WO2024045579A1 - 一种流体系统 - Google Patents

一种流体系统 Download PDF

Info

Publication number
WO2024045579A1
WO2024045579A1 PCT/CN2023/083394 CN2023083394W WO2024045579A1 WO 2024045579 A1 WO2024045579 A1 WO 2024045579A1 CN 2023083394 W CN2023083394 W CN 2023083394W WO 2024045579 A1 WO2024045579 A1 WO 2024045579A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
module
interface
container
conversion module
Prior art date
Application number
PCT/CN2023/083394
Other languages
English (en)
French (fr)
Inventor
隋相坤
Original Assignee
深圳太古语科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳太古语科技有限公司 filed Critical 深圳太古语科技有限公司
Publication of WO2024045579A1 publication Critical patent/WO2024045579A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/14Conveying liquids or viscous products by pumping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L29/00Joints with fluid cut-off means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present application relates to the technical field of fluid systems, for example, to a fluid system.
  • the process of transporting reagents or samples through a fluid system into a flow cell is the process of replacing the original fluid that previously filled the fluid system with new fluid.
  • the new fluid usually consumes more volume in the flow path first, and then the new fluid entering the flow cell can be relatively pure.
  • the present application provides a fluid system that can improve fluid utilization and at the same time improve fluid delivery efficiency.
  • This application provides a fluid system, including:
  • a fluid container configured to store a plurality of fluids
  • a waste container configured to store waste fluid
  • a flow cell module having a flow cell inlet and a flow cell outlet
  • the conversion module having a first state and a second state
  • a driving module which is connected to the conversion module through a first power pipe or a second power pipe, and provides driving force for the flow of fluid;
  • the first power pipeline passes through the conversion module Communicated with the fluid container, the fluid stored in the fluid container can push the original fluid in the path from the fluid container to the conversion module to enter the first power pipeline under the driving of the driving module.
  • the second power pipeline is connected to the flow cell outlet through the conversion module, and the flow cell inlet is connected to the fluid container through the conversion module;
  • the fluid stored in the fluid container can enter the flow cell module driven by the driving module, and push the original fluid in the flow cell module into the second power pipeline for temporary storage.
  • Figure 1 is a schematic diagram of the pipeline connection of the fluid system provided by this application.
  • FIG. 2 is a schematic diagram of the working logic of the fluid system provided by this application.
  • Figure 3 is a schematic structural diagram of the fluid system provided by this application.
  • Figure 4 is a schematic structural diagram 2 of the fluid system provided by this application.
  • Figure 5 is a structural schematic diagram three of the fluid system provided by this application.
  • Figure 6 is a schematic structural diagram 4 of the fluid system provided by this application.
  • Figure 7 is a schematic structural diagram 5 of the fluid system provided by this application.
  • Figure 8 is an exploded view of the structure of the valve provided by this application.
  • FIG. 9 is a schematic structural diagram of the stator provided by this application.
  • Figure 10 is a schematic structural diagram of the rotor provided by this application.
  • Figure 11 is a schematic diagram of the assembly of the stator and rotor provided by this application.
  • Figure 12 is the second assembly diagram of the stator and rotor provided by this application.
  • Fluid container 100. Fluid container; 200. Drive module; 300. Flow cell module; 400. Conversion module; 410. Stator; 420. Rotor; 421. First channel; 422. Second channel; 423. Third channel; 424. Chapter Four channels; 430, motor; 440, rotating shaft; 500, fluid selection module; 600, path switching module; 700, waste container;
  • orientation or positional relationship indicated by the terms center, up, down, left, right, vertical, horizontal, inside, outside, etc. are based on the orientation or positional relationship shown in the drawings. This is merely to facilitate the description of the present application and to simplify the description, and is not intended to indicate or imply that the device or element referred to must have a particular orientation, be constructed and operate in a particular orientation. Furthermore, the terms first, second, and second are used for descriptive purposes only and are not to be construed as indicating or implying relative importance.
  • first position and second position are two different positions, and the first feature on, above and above the second feature includes the first feature directly above and diagonally above the second feature, or simply means that the first feature is directly above and diagonally above the second feature.
  • One feature has a higher level than the second feature.
  • the first feature below, below and below the second feature includes the first feature directly below and diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, or it can be an internal connection between two components.
  • installation, connection, and connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, or it can be an internal connection between two components.
  • the specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • this embodiment provides a fluid system, which includes: a fluid container 100 , a waste container 700 , a flow cell module 300 , a conversion module 400 , and a driving module 200 .
  • Fluid container 100 is capable of storing a variety of fluids.
  • Waste container 700 is configured to hold waste fluid.
  • the flow cell module 300 has a flow cell inlet A and a flow cell outlet B.
  • the conversion module 400 has a first state and a second state.
  • the driving module 200 is connected with the conversion module 400 through the first power pipe 8 or the second power pipe 9 and provides driving force for the flow of fluid.
  • the first power pipeline 8 passes through the conversion module 400 and communicates with the fluid.
  • the containers 100 are connected, and the fluid stored in the fluid container 100 can be driven by the driving module 200 to push the original fluid in the path from the fluid container 100 to the conversion module 400 into the first power pipeline 8 for temporary storage;
  • the second power pipeline 9 is connected to the flow cell outlet B through the conversion module 400, and the flow cell inlet A is connected to the fluid container 100 through the conversion module 400; the fluid stored in the fluid container 100 can be stored in the driving module. 200 to enter the flow cell module 300, and push the original fluid in the flow cell module 300 into the second power pipeline 9 for temporary storage.
  • the above-mentioned fluid system can change the connection mode of the path by switching the state of the conversion module 400, thereby realizing different functions.
  • the conversion module 400 When the conversion module 400 is in the first state, the conversion module 400 has the function 1-1: the conversion module 400 connects the fluid container 100 and the first power pipeline 8.
  • the driving module 200 can drive the fluid in the fluid container 100 to The flow flows in the first power pipeline 8. Therefore, the original fluid in the path from the fluid container 100 to the conversion module 400 is pushed to the first power pipeline 8 for temporary storage, which facilitates subsequent discharge or recovery, and flows from the fluid container 100 to the conversion module 400.
  • the path taken by the conversion module 400 is filled with the fluid in the fluid container 100; when the conversion module 400 is in the second state, the conversion module 400 has function 2-1: the conversion module 400 connects the fluid container 100 and the flow cell inlet A, and the flow cell The outlet B is connected to the second power pipeline 9 through the conversion module 400. Therefore, the fluid in the fluid container 100 can enter the flow cell module 300 through the conversion module 400 for reaction. At this time, the original fluid in the flow cell module 300 has been Pushed to the second power pipeline 9 for temporary storage for subsequent discharge or recovery.
  • the fluid system uses the conversion module 400 as the core to allocate the paths and driving forces of the fluid flow, so that the fluid system can have different paths that are independent of each other at the same time, and can fill the pipeline with fluid between reactions and clean up the remaining residues in the pipeline. Fluid, realize efficient transportation of fluid, greatly speed up the reaction process, and avoid the waste of fluid.
  • the second power pipe 9 when the conversion module 400 is in the first state, the second power pipe 9 is connected to the waste container 700 or the fluid container 100 through the conversion module 400, and the fluid temporarily stored in the second power pipe 9 can be It is pushed to the waste container 700 or the fluid container 100 under the driving of the driving module 200 . That is, when the conversion module 400 is in the first state, the conversion module 400 also has functions 1-2: the conversion module 400 can also connect the second power pipeline 9 and the waste container 700 or the fluid container 100, because the fluid container 100 is connected to the drive The module 200 , the driving module 200 and the second power pipe 9 are connected, so that the fluid temporarily stored in the second power pipe 9 is pushed to the waste container 700 for discharge or pushed to the fluid container 100 for recycling.
  • the first power pipe 8 when the conversion module 400 is in the second state, the first power pipe 8 is connected to the waste container 700 or the fluid container 100 through the conversion module 400, and the fluid temporarily stored in the first power pipe 8 can be It is pushed to the waste container 700 or the fluid container 100 under the driving of the driving module 200 . That is, when the conversion module 400 is in the second state, the conversion module 400 also has the function 2-2: the conversion module 400 connects the first power pipeline 8 and the waste container 700 or the fluid container 100. Since the fluid container 100 connects The driving module 200 is connected to the first power pipe 8 , so that the fluid temporarily stored in the first power pipe 8 is pushed to the waste container 700 for discharge or pushed to the fluid container 100 for recycling.
  • the functions 1-1 and 1-2 can be realized at the same time; when the conversion module 400 is in the second state, the functions 2-1 and 2-2 can be realized at the same time. . That is to say, during the reaction process, the transportation of the required fluid and the discharge or recovery of the temporary fluid can be carried out simultaneously, thereby shortening the time of fluid transportation, greatly accelerating the reaction process, and avoiding the waste of fluid.
  • the functions and related settings of the conversion module 400 , the fluid container 100 , the fluid selection module 500 , the drive module 200 , the path switching module 600 , the flow cell module 300 and the waste container 700 provided in this embodiment are described below:
  • the conversion module 400 includes six interfaces, where interface c is connected to the flow cell inlet pipe 11, interface d is connected to the flow cell outlet pipe 12, interface e is connected to the second power pipe 9, and interface f is connected to the shunt pipe 10.
  • Interface a is connected to the first power pipeline 8
  • interface b is connected to the public pipeline 7.
  • the main function of the conversion module 400 is pipeline switching. By controlling the connection and disconnection between the driving module 200 and the flow cell module 300, the path switching module 600, and the fluid selection module 500, different flow paths are formed.
  • the conversion module 400 should have at least two states:
  • interface a is connected to interface b, interface c is connected to interface d, and interface e is connected to interface f;
  • interface f is connected to interface a
  • interface b is connected to interface c
  • interface d is connected to interface e.
  • a two-position six-way conversion valve can be used, or a conversion valve designed according to special requirements.
  • Switching valves are rotary shear valves, a subdivision of the latter.
  • a valve group composed of multiple two-position three-way solenoid valves and two-position two-way solenoid valves and corresponding substrates can also be used to achieve the above functions.
  • the fluid container 100 is connected with the fluid pipeline 1 , the first preparation pipeline 3 , and the fluid recovery pipeline 5 .
  • the main function of the fluid container 100 is to store a variety of fluids, including fluids to be used, fluids to be recycled after use, and fluids required for filling the drive module 200.
  • Each of the above-mentioned types of fluids can be one or more . Among them, when the fluid to be used and the fluid to be recovered after use are the same fluid, they can be designed for mixed storage or independent storage according to specific use requirements.
  • various forms such as an integrated multi-hole reagent kit, a split multi-hole reagent kit, a reagent bottle set composed of multiple reagent bottles, or a test tube set composed of multiple test tubes can be designed or used.
  • the "original fluid” in this article refers to the fluid remaining in the pipeline that needs to be removed. This fluid can be recycled or discharged according to the needs of use.
  • the fluid selection module 500 can be connected to the fluid pipeline 1 , the first waste discharge pipeline 2 , and the common pipeline 7 .
  • the main function of the fluid selection module 500 is to switch pipelines.
  • the fluid pipeline 1 corresponding to the fluid to be transported is connected to the public pipeline 7, or when the public pipeline 7 needs to be cleaned.
  • the public pipe 7 is connected with the first waste discharge pipe 2.
  • a selection valve may be used, which is a rotary shear valve.
  • the number of positions of the selector valve needs to be determined according to the type of fluid transported.
  • the common ones are six-position seven-way selector valve, ten-position 11-way selector valve, and 24-position 25-way selector valve.
  • valve group composed of multiple two-position three-way solenoid valves and two-position two-way solenoid valves and corresponding substrates can also be used to achieve the above functions.
  • the above functions can also be achieved using automated pipetting systems.
  • the driving module 200 is connected with a first power pipeline 8 , a second power pipeline 9 , a first preparation pipeline 3 , and a second preparation pipeline 4 .
  • the second preparation pipe 4 is not a necessary design, and is determined based on the principle of the driving module 200 driving fluid movement.
  • the main function of the driving module 200 is to drive the flow of fluid, so all flow paths that can be formed in the fluid system should be connected to the driving module 200 .
  • the driving module 200 provides driving force through the first power conduit 8 and the second power conduit 9, so that fluid transport in two different flow paths can be maintained simultaneously. When the driving module 200 provides positive pressure driving force to the outside, this is a process of pushing fluid outward.
  • the driving module 200 needs to be connected to the first preparation pipe 3 to suck the filling fluid from the fluid container 100 to supplement the fluid flowing outward. The volume pushed. When the driving module 200 provides negative pressure driving force to the outside, this is a process of sucking fluid inward.
  • the driving module 200 needs to be connected to the second preparation pipe 4 to The fluid is discharged from the waste container 700, leaving a volume for inward suction.
  • driving methods such as a syringe, it is not necessary to be connected to the second preparation pipe 4. This type of driving method can first remove the liquid that needs to be sucked.
  • the fluid is sucked into the syringe, and then pushed out when the conversion module 400 connects the driving module 200 to other pipes.
  • the flow cell module 300 is connected to the driving module 200 through the bypass pipe 13, in order to transport the fluid in the bypass pipe 13 to the waste container 700, it is also necessary to connect the driving module 200 to the waste through the second preparation pipe 4.
  • Container 700
  • each method requires a valve head with enough holes for the pipes to be connected for connection and switching of the pipes.
  • syringe pumps provide optional valve heads, while some types of pumps require an additional self-made valve group as the valve head.
  • the path switching module 600 can be connected to the branch pipe 10 , the fluid recovery pipe 5 , and the second waste discharge pipe 6 .
  • the main function of the path switching module 600 is to switch the pipeline.
  • the shunt pipeline 10 is connected to the fluid recovery pipeline 5, or when the waste liquid needs to be discharged, the shunt pipeline 10 is connected to the second waste discharge pipeline 6.
  • a selection valve can be used.
  • the number of positions of the selection valve is mainly determined according to the type of fluid that needs to be recovered, such as a common six-position seven-way selection valve, a ten-position eleven-way selection valve, a twenty-four-position selection valve, etc. Twenty-five-way selector valve. You can also use a valve group composed of multiple two-position three-way solenoid valves and two-position two-way solenoid valves and corresponding substrates to achieve the above functions. In addition, the above functions can also be achieved using automated pipetting systems.
  • the flow cell module 300 has a flow cell inlet A and a flow cell outlet B, which are connected with a flow cell inlet pipe 11 , a flow cell outlet pipe 12 , and a bypass pipe 13 .
  • the main function of the flow cell module 300 is to allow new fluid to flow in from the flow cell inlet pipe 11 and to make the original fluid flow out from the flow cell outlet pipe 12.
  • the fluid will undergo biological or chemical reactions in the flow cell of the flow cell module 300.
  • the design of biological or chemical reactions within flow cells is not the subject of this application.
  • the flow cell module 300 sometimes adds a bypass pipe 13 according to design requirements, so that some fluids can be directly discharged without entering the flow cell. Therefore, the bypass pipe 13 does not have to exist.
  • the waste container 700 can be connected to the second waste discharge pipe 6 , the second preparation pipe 4 , and the fluid recovery pipe 5 .
  • the main function of the waste container 700 is to store waste fluid after use, and can be designed for mixed storage or independent storage according to specific implementation requirements. According to the design requirements of the waste container 700, various types of containers or combinations of containers, such as integrated porous waste boxes, waste barrels, etc., can be designed or used.
  • Fluid pipeline 1 is a pipeline connecting the fluid selection module 500 and the fluid container 100 .
  • the fluid pipeline 1 is configured to transport various fluids stored in the fluid container 100 from the fluid container 100 to the fluid selection module 500, and can also be transported in the reverse direction.
  • multiple fluid pipelines 1 are provided, and the fluid selection module 500 communicates with the fluid container 100 through the multiple fluid pipelines 1 .
  • the number of fluid pipes 1 depends on the solution of the fluid selection module 500. When the fluid selection module 500 uses a selection valve or valve group, the number of fluid pipes 1 should correspond one-to-one with the fluid type or hole position in the fluid container 100, so that each Each fluid or each hole position has an independent fluid pipe 1 for use.
  • the fluid selection module 500 uses an automated pipetting system, there may be only one fluid pipe 1 that needs to be connected to the sampling needle. In this case, the fluid pipe 1 is commonly used by all fluids in the fluid container 100 .
  • Common pipeline 7 connects the fluid selection module 500 and the conversion module 400 pipeline.
  • the public pipe 7 is connected to interface b.
  • a common conduit 7 is provided to transport fluid from the fluid selection module 500 to the conversion module 400 and vice versa. Since the common pipeline 7 is commonly used by all fluids in the fluid container 100, it needs to be cleaned before transporting the fluid each time.
  • the first power pipeline 8 is a pipeline connecting the driving module 200 and the conversion module 400 .
  • the first power pipe 8 is connected to interface a.
  • the first power conduit 8 is configured to transport fluid from the drive module 200 to the conversion module 400 and vice versa.
  • the second power pipeline 9 is a pipeline connecting the driving module 200 and the conversion module 400 .
  • the second power pipe 9 is connected to the interface e.
  • the second power conduit 9 is configured to transport fluid from the drive module 200 to the conversion module 400 and vice versa.
  • the flow cell inlet pipe 11 is a pipe connecting the flow cell module 300 and the conversion module 400 .
  • the flow cell inlet pipe 11 is connected to the interface c.
  • the flow cell inlet conduit 11 is configured to transfer fluid from The exchange module 400 is transported to the flow cell module 300.
  • the flow cell outlet pipe 12 is a pipe connecting the flow cell module 300 and the conversion module 400 .
  • the flow cell outlet pipe 12 is connected to interface d.
  • the flow cell outlet conduit 12 is configured to transport fluid from the flow cell module 300 to the conversion module 400 .
  • the number of flow cell outlet pipes 12 depends on the number of channels in the flow cell.
  • Bypass pipe 13 is a pipe connecting the flow cell module 300 and the driving module 200 .
  • the fluid in the flow cell module can enter the bypass pipe 13 for temporary storage, and then can be transported from the bypass pipe 13 to the driving module 200 , and then discharged to the waste container 700 through the second preparation pipe 4 .
  • the bypass pipeline 13 is not a necessary pipeline and depends on the implementation requirements of the present application.
  • the shunt pipe 10 is a pipe connecting the path switching module 600 and the interface f of the conversion module 400 .
  • the branch pipe 10 is connected to the interface f.
  • the diverter conduit 10 is configured to transport fluid from the conversion module 400 to the path switching module 600 .
  • the number of branching pipes 10 depends on the number of channels of the flow cell.
  • the first waste discharge pipe 2 is a pipe connecting the fluid selection module 500 and the waste container 700 .
  • the first waste discharge conduit 2 is arranged to transport fluid from the fluid selection module 500 to the waste container 700 .
  • the second waste discharge pipe 6 is a pipe connecting the path switching module 600 and the waste container 700 .
  • the second waste discharge conduit 6 is configured to transport fluid from the path switching module 600 to the waste container 700 .
  • the first preparation pipe 3 is configured to transport fluid from the driving module 200 to the fluid container 100 , and can also be transported in the reverse direction, that is, the fluid in the fluid container 100 can enter the driving module 200 through the first preparation pipe 3 .
  • the number of first preparation channels 3 depends on the design of the drive module 200 .
  • the second preparation pipe 4 is a pipe connecting the driving module 200 and the waste container 700 .
  • the second preparation conduit 4 is configured to transport fluid from the drive module 200 to the waste container 700 and vice versa.
  • the number of second preparation pipes 4 depends on the design of the drive module 200 and whether there are bypass pipes 13 .
  • Fluid recovery pipe 5 is a pipe connecting the path switching module 600 and the fluid container 100 .
  • the fluid recovery conduit 5 is configured to transport fluid recovered in the fluid recovery conduit 5 to the fluid container 100 .
  • the number of fluid recovery pipes 5 depends on the design of the fluid container 100. Each fluid to be recovered needs a fluid recovery pipe 5 corresponding to the hole position in the fluid container 100.
  • the path switching module 600 uses an automated pipetting system, there may be only one fluid recovery pipe 5 that needs to be connected to the sampling needle. At this time, the fluid recovery pipe 5 is commonly used by all fluids in the fluid container 100 that need to be recovered.
  • the fluid flow path includes "Path 1-1", which exists in the first state of the conversion module 400.
  • the driving force for fluid flow comes from the negative pressure provided by the driving module 200 through the first power pipe 8 .
  • the fluid selection module 500 is connected to the fluid container 100 through the fluid pipeline 1, and the flow The body selection module 500 is connected to the interface b through the common pipeline 7 , and the fluid selection module 500 is configured to selectively transport multiple fluids in the fluid container 100 .
  • the fluid starts from the fluid container 100 , passes through the fluid pipeline 1 , the fluid selection module 500 , the common pipeline 7 , the interface b of the conversion module 400 , the interface a of the conversion module 400 , and the first power pipeline 8 in sequence, and reaches the driving module 200 .
  • This path 1 - 1 can be used for preparation before transporting fluid from the fluid container 100 to the flow cell module 300 , so that the fluid to be transported is prefilled in the common pipe 7 .
  • the fluid in the fluid container 100 can be replaced in the fluid selection module 500 and the common pipeline 7 in advance, so that the original fluid can enter the first power pipeline 8 for temporary storage.
  • fluid may also be discharged from the drive module 200 through the second preparation conduit 4 to the waste container 700 .
  • the fluid flow path also includes "path 2-1", which exists in the second state of the conversion module 400.
  • the driving force for fluid flow comes from the negative pressure provided by the driving module 200 through the bypass pipe 13 .
  • the flow cell module 300 is connected to the drive module 200 through the bypass pipe 13, and the drive module 200 is connected to the waste container 700 through the second preparation pipe 4.
  • the fluid in the flow cell module 300 can sequentially pass through the bypass pipe 13, the drive module 200 and the third The second preparation pipe 4 flows to the waste container 700 .
  • the fluid starts from the fluid container 100 and sequentially passes through the fluid pipeline 1, the fluid selection module 500, the common pipeline 7, the interface b of the conversion module 400, the interface c of the conversion module 400, the flow cell inlet pipe 11, and the flow cell module 300.
  • the bypass pipeline 13, the driving module 200 and the second preparation pipeline 4 reach the waste pipeline.
  • the bypass pipe 13 can be designed arbitrarily, and can be arranged before the inlet of the flow cell, or after the outlet of the flow cell, or the bypass pipe 13 may not be provided. If the bypass pipe 13 is arranged before the inlet of the flow cell, the fluid in the fluid container 100 can be replaced in the flow cell inlet pipe 11 through this path 2-1, so that the original fluid in the flow cell inlet pipe 11 can be replaced.
  • the waste container 700 is entered through the bypass line 13 , the drive module 200 and the second preparation line 4 . If the bypass pipe 13 is provided after the inlet of the flow cell, the path 2 - 1 allows the fluid in the flow cell to enter the waste container 700 through the bypass pipe 13 , the driving module 200 and the second preparation pipe 4 .
  • the fluid flow path also includes “path 2-2”, which exists in the second state of the conversion module 400, and the driving force comes from the negative pressure provided by the driving module 200 through the second power pipe 9.
  • the interface d of the conversion module 400 is connected to the flow cell module 300 through the flow cell outlet pipe 12, and the interface e is connected to the drive module 200 through the second power pipe 9.
  • the interface d can be connected to the interface e.
  • the original fluid in the flow cell module 300 can be stored in the second power pipe 9 through the flow cell outlet pipe 12, the interface d and the interface e.
  • the driving module 200 is connected to the waste container 700 through the second preparation pipe 4 , and the original fluid in the second power pipe 9 can flow to the waste container 700 through the second preparation pipe 4 under the action of the driving module 200 .
  • the fluid starts from the fluid container 100 and sequentially passes through the fluid pipeline 1, the fluid selection module 500, the common pipeline 7, the interface b of the conversion module 400, the interface c of the conversion module 400, the flow cell inlet pipe 11, and the flow cell module 300. , the flow cell outlet pipe 12, the interface d of the conversion module 400, the interface e of the conversion module 400 and the The two power conduits 9 reach the drive module 200 .
  • fluid may also be discharged from the drive module 200 through the second preparation conduit 4 to the waste container 700 .
  • the fluid in the fluid container 100 can be replaced in the flow cell of the flow cell module 300 through this path 2-2, so that the original fluid in the flow cell can enter the second power pipe 9 for temporary storage.
  • the fluid container 100 is connected to the drive module 200 through the first preparation pipe 3 , the interface a can be connected to the waste container 700 or the fluid container 100 , and the fluid in the fluid container 100 can be sequentially moved under the action of the drive module 200 It flows to the waste container 700 through the first preparation pipeline 3, the first power pipeline 8, and the interface a to clear the original fluid in the first power pipeline 8, or it flows through the first preparation pipeline 3, the first power pipeline 8, and the interface a in sequence. It flows to the fluid container 100 to recover the original fluid in the first power pipe 8 . Therefore, the fluid flow path also includes "Path 2-3" and "Path 2-4".
  • “Path 2-3” exists in the second state of the conversion module 400.
  • the driving force for fluid flow comes from the positive pressure provided by the driving module 200 through the first power conduit 8.
  • the fluid starts from the fluid container 100 and sequentially passes through the first preparation pipeline 3, the driving module 200, the first power pipeline 8, the interface a of the conversion module 400, the interface f of the conversion module 400, the shunt pipe 10, and the path.
  • Switch module 600 and second waste discharge pipe 6 to reach waste container 700.
  • This path 2 - 3 can be used for the fluid in the fluid container 100 to traverse the first power pipeline 8 , the conversion module 400 , the branch pipeline 10 and the path switching module 600 .
  • the path 2-3 can transport the cleaning agent to the first power pipeline 8, the conversion module 400, the shunt pipeline 10 and the path switching module 600 to clean the pipelines and modules.
  • “Path 2-4” exists in the second state of the conversion module 400.
  • the driving force for fluid flow comes from the positive pressure provided by the driving module 200 through the first power conduit 8.
  • the fluid starts from the fluid container 100 and sequentially passes through the first preparation pipeline 3, the driving module 200, the first power pipeline 8, the interface a of the conversion module 400, the interface f of the conversion module 400, the shunt pipe 10, the path switching module 600, and fluid recovery.
  • Pipe 5 reaches the fluid container 100.
  • This path 2 - 4 can be used for the fluid in the fluid container 100 to traverse the first power pipeline 8 , the conversion module 400 , the branch pipeline 10 , the path switching module 600 and the fluid recovery pipeline 5 .
  • cleaning agent can be used to clean the first power pipeline 8 , the conversion module 400 , the shunt pipeline 10 , the path switching module 600 and the fluid recovery pipeline 5 . It should be noted here that this path requires transporting the fluid to the fluid container 100. If the transported fluid is a cleaning agent, it will cause contamination of the fluid container 100. Therefore, the transporting cleaning agent can only be used for the automatic cleaning process after completing the work. .
  • the common pipeline 7 can be connected to the waste container 700 or the fluid container 100.
  • the fluid in the fluid container 100 can sequentially pass through the first preparation pipeline 3, the first power pipeline 8, and the public pipeline under the action of the driving module 200.
  • the pipeline 7 enters the waste container 700 to remove the original fluid in the common pipeline 7, or enters the fluid container 100 through the first preparation pipeline 3, the first power pipeline 8, and the common pipeline 7 in order to remove the original fluid in the common pipeline 7.
  • the fluid selection module 500 is connected to the common pipe 7, the waste container 700 is connected to the fluid selection module 500 through the first waste discharge pipe 2, and the fluid container 700 is connected to the fluid selection module 500 through the first waste discharge pipe 2.
  • the device 100 communicates with the fluid selection module 500 through the fluid pipeline 1 . Therefore, the fluid flow path also includes "Path 1-2" and "Path 1-3.”
  • “Path 1-2” exists in the first state of the conversion module 400, and the driving force for fluid flow comes from the positive pressure provided by the driving module 200 through the first power conduit 8.
  • the fluid starts from the fluid container 100 and sequentially passes through the first preparation pipeline 3, the driving module 200, the first power pipeline 8, the interface a, the interface b, the common pipeline 7, the fluid selection module 500, and the first waste discharge pipeline 2 , reaching the waste container 700.
  • This path enables the fluid in the fluid container 100 to traverse the conversion module 400 , the common pipeline 7 and the fluid selection module 500 .
  • "path 1-2" can be used to transport the cleaning agent to the conversion module 400, the common pipeline 7 and the fluid selection module 500 for cleaning the pipelines and modules.
  • “Path 1-3” exists in the first state of the conversion module 400, and the driving force for fluid flow comes from the positive pressure provided by the driving module 200 through the first power pipe 8.
  • the fluid starts from the fluid container 100 and sequentially passes through the first preparation pipeline 3, the driving module 200, the first power pipeline 8, the interface a of the conversion module 400, the interface b of the conversion module 400, the common pipe 7, and the fluid selection module. 500.
  • Fluid pipeline 1 reaches the fluid container 100. This path enables the fluid in the fluid container 100 to traverse the conversion module 400 , the common pipeline 7 , the fluid selection module 500 and the fluid pipeline 1 .
  • paths 1-3 can be used to transport the cleaning agent to the conversion module 400, the common pipeline 7, the fluid selection module 500 and the fluid pipeline 1 to clean the pipelines and modules. It should be noted here that this path requires transporting the fluid to the fluid container 100. If the transported fluid is a cleaning agent, it will cause contamination of the fluid container 100. Therefore, the transporting cleaning agent can only be used for the automatic cleaning process after completing the work. .
  • the interface e can be connected to the interface f, and the interface f is connected to the shunt pipe 10.
  • the shunt pipe 10 is connected to the waste container 700 or the fluid container 100.
  • the original fluid stored in the second power pipe 9 can be sequentially It flows to the waste container 700 or the fluid container 100 through the interface e, the interface f and the diverter pipe 10 . Therefore, the fluid flow path also includes "Path 1-4" and "Path 1-5.”
  • “Path 1-4” exists in the first state of the conversion module 400, and the driving force comes from the positive pressure provided by the driving module 200 through the second power pipe 9.
  • the path switching module 600 is connected to the interface f through the shunt pipe 10, and the path switching module 600 is connected to the waste container 700 through the second waste discharge pipe 6.
  • the original fluid stored in the second power pipe 9 can be passed through in sequence.
  • the interface e, the interface f, the shunt pipe 10, the path switching module 600 and the second waste discharge pipe 6 flow to the waste container 700 to discharge the original fluid.
  • the fluid starts from the fluid container 100 and sequentially passes through the first preparation pipeline 3, the driving module 200, the second power pipeline 9, the interface e of the conversion module 400, the interface f of the conversion module 400, the shunt pipe 10, and the path switching module. 600.
  • the second waste discharge pipe 6 reaches the waste container 700 .
  • This path can be used for the fluid in the fluid container 100 to traverse the conversion module 400 , the branch pipe 10 and the path switching module 600 .
  • "Paths 1-4" realize the use of filling fluid to push the temporary unrecyclable original fluid in the second power pipeline 9 to the waste container 700, or use cleaning agents to clean the conversion module 400 and the shunt pipeline. 10 and path switching module 600 for cleaning.
  • “Path 1-5” exists in the first state of the conversion module 400, and the driving force comes from the positive pressure provided by the driving module 200 through the second power pipe 9.
  • the path switching module 600 is connected to the fluid container 100 through the fluid recovery pipe 5.
  • the original fluid stored in the second power pipe 9 can be sequentially passed through the interface e, the interface f, the shunt pipe 10, the path switching module 600 and
  • the fluid recovery pipe 5 flows to the fluid container 100 to recover the original fluid.
  • the fluid starts from the fluid container 100 and sequentially passes through the first preparation pipeline 3, the driving module 200, the second power pipeline 9, the interface e of the conversion module 400, the interface f of the conversion module 400, the shunt pipe 10, and the path switching module. 600.
  • the fluid recovery pipe 5 reaches the fluid container 100.
  • This path can be used to recover fluid temporarily stored in the second power conduit 9 to the fluid container 100 .
  • the filling fluid can be used to push the recyclable original fluid temporarily stored in the second power pipeline 9 to the fluid container 100, or the cleaning agent can be used to switch the conversion module 400, the shunt pipeline 10, and the path. Module 600 and fluid recovery pipe 5 are cleaned.
  • this path can transport fluid to the fluid container 100. If the transported fluid is a cleaning agent, it will cause contamination of the fluid container 100. Therefore, the transporting cleaning agent can only be used for the automatic cleaning process after completing the work. .
  • FIG. 2 is a schematic diagram of a working logic of the fluid system provided in this embodiment.
  • This working logic can be used to realize the transportation of multiple fluids, while also completing the recovery of reusable fluids and the modification of fluid paths. Clean in real time.
  • the working logic can be reasonably adjusted according to usage needs, and all solutions will not be listed here.
  • the work logic provided by this implementation is divided into 3 steps (the "reagent” below represents one or several fluids required for the reaction):
  • Step 1 Set the conversion module 400 to the first state, use "path 1-1" to take out the first reagent from the fluid container 100, and complete the replacement of the reagent in the common pipeline 7.
  • Step 2 Set the conversion module 400 to the second state, first use "path 2-1" to continue transporting the first reagent from the common pipeline 7, and complete the replacement of the reagent in the flow cell inlet pipeline 11. Then use "Path 2-2" to complete the replacement of this reagent in the flow cell. When using “Path 2-1" and “Path 2-2", use “Path 2-3" at the same time to complete the cleaning and emptying of the shunt pipeline 10 and the path switching module 600.
  • Step 3 Set the conversion module 400 to the first state, first use "path 1-2" to switch the module, The first reagent or the residue of the first reagent in the common pipeline 7 and the fluid selection module 500 is cleaned and discharged to the waste container 700, and then the second reagent is taken out from the fluid container 100 using "path 1-1", and Let the reagent complete the replacement in the common pipe 7.
  • "Path 1-2" and "Path 1-1” select whether to recycle the first reagent at the same time. If the first reagent is not recycled, only “Path 1-4" will not be recycled. The waste materials are discharged into the waste container 700. If the first reagent is to be recycled, first use "path 1-5" to complete the recovery of the first type reagent, and then use "path 1-4" to discharge the non-recycled waste materials. to waste container 700.
  • step 3 select whether to transport the second reagent. If the second reagent is transported, return to step 2 until no reagent is transported. If the second reagent is not transported, the work is completed.
  • Figure 3 is a schematic structural diagram of a fluid system provided in this embodiment.
  • the flow cell module 300 is a single-channel flow cell.
  • the conversion module 400 is a two-position six-way conversion valve.
  • the fluid drive module is a single-channel syringe pump with a distributed valve head with a 3-position orifice.
  • the fluid selection module 500 is an eight-position nine-way selection valve.
  • the path switching module 600 is a two-position three-way solenoid valve.
  • the fluid container 100 is a 7-hole kit, of which six holes are for reagents and one hole is for filling fluid.
  • the waste container 700 is a single-hole waste box. In this embodiment, reagents from six wells can be transported to the flow cell, and reagents from one of the wells can be recovered.
  • Figure 4 is a schematic structural diagram of another fluid system provided in this embodiment.
  • the flow cell module 300 is a single-channel flow cell
  • the bypass pipe 13 is connected to the bypass pipe 13 through a two-position three-way solenoid valve in front of the inlet of the flow cell.
  • the conversion module 400 is a two-position six-way conversion valve.
  • the fluid drive module includes two single-channel syringe pumps and a two-position three-way solenoid valve.
  • the syringe pump that controls the fluid transport in the second power pipeline 9 has a distributed valve head with a 3-position hole, and also has one of the A two-position three-way solenoid valve is externally connected to the valve head for connecting the bypass pipeline 13 and the second preparation pipeline 4, so that the fluid in the bypass pipeline 13 can be discharged from the second preparation pipeline 4 through the switching of the solenoid valve.
  • waste pipeline, and the syringe pump controlling fluid transport in the first power pipeline 8 has a valve head with a two-position hole.
  • the fluid selection module 500 is an eight-position nine-way selection valve.
  • the path switching module 600 is an eight-position nine-way selection valve.
  • the fluid container 100 is a 7-hole kit, of which six holes are for reagents and one hole is for filling fluid.
  • the waste container 700 is a single-hole waste box. This embodiment can transport reagents from six wells to the flow cell and recover six reagents.
  • FIG 5 is a schematic structural diagram of yet another fluid system provided by this embodiment.
  • the flow cell module 300 is a dual-channel flow cell, and a tee joint is used in front of the inlet of the flow cell so that one flow cell inlet pipe 11 can transport fluid to the channels of two flow cells at the same time.
  • the conversion module 400 is a specially customized two-position nine-way selection valve (see Figures 8 to 12).
  • the fluid drive module includes a dual-channel syringe pump and a single-channel syringe pump. Among them, the dual-channel syringe pump controls the fluid transportation in the second power pipeline 9. Each channel of the syringe pump has a valve head with a 2-position hole.
  • the fluid transported in the power line 8 is a single-channel syringe pump with a valve head with a 2-position hole.
  • the fluid selection module 500 is an eight-position nine-way selection valve.
  • the path switching module 600 is an eight-position nine-way selection valve.
  • the fluid container 100 is a 7-hole kit, of which six holes are for reagents and one hole is for filling fluid.
  • the waste container 700 is a single-hole waste box. This embodiment can transport the reagents in six wells to the flow cell and recover the reagents in the six wells.
  • the components used in each module in the fluid system can be selected according to actual needs.
  • the conversion module 400 may be a two-position six-way directional valve, a two-position six-way solenoid valve, a two-position six-way conversion valve, etc.
  • the conversion module 400 can also be a valve combination that can perform the same function, as shown in Figure 6.
  • the conversion module 400 is composed of three three-way joints and five two-position two-way solenoid valves, as shown in Figure 7.
  • the conversion module 400 is composed of two three-way connectors, two two-position two-way solenoid valves and two two-position three-way solenoid valves.
  • the components used in each module can be selected according to actual use needs. As long as the structural form can realize the function of the fluid system, it is within the protection scope of this application.
  • the conversion module 400 includes the valves shown in Figures 8-12.
  • This valve is a two-position nine-way conversion valve, which can realize the functions required by the conversion module 400 in Figure 5.
  • the valve includes components such as a motor 430, a rotating shaft 440, a stator 410 and a rotor 420.
  • the motor 430 and the rotor 420 are connected through the rotating shaft 440.
  • the motor 430 is configured to drive the rotor 420 to rotate, thereby changing the position of the rotor 420. Then change the connection mode of the valve interface.
  • Other components and connection methods in the valve are mature related technologies in this field and will not be described in detail here.
  • Figure 9 shows the stator 410 of the valve.
  • Figure 10 shows the rotor 420 of this valve.
  • Interface a, interface b and interface c are provided on the stator 410.
  • the stator 410 also has interface d, interface e, interface f, interface d', interface e', and interface f'.
  • the rotor 420 has a first channel 421, a second channel 422, a third channel 423 and a fourth channel 424.
  • the stator 410 and the rotor 420 are rotationally connected, and the rotor 420 can rotate to the first position and the second position.
  • interface a is connected to interface b through the first channel 421
  • interface c is connected to interface d through the second channel 422
  • interface e is connected to interface f through the third channel 423
  • interface e' passes through
  • the fourth channel 424 is connected to the interface f′.
  • interface f is connected to interface a through the first channel 421
  • interface b is connected to interface c through the second channel 422
  • interface d is connected to interface e through the third channel 423
  • interface d' passes through
  • the fourth channel 424 is connected to the interface e′.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

一种流体系统,包括流体容器(100)、废料容器(700)、流动池模块(300)、转换模块(400)和驱动模块(200)。驱动模块通过第一动力管道(8)或第二动力管道(9)与转换模块连通,并为流体的流动提供驱动力。转换模块处于第一状态时,流体容器中存放的流体能够在驱动模块的驱动下推动所经路径中的原有流体进入第一动力管道中暂存;转换模块处于第二状态时,第二动力管道通过转换模块与流动池出口连通,流动池入口通过转换模块与流体容器连通;流体容器中存放的流体能够在驱动模块的驱动下进入流动池模块,并推动流动池模块内的原有流体进入第二动力管道中暂存。

Description

一种流体系统
本申请要求在2022年08月31日提交中国专利局、申请号为202211062726.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及流体系统技术领域,例如涉及一种流体系统。
背景技术
通过流体系统运输试剂或样本进入流动池的过程,就是采用新流体替代此前充满流体系统的原有流体的过程。在这个过程中,新流体通常会先在流动的路径中消耗较多的体积,而后进入流动池中的新流体才能较为纯净。
相关技术中的流体系统,由于管路设计不合理,在流动池中参加生物或化学反应的新流体的体积远小于在路径中运输的体积,流体的利用率较低。这种额外的消耗通常是由两个原因所致:一是此前充满流体系统的原有流体会在壁面上留下残留物;二是流体系统中存在不能直接冲刷的死体积。这两个原因都会促使流体系统必须额外使用大量体积的新流体,才能冲刷掉壁面上的残留物,以及以分子扩散稀释的方式对死体积内无法冲刷的流体进行替换。
发明内容
本申请提供一种流体系统,该流体系统能够提高流体的利用率,同时,提高流体的输送效率。
本申请提供一种流体系统,包括:
流体容器,所述流体容器设置为存放多种流体;
废料容器,所述废料容器设置为存放废弃流体;
流动池模块,所述流动池模块具有流动池入口和流动池出口;
转换模块,所述转换模块具有第一状态和第二状态;
驱动模块,所述驱动模块通过第一动力管道或第二动力管道与所述转换模块连通,并为流体的流动提供驱动力;
所述转换模块处于所述第一状态时,所述第一动力管道通过所述转换模块 与所述流体容器连通,所述流体容器中存放的流体能够在所述驱动模块的驱动下推动从所述流体容器到所述转换模块所经路径中的原有流体进入所述第一动力管道中暂存;
所述转换模块处于所述第二状态时,所述第二动力管道通过所述转换模块与所述流动池出口连通,所述流动池入口通过所述转换模块与所述流体容器连通;所述流体容器中存放的流体能够在所述驱动模块的驱动下进入所述流动池模块,并推动所述流动池模块内的原有流体进入所述第二动力管道中暂存。
附图说明
图1是本申请提供的流体系统的管路连接示意图;
图2是本申请提供的流体系统的工作逻辑示意图;
图3是本申请提供的流体系统的结构示意图一;
图4是本申请提供的流体系统的结构示意图二;
图5是本申请提供的流体系统的结构示意图三;
图6是本申请提供的流体系统的结构示意图四;
图7是本申请提供的流体系统的结构示意图五;
图8是本申请提供的阀门的结构爆炸图;
图9是本申请提供的定子的结构示意图;
图10是本申请提供的转子的结构示意图;
图11是本申请提供的定子和转子的装配示意图一;
图12是本申请提供的定子和转子的装配示意图二。
图中:
100、流体容器;200、驱动模块;300、流动池模块;400、转换模块;410、定子;420、转子;421、第一通道;422、第二通道;423、第三通道;424、第四通道;430、电机;440、转轴;500、流体选择模块;600、路径切换模块;700、废料容器;
1、流体管道;2、第一废料排放管道;3、第一准备管道;4、第二准备管道;5、流体回收管道;6、第二废料排放管道;7、公共管道;8、第一动力管道;9、第二动力管道;10、分流管道;11、流动池入口管道;12、流动池出口管道;13、旁路管道;
A、流动池入口;B、流动池出口;
a、第一接口;b、第二接口;c、第三接口3;d、第四接口;e、第五接口;f、第六接口;
d′、第七接口;e′、第八接口;f′、第九接口。
具体实施方式
下面将结合附图对本申请进行描述,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语中心、上、下、左、右、竖直、水平、内、外等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作。此外,术语第一、第二、仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语第一位置和第二位置为两个不同的位置,而且,第一特征在第二特征之上、上方和上面包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征之下、下方和下面包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请的描述中,需要说明的是,除非另有明确的规定,术语安装、相连、连接应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请。
参见图1,本实施例提供一种流体系统,该流体系统包括:流体容器100、废料容器700、流动池模块300、转换模块400、驱动模块200。流体容器100能够存放多种流体。废料容器700设置为存放废弃流体。流动池模块300具有流动池入口A和流动池出口B。转换模块400具有第一状态和第二状态。驱动模块200通过第一动力管道8或第二动力管道9与转换模块400连通,并为流体的流动提供驱动力。
转换模块400处于第一状态时,第一动力管道8通过转换模块400与流体 容器100连通,流体容器100中存放的流体能够在驱动模块200的驱动下推动从流体容器100到转换模块400所经路径中的原有流体进入第一动力管道8中暂存;
转换模块400处于第二状态时,第二动力管道9通过转换模块400与流动池出口B连通,流动池入口A通过转换模块400与流体容器100连通;流体容器100中存放的流体能够在驱动模块200的驱动下进入流动池模块300,并推动流动池模块300内的原有流体进入第二动力管道9中暂存。
上述流体系统通过切换转换模块400的状态可以改变路径的连通方式,从而实现不同功能。当转换模块400处于第一状态时,转换模块400具有功能1-1:转换模块400将流体容器100和第一动力管道8进行连通,此时,驱动模块200能够驱动流体容器100内的流体向第一动力管道8中流动,因而,从流体容器100到转换模块400所经路径中的原有流体被推动至第一动力管道8暂存,便于后续进行排放或回收,并且从流体容器100到转换模块400所经路径被流体容器100内的流体填充;当转换模块400处于第二状态时,转换模块400具有功能2-1:转换模块400将流体容器100和流动池入口A连通,流动池出口B经转换模块400连通到第二动力管道9,因而,流体容器100内的流体可以通过转换模块400进入到流动池模块300中进行反应,此时流动池模块300中的原有流体已经被推动至第二动力管道9中暂存,以便进行后续的排放或回收。该流体系统以转换模块400为核心,对流体流动的路径和驱动力进行分配,使流体系统可以同时存在互相独立的不同路径,能够在发生反应之间向管道内填充流体同时清理管道中残留的流体,实现流体的高效运输,极大程度上加快反应进程,同时避免了流体的浪费。
在一实施例中,所述转换模块400处于所述第一状态时,第二动力管道9通过转换模块400与废料容器700或流体容器100连通,第二动力管道9内暂存的流体能够在驱动模块200的驱动下推送至废料容器700或流体容器100。即,当转换模块400处于第一状态时,转换模块400还具有功能1-2:转换模块400还可以将第二动力管道9和废料容器700或流体容器100连通,由于流体容器100连通于驱动模块200,驱动模块200和第二动力管道9连通,从而第二动力管道9内暂存的流体被推动至废料容器700排放或推送至流体容器100回收。
在一实施例中,所述转换模块400处于所述第二状态时,第一动力管道8通过转换模块400与废料容器700或流体容器100连通,第一动力管道8内暂存的流体能够在驱动模块200的驱动下推送至废料容器700或流体容器100。即,当转换模块400处于第二状态时,转换模块400还具有的功能2-2:转换模块400将第一动力管道8和废料容器700或流体容器100连通,由于流体容器100连 通于驱动模块200,驱动模块200和第一动力管道8连通,从而第一动力管道8内暂存的流体被推动至废料容器700排放或推送至流体容器100回收。
综上所述,当转换模块400处于第一状态时,可同时实现功能1-1和功能1-2;当转换模块400处于第二状态时,可同时实现功能2-1和功能2-2。也就是说,在反应过程中所需流体的输送和暂存流体的排放或回收可以同时进行,由此缩短了流体输送的时间,极大程度上加快反应进程,同时避免了流体的浪费。
继续参见图1,以下对本实施例提供的转换模块400、流体容器100、流体选择模块500、驱动模块200、路径切换模块600、流动池模块300以及废料容器700的功能和相关设置进行说明:
在本实施例中,转换模块400包括六个接口,其中,接口c连接流动池入口管道11,接口d连接流动池出口管道12,接口e连接第二动力管道9,接口f连接分流管道10,接口a连接第一动力管道8,接口b连接公共管道7。转换模块400主要的功能是管道切换,通过控制驱动模块200与流动池模块300、路径切换模块600、流体选择模块500之间的连通与断开,从而形成不同的流动路径。转换模块400应至少有两个状态:
第一状态:接口a连通接口b、接口c连通接口d、接口e连通接口f;
第二状态:接口f连通接口a、接口b连通接口c、接口d连通接口e。
根据转换模块400的设计需要,可使用二位六通转换阀,或者是根据特殊要求设计的转换阀。转换阀属于旋转剪切阀,是后者的一个细化分类。此外,还可以使用多个二位三通电磁阀和二位二通电磁阀以及对应的基板组成的阀组,从而实现上述功能。
流体容器100连通有流体管道1、第一准备管道3、流体回收管道5。流体容器100主要的功能是存放多种流体,包括待使用的流体,使用后回收的流体,以及驱动模块200所需的起填充作用的流体,上述的每类流体都可以是一种或多种。其中,当待使用的流体和使用后回收的流体是同一种流体时,可以根据具体使用需求,设计为混合存放或独立存放。根据流体容器100的设计需要,可设计或选择使用一体式多孔位试剂盒、分体式的多孔位试剂盒、多个试剂瓶组成的试剂瓶组或多个试管组成的试管组等多种形式的容器或容器组合。文中的“原有流体”表示残留于管路中需要被清除的流体,该流体可根据使用需要进行回收或进行排放。
流体选择模块500可连通于流体管道1、第一废料排放管道2、公共管道7。流体选择模块500主要的功能是管道切换,在运输流体的时候,使需要运输的流体所对应流体管道1与公共管道7连通,或者是在需要清洗公共管道7的时 候,使公共管道7与第一废料排放管道2连通。根据流体选择模块500的设计需要,可使用选择阀,选择阀属于旋转剪切阀。在设计时需要根据运输的流体种类确定选择阀的位置数,例如常见的有六位七通选择阀,十位十一通选择阀,24位25通选择阀。此外,还可以使用多个二位三通电磁阀和二位二通电磁阀以及对应的基板组成的阀组,从而实现上述功能。此外,使用自动化移液系统也可以实现上述功能。
驱动模块200连通有第一动力管道8、第二动力管道9、第一准备管道3、第二准备管道4。其中,第二准备管道4不是必须存在的设计,是根据驱动模块200驱动流体运动的原理所决定的。驱动模块200主要的功能是驱动流体的流动,因此流体系统中可以形成的所有的流动路径都应该与驱动模块200连通。驱动模块200通过第一动力管道8和第二动力管道9提供驱动力,因此,可以同时维持两个不同的流动路径中的流体运输。当驱动模块200向外提供正压驱动力时,这是一个向外推送流体的过程,驱动模块200需要连接第一准备管道3,从流体容器100中抽吸起填充作用的流体,补充向外推送的体积。而当驱动模块200向外提供负压驱动力时,这是一个向内抽吸流体的过程,对于一些驱动方式,例如,隔膜泵,齿轮泵,驱动模块200需要连接第二准备管道4,向废料容器700中排放流体,留出向内抽吸的体积,而对于另一些驱动方式,例如注射器,则并不是一定要连接到第二准备管道4,此类驱动方式可以先将需要抽吸的流体吸入注射器,待转换模块400将驱动模块200连接到其它管道时再向外推出。此外,当流动池模块300通过旁路管道13连接到驱动模块200时,为了将旁路管道13中的流体运输到废料容器700,也需要通过第二准备管道4,使驱动模块200连接到废料容器700。
根据驱动模块200的设计需要,可使用注射泵,柱塞泵,隔膜泵,齿轮泵等常见的方式驱动流体,还可以使用压缩空气,重力溢流等特殊方式驱动流体。这里需要说明的是,每种方式都需要为所需连接的管道配置足够多孔位的阀头,用于管道的连接和切换。通常注射泵会提供可选择的阀头,而有些种类的泵则需要额外使用自制的阀组作为阀头。
路径切换模块600可连通于分流管道10、流体回收管道5、第二废料排放管道6。路径切换模块600主要的功能是管道切换,在需要回收流体的时候,使分流管道10与流体回收管道5连通,或者是在需要排放废液的时候,使分流管道10与第二废料排放管道6连通。根据路径切换模块600的设计需要,可使用选择阀,主要根据需要回收的流体种类确定选择阀的位置数,例如常见的六位七通选择阀,十位十一通选择阀,二十四位二十五通选择阀。还可以使用多个二位三通电磁阀和二位二通电磁阀以及对应的基板组成的阀组实现上述功能。此外,使用自动化移液系统也可以实现上述功能。
流动池模块300具有流动池入口A和流动池出口B,连通有流动池入口管道11、流动池出口管道12、旁路管道13。流动池模块300的主要功能是使新流体从流动池入口管道11流入,并使原有流体从流动池出口管道12流出,流体将会在流动池模块300的流动池中进行生物或化学反应。流动池内的生物或化学反应的设计不是本申请的内容。流动池模块300有时会根据设计需要增加旁路管道13,使一些流体可以不进入流动池而直接排出,因此,旁路管道13也不是必须存在的。
废料容器700可连通于第二废料排放管道6、第二准备管道4、流体回收管道5。废料容器700主要的功能是存放使用后废弃流体,可以根据具体实施的需求,设计为混合存放或独立存放。根据废料容器700的设计需要,可设计或选择使用一体式多孔位废料盒、废料桶等多种形式的容器或容器组合。
继续参见图1,以下对本实施例中所设置的管道进行说明:
流体管道1,连接流体选择模块500和流体容器100的管道。流体管道1设置为将流体容器100存放的多种流体从流体容器100运输到流体选择模块500,也可以反向运输。可选地,流体管道1设置有多条,流体选择模块500通过多条流体管道1和流体容器100连通。流体管道1的数量取决于流体选择模块500的方案,当流体选择模块500使用选择阀或阀组时,流体管道1的数量应与流体容器100中的流体种类或孔位一一对应,使每种流体或每个孔位都有一个独立的流体管道1使用。而当流体选择模块500使用自动化移液系统时,流体管道1可以只有一个,需要连通采样针,此时流体管道1为流体容器100中的所有流体共同使用。
公共管道7,连接流体选择模块500和转换模块400管道。本实施例中,公共管道7连接到接口b。公共管道7设置为将流体从流体选择模块500运输到转换模块400,也可以反向运输。由于公共管道7为流体容器100中的所有流体共同使用,因此在每次运输流体前需要做清洗。
第一动力管道8,连接驱动模块200和转换模块400的管道。本实施例中,第一动力管道8连接到接口a。第一动力管道8设置为将流体从驱动模块200运输到转换模块400,也可以反向运输。
第二动力管道9,连接驱动模块200和转换模块400的管道。本实施例中,第二动力管道9连接到接口e。第二动力管道9设置为将流体从驱动模块200运输到转换模块400,也可以反向运输。
流动池入口管道11,连接流动池模块300和转换模块400的管道。本实施例中,流动池入口管道11连接到接口c。流动池入口管道11设置为将流体从转 换模块400运输到流动池模块300。
流动池出口管道12,连接流动池模块300和转换模块400的管道。本实施例中,流动池出口管道12连接到接口d。流动池出口管道12设置为将流体从流动池模块300运输到转换模块400。流动池出口管道12的数量取决于流动池的通道数。
旁路管道13,连接流动池模块300和驱动模块200的管道。流动池模块内的流体能够进入旁路管道13暂存,进而能够从旁路管道13运输到驱动模块200,再通过第二准备管道4排放到废料容器700。旁路管道13不是必须设置的管道,取决于本申请的实施需求。
分流管道10,连接路径切换模块600和转换模块400的接口f的管道。本实施例中,分流管道10连接到接口f。分流管道10设置为将流体从转换模块400运输到路径切换模块600。分流管道10的数量取决于流动池的通道数。
第一废料排放管道2,连接流体选择模块500和废料容器700的管道。第一废料排放管道2设置为将流体从流体选择模块500运输到废料容器700。
第二废料排放管道6,连接路径切换模块600和废料容器700的管道。第二废料排放管道6设置为将流体从路径切换模块600运输到废料容器700。
第一准备管道3,连接驱动模块200和流体容器100的管道。第一准备管道3设置为将流体从驱动模块200运输到流体容器100,也可以反向运输,即流体容器100中的流体可以通过第一准备管道3进入驱动模块200。第一准备管道3的数量取决于驱动模块200的设计。
第二准备管道4,连接驱动模块200和废料容器700的管道。第二准备管道4设置为将流体从驱动模块200运输到废料容器700,也可以反向运输。第二准备管道4的数量取决于驱动模块200的设计,以及是否有旁路管道13。
流体回收管道5,连接路径切换模块600和流体容器100的管道。流体回收管道5设置为将流体回收管道5中回收的流体运输到流体容器100。流体回收管道5的数量取决于流体容器100的方案,每一种需要回收的流体都需要有个流体回收管道5与流体容器100中的孔位一一对应。而当路径切换模块600使用自动化移液系统时,流体回收管道5可以只有一个,需要连通采样针,此时流体回收管道5为流体容器100中的所有需要回收的流体共同使用。
以下对本实施例中的多条流动路径进行详细说明:
流体流动路径包括“路径1-1”,该路径存在于转换模块400的第一状态。该路径1-1中,流体流动的驱动力来自于驱动模块200通过第一动力管道8提供的负压。可选地,流体选择模块500通过流体管道1和流体容器100连通,流 体选择模块500通过公共管道7和接口b连通,流体选择模块500设置为对流体容器100内的多种流体进行选择性输送。示例性地,流体从流体容器100出发,依次通过流体管道1、流体选择模块500、公共管道7、转换模块400的接口b、转换模块400的接口a、第一动力管道8,到达驱动模块200。该路径1-1可以用于将流体从流体容器100向流动池模块300运输前的准备,使需要运输的流体预先填充于公共管道7。在实际设计中,通过该路径1-1可以使流体容器100中的流体预先完成在流体选择模块500和公共管道7中的替换,使原有流体进入第一动力管道8中暂存。在一些实施例中,流体还可以从驱动模块200通过第二准备管道4到达废料容器700进行排放。
在一实施例中,流体流动路径还包括“路径2-1”,该路径存在于转换模块400的第二状态。该路径2-1中,流体流动的驱动力来自于驱动模块200通过旁路管道13提供的负压。流动池模块300通过旁路管道13和驱动模块200连通,驱动模块200通过第二准备管道4和废料容器700连通,流动池模块300内的流体能够依次经旁路管道13、驱动模块200和第二准备管道4流向废料容器700。示例性地,流体从流体容器100出发,依次通过流体管道1、流体选择模块500、公共管道7、转换模块400的接口b、转换模块400的接口c、流动池入口管道11、流动池模块300、旁路管道13、驱动模块200和第二准备管道4到达废料管道。在实际设计中,旁路管道13可以任意设计,既可以设置在流动池的入口之前,也可以设置在流动池的出口之后,也可以不设置旁路管道13。若旁路管道13设置在流动池的入口之前,则通过该路径2-1可以使流体容器100中的流体完成在流动池入口管道11中的替换,使流动池入口管道11中的原有流体通过旁路管道13、驱动模块200和第二准备管道4进入废料容器700。若旁路管道13设置在流动池的入口之后,则通过该路径2-1可以使流动池中的流体通过旁路管道13、驱动模块200和第二准备管道4进入废料容器700。
在一实施例中,流体流动路径还包括“路径2-2”,该路径存在于转换模块400的第二状态,驱动力来自于驱动模块200通过第二动力管道9提供的负压。可选地,转换模块400的接口d通过流动池出口管道12和流动池模块300连通,接口e通过第二动力管道9和驱动模块200连通,接口d能够和接口e连通,在驱动模块200的作用下,流动池模块300内的原有流体能够依次经流动池出口管道12、接口d和接口e至第二动力管道9储存。可选地,驱动模块200通过第二准备管道4连通于废料容器700,第二动力管道9内的原有流体能够在驱动模块200的作用下,经第二准备管道4流向废料容器700。示例性地,流体从流体容器100出发,依次通过流体管道1、流体选择模块500、公共管道7、转换模块400的接口b、转换模块400的接口c、流动池入口管道11、流动池模块300、流动池出口管道12、转换模块400的接口d、转换模块400的接口e和第 二动力管道9到达驱动模块200。在一些实施例中,流体还可以从驱动模块200通过第二准备管道4到达废料容器700进行排放。在实际设计中,通过该路径2-2可以使流体容器100中的流体完成在流动池模块300的流动池中的替换,使流动池中的原有流体进入第二动力管道9暂存。
在一实施例中,流体容器100通过第一准备管道3和驱动模块200连通,接口a能够连通于废料容器700或流体容器100,流体容器100内的流体能够在驱动模块200的作用下,依次经第一准备管道3、第一动力管道8、接口a流向废料容器700,以清除第一动力管道8中的原有流体,或依次经第一准备管道3、第一动力管道8、接口a流向流体容器100,以回收第一动力管道8中的原有流体。因此,流体流动路径还包括“路径2-3”和“路径2-4”。
“路径2-3”存在于转换模块400的第二状态,该路径中,流体流动的驱动力来自于驱动模块200通过第一动力管道8提供的正压。在本实施例中,流体从流体容器100出发,依次通过第一准备管道3、驱动模块200、第一动力管道8、转换模块400的接口a、转换模块400的接口f、分流管道10、路径切换模块600、第二废料排放管道6,到达废料容器700。该路径2-3可以用于流体容器100中的流体对第一动力管道8、转换模块400、分流管道10和路径切换模块600的遍历。该路径2-3在实际应用过程中,可将清洗剂输送至第一动力管道8、转换模块400、分流管道10和路径切换模块600,进行管路和模块的清洗。
“路径2-4”存在于转换模块400的第二状态,该路径中,流体流动的驱动力来自于驱动模块200通过第一动力管道8提供的正压。流体从流体容器100出发,依次通过第一准备管道3、驱动模块200、第一动力管道8、转换模块400的接口a、转换模块400的接口f、分流管道10、路径切换模块600、流体回收管道5,到达流体容器100。该路径2-4可以用于流体容器100中的流体对第一动力管道8、转换模块400、分流管道10、路径切换模块600和流体回收管道5的遍历。在实际设计中,可以使用清洗剂对第一动力管道8、转换模块400、分流管道10、路径切换模块600和流体回收管道5进行清洗。这里需要注意的是,这个路径需要将流体运输到流体容器100,如果运输的流体是清洗剂,则会造成对流体容器100的污染,因此运输清洗剂只能用于完成工作后的自动清洗流程。
在一实施例中,公共管道7能够连通于废料容器700或流体容器100,流体容器100中的流体能够在驱动模块200的作用下,依次经第一准备管道3、第一动力管道8、公共管道7进入废料容器700,以将公共管道7中的原有流体清除,或依次经第一准备管道3、第一动力管道8、公共管道7进入流体容器100,以将公共管道7中的原有流体回收。可选地,流体选择模块500和公共管道7连通,废料容器700通过第一废料排放管道2和流体选择模块500连通,流体容 器100通过流体管道1和流体选择模块500连通。因此,流体流动路径还包括“路径1-2”和“路径1-3”。
“路径1-2”存在于转换模块400的第一状态,流体流动的驱动力来自于驱动模块200通过第一动力管道8提供的正压。示例性地,流体从流体容器100出发,依次通过第一准备管道3、驱动模块200、第一动力管道8、接口a、接口b、公共管道7、流体选择模块500、第一废料排放管道2,到达废料容器700。该路径实现了流体容器100中的流体对转换模块400、公共管道7和流体选择模块500的遍历。在实际应用中,可利用“路径1-2”将清洗剂输送至转换模块400、公共管道7和流体选择模块500进行管路和模块的清洗。
“路径1-3”存在于转换模块400的第一状态,流体流动的驱动力来自于驱动模块200通过第一动力管道8提供的正压。示例性地,流体从流体容器100出发,依次通过第一准备管道3、驱动模块200、第一动力管道8、转换模块400的接口a、转换模块400的接口b、公共管道7、流体选择模块500、流体管道1,到达流体容器100。该路径实现了流体容器100中的流体对转换模块400、公共管道7、流体选择模块500和流体管道1的遍历。在实际应用中,可利用“路径1-3”将清洗剂输送至转换模块400、公共管道7、流体选择模块500和流体管道1进行管路和模块的清洗。这里需要注意的是,这个路径需要将流体运输到流体容器100,如果运输的流体是清洗剂,则会造成对流体容器100的污染,因此运输清洗剂只能用于完成工作后的自动清洗流程。
在一实施例中,接口e能够连通于接口f,接口f连通有分流管道10,分流管道10连通于废料容器700或流体容器100,储存于第二动力管道9中的原有流体,能够依次经接口e、接口f和分流管道10流向废料容器700或流体容器100。因此,流体流动路径还包括“路径1-4”和“路径1-5”。
“路径1-4”存在于转换模块400的第一状态,驱动力来自于驱动模块200通过第二动力管道9提供的正压。可选地,路径切换模块600通过分流管道10连通于接口f,路径切换模块600通过第二废料排放管道6连通于废料容器700,储存于第二动力管道9中的原有流体,能够依次经接口e、接口f、分流管道10、路径切换模块600和第二废料排放管道6流向废料容器700,以将原有流体排放。示例性地,流体从流体容器100出发,依次通过第一准备管道3、驱动模块200、第二动力管道9、转换模块400的接口e、转换模块400的接口f、分流管道10、路径切换模块600、第二废料排放管道6,到达废料容器700。该路径可以用于流体容器100中的流体对转换模块400、分流管道10和路径切换模块600的遍历。“路径1-4”实现了利用起填充作用的流体将第二动力管道9中暂存的不可回收的原有流体推送到废料容器700,或使用清洗剂对转换模块400、分流管道 10和路径切换模块600进行清洗。
“路径1-5”存在于转换模块400的第一状态,驱动力来自于驱动模块200通过第二动力管道9提供的正压。可选地,路径切换模块600通过流体回收管道5连通于流体容器100,储存于第二动力管道9中的原有流体,能够依次经接口e、接口f、分流管道10、路径切换模块600和流体回收管道5流向流体容器100,以将原有流体回收。示例性地,流体从流体容器100出发,依次通过第一准备管道3、驱动模块200、第二动力管道9、转换模块400的接口e、转换模块400的接口f、分流管道10、路径切换模块600、流体回收管道5,到达流体容器100。该路径可以用于将暂存在第二动力管道9中的流体回收到流体容器100。在实际设计中,可以使用起填充作用的流体将第二动力管道9中暂存的可回收的原有流体推送到流体容器100,也可以使用清洗剂对转换模块400、分流管道10、路径切换模块600和流体回收管道5进行清洗。这里需要注意的是,这个路径能够将流体运输到流体容器100,如果运输的流体是清洗剂,则会造成对流体容器100的污染,因此运输清洗剂只能用于完成工作后的自动清洗流程。
根据上述对路径的分析,可以看出,在本实施例中,当转换模块400处于第一状态时,“路径1-1”、“路径1-2”和“路径1-3”是互斥的,而“路径1-4”和“路径1-5”是互斥的。“路径1-1”、“路径1-2”和“路径1-3”的其中之一,可以与“路径1-4”和“路径1-5”的其中之一同时执行而不互斥。当转换模块400处于第二状态时,“路径2-2”和“路径2-1”是互斥的,而“路径2-3”和“路径2-4”是互斥的。“路径2-2”和“路径2-1”的其中之一,可以与“路径2-3”和“路径2-4”的其中之一同时执行而不互斥。
图2为本实施例提供的该流体系统的一种工作逻辑的示意图,使用该工作逻辑可以实现对多种流体的运输,同时还能完成对可再利用的流体的回收,以及对流体路径的实时清洗。在其他实施例中,可根据使用需要对工作逻辑进行合理调整,在此不对所有方案进行一一列举。本实施所提供的工作逻辑分为3个步骤(以下的“试剂”表示发生反应所需的一种或几种流体):
步骤1,将转换模块400设置为第一状态,使用“路径1-1”将第1种试剂从流体容器100中取出,并使该试剂完成在公共管道7中的替换。
步骤2,将转换模块400设置为第二状态,先使用“路径2-1”将第1种试剂从公共管道7继续运输,并使该试剂完成在流动池入口管道11中的替换。然后使用“路径2-2”,使该试剂完成在流动池中的替换。在使用“路径2-1”和“路径2-2”时,同时使用“路径2-3”,完成对分流管道10和路径切换模块600的清洗和排空。
步骤3,将转换模块400设置为第一状态,先使用“路径1-2”将切换模块、 公共管道7和流体选择模块500中的第1种试剂或第1种试剂的残留清洗并排放到废料容器700,然后使用“路径1-1”将第2种试剂从流体容器100中取出,并使该试剂完成在公共管道7中的替换。在使用“路径1-2”和“路径1-1”时,同时选择是否对第1种试剂进行回收,如果不对第1种试剂进行回收,则只使用“路径1-4”将不回收的废料排放到废料容器700,如果对第1种试剂进行回收,则先使用“路径1-5”,完成对第1种试剂的回收,再使用“路径1-4”,将不回收的废料排放到废料容器700。
步骤3完成之后,选择是否运输第2种试剂,如果运输第2种试剂则返回步骤2,直到不运输任何试剂,如果不运输第2种试剂,则工作完成。
图3为本实施例提供的一种流体系统的结构示意图。在该流体系统中,流动池模块300为一个单通道的流动池。转换模块400为一个二位六通转换阀。流体驱动模块为一个单通道注射泵,带有一个3位置孔的分布式阀头。流体选择模块500为一个八位九通选择阀。路径切换模块600为一个二位三通电磁阀。流体容器100为一个7孔位的试剂盒,其中六个孔位为试剂,一个孔位为起到填充作用的流体。废料容器700为一个单孔位的废料盒。该实施例可以将六个孔位的试剂运输到流动池,并且可以对其中一个孔位的试剂进行回收。
图4为本实施例提供的另一种流体系统的结构示意图。在该实施例中,流动池模块300为一个单通道的流动池,并且在流动池的入口前通过一个二位三通电磁阀连接旁路管道13。转换模块400为一个二位六通转换阀。流体驱动模块包括两个单通道注射泵和一个二位三通电磁阀,其中,控制第二动力管道9中流体运输的注射泵带有一个3位置孔的分布式阀头,并且还在其中一个阀头外接了一个二位三通电磁阀,用于连接旁路管道13和第二准备管道4,以便使旁路管道13中的流体通过该电磁阀的切换,从第二准备管道4排放到废料管道,而控制第一动力管道8中流体运输的注射泵带有一个二位置孔的阀头。流体选择模块500为一个八位九通选择阀。路径切换模块600为一个八位九通选择阀。流体容器100为一个7孔位的试剂盒,其中六个孔位为试剂,一个孔位为起到填充作用的流体。废料容器700为一个单孔位的废料盒。该实施例可以将六个孔位的试剂运输到流动池,并且可以对六个试剂进行回收。
图5本实施例提供的又一种流体系统的结构示意图。在该实施例中,流动池模块300为一个双通道的流动池,并且在流动池的入口前通过一个三通接头使一个流动池入口管道11可以同时向两个流动池的通道运输流体。转换模块400为一个特殊定制的二位九通选择阀(参见图8至图12)。流体驱动模块包括一个双通道注射泵和一个单通道注射泵,其中,控制第二动力管道9中流体运输的为双通道注射泵,该注射泵每个通道都带有一个2位置孔的阀头,而控制第 一动力管道8中流体运输的为单通道注射泵,该注射泵带有一个2位置孔的阀头。流体选择模块500为一个八位九通选择阀。路径切换模块600为一个八位九通选择阀。流体容器100为一个7孔位的试剂盒,其中六个孔位为试剂,一个孔位为起到填充作用的流体。废料容器700为一个单孔位的废料盒。该实施例可以将六个孔位的试剂运输到流动池,并且可以对六个孔位的试剂进行回收。
可以理解地,流体系统中各模块所采用的零部件可以根据实际需要进行选择。例如,转换模块400可以是二位六通换向阀、二位六通电磁阀、二位六通转换阀等。当然,转换模块400也可以是能够起到同样功能的阀门组合,如图6所示,转换模块400由3个三通接头和5个二位二通电磁阀组成,又如图7所示,转换模块400由2个三通接头,2个二位二通电磁阀和2个二位三通电磁阀组成。在其他实施例中,各模块所采用的零部件可根据实际使用需要进行选择,只要是能够实现该流体系统功能的结构形式均在本申请的保护范围之内。
可选地,转换模块400包括图8至图12所示的阀门。该阀门为二位九通转换阀,能够实现图5中转换模块400所需要的功能。
在一实施例中,该阀门包括电机430、转轴440、定子410和转子420等部件,电机430和转子420之间通过转轴440连接,电机430设置为驱动转子420转动,从而改变转子420位置,进而改变阀门接口的连通方式。阀门中的其他部件及连接方式均为本领域的成熟的相关技术,在此不再进行赘述。
图9为该阀门的定子410。图10为该阀门的转子420。接口a、接口b和接口c设置在定子410上,定子410还具有接口d、接口e、接口f、接口d′、接口e′、接口f′。转子420具有第一通道421、第二通道422、第三通道423和第四通道424。定子410和转子420转动连接,转子420能够转动至第一位置和第二位置。
参见图11,当转子420位于第一位置时,接口a通过第一通道421连通接口b、接口c通过第二通道422连通接口d、接口e通过第三通道423连通接口f、接口e′通过第四通道424连通接口f′,此时,转换模块400处于第一状态;
参见图12,当转子420位于第二位置时,接口f通过第一通道421连通接口a、接口b通过第二通道422连通接口c、接口d通过第三通道423连通接口e、接口d′通过第四通道424连通接口e′,此时,转换模块400处于第二状态。

Claims (14)

  1. 一种流体系统,包括:
    流体容器(100),所述流体容器(100)设置为存放多种流体;
    废料容器(700),所述废料容器(700)设置为存放废弃流体;
    流动池模块(300),所述流动池模块(300)具有流动池入口(A)和流动池出口(B);
    转换模块(400),所述转换模块(400)具有第一状态和第二状态;
    驱动模块(200),所述驱动模块(200)通过第一动力管道(8)或第二动力管道(9)与所述转换模块(400)连通,并为流体的流动提供驱动力;
    所述转换模块(400)处于所述第一状态时,所述第一动力管道(8)通过所述转换模块(400)与所述流体容器(100)连通,所述流体容器(100)中存放的流体能够在所述驱动模块(200)的驱动下推动从所述流体容器(100)到所述转换模块(400)所经路径中的原有流体进入所述第一动力管道(8)中暂存;
    所述转换模块(400)处于所述第二状态时,所述第二动力管道(9)通过所述转换模块(400)与所述流动池出口(B)连通,所述流动池入口(A)通过所述转换模块(400)与所述流体容器(100)连通;所述流体容器(100)中存放的流体能够在所述驱动模块(200)的驱动下进入所述流动池模块(300),并推动所述流动池模块(300)内的原有流体进入所述第二动力管道(9)中暂存。
  2. 根据权利要求1所述的流体系统,其中,所述转换模块(400)处于所述第一状态时,所述第二动力管道(9)通过所述转换模块(400)与所述废料容器(700)或所述流体容器(100)连通,所述第二动力管道(9)内暂存的流体能够在所述驱动模块(200)的驱动下推送至所述废料容器(700)或所述流体容器(100)。
  3. 根据权利要求1-2任一项所述的流体系统,其中,所述转换模块(400)处于所述第二状态时,所述第一动力管道(8)通过所述转换模块(400)与所述废料容器(700)或所述流体容器(100)连通,所述第一动力管道(8)内暂存的流体能够在所述驱动模块(200)的驱动下推送至所述废料容器(700)或所述流体容器(100)。
  4. 根据权利要求1-2任一项所述的流体系统,还包括:路径切换模块(600),所述路径切换模块(600)通过分流管道(10)连通于所述转换模块(400)。
  5. 根据权利要求4所述的流体系统,其中,所述路径切换模块(600)通过流体回收管道(5)连通于所述流体容器(100)。
  6. 根据权利要求4所述的流体系统,其中,所述路径切换模块(600)通过第二废料排放管道(6)连通于所述废料容器(700)。
  7. 根据权利要求1、2、5和6中任一项所述的流体系统,还包括:流体选择 模块(500),所述流体选择模块(500)通过公共管道(7)和所述转换模块(400)连通,所述流体选择模块(500)通过流体管道(1)和所述流体容器(100)连通。
  8. 根据权利要求7所述的流体系统,其中,所述流体管道(1)设置有多条,所述流体选择模块(500)通过多条所述流体管道(1)和所述流体容器(100)连通。
  9. 根据权利要求7所述的流体系统,其中,所述流体选择模块(500)通过第一废料排放管道(2)和所述废料容器(700)连通。
  10. 根据权利要求1、2、5和6中任一项所述的流体系统,其中,所述驱动模块(200)通过第一准备管道(3)与所述流体容器(100)连通,所述流体容器(100)中的流体能够通过所述第一准备管道(3)进入所述驱动模块(200)。
  11. 根据权利要求1、2、5和6中任一项所述的流体系统,其中,所述驱动模块(200)通过第二准备管道(4)与所述废料容器(700)连通,所述驱动模块(200)中的流体能够通过所述第二准备管道(4)进入所述废料容器(700)。
  12. 根据权利要求1、2、5和6中任一项所述的流体系统,其中,所述流动池模块(300)通过旁路管道(13)和所述驱动模块(200)连通,所述流动池模块(300)内的流体能够进入所述旁路管道(13)暂存。
  13. 根据权利要求1、2、5、6、8和9中任一项所述的流体系统,其中,所述转换模块(400)为二位六通电磁阀或二位六通转换阀或二位六通换向阀。
  14. 根据权利要求1、2、5、6、8和9中任一项所述流体系统,其中,所述转换模块(400)包括阀门,所述阀门包括:
    定子(410),所述定子(410)具有第一接口(a)、第二接口(b)、第三接口(c)、第四接口(d)、第五接口(e)、第六接口(f)、第七接口(d′)、第八接口(e′)、第九接口(f′);
    转子(420),所述转子(420)具有第一通道(421)、第二通道(422)、第三通道(423)和第四通道(424);所述定子(410)和所述转子(420)转动连接,所述转子(420)能够转动至第一位置和第二位置;
    所述转子(420)位于所述第一位置时,所述转换模块(400)处于所述第一状态,所述第一接口(a)通过所述第一通道(421)连通所述第二接口(b)、所述第三接口(c)通过所述第二通道(422)连通所述第四接口(d)、所述第五接口(e)通过所述第三通道(423)连通所述第六接口(f)、所述第八接口(e′)通过所述第四通道(424)连通所述第九接口(f′);
    所述转子(420)位于所述第二位置时,所述转换模块(400)处于所述第二状态,所述第六接口(f)通过所述第一通道(421)连通所述第一接口(a)、所述第二接口(b) 通过所述第二通道(422)连通所述第三接口(c)、所述第四接口(d)通过所述第三通道(423)连通所述第五接口(e)、所述第七接口(d′)通过所述第四通道(424)连通所述第八接口(e′)。
PCT/CN2023/083394 2022-08-31 2023-03-23 一种流体系统 WO2024045579A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211062726.9A CN115264395A (zh) 2022-08-31 2022-08-31 一种流体系统
CN202211062726.9 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045579A1 true WO2024045579A1 (zh) 2024-03-07

Family

ID=83755357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083394 WO2024045579A1 (zh) 2022-08-31 2023-03-23 一种流体系统

Country Status (2)

Country Link
CN (1) CN115264395A (zh)
WO (1) WO2024045579A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115264395A (zh) * 2022-08-31 2022-11-01 深圳太古语科技有限公司 一种流体系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057403A (ja) * 2008-09-03 2010-03-18 Shimadzu Corp 反応容器プレート及び反応処理方法
US20100300559A1 (en) * 2008-10-22 2010-12-02 Ion Torrent Systems, Inc. Fluidics system for sequential delivery of reagents
CN105308448A (zh) * 2013-06-12 2016-02-03 安捷伦科技有限公司 由来自流体分离系统的分析路径的溶剂清洗可在不同流体路径之间切换的计量装置
CN112410197A (zh) * 2019-08-21 2021-02-26 生命技术公司 用于向流动池提供流体进入的系统和方法
CN112797192A (zh) * 2021-02-03 2021-05-14 苏州赛谱仪器有限公司 一种送液阀、加载流动相装置及其送液控制方法
CN113848265A (zh) * 2021-09-22 2021-12-28 赛默飞世尔(上海)仪器有限公司 流体系统及用于操作流体系统的方法
CN113848266A (zh) * 2021-09-22 2021-12-28 赛默飞世尔(上海)仪器有限公司 流体系统、操作流体系统的方法及计算机程序产品
CN115264395A (zh) * 2022-08-31 2022-11-01 深圳太古语科技有限公司 一种流体系统
CN218095460U (zh) * 2022-08-31 2022-12-20 深圳太古语科技有限公司 一种流体系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010057403A (ja) * 2008-09-03 2010-03-18 Shimadzu Corp 反応容器プレート及び反応処理方法
US20100300559A1 (en) * 2008-10-22 2010-12-02 Ion Torrent Systems, Inc. Fluidics system for sequential delivery of reagents
CN105308448A (zh) * 2013-06-12 2016-02-03 安捷伦科技有限公司 由来自流体分离系统的分析路径的溶剂清洗可在不同流体路径之间切换的计量装置
CN112410197A (zh) * 2019-08-21 2021-02-26 生命技术公司 用于向流动池提供流体进入的系统和方法
CN112797192A (zh) * 2021-02-03 2021-05-14 苏州赛谱仪器有限公司 一种送液阀、加载流动相装置及其送液控制方法
CN113848265A (zh) * 2021-09-22 2021-12-28 赛默飞世尔(上海)仪器有限公司 流体系统及用于操作流体系统的方法
CN113848266A (zh) * 2021-09-22 2021-12-28 赛默飞世尔(上海)仪器有限公司 流体系统、操作流体系统的方法及计算机程序产品
CN115264395A (zh) * 2022-08-31 2022-11-01 深圳太古语科技有限公司 一种流体系统
CN218095460U (zh) * 2022-08-31 2022-12-20 深圳太古语科技有限公司 一种流体系统

Also Published As

Publication number Publication date
CN115264395A (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2024045579A1 (zh) 一种流体系统
AU2019355273B2 (en) Multi-valve fluid cartridge
CN101535815B (zh) 高速样品供给设备
CN218095460U (zh) 一种流体系统
WO2022142052A1 (zh) 预稀释模式的样本采集和分配系统、方法及血液细胞分析仪
CN101869894A (zh) 清洗装置、清洗系统、清洗方法及粒子分析仪
WO2021056207A1 (zh) 流体运输系统、方法及应用该系统、方法的流体使用装置
CN215162551U (zh) 流体系统及测序仪
WO2024027159A1 (zh) 流体系统
CN201974434U (zh) 一种用于样品针快速清洗的自动化装置
WO2019104580A1 (zh) 用于基因测序的流路装置、其工作方法及其测序仪
CN115895833A (zh) 一种基于重力驱动液流的试剂盒及其检测方法
CN113713873A (zh) 进样系统及其控制方法
CN114806803A (zh) 细胞分选系统及其分选方法
CN216350753U (zh) 一种试剂仓清洗填充装置
CN210531118U (zh) 一种微流泵控制装置及多路阀微流泵控制系统
CN206463983U (zh) 一种储液容器及流体进样系统
WO2024113148A1 (zh) 流体系统、生化分析检测平台和流体操作方法
TW202018298A (zh) 用於隔離洗滌緩衝再使用的系統和方法
CN117384749A (zh) 向测序载片加载测序用液体的方法、用于基因测序的流路系统和基因测序仪
CN204752866U (zh) 一种电解锰工艺中进行高效压滤的装置
CN220231771U (zh) 样本分析系统
CN204737999U (zh) 一种电解锌工艺中进行高效压滤的装置
CN111624357B (zh) 一种在线自动取样配比系统
CN220626281U (zh) 一种具有双针进样收集的操作流体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858621

Country of ref document: EP

Kind code of ref document: A1