WO2024045755A1 - 用于测量超声换能器表面声压分布的薄膜、测量装置和方法 - Google Patents

用于测量超声换能器表面声压分布的薄膜、测量装置和方法 Download PDF

Info

Publication number
WO2024045755A1
WO2024045755A1 PCT/CN2023/099062 CN2023099062W WO2024045755A1 WO 2024045755 A1 WO2024045755 A1 WO 2024045755A1 CN 2023099062 W CN2023099062 W CN 2023099062W WO 2024045755 A1 WO2024045755 A1 WO 2024045755A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
ultrasonic transducer
sound pressure
luminescence
light intensity
Prior art date
Application number
PCT/CN2023/099062
Other languages
English (en)
French (fr)
Inventor
李成勇
刘雅璐
尤开军
Original Assignee
重庆融海超声医学工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆融海超声医学工程研究中心有限公司 filed Critical 重庆融海超声医学工程研究中心有限公司
Publication of WO2024045755A1 publication Critical patent/WO2024045755A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means

Definitions

  • the invention relates to the field of ultrasonic medical technology, and specifically relates to a film, a measuring device and a method for measuring the sound pressure distribution on the surface of an ultrasonic transducer.
  • ultrasonic waves have good penetrating effect on general material objects, they are widely used to study and detect structural details inside objects. This requires a sufficient understanding of the distribution of ultrasonic sound pressure.
  • the device generally used to generate ultrasound is called an ultrasonic transducer, which is an electroacoustic conversion element that converts electrical energy into mechanical energy.
  • an ultrasonic transducer which is an electroacoustic conversion element that converts electrical energy into mechanical energy.
  • the surface mechanical vibration of ultrasonic transducers in most applications is uneven and has a certain vibration distribution.
  • ultrasonic transducers are usually accompanied by the excitation of other vibration modes such as Lamb waves. The impact of the vibration distribution on the surface of the transducer on the sound pressure cannot be ignored.
  • Methods for measuring the vibration velocity or vibration displacement of the ultrasonic transducer surface are relatively limited. Commonly used methods include laser Doppler interference vibration measurement and acoustic holographic imaging technology.
  • Laser Doppler interference vibration measurement method measures the tiny vibration amplitude of the transducer surface by detecting the interference phase between the incident laser and the light reflected from the transducer surface. Although this method has high measurement accuracy, it is When used to measure the surface vibration of an ultrasonic transducer using liquid as a medium, the signal of the interferometer cannot clearly represent the condition of the transducer surface due to the interaction of sound and light in the liquid. In addition, in order to obtain the spatial distribution of vibration velocity or displacement on the surface of the transducer, a long-term motion scan or an expensive three-dimensional scanning laser Doppler interference vibrometer with optical scanning function is required to complete the test.
  • Acoustic holographic imaging technology uses hydrophones to scan the complete passing surface of the near-field sound beam output by the transducer, and collects the time-domain sound waveform of each scanning point. It uses a complex time reversal reconstruction algorithm to reconstruct the Normal vibration velocity reconstruction of the transducer surface. However, this method still involves a time-consuming sound pressure scanning process and a complex sound pressure reconstruction process.
  • the traditional measurement method requires point-by-point scanning. If a high-resolution sound pressure distribution map is required, there will be many test points, and the measurement process will be complicated and time-consuming. Especially for transducers with curved surfaces, the scanning process becomes extremely complicated and difficult to operate due to the inconsistent normal directions of the surfaces.
  • hydrophones are used. The hydrophone has a size that cannot be ignored. When placed in the water, it will cause interference and certain damage to the original sound field, which will have a certain impact on the measurement accuracy.
  • the present invention provides a film, a measuring device and a method for measuring the sound pressure distribution on the surface of an ultrasonic transducer, which solves the difficulty in measuring the sound pressure distribution on the surface of an ultrasonic transducer in the prior art. question.
  • a film for measuring the sound pressure distribution on the surface of an ultrasonic transducer lies in: including a matrix for light guide and a pressure-sensitive phosphor for converting the intensity of the sound pressure into light intensity.
  • the pressure-sensitive phosphor is The pressure-sensitive phosphor powder is evenly distributed in the matrix, and the weight ratio of the pressure-sensitive phosphor powder to the matrix is (0.2-1.5):1.
  • the base material is polydimethylsiloxane or hydrogel.
  • the diameter of the pressure-sensitive phosphor particles is 5-50 microns.
  • the thickness of the substrate is smaller than the wavelength of the ultrasonic wave.
  • the thickness of the substrate is 50 to 500 microns.
  • a measuring device for measuring the sound pressure distribution on the surface of an ultrasonic transducer is also provided, the key of which is that it includes:
  • a box body filled with transparent liquid A box body filled with transparent liquid
  • An ultrasonic transducer is installed in the box;
  • the film shown in any of the above examples is tightly attached to the surface of the ultrasonic transducer
  • a light source charging device for irradiating and supplementing light energy to the film
  • a luminescence recording device faces the surface of the ultrasonic transducer and is used to detect and record the luminescence of the film.
  • the light source charging device includes an annular mounting base and light sources evenly distributed along the circumferential direction of the annular mounting base.
  • the annular mounting base is facing the ultrasonic transducer, and the light source evenly distributes light on the film. For scattering, there is a perforation in the middle of the annular mounting base to make space for the luminescent recording device to collect the light intensity distribution of the film.
  • the box is a transparent glass box, and the light source charging device and the luminescence recording device are arranged outside the box.
  • a measuring method of the measuring device shown in any of the above examples is also provided, the key of which is to carry out the following steps:
  • Step 1 After the simulated environment of the measuring device is ready, turn on the light source charging device until the film is saturated, turn on the luminescence recording device to start recording the luminescence process of the film, and then start the ultrasonic transducer to generate ultrasonic waves and emit light.
  • the recording device records the luminescence change process of the film, and then turns off the ultrasonic transducer to end the measurement.
  • Step 2 The luminescence information obtained by testing the luminescence recording device is used to obtain the luminescence status of the film through data processing, thereby reflecting the sound pressure distribution on the surface of the ultrasonic transducer.
  • the data processing method is:
  • the luminescent recording device includes a lens for imaging, and the lens Using a telecentric lens, the light intensity value I recorded by the luminescence recording device is the projection of the normal light intensity value I 0 at that point of the film in the observation direction;
  • the surface normal vector and z-axis unit vector are:
  • the normal light intensity I 0 of the corresponding point on the surface of the ultrasonic transducer is derived, thereby obtaining the sound pressure of the corresponding point on the surface of the ultrasonic transducer.
  • the film can be closely adhered to the surface of the equipment to be tested and can be applied to surfaces to be measured in different shapes. It can be coated before molding or attached to the surface to be measured after molding to adjust the sound pressure of the surface to be measured. Converted into light intensity, the light intensity is easier to collect and can clearly reflect the distribution of the surface to be measured, thus providing basic conditions for measuring the sound pressure distribution on the surface of the equipment to be measured.
  • the measuring device can cooperate with the film to collect and record the light intensity signal on the film, and initially infer the sound pressure distribution on the surface of the ultrasonic transducer.
  • the measuring device and the measuring method can systematically measure and record the light intensity of the film on the surface of the ultrasonic transducer.
  • the sound pressure distribution on the surface of the ultrasonic transducer can be truly reflected.
  • Figure 1 is a schematic structural diagram of the film of the present invention.
  • Figure 2 is a schematic structural diagram of the measuring device of the present invention.
  • Figure 3 is a schematic diagram of the measurement method of the present invention.
  • Figure 4 is a graph of the fluorescence intensity of the film of the present invention after irradiation charging and ultrasonic irradiation;
  • 1-film 101-matrix; 102-pressure-sensitive phosphor; 2-box; 3-ultrasonic transducer; 4-light source charging device; 401-ring mounting base; 402-light source; 403-perforation; 5-luminous recording device; 501-into Like a plane.
  • each raw material in the present invention can be purchased commercially, and the equipment used in the present invention can be carried out using conventional equipment in the field or with reference to the existing technology in the field.
  • Figure 1 is a schematic structural diagram of a film according to an exemplary embodiment of the present invention.
  • a film used to measure the sound pressure distribution on the surface of an ultrasonic transducer including a substrate 101 for light guide and a pressure-sensitive phosphor 102 for converting the intensity of the sound pressure into a small light intensity.
  • the pressure-sensitive phosphor 102 is evenly distributed in the matrix 101, and the weight ratio of the pressure-sensitive phosphor 102 to the matrix 101 is (0.2 ⁇ 1.5):1. This ratio is selected to ensure that the pressure-sensitive phosphor 102 It can be converted into sufficient light intensity, and can also prevent excessive light scattering caused by excessive pressure-sensitive phosphor 102 and reduce the contrast between high and low light intensities.
  • the particle diameter of the pressure-sensitive phosphor 102 is 5-50 microns.
  • the thickness of the substrate 101 is smaller than the wavelength of the ultrasonic wave.
  • the thickness of the substrate 101 is 50-500 microns. This is to avoid the excessive thickness of the film itself from damaging the sound field and causing the detected light intensity distribution on the surface of the film to not accurately reflect the sound pressure distribution on the surface of the transducer.
  • Material of the matrix 101 polydimethylsiloxane or hydrogel, preferably a polymer material of polydimethylsiloxane.
  • Pressure-sensitive phosphor 102 has the following two important physical properties: First, after being irradiated with a specific wavelength (usually higher frequency blue light or ultraviolet light), some electrons around the nucleus transition from the original ground state orbit to Orbitals with higher energy, such as transitions from the ground state to the first excited singlet state or the second excited singlet state, etc.
  • the first excited singlet state or the second excited singlet state are unstable, so they will gradually return to the ground state over time.
  • energy is released in the form of light, producing fluorescence.
  • the second is its pressure-sensitive property, which exhibits fluorescence quenching or fluorescence enhancement response characteristics to external pressure.
  • BaSi 2 O 2 N 2 :Eu 2+ This material is usually in the form of a microgranular powder. After being excited by light in the wavelength range of 310nm-460nm, it can continuously emit visible light with a central wavelength of 496nm.
  • the fluorescent particles can be uniformly mixed in some base materials, such as the above-mentioned transparent gel, and can be made into pressure-sensitive fluorescent materials of any shape. After irradiation with blue light, fluorescence can be emitted uniformly, and the fluorescence intensity will continue to slowly decay. When ultrasonic waves irradiate the material, the fluorescence intensity will rise rapidly and then continue to decay after reaching a peak (as shown in Figure 4). Where the sound pressure is high, the enhanced fluorescence intensity peak will be larger, and vice versa.
  • the film can be coated on the surface of the ultrasonic transducer before molding or attached to the surface of the ultrasonic transducer after molding, which can reduce the sound pressure.
  • the intensity is converted into the magnitude of the light intensity.
  • the intensity distribution of the sound pressure can be inferred.
  • Figure 2 is a schematic structural diagram of a measuring device of the present invention.
  • a measuring device for measuring the sound pressure distribution on the surface of an ultrasonic transducer includes a box 2, an ultrasonic transducer 3, a film 1 shown in any of the above examples, and a measuring device for measuring the sound pressure distribution on the surface of an ultrasonic transducer. 1.
  • the box 2 is a transparent glass box, and a transparent liquid is poured into the box 2.
  • the transparent liquid is preferably water;
  • the ultrasonic transducer 3 is arranged in the box 2;
  • the film 1 is closely attached to the box 2.
  • the light source charging device 4 and the luminescence recording device 5 are arranged outside the box 2 .
  • the luminescence recording device 5 adopts a CCD camera.
  • the lens of the CCD camera faces the surface of the ultrasonic transducer 3 and is used to detect and record the luminescence of the film 1 .
  • the light source charging device 4 includes an annular mounting base 401 and a light source 402 evenly distributed along the circumferential direction of the annular mounting base 401.
  • the light source 402 is an LED lamp, and the annular mounting base 401 is facing the ultrasonic transducer. 3, the light source 402 uniformly scatters the film 1, and a perforation 403 is opened in the middle of the annular mounting base 401 to make space for the luminescence recording device 5 to collect the light intensity distribution of the film 1.
  • Assembly instructions Place the prepared film 1 tightly against the surface of the ultrasonic transducer 3 to avoid folding and shielding, fix the ultrasonic transducer 3 in a transparent glass box filled with water, place the light source charging device 4 and the luminous recording device 5 facing the ultrasonic transducer 3 and fix it outside the transparent glass box, complete Finally, 1 minute after turning on the LED light, the film 1 is fully charged. Turn off the LED light, turn on the CCD camera and start recording the luminescence process of film 1. After 30 seconds, the ultrasonic transducer 3 is started to generate ultrasonic waves. Due to the change in sound pressure of the film 1, the luminous intensity also changes accordingly, and the camera records the entire change process. After 10 seconds, turn off the ultrasonic transducer 3 and leave it for another 30 seconds before ending the test. Through the slight change and distribution of luminescence, the distribution of sound pressure on the surface of the ultrasonic transducer 3 can be initially reflected.
  • a measurement method of the measurement device shown in any of the above examples, as shown in Figure 3, is carried out according to the following steps:
  • Step 2 In the observation direction, with the z-axis as the central axis, fix the light source charging device 4.
  • the light source 402 of the light source charging device 4 adopts an LED lamp and a monochromatic chip with a central wavelength of 420 nm.
  • the light source charging device 4 can provide uniform and stable illumination to the film 1, so that the film 1 can be charged evenly. After turning off the LED light, film 1 can be observed to emit fluorescence.
  • I 0 the normal direction of the surface element
  • Light intensity ⁇ is the angle between the viewing direction and the normal direction of the surface element.
  • Step 3 Debugging of the luminescence recording device 5:
  • the CCD camera detects and records the luminescence process of the film 1, and the CCD camera is fixed in the observation direction.
  • the camera lens should be a telecentric lens with a suitable depth of field.
  • the aperture coefficient of the lens should be as large as possible to ensure that the entire curved surface is clearly imaged.
  • the significance of choosing a telecentric lens is that the magnification will not change as the object moves forward and backward. For an ultrasonic transducer 3 curved surface with a certain depth, the magnification at any position on the curved surface is the same, so that the surface appears
  • the image is a surface Projection on the (x, y) coordinate plane.
  • Step 4 After the simulated environment of the measurement device is ready, turn on the light source charging device 4 until the film 1 is saturated, turn on the luminescence recording device 5 CCD camera to start recording the luminescence process of the film 1, and then start ultrasonic transduction.
  • the ultrasonic transducer 3 generates ultrasonic waves, the CCD camera records the luminescence change process of the film 1, and then turns off the ultrasonic transducer 3 to end the measurement.
  • Step 5 Process the experimental data.
  • any point (x', y') recorded on the imaging plane 501 of the CCD camera can be mapped to the ultrasonic transducer through the magnification and the surface equation of the ultrasonic transducer 3.
  • the light intensity value I recorded by the CCD camera is the projection of the normal light intensity value I 0 at this point of film 1 in the observation direction.
  • the surface normal vector and z-axis unit vector are:
  • the normal light intensity I 0 of the corresponding point on the curved surface of ultrasonic transducer 3 can be derived, thereby more accurately inferring the sound pressure on the surface of ultrasonic transducer 3, and then inferring the surface of ultrasonic transducer 3 sound pressure distribution.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明提供一种用于测量超声换能器表面声压分布的薄膜,包括用于导光的基体和用于将声压的强弱转换成光强大小的压敏荧光粉,所述压敏荧光粉均匀分布在所述基体中。还提供一种包括上述薄膜并用于测量超声换能器表面声压分布的测量装置。还提供一种所述的测量装置的测量方法。本发明薄膜能够紧贴在待测设备的表面,将待测表面的声压强弱转换成光强大小,光强更容易采集且能明显体现待测表面的分布情况,因此为待测设备表面的声压分布的测量提供了基础条件。测量装置采集薄膜上的光强信号并进行记录,初步反推超声换能器表面的声压分布情况。测量方法记录数据后并配合数据处理手段,可以真实反应出超声换能器表面声压分布情况。

Description

用于测量超声换能器表面声压分布的薄膜、测量装置和方法 技术领域
本发明涉及超声医疗技术领域,具体为一种用于测量超声换能器表面声压分布的薄膜、测量装置和方法。
背景技术
随着声学的发展和进步,超声技术正被广泛的应用于医学成像和治疗、无创检测、流量传感、超声清洗和萃取等各种医学、工程领域。由于超声波对一般材料物体都有很好的穿透作用,因此被广泛的用来研究和探测物体内部的结构细节等问题,这就需要对超声声压的分布有足够的了解。
目前一般用来产生超声的装置被称为超声换能器,是一种将电能转换为机械能的电声转换元件。在电信号的激励下,多数应用中的超声换能器其表面机械振动均是不均匀的,具有一定的振动分布。超声换能器除了发生厚度振动外,通常伴随着兰姆波等其他振动模态的激发,换能器表面振动分布对声压带来的影响更是不可忽略。
对于超声换能器表面振动速度或振动位移的测量方法比较有限,常用方法有激光多普勒干涉测振法以及声全息成像技术。
1、激光多普勒干涉测振法,通过检测入射激光与经由换能器表面反射光之间的干涉相位对换能器表面的微小振动幅度进行测量,虽然该方法测量精度较高,但是在用于以液体为媒介的超声换能器表面振动测量时,由于液体中的声光相互作用会使干涉仪的信号不能明确的表示出换能器表面的情况。另外为了获得换能器表面的振动速度或位移的空间分布,需要进行长时间的运动扫描或采用昂贵的带有光学扫描功能的三维扫描式激光多普勒干涉测振仪才能完成测试。
2、声全息成像技术,利用水听器对换能器输出的近场声束完整的通过面进行扫描,并采集每个扫描点的时域声波波形,利用复杂的时间反转重建算法,对换能器表面的法向振动速度重建。但是,该方法仍然涉及耗时的声压扫描过程及复杂的声压重建流程。
因此,传统的测量方法需要逐点扫描,如果需要高解析度的声压分布图,那测试的点会非常多,测量过程复杂,导致测量过程耗时长。特别是对于具有曲面的换能器,由于曲面法线方向不一致,使得扫描过程变得极为复杂,实际很难操作。在声全息成像技术中,会用到水听器。水听器具有不可忽视的尺寸,放入水中,会对原声场造成干扰和一定的破坏,对测量精度有一定影响。
发明内容
一、解决的技术问题
针对现有技术的不足,本发明提供了一种用于测量超声换能器表面声压分布的薄膜、测量装置和方法,解决了现有技术中测量超声换能器表面声压分布困难的技术问题。
二、技术方案
为实现上述目的,本发明提供如下技术方案:
一种用于测量超声换能器表面声压分布的薄膜,其关键在于:包括用于导光的基体和用于将声压的强弱转换成光强大小的压敏荧光粉,所述压敏荧光粉均匀分布在所述基体中,所述压敏荧光粉与所述基体的重量比为(0.2~1.5):1。
优选的,所述基体材料采用聚二甲基硅氧烷或水凝胶。
优选的,所述压敏荧光粉颗粒直径为5-50微米。
优选的,所述基体的厚度小于超声波的波长。
优选的,所述基体的厚度为50~500微米。
还提供一种用于测量超声换能器表面声压分布的测量装置,其关键在于,包括:
箱体,所述箱体内注有透明液体;
超声换能器,设置于所述箱体内;
上述任一示例示出的薄膜,紧贴在所述超声换能器的表面;
光源充能装置,用于对所述薄膜进行照射补充光能;
发光记录装置,正对所述超声换能器表面并用于检测和记录所述薄膜的发光情况。
优选的,所述光源充能装置包括环形安装座和沿环形安装座的周向均匀分布的灯源,该环形安装座正对所述超声换能器,所述灯源对所述薄膜进行均匀散射,所述环形安装座的中部开有穿孔,让开空间用于所述发光记录装置采集薄膜光强分布。
优选的,所述箱体为透明玻璃箱,所述光源充能装置和发光记录装置设置于所述箱体外。
还提供一种上述任一示例示出的测量装置的测量方法,其关键在于,按以下步骤进行:
步骤一:所述测量装置的模拟环境准备好后,打开所述光源充能装置,至所述薄膜充能饱和,打开发光记录装置开始记录薄膜发光过程,然后启动超声换能器产生超声波,发光记录装置记录薄膜发光变化过程,然后关闭超声换能器,结束测量。
步骤二:发光记录装置测试得到的发光信息,通过数据处理得到薄膜的发光情况,从而反应所述超声换能器表面的声压分布情况。
优选的,所述数据处理方法为:
a、建立三维坐标系:设观察方向为z轴,设另外两个互相垂直且与z轴垂直的方向分别为x轴和y轴;所述发光记录装置包括用于成像的镜头,所述镜头采用远心镜头,所述发光记录装置记录的光强度值I即为薄膜该点法向光强值I0在观察方向上的投影;
b、曲面法向量和z轴单位向量分别为:
c、两个向量的点积:
d、所述薄膜空间光强分布满足朗伯体分布cos(θ)=I/I0,可以得到:
e、通过发光记录装置上的强度值I,推出超声换能器表面对应点的法向光强I0,从而得到超声换能器表面对应点声压大小。
三、有益效果
1、所述薄膜能够紧贴在待测设备的表面,可应用于不同形状的待测表面,可采用成型前涂覆或成型后贴附在待测表面,将待测表面的声压强弱转换成光强大小,光强更容易采集且能明显体现待测表面的分布情况,因此为待测设备表面的声压分布的测量提供了基础条件。
2、测量装置能够配合薄膜,采集薄膜上的光强信号并进行记录,初步反推超声换能器表面的声压分布情况。
3、测量装置配合测量方法,可以系统的对超声换能器表面的薄膜的光强大小进行测量和记录,在配合数据处理手段,可以真实反应出超声换能器表面声压分布情况。
附图说明
图1为本发明薄膜的结构示意图;
图2为本发明测量装置的结构示意图;
图3为本发明测量方法的原理图;
图4为本发明薄膜在照射充能-超声辐照后的荧光强度曲线图;
其中1-薄膜;101-基体;102-压敏荧光粉;2-箱体;3-超声换能器;4-光源充能装置;401-环形安装座;402-灯源;403-穿孔;5-发光记录装置;501-成 像平面。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如无特殊说明,本发明中的各原料均可通过市售购买获得,本发明中所用的设备可采用所属领域中常规设备或参照所属领域的现有技术进行。
图1为本发明一示例性实施例示出的一种薄膜的结构示意图。
如图1所示:一种用于测量超声换能器表面声压分布的薄膜,包括用于导光的基体101和用于将声压的强弱转换成光强大小的压敏荧光粉102,所述压敏荧光粉102均匀分布在所述基体101中,所述压敏荧光粉102与所述基体101的重量比为(0.2~1.5):1,选择该比例保证压敏荧光粉102能转换成足够的光强,还能防止压敏荧光粉102过量而引起光过度散射,降低高低光强的对比度。所述压敏荧光粉102颗粒直径为5-50微米。
所述基体101的厚度小于超声波的波长。所述基体101的厚度为50~500微米。以避免薄膜本身厚度过大对声场的破坏以及导致探测到的薄膜表面光强分布不能精确的反映换能器表面的声压分布情况。
超声体模的选材及制备说明:
1、基体101的材料:聚二甲基硅氧烷或水凝胶,优选聚二甲基硅氧烷的高分子聚合材料。
2、压敏荧光粉102,具有以下两种重要的物理特性:一是在特定波长(通常为频率较高的蓝光或紫外光)的照射后,原子核周围的一些电子由原来的基态轨道跃迁到能量更高的轨道,如从基态跃迁到第一激发单线态或第二激发单线态等,第一激发单线态或第二激发单线态等是不稳定的,所以会随时间逐渐恢复到基态,当电子跃迁回基态时,能量会以光的形式释放,从而产生荧光。 二是它的压敏特性,对外部施加的压力表现出荧光猝灭或者荧光增强的响应特征。
例如BaSi2O2N2:Eu2+。这种材料通常为微颗粒粉末状态。在波长范围310nm-460nm的光照激发后,可以持续发射中心波长496nm的可见光。将该荧光颗粒均匀的混合在一些基底材料中,如上述的透明凝胶中,可以做成任意形状的压敏荧光材料。在蓝光照射后,可均匀的发射荧光,荧光强度会持续缓慢的衰减。当超声波辐照到该材料上时,荧光强度会迅速上升,到达峰值后再继续衰减(如图4所示)。声压大的地方,增强的荧光强度峰值也会越大,反之亦然。
综上所述:利用压敏荧光粉102结合基体101材料的上述特性,薄膜可在成型前涂敷在超声换能器表面或在成型后贴附在超声换能器表面,能将声压的强弱转换成光强的大小,对光强大小进行探测便能反推声压的强弱分布。
图2为本发明一种测量装置的结构示意图。
如图2所示,一种用于测量超声换能器表面声压分布的测量装置,包括箱体2、超声换能器3、上述任一示例示出的薄膜1、用于对所述薄膜1进行照射补充光能的光源充能装置4、发光记录装置5。
所述箱体2为透明玻璃箱,该箱体2内注有透明液体,透明液体优选水;所述超声换能器3设置于所述箱体2内;所述薄膜1紧贴在所述超声换能器3的表面;所述光源充能装置4和发光记录装置5设置于所述箱体2外。所述发光记录装置5采用CCD相机,所述CCD相机的镜头正对所述超声换能器3表面并用于检测和记录所述薄膜1的发光情况。
详细地,所述光源充能装置4包括环形安装座401和沿环形安装座401的周向均匀分布的灯源402,灯源402采用LED灯,该环形安装座401正对所述超声换能器3,所述灯源402对所述薄膜1进行均匀散射,所述环形安装座401的中部开有穿孔403,让开空间用于所述发光记录装置5采集薄膜1光强分布。
装配使用说明:将制备好的薄膜1紧贴在超声换能器3表面,避免有折叠 和遮挡,将超声换能器3固定在装有水的透明玻璃箱内,将光源充能装置4和发光记录装置5正对所述超声换能器3并固定安装在透明玻璃箱外,完成后,打开LED灯1分钟后,薄膜1充能饱和。关闭LED灯,打开CCD相机开始记录薄膜1发光过程。30秒之后,启动超声换能器3产生超声波,薄膜1因声压改变,发光强度亦随之变化,相机记录整个变化过程。10秒之后关闭超声换能器3,再静置30秒后,结束测试。通过发光轻度的变化和分布,可以初步反应超声换能器3表面声压的分布情况。
一种上述任一示例示出的测量装置的测量方法,结合附图3所示,按以下步骤进行:
步骤一:常用的换能器表面为平面,圆弧面或是柱面。也有特殊曲面的换能器,在安装定位时,选择适合的原点,一般为表面的中心对称点,并正对观察方向。设观察方向为z轴,水平方向为x轴,竖直方向为y轴,建立三维坐标系,那么超声换能器3表面的曲面方程可表示为:S(x,y,z)=0。
步骤二:在观察方向上,以z轴为中心轴,固定所述光源充能装置4,光源充能装置4的灯源402采用LED灯并选用中心波长420nm的单色芯片,光源充能装置4可以对薄膜1提供照度均匀且稳定的光照,使得薄膜1均匀充能。关闭LED灯后,可以观察到薄膜1发射荧光。如图3所示,对于薄膜1单位面积ΔS的面元而言,其空间光强分布曲线为一个稳定的函数:I=I0×R(θ),其中I0为面元法线方向的光强,θ为观察方向与面元法向的夹角。R(θ)可以通过分布光度计测量获得,但实际上,对于均匀薄膜1而言,其发光特性理论上为朗伯体,即光强分布曲线为I=I0×cos(θ)。
步骤三:发光记录装置5的调试:CCD相机探测记录薄膜1发光过程,CCD相机固定在观察方向上。相机的镜头选用具有合适景深的远心镜头,其镜头光圈系数尽量偏大,能保证整个曲面都清晰成像即可。选用远心镜头的意义在于:放大倍率不会随着物体前后移动而改变,对于具有一定深度的超声换能器3曲面而言,曲面上任何位置的放大倍率都是一致的,这样曲面所呈的像就是曲面 在(x,y)坐标平面上的投影。
步骤四:所述测量装置的模拟环境准备好后,打开所述光源充能装置4,至所述薄膜1充能饱和,打开发光记录装置5CCD相机开始记录薄膜1发光过程,然后启动超声换能器3产生超声波,CCD相机记录薄膜1发光变化过程,然后关闭超声换能器3,结束测量。
步骤五:处理实验数据,如图3所示,对于CCD相机的成像平面501上所记录的任意一点(x’,y’)都可以通过放大倍率和超声换能器3曲面方程对应到超声换能器3表面上的实物点坐标(x,y,z)。CCD相机所记录的光强度值I即为薄膜1该点法向光强值I0在观察方向上的投影。
曲面法向量和z轴单位向量分别为:
两个向量的点积
由前面步骤二所述,均匀薄膜1空间光强分布满足朗伯体分布cos(θ)=I/I0,可以得到:
所以,通过CCD上的强度值I,推出超声换能器3曲面对应点的法向光强I0,从而更加准确推断超声换能器3表面的声压大小,进而推断超声换能器3表面的声压分布情况。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包 括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种用于测量超声换能器表面声压分布的薄膜,其特征在于:包括用于导光的基体和用于将声压的强弱转换成光强大小的压敏荧光粉,所述压敏荧光粉均匀分布在所述基体中,所述压敏荧光粉与所述基体的重量比为(0.2~1.5):1。
  2. 根据权利要求1所述的一种薄膜,其特征在于:所述基体材料采用聚二甲基硅氧烷或水凝胶。
  3. 根据权利要求1或2所述的一种薄膜,其特征在于:所述压敏荧光粉颗粒直径为5-50微米。
  4. 根据权利要求3所述的一种薄膜,其特征在于:所述基体的厚度小于超声波的波长。
  5. 根据权利要求4所述的一种薄膜,其特征在于:所述基体的厚度为50~500微米。
  6. 一种用于测量超声换能器表面声压分布的测量装置,其特征在于,包括:
    箱体,所述箱体内注有透明液体;
    超声换能器,设置于所述箱体内;
    权利要求1~5任一项所述的薄膜,紧贴在所述超声换能器的表面;
    光源充能装置,用于对所述薄膜进行照射补充光能;
    发光记录装置,正对所述超声换能器表面并用于检测和记录所述薄膜的发光情况。
  7. 根据权利要求6所述的测量装置,其特征在于:所述光源充能装置包括环形安装座和沿环形安装座的周向均匀分布的灯源,所述环形安装座正对所述超声换能器,所述灯源对所述薄膜进行均匀散射,所述环形安装座的中部开有穿孔,让开空间用于所述发光记录装置采集所述薄膜的光强分布。
  8. 根据权利要求6或7所述的测量装置,其特征在于:所述箱体为透明玻璃箱,所述光源充能装置和所述发光记录装置设置于所述箱体外。
  9. 一种权利要求6~8任一项所述测量装置的测量方法,其特征在于,按以下步骤进行:
    步骤一:所述测量装置的模拟环境准备好后,打开所述光源充能装置,至所述薄膜充能饱和,打开所述发光记录装置开始记录所述薄膜的发光过程,然后启动所述超声换能器产生超声波,所述发光记录装置记录所述薄膜的发光变化过程,然后关闭所述超声换能器,结束测量。
    步骤二:所述发光记录装置测试得到的发光信息,通过数据处理得到所述薄膜的发光情况,从而反应所述超声换能器表面的声压分布情况。
  10. 根据权利要求9所述的测量方法,其特征在于,所述数据处理方法为:
    a、建立三维坐标系:设观察方向为z轴,设另外两个互相垂直且与z轴垂直的方向分别为x轴和y轴;所述发光记录装置包括用于成像的镜头,所述镜头采用远心镜头,所述发光记录装置记录的光强度值I即为所述薄膜该点法向光强值I0在观察方向上的投影;
    b、曲面法向量和z轴单位向量分别为:
    c、两个向量的点积:
    d、所述薄膜空间光强分布满足朗伯体分布cos(θ)=I/I0,可以得到:
    e、通过所述发光记录装置上的强度值I,推出所述超声换能器表面对应点的法向光强I0,从而得到所述超声换能器表面对应点声压大小。
PCT/CN2023/099062 2022-08-29 2023-06-08 用于测量超声换能器表面声压分布的薄膜、测量装置和方法 WO2024045755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211043499.5A CN117664306A (zh) 2022-08-29 2022-08-29 用于测量超声换能器表面声压分布的薄膜、测量装置和方法
CN202211043499.5 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024045755A1 true WO2024045755A1 (zh) 2024-03-07

Family

ID=90077530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099062 WO2024045755A1 (zh) 2022-08-29 2023-06-08 用于测量超声换能器表面声压分布的薄膜、测量装置和方法

Country Status (2)

Country Link
CN (1) CN117664306A (zh)
WO (1) WO2024045755A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284393A (ja) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology 応力測定システム
JP2010002415A (ja) * 2008-05-20 2010-01-07 National Institute Of Advanced Industrial & Technology 超音波の音圧強度分布の測定方法、超音波のエネルギー密度分布を測定する方法およびそれらの測定装置
JP2013205174A (ja) * 2012-03-28 2013-10-07 Mitsubishi Heavy Ind Ltd 圧力センサ並びに圧力計測装置及びその方法
DE102015111162B3 (de) * 2015-07-09 2016-05-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Messung von instationären Druckschwankungen auf einer Oberfläche mittels drucksensitiver Farbe
CN110608795A (zh) * 2018-06-14 2019-12-24 重庆海扶医疗科技股份有限公司 动态声压检测装置、动态声压检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284393A (ja) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology 応力測定システム
JP2010002415A (ja) * 2008-05-20 2010-01-07 National Institute Of Advanced Industrial & Technology 超音波の音圧強度分布の測定方法、超音波のエネルギー密度分布を測定する方法およびそれらの測定装置
JP2013205174A (ja) * 2012-03-28 2013-10-07 Mitsubishi Heavy Ind Ltd 圧力センサ並びに圧力計測装置及びその方法
DE102015111162B3 (de) * 2015-07-09 2016-05-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Messung von instationären Druckschwankungen auf einer Oberfläche mittels drucksensitiver Farbe
CN110608795A (zh) * 2018-06-14 2019-12-24 重庆海扶医疗科技股份有限公司 动态声压检测装置、动态声压检测方法

Also Published As

Publication number Publication date
CN117664306A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
AU713650B2 (en) Method and system for 3-D acoustic microscopy using short pulse excitation and 3-D acoustic microscope for use therein
US6943924B2 (en) Apparatus and method for digital holographic imaging
Maxwell et al. Polymer microring resonators for high-frequency ultrasound detection and imaging
JPS589063A (ja) 超音波顕微鏡
JP2020079802A (ja) 超音波粒子径測定器及び超音波測定装置
CN105758511B (zh) 一种基于石墨烯的超声探测装置及其探测方法和用途
Kersemans et al. Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence
CN106092901A (zh) 一种基于表面波的声信号探测器和反射式光声显微镜
WO2024045755A1 (zh) 用于测量超声换能器表面声压分布的薄膜、测量装置和方法
JP2010002415A (ja) 超音波の音圧強度分布の測定方法、超音波のエネルギー密度分布を測定する方法およびそれらの測定装置
Goldfain et al. Optical phase contrast imaging for absolute, quantitative measurements of ultrasonic fields with frequencies up to 20 MHz
Torres et al. Optical micro-elastography with magnetic excitation for high frequency rheological characterization of soft media
Mitri et al. Comparison of continuous-wave (CW) and tone-burst (TB) excitation modes in vibro-acoustography: Application for the non-destructive imaging of flaws
CN205826515U (zh) 基于表面波的声信号探测器和反射式光声显微镜
Ram et al. Mechanoluminescence for reconstructing 3D ultrasonic field
Torres Pérez et al. Optical micro-elastography with magnetic excitation for high frequency rheological characterization of soft media
Imano et al. Ultrasonic vibration velocity imaging for solid defect samples using laser probe method
CN214584943U (zh) 一种干式耦合的倒置式oct弹性成像系统
CN217981366U (zh) 一种二维阵列换能器
Gao et al. Discussion on ultrasonic optical method and verification of the influence of pellicle placed on water surface on sound field
He et al. DISCUSSION ON THE DIAPHRAGM TENSION MEASURE-MENT OF CONDENSER MICROPHONES
Hanson Applications of the acoustic sing-around circuit
Nakamura et al. Multi-spectral acoustical imaging
Janzen et al. The physical-fourier-amplitude domain, and application to sensing sensors
Cuomo Theory and applications of optical fiber lever sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858794

Country of ref document: EP

Kind code of ref document: A1