JP2020079802A - 超音波粒子径測定器及び超音波測定装置 - Google Patents

超音波粒子径測定器及び超音波測定装置 Download PDF

Info

Publication number
JP2020079802A
JP2020079802A JP2020027251A JP2020027251A JP2020079802A JP 2020079802 A JP2020079802 A JP 2020079802A JP 2020027251 A JP2020027251 A JP 2020027251A JP 2020027251 A JP2020027251 A JP 2020027251A JP 2020079802 A JP2020079802 A JP 2020079802A
Authority
JP
Japan
Prior art keywords
ultrasonic
fine particles
particle
particle size
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020027251A
Other languages
English (en)
Other versions
JP6910083B2 (ja
Inventor
智久 則末
Tomohisa Norisue
智久 則末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Original Assignee
Kyoto Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC filed Critical Kyoto Institute of Technology NUC
Publication of JP2020079802A publication Critical patent/JP2020079802A/ja
Application granted granted Critical
Publication of JP6910083B2 publication Critical patent/JP6910083B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • G01N2015/0216Investigating a scatter or diffraction pattern from fluctuations of diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • G01N2015/0222Investigating a scatter or diffraction pattern from dynamic light scattering, e.g. photon correlation spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0277Average size only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02416Solids in liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

【課題】微粒子の粒子径を良好なSN比で短時間に測定する。【解決手段】超音波粒子径測定器(11)は、超音波エネルギを微粒子(15)に印加して超音波微粒子速度を微粒子(15)に誘発させ、超音波微粒子速度が誘発された微粒子(15)により散乱された散乱波を受信するトランスデューサ(12)と、トランスデューサ(12)により受信された散乱波に基づいて超音波微粒子速度を算出する超音波微粒子速度算出部(13)と、超音波微粒子速度算出部(13)により算出された超音波微粒子速度に基づいて微粒子(15)の粒子径を算出する粒子径算出部(14)とを備える。【選択図】図7

Description

本発明は、液体(分散媒)中に分散された微粒子(分散質)の粒子径を超音波パルスにより測定する超音波粒子径測定器に関する。
粒子径が1ナノメートル(nm)から3マイクロメートル(μm)程度の微粒子については、動的光散乱(DLS)法により、拡散定数および流体力学的半径(粒子径)の定量化が可能である事が知られている[非特許文献1]。干渉性の高いレーザー光を、溶液中に粒子が分散された溶液試料に入射すると、溶液中の粒子の大きさや形状に依存してレーザー光の散乱が観測されると共に、その光強度は粒子の運動に対応して時間変化する。このとき、光子相関計(コリレータ)で記録された時間強度相関関数が速く時間減衰するほど小さい粒子、逆に遅く減衰するほど大きな粒子のブラウン運動を捉えられる事が実験的にも理論的に明らかとなっている。その結果、粒子の運動解析および粒径解析は、相関関数の緩和時間解析を通じて行われる。この方法は、電子顕微鏡等とは異なり、溶液中で粒子が運動する“そのまま”の状態(例えば膨潤した状態や、弱く結合した状態)をリアルタイムで観察できることが利点である。しかしながら、解析はレーザー光に対して比較的透明な試料に限られ、濁った試料は光の透過性が悪く計測が困難であるという問題がある。
そこで本発明者らは、光と超音波の波動的類似性に着目した動的超音波散乱(DSS、Dynamic ultraSound Scattering)法の開発を行ってきた。この手法は、フォトン自らが空間中を伝搬する可視光とは異なり、振動が伝搬する波である超音波を波源として用いているため、試料着色の有無などで光の透過が困難であることを問題としない。動的超音波散乱法は、ミリメートルからサブミリメートル(ミリメートルの1/10程度)の比較的粒径の大きい粒子の運動を調べるために、カナダのJohn Pageのグループによって提案された[非特許文献2、および非特許文献3]。彼らは、数メガヘルツ(例えば2MHz)の超音波を使って、流動層やクエット系の複雑な流体解析を行った。その後、本発明者らは、動的超音波散乱法をPageらの様な大きな粒子の解析のためではなく、より小さな粒子の解析に適用するために、20MHzの高周波数の超音波を用い、3〜32マイクロメートルの微粒子に適用可能な“高周波”動的超音波散乱法を開発した。その結果、微粒子の沈降速度の評価とそれによる粒子径の算出を行い[非特許文献4][非特許文献5][特許文献1]、実験結果の妥当性を示した。また沈降する微粒子の平均速度だけでなく、粒子の位置や時間に伴う速度変化を定量化し、その速度揺らぎと粒径との関係についても流体力学的な手法を駆使して解析を行った[非特許文献5][非特許文献6][特許文献2]。
また、沈降する微粒子だけでなくブラウン運動する微粒子の粒子径を、超音波パルスによる実数の散乱振幅を用いて算出する手法が開示されている[非特許文献7]。
日本国公開特許公報「特開2010-261910号公報(2010年11月18日公開)」 日本国公開特許公報「特開2013-108902号公報(2013年6月6日公開)」
Berne,B.J.;Pecora,R.Dynamic Light Scattering with Applications to Chemistry,Biology and Physics;Dover Publications:Mineola,NY,2000 Cowan,M.L.;Page,J.H.;Weitz,D.A.Acoust.Imaging,26,247,2002 Cowan,M.L.;Page,J.H.;Weitz,D.A.Phys.ReV.Lett.,85,453,2000 M.Kohyama,T.Norisuye,and Q.Tran-Cong-Miyata,Polymer J.,40,5,pp.398-399,2008 M.Kohyama,T.Norisuye,and Q.Tran-Cong-Miyata,Macromolecules,42,3,pp.752 - 759,2009 A.Nagao,M. Kohyama,T.Norisuye, and Q.Tran-Cong-Miyata,Journal of Applied Physics,105,023526,2009 K. Igarashi, T. Norisuye, K. Kobayashi, K. Sugita, H. Nakanishi, and Q. Tran-Cong-Miyata, 115, 203506(2014).
液体中に分散された粒子径がナノメートル程度の微粒子は、前述した動的光散乱法により、ほぼ粒子密度に関わらずブラウン運動が観察され、式(1)で表されるStokes-Einsteinの式を用いて粒子径dを求める事が出来る。
Figure 2020079802
ここで上記式(1)において、dは分散質である微粒子の直径、kはボルツマン定数、Tは絶対温度、πは円周率、ηは分散媒の粘度、Dは微粒子の拡散係数である。
粒子径がマイクロメートル(ミクロン)サイズと大きくなると粒子の自重の影響が無視できなくなり、ブラウン運動よりも沈降運動が支配的となり、式(2)で表されるStokesの式を用いて粒子径dを求めることができる。
Figure 2020079802
ここで上記式(2)において、Δρは微粒子(分散質)と分散媒との密度差、gは重力加速度、Vは沈降における微粒子の終端速度である。
ブラウン運動と沈降運動との寄与はペクレ数(移流と拡散との比を表す無次元数)という指標を用いて区別されている。沈降運動の様子は、本発明者らが過去に提案した動的超音波散乱法(DSS、非特許文献5)により調べる事ができる。光の波長を越えるミクロンサイズの粒子計測には検出する物体である粒子のサイズと波長との関係により動的超音波散乱法が適しており、典型的には数マイクロから数十マイクロメートル程度の粒径解析が当該動的超音波散乱法により可能となっている。
しかしながら、従来の動的超音波散乱法(非特許文献5)により解析された粒子径の解析誤差は10%程度もあり、より高精度の解析手法が望まれていた。本発明の第1の解決課題は、微粒子の粒子径の解析の高精度化である。
図16は、動的超音波散乱法(DSS)による溶液中の微粒子の粒子径測定方法を説明するための図である。動的超音波散乱法は、懸濁溶液102中の微粒子103の運動状態、構造、および粒子径を非破壊・非接触で評価する方法である。超音波ビーム104を、セル105中に注入した懸濁溶液102(微粒子溶液)に照射し、その散乱波を同一もしくは異なる超音波センサー101(トランスデューサ、図16では同一のトランスデューサを用いている)で受信し、同図中に示す沈降速度や拡散係数を計測することで、微粒子103の粒子径を得る事ができる。
図17は、上記動的超音波散乱法による粒子径測定方法における散乱波の経時変化と微粒子の運動による位置変化との関係を説明するための図である。散乱波の強さは微粒子の運動状態に応じて時々刻々と変化する。ある時間Tにおける信号と一定時間τが経過した後の(T+τ)における散乱波信号から、微粒子座標の変化(変位)が分かるので、これから微粒子の定量的な速度や拡散係数を統計的に算出する事が可能となっている。
この動的超音波散乱法はこれまで、高濃度に乳濁した液中の数μmから数十μm程度の微粒子の沈降速度および粒子径を試料の希釈なしに算出するなど、光で計測が困難な試料に対して有効性が示されている。例えば、凝集状態の構造は希釈すると消失するため、凝集状態の原液を実測する事が好ましく、電子顕微鏡では測定することができない凝集状態の構造を測定しようとする場合には、上記動的超音波散乱法は有望である。平均速度からのズレを速度揺らぎ(標準偏差)と呼ぶが、微粒子の沈降速度揺らぎの正確な測定(状態把握)は、古くから知られている終端速度の測定(状態把握)とは異なり非常に困難な問題であり、複雑流体の分野で未だに興味が持たれている研究課題である。
この沈降速度揺らぎは、微粒子のサイズが数μmであるにも関わらず、ミリメートルレベルの巨大な微粒子が集団をなして運動を示す事が知られているが、位相モード動的超音波散乱法(DSS法)を併用するとこの集団運動が、超音波ビームをスキャンすることなく1つのセンサで可視化できる。実験に用いる超音波センサは5MHz−20MHzの広周波数帯域の超音波を発することができるブロードバンドトランスデューサがよく用いられるが、最近では30MHzの高周波数化した超音波センサと測定・解析システムの見直しとにより測定の分解能が大幅に向上した。その結果、流体力学的半径100nmまでの微粒子の粒子径計測も可能となっている。この粒子径計測は、波長が光と比べて長い超音波を用いながらも、サブミクロン微粒子の特徴であるブラウン運動を捉えた成果であり、その証拠となる拡散モードの記録と、定量的な拡散係数の評価とが行えたため実現したものである。
このように従来の動的超音波散乱法(DSS法)では、高度に懸濁した微粒子の運動状態や粒径を計測することが可能である。しかしながら、解決課題も残されている。
従来の動的超音波散乱法は、一般に非破壊検査や医療分野等でも使用可能な十分に小さいエネルギの超音波を照射源に用いている。これは、超音波の印加実効エネルギが著しく大きくなると、微粒子を観測するために印加した超音波エネルギ自体によって微粒子が運動してしまうため、微粒子の運動を過大評価するおそれがあるという問題があるためである。すなわち、微粒子の運動をありのままに観察したい時には特に超音波のエネルギを小さくしている。
しかしながら、超音波の印加実効エネルギを小さくしすぎると、微粒子からの散乱波の強度も小さくなり、散乱波の強度とノイズとの差が小さくなってSN比が劣化し粒子速度や粒子径等の正確な測定ができないという問題が生じる。測定精度を上げるためには、超音波の印加エネルギの問題を気にすることなく、積極的に超音波エネルギを活用することができる手法が望まれる。
また、従来の動的超音波散乱法は、微粒子の自然の沈降速度や拡散係数から微粒子の状態を分析するため、照射超音波のエネルギをできる限り小さくしていた。そして、沈降速度や拡散係数が非常に小さい微粒子の試料では微粒子の運動速度は極めて小さく、測定に多大なる時間を要するという問題がある。例えば、3μm程度の微粒子の測定では約20分以上待たなければならない場合もある。特に、分散媒の粘度が高い場合には測定対象の微粒子が沈降せずにほぼ静止しており、有効な測定データが得られないという重大な問題がある。本発明の第2の解決課題は、微粒子からの散乱波のSN比の劣化をもたらす超音波印加エネルギの制限と、運動速度が極めて小さい微粒子の粒子径の測定に要する多大なる測定時間とである。
本発明の第1の目的は、微粒子が比較的速い運動をする場合に、SN比の高い、高精度な粒子径測定を可能にする超音波粒子径測定器を提供することにある。
本発明の第2の目的は、微粒子が遅い運動をする場合に、粒子径を良好なSN比で、しかも短時間に測定することができる超音波粒子径測定器を提供することにある。
上記の第1の課題を解決するために、本発明に係る超音波粒子径測定器は、液体中の沈降する微粒子に照射されて散乱された超音波パルスを受信して、前記超音波パルスの伝搬時間tと前記微粒子の運動に対する観測時間Tに基づく第1散乱振幅Ψ(t、T)を生成する超音波受信器と、前記第1散乱振幅Ψ(t、T)を前記伝搬時間tの方向にフーリエ変換した第2散乱振幅Ψ(f、T)を生成し、前記第2散乱振幅Ψ(f、T)の実数部及び虚数部に基づいて振幅r(f、T)及び位相θ(f、T)をそれぞれ算出し、前記振幅r(f、T)及び前記位相θ(f、T)に基づいて前記微粒子の粒子径を算出する粒子径算出部とを備えることを特徴とする。
上記の第2の課題を解決するために、本発明に係る超音波粒子径測定器は、超音波エネルギを微粒子に印加して超音波微粒子速度を前記微粒子に誘発させる超音波エネルギ印加器と、前記超音波微粒子速度が誘発された微粒子により散乱された散乱波を受信する散乱波受信器と、前記散乱波受信器により受信された散乱波に基づいて前記超音波微粒子速度を算出する超音波微粒子速度算出部と、前記超音波微粒子速度算出部により算出された超音波微粒子速度に基づいて前記微粒子の粒子径を算出する粒子径算出部とを備えたことを特徴とする。
本発明に係る超音波測定装置は、本発明に係る第1超音波粒子径測定器と本発明に係る第2超音波粒子径測定器とを特徴とする。
本発明に係る超音波粒子径測定器の第1の効果は、第1散乱振幅Ψ(t、T)を伝搬時間tの方向にフーリエ変換した第2散乱振幅Ψ(f、T)の実数部及び虚数部に基づいて第2散乱振幅Ψ(f、T)の振幅r(f、T)及び位相θ(f、T)をそれぞれ算出し、振幅r(f、T)及び位相θ(f、T)に基づいて微粒子の粒子径を算出するので、比較的速く運動する微粒子の粒子径を、高いSN比で極めて高精度に測定することができるという効果を奏する。
また、本発明に係る超音波粒子径測定器の第2の効果は、微粒子の運動に影響を与える程度以上のエネルギを有する超音波エネルギを微粒子に印加して超音波による微粒子速度(これを超音波微粒子速度と呼ぶ)を前記微粒子に積極的に誘発させ、超音波微粒子速度が誘発された微粒子により散乱された散乱波に基づいて前記超音波微粒子速度を算出するので、良好なSN比を得ることができ、しかも、溶媒や粒子径が異なる多くの場合に遅く運動する微粒子の粒子径を短時間に測定することができるという効果を奏する。
実施形態1に係る超音波粒子径測定器の構成を説明するための模式図である。 (a)は上記超音波粒子径測定器に係る第1散乱振幅Ψ(t、T)を模式的に示すグラフであり、(b)は上記超音波粒子径測定器に係る第2散乱振幅(f、T)を模式的に示すグラフである。 (a)は時間ドメイン相関関数法による相関関数を示すグラフであり、(b)は超音波パルスによる散乱振幅の実数部を考慮して算出する手法による相関関数を示すグラフであり、(c)は上記超音波粒子径測定器に係る相関関数を示すグラフである。 (a)(b)は、水に分散したポリマー粒子の沈降速度の上記超音波粒子径測定器による測定結果を示すグラフである。 実施形態1に係る手法により校正したロックイン位相法を用いて解析した沈降速度の粒子濃度依存性を示すグラフである。 上記超音波粒子径測定器により測定された粒子径と走査型電子顕微鏡により測定された粒子径との関係を示すグラフである。 (a)は実施形態2に係る超音波粒子径測定器の構成を模式的に示す図であり、(b)は上記超音波粒子径測定器に設けられたパルサ/レシーバがトランスデューサに供給する信号波形のタイミング図であり、(c)は上記超音波粒子径測定器に設けられたデジタイザに電気変換された散乱信号を記録するタイミング図である。 (a)は従来の超音波粒子径測定器の構成を模式的に示す図であり、(b)は上記超音波粒子径測定器に設けられたパルサ/レシーバがトランスデューサに供給する信号波形のタイミング図であり、(c)は上記超音波粒子径測定器に設けられたデジタイザに電気変換された散乱信号を記録するタイミング図である。 (a)は実施形態2に係る超音波粒子径測定器に設けられた超音波微粒子速度算出部により算出される超音波微粒子速度と試料位置との間の関係を示すグラフであり、(b)は上記超音波粒子径測定器に設けられたトランスデューサから溶媒中の微粒子に向かう超音波エネルギの減衰を説明するための図である。 上記超音波エネルギの減衰を補正する態様を説明するためのグラフである。 上記超音波微粒子速度と微粒子の濃度との間の関係を上記微粒子の粒子径ごとに示すグラフである。 上記超音波微粒子速度に関する変数と上記微粒子の粒子径との間の関係を示すグラフである。 (a)は上記トランスデューサの周波数特性を示すグラフであり、(b)は実施形態2に係るYpの粒子径依存性を示すグラフである。 上記超音波粒子径測定器により測定された粒子径と走査型電子顕微鏡により測定された粒子径との間の関係を示すグラフである。 実施形態2に係る超音波粒子径測定方法と従来の超音波粒子径測定方法との測定時間の相違を説明するためのグラフである。 動的超音波散乱法による粒子径測定方法を説明するための図である。 上記動的超音波散乱法による粒子径測定方法における散乱波の経時変化と微粒子の変化との関係を説明するための図である。
以下、本発明の実施形態について、詳細に説明する。
(実施形態1)
(実施形態1の概要)
従来の動的超音波散乱法(非特許文献5)により測定された粒子径において、10%程度の測定誤差が生じる理由は、発射光の波長分布が狭いレーザーに対して、超音波パルスが様々な周波数成分を含む発射波の波長分布が広い「ブロードバンド」パルスであることが大きい。様々な幅広い周波数帯を一度の測定でカバーできる超音波パルスは、周波数分析を行うスペクトロスコピー実験で便利であるが、この様々な周波数成分の分布が、ある瞬間時間における粒子の位置や粒子径を精密に決定する事を阻害している。本実施形態では、時間軸で得られた超音波パルスをフーリエ変換して周波数空間で解析を行う。ただし、フーリエ変換という操作を用いる事は従来から知られているが、従来のように振幅スペクトルまたは位相変化のどちらかを用いて、中心周波数レスポンスで処理するのではなく、複素数型の完全な相関関数を構築し、そして振幅と位相の両方をそれぞれ正しい周波数レスポンスで処理する事が本実施形態における新規な点である。実際、本発明者らの過去の研究(非特許文献6)では、時間領域から周波数領域にフーリエ変換した散乱振幅を解析しているが、ノイズを含む位相の時間変化を比較した速度変化を示すに留まっており、粒子径を求めるための速度を正確に求めることはできず、そのため、求めた粒子径は誤差10%程度の誤差があった。
また、上記非特許文献6及び特許文献2でロックイン位相法を用いる手法について述べている。この手法は様々な周波数成分を有する超音波パルスのピーク周波数を空間周波数として用いるが、後に述べるように超音波パルスの波形がほとんどの場合完全な対称形ではなく、そのためピーク周波数の値が正しい空間周波数を与えない。従って、超音波パルスのピーク周波数を空間周波数として用いることは多大なる誤差を生むので、微粒子の粒子径を正確に求めるためには、このピーク周波数が誤差を生むという問題を打破する新しい解析方法が必要である。
本実施形態では、以下に記載する方法により平均速度および粒子径を極めて高精度に測定することができた。
まず、液体中に微粒子が存在する試料に超音波パルスを照射する。照射された超音波パルスは液体中を伝搬して微粒子により散乱する。ある観測時間(Evolution time)Tで得られた微粒子による第1散乱振幅である超音波パルス波形を獲得し、パルスフィールド時間(伝搬時間、Field time)tの方向にフーリエ変換して第2散乱振幅を生成する。そして、複素数により構成される第2散乱振幅の実数成分と虚数成分とを超音波パルスの周波数fの関数として求める。必要があればそれらを振幅と位相に換算する。これを観測時間Tごとに行うと、観測時間Tと超音波パルスの周波数fに関する2次元データ(マトリックスデータ)が得られる。次に、観測時間Tの方向に対する複素自己相関関数へと第2散乱振幅を変換する。この複素自己相関関数の算出には相関定理を用いた。すなわち、第2散乱振幅に対して観測時間T方向にさらに別のフーリエ変換を行って観測時間の特徴的周波数Fに関するデータに変換した後に、フーリエ変換後のデータの複素共役形を乗じ、逆フーリエ変換により複素自己相関関数を得る。これにより観測時間Tの場にデータは戻されるので、複素自己相関関数のデータは周波数fと遅延時間τの関数となる。
そして、超音波パルスの各周波数fの複素自己相関関数は各々の周波数f(および対応する散乱ベクトルq=4πf/c, cは既知の音速)が既知であるため、正しい波長を用いて微粒子の運動速度を算出できる。本実施形態に係る手法は、この点で、従来のパルスフィールド時間(伝搬時間)tに対する時間ドメイン相関関数法(非特許文献6、特許文献2、ロックイン位相法)、もしくは、古くから知られる超音波ドップラー法のいずれとも異なる新しい手法である。本実施形態に係る手法の特徴はその微粒子の粒子径に係る実験精度であり、従来法の10%程度から本実施形態の1%程度と大幅に粒子径の測定誤差を小さくすることを実現した。
本実施形態に係る手法は、ブロードバンド超音波パルスを用いた様々な超音波解析法おいて主たる周波数を逆算する方法としても使うことができる。即ち、この正しい主たる周波数(もしくは波長)を用いて超音波パルスをロックインすれば、すでに非特許文献6で示した超音波位相による運動速度の計測を高精度に行うことができ、運動速度のイメージングを、より高精度な絶対値を用いてマッピングする事も可能となる。
(超音波粒子径測定器1の構成)
図1は、実施形態1に係る超音波粒子径測定器1の構成を説明するための模式図である。超音波粒子径測定器1は、超音波トランスデューサ(超音波送受信器ともいう、以後、単にトランスデューサという)2を備えている。トランスデューサ2は、例えば圧電セラミックや圧電結晶等で構成される圧電素子等で構成され、電気パルスを超音波パルスとして送信するとともに、受信した超音波パルスを電気パルスに相互変換する役目を果たす。まず、セル4内で溶媒に分散されて沈降する微粒子5に超音波パルスを照射する。そして、トランスデューサ2は前記微粒子5により散乱された超音波パルスを受信して、この超音波パルスを電気パルス(図1のΨ(V))に変換し、伝搬時間tと前記微粒子の運動に対する観測時間Tに基づく第1散乱振幅Ψ(t、T)を生成して粒子径算出部3に供給する。
粒子径算出部3は、観測時間Tにおける第1散乱振幅Ψ(t、T)を伝搬時間tの方向にフーリエ変換した第2散乱振幅Ψ(f、T)を生成し、第2散乱振幅Ψ(f、T)の実数部及び虚数部に基づいて第2散乱振幅Ψ(f、T)の振幅r(f、T)及び位相θ(f、T)をそれぞれ算出する。そして、粒子径算出部3は、振幅r(f、T)及び位相θ(f、T)に基づいて複素相関関数を生成し、複素相関関数に基づいて微粒子の沈降速度を算出し、この沈降速度に基づいて沈降する微粒子の粒子径を算出する。
(超音波粒子径測定器1の動作)
沈降する微粒子の粒子径測定に係る実際の解析の流れと、結果について示す。図1には動的超音波散乱実験で得られる典型的な散乱振幅波形が示されている。向かって左の波形は観測時間Tにより散乱振幅波形が変化する様子を示しており、右の波形はその一つの散乱振幅波形の詳細を示している。ここでトランスデューサ2はデジタイザ等の波形記録装置を備えており、沈降する微粒子5に照射された超音波パルスが散乱されて帰ってきた超音波パルスをトランスデューサ2で電気信号に変換したデータはトランスデューサ2内の波形記録装置で記録される。
例えば、セル4として深さ10mmの角形形状を用い、粒子が分散された分散媒を一杯に満たせば、1つの超音波パルスがセル4を往復するために要する時間は、水の音速を用いれば、約13マイクロ秒であることがわかる。毎秒200メガサンプルで記録できる高速デジタイザを備えたトランスデューサ2で記録した1つの超音波パルス波形は5ナノ秒のパルス時間分解能を持っているので、1つの超音波パルスは約2600点のデータを有している。中心周波数が20MHzの超音波パルスのためのトランスデューサ2の場合、超音波パルスの1波長を200メガサンプル毎秒のデジタイザで記録すれば、1波長は10点のデータで構成される。この超音波パルスの伝搬時間は前述の通りマイクロ秒のオーダーである。水中を伝搬する超音波の波長は20MHzの場合約75マイクロメートルであるので、超音波散乱実験では、この程度の微細な空間スケールで微粒子の運動を観察できる。その観察に要する観察時間は数秒から数百秒のオーダーであるので、超音波パルスの一つ一つは、微粒子の運動状態に係るスケールで見ると点の様に見える。
よって、動的超音波散乱実験では、10数マイクロ秒のオーダーで往復する数千点のデータを有する超音波パルスを、秒もしくはミリ秒のオーダーの間隔でトランスデューサ2が繰り返し微粒子に印加し、微粒子により散乱された超音波パルス波形、つまり第1散乱振幅により運動状態を記録する。超音波パルスの伝搬時間をt、微粒子の運動に対する観測時間をTとすると、沈降する微粒子に照射されて散乱された超音波パルスに関してトランスデューサ2が得る生データは、これら伝搬時間t、観測時間Tの関数であり、第1散乱振幅Ψ(t、T)と記述する。
従来の非特許文献5では、下記の式(3)で定義される自己相関関数を求める。
Figure 2020079802
ここで上記式(3)において、τは遅延時間(相関時間)、tはパルス到達時間(音速を乗算すると位置に対応する)、Tは観測時間、は複素共役、<・・・>は観測時間にわたる平均、Ψ(t、T)は第1散乱振幅を意味する。
ここで、Ψ(t、T)は、デジタイザ(もしくはオシロスコープ)上で観察される散乱波形の電圧読み値であり、実数データとして保存される。従って、式(3)で求められる自己相関関数g(1)(τ、t)も関数形は複素数であるが、Ψ(t、T)は実数データであるので結果は実数となっていた。
図2(a)は本実施形態の超音波粒子径測定器1に係る第1散乱振幅Ψ(t、T)を模式的に示すグラフであり、(b)は本実施形態の超音波粒子径測定器1に係る第2散乱振幅(f、T)を模式的に示すグラフである。以下、本実施形態で用いる相関関数が従来の相関関数と全く異なることを説明する。
本実施形態に係る超音波粒子径測定器1の粒子径算出部3は、まず、トランスデューサ2により得られた図2(a)の第1散乱振幅Ψ(t、T)を超音波パルスの伝搬時間tの方向にフーリエ変換して、図2(b)の第2散乱振幅Ψ(f、T)を生成する。そして、この第2散乱振幅Ψ(f、T)は複素数であるので、その実数部をa、虚数部をbとする。そうすると、下記の式(4)が得られる。
Figure 2020079802
ここで上記式(4)において、Ψ(f、T)は第2散乱振幅、aおよびbはそれぞれ第2散乱振幅の実数部と虚数部、fは超音波パルスの周波数である。
この式(4)から振幅r(ω、T)と位相θ(ω、T)を下記式(5)及び式(6)に示すように粒子径算出部3が求める。
Figure 2020079802
ここで上記式(5)において、rは第2散乱振幅Ψの大きさ(振幅)を表す。
Figure 2020079802
ここで上記式(6)において、θは第2散乱関数Ψの位相、tan-1はtanの逆関数である。
そして、下記の式(7)を粒子径算出部3が求めると、図2(b)に示すように超音波パルスの周波数fと観測時間Tに対するマトリックスデータ(複素2次元データ)ができる。
Figure 2020079802
このマトリックスデータは、散乱振幅の周波数fへの依存性が、微粒子の観測時間Tに対応して変化する事を表す複素2次元データである。それから、各周波数fを固定して、観測時間Tの方向に相関定理を使って下記の式(8)で定義される複素相関関数g(1)(f、τ)を粒子径算出部3は求める。
Figure 2020079802
即ち、下記に示すように、第2散乱振幅Ψ(f、T)に対して今度は観測時間Tから周波数Fへのフーリエ変換を粒子径算出部3が行い、Ψ(f、F)とし、共役Ψ(f、F)を乗じた上で逆フーリエ変換して、複素相関関数を得る。そして、この複素相関関数に基づいて粒子径算出部3が微粒子5の沈降速度を算出し、当該沈降速度に基づいて微粒子5の粒子径を算出する。ここで下記の式において、FFTは高速フーリエ変換、IFFTはその逆変換を意味する。
Figure 2020079802
つまり、従来は図2(a)に示す実数相関関数を求めて粒子径を求めていたが、本実施形態では図2(b)に示す複素相関関数を求めて粒子径を求める。
前述した非特許文献7では、ブラウン運動する微粒子の粒子径を測定することを目的として、本実施形態と同様に、トランスデューサにより得られた第1散乱振幅Ψ(t、T)を第2散乱振幅(f、T)に変換している。しかしながら、上記非特許文献7は、本実施形態の上記式(7)において位相部を除外した下記の参考式を用いて振幅のみの実数相関関数を求めている点で、振幅と位相との双方に基づく複素相関関数である上記式(7)を求める本実施形態と著しく相異する。
Ψ(f、T)=r(f、T) (参考式)
上記非特許文献7の測定対象に係るブラウン運動する微粒子は、基準位置の周りでランダムに運動しているため、特定方向の運動成分を有していない。このため、微粒子の運動量の平均値をゼロとみなすことができる。従って、このような場合には、上記非特許文献7の手法では、微粒子の運動量を表す位相項を無視して、位相部を除外した単なる実数の相関関数(上記参考式)によりデータが処理されている。
しかしながら、ブラウン運動が主たる運動である微粒子に対して、沈降する微粒子は、揺らぎながら重力方向に落ちるという平均的な運動成分を有している。もちろん、厳密には、短時間ではブラウン運動が主たる運動である微粒子も平均的な運動成分を有している。従って、厳密な測定、および沈降する微粒子の粒子径の測定に必要不可欠なこの運動成分の評価には前述のような系統だった位相の解析が必要であると、本発明者は考え、研究の結果、複素相関関数の位相部がこの平均的な運動成分に重要であることに着目した。本実施形態では、振幅と位相との双方に基づく複素相関関数である上記式(7)に基づいて、微粒子の沈降速度及び粒子径を粒子径算出部3が算出する。このように、本実施形態の手法は、上記非特許文献7に係る比較的長時間のブラウン運動を対象とする手法とは計算式も処理方法も全く異なるものである。
図3(a)は従来技術の時間ドメイン相関関数法による相関関数を示すグラフであり、(b)は従来技術の超音波パルスによる散乱振幅の実数部を考慮して算出する手法による相関関数を示すグラフであり、(c)は本発明の実施形態1の超音波粒子径測定器1に係る複素相関関数を示すグラフである。
いくつかの従来法との決定的な違いを以下の図にまとめる。図3(a)には、パルスに含まれる周波数分布を全く考えずに得た従来の相関関数が示されている。この関数は下記の式(9)のような、指数関数の減衰と、コサインの振動を掛け合わせたような関数となっている。
Figure 2020079802
ここで上記式(9)において、qは散乱ベクトル、<V>は微粒子の見かけの平均沈降速度、<δV >はその統計分散を表す。
この式にフィットする事で、様々なパルスフィールド時間(伝搬時間)で規定される微粒子の平均沈降速度<Vz>をコサイン項から得ることができるが、その実験精度は10%程度であった。得られた平均沈降速度<Vz>を式(9)に代入して粒子径を求める。ただし、式(9)のqは、下記の式(10)で与えられる散乱ベクトルであり、
Figure 2020079802
ここで上記式(10)において、λは超音波パルスの波長、θは散乱角、Vは位相音速(ここでは単純に音速でも良い)を表す。
この周波数fには、ブロードバンドパルスの中心周波数の値を、周波数の代表値として用いた。なお、超音波は、光やX線と比較すると波長が長いため、コヒーレンス長(どのくらいの光路長まで干渉縞が現れるかを測定した光路長差をいう)が長い。このため、ブロードバンドパルスを用いてもそれほど大きな誤差にはならないのでこれまで超音波は微粒子の粒子径測定に用いられてきた。前述した10%の誤差が許容できるならば、この超音波による従来法を用いることができるが、より高精度の粒子径計測を実現するためには問題がある。
次にtからfへの(メガヘルツ超音波の)フーリエ変換を用いた非特許文献7(Igarashi 2014)の結果を図3(b)を参照して説明する。この非特許文献7は、周波数空間へのフーリエ変換を行っているものの、そこからは単純に散乱振幅の相関関数を求めているのみであり、位相は考慮されていない。図3(b)は、粒子径d=500nmのシリカ粒子に対して求めた相関関数によるグラフであり、下記の式(11)で表されるような指数関数を用いて拡散係数を算出する。
Figure 2020079802
式(11)はexpの中身が時間の1次のいわゆる指数関数であるのに対して、先述の沈降する粒子に対する従来手法は、式(9)のようにexpの中身が時間の2次のガウス関数であり、このexpと平均速度を与えるコサイン関数とで相関関数が構成されている。このように、非特許文献7は、処理する理論式(式(10)、式(11))が本実施形態の理論式(式(6))と全く異なる。ブラウン運動の場合には得られた拡散係数を前述した式(1)の Stokes-Einsteinの式に当てはめて粒子径を求める。
さて、本実施形態で得た複素相関関数の一例を図3(c)に示す。周波数空間に変換して得られた複素相関関数であるが、下記の式(12)で与えられる平均沈降速度を与えるコサイン関数と、速度の揺らぎを与えるガウス関数の両方の成分を再現できている事がわかる。
Figure 2020079802
上記の式(12)に示す複素相関関数に基づいて微粒子の粒子径を得る手順を以下に説明する。
まず、非線形最小自乗法により上記の式(12)をフィットして微粒子の平均沈降速度<V>を得る。ここで散乱ベクトルqは、上記の式(9)から求める。なお、この式(12)の中にある周波数fが正しく予め分かっていることが、この本実施形態に係る解析手法の特徴である。従来の解析手法はピークの周波数fを使用している点で本実施形態に係る解析手法と相異する。
そして、上記平均沈降速度<V>が得られたら、図5に示す沈降速度の粒子濃度依存性を示すグラフを作成する。次に、体積分率φをゼロで外挿して、微粒子1個の沈降速度Vを得る。例えば、濃度の低い領域で実験が出来ていれば、直線外挿により、<Vz>=V(1−Aφ)で沈降速度Vを求める。ここで、Aは直線の傾きである。なお、RZ(Richardson-Zaki)関数の指数nを使用して、<Vz>=V(1−φ)等の良く知られた経験式を使って沈降速度Vを求めてもよい。
このようにして、沈降速度Vが求まれば、前述した式(2)により微粒子の直径dを算出することができる。
図3(c)に示すグラフは図3(a)に示すグラフと比べるとより正確に求められていることがわかる。図3(c)に示す複素相関関数は、ブロードバンドパルスの各周波数毎のデータ(即ち、ブロードバンドパルスの中心周波数の値を、周波数fの代表値として用いて算出した誤った平均の散乱ベクトルqを単に用いるのではなく、それぞれの周波数fに対して正しく対応した散乱ベクトルqを決めて計算できる。)が得られる事が図3(a)に示す従来の相関関数と決定的に異なる。つまり、図3(a)に示す従来の相関関数のように中心周波数の値を採用するという仮定に依らないのが本実施形態の特徴である。この中心周波数の値を採用するという従来の仮定が誤差の一因であることは以後の図4の説明の個所で説明する。
図4(a)(b)は、水に分散したポリマー粒子の沈降速度の超音波粒子径測定器1による測定結果と従来の構成による測定結果とを比較するグラフである。実際に粒子径10マイクロメートルのポリマー粒子(ポリジビニルベンゼン粒子)を界面活性剤SDSと共に水に分散した沈降速度の結果を図4にまとめる。図4(b)から明らかなように本実施形態に係る周波数ドメイン相関関数法によって解析した沈降速度は周波数に依存しないことがわかる。
図4(a)は2種類の全く異なるトランシデューサB20K2I(50pF)とトランシデューサ25C6I(500pF)を用いた場合に得られた超音波パルスの周波数成分を表している。縦軸は超音波パルスの振幅、横軸は超音波パルスに含まれる周波数を表している。この図4(a)を一見すると、振幅がピークの周波数成分(図中に示した○に対応する周波数成分)は見かけ上主たる周波数成分のように見える。
図4(b)は、上記2種類のセンサーを用いて、2つの旧手法である異なる解析手法(時間ドメイン相関関数法及びロックイン位相法)を用いた場合の平均沈降速度の評価結果の違いを表している。縦軸は粒子径評価に必要不可欠な平均沈降速度<Vz>、横軸は平均沈降速度<Vz>の算出に用いた周波数を表している。
興味深いのは図4(b)に同じく付記した従来の相関関数法による沈降速度の測定結果である。得られた相関関数を平均沈降速度、粒子径に変換するためには、超音波パルスの周波数が必要であるが、従来は上記に述べたピークの周波数値を用いてきた。ここで、ピークを含む様々な周波数値を用いて計算した結果を図4(b)に示す。この図4(b)から明らかなように、ピーク付近よりも高い周波数の値を用いると平均沈降速度を大幅に過小評価し、ピーク付近よりも低い周波数の値を用いると大幅に過大評価するが、同じグラフに示したスペクトル強度のピーク付近の周波数値f(図中に示した○に対応する周波数値)を用いた時には、10%程度の誤差を生じている事がわかる。つまり、ピークの周波数(中心周波数)を用いて微粒子の平均沈降速度、粒子径を算出すると誤差が大きくなることがわかる。
また、図3(a)に示すような相関関数法ではなく、図1に示すパルスフィールド(伝搬時間)から位相を抽出する従来のロックイン位相法があるが、これも中心周波数付近でロックインしているにも関わらず、ロックインする前のデータに様々な周波数成分が混在するために結局異なった沈降速度の値が示されている事がわかる。よって、従来のロックイン位相法は、ロックインすべき周波数がわからない限り使えないという事になる。ここで、ロックイン位相法とは、解析したい信号に、ある周波数の正弦波を乗ずる事でその周波数成分に対応する信号成分を取り出す解析手法であり、それによって特に位相を取り出す技術をロックイン位相法と呼んでいる(非特許文献6参照)。
つまり、図4(b)は本実施形態で求めることができる周波数を使えば、従来の方法でもより正確な粒子速度、粒子径が得られることも意味している。
(実施形態1の変形例)
実施形態1の変形例では、本発明の他の価値として、実施形態1に係る周波数ドメイン相関関数法をロックイン位相法に組み合わせる方法を提案している。ロックイン位相法は、ピーク付近であっても平均の周波数がわからないだけであり、微粒子運動の瞬間瞬間の情報を抽出したデータが得られる手法である。
実施形態1に係る相関関数法で得られる微粒子の(周波数に依らず正しい値を示す)沈降速度を表す曲線と、ロックイン周波数を変えて調べたデータを表す曲線との交点に対応する周波数が真の周波数値となる。従って、図4(b)に示される時間ドメイン相関関数法(非特許文献5)の曲線又はロックイン位相法(非特許文献6)の曲線と、実施形態1に係る周波数ドメイン相関関数法の曲線との交点に対応する周波数を、再び時間ドメイン相関関数法又はロックイン位相法にフィードバックすれば、時間ドメイン相関関数法又はロックイン位相法を校正することができ、様々な解析(非特許文献5、非特許文献6)に役立てることができる。
図5は、実施形態1に係る手法により校正したロックイン位相法を用いて解析した沈降速度の粒子濃度依存性を示すグラフである。
実施形態1に係る手法により校正されたロックイン位相法を用いて沈降速度の粒子濃度依存性を解析したものを図5に示す。低濃度領域でゼロに直線外挿した値は、1つの微粒子が沈降する速度、即ち、ストークス速度Vであると考えられる。
図6は、超音波粒子径測定器1により測定された粒子径と走査型電子顕微鏡(SEM:Scanning Electron Microscope)により測定された粒子径との関係を示すグラフである。
ストークス速度Vから式(2)を用いて粒子径dに換算した値は、図6および表1に示すように精度・確度ともに1%以内であり、FE−SEMから得た情報と合致している。FE−SEMによる粒子径dSEMのデータは、数百個の微粒子を、十分な解像度が得られるように画面全体に拡大して記録し、一つ一つの粒子径を算出した上で平均粒径を求めたるデータである。実施形態1に係る周波数ドメイン相関関数法を用いれば、微粒子を水中に分散させたままで、希釈の必要なく、乾燥の必要もなく、FE−SEMによる粒子径dSEMに対して実験精度・確度に係る誤差1%で、粒子径dDSSを算出することができる。
Figure 2020079802
(実施形態2)
(実施形態2の概要)
本実施形態2は、粒子の移動速度が極めて小さい場合に、粒子径測定の高S/N比化と短時間化を実現するものであり、液体中(分散媒)に分散された微粒子(分散質)に外部から故意に大きな超音波エネルギを印加し、それによって当該微粒子に誘発される速度(超音波微粒子速度)から当該微粒子の粒子径を算出する手法を提案するものである。なお、沈降速度から粒子径を求める従来の動的超音波散乱法は、微粒子に対する簡便な粒子径測定法であるが、微粒子が定常運動状態に到達するのを待って測定を開始しなければならない。このため、微粒子の粒子径が小さいほど、液体の粘度が高いほど測定に長時間を要し、3μm程度の微粒子の測定では約20分以上待たなければならない。その一方で本実施形態は、印加された超音波エネルギが強力な流れ場を誘発し、超音波エネルギに基づいて微粒子に作用する力がただちに摩擦力とつり合いを示すため、従来の動的超音波散乱法のように微粒子が定常運動状態に到達するまで長時間、測定を待つ必要がない。以下、従来の動的超音波散乱法をパッシブモード動的超音波散乱法と呼び、本実施形態に係る動的超音波散乱法をアクティブモード動的超音波散乱法と呼ぶ場合がある。
(実施形態2に係る超音波粒子径測定器11の構成)
図7(a)は実施形態に係る超音波粒子径測定器11の構成を模式的に示す図であり、図7(b)は超音波粒子径測定器1に設けられたパルサ/レシーバ16がトランスデューサ12に駆動信号を供給するタイミングを示すタイミング図であり、図7(c)は超音波粒子径測定器1に設けられたデジタイザ19でパルサ/レシーバ16の出力である電気変換された散乱信号を記録するタイミング図である。以後、同様な機能を果たす構成要素は同じ参照符号を付与してある。
図7(a)において、溶媒(分散媒)に分散された微粒子15がセル20に収容されている。セル20は水槽21に収容された水の中に配置されている。超音波粒子径測定器11は、トランスデューサ(超音波エネルギ印加器、超音波散乱波受信器)12を備える。トランスデューサ12は、水槽21の水中に配置され、セル20の微粒子15の沈降方向(図7(a)の垂直方向)と交差する方向に超音波エネルギを印加して超音波による微粒子速度を微粒子15に誘発させる超音波エネルギ印加器としての役目を果たす。そして、トランスデューサ12は、超音波微粒子速度が誘発された微粒子15により散乱された超音波散乱波を受信する超音波散乱波受信器としての役目も果たす。すなわち、図7(a)ではトランスデューサ12は、超音波エネルギ印加器、超音波散乱波受信器両方の役目を果たすが、送信機、受信機の役目を持つ2つのトランスデューサに分離しても良い。
超音波粒子径測定器11には、任意波形発生器17、パルサ/レシーバ16、デジタル遅延18、及びデジタイザ19が設けられている。任意波形発生器17は、図7(b)に示すパルサ/レシーバ16の超音波出力用のタイミングパルスを生成してパルサ/レシーバ16に供給し、図7(c)に示すデジタイザ19用のタイミングパルスを生成してデジタル遅延18に供給する。デジタル遅延18は、デジタイザ19用のタイミングパルスを遅延させて、デジタイザ19で電気変換された散乱波形を記録する。なお、図7(b)に記載された1/PRFは、トランスデューサ12が超音波を出力する超音波出力用のタイミングパルスに対応したバーストの間隔(Burst Period)である。
任意波形発生器17は第1トリガーアウト(Trigger out (1))からパルサ/レシーバ16に超音波出力用のタイミングパルスに対応したバースト信号であるタイミングパルス信号A(Trig Pulser)を与える。パルサ/レシーバ16は、タイミングパルス信号Aを受け取ると、所定の駆動電気信号を発生してトランスデューサ12に与える。トランスデューサ12は駆動電気信号を超音波信号に変換してセル20に照射する。照射された超音波信号はセル20中を伝搬し、微粒子15を駆動するとともに散乱され超音波散乱波としてトランスデューサ12の方向に帰ってくる。トランスデューサ12は、伝搬してきた超音波散乱波を電気信号に変換してパルサ/レシーバ16に入力する。
一方、任意波形発生器17は第2トリガーアウト(Trigger out(2))からデジタル遅延18にデジタイザ19用のタイミングパルスに対応したバースト信号であるタイミングパルス信号B(Trig Digtizer)を与える。ここで、タイミングパルス信号Bはタイミングパルス信号Aと所定の規則で同期している。図7ではタイミングパルス信号Aのn個おきにタイミングパルス信号Bが出力されている。ここで、nは自然数を表す。パルサ/レシーバ16は、デジタル遅延18により所定の時間だけ遅延させた後、上記散乱波を表すパルサ/レシーバ16の出力信号である電気変換された散乱信号をデジタイザ19に記録する。
超音波粒子径測定器11は、また、超音波微粒子速度算出部13と粒子径算出部14とを備えている。超音波微粒子速度算出部13は、デジタイザ19に記録された上記散乱波を表す信号に基づいて、トランスデューサ12から微粒子15に向かう超音波エネルギの減衰に基づく成分を補正して超音波微粒子速度を算出する。粒子径算出部14は、超音波微粒子速度算出部13により算出された超音波微粒子速度に基づいて、微粒子15の粒子径を算出する。
図8(a)は従来の超音波粒子径測定器90の構成を模式的に示す図であり、図8(b)は超音波粒子径測定器90に設けられたパルサ/レシーバ16がトランスデューサ12に駆動信号を供給するタイミングを表すタイミング図であり、図8(c)は記超音波粒子径測定器90に設けられたデジタイザ19に電気変換された散乱波が記録されるタイミングを示すタイミング図である。図8(a)(b)に記載された1/PRFはタイミングを表すバーストの間隔(Burst Period)である。図8では超音波の照射と散乱波の記録とは1:1に対応している。
図7に示す本実施形態のアクティブモード動的超音波散乱法に係る超音波粒子径測定器1の構成(セットアップ)を、図8に示す従来のパッシブモード動的超音波散乱法に係る超音波粒子径測定器90の構成と比較した相違点は、微粒子に照射される超音波の強度と、下記に示す特別な機能を備える超音波微粒子速度算出部13及び粒子径算出部14を有する点と、超音波の照射と微粒子による散乱波の記録との回数が異なっている点とである。
本実施形態の代表的なセットアップとしては、沈降方向と同方向に超音波エネルギを印加するようにトランスデューサ12を配置するZ方向セットアップと、沈降方向に垂直に超音波エネルギを印加するようにトランスデューサ12を配置するY方向セットアップがあるが、本実施形態では後者のY方向セットアップを用いた。しかしながら、本発明はこれに限定されない。つまり、Z方向セットアップを用いても、超音波エネルギを重力エネルギに比べて遙かに大きくすれば、同等の結果を得ることができる。
本実施形態では、空気中での超音波伝搬減衰と境界面での反射による損失とを小さくするために、水槽21の音響整合用の水中に超音波のトランスデューサ12とセル20とを配置し、超音波エネルギを印加するトランスデューサと同一のトランスデューサで散乱波を受信する後方散乱方式のセットアップを用いた。
しかしながら、本発明はこれに限定されない。超音波エネルギを印加するトランスデューサとは別のトランスデューサを用いて散乱波を受信してもよい。その場合は散乱角を考慮する。また、非破壊検査でも広く用いられているように、センサ(トランスデューサ12)に音響整合用の接触媒質を薄く塗り、セル20とトランスデューサ12との間に空気層が存在しないようにトランスデューサ12をセル20に接触させることで、音響整合用の水を収容した水槽21を用いずに実験を行う事もできる。
超音波エネルギを発信するためには、市販の超音波パルサ(パルサ/レシーバ16)を用いて、負のスパイク波信号を出力し、トランスデューサ12が電気信号から機械信号(超音波信号)へ変換してセル20に向かって超音波を発信する。超音波はセル20内の微粒子15により散乱され、超音波散乱波信号はトランスデューサ12で電気信号に変換され、パルサ/レシーバ16内に設置されたアンプで増幅した後に高速のデジタイザ19に記録される。
(実施形態2に係る超音波粒子径測定方法)
以上説明した本実施形態2の基本的なセットアップは、図8に示す従来の構成と類似するが、より大きなパルスエネルギーを、液体に微粒子を分散した試料に印加するために、超音波印加の方法に工夫を加えている。上記で説明したように、図7(b)(c)に本実施形態のタイミング図を示し、図8(b)(c)に従来のタイミング図を示す。図7に示す本実施形態2の任意波形発生器7は、従来のタイミング制御とは異なり、デジタイザ19への記録系と比較して短い時間間隔で試料の微粒子15に超音波エネルギを印加することができるように、パルサ/レシーバ16にのみ、従来方法よりも単位時間当たりの回数が多いバーストトリガーを送っている。つまり、従来例の図8では、試料に超音波を照射するタイミングと散乱波を記録するタイミングとが1:1で対応しているが、本実施形態の図1では、試料に超音波を照射するタイミングと散乱波を記録するタイミング(散乱波の受信回数)との間の比率が、n(nは超音波の照射回数(印加回数)を表す自然数):1である。このようにすれば記録系のデジタイザ19のメモリ消費を抑えつつ、十分な時間分解能を有する散乱波データをデジタイザ19に記録できるようにしながら、超音波エネルギを極めて大きくしなくても、超音波が微粒子に与えるエネルギを、デジタイザ19への記録とは独立にコントロール可能である。つまり、印加回数nを大きくすれば、超音波が微粒子に与えるエネルギを大きくすることができる。もちろん、1回に照射する超音波のエネルギを大きくすればn=1でも本実施形態の効果が得られる。
なお、粒子径を算出するための解析手法は、従来と同様の相関関数法とロックイン位相法とを用いることができる。相関関数法で評価する場合、下記の式(13)にフィットさせて、超音波エネルギを印加されて微粒子に誘発された超音波微粒子速度<Vy>と、その標準偏差<δVy1/2とが得られる。微粒子の沈降方向に交差する方向に向かう超音波エネルギに基づく力と微粒子に作用する摩擦力とのつり合いの式(13)から粒子径を求める。
Figure 2020079802
ここで、
aは、流体力学的半径であり、
Eは、超音波エネルギである。
超音波エネルギEは、実験的に求めても良いが、例えば散乱体が存在する懸濁液に対しては、様々な理論が存在するので予め計算しておくのもよい。例えば、Hasegawa-Yoshiokaの理論(Hasegawa, T., 1969, Acoustic-Radiation Force on a Solid Elastic Sphere,J. Acoust. Soc. Am. 46, 58, 1139)では、下記の式(14)で表される音響流に剛体粒子の散乱関数を考慮した理論がある。
Figure 2020079802
ここで、
は、入射強度、
cは、分散媒の音速、
Ypは、音響放射関数である。
図9(a)は実施形態2に係る超音波粒子径測定器11に設けられた超音波微粒子速度算出部13により算出される超音波微粒子速度Vyと試料位置Yとの間の関係を示すグラフであり、(b)は超音波粒子径測定器11に設けられたトランスデューサ12からY方向(例えば微粒子15が存在する方向)に向かう超音波エネルギの減衰を説明するための図である。
微粒子15の散乱波に基づいて超音波微粒子速度算出部13により得られる微粒子15の超音波微粒子速度<V>は、図9(a)に示すように、超音波エネルギの印加方向に沿った微粒子の試料位置Yに依存する。図9(a)では粒子径15μm、濃度1%の測定結果を示した。この微粒子15に超音波微粒子速度<V>が誘発される現象は照射超音波による蓄積効果であるので、セル20の手前の壁に対応する試料位置から徐々に超音波微粒子速度<V>が大きくなり、その後極大を迎えて減少する(曲線C1)。この減少はセル20に入射した超音波エネルギの強度の減衰によるものであるので、超音波微粒子速度を算出するために、まず、この減衰を補正する。
図10は、上記超音波エネルギの減衰を補正する態様を説明するためのグラフである。具体的には曲線C1の減衰部を指数関数でフィットした減衰関数で測定データである超音波微粒子速度<V>の全体を下記に示すように除算する。
<V>/exp(−αct/2)
そうすると図10の曲線C2に示すように微粒子5の超音波微粒子速度<V>が一定になる事が確認できる。この指数関数expの係数αは、速度一定が得られる係数を実験的に求めても良いが、散乱関数理論から予測することもできる。以後、
<V>/exp(−αct/2)
を単純に超音波微粒子速度<V>と呼ぶ事にする。
図11は、照射超音波エネルギを一定にした時の超音波微粒子速度<V>と溶媒中の微粒子15の濃度cとの間の関係を微粒子15の粒子径ごとに示すグラフである。図11には、超音波微粒子速度<V>に対する濃度依存性が示されている。5μm−30μmの様々な粒子径の微粒子15の測定結果を合わせて示す。図11に示すように超音波微粒子速度<V>は、濃度cに対して低濃度領域ではほぼ線形である。また、超音波微粒子速度<V>は高濃度領域では線形直線から逸脱して一定値に収束することが分かる。
微粒子15の粒子径は、超音波微粒子速度<V>が濃度cに対して線形な低濃度領域で解析する必要がある。このため、粒子径が大きい場合には濃度の高い側で測定データが線形直線から逸脱する問題が示唆される。しかしながら、この線形直線から逸脱する現象は共鳴散乱として既に従来の超音波スペクトロスコピー法でも良く知られている現象であり、上記超音波スペクトロスコピー法でも、粒子径が大きい微粒子で共鳴散乱の懸念がある場合には、より低い周波数のトランスデューサを用いることによって当該問題を打開することができることがわかっている。このため、本実施形態も同様にして、粒子径が大きい微粒子の場合には、より低い周波数の超音波を送信できるトランスデューサを用いることによって当該問題を打開することができる。
また後述するように濃度の影響を超音波減衰率から解析する事もできるので、数十%の濃度領域まで本実施形態に係るアクティブモード動的超音波散乱法を活用する事も可能である。
図12は、超音波微粒子速度<V>に関する変数と微粒子15の粒子径dとの間の関係を示すグラフである。濃度が希薄な微粒子15で実験を行う場合には、濃度依存性の傾き、即ち、図11に示す線形直線の傾きを求める。超音波微粒子速度<V>と微粒子15の濃度cとでプロットした線形直線の切片は、濃度cがゼロ、つまり、微粒子15が存在しない場合の溶媒の流れの速度であるストリーム速度を表している。そして、上記線形直線の傾きは微小濃度変化に対応した微粒子散乱による超音波微粒子速度<V>の増分を表す。従って、超音波微粒子速度<V>から切片の値<Vを減算し、濃度cで除算した下記の変数(これは線形直線の傾きに相当する)からその粒子径に応じた特性が抽出できる。
変数(<V>−<V)/cと粒子径dとをプロットしたグラフが図12に示されている。超音波エネルギの周波数が30MHzの実験では、上記変数の粒子径dへの依存性は、粒子径dが10μm以下で一定であり、その後立ち上がりを見せ、粒子径dが30μm以上に増大すると傾きが緩やかになる様子が図12のグラフで観察される。なお、図12に示す実線は理論予測曲線を示している。なお、理論の音響放射関数Ypの計算には実際の超音波トランスデューサの周波数分布をハイドロフォン(水中超音波センサ)で校正した周波数分布の効果を考慮している。
図13(a)はトランスデューサ12の周波数特性を示すグラフであり、(b)は実施形態に係る音響放射関数Yp(音響放射パワーの関数形)の粒子径依存性を示すグラフである。本実験で使用した30MHzのコンポジット型のトランスデューサ12をハイドロフォンで校正した超音波音圧の周波数依存性が図13(a)に示されている。トランスデューサ12から照射される超音波パルス(超音波エネルギ)は様々な周波数成分を含むので、当該超音波パルスによって駆動される微粒子15の運動も様々な周波数成分の超音波音圧の寄与を含む。それ故、前述した式(2)の音響放射関数Ypには周波数成分の平均を予め計算させておく。
超音波エネルギの周波数30MHzに対応する音響放射関数Ypの粒子径依存性を表す曲線C3と、本実験で用いた周波数30MHzの超音波エネルギの振幅スペクトルを考慮して平均した音響放射関数Ypの粒子径依存性を表す曲線C4と図13(b)に示す。但し、比較的周波数分布の狭い、狭帯域センサを備えたトランスデューサ12を用いた場合には、このような平均操作は不要である。
最終的な平均の粒子径dは、式(13)の右辺を左辺で除算した結果から1を減算した値がゼロになる流体力学的半径aの値に基づいて算出する。このような本実施形態のアクティブモード動的超音波散乱法により得られた粒子径dActiveと、走査型電子顕微鏡(SEM:Scanning Electron Microscope)により測定された粒子径dSEMとの間の関係
が図14に示されている。図14に示すように、粒子径dActiveの値と粒子径dSEMの値とは、粒子径10数μm以上の領域において実質的に一致している。従って、本実施形態のアクティブモード動的超音波散乱法により、10数μm以上において微粒子15の粒子径が正しく算出されている事が確認できる。
なお、図14には10数μm未満の小さい微粒子の粒子径がプロットされていないが、今回の実験では使用したトランスデューサの超音波エネルギ出力が小さく、印加した超音波エネルギでは10数μm未満の小さい微粒子に超音波微粒子速度を誘発させて移動させる事ができなかったので、超音波微粒子速度はほぼゼロであり、粒子径を算出することができなかったためである。しかしながら、より大出力のトランスデューサを使用し、微粒子に印加する超音波エネルギをさらに大きくすることにより、10数μm未満の小さい微粒子にも超音波微粒子速度を誘発させて本実施形態のアクティブモード動的超音波散乱法を適用することができる。
また、本実施形態では、簡便な例として、エコーセットアップで実験を行っているため、1つのトランスデューサ2が超音波エネルギの送信と超音波散乱波の受信との両方の役割を兼ねている例を示した。しかしながら、本発明はこれに限定されない。超音波エネルギの送信用のトランスデューサと散乱波の受信用のトランスデューサとを分離して配置し、もしくは、任意の角度に配置しても本実施形態のアクティブモード動的超音波散乱法を適用することができる。送信用のトランスデューサに強力な超音波エネルギを発信させ、既存のセンサを受信用のトランスデューサとして散乱波を受信させれば測定データの取得は容易である。実際、従来のパッシブモード動的超音波散乱法で、粒子径0.1μmという非常に小さい微粒子の粒子径計測もすでに実現している。
また、本実施形態で示した測定データでは微粒子の粒子径及び微粒子の濃度の適用範囲が限定されている。しかしながら、前述した通り、上記適用範囲は、印加する超音波エネルギをさらに大きくすることにより改善することができる。
また、従来の超音波スペクトロスコピー法でも微粒子の粒子径は求められるが、弱く凝集した微粒子と、孤立した微粒子の凝集体とを観測する事は極めて困難である。超音波の波長が微粒子の粒子径よりも遙かに長い超音波スペクトロスコピー法では、微粒子の凝集体は一つの大きな粒子のように捉えられるので、波長が長い低周波の超音波により、凝集した微粒子を検知することは原理的に可能である。しかしながら、その低周波の超音波に基づく信号は非常に小さく、長い波長で微粒子を捉えることは困難である。また、微粒子の凝集体を一つの大きな粒子と捉えるほど低い周波数のトランスデューサを用いると、当該トランスデューサを収容する水槽の大きさが巨大となるという問題が生じる。
図15は、実施形態2に係る超音波粒子径測定方法と従来の超音波粒子径測定方法との測定時間の相違を説明するためのグラフである。従来のパッシブモード動的超音波散乱法と実施形態に係るアクティブモード動的超音波散乱法とで取得した粒子径5μmのPDVB(ポリジビニルベンゼン)粒子の測定データの違いを示す。
前者のパッシブモード動的超音波散乱法による測定データに係る相関関数を表す曲線C5は、超音波エネルギによる負荷を微粒子に与えないように注意してZ方向(沈降方向)から微粒子の沈降速度を計測している例である。この相関関数を表す曲線C5は、1から負の値に減衰して極小値を示し、そして、何度か振動しながら、その後、0付近の値に緩和している。この最初の負の極小値から微粒子の沈降速度が得られ、粒子径へと換算される。この測定に要する時間は、この図15の横軸から読み取れ、従来のパッシブモード動的超音波散乱法では曲線C5から10秒=1000秒を越える長時間にわたっていることがわかる。
その一方で、後者のアクティブモード動的超音波散乱法による実験は沈降方向に垂直な方向(水平方向)に超音波エネルギを印加するセットアップで行って得た相関関数を表す曲線がC6である。よって、そもそも重力の影響は超音波エネルギに対してほぼ無視できるが、このセットアップでは超音波エネルギの印加方向が沈降方向に直交しているため、重力の影響は排除できる。前述したようにアクティブモード動的超音波散乱法では純粋に、微粒子に水平方向に印加した超音波エネルギと、その際に微粒子に作用する摩擦抵抗とのバランス(つり合いの式(1))を解いて、微粒子に誘発される超音波微粒子速度から粒子径に換算する。この測定に要する時間は、曲線C6から10−1秒=0.1秒程度であり、パッシブモード動的超音波散乱法による測定時間の10秒よりも、おおよそ4桁ほど測定時間が短縮している事が図15から見てとれる。
このように、濃厚な微粒子を含む試料、高粘性な微粒子を含む試料等、微粒子が動きにくい又は動けないような試料に対して超音波エネルギを能動的に印加することにより、その超音波エネルギを印加された微粒子からのレスポンスに基づいて微粒子の状態を判別することができる。
実施形態2に係るアクティブモード動的超音波散乱法では、粒子径を算出するための解析手法として、従来と同様の相関関数法とロックイン位相法とを用いることができることを示したが、解析手法として実施形態1で説明した周波数ドメイン複素相関関数法を用いれば、更に高精度、高S/N比で短時間で微粒子の運動解析、粒径解析を行うことができる。
実施形態2に係る超音波粒子径測定器11と実施形態1に係る超音波粒子径測定器1とを備えた超音波測定装置を構成しても良い。
(本発明の異なる側面)
上記の第1の課題を解決するために、本発明に係る超音波粒子径測定器は、液体中の沈降する微粒子に照射されて散乱された超音波パルスを受信して、前記超音波パルスの伝搬時間tと前記微粒子の運動に対する観測時間Tに基づく第1散乱振幅Ψ(t、T)を生成する超音波受信器と、前記第1散乱振幅Ψ(t、T)を前記伝搬時間tの方向にフーリエ変換した第2散乱振幅Ψ(f、T)を生成し、前記第2散乱振幅Ψ(f、T)の実数部及び虚数部に基づいて振幅r(f、T)及び位相θ(f、T)をそれぞれ算出し、前記振幅r(f、T)及び前記位相θ(f、T)に基づいて前記微粒子の粒子径を算出する粒子径算出部とを備えることを特徴とする。
この特徴により、第1散乱振幅Ψ(t、T)を伝搬時間tの方向にフーリエ変換した第2散乱振幅Ψ(f、T)の実数部及び虚数部に基づいて振幅r(f、T)及び位相θ(f、T)をそれぞれ算出し、振幅r(f、T)及び位相θ(f、T)に基づいて微粒子の粒子径を算出するので、沈降運動する微粒子の粒子径を極めて高精度に測定することができる。
本発明に係る超音波粒子径測定器では、前記粒子径算出部は、前記振幅r(f、T)及び前記位相θ(f、T)に基づいて前記微粒子の沈降速度を算出し、前記沈降速度に基づいて前記粒子径を算出することが好ましい。
上記構成により、微粒子の粒子径を簡素に算出することができる。
本発明に係る超音波粒子径測定器では、前記粒子径算出部は、前記振幅r(f、T)及び前記位相θ(f、T)に基づいて複素相関関数を生成し、前記複素相関関数に基づいて前記粒子径を算出することが好ましい。
上記構成によれば、振幅r(f、T)及び位相θ(f、T)に基づく複素相関関数により、沈降運動する微粒子の粒子径を極めて高精度に測定することができる。
本発明に係る超音波粒子径測定器では、前記粒子径算出部は、前記振幅r(f、T)及び前記位相θ(f、T)を用いて前記第2散乱振幅Ψ(f、T)を書き換え、前記第2散乱振幅Ψ(f、T)と前記第2散乱振幅Ψ(f、T)の共役形を用いて複素相関関数を生成し、前記複素相関関数に基づいて前記粒子径を算出することが好ましい。
上記構成によれば、第2散乱振幅Ψ(f、T)の共役形を用いて複素相関関数を生成することにより、沈降運動する微粒子の粒子径を極めて高精度に測定することができる。
本発明に係る超音波粒子径測定器では、前記粒子径算出部は、下記の第2散乱振幅
Figure 2020079802
に基づいて前記微粒子の粒子径を算出することが好ましい。
上記構成によれば、第2散乱振幅Ψ(f、T)の実数部及び虚数部に基づいて、沈降運動する微粒子の粒子径を極めて高精度に測定することができる。
本発明に係る超音波粒子径測定器では、前記粒子径算出部は、下記の複素相関関数
Figure 2020079802
を生成し、前記複素相関関数に基づいて前記粒子径を算出することが好ましい。
上記構成によれば、振幅r(f、T)及び位相θ(f、T)に基づく複素相関関数により、沈降運動あるいはブラウン運動する微粒子の粒子径を極めて高精度に測定することができる。
上記の第2の課題を解決するために、本発明に係る超音波粒子径測定器は、超音波エネルギを微粒子に印加して超音波微粒子速度を前記微粒子に誘発させる超音波エネルギ印加器と、前記超音波微粒子速度が誘発された微粒子により散乱された散乱波を受信する散乱波受信器と、前記散乱波受信器により受信された散乱波に基づいて前記超音波微粒子速度を算出する超音波微粒子速度算出部と、前記超音波微粒子速度算出部により算出された超音波微粒子速度に基づいて前記微粒子の粒子径を算出する粒子径算出部とを備えたことを特徴とする。
この特徴によれば、超音波エネルギが印加されて超音波微粒子速度が誘発された微粒子により散乱された散乱波に基づいて算出された超音波微粒子速度により微粒子の粒子径が算出される。このため、微粒子の粒子径を良好なSN比で短時間に測定することができる。
本発明に係る超音波粒子径測定器では、前記超音波エネルギ印加器により前記超音波エネルギを印加する印加回数と、前記印加回数に基づいて前記散乱波受信器により前記散乱波を受信する受信回数との比率がn(nは自然数):1であることが好ましい。
上記構成によれば、超音波が微粒子に与えるエネルギを、散乱波の記録とは独立にコントロールすることができる。また、nを大きくすれば、超音波が微粒子に与えるエネルギを大きくすることができる。
本発明に係る超音波粒子径測定器では、前記超音波微粒子速度算出部は、前記超音波エネルギ印加器から前記微粒子に向かう超音波エネルギの減衰に基づく成分を補正して前記超音波微粒子速度を算出することが好ましい。
上記構成によれば、超音波エネルギ印加器から微粒子に向かう超音波エネルギの減衰に基づく超音波微粒子速度の算出誤差を低減することができる。
本発明に係る超音波粒子径測定器では、前記粒子径算出部は、前記微粒子の濃度と前記超音波微粒子速度とに基づいて前記微粒子の粒子径を算出することが好ましい。
上記構成によれば、超音波微粒子速度の濃度依存性に基づいて粒子径の測定精度を高めることができる。
本発明に係る超音波粒子径測定器では、前記微粒子が沈降する微粒子であることが好ましい。
上記構成によれば、粒子径が100nmを超える微粒子の粒子径を良好なSN比で、しかも短時間に測定することができる。
本発明に係る超音波粒子径測定器では、前記超音波エネルギ印加器は、前記微粒子の沈降方向と交差する方向に前記超音波エネルギを印加することが好ましい。
上記構成によれば、重力の影響を排除して微粒子の粒子径を精密に測定することができる。
本発明に係る超音波測定装置は、本発明に係る第1超音波粒子径測定器と本発明に係る第2超音波粒子径測定器とを特徴とする。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明は、液体の中に分散された微粒子の粒子径を、超音波パルスにより測定する超音波粒子径測定器を提供するものである。本発明の超音波粒子径測定器は、インクや化粧品、塗料、セラミックス用スラリー、粉末冶金用スラリー等を構成する微粒子の粒子径の測定に利用することができる。さらに、本発明の超音波粒子径測定器は、微粒子により構成されるインク、化粧品等の分野にも利用することができる。
1 超音波粒子径測定器
2 トランスデューサ(超音波送受信器)
3 粒子径算出部
4 セル
5 微粒子
11 超音波粒子径測定器
12 トランスデューサ(超音波エネルギ印加器、散乱波受信器)
13 超音波微粒子速度算出部
14 粒子径算出部
15 微粒子

Claims (7)

  1. 超音波エネルギを微粒子に印加して超音波微粒子速度を前記微粒子に誘発させる超音波エネルギ印加器と、
    前記超音波微粒子速度が誘発された微粒子により散乱された散乱波を受信する散乱波受信器と、
    前記散乱波受信器により受信された散乱波に基づいて前記超音波微粒子速度を算出する超音波微粒子速度算出部と、
    前記超音波微粒子速度算出部により算出された超音波微粒子速度に基づいて前記微粒子の粒子径を算出する粒子径算出部とを備えたことを特徴とする超音波粒子径測定器。
  2. 前記超音波エネルギ印加器により前記超音波エネルギを印加する印加回数と、前記印加回数に基づいて前記散乱波受信器により前記散乱波を受信する受信回数との比率がn(nは自然数):1である請求項1に記載の超音波粒子径測定器。
  3. 前記超音波微粒子速度算出部は、前記超音波エネルギ印加器から前記微粒子に向かう超音波エネルギの減衰に基づく成分を補正して前記超音波微粒子速度を算出する請求項1又は2に記載の超音波粒子径測定器。
  4. 前記粒子径算出部は、前記微粒子の濃度と前記超音波微粒子速度とに基づいて前記微粒子の粒子径を算出する請求項1から3のいずれか1項に記載の超音波粒子径測定器。
  5. 前記微粒子が沈降する微粒子である請求項1から4のいずれか1項に記載の超音波粒子径測定器。
  6. 前記超音波エネルギ印加器は、前記微粒子の沈降方向と交差する方向に前記超音波エネルギを印加する請求項1から5のいずれか1項に記載の超音波粒子径測定器。
  7. 液体中の沈降する微粒子に照射されて散乱された超音波パルスを受信して、前記超音波パルスの伝搬時間tと前記微粒子の運動に対する観測時間Tに基づく第1散乱振幅Ψ(t、T)を生成する超音波受信器と、前記第1散乱振幅Ψ(t、T)を前記伝搬時間tの方向にフーリエ変換した第2散乱振幅Ψ(f、T)を生成し、前記第2散乱振幅Ψ(f、T)の実数部及び虚数部に基づいて振幅r(f、T)及び位相θ(f、T)をそれぞれ算出し、前記振幅r(f、T)及び前記位相θ(f、T)に基づいて前記微粒子の粒子径を算出する粒子径算出部とを備える超音波粒子径測定器、及び、
    請求項1から6のいずれか1項に記載の超音波粒子径測定器とを備えたことを特徴とする超音波測定装置。
JP2020027251A 2015-02-12 2020-02-20 超音波粒子径測定器及び超音波測定装置 Active JP6910083B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015025865 2015-02-12
JP2015025865 2015-02-12
JP2015025864 2015-02-12
JP2015025864 2015-02-12
JP2016574715A JP6685555B2 (ja) 2015-02-12 2016-01-28 超音波粒子径測定器及び超音波測定装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016574715A Division JP6685555B2 (ja) 2015-02-12 2016-01-28 超音波粒子径測定器及び超音波測定装置

Publications (2)

Publication Number Publication Date
JP2020079802A true JP2020079802A (ja) 2020-05-28
JP6910083B2 JP6910083B2 (ja) 2021-07-28

Family

ID=56615524

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016574715A Active JP6685555B2 (ja) 2015-02-12 2016-01-28 超音波粒子径測定器及び超音波測定装置
JP2020027251A Active JP6910083B2 (ja) 2015-02-12 2020-02-20 超音波粒子径測定器及び超音波測定装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016574715A Active JP6685555B2 (ja) 2015-02-12 2016-01-28 超音波粒子径測定器及び超音波測定装置

Country Status (3)

Country Link
US (1) US10101256B2 (ja)
JP (2) JP6685555B2 (ja)
WO (1) WO2016129399A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159131A1 (ja) * 2015-03-30 2016-10-06 国立研究開発法人産業技術総合研究所 粒子径計測方法及びその装置
JP6867678B2 (ja) * 2017-03-02 2021-05-12 国立大学法人京都工芸繊維大学 ゼータ電位測定装置
JP6549747B2 (ja) * 2017-04-14 2019-07-24 リオン株式会社 粒子測定装置および粒子測定方法
TWI744716B (zh) * 2018-11-16 2021-11-01 美商粒子監測系統有限公司 顆粉偵測系統及用於特徵化液體樣本之方法
CN110296913B (zh) * 2019-06-25 2020-05-05 北京理工大学 一种可燃粉尘扩散动态浓度的检测系统及其检测方法
CN112438702B (zh) * 2019-08-29 2022-12-27 华北电力大学(保定) 一种生物腔体光声内窥成像方法及系统
JPWO2022153633A1 (ja) * 2021-01-18 2022-07-21

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261910A (ja) * 2009-05-11 2010-11-18 Kyoto Institute Of Technology 動的超音波散乱法測定装置および微粒子の解析方法
JP2013108902A (ja) * 2011-11-22 2013-06-06 Otsuka Denshi Co Ltd 超音波粒径測定器、および超音波粒径測定方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8704255L (sv) 1987-11-02 1989-05-03 Hans W Persson Akustisk metod foer maetning av egenskaper hos ett roerligt medium
US5121629A (en) * 1989-11-13 1992-06-16 E. I. Du Pont De Nemours And Company Method and apparatus for determining particle size distribution and concentration in a suspension using ultrasonics
US5569844A (en) * 1992-08-17 1996-10-29 Commonwealth Scientific And Industrial Research Organisation Method and apparatus for determining the particle size distribution, the solids content and the solute concentration of a suspension of solids in a solution bearing a solute
US5432605A (en) * 1993-07-19 1995-07-11 Tsi Incorporated Interferometric cylinder sizing and velocimetry device
EP0983501A1 (en) * 1996-11-08 2000-03-08 Purdue Research Foundation Particle analysis system and method
JP4461941B2 (ja) * 2004-07-21 2010-05-12 富士ゼロックス株式会社 微粒子分散液の送液方法、及び微粒子分散液の送液装置
SE527900C2 (sv) * 2004-12-22 2006-07-04 Astrazeneca Ab Spektroskopiskt förfarande
ATE472110T1 (de) * 2007-01-12 2010-07-15 Koninkl Philips Electronics Nv Sensoreinrichtung und verfahren zur erfassung von magnetischen teilchen
US20090158821A1 (en) 2007-12-20 2009-06-25 General Electric Company Devices, methods and systems for measuring one or more characteristics of a suspension
EP2430422A1 (en) * 2009-05-11 2012-03-21 The University of Western Ontario Ultrasonic method of monitoring particle size distribution of a medium
WO2014087746A1 (ja) * 2012-12-03 2014-06-12 富士電機株式会社 粒子線成形装置
WO2014201401A1 (en) * 2013-06-13 2014-12-18 The Regents Of The University Of California Particle size distribution measurements of particles and droplets using optical gel electrophoresis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261910A (ja) * 2009-05-11 2010-11-18 Kyoto Institute Of Technology 動的超音波散乱法測定装置および微粒子の解析方法
JP2013108902A (ja) * 2011-11-22 2013-06-06 Otsuka Denshi Co Ltd 超音波粒径測定器、および超音波粒径測定方法

Also Published As

Publication number Publication date
US20180031464A1 (en) 2018-02-01
WO2016129399A1 (ja) 2016-08-18
JP6910083B2 (ja) 2021-07-28
JPWO2016129399A1 (ja) 2017-12-07
JP6685555B2 (ja) 2020-04-22
US10101256B2 (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP6910083B2 (ja) 超音波粒子径測定器及び超音波測定装置
US6698276B2 (en) Method and apparatus for determining particle size distribution by acoustic speckle
Briggs Advances in acoustic microscopy
Manneville et al. High-frequency ultrasonic speckle velocimetry in sheared complex fluids
Leroy et al. Sound velocity and attenuation in bubbly gels measured by transmission experiments
WO2006055449A2 (en) System and method for ultrasonic measuring concentration of particle properties
Rahiman et al. The front-end hardware design issue in ultrasonic tomography
Rahiman et al. Design and development of ultrasonic process tomography
Kitao et al. Nanoparticle sizing by focused-beam dynamic ultrasound scattering method
Konno et al. Dynamics of micron-sized particles in dilute and concentrated suspensions probed by dynamic ultrasound scattering techniques
Norisuye Structures and dynamics of microparticles in suspension studied using ultrasound scattering techniques
Nagao et al. Collective motion of microspheres in suspensions observed by phase-mode dynamic ultrasound scattering technique
Igarashi et al. Dynamics of submicron microsphere suspensions observed by dynamic ultrasound scattering techniques in the frequency-domain
Liu et al. Investigation of ultrasonic backscatter using three-dimensional finite element simulations
Parker et al. A versatile scanning acoustic platform
Hertl et al. On the replacement of water as coupling medium in scanning acoustic microscopy analysis of sensitive electronics components
RU2650753C1 (ru) Способ определения параметров взвешенных частиц
Sawada et al. Effects of pulse repetition rate and incident beam energy on the dynamic ultrasound scattering data
Cowan et al. Dynamic sound scattering: Field fluctuation spectroscopy with singly scattered ultrasound in the near and far fields
Nikolaev et al. Holographic extraction of plane waves from an ultrasound beam for acoustic characterization of an absorbing layer of finite dimensions
JP2010261910A (ja) 動的超音波散乱法測定装置および微粒子の解析方法
Jia et al. Characterization of pulsed ultrasound using optical detection in Raman-Nath regime
Imano et al. Ultrasonic vibration velocity imaging for solid defect samples using laser probe method
Kerherve Transport of ultrasonic waves in strongly scattering or absorbing heterogeneous media
Wang et al. Ultrasonic detection method based on flexible capillary water column arrays coupling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210629

R150 Certificate of patent or registration of utility model

Ref document number: 6910083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250