WO2024045640A1 - 一种制备peit共聚酯的方法 - Google Patents

一种制备peit共聚酯的方法 Download PDF

Info

Publication number
WO2024045640A1
WO2024045640A1 PCT/CN2023/089360 CN2023089360W WO2024045640A1 WO 2024045640 A1 WO2024045640 A1 WO 2024045640A1 CN 2023089360 W CN2023089360 W CN 2023089360W WO 2024045640 A1 WO2024045640 A1 WO 2024045640A1
Authority
WO
WIPO (PCT)
Prior art keywords
peit
copolyester
isosorbide
reaction
preparing
Prior art date
Application number
PCT/CN2023/089360
Other languages
English (en)
French (fr)
Inventor
唐根
徐寒松
赵永彬
谢鑫
周思伟
Original Assignee
科泽新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科泽新材料股份有限公司 filed Critical 科泽新材料股份有限公司
Publication of WO2024045640A1 publication Critical patent/WO2024045640A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the invention relates to a method for preparing PEIT copolyester and belongs to the technical field of special polyester preparation.
  • PEIT copolyester Polyethylene terephthalate isosorbide copolyester, referred to as PEIT copolyester, is a copolyester with a rigid group isosorbide embedded in the conventional PET molecule.
  • PEIT copolyester Compared with conventional polyester PET , its glass transition temperature and thermal stability have been significantly improved, and its pressure resistance has also been enhanced, which makes it have more applications in daily life, such as bottles that can be used for hot filling, heat-resistant containers , heat-resistant film, fiber, cosmetic packaging, etc.
  • polyethylene terephthalate isosorbide is mainly prepared from terephthalic acid, ethylene glycol, and isosorbide as raw materials through esterification and polycondensation under the action of catalysts and stabilizers.
  • Alcohol copolyester in this preparation process, a large amount of diethylene glycol (DEG) will be produced as a by-product, and the presence of diethylene glycol (DEG) will cause the Tg of the polymer to decrease. Therefore, in order to increase the isosorbide
  • alkali such as tetramethylammonium hydroxide TMAH
  • This inhibitor is a toxic chemical reagent and will cause damage during the use of polyester products. The problem of gradual precipitation occurs, which limits its application in the field of food packaging.
  • the object of the present invention is to provide a method that can utilize waste polyester resources to prepare non-toxic and heat-resistant PEIT copolyester.
  • a method for preparing PEIT copolyester including the following reaction steps:
  • n and n in the formula respectively represent the number of the two unit fragments shown in the PEIT copolyester, both of which are natural numbers.
  • the m is a natural number from 1 to 160
  • the n is a natural number from 1 to 200.
  • the transesterification reaction is to react BHET monomer and isosorbide under the action of transesterification catalyst at a reaction temperature of 190°C to 220°C and a reaction pressure of 70kPa to 100kPa for 20 to 60 minutes. .
  • the molar ratio of isosorbide to BHET monomer is (5% to 80%): 1.
  • the transesterification catalyst uses a metal salt catalyst (such as zinc acetate, zinc oxide, tetrabutyl titanate, tetraisopropyl titanate, dibutyl zinc oxide, sodium methoxide, etc.), an alkaline catalyst (such as: NaOH, KOH, NaOCH 3 , organic bases and various solid bases, etc.), acidic catalysts (such as: sulfuric acid, sulfonic acid, various solid acids, etc.) or biological enzyme catalysts.
  • a metal salt catalyst such as zinc acetate, zinc oxide, tetrabutyl titanate, tetraisopropyl titanate, dibutyl zinc oxide, sodium methoxide, etc.
  • an alkaline catalyst such as: NaOH, KOH, NaOCH 3 , organic bases and various solid bases, etc.
  • acidic catalysts such as: sulfuric acid, sulfonic acid, various solid acids, etc.
  • biological enzyme catalysts such as: sulfuric acid, sulfonic acid
  • the transesterification catalyst is zinc acetate.
  • the amount of the transesterification catalyst is 10 to 1000 ppm (preferably 50 to 100 ppm) based on the mass of BHET monomer.
  • the BHET monomer is obtained by purifying the ethylene glycol alcoholysis solution of waste polyester.
  • the purification process includes a secondary thin film evaporation process and a primary molecular distillation process.
  • the purification process includes the following specific steps:
  • the ethylene glycol alcoholysis solution of waste polyester is input into the first thin film evaporator, and a thin film evaporation treatment is performed at 140°C to 180°C and a pressure of 100Pa to 10000Pa;
  • the ethylene glycol alcoholysis solution of waste polyester is produced by mixing ethylene glycol and waste polyester particles that have been pretreated by crushing, washing and drying according to a mass ratio of (1 to 3): 1 Put it into the alcoholysis reaction kettle, and then perform the alcoholysis reaction under the action of zinc acetate catalyst at 190°C to 230°C and the pressure in the kettle at 0.1MPa to 0.5MPa for 2 to 6 hours.
  • the waste polyester includes polyester production waste and waste polyester products. Specifically, it may include at least one of waste PET bottles, PET packaging sheets, PET fibers, PET textiles, and PET foam materials. .
  • the melt polycondensation reaction is to react the excess BHET monomer in the transesterification reaction system with the generated ethylene glycol isosorbide terephthalate under the action of a polycondensation catalyst and a stabilizer at 250°C.
  • the precondensation polymerization reaction is carried out at ⁇ 265°C and the pressure is 1kPa ⁇ 50kPa for 40 ⁇ 100 minutes, and then the final polycondensation reaction is carried out at 270°C ⁇ 280°C and the pressure is 50Pa ⁇ 500Pa to obtain a PEIT melt.
  • the polycondensation catalyst is a metal compound, including but not limited to any one or a mixture of several metal compounds of Al, Co, Ge, Mn, Mg, Pb, Ti, Sb and Zn series.
  • the polycondensation catalyst is selected from at least one of a zinc-based metal compound, a titanium-based metal compound, or a zinc-titanium complex formed by a zinc-based metal compound and a titanium-based metal compound.
  • the mass ratio of the zinc-based metal compound to the titanium-based metal compound is 1:9 to 9:1 (7:3 is the best), and the zinc-based metal compound is made of oxidized Zinc, the titanium series metal compound is selected from tetrabutyl titanate or tetraisopropyl titanate.
  • the amount of the polycondensation catalyst is 20 to 200 ppm (preferably 20 to 30 ppm) based on the mass of BHET monomer.
  • the stabilizer is a phosphoric acid compound.
  • the stabilizer is selected from any one or a mixture of several of phosphoric acid, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, and ethylene glycol phosphate.
  • the amount of the stabilizer is 50 to 500 ppm (preferably 50 to 100 ppm) based on the mass of BHET monomer.
  • the present invention has the following beneficial effects:
  • the melt polycondensation reaction of ethylene isosorbide terephthalate not only achieves a high conversion rate of isosorbide (up to 96%) and a high proportion of addition (up to 80% of the molar amount of BHET monomer), thus
  • the glass transition temperature (Tg) of the prepared PEIT copolyester can be as high as 133°C, with excellent heat resistance, and without adding any inhibitors, the DEG content in the copolyester can be guaranteed to be less than 1.2%, and
  • the color b value can be less than 3, which can well meet the needs of food packaging applications; in particular, the BHET monomer used can be derived from the chemical regeneration of waste polyester, which is of great value in realizing the resource recycling of waste polyester. , has far-reaching significance and value for establishing and improving a green low-carbon circular development economy; therefore, compared with the existing technology, the present invention has produced significant progress and is of great value for realizing the large-scale production of PEIT copolyester.
  • Figure 1 is the HPLC analysis spectrum of the BHET monomer obtained in Example 1; in the figure: the peak at the retention time of 3.465 min is the BHET monomer;
  • the peak is the proton peak of four hydrogen atoms on the two methylene groups connected to the hydroxyl group;
  • Agilent-1100 high performance liquid chromatograph the column specifications are Benetnach C18, 5 ⁇ m, 4.6*150mm, the solvent is acetonitrile, the detection wavelength is 254nm, the mobile phase is acetonitrile-water (70:30, V/V), and the flow rate is 0.5mL/min, injection volume is 20 ⁇ L;
  • Intrinsic viscosity of PEIT copolyester According to the capillary viscometer method in GB/T 14190, the intrinsic viscosity unit is dL/g, where: the mass ratio of phenol to 1,1,2,2-tetrachloroethane is 50:50 or 60:40;
  • Glass transition temperature of PEIT copolyester Use a differential scanning calorimeter to heat the sample from 30°C to 280°C for the first time at a rate of 10°C/min under a nitrogen atmosphere, and then hold it at 280°C for 3 minutes. , then the sample was heated from 280°C to 30°C at a rate of 10°C/min, and after being kept at 30°C for 1 minute, the thermal history was eliminated; for the second time, the sample was heated from 30°C to 280°C at a rate of 10°C/min. , record the DSC curve of the sample during the test;
  • DEG content in PEIT copolyester Use gas chromatography to cause the sample to undergo a degradation reaction under the conditions of high temperature and the presence of methanol, causing diethylene glycol to be free, and then use gas chromatography to detect the diethylene glycol content in the filtrate;
  • Color value of PEIT copolyester Use an automatic colorimeter. After the sample is dried at 140°C for 30 minutes, use an automatic colorimeter to test the color of the sample. The result is expressed as the b value of the HunterLab color system;
  • Reaction conversion rate of isosorbide Use a nuclear magnetic resonance spectrometer to calculate the percentage of isosorbide in PEIT copolyester relative to BHET by using the integral areas occupied by the characteristic hydrogen atom proton peaks in isosorbide and BHET. , and then divided by the percentage value of isosorbide relative to BHET at the time of feeding; the conditions for nuclear magnetic resonance analysis are as follows: Dissolve PEIT copolyester in deuterated trifluoroacetic acid, use tetramethylsilane as the internal standard, and use AVANCE III 400 Type nuclear magnetic resonance spectrometer, conduct 1H NMR test at 400MHz.
  • waste polyester including polyester production waste or/and waste polyester products
  • waste polyester particles with a moisture content of 1% to 3%
  • step B) Filter the ethylene glycol alcoholysis solution of waste polyester obtained in step B) using a 50-150 mesh filter to remove insoluble matter, and then use activated carbon to adsorb and decolorize;
  • step C3 Input the remaining alcoholysis product after the primary thin film evaporation treatment of step C2) into a second thin film evaporator, and perform a second thin film evaporation treatment at a temperature of 140°C to 180°C and a pressure of 10Pa to 1KPa;
  • step C4) Input the melt obtained by the secondary thin film evaporation treatment of step C3) into a molecular distiller, and perform molecular distillation treatment at a temperature of 180°C to 250°C and a pressure of 1Pa to 100Pa.
  • the BHET monomer melt is collected at the outlet.
  • the collected fraction is a colorless and transparent liquid, which can be crystallized into a white solid at room temperature.
  • the HPLC purity of the obtained BHET monomer is 99.8%. See Figure 1 for details.
  • the spectrum shown; and the color value b value is 1.21; in addition, the NMR analysis spectrum shown in Figure 2 and the FTIR analysis spectrum shown in Figure 3 can prove that the colorless fraction obtained is BHET monomer.
  • BHET monomer the liquid fraction collected from the light component outlet of the molecular distiller can be directly used, which can form a continuous production and save energy consumption
  • isosorbide and zinc acetate in a certain proportion into the reaction kettle.
  • the molar weight of isosorbide is 10% of the molar weight of BHET monomer
  • the dosage of zinc acetate is 70ppm of the mass of BHET monomer
  • the reaction temperature is controlled at 190°C ⁇ 220°C
  • the reaction pressure is 70kPa ⁇ 100kPa ( React for 20 to 60 minutes (preferably 80 kPa) (preferably 50 minutes) to generate ethylene glycol isosorbide terephthalate, and remove and collect the by-product ethylene glycol during the reaction.
  • a polycondensation catalyst select a zinc-titanium compound
  • the mass ratio of the zinc-based metal compound to the titanium-based metal compound is 7:3, the zinc-based metal compound is zinc oxide, and the titanium
  • the metal compound is tetrabutyl titanate or tetraisopropyl titanate) and the stabilizer (triethyl phosphate is selected).
  • the dosage of the polycondensation catalyst is 20 ppm of the BHET monomer mass, and the dosage of the stabilizer is BHET. 50ppm of monomer mass;
  • the above reaction system is first subjected to precondensation polymerization at 250°C to 265°C and a pressure of 1kPa to 50kPa for 40 to 100 minutes (preferably 60 minutes), and then the final reaction is carried out at 270°C to 280°C and a pressure of 50Pa to 500Pa.
  • the stirring motor of the reactor reaches the specified current, the reaction ends and the PEIT final condensation melt is obtained; during the reaction, the by-product ethylene glycol is removed, collected and recovered.
  • the PEIT final shrinkage melt turns into multiple copolyester melt splines after being cast and cooled by the guide plate of the pelletizer. Solid state, it can be cut into PEIT copolyester slices in the cutting chamber of the pelletizer.
  • Example 2 The only difference between Examples 2 to 4 and Example 1 lies in the different proportions of materials participating in the reaction. Please refer to Table 1 for details; the remaining contents are the same as described in Example 1.
  • Comparative Examples 1 and 2 and Examples 1 and 2 The difference between Comparative Examples 1 and 2 and Examples 1 and 2 is that isosorbide is not transesterified with BHET monomer in advance, but is directly reacted with BHET monomer under the action of antimony ethylene glycol and triethyl phosphate. , directly carry out melt polycondensation reaction, the specific operation is:
  • the PEIT final shrinkage melt turns into multiple copolyester melt splines after being cast and cooled by the guide plate of the pelletizer. Solid state, it can be cut into PEIT copolyester slices in the cutting chamber of the pelletizer.
  • the present invention creatively performs a transesterification reaction between BHET monomer and isosorbide to generate ethylene glycol isosorbide terephthalate, and then makes the BHET monomer and isosorbide in the transesterification reaction system
  • the melt polycondensation reaction between excess BHET monomer and the generated ethylene glycol isosorbide terephthalate not only achieves a high conversion rate of isosorbide (up to 96%), but when the same molar amount of isosorbide is added, Under such circumstances, if BHET monomer and isosorbide are directly subjected to melt polycondensation reaction, for example: Comparative Example 1 corresponding to Example 1 can only achieve a reaction conversion rate of 70%; in addition, Example 2 of the present invention can be as high as The reaction conversion rate is 95%, while the corresponding Comparative Example 2 can only achieve a reaction conversion rate of 68%) and a high proportion of addition (the present invention can reach
  • esters are of great value and has far-reaching significance and value for establishing and improving a green, low-carbon, circular development economy; therefore, compared with the existing technology, the present invention has produced significant progress and is instrumental in realizing the large-scale production of PEIT copolyesters. Production is of great value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本发明公开了一种制备PEIT共聚酯的方法,所述方法包括:A)先使对苯二甲酸双2-羟乙酯与异山梨醇进行酯交换反应,生成对苯二甲酸乙二醇异山梨醇酯;B)再使酯交换反应体系中的过量BHET单体与生成的对苯二甲酸乙二醇异山梨醇酯进行熔融缩聚反应,得到PEIT共聚酯。本发明不仅实现了异山梨醇的高转化率和高比例添加,使得所制备的PEIT共聚酯具有优异的耐热性能,而且可保证共聚酯中的DEG含量低于1.2%,并且色值b值能小于3,能很好地满足食品包装应用需求;尤其是,所用的BHET单体可来源于废旧聚酯的化学法再生,对实现废旧聚酯的资源化回收利用具有重要价值。

Description

一种制备PEIT共聚酯的方法 技术领域
本发明是涉及一种制备PEIT共聚酯的方法,属于特种聚酯制备技术领域。
背景技术
聚对苯二甲酸乙二醇异山梨醇共聚酯,简称PEIT共聚酯,是一种在常规PET分子中嵌入了刚性基团异山梨醇的共聚酯,相对于常规聚酯PET来说,其玻璃化转变温度以及热稳定性有了明显的提高,并且耐压性也有所增强,这使得其在日常生活中也有了更多的应用,如可用于热灌装的瓶子、耐热容器、耐热薄膜、纤维、化妆品包装等方面。
现有技术中,主要是以对苯二甲酸、乙二醇、异山梨醇为原料,在催化剂和稳定剂作用下,经酯化、缩聚反应,制备得到聚对苯二甲酸乙二醇异山梨醇共聚酯;在此种制备工艺中,会产生大量的二甘醇(DEG)副产物,而二甘醇(DEG)的存在会导致聚合物的Tg降低,因此,为了使异山梨醇提高Tg的作用最大化,现有技术中需要添加碱(如:氢氧化四甲基铵TMAH)来抑制DEG形成,而这种抑制剂是有毒的化学试剂,且在聚酯产品的使用过程中会发生逐渐析出问题,以致局限了其在食品包装领域的应用。
另外,我国是世界上聚酯第一大生产与消费国,据统计,2021年我国原生聚酯产量达5976万吨,约占全球总量的64.35%。随着人均聚酯消费量不断增加,我国每年产生大量废旧聚酯,由环境污染造成的直接损失已占到我国GDP总值的15%,而微塑料危害更无法估量,严重影响了我国的可持续发展战略。因此,若能同时研发一种可利用废旧聚酯资源制备无毒且耐热性好的PEIT共聚酯的方法,将对实现废旧聚酯完全闭环回收利用,建立健全绿色低碳循环发展经济体系具有重要价值和深远意义。
发明内容
针对现有技术存在的上述问题,本发明的目的是提供一种可利用废旧聚酯资源制备无毒且耐热性好的PEIT共聚酯的方法。
为实现上述发明目的,本发明采用的技术方案如下:
一种制备PEIT共聚酯的方法,包括如下反应步骤:
A)先使对苯二甲酸双2-羟乙酯(BHET)与异山梨醇进行酯交换反应,生成对苯二甲酸乙二醇异山梨醇酯,具体反应式如下所示:
B)再使酯交换反应体系中的过量BHET单体与生成的对苯二甲酸乙二醇异山梨醇酯进行熔融缩聚反应,得到PEIT共聚酯,具体反应式如下所示:
式中的m和n分别表示PEIT共聚酯中所示的两种单元片段的数量,均为自然数。
一种实施方案,所述m为1~160的自然数,所述n为1~200的自然数。
一种实施方案,所述的酯交换反应是使BHET单体与异山梨醇在酯交换催化剂的作用下,于反应温度为190℃~220℃、反应压力为70kPa~100kPa下反应20~60分钟。
一种优选方案,异山梨醇与BHET单体的摩尔比为(5%~80%):1。
一种优选方案,所述酯交换催化剂选用金属盐催化剂(如:乙酸锌、氧化锌、钛酸四丁酯、钛酸四异丙酯、二丁基氧化锌、甲醇钠等)、碱性催化剂(如:NaOH、KOH、NaOCH3、有机碱和各种固体碱等)、酸性催化剂(如:硫酸、磺酸和各种固体酸等)或生物酶催化剂中的至少一种。
进一步优选方案,所述酯交换催化剂选用乙酸锌。
一种优选方案,所述酯交换催化剂的用量为BHET单体质量的10~1000ppm(以50~100ppm较佳)。
一种实施方案,所述BHET单体来源于对废旧聚酯的乙二醇醇解液进行纯化处理得到。
一种优选方案,所述的纯化处理包括二次薄膜蒸发处理和一次分子蒸馏处理。
进一步优选方案,所述的纯化处理包括如下具体步骤:
a)将废旧聚酯的乙二醇醇解液经脱色处理后输入第一薄膜蒸发器中,于140℃~180℃及压力为100Pa~10000Pa下进行一次薄膜蒸发处理;
b)将经一次薄膜蒸发处理后的剩余醇解产物输入第二薄膜蒸发器中,于140℃~180℃及压力为10Pa~1000Pa下进行二次薄膜蒸发处理;
c)将经二次薄膜蒸发处理得到的熔体输入分子蒸馏器中,于180℃~250℃及压力为1Pa~100Pa下进行分子蒸馏处理;
d)由分子蒸馏器的轻组分出料口收集BHET单体熔体。
一种实施方案,所述的废旧聚酯的乙二醇醇解液是通过将乙二醇与经粉碎、水洗和烘干预处理后的废旧聚酯颗粒按照质量比(1~3):1投入到醇解反应釜中,然后在乙酸锌催化剂作用下,于190℃~230℃及釜内压力为0.1MPa~0.5MPa下进行醇解反应2~6小时。
一种实施方案,所述的废旧聚酯包括聚酯生产废料和废弃聚酯产品,具体可包括废旧的PET瓶、PET包装片材、PET纤维、PET纺织品、PET泡泡料中的至少一种。
一种实施方案,所述的熔融缩聚反应是使酯交换反应体系中的过量BHET单体与生成的对苯二甲酸乙二醇异山梨醇酯在缩聚催化剂和稳定剂作用下,先在250℃~265℃及压力为1kPa~50kPa下进行预缩聚反应40~100分钟,然后在270℃~280℃及压力为50Pa~500Pa下进行终缩聚反应,得到PEIT熔体。
一种实施方案,所述的缩聚催化剂为金属化合物,包含但不限于Al、Co、Ge、Mn、Mg、Pb、Ti、Sb和Zn系的金属化合物中的任意一种或几种的混合物。
一种优选方案,所述的缩聚催化剂选用锌系金属化合物或钛系金属化合物或锌系金属化合物与钛系金属化合物所形成的锌钛复合物中的至少一种。
进一步优选方案,所述锌钛复合物中,锌系金属化合物与钛系金属化合物的质量比为1:9~9:1(以7:3最佳),所述的锌系金属化合物选用氧化锌,所述的钛系金属化合物选用钛酸四丁酯或钛酸四异丙酯。
一种优选方案,所述缩聚催化剂的用量为BHET单体质量的20~200ppm(以20~30ppm较佳)。
一种优选方案,所述的稳定剂为磷酸化合物。
进一步优选方案,所述的稳定剂选用磷酸、磷酸三甲酯、磷酸三乙酯、磷酸三苯酯、磷酸乙二醇酯中的任意一种或几种的混合物。
一种优选方案,所述稳定剂的用量为BHET单体质量的50~500ppm(以50~100ppm较佳)。
与现有技术相比,本发明具有如下有益效果:
实验证明:本发明通过创造性地先使BHET单体与异山梨醇进行酯交换反应,生成对苯二甲酸乙二醇异山梨醇酯,再使酯交换反应体系中的过量BHET单体与生成的对苯二甲酸乙二醇异山梨醇酯进行熔融缩聚反应,不仅实现了异山梨醇的高转化率(可高达96%)和高比例添加(可达BHET单体摩尔量的80%),从而使得所制备的PEIT共聚酯的玻璃化温度(Tg)可高达133℃,具有优异的耐热性能,而且无需添加任何抑制剂,就可保证共聚酯中的DEG含量低于1.2%,并且色值b值能小于3,能很好地满足食品包装应用需求;尤其是,所用的BHET单体可来源于废旧聚酯的化学法再生,对实现废旧聚酯的资源化回收利用具有重要价值,对建立健全绿色低碳循环发展经济具有深远意义和价值;因此,本发明相对于现有技术,产生了显著性进步,对实现PEIT共聚酯的规模化生产具有重要价值。
附图说明
图1为实施例1获得的BHET单体的HPLC分析谱图;图中:保留时间为3.465min处的峰为BHET单体;
图2为实施例1获得的BHET单体的核磁共振分析谱图;图中:δ=0ppm是内标物四甲基硅烷的溶剂峰,δ=7.26ppm的峰为氘代氯仿的溶剂峰,δ=8.13ppm的峰为BHET中苯环上的氢所对应的质子峰,δ=4.51ppm的峰为与氧原子相连的两个亚甲基上四个氢原子的质子峰,δ=4.00ppm的峰为与羟基相连的两个亚甲基上四个氢原子的质子峰;
图3为实施例1获得的BHET单体的FTIR分析谱图;图中:3446cm-1对应-OH的伸缩振动吸收峰,2963cm-1和2880cm-1对应-CH2-的伸缩振动吸收峰,1716cm-1对应酯基中C=O的伸缩振动特征吸收峰,1411cm-1处附近的峰为苯环骨架振动吸收峰,1134cm-1和1282cm-1对应酯基中C-O伸缩振动的特征峰,874cm-1为苯环的对位取代特征吸收峰。
具体实施方式
下面结合实施例对本发明技术方案做进一步详细、完整地说明。以下实施例和对比例中所涉及的检测方法分别如下所述:
1)BHET单体的HPLC纯度分析:
Agilent-1100型高效液相色谱仪,色谱柱的规格为Benetnach C18、5μm、4.6*150mm,溶剂选择乙腈,检测波长254nm,流动相为乙腈-水(70:30,V/V)、流速为0.5mL/min,进样量为20μL;
2)BHET单体的核磁共振分析:AVANCEⅢHD 400型核磁共振波谱仪,在400MHz条件下,对产物进行1H NMR测试;
3)BHET单体的FTIR分析:将样品粉体经溴化钾压片后,用Nicolet IS5型傅里叶红外光谱仪扫描样品,扫描波长为400-4000cm-1
4)PEIT共聚酯的特性粘度:按GB/T 14190中毛细管黏度计法规定执行,特性黏度单位为dL/g,其中:苯酚与1,1,2,2-四氯乙烷的质量比为50:50或60:40;
5)PEIT共聚酯的玻璃化温度:采用差示扫描量热仪,在氮气氛下,第一次以10℃/min的速率将样品从30℃升温至280℃,在280℃保温3min后,再以10℃/min的速率将样品从280℃升温至30℃,在30℃保温1min后,消除热历史;第二次再以10℃/min的速率将样品从30℃升温至280℃,记录测试过程中样品的DSC曲线;
6)PEIT共聚酯中的DEG含量:采用气相色谱仪,使样品在高温、甲醇存在的条件下发生降解反应,致使二甘醇游离,然后用气相色谱法检测滤液中的二甘醇含量;
7)PEIT共聚酯的色值:采用自动色差计,样品经140℃干燥30min后,用自动色差计测试样品色度,结果以HunterLab色系的b值表示;
8)异山梨醇的反应转化率:采用核磁共振波谱仪,利用异山梨醇和BHET中的特征氢原子质子峰分别所占的积分面积,计算PEIT共聚酯中的异山梨醇相对BHET的百分比值,然后除以异山梨醇在投料时相对BHET的百分比值;核磁共振分析的条件如下:将PEIT共聚酯溶于氘代三氟乙酸中,用四甲基硅烷做为内标物,使用AVANCEⅢ400型核磁共振波谱仪,在400MHz条件下进行1H NMR测试。
实施例1:
一、BHET单体熔体的制备
A)将废旧聚酯(包括聚酯生产废料或/和废弃聚酯产品)依次进行粉碎、清洗和脱水预处理,得到含水率为1%~3%的废旧聚酯颗粒;
B)计量1吨预处理后的废旧聚酯颗粒并输送至醇解反应釜中,然后加入2吨乙二醇(EG)和3kg乙酸锌催化剂,再加热升温至200℃并控制醇解反应釜内压力为0.1MPa,使醇解反应3小时,得到废旧聚酯的乙二醇醇解液;
C)对废旧聚酯的乙二醇醇解液进行纯化处理,即:
C1)对步骤B)获得的废旧聚酯的乙二醇醇解液采用50~150目的过滤器进行过滤,以去除其中的不溶物,然后采用活性炭吸附脱色;
C2)将经脱色处理后的滤液加入第一薄膜蒸发器中,在温度为140℃~180℃及压力为100Pa~10KPa下进行第一次薄膜蒸发处理;
C3)将经步骤C2)的一次薄膜蒸发处理后的剩余醇解产物输入第二薄膜蒸发器中,在温度为140℃~180℃及压力为10Pa~1KPa下进行二次薄膜蒸发处理;
C4)将经步骤C3)的二次薄膜蒸发处理得到的熔体输入分子蒸馏器中,在温度为180℃~250℃及压力为1Pa~100Pa下进行分子蒸馏处理,由分子蒸馏器的轻组分出料口收集BHET单体熔体,收集的馏分为无色透明液体,在常温下即可结晶变成白色固体,经检测分析:所得BHET单体的HPLC纯度为99.8%,详阅图1所示的谱图;且色值b值为1.21;另外,由图2所示的核磁共振分析谱图和图3所示FTIR分析谱图可证明获得的无色馏分为BHET单体。
二、使对苯二甲酸双2-羟乙酯(BHET)与异山梨醇进行酯交换反应
将BHET单体(可直接采用由分子蒸馏器的轻组分出料口所收集的液体馏分,这样可形成连续化生产,节约能耗)、异山梨醇和乙酸锌按一定比例加入到反应釜中,其中:异山梨醇的摩尔量为BHET单体的摩尔量的10%,乙酸锌的用量为BHET单体质量的70ppm;控制在反应温度为190℃~220℃、反应压力为70kPa~100kPa(优选80kPa)下反应20~60分钟(优选50分钟),生成对苯二甲酸乙二醇异山梨醇酯,在反应同时移除收集回收副产物乙二醇。
三、进行熔融缩聚,制备PEIT共聚酯
向酯交换反应体系中加入缩聚催化剂(选用锌钛复合物,其中:锌系金属化合物与钛系金属化合物的质量比为7:3,所述的锌系金属化合物选用氧化锌,所述的钛系金属化合物选用钛酸四丁酯或钛酸四异丙酯)和稳定剂(选用磷酸三乙酯),所述缩聚催化剂的用量为BHET单体质量的20ppm,所述稳定剂的用量为BHET单体质量的50ppm;
使上述反应体系先在250℃~265℃及压力为1kPa~50kPa下进行预缩聚反应40~100分钟(以60分钟较佳),然后在270℃~280℃及压力为50Pa~500Pa下进行终缩聚反应,当反应釜搅拌电机达到指定电流时结束反应,得到PEIT终缩熔体;在反应同时移除收集回收副产物乙二醇。
向反应釜中通入高纯氮气并控制釜内压力为0.3MPa,PEIT终缩熔体经铸带头后变成多条共聚酯熔体样条,经切粒机导流板冷却后变成固态,再在切粒机切割室内即可切割形成PEIT共聚酯切片。
实施例2~4
实施例2~4与实施例1的区别仅在于参与反应的物料配比不同,具体请参阅表1所示;其余内容均与实施例1中所述相同。
对比例1~2
对比例1和2与实施例1和2的区别均在于:异山梨醇未事先与BHET单体进行酯交换反应,而是直接与BHET单体在乙二醇锑和磷酸三乙酯的作用下,直接进行熔融缩聚反应,具体操作为:
先将BHET单体和乙二醇锑和磷酸三乙酯按表1中所示配比加入到反应釜中,然后升温至240℃,再加入表1所示配比量的异山梨醇;再施加0.25MPa压力,使保温反应30~40min;然后与实施例1中所述缩聚操作相同,即:先在250℃~265℃及压力为1kPa~50kPa下进行预缩聚反应40~100分钟(以60分钟较佳),然后在270℃~280℃及压力为50Pa~500Pa下进行终缩聚反应,当反应釜搅拌电机达到指定电流时结束反应,得到PEIT终缩熔体;
向反应釜中通入高纯氮气并控制釜内压力为0.3MPa,PEIT终缩熔体经铸带头后变成多条共聚酯熔体样条,经切粒机导流板冷却后变成固态,再在切粒机切割室内即可切割形成PEIT共聚酯切片。
表1实施例1~4及对比例1~2的物料配比

表2实施例1~4及对比例1~2所得PEIT共聚酯切片的性能测试结果
通过对比上述实施例和对比例可见:本发明通过创造性地先使BHET单体与异山梨醇进行酯交换反应,生成对苯二甲酸乙二醇异山梨醇酯,再使酯交换反应体系中的过量BHET单体与生成的对苯二甲酸乙二醇异山梨醇酯进行熔融缩聚反应,不仅实现了异山梨醇的高转化率(可高达96%,而在添加相同摩尔量的异山梨醇的情形下,若直接使BHET单体与异山梨醇进行熔融缩聚反应,如:与实施例1相对应的对比例1只能达到70%的反应转化率;另外,本发明的实施例2可高达95%的反应转化率,而与其相对应的对比例2只能达到68%的反应转化率)和高比例添加(本发明可达BHET单体摩尔量的80%,如实施例4),从而使得所制备的PEIT共聚酯的玻璃化温度(Tg)可高达133℃,具有优异的耐热性能,而且无需添加任何抑制剂,就可保证共聚酯中的DEG含量低于1.2%(相对同等条件下的直接熔融缩聚的对比例1和2,可使DEG含量得到明显下降),并且色值b值能小于3(而同等条件下的直接熔融缩聚的对比例1和2中的b值均大于3);说明本发明所制备的PEIT共聚酯能很好地满足食品包装应用需求;尤其是,本发明所用的BHET单体可来源于废旧聚酯的化学法再生,对实现废旧聚酯的资源化回收利用具有重要价值,对建立健全绿色低碳循环发展经济具有深远意义和价值;因此,本发明相对于现有技术,产生了显著性进步,对实现PEIT共聚酯的规模化生产具有重要价值。
最后需要在此指出的是:以上仅是本发明的部分优选实施例,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (10)

  1. 一种制备PEIT共聚酯的方法,其特征在于,包括如下反应步骤:
    A)先使对苯二甲酸双2-羟乙酯(BHET)与异山梨醇进行酯交换反应,生成对苯二甲酸乙二醇异山梨醇酯,具体反应式如下所示:
    B)再使酯交换反应体系中的过量BHET单体与生成的对苯二甲酸乙二醇异山梨醇酯进行熔融缩聚反应,得到PEIT共聚酯,具体反应式如下所示:
    式中的m和n分别表示PEIT共聚酯中所示的两种单元片段的数量,均为自然数。
  2. 根据权利要求1所述的制备PEIT共聚酯的方法,其特征在于:所述的酯交换反应是使BHET单体与异山梨醇在酯交换催化剂的作用下,于反应温度为190℃~220℃、反应压力为70kPa~100kPa下反应20~60分钟。
  3. 根据权利要求2所述的制备PEIT共聚酯的方法,其特征在于:异山梨醇与BHET单体的摩尔比为(5%~80%):1。
  4. 根据权利要求2所述的制备PEIT共聚酯的方法,其特征在于:所述的酯交换催化剂选用乙酸锌,所述酯交换催化剂的用量为BHET单体质量的10~1000ppm。
  5. 根据权利要求1或2所述的制备PEIT共聚酯的方法,其特征在于:所述的BHET单体来源于对废旧聚酯的乙二醇醇解液进行纯化处理得到。
  6. 根据权利要求5所述的制备PEIT共聚酯的方法,其特征在于:所述的纯化处理包括二次薄膜蒸发处理和一次分子蒸馏处理。
  7. 根据权利要求6所述的制备PEIT共聚酯的方法,其特征在于,所述的纯化处理包括如下具体步骤:
    a)将废旧聚酯的乙二醇醇解液经脱色处理后输入第一薄膜蒸发器中,于140℃~180℃及压力为100Pa~10000Pa下进行一次薄膜蒸发处理;
    b)将经一次薄膜蒸发处理后的剩余醇解产物输入第二薄膜蒸发器中,于140℃~180℃及压力为10Pa~1000Pa下进行二次薄膜蒸发处理;
    c)将经二次薄膜蒸发处理得到的熔体输入分子蒸馏器中,于180℃~250℃及压力为1Pa~100Pa下进行分子蒸馏处理;
    d)由分子蒸馏器的轻组分出料口收集BHET单体熔体。
  8. 根据权利要求1所述的制备PEIT共聚酯的方法,其特征在于:所述的熔融缩聚反应是使酯交换反应体系中的过量BHET单体与生成的对苯二甲酸乙二醇异山梨醇酯在缩聚催化剂和稳定剂作用下,先在250℃~265℃及压力为1kPa~50kPa下进行预缩聚反应40~100分钟,然后在270℃~280℃及压力为50Pa~500Pa下进行终缩聚反应,得到PEIT熔体。
  9. 根据权利要求8所述的制备PEIT共聚酯的方法,其特征在于:所述的缩聚催化剂选用锌系金属化合物或钛系金属化合物或锌系金属化合物与钛系金属化合物所形成的锌钛复合物中的至少一种,所述的稳定剂选用磷酸化合物。
  10. 根据权利要求8或9所述的制备PEIT共聚酯的方法,其特征在于:所述缩聚催化剂的用量为BHET单体质量的20~200ppm,所述稳定剂的用量为BHET单体质量的50~500ppm。
PCT/CN2023/089360 2022-08-31 2023-04-20 一种制备peit共聚酯的方法 WO2024045640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211059219.X 2022-08-31
CN202211059219.XA CN117659368A (zh) 2022-08-31 2022-08-31 一种制备peit共聚酯的方法

Publications (1)

Publication Number Publication Date
WO2024045640A1 true WO2024045640A1 (zh) 2024-03-07

Family

ID=90075829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089360 WO2024045640A1 (zh) 2022-08-31 2023-04-20 一种制备peit共聚酯的方法

Country Status (2)

Country Link
CN (1) CN117659368A (zh)
WO (1) WO2024045640A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675282A (zh) * 2002-06-14 2005-09-28 纳幕尔杜邦公司 (对苯二甲酸-乙二醇-异山梨醇)共聚酯聚合物的制备方法
CN1711302A (zh) * 2002-11-13 2005-12-21 伊斯曼化学公司 制备含异山梨醇聚酯的方法
JP2015091912A (ja) * 2013-11-08 2015-05-14 東レ株式会社 ポリエステルの製造方法
US20160185900A1 (en) * 2014-12-31 2016-06-30 Far Eastern New Century Corporation Method for preparing a modified copolyester
CN107955142A (zh) * 2016-10-18 2018-04-24 中国石油化工股份有限公司 含有异山梨醇聚酯的制备方法
WO2022004995A1 (ko) * 2020-06-29 2022-01-06 에스케이케미칼 주식회사 재사용 단량체를 포함하는 폴리에스테르 공중합체
WO2022092558A1 (ko) * 2020-10-26 2022-05-05 에스케이케미칼 주식회사 재사용 단량체를 포함하는 폴리에스테르 공중합체의 제조 방법
CN114599713A (zh) * 2019-08-28 2022-06-07 桑贾伊·塔玛吉·库尔卡尼 由回收的对苯二甲酸双2-羟乙酯(rBHET)制造特种聚酯和共聚酯的方法及其产物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1675282A (zh) * 2002-06-14 2005-09-28 纳幕尔杜邦公司 (对苯二甲酸-乙二醇-异山梨醇)共聚酯聚合物的制备方法
CN1711302A (zh) * 2002-11-13 2005-12-21 伊斯曼化学公司 制备含异山梨醇聚酯的方法
JP2015091912A (ja) * 2013-11-08 2015-05-14 東レ株式会社 ポリエステルの製造方法
US20160185900A1 (en) * 2014-12-31 2016-06-30 Far Eastern New Century Corporation Method for preparing a modified copolyester
CN107955142A (zh) * 2016-10-18 2018-04-24 中国石油化工股份有限公司 含有异山梨醇聚酯的制备方法
CN114599713A (zh) * 2019-08-28 2022-06-07 桑贾伊·塔玛吉·库尔卡尼 由回收的对苯二甲酸双2-羟乙酯(rBHET)制造特种聚酯和共聚酯的方法及其产物
WO2022004995A1 (ko) * 2020-06-29 2022-01-06 에스케이케미칼 주식회사 재사용 단량체를 포함하는 폴리에스테르 공중합체
WO2022092558A1 (ko) * 2020-10-26 2022-05-05 에스케이케미칼 주식회사 재사용 단량체를 포함하는 폴리에스테르 공중합체의 제조 방법

Also Published As

Publication number Publication date
CN117659368A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
TWI429678B (zh) 耐熱性優異之聚酯及其製造方法
CN101437868B (zh) 由聚对苯二甲酸乙二醇酯(pet)制备聚对苯二甲酸丁二醇酯(pbt)的方法
CN101735437B (zh) 一种低熔点共聚酯及其合成方法
CN107250207B (zh) 生物基共聚酯或共聚对苯二甲酸乙二醇酯
CN101525425B (zh) 一种直接酯化缩聚法制备生物可降解共聚酯的方法
CN115873223B (zh) 一种聚对苯二甲酸-碳酸-丁二醇酯的制备方法
KR102683118B1 (ko) 전형적인 녹색 및 저탄소 특성을 갖는 폐폴리에스테르의 폐쇄루프 회수에 의한 재생 폴리에스테르의 제조 방법
TW200938563A (en) Polyester with improved heat resistance produced from biomass ethylene glycol
CN110643026B (zh) 一种用于聚酯的钛系催化剂及制备方法
CN115785427B (zh) 一种复合催化剂及使用该复合催化剂制备脂肪族聚碳酸酯的方法
CN114656684A (zh) 一种利用废旧pet聚酯制备高纯再生pet聚酯的方法
CN101906041B (zh) 二步法生产高含量和高光学纯度乳酸戊酯的方法
CN101525411A (zh) 聚乳酸产品的生产方法
CN101415746A (zh) 由聚对苯二甲酸乙二醇酯(pet)制备聚对苯二甲酸丁二醇酯(pbt)的方法
Wang et al. Zn-catalyzed coordination-insertion depolymerization strategy of poly (3-hydroxybutyrate) under bulk conditions
WO2024045640A1 (zh) 一种制备peit共聚酯的方法
WO2024045639A1 (zh) 一种制备pent共聚酯的方法
CN108976404B (zh) 腰果酚改性的聚-2,6-萘二甲酸乙二醇酯及其制备法
CN116283566A (zh) 一种离子液体作为催化剂醇解回收废弃pet聚酯的方法
CN115141363A (zh) 一种利用废聚酯制备再生阳离子聚酯的方法
CN101182369A (zh) 一种高分子量聚(l-乳酸)的制备方法
CN115785424B (zh) 一种耐水解复合钛系催化剂、制备方法及一种高分子量草酸基聚酯制备方法
CN118239831A (zh) 一种含四羟基二苯甲酮基团的紫外线吸收剂合成及其聚酯共聚物的制备方法
TW202432532A (zh) 使用聚羥基烷酸酯製備甲基吡咯烷酮的方法及由其製備的甲基吡咯烷酮
Ma et al. Functionalized UiO‐66 as an efficient catalyst for the synthesis of bio‐based poly (1, 3‐propylene sebacate)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858681

Country of ref document: EP

Kind code of ref document: A1