five is shown. At this time, the first antenna 12 is in half-wave mode.
  • the first antenna 12 and the second antenna 22 in the folded state can be prevented from interacting with each other, for example, in When neither the first antenna 12 nor the second antenna 22 is working, the electronic device 100 can be folded to control the first antenna 12 to be in the first working state and the second antenna 22 to be in the second working state.
  • the phase control module 229 The phase difference of the two feed signals entering the second radiating structure 221 can be controlled to be 180°.
  • there is current flowing in the second antenna 22, and the current flow direction in the second antenna 22 is the same as the current flow direction in the first antenna 12.
  • the electronic device 100 can also be folded with the first antenna 12 and the second antenna 22 working.
  • the first antenna 12 can be in any one of state one, state two and state three.
  • the second antenna 22 can be in state five.
  • the folded electronic device 100 can control the first antenna 12 to be in the first working state, and the phase control module 229 can control the phase difference of the two feed signals entering the second radiation structure 221 is 180°, so that the direction of the current in the second antenna 22 changes, so that the second antenna 22 is in the second working state, that is, state four, so that the current flow direction in the second antenna 22 is consistent with the current flow direction in the first antenna 12 on the contrary.
  • the first switch and the second switch 228 can be electrically connected to the control module of the electronic device 100, such as the CPU in the electronic device 100.
  • the user can issue a mode switching instruction to the electronic device 100, and the control module of the electronic device 100 can switch according to the mode switching instruction.
  • the states of the first switch and the second switch 228 are controlled, thereby controlling the working states of the first antenna 12 and the second antenna 22 .
  • the electronic device 100 can also detect whether the electronic device 100 is in a folded state. When the electronic device 100 is in a folded state, the control module automatically controls the first antenna 12 to be in the first working state, and controls the second antenna 12 to be in the first working state.
  • the antenna 22 is in the second working state.
  • the first switch can be placed close to the first excitation source 126
  • the second switch 228 may be positioned close to the second excitation source 226 .
  • the first switch is disposed close to the first excitation source 126, and the second switch 228 is disposed close to the second excitation source 226, thereby reducing the impact of branch loading on the impedance.
  • the positions of the first switch and the second switch 228 can be matched and set according to the performance of the electronic device 100 to reduce the impact of branch loading on the impedance.
  • the distance between the first switch and the first excitation source 126 can be 4mm, 5mm, 6mm, etc.
  • the distance between the second switch 228 and the second excitation source 226 can also be 4mm, 5mm, 6mm, etc.
  • the embodiment of the present application does not specifically limit the specific placement positions of the first switch and the second switch 228 .
  • the electronic device 100 includes but is not limited to mobile phones, tablet computers, notebook computers, PDAs, vehicle-mounted terminals, wearable devices, and pedometers.
  • the first antenna 12 and the second antenna 22 are not limited to being used in the same frequency state. That is, when the electronic device 100 is in the folded state, the first antenna 12 and the second antenna 22 can operate in the same frequency band.
  • the first antenna 12 and the second antenna 22 can also work in different operating frequency bands. When the first antenna 12 and the second antenna 22 operate in the same operating frequency band, the first antenna 12 is in the first operating state and the second antenna 22 is in the second operating state, so that the first antenna 12 and the second antenna 22 can be avoided. influence each other.
  • the first antenna 12 When the first antenna 12 and the second antenna 22 operate in different operating frequency bands, the first antenna 12 may be in the first operating state, and the second antenna 22 may be in the second operating state; in addition, the first antenna 12 and the second antenna 22 may be in the second operating state. 22 can also be in other states.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the application may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In the element claim enumerating several means, several of these means may be embodied by the same item of hardware.
  • the use of the words first, second, third, etc. does not indicate any order. These words can be interpreted as names.

Landscapes

  • Telephone Set Structure (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供了一种电子设备。该电子设备包括:第一壳体、第二壳体以及转动组件;第一壳体与第二壳体通过转动组件活动连接,以使电子设备可折叠;第一壳体上设置有第一天线,第二壳体上设置有第二天线,且第二天线与第一天线在第二壳体上的至少部分投影区域重合;在电子设备处于折叠状态,且第一天线的工作频段与第二天线的工作频段相同的情况下,第一天线处于第一工作状态,第二天线处于第二工作状态,第一天线中的电流流向与第二天线中的电流流向相反。

Description

电子设备
本申请要求在2022年08月31日提交中国专利局、申请号为202211054856.8、申请名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,特别是涉及一种电子设备。
背景技术
随着科技的发展,可折叠的电子设备的应用越来越广泛。这种电子设备可以包括两个屏幕,在这种电子设备的屏幕处于展开状态时,这两个屏幕可以合成为一个屏幕;在这种电子设备的屏幕处于折叠状态时,这两个屏幕可以为独立的两个屏幕。而当折叠终端处于折叠状态,且两个屏幕对应的天线在同频状态下工作的情况下,位于两个屏幕中的天线会相互影响。
申请内容
本申请实施例提供了一种电子设备,以解决相关技术中电子设备处于折叠状态下,两天线同频状态工作会相互影响的问题。
为了解决上述技术问题,本申请是这样实现的:
本申请实施例提供了一种电子设备,所述电子设备包括:第一壳体、第二壳体以及转动组件;
所述第一壳体与所述第二壳体通过所述转动组件活动连接,以使所述电子设备可折叠;所述第一壳体上设置有第一天线,所述第二壳体上设置有第二天线,且所述第二天线与所述第一天线在所述第二壳体上的至少部分投影区域重合;
在所述电子设备处于折叠状态,且所述第一天线的工作频段与所述第二天线的工作频段相同的情况下,所述第一天线处于第一工作状态,所述第二天线处于第二工作状态,所述第一天线中的电流流向与所述第二天线中的电流流向相反。
在本申请实施例中,电子设备包括第一壳体、第二壳体以及转动组件,第一壳体以及第二壳体相对转动组件可以旋转,从而可以使得电子设备在折叠状态以及展开状态中进行切换。由于第一壳体上设置有第一天线,第二壳体上设置有第二天线,且第二天线与第一天线在第二壳体上的至少部分投影区域重合,因此,在电子设备处于折叠状态,且第一天线的工作频段与第二天线的工作频段相同的情况下,可以控制第一天线处于第一工作状态,第二天线处于第二工作状态,第一工作状态下的第一天线与第二工作状态下的的人天线中的电流流向相反,从而可以避免第一天线以及第二天线之间相互影响,保证第一天线以及第二天线之间的同频高隔离度性能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而 可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种电子设备的示意图;
图2表示本申请实施例提供的一种第一壳体相对第二壳体转动的示意图;
图3表示本申请实施例提供的一种电子设备内折的示意图;
图4表示本申请实施例提供的一种电子设备外折的示意图;
图5表示本申请实施例提供的一种第一天线的示意图;
图6表示本申请实施例提供的一种第二天线的示意图;
图7表示本申请实施例提供的一种第一天线处于状态一的天线简图;
图8表示本申请实施例提供的一种第一天线处于状态二的天线简图;
图9表示本申请实施例提供的一种第一天线处于状态三的天线简图;
图10表示本申请实施例提供的一种第二天线处于状态四的天线简图;
图11表示本申请实施例提供的一种第二天线处于状态五的天线简图。
附图标记说明
100:电子设备;10:第一壳体;11:第一屏幕;12:第一天线;20:第二壳体;
21:第二屏幕;22:第二天线;30:转动组件;121:第一辐射结构;122:第一馈电模块;123:第一断缝;124:第一枝节;125:第二枝节;126:第一激励源;127:第一匹配电路;1281:第一子开关;1282:第二子开关;1283:第三子开关;221:第二辐射结构;222:第二馈电模块;223:第二断缝;224:第三枝节;225:第四枝节;226:第二激励源;227:第二匹配电路;228:第二开关;229:相位控制模块;2291:第一相位控制模块;2292:第二相位控制模块。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参照图1,示出了表示本申请实施例提供的一种电子设备的示意图;参照图2,示出 了表示本申请实施例提供的一种第一壳体相对第二壳体转动的示意图;参照图3,示出了表示本申请实施例提供的一种电子设备内折的示意图;参照图4,示出了表示本申请实施例提供的一种电子设备外折的示意图;参照图5,示出了表示本申请实施例提供的一种第一天线的示意图;参照图6,示出了表示本申请实施例提供的一种第二天线的示意图;参照图7,示出了表示本申请实施例提供的一种第一天线处于状态一的天线简图;参照图8,示出了表示本申请实施例提供的一种第一天线处于状态二的天线简图;参照图9,示出了表示本申请实施例提供的一种第一天线处于状态三的天线简图;参照图10,示出了表示本申请实施例提供的一种第二天线处于状态四的天线简图;参照图11,示出了表示本申请实施例提供的一种第二天线处于状态五的天线简图。如图1至图11所示,该电子设备100包括:第一壳体10、第二壳体20以及转动组件30;第一壳体10与第二壳体20通过转动组件30活动连接,以使电子设备100可折叠;第一壳体10上设置有第一天线12,第二壳体20上设置有第二天线22,且第二天线22与第一天线12在第二壳体20上的至少部分投影区域重合;在电子设备100处于折叠状态,且第一天线12的工作频段与第二天线22的工作频段相同的情况下,第一天线12处于第一工作状态,第二天线22处于第二工作状态,第一天线12中的电流流向与第二天线22中的电流流向相反。
在本申请实施例中,电子设备100包括第一壳体10、第二壳体20以及转动组件30,第一壳体10以及第二壳体20相对转动组件30可以旋转,从而可以使得电子设备100在折叠状态以及展开状态中进行切换。由于第一壳体10上设置有第一天线12,第二壳体20上设置有第二天线22,且第二天线22与第一天线12在第二壳体20上的至少部分投影区域重合,因此,在电子设备100处于折叠状态,且第一天线12的工作频段与第二天线22的工作频段相同的情况下,可以控制第一天线12处于第一工作状态,第二天线22处于第二工作状态,第一工作状态下的第一天线12与第二工作状态下的的人天线中的电流流向相反,从而可以避免第一天线12以及第二天线22之间相互影响,保证第一天线12以及第二天线22之间的同频高隔离度性能。
需要说明的是,第一外壳以及第二外壳可以相对转动组件30进行旋转,使得电子设备100处于折叠状态或展开状态,如图2所示,图2中角α即为第一外壳与第二外壳之间的夹角。其中,电子设备100的折叠状态可以为内折或外折,当电子设备100折叠后显示屏幕位于内侧时,即外壳处于可观察到的状态时,这种折叠方式为内折,如图3所示,此时;当叠合后显示屏幕位于外侧时,即屏幕处于可观察到的状态时,这种折叠方式为外折,如图4所示。本申请实施例对于电子设备100的折叠状态不作具体限定。
还需要说明的是,第一屏幕11设置在第一外壳上,第二屏幕21设置在第二外壳上,第一天线12可以处于第一外壳与第一屏幕11之间的非屏幕区域中的任意区域,相应的第二天线22则可以处于第二外壳以及第二屏幕21之间的非屏幕区域中的任意区域,且第二天线22与第一天线12存在重叠区域。如图1所示,即为第一天线12以及第二天线22的示意位置。
另外,在一些实施例中,第一天线12可以包括第一辐射结构121以及第一馈电模块122,第一辐射结构121与第一馈电模块122连接,第二天线22可以包括第二辐射结构221以及第二馈电模块222,第二辐射结构221与第二馈电模块222连接,第二馈电模块222包括相位控制模块229;在电子设备100处于折叠状态的情况下,相位控制模块229控制进入第二辐射结构221的两路馈电信号的相位差为180°,使得第二天线22中的电流流向与第一天线12中的电流流向相反。
第一天线12包括第一辐射结构121以及第一馈电模块122,第一辐射结构121与第一馈电模块122连接,第二天线22包括第二辐射结构221以及第二馈电模块222,第二辐射结构221以及第二馈电模块222连接,从而可以通过第一馈电模块122向第一天线12馈入馈电信号,通过第二馈电模块222向第二天线22馈入馈电信号,使得第一天线12以及第二天线22可以正常工作。
第二馈电模块222包括相位控制模块229,相位控制模块229可以控制第二馈电模块222中馈电信号的相位,使得第二馈电模块222馈入第二辐射结构221的两路馈电信号的相位差为180°,使得第二天线22中的电流与第一天线12中的电流的流向相反。由于第二天线22中的电流与第一天线12中的电流的流向相反,因此,在第一天线12以及第二天线22的工作频段相同的情况下,可以避免第一天线12以及第二天线22互相影响,改善电子设备100在折叠状态下两天线间的同频带间隔离度。
另外,在一些实施例,如图5所示,第一馈电模块122包括第一激励源126、第一开关以及第一匹配电路127,第一开关包括第一子开关1281、第二子开关1282以及第三子开关1283,第一子开关1281与第一辐射结构121的第一接触点连接,第二子开关1282的一端分别与第一辐射结构121的第二接触点以及第三接触点连接,第二子开关1282的另一端接地,第三子开关1283与第一辐射结构121的第四接触点连接;第一匹配电路127的一端与第一激励源126连接,第一匹配电路127的另一端与第一子开关1281以及第三子开关1283连接。
第一馈电模块122包括第一激励源126、第一开关以及第一匹配电路127,其中,第一开关包括第一子开关1281、第二子开关1282以及第三子开关1283,第一匹配电路127的一端与第一激励源126连接,第一匹配电路127的另一端与第一子开关1281以及第二子开关1282连接。第一子开关1281与第一辐射结构121上的第一接触点连接,第三子开关1283与第一辐射结构121上的第四接触点连接,第二子开关1282的一端与第一辐射结构121上的第二接触点以及第三接触点连接,第二子开关1282的另一端接地。从而可以通过控制第一子开关1281、第二子开关1282以及第三子开关1283的断开以及闭合,使得第一匹配电路127与第一辐射结构121之间的连接方式不同。即,可以通过控制第一开关处于不同的状态,使得第一馈电模块122与第一辐射结构121之间的连接方式改变,以使第一天线12可以处于不同的模式。
需要说明的是,第一开关还可以为单刀多掷开关,通过控制单刀多掷开关,使得不 同的线路处于导通状态,以使第一馈电模块122处于不同状态。
另外,在一些实施例,如图5所示,第一壳体10上可以设置有第一断缝123,第一断缝123将第一壳体10分隔成第一枝节124以及第二枝节125,第一枝节124以及第二枝节125均接地,第一断缝123以及第一枝节124、第二枝节125形成第一辐射结构121;其中,第一接触点、第三接触点均位于第一枝节124上,第二接触点、第四接触点均位于第二枝节125上。
第一壳体10上设置有第一断缝123,第一断缝123将第一壳体10分隔成第一枝节124以及第二枝节125,且第一枝节124以及第二枝节125均接地,从而第一断缝123以及第一枝节124、第二枝节125可以形成第一辐射结构121。由于第一接触点、第三接触点位于第一枝节124上,第二接触点、第四接触点位于第二枝节125上,也即是第一子开关1281与第一枝节124连接,第三子开关1283与第二枝节125连接,第二子开关1282的一端与第一枝节124以及第二枝节125连接,从而可以实现第二辐射结构221与第二馈电模块222的连接。
另外,在一些实施例,如图6所示,第二馈电模块222还可以包括第二激励源226、第二开关228以及第二匹配电路227,相位控制模块229包括第一相位控制模块2291以及第二相位控制模块2292,第一相位控制模块2291与第二相位控制模块2292连接,第二匹配电路227的一端与第二激励源226连接,第二匹配电路227的另一端与第一相位控制模块2291以及第二相位控制模块2292连接,第一相位控制模块2291与第二辐射结构221的第五接触点连接,第二相位控制模块2292与第二辐射结构221的第六接触点连接,第二开关228连接在第二相位控制模块2292与第二匹配电路227之间;在第二开关228闭合的情况下,第一相位控制模块2291以及第二相位控制模块2292工作,第一相位控制模块2291以及第二相位控制模块2292控制进入第二辐射结构221的两路馈电信号的相位差为180°。
第二馈电模块222包括第二激励源226、第二开关228、第二匹配电路227以及相位控制模块229,第二匹配电路227的一端与第二激励源226连接,第二匹配电路227的另一端与第一相位控制模块2291以及第二相位控制模块2292连接,第一相位控制模块2291与第二辐射结构221上的第五接触点连接,第二相位控制模块2292与第二辐射结构221上的第六接触点连接。第二开关228位于第二匹配电路227与第二相位控制模块2292之间,从而,可以通过控制第二开关228的断开与闭合,使得第二相位控制模块2292与第二辐射结构221之间形成短路或连通,以使第二天线22可以处于不同的模式。
需要说明的是,第一相位控制模块2291以及第二相位控制模块2292连接,从而第一相位控制模块2291与第二相位控制模块2292可以作为一个整体对两路馈电信号的相位差进行控制。当然,第一相位控制模块2291与第二相位控制模块2292之间还可以不连接,也即是,第一相位控制模块2291以及第二相位控制模块2292相互独立,第一相位控制模块2291控制一路馈电信号的相位,第二相位控制模块2292控制另一路馈电信 号的相位,使得两路馈电信号的相位差满足条件。
另外,在一些实施例,如图6所示,第二壳体20上可以设置有第二断缝223,第二断缝223将第二壳体20分隔成第三枝节224以及第四枝节225,第三枝节224以及第四枝节225均接地,第二断缝223以及第三枝节224、第四枝节225形成第二辐射结构221;其中,第五接触点位于第三枝节224上,第六接触点位于第四枝节225上。
第二壳体20上设置有第二断缝223,第二断缝223可以将第二壳体20分隔成第三枝节224以及第四枝节225,且第三枝节224以及第四枝节225均接地,从而第二断缝223以及第三枝节224、第四枝节225可以形成第二辐射结构221。由于第五接触点位于第三枝节224上,第六接触点位于第四枝节225上,也即是第一相位控制模块2291与第三枝节224连接,第二相位控制模块2292与第四枝节225连接,从而可以实现第二辐射结构221与第二馈电模块222的连接。
另外,第一壳体10以及第二壳体20可以为金属壳体,比如镁合金、不锈钢等金属。需要说明的是,本申请实施例壳体的材料并不限于此,还可以采用其它方式,比如壳体可以为塑胶壳体,再比如壳体还可以为陶瓷壳体,等等。
需要说明的是,在第一壳体10以及第二壳体20为金属壳体的情况下,第一壳体10可以作为第一辐射结构121,第二壳体20可以作为第二辐射结构221,即本申请中所描述的第一壳体10上设置有第一断缝123,第一断缝123将第一壳体10分隔成第一枝节124以及第二枝节125,第二壳体20上设置有第二断缝223,第二断缝223将第二壳体20分隔成第三枝节224以及第四枝节225。也即是,在第一壳体10以及第二壳体20为金属壳体的情况下,第一壳体10以及第二壳体20可以作为天线的辐射结构。
在第一壳体10以及第二壳体20为非金属壳体的情况下,第一辐射结构121可以由设置在第一壳体10内的某区域的具有辐射功能的金属形成,第二辐射结构221则可以由设置在第二壳体20内相应区域的具有辐射功能的金属形成,其中,第一壳体10内的某区域与第二壳体20内相应区域具有重叠部分。当然,在第一壳体10以及第二壳体20为金属壳体的情况下,第一辐射结构121也可以由设置在第一壳体10内的某区域的具有辐射功能的金属形成,第二辐射结构221也可以由设置在第二壳体20内相应区域的具有辐射功能的金属形成。对于第一辐射结构121以及第二辐射结构221的具体形式,本申请实施例不作具体限定。
另外,在一些实施例,在电子设备100处于折叠状态的情况下,第一子开关1281、第三子开关1283均可以闭合,第二子开关1282可以断开,以使第一天线12处于第一工作状态;且第二开关228可以闭合,第一相位控制模块2291与第二相位控制模块2292处于工作状态,第一相位控制模块2291以及第二相位控制模块2292控制进入第三枝节224的馈电信号以及进入第四枝节225的馈电信号的相位差为180°,以使第二天线22处于第二工作状态。
在第一子开关1281、第三子开关1283闭合,第二子开关1282断开的情况下,第一 匹配电路127与第一枝节124以及第二枝节125均处于连通状态,第二子开关1282与第二接触点之间断开,第一天线12构成缝隙天线,且第一天线12处于半波模式,此时,第一天线12处于第一工作状态,第一枝节124以及第二枝节125中的电流流向相反,参照图8,图8中箭头方向即为电流方向,第一枝节124中电流相对第一断缝123向左流动,第二枝节125中电流相对第一断缝123向右流动。即,第一天线12处于第一工作状态时,第一天线12构成缝隙天线,且处于半波模式,第一枝节124以及第二枝节125中的电流反向。
在第二开关228闭合的情况下,第二匹配电路227与第三枝节224以及第四枝节225均导通,第二激励源226的馈电信号分两路分别馈入第三枝节224以及第四枝节225,第一相位控制模块2291以及第二相位控制模块2292则可以控制两路馈电信号的相位差满足180°,此时,第二天线22处于第二工作状态,第二天线22构成缝隙天线,且第二天线22处于半波模式,第三枝节224以第四枝节225中的电流流向相同,参照图10,图10中箭头方向即为电流方向,第三枝节224中的电流相位相对第二断缝223向右流动,第四枝节225中的电流相对第二断缝223也向右流动。即第二天线22处于第二工作状态时,第二天线22构成缝隙天线,且处于半波模式,第三枝节224以及第四枝节225中的电流通向。
在电子设备100处于折叠状态的情况下,第一子开关1281、第三子开关1283闭合,第二子开关1282断开,第二开关228闭合,使得第一天线12处于第一工作状态,第二天线22处于第二工作状态。第一天线12的第一工作状态以及第二天线22的第二工作状态之间的电流反向,模式天然正交,可以避免第一天线12与第二天线22之间影响。
另外,在一些实施例,在电子设备100处于展开状态下,第二子开关1282可以断开,第一子开关1281或第三子开关1283可以闭合,第一天线12为IFA天线,且第一天线12处于半波模式;或,第一子开关1281、第三子开关1283均可以闭合,第二子开关1282可以断开,第一天线12为缝隙天线,且第一天线12的天线模式为半波模式;或,第一子开关1281、第二子开关1282以及第三子开关1283均可以闭合,第一天线12为全波模式。
在电子设备100处于展开状态的情况下,第一天线12具有三种工作状态,分别为状态一、状态二以及状态三,第一天线12可以在三种状态中的任意一种状态下工作。
在第二子开关1282断开,第一子开关1281或第三子开关1283闭合的情况下,第一天线12处于状态一,此时,第一天线12构成IFA天线(倒F天线),参照图7,示出了第一天线12处于状态一时的天线模式简图,此时第一天线12处于半波模式。
在第一子开关1281、第三子开关1283均闭合,第二子开关1282断开的情况下,第一天线12处于状态二,即第一天线12的第一工作状态,此时第一天线12构成缝隙天线,且处于半波模式,第一枝节124以及第二枝节125中的电流反向。参照图8,示出了第一天线12处于状态二时的天线模式简图。
在第一子开关1281、第二子开关1282以及第三子开关1283均闭合的情况下,第一天线12处于状态三,此时第一天线12为Loop天线,且第一天线12处于全波模式。参照图9,示出了第一天线12处于状态三时的天线模式简图。
另外,在一些实施例,在电子设备100处于展开状态下,第二开关228可以闭合,第一相位控制模块2291以及第二相位控制模块2292控制进入第三枝节224的馈电信号以及进入第四枝节225的馈电信号的相位差为180°,第二天线22为缝隙天线,且第二天线22处于半波模式;或,第二开关228可以断开,第二天线22为IFA天线,且第二天线22处于半波模式。
在电子设备100处于展开状态的情况下,第二天线22具有两种工作状态,分别为状态四以及状态五,第二天线22可以在两种状态中的任意一种状态下工作。
在第二开关228闭合的情况下,第二天线22处于状态四,即第二天线22的第二工作状态,此时,第二天线22构成缝隙天线,且处于半波模式,第二枝节125以及第四枝节225中的电流同向。参照图10,示出了第二天线22处于状态四时的天线模式简图。
在第二开关228断开的情况下,第二天线22处于状态五,此时第二天线22构成IFA天线,参照图11,示出了第二天线22处于状态五时的天线模式简图,此时第一天线12处于半波模式。
需要说明的是,在本申请实施例中,可以在不同的情况下在折叠电子设备100时,避免处于折叠状态的电子设备100中的第一天线12与第二天线22相互影响,例如,在第一天线12与第二天线22均不工作的情况下,折叠电子设备100,可以控制第一天线12处于第一工作状态,第二天线22处于第二工作状态,此时相位控制模块229则可以控制进入第二辐射结构221的两路馈电信号的相位差为180°,此时第二天线22中流通有电流,且第二天线22中的电流流向与第一天线12中的电流流向相反;或者,还可以在第一天线12与第二天线22工作的情况下折叠电子设备100,具体的,第一天线12可以处于状态一、状态二以及状态三中的任一种状态,第二天线22可以处于状态五,此时折叠电子设备100,可以控制第一天线12处于第一工作状态,而相位控制模块229则可以控制进入第二辐射结构221的两路馈电信号的相位差为180°,使得在第二天线22中的电流方向改变,从而第二天线22处于第二工作状态,即状态四,以使第二天线22中的电流流向与第一天线12中的电流流向相反。
其中,第一开关与第二开关228可以与电子设备100的控制模块电连接,例如电子设备100中的CPU,用户可以向电子设备100发出模式切换指令,电子设备100的控制模块根据模式切换指令控制第一开关以及第二开关228所处的状态,进而控制第一天线12与第二天线22的工作状态。为了便于用户使用电子设备100,电子设备100还可以检测电子设备100是否处于折叠状态,在电子设备100处于折叠状态的情况下,控制模块自动控制第一天线12处于第一工作状态,控制第二天线22处于第二工作状态。
另外,在一些实施例,如图5、图6所示,第一开关可以靠近第一激励源126设置, 第二开关228可以靠近第二激励源226设置。
第一开关靠近第一激励源126设置,第二开关228靠近第二激励源226设置,从而可以降低枝节加载对阻抗的影响。
需要说明的是,第一开关以及第二开关228的位置可以根据电子设备100的性能进行匹配设置,以降低枝节加载对阻抗的影响。例如,第一开关与第一激励源126之间的距离可以为4mm、5mm、6mm等等,第二开关228与与第二激励源226之间的距离也可以为4mm、5mm、6mm等等。对于第一开关以及第二开关228的具体设置位置,本申请实施例不作具体限定。
还需要说明的是,在本申请实施例中,电子设备100包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
另外,本申请实施例中第一天线12以及第二天线22不局限于在同频状态下使用,即当电子设备100处于折叠状态时,第一天线12与第二天线22可以在工作频段相同的情况下工作,第一天线12以及第二天线22还可以在不同工作频段下工作。在第一天线12以及第二天线22在相同工作频段下工作时,第一天线12处于第一工作状态,第二天线22处于第二工作状态,则可以避免第一天线12与第二天线22之间相互影响。在第一天线12以及第二天线22在不同工作频段下工作时,第一天线12可以处于第一工作状态,第二天线22可以处于第二工作状态;另外,第一天线12与第二天线22还可以处于其它状态。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种电子设备,所述电子设备包括:第一壳体、第二壳体以及转动组件;
    所述第一壳体与所述第二壳体通过所述转动组件活动连接,以使所述电子设备可折叠;所述第一壳体上设置有第一天线,所述第二壳体上设置有第二天线,且所述第二天线与所述第一天线在所述第二壳体上的至少部分投影区域重合;
    在所述电子设备处于折叠状态,且所述第一天线的工作频段与所述第二天线的工作频段相同的情况下,所述第一天线处于第一工作状态,所述第二天线处于第二工作状态,所述第一天线中的电流流向与所述第二天线中的电流流向相反。
  2. 根据权利要求1所述的电子设备,其中,所述第一天线包括第一辐射结构以及第一馈电模块,所述第一辐射结构与所述第一馈电模块连接,所述第二天线包括第二辐射结构以及第二馈电模块,所述第二辐射结构与所述第二馈电模块连接,所述第二馈电模块包括相位控制模块;
    在所述电子设备处于折叠状态的情况下,所述相位控制模块控制进入第二辐射结构的两路馈电信号的相位差为180°,使得所述第二天线中的电流流向与所述第一天线中的电流流向相反。
  3. 根据权利要求2所述的电子设备,其中,所述第一馈电模块包括第一激励源、第一开关以及第一匹配电路,所述第一开关包括第一子开关、第二子开关以及第三子开关,所述第一子开关与所述第一辐射结构的第一接触点连接,所述第二子开关的一端分别与所述第一辐射结构的第二接触点以及第三接触点连接,所述第二子开关的另一端接地,所述第三子开关与所述第一辐射结构的第四接触点连接;
    所述第一匹配电路的一端与所述第一激励源连接,所述第一匹配电路的另一端与所述第一子开关以及所述第三子开关连接。
  4. 根据权利要求3所述的电子设备,其中,第一壳体上设置有第一断缝,所述第一断缝将所述第一壳体分隔成第一枝节以及第二枝节,所述第一枝节以及所述第二枝节均接地,所述第一断缝以及所述第一枝节、所述第二枝节形成所述第一辐射结构;
    其中,所述第一接触点、所述第三接触点均位于所述第一枝节上,所述第二接触点、所述第四接触点均位于所述第二枝节上。
  5. 根据权利要求3所述的电子设备,其中,所述第二馈电模块还包括第二激励源、第二开关以及第二匹配电路,所述相位控制模块包括第一相位控制模块以及第二相位控制模块,所述第一相位控制模块与所述第二相位控制模块连接,所述第二匹配电路的一端与所述第二激励源连接,所述第二匹配电路的另一端与所述第一相位控制模块以及所 述第二相位控制模块连接,所述第一相位控制模块与所述第二辐射结构的第五接触点连接,所述第二相位控制模块与所述第二辐射结构的第六接触点连接,所述第二开关连接在所述第二相位控制模块与所述第二匹配电路之间;
    在所述第二开关闭合的情况下,所述第一相位控制模块以及所述第二相位控制模块工作,所述第一相位控制模块以及所述第二相位控制模块控制进入第二辐射结构的两路馈电信号的相位差为180°。
  6. 根据权利要求5所述的电子设备,其中,第二壳体上设置有第二断缝,所述第二断缝将所述第二壳体分隔成第三枝节以及第四枝节,所述第三枝节以及所述第四枝节均接地,所述第二断缝以及所述第三枝节、所述第四枝节形成所述第二辐射结构;
    其中,所述第五接触点位于所述第三枝节上,所述第六接触点位于所述第四枝节上。
  7. 根据权利要求5所述的电子设备,其中,在所述电子设备处于折叠状态的情况下,所述第一子开关、所述第三子开关均闭合,所述第二子开关断开,以使所述第一天线处于所述第一工作状态;
    且所述第二开关闭合,所述第一相位控制模块与所述第二相位控制模块处于工作状态,所述第一相位控制模块以及所述第二相位控制模块控制进入第三枝节的馈电信号以及进入第四枝节的馈电信号的相位差为180°,以使所述第二天线处于第二工作状态。
  8. 根据权利要求5所述的电子设备,其中,在所述电子设备处于展开状态下,所述第二子开关断开,所述第一子开关或所述第三子开关闭合,所述第一天线为IFA天线,且所述第一天线处于半波模式;
    或,所述第一子开关、所述第三子开关均闭合,所述第二子开关断开,所述第一天线为缝隙天线,且所述第一天线的天线模式为半波模式;
    或,所述第一子开关、所述第二子开关以及所述第三子开关均闭合,所述第一天线为全波模式。
  9. 根据权利要求8所述的电子设备,其中,在所述电子设备处于展开状态下,所述第二开关闭合,所述第一相位控制模块以及所述第二相位控制模块控制进入第三枝节的馈电信号以及进入第四枝节的馈电信号的相位差为180°,所述第二天线为缝隙天线,且所述第二天线处于半波模式;
    或,所述第二开关断开,所述第二天线为IFA天线,且所述第二天线处于半波模式。
  10. 根据权利要求5中所述的电子设备,其中,所述第一开关靠近所述第一激励源设置,所述第二开关靠近所述第二激励源设置。
PCT/CN2023/114834 2022-08-31 2023-08-25 电子设备 WO2024046220A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211054856.8 2022-08-31
CN202211054856.8A CN115332796A (zh) 2022-08-31 2022-08-31 电子设备

Publications (1)

Publication Number Publication Date
WO2024046220A1 true WO2024046220A1 (zh) 2024-03-07

Family

ID=83927050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114834 WO2024046220A1 (zh) 2022-08-31 2023-08-25 电子设备

Country Status (2)

Country Link
CN (1) CN115332796A (zh)
WO (1) WO2024046220A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115332796A (zh) * 2022-08-31 2022-11-11 维沃移动通信有限公司 电子设备
CN118054191A (zh) * 2022-11-16 2024-05-17 Oppo广东移动通信有限公司 电子设备
CN118783074A (zh) * 2023-04-03 2024-10-15 荣耀终端有限公司 折叠屏电子设备及其天线装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124742A (ja) * 2010-12-09 2012-06-28 Nec Saitama Ltd 携帯無線機
CN111403894A (zh) * 2020-03-27 2020-07-10 北京字节跳动网络技术有限公司 金属边框天线装置和移动终端
WO2021244454A1 (zh) * 2020-05-30 2021-12-09 荣耀终端有限公司 天线装置及电子设备
CN114696093A (zh) * 2020-12-30 2022-07-01 华为技术有限公司 天线装置及电子设备
CN216903329U (zh) * 2022-03-24 2022-07-05 北京小米移动软件有限公司 天线结构和折叠式电子设备
CN115332796A (zh) * 2022-08-31 2022-11-11 维沃移动通信有限公司 电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012124742A (ja) * 2010-12-09 2012-06-28 Nec Saitama Ltd 携帯無線機
CN111403894A (zh) * 2020-03-27 2020-07-10 北京字节跳动网络技术有限公司 金属边框天线装置和移动终端
WO2021244454A1 (zh) * 2020-05-30 2021-12-09 荣耀终端有限公司 天线装置及电子设备
CN114696093A (zh) * 2020-12-30 2022-07-01 华为技术有限公司 天线装置及电子设备
CN216903329U (zh) * 2022-03-24 2022-07-05 北京小米移动软件有限公司 天线结构和折叠式电子设备
CN115332796A (zh) * 2022-08-31 2022-11-11 维沃移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN115332796A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2024046220A1 (zh) 电子设备
JP4850839B2 (ja) 携帯無線機
US10297907B2 (en) Mobile device
JP5661661B2 (ja) 携帯型情報処理装置、そのアンテナ制御方法、及びコンピュータが実行可能なプログラム
JP2002368850A (ja) 携帯無線端末装置
KR20160067541A (ko) 안테나 모듈 및 이를 이용한 이동 단말기
JPWO2006112160A1 (ja) 折畳式携帯無線機
TWI704717B (zh) 電子裝置
TWI659565B (zh) 行動裝置
JP2002290139A (ja) プレーナアンテナ装置
WO2023186033A1 (zh) 超带宽天线阵列及电子设备
WO2024078533A1 (zh) 可折叠电子设备
CN111799544B (zh) 可翻转电子设备的超宽带天线
CN116636086A (zh) 包括天线的电子装置
TW202213859A (zh) 行動裝置
CN115458905A (zh) 天线装置及电子设备
WO2020135169A1 (zh) 移动终端
US20140210685A1 (en) Electronic device and antenna control method thereof
CN102204010A (zh) 移动无线设备
TWI784726B (zh) 混合天線結構
TWI775632B (zh) 可變形筆記型電腦
TWI761669B (zh) 行動裝置和天線結構
JP2012015976A (ja) 携帯無線機
JP2006033310A (ja) 無線装置
CN217823237U (zh) 电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859253

Country of ref document: EP

Kind code of ref document: A1