WO2022142052A1 - 预稀释模式的样本采集和分配系统、方法及血液细胞分析仪 - Google Patents

预稀释模式的样本采集和分配系统、方法及血液细胞分析仪 Download PDF

Info

Publication number
WO2022142052A1
WO2022142052A1 PCT/CN2021/092457 CN2021092457W WO2022142052A1 WO 2022142052 A1 WO2022142052 A1 WO 2022142052A1 CN 2021092457 W CN2021092457 W CN 2021092457W WO 2022142052 A1 WO2022142052 A1 WO 2022142052A1
Authority
WO
WIPO (PCT)
Prior art keywords
syringe
pipeline
diluent
sample
sampling
Prior art date
Application number
PCT/CN2021/092457
Other languages
English (en)
French (fr)
Inventor
王兴红
邹海涛
Original Assignee
深圳市科曼医疗设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市科曼医疗设备有限公司 filed Critical 深圳市科曼医疗设备有限公司
Publication of WO2022142052A1 publication Critical patent/WO2022142052A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • G01N2001/1418Depression, aspiration
    • G01N2001/1436Ejector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • G01N2015/1024

Definitions

  • the invention relates to the field of blood detection and analysis, in particular to a blood cell analyzer.
  • Hematology analyzers generally have two modes: whole blood mode and pre-dilution mode.
  • the general technique is to connect the sampling needle with a high-precision 100ul syringe. After the blood collection tube is fully shaken, insert the sampling needle into the blood collection tube, and use the 100ul syringe to provide power to collect the blood sample to the sampling needle and connect it with it. in the pipeline.
  • the current blood cell analyzers have relatively complete modes including CBC (detecting the number of white blood cells, red blood cells and platelets), diff (four-class statistical technology of white blood cells) and CRP concentration detection and or SAA reaction concentration detection, so the capacity of 100ul is enough to provide A full sample of CBC+DIFF+CRP counts.
  • the pre-dilution mode is very suitable.
  • the sample in pre-dilution mode is to mix 20ul of peripheral blood sample and 180ul of diluent to form a 1:10 mixed sample outside the machine, and then collect a certain amount of mixed sample through the sampling component of the instrument and distribute it to the detection pool inside the instrument. Therefore, if a 100ul syringe is used as the power source, and a mixed sample of up to 90ul is collected according to 90% of the capacity of the syringe, the ideal volume of blood cells contained in the mixed sample is 9ul. Since the sample is diluted 10 times and the mixed sample aspirated contains less real cell volume, the number of particles recognized by the hematology analyzer and the number of particle signal pulses received are much less than those in the whole blood mode, which may lead to detection results. The risk of large deviation from the true value affects the judgment of the doctor.
  • the first method still uses a 100ul syringe as the power device for collecting pre-diluted samples, collecting 80 ⁇ 90ul at one time, and the rest of the actions are the same as in the whole blood mode, and then change the dilution ratio of the pre-dilution mode through the algorithm to correct the new test.
  • the calculation method of the result This method is simple to operate and has fewer changes compared with the whole blood mode, but because the sample amount of blood cells actually involved in the detection process of the instrument is too small, and the counting process involves the action of adding samples, adding diluents, and adding reactions. There are errors in the reagent action and the dilution and mixing action.
  • this pre-dilution mode has changed the reaction system of the sample and the reagent to a certain extent.
  • the detection of CRP and SAA is based on the latex immunoturbidimetric method to measure the reaction concentration.
  • all the results obtained by the method of correcting the dilution ratio of the algorithm will have some deviations from the actual value and are unstable.
  • the second method taking the CBC+DIFF+CRP mode as an example, still uses a 100ul syringe as the power source, first draws 50ul of the diluted sample, and adds it to the CRP reaction pool to ensure that the actual amount of blood cells added to the CRP reaction pool is 5ul, Consistent with the whole blood mode, the sampling needle is then returned to the sampling position to draw 80ul of mixed sample for CBC and DIFF counting.
  • This method gives priority to ensuring the accuracy of CRP counting, but the counting time is long due to multiple sample suction, which affects the detection speed.
  • this second suction method is only suitable for some semi-automatic instruments, and it needs to be in the open sampling position of the instrument. Fixed test tube holder, not suitable for some fully open models.
  • the present invention provides a new sample collection and distribution system.
  • the present invention provides a sample collection and distribution system in a pre-dilution mode, comprising at least two detection cells, a first syringe with a first volume, a second syringe with a second volume, and a sampling assembly with a sampling needle.
  • There is at least one counting detection cell and at least one immune detection cell in the pool the first syringe and the second syringe are connected through a first pipeline, the second syringe and the sampling assembly are connected through a sampling pipeline, each The counting detection cell is connected to the first syringe through its corresponding second pipeline, and each immune detection cell is connected to the first syringe through its corresponding third pipeline.
  • the power provided by the first syringe draws the mixed sample, and the mixed sample is stored in the sampling needle and the sampling line; when the sample is dispensed, the stored part of the mixed sample is injected into all the mixed samples by the power provided by the first syringe.
  • the counting detection pool the stored part of the mixed sample is injected into the immune detection pool by the power provided by the second syringe; the initial position of the second syringe is at a set volume position, and the set volume is smaller than the set volume
  • the second capacity is smaller than the first capacity.
  • the mixed sample is a mixed diluted sample formed by mixing the blood sample and the diluent in a certain proportion.
  • the first capacity may be much larger than the second capacity, eg, the first capacity is at least ten times larger than the second capacity.
  • the set capacity may be half of the second capacity.
  • the sample collection and distribution system further includes a diluent container, the first syringe or the second syringe is connected with the diluent container through a first diluent pipeline, and the first diluent pipeline is connected with a diluent capable of A control part that controls the on-off control of the pipeline.
  • the first diluent line is connected, the first syringe or the second syringe can draw the diluent from the diluent container.
  • Each of the detection cells is connected to the diluent container through a corresponding second diluent pipeline, and the second diluent pipeline is connected with a control component capable of controlling the on-off of the pipeline.
  • Each detection cell can be connected to its corresponding second diluent pipeline, and driven by a positive pressure source, the diluent in the diluent container can be injected into the detection cell.
  • a blood cell analyzer includes the sample collection and distribution system.
  • a sample collection and distribution method in a pre-dilution mode wherein a first syringe with a first volume is connected to a second syringe with a second volume through a first pipeline, and the first volume is greater than the second volume, so that the The second syringe is connected to the sampling assembly with the sampling needle through the sampling pipeline, the first syringe is connected to the counting detection cell through the second pipeline, and the first syringe is connected to the immune detection cell through the third pipeline
  • the connection also includes the following steps according to the set sequence:
  • Presetting step making the initial position of the second syringe at the position of the set volume, and the set volume is smaller than the second volume;
  • the mixed sample of the total volume required for detection is drawn through the power provided by the first syringe, and the mixed sample is stored in the sampling needle and the sampling pipeline;
  • a first sample dispensing step injecting a first volume of the mixed sample into the counting detection cell through the power provided by a first syringe
  • a second volume of the mixed sample is injected into the immunoassay cell by the power provided by the second syringe;
  • Both the first sample dispensing step and the second sample dispensing step are performed at least once, and the sum of each of the first volumes and each of the second volumes is not greater than the total volume.
  • the first sample distribution step is performed multiple times.
  • the second sample distribution step is performed multiple times.
  • the sample collection and distribution method further includes a mixing step, making the second pipeline or the third pipeline conduct, and mixing the detection by causing the first syringe to repeatedly perform suction and discharge operations. liquid in the pool.
  • the first syringe is connected to the diluent container through the first diluent pipeline, and further includes a cleaning step, so that the first diluent pipeline is connected and the first pipeline is connected. Disconnect the conduction, the first syringe sucks the diluent from the diluent container; disconnect the first diluent pipeline and conduct the first pipeline, the first syringe will The diluent is discharged through the sampling needle.
  • the second syringe is connected to the diluent container through the first diluent pipeline, and further includes a first cleaning step, making the second diluent pipeline conduct and the sampling pipeline disconnected, and the first cleaning step is performed.
  • Two syringes suck the diluent from the diluent container; disconnect the second diluent pipeline and conduct the sampling pipeline, and the second syringe discharges the diluent through the sampling needle .
  • Each of the detection cells is connected to the diluent container through its corresponding second diluent pipeline, and further includes a second cleaning step, making the second diluent pipeline conduct, and driving the diluent through a positive pressure source.
  • the detection cell is cleaned with the diluent in the liquid container.
  • the second syringe is connected to the diluent container through the first diluent pipeline, and in the second sample dispensing step, the second syringe draws the diluent that is consistent with the set volume from the diluent container .
  • the sampling assembly moves from one immunoassay cell to another immunoassay cell, the diluent corresponding to the set volume is replenished into the second syringe.
  • the beneficial effects of the present invention are as follows: only one process of sample collection is needed to draw mixed samples required for detection, thereby increasing the number of blood cells actually participating in the detection process, small changes in reagent and sample volume, less changes to the reaction system, and stable detection results;
  • the mixed sample is injected into the immunoassay cell through the second syringe of small volume, which improves the accuracy of sample injection.
  • FIG. 1 is a schematic structural diagram of a first specific embodiment of a sample collection and distribution system in a pre-dilution mode
  • Fig. 2 is the distribution schematic diagram of the mixed sample of the first specific embodiment
  • FIG. 3 is a schematic structural diagram of a second specific embodiment of a sample collection and distribution system in a pre-dilution mode
  • 4 to 6 are respectively a schematic structural diagram of a second specific embodiment when the liquids in the three immune detection pools are mixed evenly;
  • FIG. 7 is a schematic diagram showing the change of the liquid volume in each immune detection cell with time when the immune detection cells are washed in sequence according to the second embodiment, wherein the abscissa is the time, the ordinate is the liquid volume in each detection cell, and the long bar
  • the block refers to the flushing time of the diluent, and the three black squares refer to the discharge time of the waste liquid port of the three detection pools respectively.
  • a sample collection and distribution system in a pre-dilution mode includes a first syringe 2 , a second syringe 5 , a sampling assembly 6 and at least two detection cells.
  • the first syringe 2 has a first capacity, which can be used as a power source to achieve suction and discharge of liquid.
  • the second syringe 5 has a second capacity, which can be used as a power source to achieve suction and discharge of liquid, and the second capacity is smaller than the first capacity.
  • the sampling assembly 6 has a sampling needle capable of aspirating and expelling the sample.
  • the detection pool there are at least one immune detection pool 1 and at least one counting detection pool.
  • the initial position of the second syringe corresponds to the set volume, and the set volume is smaller than the second volume.
  • the first capacity may be much larger than the second capacity, eg, the first capacity is at least ten times larger than the second capacity.
  • the set capacity may be half of the second capacity. Specifically, the first volume may be 2.5ml, the second volume may be 100ul, and the set volume may be 50ul.
  • the first syringe 2 is connected to the second syringe 5 through the first pipeline, and the second syringe 5 is connected to the sampling needle of the sampling assembly 6 through the sampling pipeline 105 .
  • Each counting detection cell is connected to the first syringe 2 through its corresponding second pipeline, and each immune detection cell 1 is connected to the first syringe 2 through its corresponding third pipeline.
  • the system can realize sample collection and sample distribution according to the set timing.
  • both the first pipeline and the sampling pipeline 105 are connected, and the first syringe 2 is used as a power source to suck the mixed sample through the sampling needle, and store the mixed sample in the sampling needle and the sampling pipeline 105 .
  • the sampling pipeline 105 is turned on, and the second syringe 5 is used as a power source to inject the stored mixed sample into the immunoassay cell 1 through the sampling needle.
  • the first pipeline and the sampling pipeline 105 are both connected, and the first syringe 2 is used as a power source to inject the stored mixed samples into the counting detection cell.
  • the total volume of the collected mixed samples is greater than the sum of the volumes of the mixed samples allocated to each immune detection cell and each counting detection cell, that is, only one sample collection is required.
  • the system may further include a diluent container 120, the diluent container 120 and the large-capacity first syringe 2 are connected through a diluent pipeline, and the diluent pipeline is provided with a control part capable of controlling the on-off of the pipeline, and the control part has the function of opening the In the open state, the diluent pipeline is connected; in the closed state, the diluent pipeline is disconnected.
  • the control part is in the open state, the diluent container is in communication with the first syringe 2 , so that the first syringe 2 can draw the diluent from the diluent container 120 .
  • the diluent container 120 and the small-capacity second syringe 5 can be connected through a diluent pipeline, and the diluent pipeline is provided with a control component capable of controlling the on-off of the pipeline, and the control component has an open state and a closed state.
  • the open state the diluent pipeline is connected; in the closed state, the diluent pipeline is disconnected.
  • the control part is in the open state, the diluent container and the second syringe 5 communicate with each other, so that the second syringe 5 can draw the diluent from the diluent container 120 .
  • the system can also mix the liquid in the detection tank.
  • the first syringe 2 is used as the power source to repeatedly suck and discharge the liquid in the detection tank to realize the mixing of the liquid.
  • the system can also clean the detection pool.
  • the first syringe 2 is used as the power source to drive the diluent through pressure to clean the pipeline and the detection pool.
  • a sample collection and distribution system in a pre-dilution mode of a blood cell analyzer is mainly used in a blood routine plus an immune detection item mode.
  • the system includes an immune detection cell 1, a first syringe 2, a 3/2-way solenoid valve 3, a 3/2-way solenoid valve 4, a second syringe 5, a sampling assembly 6 and pipelines 101, 102, 103, 104, 105, 106.
  • the first syringe 2 has a first volume, such as 2.5ml
  • the second syringe 5 has a second volume, such as 100ul.
  • the initial position of the second syringe 5 is at the set volume position, and the set volume is such as 50ul, that is, the initial position of the second syringe piston corresponds to the volume of 50ul.
  • the first syringe 1 is connected to the first port of the two-position three-way solenoid valve 3 through the pipeline 102
  • the second port of the two-position three-way solenoid valve 3 is connected to the first port of the two-position three-way solenoid valve 4 through the pipeline 103
  • the two The third port of the three-position solenoid valve 4 is connected to an interface of the second syringe 5 through a pipeline 104
  • the second port of the three-position three-way solenoid valve 4 is connected to a diluent container 120 through a pipeline 106 .
  • the third port of the two-position three-way solenoid valve 3 is connected to the immune detection cell 1 through a pipeline 101 , and the immune detection cell 1 has a waste liquid port 7 .
  • Another interface of the second syringe 5 is connected to the sampling assembly 6 through the sampling pipeline 105 , and the sampling assembly 6 can be connected to the waste liquid pump 121 .
  • the two-position three-way solenoid valves 3 and 4 when the power is off, the first port and the second port are connected; when the power is on, the first port and the third port are connected.
  • Step 1 Execute the pre-dilution mode, the execution process is as follows:
  • the second syringe 5 is at the position of 50ul at the beginning of each measurement in the pre-dilution mode, and it will not affect the whole blood mode.
  • Step 2 After the instrument enters the pre-dilution mode, the sampling assembly 6 moves to the sampling position, and the two-position three-way solenoid valve 4 is energized, so the first syringe 2 is connected to the pipelines 102, 103, 104, and 105, and the first syringe 2 In order to draw 160 ul of mixed samples for power, the drawn mixed samples are stored in the sampling needle and the sampling pipeline 105 of the sampling assembly 6 .
  • Step 3 The sampling assembly 6 is moved to the position of the immune detection pool, and the second syringe 5 is used as the power to push the stroke of 50ul outward to complete the process of adding and distributing the sample to the immune detection pool 1, and keep the pre-dilution and whole blood modes.
  • the actual reaction blood samples in the immune detection pool 1 are all 5ul, which ensures that the reaction system is almost unchanged in the two modes; at the same time, because the second syringe 5 with a capacity of 100ul is used as the driving force for adding the immune detection samples, the sample addition error can be controlled. extremely small range.
  • Step 4 After the sample distribution in the immune detection cell is completed, the sampling assembly 6 is moved into the WBC detection cell (not shown in the figure), as shown in FIG. Channels 102, 103, 104, 105 are connected to the sampling needle, and then the first syringe 2 is used as the power source to distribute 64ul of the sample required for CBC counting to the WBC detection cell, ensuring that the reaction blood sample and the whole blood mode of CBC counting are 6.4 ul ul;
  • Step 5 After step 4 is completed, the sampling assembly 6 is moved into the DIFF detection cell (not shown in the figure), as shown in Figure 1, the two-position three-way solenoid valve 4 is energized, so that the first syringe 2 and the pipeline 102, 103, 104, 105 and the sampling needle are all connected, and then the first syringe 2 is used as the power source to distribute 40ul of the sample required for DIFF (four-class statistical technology of white blood cells) to the DIFF detection pool, and in the whole blood mode, the theoretical need is 8ul Therefore, the dilution ratio needs to be corrected in the pre-dilution mode. Since the DIFF detection pool is the percentage of the four types of white blood cells detected, the requirement for the number of particles is not high, so the correction of the dilution ratio has little effect on the results.
  • DIFF detection pool is the percentage of the four types of white blood cells detected, the requirement for the number of particles is not high, so the correction of the dilution ratio has little effect on the results.
  • the first syringe 2 can be used to mix the liquid in the immune detection cell 1 at the same time.
  • the two-position three-way solenoid valve 3 is energized and then reversed.
  • the first syringe 2 is connected to the immune detection cell 1 through pipelines 102 and 101 , and the first syringe 2 repeats suction and discharge actions by itself, so as to realize the tumbling and mixing of the liquid in the immune detection cell 1 .
  • the first syringe 2 can be used to clean the immune detection cell 1 and the pipeline 101 connected to it. Under normal conditions, the first syringe 2 is pulled down to absorb a certain amount of diluent, and then the two-position three-way solenoid valve 3 is turned off. electricity, the pipeline 102 is connected to the pipeline 101, the first syringe 2 discharges the just-absorbed diluent, and the discharged diluent flushes the pipelines 102 and 101 along the way, and finally reaches the immune detection pool 1, rinses the immune detection pool 1, rinses The finished waste liquid is drained from the waste liquid port 7 at the bottom of the immunoassay cell 1, and this is repeated many times to complete the cleaning process.
  • the first syringe 2 can be used to clean the sampling needle of the sampling assembly 6 and the sample pipeline 105 .
  • the two-position three-way solenoid valve 4 is powered on. The direction is reversed, so that the first syringe 2 is connected with the pipeline 104, the second syringe 5, the pipeline 105 and the sampling needle of the sampling assembly 6, and then the first syringe 2 discharges the sucked diluent to the outside, and the discharged diluent is cleaned along the way.
  • the pipeline and the inner wall of the sampling needle, and the washed diluent is collected and discharged by the negative pressure provided by the waste liquid pump 121 connected to the sampling assembly 6 .
  • first syringe 2 and the second syringe 5 are connected through a first pipeline
  • first syringe 2 and the diluent container 120 are connected through a diluent pipeline
  • the first syringe 2 and the immune detection cell 1 are connected through a third pipeline
  • the first pipeline, the third pipeline and the diluent pipeline can all be composed of multiple pipelines
  • the first pipeline, the third pipeline and the diluent pipeline can have a common pipeline.
  • Lines 102, 103 may be common lines of the first line and the diluent line.
  • the pipeline 102 may be a common pipeline of the first pipeline and the third pipeline.
  • the first pipeline can be connected to the two-position and two-way solenoid valves 3 and 4.
  • the diluent line is turned on; when the two-position and two-way solenoid valve 3 is energized, the third The pipeline is connected; when the two-position and two-way solenoid valve 3 is de-energized and the two-position and two-way solenoid valve 4 is electrified, the first pipeline is connected.
  • FIG. 3 to FIG. 7 it is the second specific embodiment of the sample collection and distribution system in the pre-dilution mode, and this embodiment is applied to blood routine plus three kinds of immune detection items.
  • the sample collection and distribution system includes a first syringe 4, a second syringe 5, a sampling assembly 6 with a sampling needle, a diluent container 120 and a multi-section pipeline.
  • the first syringe 4 is connected to one interface of the second syringe 5 through pipelines 112 and 119, and the other interface of the second syringe 5 is connected to the first port of the two-position three-way solenoid valve V4 through the pipeline 113.
  • the third port of the valve V4 is connected to the sampling assembly 6 through the pipeline 115 , and the sampling assembly 6 is connected to the waste liquid pump 121 .
  • the second port of the 3/2-way solenoid valve V4 is connected to the second port of the 3/2-way solenoid valve V6 through the pipeline 114 , and the first port of the 3/2-way solenoid valve V6 is connected to the diluent container 120 through the pipeline 116 .
  • the third port of the two-position three-way solenoid valve V6 is connected to the second port of the two-position three-way solenoid valve V5 through the pipeline 110 .
  • the third port of the two-position three-way solenoid valve V5 is connected to the pipeline 111, and the pipelines 111, 119 and 112 are communicated through the three-way joint J4.
  • the first port of the two-position three-way solenoid valve V5 is connected to the common pipeline 108 .
  • the pipeline 107 and the pipeline 106 are connected by the two-position two-way solenoid valve V3 to form a first branch pipeline.
  • the pipeline 103 and the pipeline 104 are connected through the two-position two-way solenoid valve V2 to form a second branch pipeline.
  • the pipeline 102 and the pipeline 101 are connected by a two-position two-way solenoid valve V1 to form a third branch pipeline.
  • the common pipeline 108 is respectively connected to one end of the first, second and third branch pipelines through the tee joints J3, J2 and J1, and the other ends of the first, second and third branch pipelines are respectively connected to the immune detection cells 1, 1 and 1. 2.3.
  • the immunodetection cells 1, 2, and 3 have waste liquid ports 7, 8, and 9, respectively.
  • the first port and the second port are connected when the power is lost; when the power is on, the first port and the third port are connected.
  • the two-position and two-way solenoid valves V1, V2, and V3 are normally closed solenoid valves.
  • Step 1 When the pre-dilution mode starts, the initial position of the second syringe 5 is at the position of the stroke of 50ul, and the setting and execution methods are consistent with the first embodiment.
  • Step 2 After the instrument enters the pre-dilution mode, the sampling assembly 6 moves to the sampling position, the two-position three-way solenoid valve V4 is energized, the pipeline 113 and the pipeline 115 are connected, and the first syringe 4 passes through the pipeline 119 and the pipeline 113.
  • the pipeline 115 is connected to the sampling assembly 6 , and the mixed sample of 260 ul is sucked by the power provided by the first syringe 4 , and the sucked mixed sample is stored in the sampling needle of the sampling assembly 6 and the sampling pipeline 115 .
  • This embodiment uses three immune channels plus routine blood test items, so the mixed sample can be mixed with 30ul of blood sample and 270ul of diluent to form a 1:10 mixed dilution sample.
  • Step 3 After the completion of step 2, the sampling assembly 6 moves to the immune detection cell 1, and then the two-position three-way solenoid valve V4 is energized, so that the pipeline 113 and the pipeline 115 are connected, and the second syringe 5 is the power source, which is pushed outward. 50ul stroke, complete the process of filling 50ul mixed sample into immunoassay pool 1.
  • Step 4 After the distribution of the samples in the immune detection pool 1 is completed, the sampling assembly 6 moves from the immune detection pool 1 to the immune detection pool 2. At the same time, the second syringe 5 draws a stroke of 50 ul inward. Since the second syringe 5 passes through the pipeline 113. The pipeline 114 and the pipeline 116 are connected with the diluent container 120. Therefore, the 50ul stroke drawn by the second syringe 5 is all filled with the diluent, and no isolation gas column will be generated, and the internal pressure balance will not be affected. Affect the accuracy of subsequent allocation samples.
  • Step 5 After the step 4 is completed, the two-position three-way solenoid valve V4 is powered on, so that the pipeline 113 and the pipeline 115 are connected, and the second syringe 5 is used as the power to push the stroke of 50ul outward to complete the addition to the immune detection cell 2. Note the process of mixing the sample with 50ul.
  • Step 6 after step 5 is completed, the sampling assembly 6 moves from the immune detection pool 2 to the immune detection pool 3, while the sampling assembly 6 moves, the second syringe 5 draws a stroke of 50ul inward, and the stroke is all filled with the diluent. .
  • Step 7 After the completion of Step 6, the two-position three-way solenoid valve V4 is powered on, so that the pipeline 113 and the pipeline 115 are connected, and the second syringe 5 is used as the power source, and the stroke of 50ul is pushed outward to complete the injection to the immune detection cell 3. The process of filling 50ul of mixed samples.
  • Step 8 After the sample distribution in the immune detection cell is completed, the sampling assembly 6 is moved into the WBC cell (not shown in the figure), and the two-position three-way solenoid valve V4 is energized, so that the first syringe 4 is connected to the pipeline 119, pipeline 113, The pipeline 115 is connected to the sampling needle of the sampling assembly 6, and then the first syringe 4 is used as a power source to distribute 64 ul of the sample required for CBC counting to the WBC pool, ensuring that the reaction blood sample for CBC counting and the whole blood mode are 6.4 ul.
  • Step 9 After Step 8 is completed, the sampling assembly 6 is moved into the DIFF cell (not shown in the figure), and the two-position three-way solenoid valve V4 is energized, so that the first syringe 4 is connected to the pipeline 119, the pipeline 113, and the pipeline 115. It is connected with the sampling needle of the sampling assembly 6, and then the first syringe 4 is used as the power source to distribute 40ul of the sample required for DIFF (four classification statistics of white blood cells) counting to the DIFF pool, and modify the corresponding dilution ratio in the pre-dilution mode.
  • DIFF fourth classification statistics of white blood cells
  • the first syringe 4 can realize the mixing work of the immune detection cells 1 , 2 and 3 .
  • the two-position three-way solenoid valve V5 is powered on, and the two-position three-way solenoid valve V6 is powered on, so that the other liquid path of the first syringe 4 is connected to the two-position three-way solenoid valve.
  • the first syringe 4 is communicated with the immune detection cell 1 through the pipeline 112, the pipeline 111, the pipeline 108, the pipeline 107, and the pipeline 106, as shown in FIG. , tumble, rotate and mix the liquid in the immunodetection cell 1.
  • the mixing of the immune detection cell 2 is shown in Figure 5.
  • the two-position three-way solenoid valve V6, the two-position three-way solenoid valve V5 and the two-position two-way solenoid valve V2 are energized, and the first syringe 4 passes through the pipeline. 112 , the pipeline 111 , the pipeline 108 , the pipeline 103 , and the pipeline 104 are communicated with the immune detection cell 2 .
  • the mixing of the immune detection cell 3 is shown in Figure 6.
  • the two-position three-way solenoid valve V6, the two-position three-way solenoid valve V5 and the two-position two-way solenoid valve V1 are energized, and the first syringe 4 passes through the pipeline. 112 , the pipeline 111 , the pipeline 108 , the pipeline 102 , and the pipeline 101 communicate with the immune detection cell 3 .
  • the mixed liquid of the sample and reagent in the immunoassay cell will be sucked into the pipeline 101, the pipeline 104 or the pipeline 106, and even exceed the two-position solenoid valve V1 and the two-position solenoid valve V2.
  • pipes 101, 104, 106 are roughly selected with a length of more than 750mm and a 1.0mm diameter Teflon pipe to ensure that it can withstand at least a volume of 500ul, so that three immune detection cells can be used.
  • the liquids of 1, 2, and 3 will not contaminate the adjacent detection channels during the action of sucking, spitting, and mixing.
  • the two-position and two-way solenoid valves V1, V2, and V3 can use pinch-type solenoid valves, so that the mixed reaction solution does not need to be in contact with the inner wall of the solenoid valves V1, V2, and V3, but is in contact with the hose clamped by the valve. , to avoid the reaction liquid being not cleaned cleanly inside the solenoid valve, resulting in residue, and then contaminating the next sample.
  • the system can achieve rapid cleaning of the three immunodetection cells.
  • the diluent container 120 is connected to the diluent tank 122 outside the machine.
  • the two-position two-way solenoid valve V8 When the two-position two-way solenoid valve V8 is energized, the diluent container 120 is connected to the negative pressure source 124.
  • the diluent is aspirated and stored inside the diluent container 120 .
  • the negative pressure source 124 can be an external air source or a negative pressure produced by the internal pneumatic components of the instrument.
  • the system can wash the immune detection pool.
  • the flushing of the immune detection pool 1 when the detection process reaches the final cleaning of the immune detection pool 1, it first passes through the waste liquid port under the immune detection pool 1. 7. Drain the reaction liquid in the original detection cell, then the two-position three-way solenoid valve V6 is energized, and the two-position two-way solenoid valve V3 is energized, so that the pipelines 106, 107, 108, 110, and 116 are connected, and then the two The two-way solenoid valve V7 is energized, and the positive pressure source 123 pushes the liquid in the diluent container 120 to continuously flush the pipeline and the immune detection cell 1.
  • the waste liquid port 7 is opened periodically to discharge the cleaned diluent in time to avoid
  • the liquid condition in the immune detection pool during the entire cleaning process is shown in Figure 7.
  • the cleaning method of this embodiment uses the positive pressure source 123 as the power source, does not require the time consumed by the liquid suction process, and the whole process is cleaning, so It can provide greater cleaning power, and the cleaning speed is extremely fast, so the effect of this cleaning method is more obvious when there are more detection channels.
  • the system can also realize the function of cleaning the second syringe and the sampling line as described in the first embodiment.
  • the first syringe 4 sucks a certain amount of diluent from the diluent container 120, and then the two-position three-way solenoid valve V4 is energized and reversed, so that the first syringe 4 and the pipeline 119, the second syringe 5, the pipeline 113, the pipeline 115, the sampling needles of the sampling assembly 6 are all connected, and then the first syringe 4 discharges the sucked diluent to the outside, cleans the pipeline along the way and the inner wall of the sampling needle, and the washed diluent passes through the waste liquid pump connected to the sampling assembly.
  • the negative pressure provided by 121 is collected and discharged.

Abstract

一种预稀释模式的样本采集和分配系统、方法及血液细胞分析仪,包括至少两个检测池、具有第一容量的第一注射器(2)、具有第二容量的第二注射器(5)及具有采样针的采样组件(6),检测池中有至少一个计数检测池及至少一个免疫检测池(1),第一注射器(2)和第二注射器(5)通过第一管路连接,第二注射器(5)和采样组件(6)通过采样管路(105、115)连接,各计数检测池通过与其对应的第二管路与第一注射器(2)连接,各免疫检测池(1)通过与其对应的第三管路与第一注射器(2)连接。该系统只需一次采集样本的过程就吸取检测需要的混合样本,增加实际参与到检测过程的血细胞数量,试剂和样本量变化小,对反应体系的改变少,检测结果稳定。

Description

预稀释模式的样本采集和分配系统、方法及血液细胞分析仪 技术领域
本发明涉及血液检测及分析领域,尤其是关于一种血液细胞分析仪。
背景技术
血液细胞分析仪一般都有两种模式:全血模式和预稀释模式。
全血模式,通用的技术是通过一个高精度的100ul注射器与采样针相连,在采血管充分摇匀后将采样针插入采血管,通过100ul的注射器提供动力,把血样采集到采样针和其相连的管路内。当前的血液细胞分析仪比较完整的模式有CBC(检测白细胞,红细胞和血小板的数目)、diff(白细胞的四分类统计技术)和CRP浓度检测和或SAA的反应浓度检测,所以100ul的容量足够提供一个完整的CBC+DIFF+CRP计数的样本。
但是由于实际检测过程中,难免会碰到一些静脉血采集困难者,比如婴幼儿、体胖者、重度患者、大面积烧伤者,此时预稀释模式就很适用。
预稀释模式的样本是将20ul的末梢血样和180ul的稀释液在机外混合成1:10的混合样本,然后通过仪器的采样组件采集一定量混合样本然后分配到仪器内部的检测池内。所以如果采用100ul的注射器作为动力,按注射器的90%容量,最多采集90ul的混合样本,那么混合样本内含有的血细胞体积最理想也是9ul。由于样本被稀释了10倍,并且吸取的混合样本含的真实细胞体积少,所以血液细胞分析仪识别的粒子数和接收到的粒子信号脉冲数远少于全血模式,可能会导致检测的结果与真实值偏差大的风险,影响医生的判断。
现有技术针对以上问题主要方法有两种:
第一种方法,仍然使用100ul的注射器作为采集预稀释样本的动力装置,一次性采集80~90ul,其余动作与全血模式一样,然后通过算法更改预稀释模式的稀释比修正得出新的检测结果的计算方法。这种方法操作简单,跟全血模式相比变动少,但是由于在仪器检测过程中实际参与检测的血细胞的样本量太少,同时计数过程涉及到的加样本动作、加稀释液动作、加反应试剂动作和,稀释混匀动作都是存在误差的,同时这种预稀释模式在一定程度上已经改变了样本与试剂的反应体系,CRP和SAA的检测是采用胶乳免疫比浊法测量反应浓度的,不同于红细胞和白细胞检测是采用统计计数方式,所有这种算法修正稀释比的方法得出的结果与实际值会存在一些偏差,不稳定。
第二种方法,以CBC+DIFF+CRP模式为例,仍然使用100ul的注射器作为动力源,先吸取50ul的稀释样本,加入到CRP反应池内,保证加入到CRP反应池内的实际血细胞量是5ul,与全血模式的一致,然后采样针又回到采样位吸取80ul的混合样本,供CBC和DIFF计数使用。这种方式优先保证了CRP的计数准确,但是由于多次吸样造成计数时间长,影响检测速度,同时这种二次吸样的方式只适合一些半自动的仪器,它需要在仪器的开放采样位固定试管座,并不适合一些完全开放机型。
技术问题
本发明提供一种新的样本采集和分配系统。
技术解决方案
本发明提供一种预稀释模式的样本采集和分配系统,包括至少两个检测池、具有第一容量的第一注射器、具有第二容量的第二注射器及具有采样针的采样组件,所述检测池中有至少一个计数检测池及至少一个免疫检测池,所述第一注射器和所述第二注射器通过第一管路连接,所述第二注射器和所述采样组件通过采样管路连接,各所述计数检测池通过与其对应的第二管路与所述第一注射器连接,各所述免疫检测池通过与其对应的第三管路与所述第一注射器连接,采集样本时,通过所述第一注射器提供的动力吸取混合样本,将所述混合样本储存在所述采样针和采样管路中;分配样本时,通过所述第一注射器提供的动力将储存的部分所述混合样本注入所述计数检测池,通过所述第二注射器提供的动力将储存的部分所述混合样本注入所述免疫检测池;所述第二注射器的初始位置处于设定容量位置,所述设定容量小于所述第二容量,所述第二容量小于所述第一容量。
混合样本采用血样和稀释液按一定比例混合形成的混合稀释样本。
第一容量可以远大于第二容量,如第一容量至少是第二容量的十倍。设定容量可以是第二容量的一半。采集样本时,第一注射器作为动力源,一次性采集所有检测需要的混合样本。
所述的样本采集和分配系统,还包括稀释液容器,所述第一注射器或第二注射器通过第一稀释液管路与所述稀释液容器连接,所述第一稀释液管路连接有能够进行管路通断控制的控制部件。第一稀释液管路导通时,第一注射器或第二注射器可以从稀释液容器吸取稀释液。
各所述检测池通过与其对应的第二稀释液管路与所述稀释液容器连接,所述第二稀释液管路连接有能够进行管路通断控制的控制部件。每个检测池都可以与其对应的第二稀释液管路连接,通过正压源驱动,可以将稀释液容器内的稀释液注入检测池。
一种血液细胞分析仪,包括所述样本采集和分配系统。
一种预稀释模式的样本采集和分配方法,使具有第一容量的第一注射器通过第一管路与具有第二容量的第二注射器连接,所述第一容量大于所述第二容量,使所述第二注射器通过采样管路与具有采样针的采样组件连接,使所述第一注射器通过第二管路与计数检测池连接,使所述第一注射器通过第三管路与免疫检测池连接,还包括按设定时序进行的如下步骤:
预置步骤,使所述第二注射器的初始位置处于设定容量的位置,所述设定容量小于所述第二容量;
样本采集步骤,通过第一注射器提供的动力吸取检测所需总体积的混合样本,将所述混合样本储存在所述采样针和采样管路中;
第一样本分配步骤,通过第一注射器提供的动力,将第一体积的所述混合样本注入到所述计数检测池中;
第二样本分配步骤,通过第二注射器提供的动力,将第二体积的所述混合样本注入到所述免疫检测池中;
所述第一样本分配步骤和第二样本分配步骤均至少执行一次,且各所述第一体积和各所述第二体积之和不大于所述总体积。
    计数检测池有多个时,第一样本分配步骤则执行多次。免疫检测池有多个时,第二样本分配步骤则执行多次。
所述的样本采集和分配方法,还包括混匀步骤,使所述第二管路或第三管路导通,通过使所述第一注射器反复进行吸取动作和排出动作来混匀所述检测池中的液体。
所述的样本采集和分配方法,所述第一注射器通过第一稀释液管路与稀释液容器连接,还包括清洗步骤,使所述第一稀释液管路导通且所述第一管路断开导通,所述第一注射器从所述稀释液容器吸取稀释液;使所述第一稀释液管路断开导通且所述第一管路导通,所述第一注射器将所述稀释液通过所述采样针排出。
所述第二注射器通过第一稀释液管路与稀释液容器连接,还包括第一清洗步骤,使所述第二稀释液管路导通且所述采样管路断开导通,所述第二注射器从所述稀释液容器吸取稀释液;使所述第二稀释液管路断开导通且所述采样管路导通,所述第二注射器将所述稀释液通过所述采样针排出。
各所述检测池通过与其对应的第二稀释液管路与所述稀释液容器连接,还包括第二清洗步骤,使所述第二稀释液管路导通,通过正压源驱动所述稀释液容器内的稀释液对所述检测池进行清洗。
所述第二注射器通过第一稀释液管路与稀释液容器连接,所述第二样本分配步骤中,所述第二注射器从所述稀释液容器中吸取与所述设定容量一致的稀释液。在采样组件从一个免疫检测池运动到另一个免疫检测池时,与设定容量一致的稀释液被补充到第二注射器内。
有益效果
本发明的有益效果是:只需一次采集样本的过程就吸取检测需要的混合样本,增加实际参与到检测过程的血细胞数量,试剂和样本量变化小,对反应体系的改变少,检测结果稳定;通过小容量的第二注射器向免疫检测池注入混合样本,提高了样本加注的精度。
附图说明
图1是预稀释模式的样本采集和分配系统的第一具体实施方式的结构示意图;
图2是第一具体实施方式的混合样本的分配示意图;
图3是预稀释模式的样本采集和分配系统的第二具体实施方式的结构示意图;
图4至图6分别是对三个免疫检测池内的液体混匀时、第二具体实施方式的结构示意图;
图7是反映第二具体实施方式依次对各免疫检测池进行冲洗时、各免疫检测池内液体体积随着时间变化的示意图,其中,横坐标是时间,纵坐标是各检测池内液体体积,长条块指稀释液冲洗时间,三个黑色方块分别指三个检测池废液口排放时间。
本发明的实施方式
下面详细描述本专利的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本专利,而不能理解为对本专利的限制。
在本专利的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本专利和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本专利的限制。
在本专利的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“设置”应做广义理解,例如,可以是固定相连、设置,也可以是可拆卸连接、设置,或一体地连接、设置。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本专利中的具体含义。
如图1所示,一种预稀释模式的样本采集和分配系统,包括第一注射器2、第二注射器5、采样组件6及至少两个检测池。第一注射器2具有第一容量,其能够作为动力源,实现对液体的吸取和排出。第二注射器5具有第二容量,其能够作为动力源,实现对液体的吸取和排出,且该第二容量小于第一容量。采样组件6具有采样针,其能够吸取样本和排出样本。检测池中,至少有一个免疫检测池1和至少一个计数检测池。第二注射器的初始位置对应设定容量,该设定容量小于第二容量。第一容量可以远大于第二容量,如第一容量是第二容量的至少十倍。设定容量可以是第二容量的一半。具体的,第一容量可以为2.5ml,第二容量可以为100ul,设定容量可以为50ul。
第一注射器2通过第一管路连接第二注射器5,第二注射器5通过采样管路105连接采样组件6的采样针。各计数检测池通过与其对应的第二管路连接第一注射器2,各免疫检测池1通过与其对应的第三管路连接第一注射器2。
该系统能够按照设定时序实现样本采集和样本分配。样本采集时,使第一管路和采样管路105均导通,以第一注射器2作为动力源,通过采样针吸取混合样本,并将混合样本储存在采样针和采样管路105中。向免疫检测池1分配样本时,使采样管路105导通,以第二注射器5作为动力源,通过采样针将储存的部分混合样本注入到该免疫检测池1中。向计数检测池分配样本时,使第一管路和采样管路105均导通,以第一注射器2作为动力源,将储存的部分混合样本注入到该计数检测池中。
样本采集时,采集的混合样本的总体积大于分配到各免疫检测池和各计数检测池中混合样本的体积之和,即,只需要进行一次样本采集。
该系统还可以包括稀释液容器120,稀释液容器120和大容量第一注射器2通过稀释液管路连接,该稀释液管路上设有能够进行管路通断控制的控制部件,控制部件具有打开状态和关闭状态,在打开状态,稀释液管路导通;在关闭状态,稀释液管路断开导通。控制部件在打开状态时,稀释液容器和第一注射器2连通,使第一注射器2可以从稀释液容器120吸取稀释液。
另一种结构中,稀释液容器120和小容量第二注射器5可以通过稀释液管路连接,该稀释液管路上设有能够进行管路通断控制的控制部件,控制部件具有打开状态和关闭状态,在打开状态,稀释液管路导通;在关闭状态,稀释液管路断开导通。控制部件在打开状态时,稀释液容器和第二注射器5连通,使第二注射器5可以从稀释液容器120吸取稀释液。
该系统还能够对检测池内的液体进行混匀,混匀时,以第一注射器2作为动力源,对检测池内液体进行反复吸吐操作,实现对液体的混匀。
该系统还能够对检测池进行清洗,清洗时,以第一注射器2作为动力源,通过压力驱动稀释液对管路和检测池进行清洗。
如图1及图2所示,一种用于血液细胞分析仪的预稀释模式的样本采集和分配系统,其主要应用于血常规加一种免疫检测项目模式。该系统包括免疫检测池1、第一注射器2、两位三通电磁阀3、两位三通电磁阀4、第二注射器5、采样组件6及管路101、102、103、104、105、106。第一注射器2具有第一容量,该第一容量如2.5ml,第二注射器5具有第二容量,该第二容量如100ul。第二注射器5的初始位置在设定容量位置,设定容量如50ul,即第二注射器活塞的初始位置对应50ul的容量。
第一注射器1通过管路102连接两位三通电磁阀3的第一端口,两位三通电磁阀3的第二端口通过管路103连接两位三通电磁阀4的第一端口,两位三通电磁阀4的第三端口通过管路104连接第二注射器5的一个接口,两位三通电磁阀4的第二端口通过管路106连接稀释液容器120。两位三通电磁阀3的第三端口通过管路101连接免疫检测池1,该免疫检测池1具有废液口7。第二注射器5的另一个接口通过采样管路105连接采样组件6,采样组件6可以连接废液泵121。对于两位三通电磁阀3、4,失电时,第一端口和第二端口连通;得电时,第一端口和第三端口连通。
该系统的工作过程如下:
步骤1:执行预稀释模式,执行过程如下:
① 进入预稀释模式的时候,调用全血模式转预稀释模式时序,在此把仪器的准备状态转化成预稀释模式的状态,在此时序内第二注射器5的位置设定为容量50ul的位置;
②执行相应的预稀释模式的计数时序,在此时序的结束过程中,仍然把第二注射器5的初始位置设定为容量50ul的位置;
③计数时序执行完成进行时,判断下个样本是否退出预稀释模式,如果否,继续按步骤②执行;如果是,执行步骤④;
④退出预稀释模式,执行预稀释转全血模式,把仪器的准备状态从预稀释模式状态转化成全血模式的状态,第二注射器5恢复到全血模式的初始位置。
至此,通过以上流程,可以保证预稀释模式的每次测量开始时第二注射器5都是在容量50ul的位置,并且它不会影响全血模式。
步骤2:仪器进入预稀释模式后,采样组件6运动到采样位置,两位三通电磁阀4得电,于是第一注射器2与管路102、103、104、105连通,以第一注射器2为动力吸取160ul的混合样本,被吸取的混合样本储存在采样组件6的采样针和采样管路105内。
步骤3:采样组件6运动到免疫检测池位置,以第二注射器5为动力,向外推50ul的行程,完成向免疫检测池1的加样分配过程,并且保持预稀释和全血模式下,免疫检测池1的实际反应血样都是5ul,保证两个模式下反应体系的几乎不变;同时因为采用容量为100ul的第二注射器5作为加免疫检测样本的动力,可以将加样误差控制在极小范围。
步骤4:免疫检测池样本分配完成后,采样组件6移动到WBC检测池内(图中未表示出),如图1所述,两位三通电磁阀4得电,使第一注射器2与管路102、103、104、105和采样针都连通,然后以第一注射器2作为动力源,向WBC检测池分配CBC计数需要的样本64ul,保证CBC计数的反应血样和全血模式下都是6.4ul;
步骤5:步骤4完成后,采样组件6移动到DIFF检测池内(图中未表示出),如图1所示,两位三通电磁阀4得电,使第一注射器2与管路102、103、104、105和采样针都连通,然后以第一注射器2作为动力源,向DIFF检测池分配DIFF(白细胞的四分类统计技术)计数需要的样本40ul,在全血模式下理论是需要8ul的血样,所以预稀释模式下需要修正稀释比。由于DIFF检测池是检测白细胞的四分类的百分比,对粒子数的要求不高,所以修正稀释比对结果的影响不大。
至此,预稀释模式的样本采集和分配已经完成,具体血样分配如图2所示,尾端体积V1的样本随清洗采样针和管路时一起清洗排出。
如图1所示,第一注射器2同时可以用来混匀免疫检测池1内的液体,当样本和试剂都加入免疫检测池1内后,两位三通电磁阀3得电后换向,第一注射器2通过管路102、101与免疫检测池1相连,通过第一注射器2自身重复进行吸取和排放动作,实现免疫检测池1内部的液体的翻滚混匀。
如图1所示,第一注射器2可以用来清洗免疫检测池1和其相连的管路101,常态下,第一注射器2下拉吸取一定量的稀释液,然后两位三通电磁阀3得电,管路102与管路101连通,第一注射器2向外排放刚刚吸取的稀释液,排放的稀释液沿途冲洗管路102、101,最后到达免疫检测池1,冲洗免疫检测池1,冲洗完的废液从免疫检测池1底部的废液口7排走,如此重复多次,完成清洗过程。
如图1所示,第一注射器2可以用来清洗采样组件6的采样针和样本管路105,在第一注射器2从稀释液容器120吸取稀释液后,两位三通电磁阀4得电换向,使第一注射器2与管路104、第二注射器5、管路105及采样组件6的采样针都连通,然后第一注射器2向外排放吸取的稀释液,排放的稀释液清洗沿途的管路和采样针内壁,并且清洗后的稀释液通过与采样组件6上相连的废液泵121提供的负压收集排走。
本实施方式中,第一注射器2和第二注射器5通过第一管路连接,第一注射器2和稀释液容器120通过稀释液管路连接,第一注射器2和免疫检测池1通过第三管路连接,该第一管路、第三管路及稀释液管路均可以由多段管路组成,且该第一管路、第三管路和稀释液管路可以具有公共管路。管路102、103可以是第一管路和稀释液管路的公共管路。管路102可以是第一管路和第三管路的公共管路。第一管路可以连接两位两通电磁阀3、4,两位两通电磁阀3、4均失电时,稀释液管路导通;两位两通电磁阀3得电时,第三管路导通;两位两通电磁阀3失电且两位两通电磁阀4得电时,第一管路导通。
对于本系统,其通过多次重复使用各注射器、电磁阀等器件及管路,精简了系统,就实现了对免疫检测池的混匀、清洗及采集样本、清洗样本。
如图3至图7所示,其为预稀释模式的样本采集和分配系统的第二具体实施方式,该实施方式应用于血常规加三种免疫检测项目。
样本采集和分配系统包括第一注射器4、第二注射器5、具有采样针的采样组件6、稀释液容器120及多段管路。第一注射器4通过管路112、119与第二注射器5的一个接口连接,第二注射器5的另一个接口通过管路113连接两位三通电磁阀V4的第一端口,两位三通电磁阀V4的第三端口通过管路115连接采样组件6,采样组件6与废液泵121连接。两位三通电磁阀V4的第二端口通过管路114连接两位三通电磁阀V6的第二端口,两位三通电磁阀V6的第一端口通过管路116连接稀释液容器120。两位三通电磁阀V6的第三端口通过管路110连接两位三通电磁阀V5的第二端口。两位三通电磁阀V5的第三端口与管路111连接,管路111、119和112通过三通接头J4连通。两位三通电磁阀V5的第一端口与公共管路108连接。管路107和管路106通过两位两通电磁阀V3连接而形成第一分支管路。管路103和管路104通过两位两通电磁阀V2连接而形成第二分支管路。管路102和管路101通过两位两通电磁阀V1连接而形成第三分支管路。公共管路108分别通过三通接头J3、J2、J1连接第一、第二、第三分支管路的一端,第一、第二、第三分支管路的另一端分别连接免疫检测池1、2、3。免疫检测池1、2、3分别具有废液口7、8、9。对于两位两通电磁阀V4、V5、V6,失电时,第一端口和第二端口连通;得电时,第一端口和第三端口连通。两位两通电磁阀V1、V2、V3是常闭型电磁阀。
    步骤1:预稀释模式开始时第二注射器5的初始位置在行程50ul的位置,设置和执行方法与第一实施方式一致。
步骤2:仪器进入预稀释模式后,采样组件6运动到采样位置,两位三通电磁阀V4得电,管路113和管路115连通,第一注射器4通过管路119、管路113,管路115与采样组件6相连,通过第一注射器4提供的动力吸取260ul的混合样本,被吸取的混合样本储存在采样组件6的采样针和采样管路115内。
本实施方式采用三个免疫通道加血常规检测项目,所以混合样本可以采用30ul的血样和270ul的稀释液混合成1:10的混合稀释样本。
步骤3:步骤2完成后,采样组件6运动到免疫检测池1 ,然后两位三通电磁阀V4得电,使得管路113和管路115连通,第二注射器5为动力源,向外推50ul的行程,完成向免疫检测池1加注50ul混合样本的过程。
步骤4:免疫检测池1分配样本完成后,采样组件6从免疫检测池1运动到免疫检测池2,与此同时,第二注射器5向内吸取50ul的行程,由于第二注射器5通过管路113、管路114、管路116与稀释液容器120相连,所以,第二注射器5吸取的50ul行程全部被稀释液填充,不会产生隔离气柱段,不会影响内部压力平衡,也不会影响后续的分配样本准确性。
步骤5:步骤4完成后,两位三通电磁阀V4得电,使得管路113和管路115连通,以第二注射器5为动力,向外推50ul的行程,完成向免疫检测池2加注50ul混合样本的过程。
步骤6,步骤5完成后,采样组件6从免疫检测池2运动到免疫检测池3,在该采样组件6运动的同时,第二注射器5向内吸取50ul的行程,该行程全部被稀释液填充。
步骤7:步骤6完成后,两位三通电磁阀V4得电,使得管路113和管路115连通,以第二注射器5为动力源,向外推50ul的行程,完成向免疫检测池3加注50ul混合样本的过程。
至此,三个免疫通道的分配样本的动作已经完成,按上述动作可以保证每次分配样本都是采用高精度小容量的第二注射器5完成。
步骤8:免疫检测池样本分配完成后,采样组件6移动到WBC池内(图中未表示出),两位三通电磁阀V4得电,使第一注射器4与管路119、管路113、管路115和采样组件6的采样针都连通,然后以第一注射器4作为动力源,向WBC池分配CBC计数需要的样本64ul,保证CBC计数的反应血样和全血模式下都是6.4ul。
步骤9:步骤8完成后,采样组件6移动到DIFF池内(图中未表示出),两位三通电磁阀V4得电,使第一注射器4与管路119、管路113、管路115和采样组件6的采样针都连通,然后以第一注射器4作为动力源,向DIFF池分配DIFF(白细胞的四分类统计技术)计数需要的样本40ul,并修改对应的预稀释模式下稀释比。
至此,三个免疫通道的预稀释模式的样本采集和分配已经完成,管路内剩余的未使用的尾端的血样随清洗采样针和管路时一起清洗排出。
如图3及图4所示,第一注射器4可以实现对免疫检测池1、2、3的混匀工作。当样本和试剂都已经加入免疫检测池1后,两位三通电磁阀V5得电,两位三通电磁阀V6得电,使第一注射器4的另外一条液路被两位三通电磁阀V6堵住(即管路119、管路113和管路114所在的液路因为两位三通电磁阀V6得电而与管路116断开连通),然后两位两通电磁阀V3得电,第一注射器4通过管路112、管路111、管路108、管路107、管路106与免疫检测池1连通,如图4所示,通过第一注射器4的来回吸吐动作提供动力,使免疫检测池1内的液体翻滚、旋转、混匀。免疫检测池2的混匀如图5所示,混匀时,两位三通电磁阀V6、两位三通电磁阀V5和两位两通电磁阀V2得电,第一注射器4通过管路112、管路111、管路108、管路103、管路104与免疫检测池2连通。免疫检测池3的混匀如图6所示,混匀时,两位三通电磁阀V6、两位三通电磁阀V5和两位两通电磁阀V1得电,第一注射器4通过管路112、管路111、管路108、管路102、管路101与免疫检测池3连通。
在混匀过程中,免疫检测池内的样本和试剂的混合液体会被吸入管路101、管路104或管路106内,甚至会超过两位两通电磁阀V1、两位两通电磁阀V2或两位两通电磁阀V3,所以,一般的,管路101、104、106大致选择长度大于750mm的1.0mm管径的特氟龙管,保证至少可以承受体积500ul,使三个免疫检测池1、2、3的液体在吸吐混匀的动作中反应液不会污染到相邻检测通道。同时,两位两通电磁阀V1、V2、V3可以使用夹管式电磁阀,使得混匀的反应液不需要与电磁阀V1、V2、V3内壁接触,而是与阀夹紧的软管接触,避免出现反应液由于在电磁阀内部清洗不干净、带来残留,进而污染下个样本。
如图3所示,该系统可以实现对三个免疫检测池的快速清洗。稀释液容器120连接机外的稀释液桶122,当两位两通电磁阀V8得电时,使得稀释液容器120与负压源124相连,通过负压源124的吸力,从稀释液桶122吸取稀释液并储存在稀释液容器120内部。该负压源124可以是外接的气源或者通过仪器内部气动元件制造的负压。
如图3所示,该系统可以对免疫检测池进行冲洗,以冲洗免疫检测池1为例说明,当检测过程进行到最后清洗免疫检测池1时,先通过免疫检测池1底下的废液口7把原先检测池里的反应液排走,然后两位三通电磁阀V6得电,两位两通电磁阀V3得电,使得管路106、107、108、110、116相连,然后两位两通电磁阀V7得电,通过正压源123推动稀释液容器120内的液体连续的冲洗管路和免疫检测池1,同时阶段性的打开废液口7,及时排出清洗的稀释液,避免溢液,整个清洗过程免疫检测池内液体状况如图7所示。与现有的清洗方式是注射器吸一段清洗液然后再排出相比,本实施方式的清洗方式使用正压源123作为动力源,不需要吸液的过程消耗的时间,并且全程都是清洗,所以可以提供更大的清洗力度,并且清洗速度极快,所以在检测通道越多的情况下,这种清洗方式的效果越发明显。
如图3所示,该系统也可以实现如第一实施方式所述的清洗第二注射器和采样管路的功能。第一注射器4从稀释液容器120吸取一定量的稀释液,然后两位三通电磁阀V4得电换向,使得第一注射器4与管路119,第二注射器5、管路113、管路115,采样组件6的采样针都连通,然后第一注射器4向外排吸取的稀释液,清洗沿途的管路和采样针内壁,并且清洗后的稀释液通过与采样组件上相连的废液泵121提供的负压收集排走。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 一种预稀释模式的样本采集和分配系统,其特征在于,包括至少两个检测池、具有第一容量的第一注射器、具有第二容量的第二注射器及具有采样针的采样组件,所述检测池中有至少一个计数检测池及至少一个免疫检测池,所述第一注射器和所述第二注射器通过第一管路连接,所述第二注射器和所述采样组件通过采样管路连接,各所述计数检测池通过与其对应的第二管路与所述第一注射器连接,各所述免疫检测池通过与其对应的第三管路与所述第一注射器连接,采集样本时,通过所述第一注射器提供的动力吸取混合样本,将所述混合样本储存在所述采样针和采样管路中;分配样本时,通过所述第一注射器提供的动力将储存的部分所述混合样本注入所述计数检测池,通过所述第二注射器提供的动力将储存的部分所述混合样本注入所述免疫检测池;所述第二注射器的初始位置处于设定容量位置,所述设定容量小于所述第二容量,所述第二容量小于所述第一容量。
  2. 根据权利要求1所述的样本采集和分配系统,其特征在于,还包括稀释液容器,所述第一注射器或第二注射器通过第一稀释液管路与所述稀释液容器连接,所述第一稀释液管路连接有能够进行管路通断控制的控制部件。
  3. 根据权利要求2所述的样本采集和分配系统,其特征在于,各所述检测池通过与其对应的第二稀释液管路与所述稀释液容器连接,所述第二稀释液管路连接有能够进行管路通断控制的控制部件。
  4. 一种血液细胞分析仪,其特征在于,包括权利要求1-3中任意一项所述的样本采集和分配系统。
  5. 一种预稀释模式的样本采集和分配方法,其特征在于,使具有第一容量的第一注射器通过第一管路与具有第二容量的第二注射器连接,所述第一容量大于所述第二容量,使所述第二注射器通过采样管路与具有采样针的采样组件连接,使所述第一注射器通过第二管路与计数检测池连接,使所述第一注射器通过第三管路与免疫检测池连接,还包括按设定时序进行的如下步骤:
    预置步骤,使所述第二注射器的初始位置处于设定容量的位置,所述设定容量小于所述第二容量;
    样本采集步骤,通过第一注射器提供的动力吸取检测所需总体积的混合样本,将所述混合样本储存在所述采样针和采样管路中;
    第一样本分配步骤,通过第一注射器提供的动力,将第一体积的所述混合样本注入到所述计数检测池中;
    第二样本分配步骤,通过第二注射器提供的动力,将第二体积的所述混合样本注入到所述免疫检测池中;
    所述第一样本分配步骤和第二样本分配步骤均至少执行一次,且各所述第一体积和各所述第二体积之和不大于所述总体积。
  6. 根据权利要求5所述的样本采集和分配方法,其特征在于,还包括混匀步骤,使所述第二管路或第三管路导通,通过使所述第一注射器反复进行吸取动作和排出动作来混匀所述检测池中的液体。
  7. 根据权利要求5所述的样本采集和分配方法,其特征在于,所述第一注射器通过第一稀释液管路与稀释液容器连接,还包括清洗步骤,使所述第一稀释液管路导通且所述第一管路断开导通,所述第一注射器从所述稀释液容器吸取稀释液;使所述第一稀释液管路断开导通且所述第一管路导通,所述第一注射器将所述稀释液通过所述采样针排出。
  8. 根据权利要求5所述的样本采集和分配方法,其特征在于,所述第二注射器通过第一稀释液管路与稀释液容器连接,还包括第一清洗步骤,使所述第二稀释液管路导通且所述采样管路断开导通,所述第二注射器从所述稀释液容器吸取稀释液;使所述第二稀释液管路断开导通且所述采样管路导通,所述第二注射器将所述稀释液通过所述采样针排出。
  9. 根据权利要求8所述的样本采集和分配方法,其特征在于,各所述检测池通过与其对应的第二稀释液管路与所述稀释液容器连接,还包括第二清洗步骤,使所述第二稀释液管路导通,通过正压源驱动所述稀释液容器内的稀释液对所述检测池进行清洗。
  10. 根据权利要求5所述的样本采集和分配方法,其特征在于,所述第二注射器通过第一稀释液管路与稀释液容器连接,所述第二样本分配步骤中,所述第二注射器从所述稀释液容器中吸取与所述设定容量一致的稀释液。
PCT/CN2021/092457 2020-12-29 2021-05-08 预稀释模式的样本采集和分配系统、方法及血液细胞分析仪 WO2022142052A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011592544.3 2020-12-29
CN202011592544.3A CN112798345A (zh) 2020-12-29 2020-12-29 预稀释模式的样本采集和分配系统、方法及血液细胞分析仪

Publications (1)

Publication Number Publication Date
WO2022142052A1 true WO2022142052A1 (zh) 2022-07-07

Family

ID=75805503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092457 WO2022142052A1 (zh) 2020-12-29 2021-05-08 预稀释模式的样本采集和分配系统、方法及血液细胞分析仪

Country Status (2)

Country Link
CN (1) CN112798345A (zh)
WO (1) WO2022142052A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413826A (zh) * 2021-05-31 2021-09-21 深圳市科曼医疗设备有限公司 添加装置及方法
CN113358435A (zh) * 2021-06-11 2021-09-07 宋卓 上样装置及包含该装置的分析分选设备
CN114798614B (zh) * 2022-06-28 2022-10-28 深圳市帝迈生物技术有限公司 样本分析仪的清洗装置及其清洗方法、样本分析仪
CN114798581B (zh) * 2022-06-28 2022-10-28 深圳市帝迈生物技术有限公司 样本分析仪的清洗装置及其清洗方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103335A1 (fr) * 2005-03-31 2006-10-05 C2 Diagnostics Dispositif hydraulique pour appareil d'analyse sanguine, procede associe et appareil d'analyse equipe d'un tel dispositif
CN101074949A (zh) * 2006-05-17 2007-11-21 深圳迈瑞生物医疗电子股份有限公司 进行样本分配和清洗的装置及方法
CN101529243A (zh) * 2006-10-26 2009-09-09 贝克曼考尔特公司 用于在自动分析仪中吸出和分配液体的装置
CN104122387A (zh) * 2013-04-26 2014-10-29 株式会社堀场制作所 全血血球免疫测定装置
CN104713816A (zh) * 2015-02-04 2015-06-17 深圳市帝迈生物技术有限公司 一种全血crp检测装置与方法、及一种血液细胞分析仪
CN104897557A (zh) * 2015-05-30 2015-09-09 广州埃克森生物科技有限公司 流式细胞检测液路系统及流式细胞检测方法
CN106814183A (zh) * 2016-12-27 2017-06-09 深圳开立生物医疗科技股份有限公司 一种鞘流检测系统及鞘流控制方法
CN109507067A (zh) * 2017-09-15 2019-03-22 株式会社堀场制作所 粒子分析装置
CN109932519A (zh) * 2019-04-19 2019-06-25 深圳市理邦精密仪器股份有限公司 血液检测装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074948B (zh) * 2006-05-17 2011-09-07 深圳迈瑞生物医疗电子股份有限公司 利用单加液管进行样本采集和分配的装置及方法
CN202229943U (zh) * 2011-08-18 2012-05-23 北京国科华仪科技有限公司 全自动免疫系统用取样装置
CN103063479B (zh) * 2012-12-28 2015-09-23 深圳市锦瑞电子有限公司 联体注射器及具有该注射器的血细胞分析仪
CN204630897U (zh) * 2015-05-30 2015-09-09 广州埃克森生物科技有限公司 流式细胞检测液路系统
CN105784571B (zh) * 2016-02-29 2023-05-26 深圳市帝迈生物技术有限公司 一种特定反应蛋白crp的双池子测量方法及装置
WO2017161057A1 (en) * 2016-03-15 2017-09-21 Ei Spectra, Llc Whole blood staining preparation cartridge and system
CN109781610A (zh) * 2018-12-31 2019-05-21 苏州朗如精密机械科技有限公司 一种流式细胞分析仪液流系统及其控制方法
CN110031386B (zh) * 2019-05-16 2023-12-26 重庆博奥新景医学科技有限公司 一种流式细胞仪液路系统及其检测方法
CN211877477U (zh) * 2019-11-25 2020-11-06 深圳赛斯鹏芯生物技术有限公司 一种高速简单双针清洗吸样液路系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103335A1 (fr) * 2005-03-31 2006-10-05 C2 Diagnostics Dispositif hydraulique pour appareil d'analyse sanguine, procede associe et appareil d'analyse equipe d'un tel dispositif
CN101074949A (zh) * 2006-05-17 2007-11-21 深圳迈瑞生物医疗电子股份有限公司 进行样本分配和清洗的装置及方法
CN101529243A (zh) * 2006-10-26 2009-09-09 贝克曼考尔特公司 用于在自动分析仪中吸出和分配液体的装置
CN104122387A (zh) * 2013-04-26 2014-10-29 株式会社堀场制作所 全血血球免疫测定装置
CN104713816A (zh) * 2015-02-04 2015-06-17 深圳市帝迈生物技术有限公司 一种全血crp检测装置与方法、及一种血液细胞分析仪
CN104897557A (zh) * 2015-05-30 2015-09-09 广州埃克森生物科技有限公司 流式细胞检测液路系统及流式细胞检测方法
CN106814183A (zh) * 2016-12-27 2017-06-09 深圳开立生物医疗科技股份有限公司 一种鞘流检测系统及鞘流控制方法
CN109507067A (zh) * 2017-09-15 2019-03-22 株式会社堀场制作所 粒子分析装置
CN109932519A (zh) * 2019-04-19 2019-06-25 深圳市理邦精密仪器股份有限公司 血液检测装置

Also Published As

Publication number Publication date
CN112798345A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2022142052A1 (zh) 预稀释模式的样本采集和分配系统、方法及血液细胞分析仪
CN101535815B (zh) 高速样品供给设备
CN105784571B (zh) 一种特定反应蛋白crp的双池子测量方法及装置
CN102597764A (zh) 液体试样分析装置以及液体试样导入装置
US11401952B2 (en) Waste liquid treatment apparatus, method and sample analyzer
CN101884885A (zh) 全自动液体操作装置
CN101074949B (zh) 进行样本分配和清洗的装置及方法
WO2022099504A1 (zh) 一种采样吸取试剂加液方法及其液路系统
CN111505202B (zh) 一种多功能稀释/滴定装置
CN201965136U (zh) 一种用于自动化生物化学反应流程的流路系统
CN217652869U (zh) 定量组件、样本处理装置及试剂制备装置
CN112526150A (zh) 一种采样吸取试剂加液方法及其液路系统
CN215641281U (zh) 生物样本检测分析仪的液路系统及生物样本检测分析仪
CN213580596U (zh) 一种精子质量分析的液路系统及精子质量分析仪
CN213986175U (zh) 一种新型全自动盐碘分析仪
CN219831102U (zh) 一种全自动干式荧光免疫分析仪
CN201579027U (zh) 全自动液体操作装置
CN2181689Y (zh) 血液内外管微量取样稀释装置
CN111811919A (zh) 用于稀释微量液体样品的串联注射泵组结构
CN220231770U (zh) 样本分析系统
CN112881393B (zh) 样本检测过程中的吸液方法
CN220231771U (zh) 样本分析系统
CN116859071B (zh) 全自动化学发光免疫检测分析仪及其检测分析方法
CN215641193U (zh) 动态加标的水质在线质控仪
CN212321249U (zh) 用于稀释微量液体样品的串联注射泵组结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21912813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21912813

Country of ref document: EP

Kind code of ref document: A1