WO2021056207A1 - 流体运输系统、方法及应用该系统、方法的流体使用装置 - Google Patents

流体运输系统、方法及应用该系统、方法的流体使用装置 Download PDF

Info

Publication number
WO2021056207A1
WO2021056207A1 PCT/CN2019/107591 CN2019107591W WO2021056207A1 WO 2021056207 A1 WO2021056207 A1 WO 2021056207A1 CN 2019107591 W CN2019107591 W CN 2019107591W WO 2021056207 A1 WO2021056207 A1 WO 2021056207A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
component
working module
working
storage component
Prior art date
Application number
PCT/CN2019/107591
Other languages
English (en)
French (fr)
Inventor
隋相坤
邢楚填
梁埈模
博格丹格雷格
亚当斯西蒙·罗伯特
Original Assignee
深圳华大智造科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大智造科技有限公司 filed Critical 深圳华大智造科技有限公司
Priority to JP2022518011A priority Critical patent/JP7471398B2/ja
Priority to PCT/CN2019/107591 priority patent/WO2021056207A1/zh
Priority to CN201980098626.1A priority patent/CN114127247B/zh
Priority to EP19947010.5A priority patent/EP4036203A4/en
Priority to US17/763,266 priority patent/US20220341407A1/en
Publication of WO2021056207A1 publication Critical patent/WO2021056207A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • G01N35/1097Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers characterised by the valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/02Pumping installations or systems specially adapted for elastic fluids having reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F3/00Pumps using negative pressure acting directly on the liquid to be pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection

Definitions

  • the present invention relates to the technical field of fluid control, in particular to a fluid transportation system and method, and a fluid using device applying the system and method.
  • the fluid transportation system drives fluid movement by creating and maintaining a pressure gradient (pressure difference) from upstream to downstream in the direction of flow. Therefore, when driving fluid movement, the main design ideas are divided into two types, namely positive pressure driving and negative pressure driving.
  • Positive pressure drive means to maintain a stable maximum pressure source upstream of the flow path, while the downstream fluid has a free surface in contact with the atmosphere, so that the pressure on the entire flow path is higher than the atmospheric pressure.
  • Negative pressure drive refers to maintaining a stable minimum pressure source downstream of the flow path, while the upstream connected fluid has a free surface in contact with the atmosphere, so that the pressure on the entire flow path is lower than the atmospheric pressure.
  • positive pressure drive means to maintain a stable maximum pressure source upstream of the flow path, while the downstream fluid has a free surface in contact with the atmosphere, so that the pressure on the entire flow path is higher than the atmospheric pressure.
  • Negative pressure drive refers to maintaining a stable minimum pressure source downstream of the flow path, while the upstream connected fluid has a free surface in contact with the atmosphere
  • Negative pressure driving has great advantages for the transportation of multiple fluids into the reaction tank.
  • the pipeline structure before the fluid enters the reaction tank is relatively simple, easy to clean, and reduces the risk of cross-contamination between different fluids before entering the reaction tank.
  • most of the fluid transportation systems that aim to achieve a single trace and high-precision transportation use this design.
  • the disadvantage of the negative pressure drive is that the ultimate pressure of the pressure source of the negative pressure system is vacuum, so its ultimate pressure gradient is a standard atmospheric pressure, which limits the flow rate of the fluid transportation system, that is, the maximum flow rate.
  • Positive pressure drive When using a positive pressure drive, the pipe where the fluid enters is generally placed upstream, compressed gas is used to act on the free surface of the upstream fluid, and the reaction tank is placed downstream.
  • Positive pressure drive has great advantages for the situation that needs to quickly transport fluid into the reaction tank.
  • the pressure source of positive pressure drive has no upper pressure limit and can far exceed a standard atmospheric pressure. Therefore, the flow rate of the fluid transport system can far exceed the same Negative pressure drive for pipeline conditions.
  • most mobile transportation systems that aim to achieve rapid transportation are driven by positive pressure. But the disadvantage of the positive pressure drive is that although the problem of fluid cross contamination can be avoided, the speed and accuracy of the drive fluid movement are difficult to control due to the large compressibility of the gas.
  • a fluid transportation system adopts a negative pressure driving method to suck fluid from a fluid storage component and adopts a positive pressure driving method to input the sucked fluid into the fluid using system.
  • a fluid transportation system is further provided, the fluid system includes at least two working modules, each of the working modules is used to transfer at least one fluid from the fluid storage assembly to the fluid using system , wherein the total time for the at least two working modules to transfer at least two fluids from the fluid storage assembly to the fluid usage system is less than that for each of the working modules to transfer one fluid from the fluid storage assembly to the fluid storage assembly. The sum of the time the fluid uses the system.
  • a fluid transportation method including:
  • a positive pressure driving method is adopted to input the sucked fluid into a fluid using system.
  • a fluid transportation method including:
  • the total time for the first working module and the second working module to transfer fluid from the fluid storage component or the another fluid storage component to the fluid using system or the other fluid using system is less than the The sum of the time taken by the first working module and the second working module to transfer fluid from the fluid storage component or the another fluid storage component to the fluid usage system or the another fluid usage system.
  • a fluid transportation method including:
  • Pushing the first fluid into the fluid usage system takes time TA2;
  • the total time T for transferring another fluid storage component to the fluid usage system or the another fluid usage system is less than the sum of TA1, TA2, TB1, TB2.
  • a fluid using device is further provided.
  • the fluid using device includes any one of the above-mentioned fluid transportation systems or any one of the above-mentioned fluid transportation methods to transport fluid.
  • the fluid transport system, method, and device provided by the embodiments of the present invention adopt a negative pressure driving method to suck fluid and adopt a positive pressure method to input the sucked fluid into a fluid using system, which can ensure that the fluid is taken out of the fluid storage assembly.
  • the quantification accuracy can ensure faster transportation of fluid to the fluid using system.
  • the fluid transportation system and method provided by the embodiments of the present invention can simultaneously use at least two working modules: a first working module and a second working module.
  • the first working module and the second working module transfer at least two fluids from a fluid storage assembly.
  • a fluid usage system is proposed and input in the two working modules.
  • the total time for the two working modules to extract two fluids from the fluid storage assembly and input into the fluid usage system is T, and the first working module removes one fluid from the fluid storage assembly
  • the time required to propose and enter the fluid usage system is TA
  • the time required for the second working module to extract another fluid from the fluid storage assembly and enter the fluid usage system is TB
  • the T is less than the sum of TA and TB, thus Make the total time of fluid transportation shorter.
  • multiple working modules are set up to transport fluids in groups, avoiding fluid cross-contamination to the greatest extent.
  • the filling liquid is used to fill the pipeline space left by the positive pressure transportation. Compared with the use of compressed gas, the quantitative accuracy of the transportation fluid is higher.
  • Fig. 1 is a schematic block diagram of a fluid transport system in the first embodiment of the present invention.
  • Figure 2- Figure 5 are schematic diagrams of different working hours of the system shown in Figure 1.
  • Fig. 6 is a specific embodiment 1 of the system shown in Fig. 1.
  • Fig. 7 is a specific embodiment 2 of the system shown in Fig. 1.
  • Fig. 8 is a specific embodiment 3 of the system shown in Fig. 1.
  • Fig. 9 is a specific embodiment 4 of the system shown in Fig. 1.
  • Fig. 10 is a specific embodiment 5 of the system shown in Fig. 1.
  • Fig. 11 is a flow chart of the fluid transportation method in the second embodiment of the present invention.
  • Fig. 12 is a flow chart of the fluid transportation method in the third embodiment of the present invention.
  • Fig. 13 is a flowchart of a fluid transportation method in the fourth embodiment of the present invention.
  • Fig. 14 is a schematic block diagram of a fluid using device in the fifth embodiment of the present invention.
  • Fig. 15 is a schematic block diagram of a fluid using device in the sixth embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a fluid transportation system in an embodiment of the present invention.
  • the fluid transportation system 1 includes a working module 2, an auxiliary module 3 and a distribution assembly 4.
  • the working module 2 is a functional unit that drives fluid transportation in the fluid transportation system 1.
  • the number of working modules 2 can be one or more.
  • Each working module 2 includes a fluid selection component 21, a fluid transfer component 22, and a power component. twenty three.
  • the auxiliary module 3 is a collection of all components in the fluid transportation system 1 that help the working module 2 to transport fluid.
  • the auxiliary module 3 includes a storage component.
  • the auxiliary module 3 includes three different types of storage components 30, namely a fluid storage component 31, a waste storage component 32, and a filling fluid storage component 33.
  • Each working module 2 is connected to the aforementioned three storage components 30 of the auxiliary module 3.
  • the number of each storage component 30 of the aforementioned three storage components 30 may be one or more. In different implementations, each storage component Each of 30 can be used by part of the working modules 2 alone, or can be used by all working modules 2 in common.
  • the distribution component 4 is a component in the fluid transport system 1 that switches different working modules 2 to transport fluid to the fluid use system 5. When the fluid transport system 1 has only one work module 2 to transport fluid to the fluid use system 5, The distribution assembly 4 may not be provided, and the working module 2 is directly connected to the fluid using system 5. When the fluid transport system 1 has N working modules (N ⁇ 2) to transport fluids to the fluid using system 5, a distribution assembly 4 needs to be provided to connect different working modules 2 to the fluid using system 5.
  • the fluid use system 5 refers to a system that uses fluid, which usually includes a reaction tank and related auxiliary components and pipes, and is the destination of the fluid transport system 1 for transporting fluids. After the fluid entering the fluid using system 5 is used for a certain purpose in the system 5, it is discharged as waste (such as waste liquid) into the waste storage assembly 32 of the auxiliary module 3 of the fluid transportation system 1 for storage.
  • waste such as waste liquid
  • the fluid using system 5 does not belong to the fluid transportation system 1, so the internal fluid transportation and replacement solutions will not be introduced in this application.
  • the power assembly 23 is used to manufacture and maintain the pressure gradient (pressure difference) in the fluid transportation system 1, so as to drive the fluid to move in the fluid transportation system 1.
  • the power assembly 23 has at least three types of fluid interfaces.
  • the first type of interface 231 is connected to the fluid transfer assembly 22.
  • the number of the first type of interface 231 is determined by the number of the fluid transfer assembly 22 connected to the power assembly 23. Determined;
  • the second type of interface 232 is connected to the filling fluid storage assembly 33, the number of the second type of interface 232 is determined by the number of paths of all the filling fluid storage assemblies 33 connected to the power assembly 23;
  • the third type of interface 233 is connected to the waste storage assembly 32.
  • the number of the third type interface 233 is determined by the number of paths of all waste storage components 32 connected to the power component 23.
  • the power component 23 can drive fluid movement in both forward and reverse directions, where the positive direction refers to the direction in which fluid flows from the power component 23 to the fluid transfer component 22, and the reverse direction refers to the fluid flow from the fluid transfer component 22. To the direction of the flow of the power unit 23.
  • the power component 23 When the power component 23 drives the fluid to flow in the forward direction, the power component 23 connects the fluid transfer component 22 and the filling fluid storage component 33, so that the filling fluid stored in the filling fluid storage component 33 can fill the space left by the fluid movement; when the power component When 23 drives the fluid to move in the reverse direction, the power assembly 23 is connected to the fluid transfer assembly 22 and the waste storage assembly 32 so that excess fluid flows into the waste storage assembly 32 as waste.
  • the power component 23 may be various types of pumps for driving fluid movement, for example, a syringe pump, a plunger pump, a diaphragm pump, a gear pump, a peristaltic pump, and so on.
  • the fluid transfer component 22 is used to store the fluid that needs to change the transportation direction.
  • the fluid transfer assembly 22 should have at least two interfaces, one interface 221 is connected to the fluid selection assembly 21 and the other interface 222 is connected to the power assembly 23.
  • the fluid transfer assembly 22 not only supports the power assembly 23 to drive the fluid in both positive and negative directions, but also supports the temporary storage of the fluid that changes the flow direction. Therefore, the fluid can be transferred from the two interfaces 221 of the fluid transfer assembly 22. , Any one of the interfaces in 222 enters, but flows out from the other interface.
  • the fluid transfer component 22 can be a container or pipe with a specific specification designed as required, or a syringe used for the operation of the syringe pump.
  • the fluid selection component 21 is used to connect different components connected to the fluid selection component 22 with each other, so as to realize the path selection of the transport fluid.
  • each fluid selection component 21 has three types of interfaces connected to different components.
  • the first type of interface 211 is connected to the fluid transfer assembly 22, and the number of the first type of interface 211 is determined by the number of connected fluid transfer assemblies 22. Decide;
  • the second type of interface 212 is connected to the distribution assembly 4, the number of the second type of interface 212 depends on the number of paths that the fluid selection assembly 21 needs to connect to the distribution assembly 4, the number of paths is usually 1;
  • the third type of interface 213 is connected to A container for storing fluid in the fluid storage assembly 31.
  • the third type interface 213 of each fluid selection component 21 can only correspond to one fluid storage container.
  • the same fluid storage container can be connected to different third type interfaces 213 on the same fluid selection component 21 at the same time, or at the same time. Connect to the third type interface 213 on the different fluid selection components 21.
  • a path connecting the fluid use system 5 can be established The fluid in the container is transported to the fluid use system 5.
  • a first-type interface 211 and a third-type interface 213 can be connected, or a first-type interface 211 and a second-type interface 212 can be connected as needed.
  • the fluid selection component 21 can be various types of solenoid valves, selection valves (such as rotary valves), or a collection of multiple solenoid valves and/or selection valves as required, or a syringe pump configuration. Used to switch the solenoid valve or selector valve head of different interfaces.
  • the distribution assembly 4 is used to connect different components connected to the distribution assembly 4 with each other, so as to realize the path selection of the fluid transportation in the fluid transportation system 1.
  • the distribution assembly 4 connects different working modules 2 with the fluid use system 5 as required. Therefore, the distribution assembly 4 has two types of interfaces connected to different components.
  • the first type of interface 411 is connected to the fluid selection system. Component 21, the number of the first type of interface 411 is determined by the number of paths of all fluid selection components 21 connected to the distribution component 4; the second type of interface 412 is connected to the fluid using system 5, and the number of the second type of interface 412 depends on the fluid The number of paths required to use the system 5 to connect to the distribution assembly 4.
  • the distribution component 4 can connect a first-type interface 411 and a second-type interface 412 according to needs during operation.
  • the distribution assembly 4 may be various types of solenoid valves, selector valves, or a collection of multiple solenoid valves and/or selector valves as required.
  • the fluid storage assembly 31 is used to store fluid that needs to be transported to the fluid using system 5.
  • the number of the fluid storage components 31 may be one or more.
  • Each fluid storage component 31 stores part or all of the fluid that needs to be transported according to the requirements of the fluid use system 5, and all the fluid storage components 31 store according to the fluid use system 5 The use demand needs to transport all the fluid to the fluid use system 5.
  • Each fluid storage component 31 may include one or more fluid storage containers, each fluid storage container stores one type of fluid, and the container may be connected to at least one fluid selection component 21 by at least one pipe.
  • the fluid storage assembly 31 may include containers of different sizes and materials, and, as required, may also include fluid needles and pipes for pumping fluid, mechanisms for controlling the elevation of the fluid needles, and temperature control components for meeting storage conditions. part.
  • the filling liquid storage component 33 is used for storing filling liquid.
  • the number of filling fluid storage components 33 can be one or more, and each filling fluid storage component 33 can supply one or more power components 23 with the filling fluid that needs to be used.
  • At least one filling fluid storage assembly 33 is required to provide filling fluid.
  • Each power component 23 can use one or more filling fluids.
  • Each filling liquid storage component 33 may include one or more containers for storing filling liquid, each container for storing filling liquid stores a kind of filling liquid, and the container may be connected to at least one power component 23 by at least one pipe.
  • Filling fluid is a special fluid required by a positive pressure fluid system.
  • the filling fluid storage assembly 33 may include containers of different sizes and materials, and, as required, may also include fluid needles and pipes for extracting filling fluid, mechanisms for controlling the elevation of the fluid needles, and Related components such as temperature control components for storage conditions.
  • the waste storage component 32 is used to store waste discharged from the fluid transportation system 1 and/or the fluid usage system 5.
  • there may be one or more waste storage components 32 and each waste storage component 32 may store one or more waste materials discharged from the power component 23 and/or waste materials discharged from the fluid use system 5.
  • Each waste storage component 32 includes one or more waste storage containers, and each waste storage container can be connected to the fluid use system 5 or the power component 23 by at least one pipe.
  • the waste storage assembly 32 may include containers of different sizes and materials, and, as required, may also include a sensor for detecting liquid level, a filter membrane for filtering peculiar smell, and a container for transferring the container.
  • Related parts such as carts.
  • each working module 2 uses the same method to transport fluid, and through the cooperation of the auxiliary module 3, a certain fluid is transported from the fluid storage assembly 31 to a certain fluid using system 5. Since the number of working modules 2 in the fluid transportation system 1 can be one or more, when a different number of working modules 2 are used for fluid transportation, the working logic of the fluid transportation system 1 is performed by a different number of working modules 2 The logic of collaborative work needs to be discussed separately according to the different numbers of work modules 2.
  • step 1 the specific process of transporting fluid for each working module can be decomposed into two steps, step 1 and step 2, which are represented by connecting lines with arrows in Figure 1 respectively.
  • Step 1 is represented by a dotted line with an arrow, which represents the process of transporting fluid from the fluid storage assembly 31 to the fluid transfer assembly 22 by means of negative pressure driving.
  • Step 1 first use the fluid selection component 21 of the working module 2 to connect the fluid to be used with the fluid transfer component 22 of the working module 2, and at the same time, the power component 23 of the working module 2 communicates with the waste storage component 32 , Forming a path starting from the fluid storage assembly 31 and sequentially passing through the fluid selection assembly 21, the fluid transfer assembly 22, the power assembly 23 and the waste storage assembly 32.
  • the power assembly 23 is activated to create a pressure gradient in the passage, so that the fluid flows out of the fluid storage assembly 31, passes through the fluid selection assembly 21 and enters the fluid transfer assembly 22. While the fluid is transported along the above-mentioned passage, the fluid discharged from the above-mentioned passage is discharged as waste through the power assembly 23 into the waste storage assembly 32 for storage.
  • Step 2 is represented by a solid line with an arrow, which represents the process of transporting fluid from the fluid transfer assembly 22 to the fluid using system 5 by means of positive pressure driving.
  • Step 2 first use the distribution assembly 4 to connect the fluid selection assembly 21 of the work module 2 that needs to transport fluid with the fluid use system 5, and at the same time connect the power assembly 23 of the work module 2 to the filling fluid storage assembly 33, forming One starts from the filling fluid storage assembly 33 and passes through the power assembly 23, the fluid transfer assembly 22, the fluid selection assembly 21, the distribution assembly 4 and the fluid use system 5 in sequence.
  • the power assembly 23 creates a pressure gradient in the passage, so that the fluid flows out of the fluid transfer assembly 22, and then passes through the fluid selection assembly 21 and the distribution assembly 4 into the fluid use system 5 in turn.
  • the filling liquid stored in the filling-liquid storage assembly 33 enters the fluid transfer assembly 22 through the power assembly 23 to fill up the space left by the fluid discharge in the above-mentioned passage.
  • any single working module 2 must perform step 1 and step 2 in sequence each time the fluid is transported. If there is only one working module 2 in the fluid transportation system 1 to transport fluid, the working module 2 needs to perform step 1 and step 2 in sequence each time the fluid is transported. If there are multiple working modules 2 in the fluid transportation system 1 that simultaneously transport fluids, the mutual restriction between them must be considered, and the following two points must be considered.
  • step 1 when each work module 2 executes step 1, it only needs to call the components in the work module to work. Therefore, it will not be affected and restricted by other work modules 2, regardless of whether other work modules 2 are executing steps. 1 or step 2.
  • the second point is that when any work module 2 executes step 2, it not only needs to call the components in the work module 2, but also needs to share a path from the distribution assembly 4 to the fluid use system 5 with other work modules 2. Therefore, every Only one working module 2 can execute step 2 at a time, other working modules 2 that need to execute step 1 can continue to execute, and other working modules 2 that need to execute step 2 must wait.
  • the working logic of the fluid transportation system 1 in this embodiment can be optimized according to the number of working modules 2 to reduce the total working time.
  • the specific analysis is as follows.
  • the working logic of the fluid transportation system 1 is the above-mentioned working mode of the single working module 2, that is, step 1 and then step 2 are executed each time the fluid is transported.
  • the total time to execute the transportation of fluid A and fluid B in sequence is shown in Figure 2, where TA1 is the time to perform step 1 when transporting fluid A, TA2 is the time to perform step 2 when transporting fluid A, and TB1 is the time to perform step 1 when transporting fluid B.
  • TB2 is the time for transporting fluid B to perform step 2. Therefore, the total execution time t is:
  • the first working module 2a is used to transport fluid A and fluid B in sequence.
  • the second working module 2b can wait or execute step 1 of the subsequent fluid during this process.
  • the total time for carrying out the sequential transport of fluid A and fluid B is shown in Figure 3.
  • TA1 is the time for transporting fluid A to perform step 1
  • TA2 is the time for transporting fluid A to perform step 2
  • TB1 is the time for transporting fluid B to perform step 1.
  • TB2 is the time for transport fluid B to perform step 2. Therefore, the total execution time t is:
  • the first working module 2a and the second working module 2a' sequentially transport fluid A and fluid B.
  • step 1 of transporting fluid A and fluid B can be performed by the first working module 2a and the second working module 2a' Start execution at the same time respectively.
  • TA1 is the step of transporting fluid A.
  • TA2 is the time for transport fluid A to perform step 2
  • TB1 is the time for transport fluid B to perform step 1
  • TB2 is the time for transport fluid B to perform step 2. Therefore, as long as TA1+TA2>TB1 is satisfied, no matter TA1>TB1 or TA1 ⁇ TB1, the total execution time t is:
  • TA1 is the time for transport fluid A to perform step 1
  • TA2 is the time for transport fluid A to perform step 2
  • TB1 is the time for transport fluid B to perform step 1
  • TB2 is the time for transport fluid B to perform step 2. Therefore, as long as TA1+TA2 ⁇ TB1 is satisfied, the total execution time t is:
  • each working module in the present invention is the same. Therefore, the working module 2a and the working module 2a' only represent the difference between the two working modules when transporting different fluids, not between them. There are differences in settings or functions.
  • the fluid transportation system 1 has more than two working modules 2, and each working module 2 can transport more types of fluids, the greater the flexibility gained when performing continuous transportation of more than 2 fluids and the greater the total execution time Short, the theoretical total time for transporting multiple fluids in sequence will be infinitely close to the sum of the time for each fluid to perform step 2 only.
  • flexibility issues must be considered, but also various factors such as cross-contamination and fluid consumption. These factors will affect the number of working modules 2 of the fluid transportation system 1, or each working module. 2
  • the choice of connecting different types of fluids, and the restrictions brought about by different design requirements and the sequence requirements of different transport fluids will cause the fluid transport system 1 to produce different optimal working hours.
  • the working logic of the fluid transportation system 1 is the above-mentioned working mode of the single working module 2, that is, step 1 is executed first, and then step 2 is executed every time the fluid is transported;
  • step 2 of transporting each fluid try to ensure that step 1 of transporting the fluid has been completed
  • Each working module 2 immediately starts to perform step 1 of transporting the next fluid after completing step 2 of transporting each fluid.
  • the fluid transportation system 1 of this embodiment has the following advantages:
  • Working module 2 simultaneously uses negative pressure and positive pressure to drive fluid for transportation.
  • the fluid transport process of the working module 2 can be decomposed into steps 1 and 2, where step 1 is driven by negative pressure to transport the fluid from the fluid storage assembly 31 to the fluid transfer assembly 22, and step 1 can ensure that the fluid is transferred from the fluid storage assembly 31 Quantitative accuracy when taken out;
  • Step 2 is a positive pressure drive to transport the fluid from the fluid transfer assembly 22 to the fluid using system 5.
  • Step 2 can achieve a faster fluid transport than a negative pressure drive under the same pipeline conditions, so that the fluid can be transported faster than the negative pressure drive.
  • the transportation system 1 has a speed advantage compared to a fluid transportation system that uses only negative pressure to transport fluid.
  • the filling fluid auxiliary work module 2 to transport fluid under positive pressure.
  • the filling liquid is used when the working module 2 performs step 2, and is used to fill the pipeline space while transporting the fluid under positive pressure. Since the filling liquid is liquid and its compressibility is negligible, the working module 2 of the fluid transport system 1 has a higher quantitative accuracy of transport fluid than a fluid transport system that uses compressed gas to transport the fluid under positive pressure.
  • the filling fluid can be a safer and lower cost fluid, cleaning fluid or pure water, which can also play a role in flushing the pipeline after the fluid is transported, avoiding the cross-contamination of the two fluids before and after.
  • Setting up multiple working modules 2 can further shorten the total time for transporting fluids.
  • Multiple working modules 2 can change the working logic of the transport fluid from serial logic to parallel logic, making it possible for multiple working modules 2 to work at the same time, thereby optimizing the total time of transporting fluid. For example, when one work module 2 performs step 2, another work module 2 can perform step 1, so that the time for another work module 2 to perform step 1 is eliminated in the total time, so that the total work time of the fluid transportation system 1 The time is shorter.
  • Setting multiple working modules 2 can also group fluids to avoid cross-contamination of fluids to the greatest extent.
  • different working modules 2 can flexibly set the types of fluids they support, so that a variety of different fluids can be grouped, so that each group of fluids can only share
  • the piping between the distribution assembly 4 and the fluid usage system 5 minimizes the probability of fluid cross-contamination.
  • the fluid transport system 1 is further described below with specific embodiments.
  • Example 1 The fluid transport system 1 has a working module
  • the fluid transportation system 1 includes a working module 2 and an auxiliary module 3.
  • the working module 2 includes a fluid selection component 21, a fluid transfer component 22 and a power component 23;
  • the auxiliary module 3 includes a fluid storage component 31, a waste storage component 32 and a filling fluid storage component 33.
  • the power component 23 uses a syringe pump 203
  • the fluid selection component 21 uses a selector valve 201
  • the fluid transfer component 22 uses a fluid transfer pipeline 202 between the selector valve 201 and the syringe pump 203
  • the fluid storage component 31 uses a fluid silo 301.
  • the waste storage component 32 adopts a waste bucket 302
  • the filling liquid storage component 33 adopts a filling liquid bucket 303.
  • the power component 23 is a syringe pump 203.
  • At least two distributing ports 2031 and 2032 are provided on the syringe pump 203.
  • the distributing port 2031 is connected to the common port 2011 of the selector valve 201 through a pipe, and the distributing port 2032 is connected to the filling liquid barrel 303 through at least one pipe.
  • a distributing interface 2033 needs to be provided, and one or more pipes are used to connect the waste bucket 302 through the distributing interface 2033. In other embodiments, the distributing interface 2033 and the connection to the waste bucket 302 may also be omitted.
  • Each distributing interface 2031, 2032 of the syringe pump 203 needs to be able to communicate with the syringe 2034 in the syringe pump 203 individually.
  • Figure 6 shows a syringe pump 203 with three distributing ports 2031, 2032, 2033, a syringe pump 203 with more distributing ports can be used as needed, and these distributing ports of the syringe pump 203 can be connected as needed
  • the common port 2011 of the selection valve 201, all the filling liquid barrels 303 used by the syringe pump 203, and all the waste barrels 302 used by the syringe pump 203 are selected.
  • the fluid selection component 21 is a selection valve 201.
  • the selection valve 201 has a common port 2011 and a plurality of position ports 2012.
  • the common port 2011 of the selector valve 201 is connected to the dispensing interface 2031 of the syringe pump 203 through a pipe, and the pipe between the selector valve 201 and the syringe pump 203 is the fluid transfer pipe 202.
  • the position ports 2012 of the selection valve 201 are respectively connected to all the containers storing fluid in the fluid storage 301 and to the atmosphere through pipes.
  • the position port 2012 connected to the atmosphere can be used for backup, or can also be used to suck a certain amount of air from the atmosphere as an isolation gas between fluids.
  • the selector valve 201 shown in FIG. 6 is a 6-position 7-port selector valve.
  • the selector valve 201 has six position ports 2012, including four position ports 2012 to connect to the four fluids in the fluid container 301, one position port 2012 to connect to the fluid use system 5, and one position port 2012 to connect to the atmosphere.
  • the selector valve 201 with a different number of position ports 2012 can be used. For the case where the number of fluid containers is N, the number of position ports 2012 that the selector valve 201 needs to have is at least N+2.
  • the fluid transfer pipe 202 between the selector valve 201 and the syringe pump 203 is used as the fluid transfer component 22.
  • the fluid transfer pipe 202 is a pipe that can store and pass fluid. One end of the fluid transfer pipe 202 is connected to the interface 2031 of the syringe pump 203, and the other end is connected to the common port 2011 of the selector valve 201.
  • the internal volume of the fluid transfer pipeline 202 determines the maximum volume of the syringe pump 203 that can transport fluid in a single time.
  • the internal volume of the syringe 2034 of the syringe pump 203 must be greater than the internal volume of the fluid transfer pipeline 202.
  • Fig. 6 shows a section of fluid transfer pipeline 202. According to the difference in the maximum fluid volume transported by the syringe pump 203 in a single time, in different embodiments, fluid transfer pipelines 202 with different internal volumes can be selected.
  • a fluid cartridge 301 is used as the fluid storage assembly 31.
  • the fluid compartment 301 contains a plurality of containers for storing fluid, and each container is connected to a different position port 2012 of the selector valve 201 through a pipe.
  • FIG. 6 shows a fluid container 301 with four containers R1 to R4, and each container R1 to R4 is connected to the position port 2012 of the selector valve 201 through a pipe.
  • fluid bins 301 with different numbers of containers can be used.
  • the filling liquid barrel 303 is used as the filling liquid storage component 33.
  • the filling liquid tank 303 is connected to the dispensing interface 2032 of the syringe pump 203 through at least one pipe.
  • FIG. 6 shows a case where the syringe pump 203 uses a filling liquid tank 303.
  • a waste bucket 302 is used as the waste storage component 32.
  • the waste barrel 302 is connected to the fluid using system 5 through a pipe to collect waste discharged from the fluid using system 5, and the waste barrel 302 is also connected to the dispensing interface 2033 of the syringe pump 203 through one or more pipes to collect the waste discharged from the syringe pump 203.
  • FIG. 6 shows a situation where the syringe pump 203 and the fluid use system 5 share a waste bucket 302.
  • the injection pump 203 and the fluid use system 5 may use one or more waste barrels 302 separately, or the fluid use system 5 may use one or more waste barrels 302 separately for injection.
  • the pump 203 does not use the waste bucket 302.
  • Example 2 The fluid transport system 1 has a working module
  • the fluid transportation system 1 includes a working module 2 and an auxiliary module 3.
  • the working module 2 includes a fluid selection component 21, a fluid transfer component 22 and a power component 23, and the auxiliary module 3 includes a fluid storage component 31, a waste storage component 32 and a filling fluid storage component 33.
  • the power component 23 is an injection pump 203
  • the fluid selection component 21 uses a combination of a selection valve 201a and a solenoid valve 201b
  • the fluid transfer component 22 uses a fluid transfer pipeline 202 between the solenoid valve 201b and the injection pump 203
  • fluid storage The component 31 uses a fluid silo 301
  • the waste storage component 32 uses a waste bucket 302
  • the filling liquid storage component 33 uses a filling liquid bucket 303.
  • a syringe pump 203 is used as the power assembly 23.
  • At least two distributing ports 2031 and 2032 are provided on the syringe pump 203.
  • the distributing port 2031 is connected to the common port 2011a of the selector valve 201a through a pipe, and the distributing port 2032 is connected to the filling liquid barrel 303 through at least one pipe.
  • a distributing interface 2033 needs to be provided, and one or more pipes are used to connect the waste bucket 302 through the distributing interface 2033. In other embodiments, the distributing interface 2033 and the connection to the waste bucket 302 may also be omitted.
  • FIG. 7 shows a syringe pump 203 with three distributing ports 2031, 2032, 2033, a syringe pump 203 with more distributing ports can be used as needed, and these distributing ports of the syringe pump 203 can be connected as needed
  • the common port 2011a of the selection valve 201a, all the filling liquid barrels 303 used by the syringe pump 203, and all the waste barrels 302 used by the syringe pump 203 are selected.
  • the solenoid valve 201b and the selector valve 201a are used as the fluid selector component 21.
  • the solenoid valve 201b has one common port 2011b and two position ports 2012b.
  • the common port 2011b of the solenoid valve 201b is connected to the distributing interface 2031 of the syringe pump 203 through a pipeline, and the pipeline between the solenoid valve 201b and the syringe pump 203 is the fluid transfer pipeline 202.
  • the position port 2012b of the solenoid valve 201b is respectively connected to the common port 2011a of the selection valve 201a and the fluid use system 5 through pipes.
  • the selection valve 201a has a common port 2011a and a plurality of position ports 2012a.
  • the common port 2011a of the selector valve 201a is connected to the position port 2012b of the solenoid valve 201b through a pipe; the position port 2012b of the selector valve 201a is respectively connected to all the containers storing fluid in the fluid warehouse 301 and the atmosphere through a pipe.
  • the position port 2012b connected to the atmosphere can be used for backup, or can also be used to suck a certain amount of air from the atmosphere as a separation gas between fluids.
  • the solenoid valve 201b shown in FIG. 7 is a 2-position 3-port solenoid valve, and the selector valve 201a shown is a 6-position 7-port selector valve.
  • the solenoid valve 201b has two position ports 2012b, one position port 2012b is a normally open port, and the other position port 2012b is a normally closed port, respectively connecting the common port 2011a of the selector valve 201a and the fluid use system 5.
  • the selector valve 201a has six position ports 2012a, of which four position ports 2012a are connected to the four fluids in the fluid compartment 301, and two position ports 2012a are connected to the atmosphere.
  • the selector valve 201a with a different number of position ports 2012a can be used according to the number of fluid containers. For the case where the number of fluid containers is N, the number of position ports 2012a that the selector valve 201a needs to have is at least N+1 .
  • the fluid transfer pipe 202 between the common port 2011b of the solenoid valve 201b and the syringe pump 203 is used as the fluid transfer component 22.
  • the fluid transfer pipe 202 is a pipe that can store and pass fluid.
  • One end of the fluid transfer pipe 202 is connected to the dispensing interface 2031 of the syringe pump 203, and the other end is connected to the common port 2011b of the solenoid valve 201b.
  • the internal volume of the fluid transfer pipeline 202 determines the maximum volume of the fluid transported by the syringe pump 203 at a time, and the internal volume of the syringe 2034 of the syringe pump 203 needs to be greater than the internal volume of the fluid transfer pipeline 202.
  • Fig. 7 shows a section of the fluid transfer pipeline 202. According to the difference in the maximum fluid volume transported by the syringe pump 203 in a single pass, in different embodiments, fluid transfer pipelines 202 with different internal volumes can be selected.
  • the fluid storage 301 is used as the fluid storage assembly 31.
  • the fluid bin 301 contains a plurality of containers for storing fluid, and each container is connected to a different position port 2012a of the selector valve 201a through a pipe.
  • Fig. 7 shows a fluid compartment 301 with four containers R1 to R4, and each of the containers R1 to R4 is connected to the position port 2012a of the selector valve 201a through a pipe.
  • fluid bins 301 with different numbers of storage containers may be used depending on the number of fluids.
  • the filling liquid barrel 303 is used as the filling liquid storage component 33.
  • the filling liquid tank 303 is connected to the dispensing interface 2032 of the syringe pump 203 through at least one pipe.
  • FIG. 7 shows a case where the syringe pump 203 uses a filling liquid tank 303.
  • the waste bucket 302 is used as the waste storage component 32.
  • the waste barrel 302 is connected to the fluid using system 5 through a pipe to collect waste discharged from the fluid using system 5, and the waste barrel 302 is also connected to the dispensing interface 2033 of the syringe pump 203 through one or more pipes to collect the waste discharged from the syringe pump 203.
  • FIG. 7 shows a situation where the syringe pump 203 and the fluid use system 5 share a waste bucket 302.
  • the syringe pump 203 and the fluid use system 5 may use one or more waste barrels 302 separately, or the fluid use system may use one or more waste barrels separately but the syringe pump does not. Use waste bins.
  • Embodiment 3 The fluid transport system 1 has a working module
  • the fluid transportation system 1 includes a working module 2 and an auxiliary module 3.
  • the working module 2 includes a fluid selection component 21, a fluid transfer component 22 and a power component 23, and the auxiliary module 3 includes a fluid storage component 31, a waste storage component 32 and a filling fluid storage component 33.
  • the power component 23 is a syringe pump 203
  • the fluid selection component 21 uses a combination of a selection valve 201a, a three-way joint 201c, and a one-way valve (or check valve or check valve) 201d
  • the fluid transfer component 22 uses a combination of three
  • the fluid storage assembly 31 adopts a fluid storage 301
  • the filling liquid storage assembly 33 adopts a filling liquid barrel 303.
  • a syringe pump 203 is used as the power assembly 23.
  • At least two distributing ports 2031 and 2032 are provided on the syringe pump 203.
  • the distributing port 2031 is connected to the common port 2011a of the selector valve 201a through a pipe, and the distributing port 2032 is connected to the filling liquid barrel 303 through at least one pipe.
  • a distributive interface 2033 needs to be used, and one or more pipes are used to connect the waste barrel 302 through the distributive interface 2033. In other embodiments, the distributive interface 2033 and the waste barrel 302 may also be omitted.
  • FIG. 8 shows a syringe pump 203 with three distributing ports 2031, 2032, 2033, a syringe pump 203 with more distributing ports can be used as needed, and these distributing ports of the syringe pump 203 can be connected as needed
  • the common port 2011a of the selection valve 201a, all the filling liquid barrels 303 used by the syringe pump 203, and all the waste barrels 302 used by the syringe pump 203 are selected.
  • the three-way joint 201c and the one-way valve 201d cooperate with the selection valve 201a as the fluid selection component 21.
  • the three-way joint 201c has three ports 2011c, 2012c and 2013c.
  • One port 2011c is connected to the fluid using system 5 through a one-way valve 201d.
  • the one-way valve 201d allows passage from the three-way joint 201c to the fluid using system.
  • the other interface 2012c is connected to the common port 2011a of the selector valve 201a through a one-way valve 201d, and the direction allowed by the one-way valve 201d is from the common port 2011a of the selector valve 201a to the three-way joint 201c; the other interface 2013c It is connected to the interface 2031 of the injection pump 203 through a pipe, and the pipe between the three-way joint 201c and the injection pump 203 is the fluid transfer pipe 202.
  • the selection valve 201a has a common port 2011a and a plurality of position ports 2012a.
  • the common port 2011a of the selection valve 201a is connected to the inlet of a one-way valve 201d through a pipeline; the position port 2012a of the selection valve 201a is connected to all the containers storing fluid in the fluid warehouse 301 and the atmosphere through a pipeline.
  • the position port 2012a connected to the atmosphere can be used for backup, or can also be used to inhale a certain amount of air from the atmosphere as an isolation gas between fluids.
  • FIG. 8 shows that a three-way joint 201c and two one-way valves 201d cooperate with a selection valve 201a as the fluid selection component 21.
  • the selector valve 201a has six position ports 2012a, of which four position ports 2012a are connected to the four fluids in the fluid compartment 301, and two position ports 2012a are connected to the atmosphere.
  • the selector valve 201a with a different number of position ports 2012a can be used according to the number of fluid containers. For the case where the number of fluid containers is N, the number of position ports 2012a that the selector valve 201a needs to have is at least N+1 .
  • the fluid transfer pipe 202 between the three-way joint 201c and the injection pump 203 is used as the fluid transfer component 22.
  • the fluid transfer pipe 202 is a pipe that can store and pass fluid. One end of the fluid transfer pipe 202 is connected to the interface 2031 of the injection pump 203, and the other end needs to be connected to an interface 2013c of the three-way joint 201c.
  • the internal volume of the fluid transfer pipeline 202 determines the maximum volume of the fluid transported by the syringe pump 203 at a time, and the internal volume of the syringe 2034 of the syringe pump 203 needs to be greater than the internal volume of the fluid transfer pipeline 202.
  • Fig. 8 shows a section of the fluid transfer pipeline 202. According to the difference in the maximum fluid volume transported by the syringe pump 203 in a single time, in different embodiments, the fluid transfer pipeline 202 with different internal volumes can be selected.
  • the fluid storage 301 is used as the fluid storage assembly 31.
  • the fluid bin 301 contains a plurality of containers for storing fluid, and each container is connected to a different position port 2012a of the selector valve 201a through a pipe.
  • Fig. 8 shows a fluid compartment 301 with four containers R1 to R4, and each container R1 to R4 is connected to the position port 2012a of the selector valve 201a through a pipe.
  • fluid bins 301 with different numbers of storage containers may be used depending on the number of fluids.
  • the filling liquid barrel 303 is used as the filling liquid storage component 33.
  • the filling liquid barrel 303 is connected to the interface 2032 of the syringe pump 203 through at least one pipe.
  • FIG. 7 shows a case where the syringe pump 203 uses a filling liquid tank 303.
  • the waste bucket 302 is used as the waste storage component 32.
  • the waste barrel 302 is connected to the fluid using system 5 through a pipe to collect waste discharged from the fluid using system 5, and the waste barrel 302 is also connected to the interface 2033 of the syringe pump 203 through one or more pipes to collect waste discharged from the syringe pump 203.
  • FIG. 7 shows a situation where the fluid use system 5 and the syringe pump 203 share a waste bucket 302.
  • the fluid use system 5 and the syringe pump 203 may use one or more waste barrels 302 separately, or the fluid use system may use one or more waste barrels separately but the syringe pump does not. Use waste bins.
  • Example 4 The fluid transport system 1 has two working modules
  • the fluid transportation system 1 includes two working modules 2, an auxiliary module 3 and a distribution assembly 4.
  • Each working module 2 includes a fluid selection component, a fluid transfer component and a power component;
  • the auxiliary module 3 includes a fluid storage component 31, a waste storage component 32 and a filling fluid storage component 33.
  • the power component uses a syringe pump,
  • the fluid selection component uses a selector valve,
  • the fluid transfer component uses a fluid transfer pipeline between the selector valve and the injection pump, and the fluid storage component 31 uses a fluid silo.
  • This embodiment includes a fluid silo 301a.
  • the waste storage component 32 uses a waste bucket 302
  • the filling liquid storage component 33 uses a filling liquid bucket 303
  • the distribution component 4 uses a combination of a three-way joint 41 and a one-way valve 42.
  • the two working modules 2 are respectively called a first working module 2a and a second working module 2a', and the power components in the first working module 2a are called first power components 23a, fluid selection
  • the component is called the first fluid selection component 21a
  • the fluid transfer component is called the first fluid transfer component 22a
  • the injection pump is called the first injection pump 203a
  • the selection valve is called the first selection valve 201a
  • the fluid transfer pipeline is called the first fluid.
  • Transfer pipeline 202a the power component in the second working module 2a' is called the second power component 23a', the fluid selection component is called the second fluid selection component 21a', the fluid transfer component is called the second fluid transfer component 22a', injection
  • the pump is called the second injection pump 203a', the selection valve is called the second selection valve 201a', and the fluid transfer pipeline is called the second fluid transfer pipeline 202a'.
  • the first working module 2a is connected to the fluid warehouse 301a
  • the second working module 2a' is connected to the fluid warehouse 301a'
  • the first working module 2a and the second working module 2a' share the filling liquid bucket 303 and the waste bucket 302
  • the first working module 2a and the second working module 2a' are both connected to the fluid use system 5 through the distribution assembly 4.
  • connection between the first working module 2a and the fluid warehouse 301a, the filling liquid barrel 303, and the waste barrel 302 and the connection and operation of the internal components are the same as those in the aforementioned embodiment, and the second working module 2a'
  • connection with the fluid silo 301a', the filling liquid barrel 303, and the waste barrel 302 and the connection and operation of the internal components are the same as those in the above-described embodiment, therefore, the related description is omitted here. Only the differences between this embodiment and the previous embodiment will be described below.
  • the filling liquid barrel 303 is respectively connected to the interface of the first injection pump 203a and the second injection pump 203a' through at least one pipe. In other embodiments, depending on the actual situation, one or more filling liquid barrels 303 may be used separately for each of the first syringe pump 203a and the second syringe pump 203a'.
  • the waste barrel 302 is connected to the fluid use system 5 through a pipe, collects waste discharged from the fluid use system 5, and is also connected to the first injection pump 203a and the second injection pump 203a' through one or more pipes.
  • the interface collects waste discharged from the first injection pump 203a and the second injection pump 203a'.
  • the fluid using system 5 shares a waste bucket 302 with the first syringe pump 203a and the second syringe pump 203a'.
  • the fluid use system 5 can also use one or more waste barrels 302 alone, while the first syringe pump 203a and the second syringe pump 203a' do not use the waste barrel 302, or fluid
  • the use system 5 and the first syringe pump 203a and the second syringe pump 203a' each use one or more waste barrels 302 separately.
  • a three-way structure composed of a three-way joint 41 and a one-way valve 42 is used as the distribution assembly 4.
  • the three-way joint 41 has three ports 411, 412, and 413, of which the port 411 is connected to the fluid using system 5 through a pipe, and the ports 412, 413 are respectively connected to the first selection valve 201a or the second selection valve 201a through a one-way valve 42 'Common port, the direction allowed for each one-way valve 42 is from the corresponding common port of the first selector valve 201a or second selector valve 201a' to the three-way joint 41.
  • FIG. 9 shows the connection mode of two one-way valves 42 and a three-way joint 41.
  • a 2-position 3-port solenoid valve can also be used instead of the three-way structure.
  • the solenoid valve has a common port and two position ports.
  • the common port is connected to the fluid through a pipe.
  • the two position ports are respectively connected to the common ports of the first selector valve 201a and the second selector valve 201a'.
  • Embodiment 5 The fluid transportation system 1 has six working modules
  • the fluid transportation system 1 includes six working modules 2, an auxiliary module 3 and a distribution assembly 4.
  • Each working module 2 includes a fluid selection component, a fluid transfer component and a power component.
  • the auxiliary module 3 includes a fluid storage component 31, a waste storage component 32 and a filling fluid storage component 33.
  • the fluid storage component 31 adopts a fluid warehouse 301, which includes six containers R1 to R6; the waste storage component 32 adopts a waste bucket 302; the filling liquid storage component 33 adopts a filling liquid bucket 303; and the distribution component 4 adopts a selection valve 43.
  • Each working module 2 uses the syringe pump 20 as the power component, fluid transfer component, and fluid distribution component of the working module 2 at the same time.
  • the syringe pump 20 itself serves as the power component, and the syringe 2034 of the syringe pump 20 serves as the fluid transfer component.
  • the valve head of the syringe pump 20 is used as a fluid distribution component. Therefore, only one syringe pump 20 can realize the function of a complete working module 2.
  • At least three distributive ports 2031, 2032, and 2033 are provided on the syringe pump 20.
  • the port 2031 is connected to the position port 432 of the selector valve 43 through a pipe
  • the port 2032 is connected to the filling liquid tank 303 through at least one pipe
  • the port 2033 is connected through at least one pipe.
  • the syringe pump 20 is not connected to the waste bucket 302.
  • the syringe pump 20 can also be provided with an interface ( Not shown) is connected to the waste bucket 302.
  • the syringe 2034 in the syringe pump 20 serves as a fluid transfer component, and the internal volume of the syringe 2034 determines the maximum volume of the fluid that the syringe pump 20 can transport at a time.
  • Figure 10 shows six syringe pumps with three distributing ports 2031, 2032, and 2033. According to needs, in other embodiments, a syringe pump 20 with more distributing ports can be used. The syringe pump 20 passes through these ports.
  • the fluid storage 301 is used as the fluid storage assembly 31.
  • the fluid bin 301 contains a plurality of containers for storing fluid, each container is connected to the dispensing interface 2033 of the syringe pump 20 through a pipe, wherein any container can be connected to a different dispensing interface 2033 of the same syringe pump 20, or it can be connected Dispensable interface 2033 to a different syringe pump 20.
  • Fig. 10 shows a fluid compartment 301 with six containers R1 to R6. Each container R1 to R6 in the fluid compartment 301 is connected to a dispensing interface 2033 of a syringe pump 20 through a pipe.
  • fluid bins 301 with different numbers of storage containers can be used, and each fluid bin 301 has a different number of containers for storing fluid.
  • the filling liquid barrel 303 is used as the filling liquid storage component 33.
  • the filling liquid barrel 303 is respectively connected to the dispensing interface 2032 of each syringe pump 20 through at least one pipe.
  • FIG. 10 shows a case where six syringe pumps 20 share a filling liquid tank 303. In other embodiments, depending on the actual situation, one or more filling liquid barrels 303 may be used separately for each syringe pump 20.
  • the waste liquid bucket 302 is used as the waste liquid storage component 32.
  • the waste liquid bucket 302 is connected to the reagent using system 5 through a pipe to collect the waste liquid discharged from the reagent using system 5.
  • the waste liquid bucket 302 may also be connected to each syringe pump 20 through one or more pipes. Distributed interface to collect the waste liquid discharged from each syringe pump 20.
  • FIG. 10 shows a case where the reagent use system 5 uses one waste liquid tank 302, and all the syringe pumps 20 do not use the waste liquid tank 302. In other embodiments, depending on the actual situation, the reagent use system 5 and all the syringe pumps 20 may share a waste liquid bucket 302, or use one or more waste liquid buckets 302 separately.
  • the selector valve 43 is used as the distribution component 4.
  • the selection valve 43 has a common port 431 and a plurality of position ports 432.
  • the common port 431 of the selector valve 43 is connected to the fluid use system 5 through a pipe.
  • the position port 432 of the selector valve 43 is respectively connected to the distributing interface 2031 of each syringe pump 20 through a pipe.
  • the selector valve 43 is a 6-position 7-port selector valve.
  • the selector valve 43 has six position ports 432, and each position port 432 is connected to a dispensing interface 2031 of a syringe pump 20.
  • the selector valve 43 with a different number of position ports 432 can be used depending on the number of syringe pumps 20.
  • the number of position ports 432 that the selector valve 43 needs to have is at least N.
  • the second embodiment of the present invention also provides a fluid transportation method, the fluid transportation method includes steps S111 and S112, wherein, step S111 is: sucking fluid by a negative pressure driving method; step S112 is: passing The positive pressure driving method feeds the sucked fluid into the fluid using system.
  • step S111 may further include: establishing a connection between a power component, a fluid transfer component, and a fluid storage component, and start the power component to suck fluid from the fluid storage component and temporarily store it in the fluid transfer component, and cut off all the connections.
  • the connection of the power component, the fluid transfer component and the fluid storage component may further include: establishing a connection between a power component, a fluid transfer component, and a fluid storage component, and start the power component to suck fluid from the fluid storage component and temporarily store it in the fluid transfer component, and cut off all the connections.
  • step S112 may further include: establishing a connection between the power component, the fluid transfer component and the fluid using system, and activating the power component to push the fluid temporarily stored in the fluid transfer component to flow into the fluid using system .
  • step S111 may further include: step a) establishing a connection between the first working module and the fluid storage component, activating the first working module to suck fluid from the fluid storage component, and cutting off the first working module and the fluid storage component after completion. Connecting the fluid storage component; and step b) establishing a connection between a second working module and the fluid storage component, starting the second working module to suck fluid from the fluid storage component, and cutting off the second The connection between the working module and the fluid storage assembly.
  • the step a) and step b) can be executed in parallel.
  • step S112 may further include: step c) establishing a connection between the first working module and a fluid using system, and activating the first working module to push the sucked fluid into the fluid using system; and step d ) Establish a connection between the second working module and the fluid usage system, and activate the second working module to push the sucked fluid into the fluid usage system.
  • step b) and the execution of step a) at least partially overlap on the time axis
  • step c) at least partially overlap on the time axis
  • the total time taken to execute steps a), b), c), and d) is T
  • the time taken to execute step a) is TA1
  • the time taken to execute step b) is TB1
  • the time taken to execute step c) is TA2
  • the time taken to execute step d) is TB2, where T ⁇ TA1+TA2+TB1+TB2.
  • the third embodiment of the present invention also provides a fluid transportation method.
  • the execution order of some steps of the method can be changed, and some steps can be executed in parallel.
  • the fluid transportation method includes:
  • Step S121 establishing a connection between the first working module and the fluid storage component, starting the first working module to suck fluid from the fluid storage component, and cutting off the connection between the first working module and the fluid storage component after completion;
  • Step S122 establishing a connection between the first working module and a fluid using system, and activating the first working module to push the sucked fluid into the fluid using system;
  • Step S123 Establish a connection between a second working module and the fluid storage component, start the second working module to suck fluid from the fluid storage component, and cut off the connection between the second working module and the fluid storage component after completion. connection;
  • Step S124 establishing a connection between the second working module and the fluid using system, and activating the second working module to push the sucked fluid into the fluid using system.
  • the total time for the first working module and the second working module to transfer fluid from the fluid storage assembly to the fluid using system is less than the transfer of the first working module and the second working module from the fluid storage assembly The sum of the time spent from the fluid to each of the fluid use systems.
  • step S121 and step S122 do not overlap in time
  • the execution of step S123 and step S124 do not overlap on the time axis
  • the execution of step S122 and step S124 do not overlap on the time axis
  • the execution of step S123 and step S121 At least partially overlap on the time axis
  • the execution of step S123 and step S122 at least partially overlap on the time axis.
  • the time axis represents a time sequence. Through the time axis, the sequence of events and the overlapping period of events can be defined.
  • step S121 the first working module sucks fluid from the fluid storage assembly in a negative pressure driving manner
  • step S123 the second working module adopts a negative pressure driving manner from the The fluid storage assembly sucks fluid.
  • step S122 the first working module adopts positive pressure driving to push the fluid into the fluid using system
  • step S124 the second working module adopts positive pressure driving to push The fluid enters the fluid usage system.
  • step S121 specifically includes: establishing the connection of the power component, the fluid transfer component and the fluid storage component in the first working module, and activating the power component to suck fluid from the fluid storage component and temporarily store it in the fluid storage component.
  • step S123 specifically includes: establishing the power component and the fluid transfer component in the second working module Connect with the fluid storage component, and activate the power component to suck fluid from the fluid storage component and temporarily store it in the fluid transfer component, and cut off the power component, the fluid transfer component and the fluid after completion Connection of storage components.
  • step S122 specifically includes: establishing the connection between the power component, the fluid transfer component in the first working module, and the fluid using system, and starting the power component in the first working module to absorb The fluid is pushed into the fluid using system; and step S124 specifically includes: establishing the connection between the power component, the fluid transfer component and the fluid using system in the second working module, and starting the second working module The power assembly inside pushes the sucked fluid into the fluid using system.
  • the fourth embodiment of the present invention also provides a fluid transportation method.
  • the execution order of some steps of the method can be changed, and some steps can be executed in parallel.
  • the fluid transportation method includes the steps:
  • Step S131 sucking the first fluid from the fluid storage assembly, and it takes time TA1;
  • Step S132 pushing the first fluid into the fluid using system, and it takes time TA2;
  • Step S133 sucking the second fluid from the fluid storage assembly, and it takes time TB1;
  • Step S134 pushing the second fluid into the fluid using system, and it takes time TB2;
  • the total time T for transferring the first fluid and the second fluid from the fluid storage assembly to the fluid use system is less than the sum of TA1, TA2, TB1, TB2.
  • the TB1 at least partially overlaps the TA1 on the time axis, and/or the TB1 at least partially overlaps the TA2 on the time axis.
  • the TB1 and TB2 do not overlap on the time axis, the TA1 and TA2 do not overlap on the time axis, and the TB1 and TB2 do not overlap on the time axis.
  • first fluid and the second fluid are sucked from the fluid storage assembly in a manner that the power component is driven by negative pressure, and/or the first fluid is driven by the power component in a positive pressure manner.
  • a fluid and a second fluid are pushed into the fluid using system.
  • first fluid and the second fluid may be the same fluid or different fluids, and the amount of the first fluid sucked by the power assembly is the same as or different from the amount of the second fluid.
  • the fluid transportation system and method provided by the embodiments of the present invention adopt a negative pressure driving method to suck fluid and adopt a positive pressure method to input the sucked fluid into the fluid using system, which can ensure that the fluid is taken out of the fluid storage assembly.
  • the quantitative accuracy of the time can also ensure that the fluid can be transported to the fluid using system more quickly.
  • the fluid transportation system and method provided by the embodiments of the present invention can use at least two working modules at the same time: a first working module and a second working module.
  • the first working module and the second working module combine at least two fluids.
  • a fluid usage system is extracted and imported from a fluid storage assembly, and the total time for the two working modules to extract two fluids from the fluid storage assembly and input into the fluid usage system is T, and the first working module inputs a fluid
  • the time required to extract and enter the fluid usage system from the fluid storage assembly is TA
  • the time required for the second working module to extract another fluid from the fluid storage assembly and enter the fluid usage system is TB
  • the T is less than TA and TB
  • the total time of fluid transportation is shorter.
  • multiple working modules are set up to transport fluids in groups, avoiding fluid cross-contamination to the greatest extent.
  • the filling liquid is used to fill the pipeline space left by the positive pressure transportation. Compared with the use of compressed gas, the quantitative accuracy of the transportation fluid is higher.
  • the above embodiments and embodiments all relate to the situation where one or more working modules transport fluid to a fluid usage system through a distribution assembly, wherein the working module and the distribution assembly are in a many-to-one mapping relationship, and the distribution assembly and the fluid usage system There is a one-to-one mapping relationship.
  • M M>1 fluid use systems
  • L distribution components L>1
  • N working modules N>1
  • multiple working modules can correspond to one distribution component
  • one distribution component can correspond to multiple fluid usage systems
  • multiple working modules can correspond to multiple distribution components
  • multiple distribution components can correspond to one fluid usage system.
  • step 2 input fluid into the fluid usage system
  • each work module performs step 1: sucking fluid into the fluid transfer assembly, which can be performed simultaneously with steps 1 and/or step 2 of one or more other work modules, thereby saving multiple work modules to transport fluid The overall time to fluid use system.
  • the fifth and sixth embodiments of the present invention also provide fluid use devices 6, 7 that use a fluid transport system or a fluid transport method, and the fluid use device 6 uses at least one fluid transport system.
  • 61 transport fluid the fluid transport system 61 may be the fluid transport system provided in the above embodiments and examples of the present invention, or an extended system without departing from the spirit and scope of the present invention, the fluid use device 7 adopts At least one fluid transport method 71 transports fluid.
  • the fluid transport method 71 may be the fluid transport method provided in the above-mentioned embodiment of the present invention, or an expansion method without departing from the spirit and scope of the present invention, the fluid using device 6 and 7 can be various devices or instruments that use fluids, such as gene sequencers, liquid chromatographs, biochemical analyzers, and medical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Pipeline Systems (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种流体运输系统、方法及装置,采用负压驱动方式从流体存储组件中吸取流体及采用正压驱动方式将吸取的所述流体输入流体使用系统,另外,使用至少两个工作模块运输流体至流体使用系统,每一工作模块运输流体的过程被切分为吸流体进入流体中转组件及推流体进入流体中转组件的两个过程,每一工作模块吸流体的过程可以其他任一工作模块吸流体及/或推流体的过程在时间轴上至少部分重叠。利用本发明,提高了流体运输的精准度与速度。

Description

流体运输系统、方法及应用该系统、方法的流体使用装置 技术领域
本发明涉及流体控制技术领域,尤其涉及一种流体运输系统、方法及应用该系统、方法的流体使用装置。
背景技术
在生物、化学或医疗等领域,常见的仪器是以生物或化学反应的核心原理为基础设计。参与生物或化学反应的物质(如试剂)在物理学上通常为液态或气态,并统称为流体。为了实现仪器所需要进行的生物或化学反应,仪器中通常需要使用一些容器作为样本和流体的反应池,并且仪器中还需要设置可以向反应池中按照要求依次定量运输不同的流体的流体运输系统。
在设计流体运输系统时,需要开发或选择性能合适的流体器部件,设计合理的流动布局和运行逻辑,以满足仪器中的生物或化学反应对运输流体的速度、压力、精度、准确度和流量脉动等多方面的要求。
从原理上说,流体运输系统是通过在流动方向上制造和维持从上游到下游的压力梯度(压力差)驱动流体运动。因此在驱动流体运动时,主要的设计思路分为两种,即正压驱动和负压驱动。正压驱动是指在流动路径的上游维持一个稳定的最高压力源,而下游连通的流体存在一个与大气接触的自由表面,如此整个流动路径上的压力都高于大气压。负压驱动是指在流动路径的下游维持一个稳定的最低压力源,而上游连通的流体存在一个与大气接触的自由表面,如此整个流动路径上的压力都低于大气压。然,无论是正压驱动还是负压驱动,在设计时都会受到多种条件的制约。
当采用负压驱动时,一般是将流体进入的管道放在上游,反应池放在中间,而制造和维持压力梯度的设备放在下游。负压驱动对于运输多种流 体进入反应池的情况有较大优势,流体进入反应池前的管道结构相对简单,易于冲洗干净,降低了进入反应池前不同流体间交叉污染的风险。目前,以实现单次微量和高精度运输为目标的流体运输系统,大都采用这种设计。但负压驱动的缺点在于,负压系统的压力源的极限压力是真空,因此其极限的压力梯度是一个标准大气压,限制了流体运输系统的流量,也就是最大流速。
当采用正压驱动时,一般是将流体进入的管道放在上游,使用压缩气体作用在上游流体的自由表面,反应池放在下游。正压驱动对于需要快速运输流体进入反应池的情况有较大优势,理论上正压驱动的压力源并无压力上限,可以远远超过一个标准大气压,因此流体运输系统的流量可以远超具有同样管道条件的负压驱动。目前,以实现快速运输为目标的流动运输系统,大都采用正压驱动。但正压驱动的缺点在于,虽然可以避免流体交叉污染的问题,但是由于气体的可压缩性大,使驱动流体运动的速度和精度都难以控制。
发明内容
为了解决现有技术的上述部分或全部问题以及其他潜在问题,有必要提出一种流体运输系统、流体运输方法及应用该系统和方法的流体使用装置。
第一方面,提供一种流体运输系统,所述流体运输系统采用负压驱动方式从流体存储组件中吸取流体及采用正压驱动方式将吸取的所述流体输入流体使用系统。
第二方面,再提供一种流体运输系统,所述流体系统包括至少两个工作模块,每个所述工作模块用于从所述流体存储组件中转移至少一种流体至所述流体使用系统中,其中,所述至少两个工作模块从所述流体存储组件中转移至少两种流体至所述流体使用系统的总时间小于每个所述工作模块从所述流体存储组件转移一种流体至所述流体使用系统的时间的加 总。
第三方面,提供一种流体运输方法,包括:
采用负压驱动方式吸取流体;及
采用正压驱动方式将吸取的流体输入一流体使用系统。
第四方面,再提供一种流体运输方法,包括:
a)建立第一工作模块与流体存储组件的连接,启动所述第一工作模块从所述流体存储组件吸取流体,及完毕后切断所述第一工作模块与所述流体存储组件的连接;
b)建立第二工作模块与所述流体存储组件或另一流体存储组件的连接,启动所述第二工作模块从所述流体存储组件或另一流体存储组件吸取流体,及完毕后切断所述第二工作模块与所述流体存储组件或另一流体存储组件的连接;
c)建立所述第一工作模块与一流体使用系统的连接,及启动所述第一工作模块将所吸取的流体推入所述流体使用系统;及
d)建立所述第二工作模块与所述流体使用系统或另一流体使用系统的连接,及启动所述第二工作模块将所吸取的流体推入所述流体使用系统或所述另一流体使用系统;
其中,所述第一工作模块与第二工作模块从所述流体存储组件或所述另一流体存储组件中转移流体至所述流体使用系统或所述另一流体使用系统的总时间小于所述第一工作模块与第二工作模块从所述流体存储组件或所述另一流体存储组件转移流体至所述流体使用系统或所述另一流体使用系统各自花费的时间的加总。
第五方面,再提供一种流体运输方法,包括:
从流体存储组件中吸取第一种流体,花费时间TA1;
将所述第一种流体推入流体使用系统,花费时间TA2;
从所述流体存储组件或另一流体存储组件中吸取第二种流体,花费时间TB1;
将所述第二种流体推入所述流体使用系统或所述另一流体使用系统,花费时间TB2;其中,将所述第一种流体、第二种流体从所述流体存储组件或所述另一流体存储组件转移至所述流体使用系统或所述另一流体使用系统的总时间T小于所述TA1、TA2、TB1、TB2的总和。
第六方面,再提供一种流体使用装置,所述流体使用装置包括上述任一的流体运输系统或上述任一的流体运输方法运输流体。
本发明的实施方式提供的流体运输系统、方法及装置,采用负压驱动方式吸取流体及采用正压方式将吸取的流体输入一流体使用系统中,即可保证将流体从流体存储组件中取出时的定量精度,又可保证更加快速地运输流体至流体使用系统。
本发明实施方式提供的流体运输系统与方法,可同时采用至少两个工作模块:第一工作模块与第二工作模块,第一工作模块与第二工作模块将至少两种流体从一流体存储组件中提出并输入一流体使用系统,所述两个工作模块将从两种流体从流体存储组件中提出并输入流体使用系统的总时间为T,第一工作模块将一种流体从流体存储组件中提出并输入流体使用系统所需时间为TA,第二工作模块将另一种流体从流体存储组件中提出并输入流体使用系统所需时间为TB,所述T小于TA与TB的加总,从而使流体运输的总时间更短。另,设置多个工作模块将流体分组运输,最大限度避免了流体交叉污染。采用填充液填充正压运输时留下的管道空间,相比使用压缩气体,运输流体的定量精确度更高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施方式一中的流体运输系统的方框示意图。
图2-图5是图1所示系统不同工作时间的示意图。
图6是图1所示系统的具体实施例1。
图7是图1所示系统的具体实施例2。
图8是图1所示系统的具体实施例3。
图9是图1所示系统的具体实施例4。
图10是图1所示系统的具体实施例5。
图11是本发明实施方式二中的流体运输方法流程图。
图12是本发明实施方式三中的流体运输方法流程图。
图13是本发明实施方式四中的流体运输方法流程图。
图14是本发明实施方式五中的流体使用装置的方框示意图。
图15是本发明实施方式六中的流体使用装置的方框示意图。
如下具体实施方式将结合上述附图进一步说明本发明。
主要元件符号说明
Figure PCTCN2019107591-appb-000001
Figure PCTCN2019107591-appb-000002
具体实施方式
以下将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”、“安装于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。本文所使用的术语“及/或”包括一个或多个相关的所列项目的所有的和任意的组合。
请参阅图1所示,为本发明实施方式中的流体运输系统的示意图,所述流体运输系统1包括工作模块2、辅助模块3和分配组件4。所述工作模块2是流体运输系统1中驱动流体运输的功能单元,所述工作模块2的数量可以为一个或多个,每个工作模块2包括流体选择组件21、流体中转组件22和动力组件23。所述辅助模块3是流体运输系统1中帮助工作模块2运输流体的所有组件的集合。所述辅助模块3包括存储组件,在本实施方式中,所述辅助模块3包括不同类型的三种存储组件30,分别是流体存储组件31、废料存储组件32和填充液存储组件33。每个工作模块2连接辅助模块3的上述三种存储组件30,而上述三种存储组件30中的每种存储组件30的数量可以为一或多个,在不同实施方式中,每种存储组件30中的每一个既可以被部分工作模块2单独使用,也可以被所有工作模块2共同使用。所述分配组件4是所述流体运输系统1中切换不同的工作模块2向流体使用系统5运输流体的组件,当所述流体运输系统1只有一个工作模块2向流体使用系统5运输流体时,可以不设置分配组件4,而将工作模块2直接连接到流体使用系统5。当所述流体运输系统1具有N个工作模块(N≥2)向流体使用系统5运输流体时,则需设置分配组件4将不同的工作模块2连通到流体使用系统5。
如图1所示,流体使用系统5是指对流体进行使用的系统,通常包括 反应池和相关的辅助器部件和管道,是流体运输系统1运输流体的目的地。进入流体使用系统5的流体在该系统5内进行某种目的的使用后,被作为废料(如废液)排放到流体运输系统1的辅助模块3的废料存储组件32中存储。流体使用系统5不属于流体运输系统1,因此其内部的流体运输和替换方案不在本申请中做过多介绍。
以下对本实施方式中的流体运输系统1的各组件进行详细介绍。
所述动力组件23用于制造和维持流体运输系统1内的压力梯度(压力差),从而驱动流体在流体运输系统1中运动。在本实施方式中,所述动力组件23具有至少三类流体接口,第一类接口231连接到流体中转组件22,第一类接口231的数量由动力组件23所连接的流体中转组件22的数量决定;第二类接口232连接到填充液存储组件33,第二类接口232的数量由动力组件23所连接的所有填充液存储组件33的路径数量决定;第三类接口233连接到废料存储组件32,第三类接口233的数量由动力组件23所连接的所有废料存储组件32的路径数量决定。在本实施方式中,动力组件23可以向正反两个方向驱动流体运动,其中,正方向是指流体从动力组件23向流体中转组件22流动的方向,反方向是指流体从流体中转组件22向动力组件23流动的方向。当动力组件23驱动流体正向流动时,动力组件23连通流体中转组件22和填充液存储组件33,使填充液存储组件33内存储的填充液可以填补流体运动后留下的空间;当动力组件23驱动流体反向运动时,动力组件23连接到流体中转组件22和废料存储组件32,使多余的流体作为废料流入废料存储组件32。在本实施方式中,动力组件23可以是各种类型的用于驱动流体运动的泵,例如,注射泵、柱塞泵、隔膜泵、齿轮泵及蠕动泵等。
所述流体中转组件22用于存储需要改变运输方向的流体。在本实施方式中,流体中转组件22应该具有至少两个接口,其中一个接口221连接到流体选择组件21,而另一个接口222连接到动力组件23。本实施方式中,流体中转组件22既要支持动力组件23向正反两个方向驱动流体, 又要支持对改变流动方向的流体的临时存储,因此,流体可以从流体中转组件22两个接口221、222中的任意一个接口进入,而从另外一个接口流出。流体中转组件22可以是按需设计的具有特定规格的容器或管道,也可以是注射泵工作所使用的注射器。
所述流体选择组件21用于将连接到流体选择组件22的不同组件相互连通,从而实现对运输流体的路径选择。本实施方式中,每个流体选择组件21具有三类连接到不同组件的接口,第一类接口211连接到流体中转组件22,第一类接口211的数量由所连接的流体中转组件22的数量决定;第二类接口212连接到分配组件4,第二类接口212的数量取决于流体选择组件21需要连接到分配组件4的路径数量,该路径数量通常为1;第三类接口213连接到流体存储组件31中存储流体的容器。每一流体选择组件21的第三类接口213仅能对应一个存储流体的容器,同一个存储流体的容器可以同时连接到同一个流体选择组件21上的不同的第三类接口213,也可以同时连接到不同的流体选择组件21上的第三类接口213。只要流体存储组件31中的一存储流体的容器被连接到了一个流体选择组件21上的一个第三类接口213,则在需要使用该容器内的流体时,即可建立连通流体使用系统5的路径运输该容器内的流体至流体使用系统5。流体选择组件21在工作时可以根据需要将一个第一类接口211和一个第三类接口213进行连通,或者将一个第一类接口211和一个第二类接口212进行连通。在本实施方式中,流体选择组件21可以是各种类型的电磁阀、选择阀(如旋转阀)、或者由多个电磁阀及/或选择阀按需组成的集合,或者是注射泵配置的用于切换不同接口的电磁阀或选择阀阀头。
所述分配组件4用于将连接到分配组件4的不同组件相互连通,从而实现对流体运输系统1内运输流体的路径选择。在本实施方式中,分配组件4按照需要将不同的工作模块2与流体使用系统5分别进行连通,因此,分配组件4具有两类连接到不同组件的接口,第一类接口411连接到流体选择组件21,第一类接口411的数量由所有连接到分配组件4的流体选择 组件21的路径数量决定;第二类接口412连接到流体使用系统5,第二类接口412的数量取决于该流体使用系统5需要连接到分配组件4的路径数量。分配组件4在工作时可以根据需要将一个第一类接口411和一个第二类接口412进行连通。在本实施方式中,分配组件4可以是各种类型的电磁阀、选择阀、或者是由多个电磁阀及/或选择阀按需组成的集合。
所述流体存储组件31用于存储需要运输到流体使用系统5的流体。所述流体存储组件31的数量可以为一个或多个,每个流体存储组件31存储按照流体使用系统5的需求需要运输的部分或全部流体,所有的流体存储组件31存储按照流体使用系统5的使用需求需要运输至流体使用系统5的全部流体。每个流体存储组件31可以包含一或多个存储流体的容器,每个存储流体的容器存储一种流体,并且所述容器可以由至少一个管道连接到至少一个流体选择组件21。流体存储组件31可以包括不同尺寸和材质的容器,并且,根据需要,还可以包括用于抽取流体的流体针和管道、控制流体针升降的机构、以及用于满足存储条件的温度控制部件等关联部件。
所述填充液存储组件33用于存储填充液。在本实施方式中,填充液存储组件33的数量可以是一个或多个,每个填充液存储组件33可以向一个或更多的动力组件23供给需要用到的填充液,每个动力组件23需要至少一个填充液存储组件33提供填充液。每个动力组件23可以使用一种或多种填充液。每个填充液存储组件33可以包括一个或多个存储填充液的容器,每个存储填充液的容器存储一种填充液,并且该容器可以由至少一个管道连接到至少一个动力组件23。填充液是正压流体系统需要的特殊流体,由于正压流体推动流体运动的需要,当工作模块2通过分配组件4向流体使用系统5推送流体时,需要填充液进入流体运输系统1,填补流体运输后留下的空间,使工作模块2的流体系统保持充满流体的状态,从而维持压力梯度。填充液不能与工作模块2运输的流体发生化学反应。在本实施方式中,填充液存储组件33可以包括不同尺寸和材质的容器,并且, 根据需要,还可包括用于抽取填充液的流体针和管道、控制流体针升降的机构、以及用于满足存储条件的温度控制部件等关联部件。
所述废料存储组件32用于存储流体运输系统1及/或流体使用系统5排出的废料。在本实施方式中,废料存储组件32可以是一个或多个,每个废料存储组件32可以存储一个或更多的动力组件23排出的废料、及/或流体使用系统5排出的废料。每个废料存储组件32包括一或多个存储废料的容器,每个存储废料的容器可以由至少一个管道连接到流体使用系统5或动力组件23。在本实施方式中,废料存储组件32可以包括不同尺寸和材质的容器,并且,根据需要,还可包括用于检测液位的传感器、用于过滤异味的滤膜、以及用于转移该容器的推车等关联部件。
以上是对流体运输系统1的功能模块和组件的详细描述和介绍。以下介绍流体运输系统1的工作逻辑。
在流体运输系统1中,每个工作模块2均是使用相同的方式运输流体,通过辅助模块3的配合,使某种流体从流体存储组件31运输到某个流体使用系统5。由于流体运输系统1中的工作模块2的数量可以为一个或多个,因此,当采用不同数量的工作模块2进行流体运输时,流体运输系统1的工作逻辑就是由不同数量的工作模块2进行协同工作的逻辑,需要根据工作模块2的不同数量进行分别讨论。
如图1所示,每一工作模块运输流体的具体过程可以被分解为两个步骤,即步骤1和步骤2,在图1中分别使用带有箭头的连接线表示。
步骤1用带有箭头的点虚线表示,代表了通过负压驱动的方式将流体从流体存储组件31运输到流体中转组件22中的过程。在执行步骤1时,首先使用该工作模块2的流体选择组件21,将需要使用的流体与该工作模块2的流体中转组件22连通起来,同时该工作模块2的动力组件23连通废料存储组件32,形成一个从流体存储组件31开始,依次经过流体选择组件21、流体中转组件22、动力组件23和废料存储组件32的通路。之后动力组件23启动,在该通路中制造压力梯度,使流体从流体存储组件 31中流出,经过流体选择组件21进入流体中转组件22。在流体沿着上述通路运输的同时,上述通路中被排出的流体通过动力组件23作为废料排入废料存储组件32中存储。
步骤2用带有箭头的实线表示,代表了通过正压驱动的方式将流体从流体中转组件22运输到流体使用系统5中的过程。在执行步骤2时,首先使用分配组件4将需要运输流体的工作模块2的流体选择组件21与流体使用系统5连通起来,同时使该工作模块2的动力组件23连通填充液存储组件33,形成一个从填充液存储组件33开始,依次经过动力组件23、流体中转组件22、流体选择组件21、分配组件4和流体使用系统5的通路。之后动力组件23在该通路中制造压力梯度,使流体从流体中转组件22中流出,依次经过流体选择组件21和分配组件4进入流体使用系统5。在流体沿着上述通路运输的同时,存储在填充液存储组件33中的填充液通过动力组件23进入流体中转组件22,填补上述通路中流体排出留下的空间。
需要强调的是,任一单个工作模块2在每次运输流体时都必须依次执行步骤1和步骤2。如果流体运输系统1中只有一个工作模块2运输流体,则该工作模块2每次运输流体都需要依次执行步骤1和步骤2。如果流体运输系统1中有多个工作模块2同时运输流体,则必须考虑它们之间相互制约的关系,主要需要考虑以下两点。
第一点,当每个工作模块2执行步骤1时,只需要调用该工作模块内的组件进行工作,因此,不会受其它工作模块2的影响和制约,无论其它的工作模块2在执行步骤1还是步骤2。
第二点,当任一工作模块2执行步骤2时,不仅需要调用该工作模块2内的组件,还需要与其它工作模块2共用一个从分配组件4到流体使用系统5的通路,因此,每次只能有一个工作模块2执行步骤2,其它需要执行步骤1的工作模块2可以继续执行,而其它需要执行步骤2的工作模块2则必须等待。
根据上述的工作模块2的工作逻辑,本实施方式中流体运输系统1的工作逻辑可以根据工作模块2数量的不同进行优化,使总的工作时间减少,具体情况分析如下。
如果流体运输系统1中只有一个工作模块2,则流体运输系统1的工作逻辑就是上述的单个工作模块2的工作方式,即每次运输流体时先执行步骤1、再执行步骤2。执行依次运输流体A和流体B的总时间如图2所示,其中,TA1为运输流体A时执行步骤1的时间,TA2为运输流体A执行步骤2的时间,TB1为运输流体B执行步骤1的时间,TB2为运输流体B执行步骤2的时间。因此,总的执行时间t为:
t=TA1+TA2+TB1+TB2。
如果流体运输系统1中只有两个工作模块2,则流体运输系统1的工作逻辑就获得了一定的灵活性,只需要考虑以下两种情况。
a):采用同一工作模块2即第一工作模块2a或第二工作模块2a’依次运输流体A和流体B;
b):采用不同工作模块2即第一工作模块2a与第二工作模块2a’依次运输流体A和流体B;
对于情况a),采用第一工作模块2a依次运输流体A和流体B,此时,第二工作模块2b在此过程中可以等待或执行后续流体的步骤1。执行依次运输流体A和流体B的总时间如图3所示,TA1为运输流体A执行步骤1的时间,TA2为运输流体A执行步骤2的时间,TB1为运输流体B执行步骤1的时间,TB2为运输流体B执行步骤2的时间。因此,总的执行时间t为:
t=TA1+TA2+TB1+TB2。
对于情况b),第一工作模块2a与第二工作模块2a’依次运输流体A和流体B,此时运输流体A和流体B的步骤1可以由第一工作模块2a和第二工作模块2a’分别同时开始执行。
当执行运输流体A的步骤1和步骤2的总时间大于运输流体B的步骤 1时,执行依次运输流体A和流体B的总时间如图4A与图4B所示,TA1为运输流体A执行步骤1的时间,TA2为运输流体A执行步骤2的时间,TB1为运输流体B执行步骤1的时间,TB2为运输流体B执行步骤2的时间。因此,只要满足TA1+TA2>TB1,无论TA1>TB1,还是TA1<TB1,总的执行时间t为:
t=TA1+TA2+TB2。
当执行运输流体A的步骤1和步骤2的总时间小于运输流体B的步骤1时,执行运输流体A和流体B的总时间如图5所示,TA1为运输流体A执行步骤1的时间,TA2为运输流体A执行步骤2的时间,TB1为运输流体B执行步骤1的时间,TB2为运输流体B执行步骤2的时间。因此,只要满足TA1+TA2<TB1时,总的执行时间t为:
t=TB1+TB2。
需要说明的是,本发明中的每个工作模块的设置和功能都相同,因此工作模块2a与工作模块2a’仅代表两个工作模块在执行运输不同流体时的区分,而不代表它们之间有设置或功能上的区别。
从图2到图5展示了随着工作模块2的数量的增加,执行依次运输流体A和流体B的总时间随着工作逻辑的优化而减少的过程。随着流体运输系统1的工作模块2的数量增加,并且当每个工作模块2可以运输的流体种类增加时,由不同工作模块2分别执行的依次运输多种流体的总时间总是少于由单个工作模块2执行的依次运输上述流体的总时间,并且较优的方式是每次都由不同的工作模块2执行运输不同种类的流体。
如果流体运输系统1有多于两个工作模块2,并且每个工作模块2可以运输的流体种类越多,执行多于2种流体连续运输时获得的灵活性就越大,总执行时间就越短,理论上的依次运输多种流体的总时间将无限接近于每种流体只执行步骤2的时间的总和。然实际使用时,不仅要考虑灵活性问题,还要考虑例如交叉污染、流体用量等多种因素,这些因素都会影响到流体运输系统1的工作模块2的数量的设置,或是每个工作模块2连 接不同种类流体的取舍,而不同的设计需求带来的限制和不同的运输流体的顺序要求将使流体运输系统1产生不同的最优工作时间。
因此,流体运输系统1的工作逻辑可以归纳如下:
如果流体运输系统1中只有一个工作模块2,则流体运输系统1的工作逻辑就是上述的单个工作模块2的工作方式,即每次运输流体时先执行步骤1,再执行步骤2;
如果本系统中有两个或两个以上的工作模块2时,只需要遵循以下原则,就可以灵活编排运输多种流体时的工作逻辑,使总的执行时间最短:
优先使用不同的工作模块2运输不同种类的流体;
每个工作模块2在执行运输每种流体的步骤2之前,尽量保证已经执行完成运输该流体的步骤1;
每个工作模块2在执行完成运输每种流体的步骤2之后,立即开始执行运输下一个流体的步骤1。
相比现有技术,本实施方式的流体运输系统1具有以下的优点:
1、工作模块2同时利用负压和正压驱动流体进行运输。工作模块2的运输流体过程可以分解为步骤1和步骤2,其中,步骤1为负压驱动,将流体从流体存储组件31运输到流体中转组件22,步骤1可以保证将流体从流体存储组件31中取出时的定量精度;步骤2为正压驱动,将流体从流体中转组件22运输到流体使用系统5,步骤2可以实现在相同的管道条件下比负压驱动更加快速的运输流体,使流体运输系统1具有相比使用单纯使用负压运输流体的流体运输系统具有速度优势。
2、引入填充液辅助工作模块2进行正压运输流体。填充液在工作模块2执行步骤2时使用,在正压运输流体的同时用来填充管道空间。由于填充液是液态,可压缩性可以忽略,因此,流体运输系统1的工作模块2相比使用压缩气体进行正压运输流体的流体运输系统,运输流体的定量精确度更高。此外,填充液可以选用较为安全和成本较低的流体、清洗液或者纯水,还可以起到运输流体后冲洗管道的作用,避免前后两种流体的交 叉污染。
3、设置多个工作模块2可以进一步缩短运输流体的总时间。多个工作模块2可以使运输流体的工作逻辑从串行逻辑变成并行逻辑,使多个工作模块2同时工作成为可能,从而对运输流体的总时间进行优化。例如,可以在一个工作模块2执行步骤2时,让另一个工作模块2执行步骤1,使另一个工作模块2执行步骤1的时间在总时间中省去,从而使流体运输系统1工作的总时间更短。
4、设置多个工作模块2还可以将流体分组,最大限度的避免流体交叉污染。当流体运输系统2中存在多个工作模块2时,不同的工作模块2可以灵活设置所支持运输的流体种类,从而可以实现对多种不同的流体进行分组,使每组流体之间只共用从分配组件4到流体使用系统5之间的管道,使流体交叉污染的概率降至最低。
以下以具体实施例进一步说明流体运输系统1。
实施例1:流体运输系统1具有一个工作模块
如图6所示,流体运输系统1包括一个工作模块2和辅助模块3。工作模块2包括流体选择组件21、流体中转组件22和动力组件23;辅助模块3包括流体存储组件31、废料存储组件32和填充液存储组件33。本实施例中,动力组件23采用注射泵203,流体选择组件21采用选择阀201,流体中转组件22采用选择阀201和注射泵203之间的流体中转管道202,流体存储组件31采用流体仓301,废料存储组件32采用废料桶302,填充液存储组件33采用填充液桶303。
本实施例中,动力组件23为注射泵203。注射泵203上至少设置两个分配式接口2031、2032,分配式接口2031通过一个管道连接选择阀201的公共端口2011,分配式接口2032通过至少一个管道连接填充液桶303,此外,还可以根据需要设置分配式接口2033,通过分配式接口2033使用一个或多个管道连接废料桶302,在其他实施例中,也可以省略分配式接口2033及连接废料桶302。注射泵203的每个分配式接口2031、2032需 要可以单独连通注射泵203内的注射器2034。图6示出了一个具有三个分配式接口2031、2032、2033的注射泵203,根据需要可以使用具有更多分配式接口的注射泵203,且注射泵203的这些分配式接口根据需要可以连接选择阀201的公共端口2011、该注射泵203使用的所有填充液桶303、以及该注射泵203使用的所有废料桶302。
本实施例中,流体选择组件21为选择阀201。选择阀201具有一个公共端口2011和多个位置端口2012。选择阀201的公共端口2011通过管道连接注射泵203的分配式接口2031,选择阀201与注射泵203之间的管道就是流体中转管道202。选择阀201的位置端口2012通过管道分别连接流体仓301中存放流体的所有容器以及连通大气。连通大气的位置端口2012可以用于备用,或者也可用于从大气中吸入定量的空气作为流体之间的隔离气体,具体可以参考申请号为PCT/CN2017/113797的PCT专利申请的揭露内容。图6中所示选择阀201为一6位7通选择阀。所述选择阀201有6个位置端口2012,其中包括四个位置端口2012连接流体仓301中的4种流体,一个位置端口2012连接流体使用系统5,一个位置端口2012连通大气。根据流体容器数量的不同可以使用具有不同数量位置端口2012的选择阀201,对于流体容器数量为N的情况,选择阀201需要具有的位置端口2012的数量至少为N+2。
本实施例中使用选择阀201和注射泵203之间的流体中转管道202作为流体中转组件22。流体中转管道202是一段可以存储和通过流体的管道,流体中转管道202的一端连接到注射泵203的接口2031,而另一端连接到选择阀201的公共端口2011。流体中转管道202的内体积决定了注射泵203单次运输流体的最大体积,注射泵203的注射器2034的内体积需大于流体中转管道202的内体积。图6示出了一段流体中转管道202,根据注射泵203单次运输的最大流体量的不同,在不同实施例中,可以选择不同内体积的流体中转管道202。
本实施例使用流体仓301作为流体存储组件31。流体仓301包含多个 存放流体的容器,每个容器通过管道连接到选择阀201的不同的位置端口2012。图6中示出了一个有四个容器R1~R4的流体仓301,每个容器R1~R4都通过管道连接到选择阀201的位置端口2012。在其他实施例中,根据流体数量的不同,可以使用具有不同数量的容器的流体仓301。
本实施例中,使用填充液桶303作为填充液存储组件33。填充液桶303通过至少一个管道连接到注射泵203的分配式接口2032。图6示出了注射泵203使用一个填充液桶303的情况。
本实施例中使用废料桶302作为废料存储组件32。废料桶302通过管道连接到流体使用系统5,收集流体使用系统5排出的废料,废料桶302还通过一个或多个管道连接到注射泵203的分配式接口2033,收集注射泵203排放的废料。图6示出了注射泵203和流体使用系统5共用一个废料桶302的情况。根据实际情况的不同,在其他实施例中,也可以使注射泵203以及流体使用系统5分别单独使用一个或多个废料桶302,或者流体使用系统5单独使用一个或多个废料桶302而注射泵203不使用废料桶302。
实施例2:流体运输系统1具有一个工作模块
如图7所示,在本实施例中,流体运输系统1包括一个工作模块2和一个辅助模块3。工作模块2包括流体选择组件21、流体中转组件22和动力组件23,辅助模块3包括流体存储组件31、废料存储组件32和填充液存储组件33。本实施例中,动力组件23为注射泵203,流体选择组件21采用选择阀201a与电磁阀201b的组合,流体中转组件22采用电磁阀201b与注射泵203之间的流体中转管道202,流体存储组件31采用流体仓301,废料存储组件32采用废料桶302,填充液存储组件33采用填充液桶303。
本实施例中使用注射泵203作为动力组件23。注射泵203上至少设置两个分配式接口2031、2032,分配式接口2031通过一个管道连接选择阀201a的公共端口2011a,分配式接口2032通过至少一个管道连接填充液桶303,此外,还可以根据需要设置分配式接口2033,通过分配式接口2033 使用一个或多个管道连接废料桶302,在其他实施例中,也可以省略分配式接口2033及连接废料桶302。注射泵203的每个分配式接口2031、2032需单独连通注射泵203内的注射器2034。图7示出了一个具有三个分配式接口2031、2032、2033的注射泵203,根据需要可以使用具有更多分配式接口的注射泵203,且注射泵203的这些分配式接口根据需要可以连接选择阀201a的公共端口2011a、该注射泵203使用的所有填充液桶303、以及该注射泵203使用的所有废料桶302。
本实施例中,使用电磁阀201b配合选择阀201a作为流体选择组件21。电磁阀201b具有一个公共端口2011b和两个位置端口2012b。电磁阀201b的公共端口2011b通过管道连接注射泵203的分配式接口2031,电磁阀201b与注射泵203之间的管道就是流体中转管道202。电磁阀201b的位置端口2012b分别通过管道连接选择阀201a的公共端口2011a和流体使用系统5。选择阀201a具有一个公共端口2011a和多个位置端口2012a。选择阀201a的公共端口2011a通过管道连接电磁阀201b的位置端口2012b;选择阀201a的位置端口2012b通过管道分别连接流体仓301中存放流体的所有容器、以及连通大气。连通大气的位置端口2012b可以用于备用,或者也可用于从大气中吸入定量的空气作为流体之间的隔离气体,具体可以参考申请号为PCT/CN2017/113797的PCT专利申请的揭露内容。图7中所示电磁阀201b为一个2位3通电磁阀,所示选择阀201a为一个6位7通选择阀。电磁阀201b有两个位置端口2012b,其中一个位置端口2012b为常开端口、另一个位置端口2012b为常闭端口,分别连接选择阀201a的公共端口2011a和流体使用系统5。选择阀201a有六个位置端口2012a,其中四个位置端口2012a连接流体仓301中的4种流体,两个位置端口2012a连通大气。在其他实施例中,根据流体容器数量的不同可以使用具有不同数量位置端口2012a的选择阀201a,对于流体容器数量为N的情况,选择阀201a需要具有的位置端口2012a的数量至少为N+1。
本实施例中,使用电磁阀201b的公共端口2011b和注射泵203之间的 流体中转管道202作为流体中转组件22。流体中转管道202是一段可以存储和通过流体的管道,流体中转管道202的一端连接到注射泵203的分配式接口2031,而另一端连接到电磁阀201b的公共端口2011b。流体中转管道202的内体积决定了注射泵203单次运输流体的最大体积,而注射泵203的注射器2034的内体积需大于流体中转管道202的内体积。图7示出了一段流体中转管道202,根据注射泵203单次运输的最大流体量的不同,在不同实施例中,可以选择不同内体积的流体中转管道202。
本实施例中,使用流体仓301作为流体存储组件31。流体仓301包含多个存放流体的容器,每个容器通过管道连接到选择阀201a的不同的位置端口2012a。图7示出了一个有四个容器R1~R4的流体仓301,每个容器R1~R4都通过管道连接到选择阀201a的位置端口2012a。在其他实施例中,根据流体数量的不同,可以使用具有不同数量的存储容器的流体仓301。
本实施例中,使用填充液桶303作为填充液存储组件33。填充液桶303通过至少一个管道连接到注射泵203的分配式接口2032。图7示出了注射泵203使用一个填充液桶303的情况。
本实施例中,使用废料桶302作为废料存储组件32。废料桶302通过管道连接到流体使用系统5,收集流体使用系统5排出的废料,废料桶302还通过一个或多个管道连接到注射泵203的分配式接口2033,收集注射泵203排放的废料。图7示出了注射泵203和流体使用系统5共用一个废料桶302的情况。根据实际情况的不同,在其他实施例中,也可以使注射泵203以及流体使用系统5分别单独使用一个或多个废料桶302,或者流体使用系统单独使用一个或多个废料桶而注射泵不使用废料桶。
实施例3:流体运输系统1具有一个工作模块
如图8所示,在本实施例中,流体运输系统1包括一个工作模块2和一个辅助模块3。工作模块2包括流体选择组件21、流体中转组件22和动力组件23,辅助模块3包括流体存储组件31、废料存储组件32和填充液存储组件33。本实施例中,动力组件23为注射泵203,流体选择组件21 采用选择阀201a、三通接头201c及单向阀(或止回阀或止逆阀)201d的组合,流体中转组件22采用三通接头201c与注射泵203之间的流体中转管道202,流体存储组件31采用流体仓301,填充液存储组件33采用填充液桶303。
本实施例中,使用注射泵203作为动力组件23。注射泵203上至少设置两个分配式接口2031、2032,分配式接口2031通过一个管道连接选择阀201a的公共端口2011a,分配式接口2032通过至少一个管道连接填充液桶303,此外,还可以根据需要使用设置分配式接口2033,通过分配式接口2033使用一个或多个管道连接废料桶302,在其他实施例中,也可以省略分配式接口2033及连接废料桶302。注射泵203的每个分配式接口2031、2032需单独连通注射泵203内的注射器2034。图8示出了一个具有三个分配式接口2031、2032、2033的注射泵203,根据需要可以使用具有更多分配式接口的注射泵203,且注射泵203的这些分配式接口根据需要可以连接选择阀201a的公共端口2011a、该注射泵203使用的所有填充液桶303、以及该注射泵203使用的所有废料桶302。
本实施例中,使用三通接头201c和单向阀201d配合选择阀201a作为流体选择组件21。三通接头201c具有三个接口2011c、2012c及2013c,其中一个接口2011c通过一个单向阀201d连接到流体使用系统5,该单向阀201d允许通过的方向为从三通接头201c到流体使用系统5;另一个接口2012c通过一个单向阀201d连接到选择阀201a的公共端口2011a,该单向阀201d允许通过的方向为从选择阀201a的公共端口2011a到三通接头201c;另一个接口2013c通过管道连接到注射泵203的接口2031,三通接头201c与注射泵203之间的该管道就是流体中转管道202。选择阀201a具有一个公共端口2011a和多个位置端口2012a。选择阀201a的公共端口2011a通过管道连接一单向阀201d的入口;选择阀201a的位置端口2012a通过管道分别连接流体仓301中存放流体的所有容器、以及连通大气。连通大气的位置端口2012a可以用于备用,或者也可用于从大气中吸入定量 的空气作为流体之间的隔离气体,具体可以参考申请号为PCT/CN2017/113797的PCT专利申请的揭露内容。图8示出了一个三通接头201c和两个单向阀201d配合一个选择阀201a作为流体选择组件21。选择阀201a有六个位置端口2012a,其中四个位置端口2012a连接流体仓301中的4种流体,两个位置端口2012a连通大气。在其他实施例中,根据流体容器数量的不同可以使用具有不同数量的位置端口2012a的选择阀201a,对于流体容器数量为N的情况,选择阀201a需要具有的位置端口2012a数量至少为N+1。
本实施例中,使用三通接头201c和注射泵203之间的流体中转管道202作为流体中转组件22。流体中转管道202是一段可以存储和通过流体的管道,流体中转管道202的一端连接到注射泵203的接口2031,而另一端需要连接到三通接头201c的一个接口2013c。流体中转管道202的内体积决定了注射泵203单次运输流体的最大体积,而注射泵203的注射器2034的内体积需大于流体中转管道202的内体积。图8展示了一段流体中转管道202,根据注射泵203单次运输的最大流体量的不同,在不同实施例中,可以选择不同内体积的流体中转管道202。
本实施例中,使用流体仓301作为流体存储组件31。流体仓301包含多个存放流体的容器,每个容器通过管道连接到选择阀201a的不同的位置端口2012a。图8展示了一个有四个容器R1~R4的流体仓301,每个容器R1~R4都通过管道连接到选择阀201a的位置端口2012a。在其他实施例中,根据流体数量的不同,可以使用具有不同数量的存储容器的流体仓301。
本实施例中,使用填充液桶303作为填充液存储组件33。该填充液桶303通过至少一个管道连接到注射泵203的接口2032。图7示出了注射泵203使用一个填充液桶303的情况。
本实施例中,使用废料桶302作为废料存储组件32。该废料桶302通过管道连接到流体使用系统5,收集流体使用系统5排出的废料,废料桶302还通过一个或多个管道连接到注射泵203的接口2033,收集注射泵203 排放的废料。图7示出了流体使用系统5和注射泵203共用一个废料桶302的情况。根据实际情况的不同,在其他实施例中,也可以使流体使用系统5和注射泵203分别单独使用一个或多个废料桶302,或者流体使用系统单独使用一个或多个废料桶而注射泵不使用废料桶。
实施例4:流体运输系统1具有两个工作模块
如图9所示,在本实施例中,流体运输系统1包括两个工作模块2、辅助模块3和分配组件4组成。每一工作模块2包括流体选择组件、流体中转组件和动力组件;辅助模块3包括流体存储组件31、废料存储组件32和填充液存储组件33。本实施例中,动力组件采用注射泵,流体选择组件采用选择阀,流体中转组件采用选择阀与注射泵之间的流体中转管道,流体存储组件31采用流体仓,本实施例中包括流体仓301a与流体仓301a’,废料存储组件32采用废料桶302,填充液存储组件33采用填充液桶303,分配组件4采用三通接头41及单向阀42的组合。
在本实施例中,为便于说明,两个工作模块2分别称为第一工作模块2a和第二工作模块2a’,第一工作模块2a内的动力组件称为第一动力组件23a、流体选择组件称为第一流体选择组件21a、流体中转组件称为第一流体中转组件22a、注射泵称为第一注射泵203a,选择阀称为第一选择阀201a,流体中转管道称为第一流体中转管道202a;第二工作模块2a’内的动力组件称为第二动力组件23a’、流体选择组件称为第二流体选择组件21a’、流体中转组件称为第二流体中转组件22a’、注射泵称为第二注射泵203a’,选择阀称为第二选择阀201a’,流体中转管道称为第二流体中转管道202a’。
本实施例中,第一工作模块2a连接至流体仓301a,第二工作模块2a’连接至流体仓301a’,第一工作模块2a与第二工作模块2a’共用填充液桶303与废料桶302,且第一工作模块2a与第二工作模块2a’均通过分配组件4连接至流体使用系统5。其中,第一工作模块2a与流体仓301a、填充液桶303、废料桶302之间的连接及其内部各部件之间的连接与运作方式 与前述描述的实施例相同,第二工作模块2a’与流体仓301a’、填充液桶303、废料桶302之间的连接及其内部各部件之间的连接与运作方式与前述描述的实施例相同,因此,在此省略相关描述。以下仅描述本实施例与前述实施例不同之处。
本实施例中,填充液桶303分别通过至少一个管道连接到第一注射泵203a与第二注射泵203a’的接口。在其他实施例中,根据实际情况的不同,也可以使第一注射泵203a与第二注射泵203a’每个单独使用一个或多个填充液桶303。
本实施例中,废料桶302通过管道连接到流体使用系统5,收集流体使用系统5排出的废料,并且还分别通过一个或多个管道连接到第一注射泵203a与第二注射泵203a’的接口,收集第一注射泵203a与第二注射泵203a’排放的废料。本实施例中流体使用系统5和第一注射泵203a、第二注射泵203a’共用一个废料桶302。在其他实施例中,根据实际情况的不同,也可以使流体使用系统5单独使用一个或多个废料桶302,而第一注射泵203a与第二注射泵203a’不使用废料桶302,或者流体使用系统5和第一注射泵203a、第二注射泵203a’各自分别单独使用一个或多个废料桶302。
本实施例中,使用一个由三通接头41和单向阀42组成的三通结构作为分配组件4。三通接头41具有三个接口411、412、413,其中接口411通过管道连接到流体使用系统5,接口412、413分别通过一个单向阀42连接到第一选择阀201a或第二选择阀201a’的公共端口,每个单向阀42允许通过的方向为从对应的第一选择阀201a或第二选择阀201a’的公共端口到三通接头41。图9展示了两个单向阀42和一个三通接头41的连接方式。在其他实施方式中,根据实际情况的不同,也可以使用一个2位3通的电磁阀代替该三通结构,该电磁阀具有一个公共端口和两个位置端口,其中,公共端口通过管道连接流体使用系统5,两个位置端口分别连接第一选择阀201a与第二选择阀201a’的公共端口。
实施例5:流体运输系统1具有六个工作模块
如图10所示,在本实施例中,流体运输系统1包括六个工作模块2,辅助模块3和分配组件4组成。每一工作模块2包括流体选择组件、流体中转组件和动力组件。辅助模块3包括流体存储组件31、废料存储组件32和填充液存储组件33。流体存储组件31采用流体仓301,流体仓301包括六个容器R1~R6;废料存储组件32采用废料桶302,填充液存储组件33采用填充液桶303;分配组件4采用选择阀43。每一工作模块2均使用注射泵20同时作为该工作模块2的动力组件、流体中转组件及流体分配组件,具体地,注射泵20本身作为动力组件,注射泵20的注射器2034作为流体中转组件,注射泵20的阀头作为流体分配组件,因此,只使用一个注射泵20就可以实现一个完整的工作模块2的功能。注射泵20上设置至少三个分配式接口2031、2032及2033,接口2031通过一个管道连接选择阀43的位置端口432,接口2032通过至少一个管道连接填充液桶303,接口2033通过至少一个管道连接流体仓301的存储流体的容器R1~R6中的其中一个,在本实施例中,注射泵20未连接至废料桶302,然,在其他实施例中,根据需要注射泵20还可设置接口(图未示)连接至废料桶302。注射泵20内的注射器2034作为流体中转组件,该注射器2034的内体积决定了注射泵20单次运输流体的最大体积。图10示出了六个具有三个分配式接口2031、2032及2033的注射泵,根据需要,在其他实施例中,可以使用具有更多分配式接口的注射泵20,注射泵20通过这些接口连接选择阀43的位置端口、该注射泵20使用的所有填充液桶303、该注射泵20使用的流体仓301的存储流体的容器R1~R6中的一个、以及该注射泵20使用的所有的废液桶302。
本实施例中,使用流体仓301作为流体存储组件31。流体仓301包含多个存放流体的容器,每个容器通过管道连接到注射泵20的分配式接口2033,其中,任一容器可以连接到同一注射泵20的不同的分配式接口2033,也可以连接到不同注射泵20的分配式接口2033。图10示出了一个有六个容器R1~R6的流体仓301,该流体仓301中的每个容器R1~R6都通过管道 连接到一个注射泵20的一个分配式接口2033。在其他实施例中,根据流体数量的不同,可以使用具有不同数量存储容器的流体仓301,并且每个流体仓301具有的存放流体的容器数量也可以不同。
本实施例中,使用填充液桶303作为填充液存储组件33。填充液桶303分别通过至少一个管道连接到每个注射泵20的分配式接口2032。图10示出了六个注射泵20共用一个填充液桶303的情况。在其他实施例中,根据实际情况的不同,也可以使每个注射泵20单独使用一个或多个填充液桶303。
本实施例中,使用废液桶302作为废液存储组件32。废液桶302通过管道连接到试剂使用系统5,收集试剂使用系统5排出的废液,此外,在其他实施例中,废液桶302还可以通过一个或多个管道连接到每个注射泵20的分配式接口,收集每个注射泵20排放的废液。图10示出了试剂使用系统5使用一个废液桶302,而所有注射泵20均不使用废液桶302的情况。在其他实施例中,根据实际情况的不同,也可以使试剂使用系统5和所有注射泵20共用一个废液桶302,或者分别单独使用一个或多个废液桶302。
本实施例中,使用选择阀43作为分配组件4。选择阀43具有一个公共端口431和多个位置端口432。选择阀43的公共端口431通过管道连接流体使用系统5。选择阀43的位置端口432通过管道分别连接每一注射泵20的分配式接口2031。如图10所示,本实施例中,选择阀43为一个6位7通选择阀。选择阀43具有六个位置端口432,每个位置端口432连接一个注射泵20的一个分配式接口2031。在其他实施例中,根据注射泵20数量的不同,可以使用具有不同数量位置端口432的选择阀43,对于注射泵20数量为N的情况,选择阀43需要具有的位置端口432的数量至少为N。
请参阅图11所示,本发明实施方式二还提供一种流体运输方法,所述流体运输方法包括步骤S111与S112,其中,步骤S111为:通过负压驱动方式吸取流体;步骤S112为:通过正压驱动方式将吸取的流体输入流体 使用系统。
其中,步骤S111进一步可包括:建立动力组件、流体中转组件与流体存储组件的连接,及启动所述动力组件从所述流体存储组件中吸取流体暂存于所述流体中转组件中,并切断所述动力组件、流体中转组件与所述流体存储组件的连接。
其中,步骤S112进一步可包括:建立所述动力组件、流体中转组件与所述流体使用系统的连接,及启动所述动力组件推动暂存于所述流体中转组件中的流体流入所述流体使用系统。
其中,步骤S111可进一步包括:步骤a)建立第一工作模块与流体存储组件的连接,启动所述第一工作模块从所述流体存储组件吸取流体,及完毕后切断所述第一工作模块与所述流体存储组件的连接;及步骤b)建立第二工作模块与所述流体存储组件的连接,启动所述第二工作模块从所述流体存储组件吸取流体,及完毕后切断所述第二工作模块与所述流体存储组件的连接。其中,所述步骤a)与步骤b)可以并列执行。
其中,步骤S112可进一步包括:步骤c)建立所述第一工作模块与一流体使用系统的连接,及启动所述第一工作模块将所吸取的流体推入所述流体使用系统;及步骤d)建立所述第二工作模块与所述流体使用系统的连接,及启动所述第二工作模块将所吸取的流体推入所述流体使用系统。
其中,所述步骤b)的执行与所述步骤a)的执行在时间轴上至少部分重叠,及/或所述步骤b)的执行与所述步骤c)的执行在时间轴上至少部分重叠。
其中,执行步骤a)、b)、c)、d)所花费的总时间为T,执行步骤a)花费时间为TA1,执行步骤b)花费时间为TB1,执行步骤c)花费时间为TA2,执行步骤d)花费时间为TB2,其中,T<TA1+TA2+TB1+TB2。
请参阅图12所示,本发明实施方式三还提供一种流体运输方法,所述方法的某些步骤的执行顺序可以改变,某些步骤可以并列执行。所述流 体运输方法包括:
步骤S121,建立第一工作模块与流体存储组件的连接,启动所述第一工作模块从所述流体存储组件吸取流体,及完毕后切断所述第一工作模块与所述流体存储组件的连接;
步骤S122,建立所述第一工作模块与一流体使用系统的连接,及启动所述第一工作模块将所吸取的流体推入所述流体使用系统;
步骤S123,建立第二工作模块与所述流体存储组件的连接,启动所述第二工作模块从所述流体存储组件吸取流体,及完毕后切断所述第二工作模块与所述流体存储组件的连接;
步骤S124,建立所述第二工作模块与所述流体使用系统的连接,及启动所述第二工作模块将所吸取的流体推入所述流体使用系统。
其中,所述第一工作模块与第二工作模块从所述流体存储组件中转移流体至所述流体使用系统的总时间小于所述第一工作模块与第二工作模块从所述流体存储组件转移流体至所述流体使用系统各自花费的时间的加总。
其中,步骤S121与步骤S122的执行在时间上不重叠,步骤S123与步骤S124的执行在时间轴上不重叠,步骤S122与步骤S124的执行在时间轴上不重叠,步骤S123与步骤S121的执行在时间轴上至少部分重叠,及/或,步骤S123与步骤S122的执行在时间轴上至少部分重叠。其中,所述时间轴代表一种时间顺序。通过所述时间轴可定义事件发生的先后顺序、及事件发生的重叠时段。
其中,步骤S121中,所述第一工作模块采用负压驱动的方式从所述流体存储组件吸取流体,及/或,步骤S123中,所述第二工作模块采用负压驱动的方式从所述流体存储组件吸取流体。
其中,步骤S122中,所述第一工作模块采用正压驱动的方式推动所述流体进入所述流体使用系统,及/或,步骤S124中,所述第二工作模块采用正压驱动的方式推动所述流体进入所述流体使用系统。
其中,步骤S121具体包括:建立所述第一工作模块内的动力组件、流体中转组件与所述流体存储组件的连接,及启动所述动力组件从所述流体存储组件中吸取流体暂存于所述流体中转组件中,及完毕后切断所述动力组件、流体中转组件与所述流体存储组件的连接;及/或步骤S123具体包括:建立所述第二工作模块内的动力组件、流体中转组件与所述流体存储组件的连接,及启动所述动力组件从所述流体存储组件中吸取流体暂存于所述流体中转组件中,及完毕后切断所述动力组件、流体中转组件与所述流体存储组件的连接。
其中,步骤S122具体包括:建立所述第一工作模块内的所述动力组件、流体中转组件与所述流体使用系统的连接,及启动所述第一工作模块内的所述动力组件将所吸取的流体推入所述流体使用系统;及步骤S124具体包括:建立所述第二工作模块内的所述动力组件、流体中转组件与所述流体使用系统的连接,及启动所述第二工作模块内的所述动力组件将所吸取的流体推入所述流体使用系统。
请参阅图13所示,本发明实施方式四还提供一种流体运输方法,所述方法的某些步骤的执行顺序可以改变,某些步骤可以并列执行。所述流体运输方法包括步骤:
步骤S131,从流体存储组件中吸取第一种流体,花费时间TA1;
步骤S132,将所述第一种流体推入流体使用系统,花费时间TA2;
步骤S133,从所述流体存储组件中吸取第二种流体,花费时间TB1;
步骤S134,将所述第二种流体推入所述流体使用系统,花费时间TB2;
其中,将所述第一种流体、第二种流体从所述流体存储组件转移至所述流体使用系统的总时间T小于所述TA1、TA2、TB1、TB2的总和。
其中,所述TB1在时间轴上与所述TA1至少部分重叠,及/或所述TB1在时间轴上与所述TA2至少部分重叠。所述TB1与TB2在时间轴上不重叠,所述TA1与TA2在时间轴上不重叠,所述TB1与TB2在时间轴上不重叠。
其中,采用动力组件使用负压驱动的方式从所述流体存储组件吸取所述第一种流体与第二种流体,及/或,采用所述动力组件使用正压驱动的方式将所述第一种流体与第二种流体推入所述流体使用系统。
其中,所述第一种流体与第二种流体可以是同一种流体或不同种流体,所述动力组件吸取的所述第一种流体的量与第二种流体的量相同或不同。
综上所述,本发明实施方式提供的流体运输系统与方法,采用负压驱动方式吸取流体及采用正压方式将吸取的流体输入流体使用系统中,即可保证将流体从流体存储组件中取出时的定量精度,又可保证更加快速地运输流体至流体使用系统。
综上所述,本发明实施方式提供的流体运输系统与方法,可同时采用至少两个工作模块:第一工作模块与第二工作模块,第一工作模块与第二工作模块将至少两种流体从一流体存储组件中提出并输入一流体使用系统,所述两个工作模块将从两种流体从流体存储组件中提出并输入流体使用系统的总时间为T,第一工作模块将一种流体从流体存储组件中提出并输入流体使用系统所需时间为TA,第二工作模块将另一种流体从流体存储组件中提出并输入流体使用系统所需时间为TB,所述T小于TA与TB的加总,从而使流体运输的总时间更短。另,设置多个工作模块将流体分组运输,最大限度避免了流体交叉污染。采用填充液填充正压运输时留下的管道空间,相比使用压缩气体,运输流体的定量精确度更高。
以上实施方式与实施例均涉及一个或多个工作模块通过一个分配组件向一个流体使用系统运输流体的情况,其中工作模块与分配组件之间是多对一的映射关系,分配组件与流体使用系统之间是一对一的映射关系。然在其他实施方式中,对应M(M>1)个流体使用系统,L个分配组件(L>1)与N个工作模块(N>1)的复杂情况,还可以有更复杂的映射关系,例如,多个工作模块可以对应一个分配组件、一个分配组件再对应多个流体使用系统;多个工作模块可以对应多个分配组件,多个分配组件再对应一个流 体使用系统。无论如何,当多个工作模块对应一个分配组件或者对应一个流体使用系统时,由于该多个工作模块运输的流体需顺序运输至流体使用系统,因此,工作模块执行步骤2:将流体输入流体使用系统需顺序执行,然,每一工作模块执行步骤1:将流体吸入流体中转组件,可以与其他一或多个工作模块的步骤1及/或步骤2同时进行,从而节省多个工作模块运输流体至流体使用系统的整体时间。
请参阅图14与图15所示,本发明实施方式五与实施方式六还提供使用流体运输系统或者流体运输方法的流体使用装置6、7,所述流体使用装置6采用了至少一个流体运输系统61运输流体,所述流体运输系统61可以是本发明以上实施方式与实施例所提供的流体运输系统、或在不脱离本发明精神与范围情况下的扩展系统,所述流体使用装置7采用了至少一种流体运输方法71运输流体,所述流体运输方法71可以是本发明上述实施方式所提供的流体运输方法、或在不脱离本发明精神与范围情况下的扩展方法,所述流体使用装置6与7可以是各种使用流体的装置或仪器,例如基因测序仪、液相色谱仪、生化分析仪和医疗器械等。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (38)

  1. 一种流体运输系统,其特征在于,所述流体运输系统采用负压驱动方式从流体存储组件中吸取流体及采用正压驱动方式将吸取的所述流体输入流体使用系统。
  2. 如权利要求1所述的流体运输系统,其特征在于,所述流体运输系统包括流体中转组件,所述流体中转组件用于暂存从所述流体存储组件中吸取的所述流体。
  3. 如权利要求1或2所述的流体运输系统,其特征在于,所述流体运输系统还包括动力组件,所述动力组件用于制造压力梯度从所述流体存储组件吸取所述流体,及制造压力梯度将所述流体推入所述流体使用系统。
  4. 如权利要求3所述的流体运输系统,其特征在于,所述动力组件为注射泵、柱塞泵、隔膜泵、齿轮泵或蠕动泵。
  5. 如权利要求1至3任一项所述的流体运输系统,其特征在于,所述流体运输系统还包括填充液存储组件,所述填充液存储组件在所述流体被推入所述流体使用系统的过程中,提供填充液填补流体转移后留下的空间。
  6. 如权利要求1至4任一项所述的流体运输系统,其特征在于,所述流体运输系统还包括流体选择组件,所述流体选择组件用于从所述流体存储组件中选择不同流体。
  7. 如权利要求1所述的流体运输系统,其特征在于,所述流体运输系统包括至少两个工作模块,每个工作模块用于从所述流体存储组件中转移至少一种流体至所述流体使用系统中。
  8. 如权利要求7所述的流体运输系统,其特征在于,所述流体使用系统为一或多个,所述流体运输系统还包括一分配组件,所述分配组件用于切换连接所述至少两个工作模块中的不同工作模块至所述流体使用系统。
  9. 如权利要求7所述的流体使用系统,其特征在于,所述流体运输系统还包括至少两个分配组件,每一分配用于连接至少一个所述工作模块至所述流体使用系统。
  10. 如权利要求7至9任一项所述的流体运输系统,其特征在于,所述至少两工作模块中的至少一工作模块为一注射泵;及/或,所述至少两工作模块中的至少一工作模块包括流体中转组件,所述流体中转组件用于暂存该工作模块从所述流体存储组件中吸取的流体;及/或,所述至少两工作模块中的至少一工作模块包括动力组件,所述动力组件用于制造压力梯度从所述流体存储组件吸取流体,及制造压力梯度将所述流体推入所述流体使用系统;及/或,所述至少两工作模块中的至少一工作模块包括流体选择组件,所述流体选择组件用于从所述流体存储组件中选择不同流体;及/或,所述流体运输系统还包括填充液存储组件,所述填充液存储组件在流体被推入所述流体使用系统的过程中,提供填充液填补该工作模块中流体转移后留下的空间。
  11. 如权力要求7至10任一项所述的流体运输系统,其特征在于,所述至少两个工作模块中包括第一工作模块与第二工作模块,所述第一工作模块将一种流体从所述流体存储组件中提出并输入所述流体使用系统所需时间为TA,第二工作模块将另一种流体从所述流体存储组件中提出并输入所述流体使用系统所需时间为TB,所述第一工作模块与第二工作模块将所述两种流体从所述流体存储组件中提出并输入所述流体使用系统的总时间为T,其中,所述T<TA+TB。
  12. 一种流体运输系统,其特征在于,所述流体运输系统包括至少两个工作模块,每个所述工作模块用于从流体存储组件中转移至少一种流体至流体使用系统中,其中,所述至少两个工作模块从所述流体存储组件中转移至少两种流体至所述流体使用系统的总时 间小于每个所述工作模块从所述流体存储组件转移一种流体至所述流体使用系统的时间的加总。
  13. 如权利要求12所述的流体运输系统,其特征在于,每个所述工作模块还包括流体中转组件,所述流体中转组件用于暂存该工作模块从所述流体存储组件中吸取的流体。
  14. 如权利要求13所述的流体运输系统,其特征在于,所述至少两个工作模块包括第一工作模块与第二工作模块,所述第一工作模块从所述流体存储组件吸取流体并暂存于所述第一工作模块内的流体中转组件所花费时间为TA1,所述第一工作模块将所述流体从所述流体中转组件推入所述流体使用系统所花费时间为TA2,所述第二工作模块从所述流体存储组件吸取流体并暂存于所述第二工作模块内的流体中转组件所花费时间为TB1,所述第二工作模块将所述流体从所述流体中转组件推入所述流体使用系统所花费时间为TB2,其中,所述TB1在时间轴上与所述TA1至少部分重叠,及/或,所述TB1在时间轴上与所述TA2至少部分重叠。
  15. 如权利要求14所述的流体运输系统,其特征在于,所述TB1与所述TB2在时间轴上不重叠,所述TA1与所述TA2在时间轴上不重叠,所述TA2与所述TB2在时间轴上不重叠。
  16. 如权利要求14所述的流体运输系统,其特征在于,所述流体使用系统为一或多个,所述流体运输系统还包括一分配组件,所述分配组件用于切换连接所述至少两个工作模块中的不同工作模块至所述流体使用系统。
  17. 如权利要求14所述的流体运输系统,其特征在于,所述流体运输系统还包括至少两个分配组件,每一分配组件用于连接至少一个所述工作模块至所述流体使用系统。
  18. 如权利要求12所述的流体运输系统,其特征在于,所述至少两工作模块中的至少一工作模块为一注射泵;及/或,所述至少两工作 模块中的至少一工作模块包括动力组件,所述动力组件用于制造压力梯度从所述流体存储组件吸取流体,及制造压力梯度将所述流体推入所述流体使用系统;及/或,所述至少两工作模块中的至少一工作模块包括流体选择组件,所述流体选择组件用于从所述流体存储组件中选择不同流体;及/或,所述流体运输系统还包括填充液存储组件,所述填充液存储组件在流体被推入所述流体使用系统的过程中,提供填充液填补该工作模块中流体转移后留下的空间。
  19. 一种流体运输方法,其特征在于,包括:
    采用负压驱动方式吸取流体;及
    采用正压驱动方式将吸取的流体输入流体使用系统。
  20. 如权利要求19所述的流体运输方法,其特征在于,采用负压驱动方式吸取流体包括:建立动力组件、流体中转组件与流体存储组件的连接,及启动所述动力组件从所述流体存储组件中吸取流体暂存于所述流体中转组件中。
  21. 如权利要求20所述的流体运输方法,其特征在于,采用负压驱动方式吸取流体还包括:切断所述动力组件、流体中转组件与所述流体存储组件的连接。
  22. 如权利要求21所述的流体运输方法,其特征在于,采用正压驱动方式推动流体还包括:建立所述动力组件、流体中转组件与所述流体使用系统的连接,及启动所述动力组件推动暂存于所述流体中转组件中的流体流入所述流体使用系统。
  23. 如权利要求19所述的流体运输方法,其特征在于,采用负压驱动方式吸取流体包括:步骤a)建立一第一工作模块与一流体存储组件的连接,启动所述第一工作模块从所述流体存储组件吸取流体,及完毕后切断所述第一工作模块与所述流体存储组件的连接;及步骤b)建立一第二工作模块与所述流体存储组件或另一流体 存储组件的连接,启动所述第二工作模块从所述流体存储组件或所述另一流体存储组件吸取流体,及完毕后切断所述第二工作模块与所述流体存储组件或所述另一流体存储组件的连接。
  24. 如权利要求23所述的流体运输方法,其特征在于,采用正压驱动方式推动流体包括:步骤c)建立所述第一工作模块与一流体使用系统的连接,及启动所述第一工作模块将所吸取的流体推入所述流体使用系统;及步骤d)建立所述第二工作模块与所述流体使用系统或另一流体使用系统的连接,及启动所述第二工作模块将所吸取的流体推入所述流体使用系统或所述另一流体使用系统。
  25. 如权利要求24所述的流体运输方法,其特征在于,所述步骤b)的执行与所述步骤a)的执行在时间轴上至少部分重叠,及/或所述步骤b)的执行与所述步骤c)的执行在时间轴上至少部分重叠。
  26. 如权利要求24所述的流体运输方法,其特征在于,执行步骤a)、b)、c)、d)所花费的总时间为T,执行步骤a)花费时间为TA1,执行步骤b)花费时间为TB1,执行步骤c)花费时间为TA2,执行步骤d)花费时间为TB2,其中,T<TA1+TA2+TB1+TB2。
  27. 如权利要求24至26任一项所述的流体运输方法,其特征在于,在所述第一工作模块与所述第二工作模块均向同一个流体使用系统输送流体的情况下,所述步骤c)包括:通过分配组件接通所述第一工作模块与所述流体使用系统,及启动所述第一工作模块将所吸取的流体推入所述流体使用系统;所述步骤d)包括:通过所述分配组件或另一分配组件接通所述第二工作模块与所述流体使用系统,及启动所述第二工作模块将所吸取的流体推入所述流体使用系统。
  28. 如权利要求24至26任一项所述的流体运输方法,其特征在于,在所述第一工作模块与所述第二工作模块分别向不同流体使用系 统输送流体的情况下,所述步骤c)包括:通过分配组件接通所述第一工作模块与所述流体使用系统,及启动所述第一工作模块将所吸取的流体推入所述流体使用系统;所述步骤d)包括:通过所述分配组件接通所述第二工作模块与所述另一流体使用系统,及启动所述第二工作模块将所吸取的流体推入所述另一流体使用系统。
  29. 一种流体运输方法,其特征在于,包括:
    a)建立第一工作模块与流体存储组件的连接,启动所述第一工作模块从所述流体存储组件吸取流体,及完毕后切断所述第一工作模块与所述流体存储组件的连接;
    b)建立第二工作模块与所述流体存储组件或另一流体存储组件的连接,启动所述第二工作模块从所述流体存储组件或所述另一流体存储组件吸取流体,及完毕后切断所述第二工作模块与所述流体存储组件或所述另一流体存储组件的连接;
    c)建立所述第一工作模块与流体使用系统的连接,及启动所述第一工作模块将所吸取的流体推入所述流体使用系统;及
    d)建立所述第二工作模块与所述流体使用系统或另一流体使用系统的连接,及启动所述第二工作模块将所吸取的流体推入所述流体使用系统或所述另一流体使用系统;
    其中,所述第一工作模块与第二工作模块从所述流体存储组件或所述另一流体存储组件中转移流体至所述流体使用系统或所述另一流体使用系统的总时间小于所述第一工作模块与第二工作模块从所述流体存储组件或所述另一流体存储组件转移流体至所述流体使用系统或所述另一流体使用系统各自花费的时间的加总。
  30. 如权利要求29所述的流体运输方法,其特征在于,步骤a)具体包括:建立所述第一工作模块内的动力组件、流体中转组件与所述流体存储组件的连接,及启动所述动力组件从所述流体存储组 件中吸取流体暂存于所述流体中转组件中,及完毕后切断所述动力组件、流体中转组件与所述流体存储组件的连接;及/或步骤b)具体包括:建立所述第二工作模块内的动力组件、流体中转组件与所述流体存储组件或所述另一流体存储组件的连接,及启动所述动力组件从所述流体存储组件中或所述另一流体存储组件中吸取流体暂存于所述流体中转组件中,及完毕后切断所述动力组件、流体中转组件与所述流体存储组件或所述另一流体存储组件的连接。
  31. 如权利要求30所述的流体运输方法,其特征在于,步骤c)具体包括:建立所述第一工作模块内的所述动力组件、流体中转组件与所述流体使用系统的连接,及启动所述第一工作模块内的所述动力组件将所吸取的流体推入所述流体使用系统;及步骤d)具体包括:建立所述第二工作模块内的所述动力组件、流体中转组件与所述流体使用系统或所述另一流体使用系统的连接,及启动所述第二工作模块内的所述动力组件将所吸取的流体推入所述流体使用系统或所述另一流体使用系统。
  32. 如权利要求29至31任一项所述的流体运输方法,其特征在于,在所述第一工作模块与所述第二工作模块均向同一个流体使用系统输送流体的情况下,所述步骤c)包括:通过分配组件接通所述第一工作模块与所述流体使用系统,及启动所述第一工作模块将所吸取的流体推入所述流体使用系统;所述步骤d)包括:通过所述分配组件或另一分配组件接通所述第二工作模块与所述流体使用系统,及启动所述第二工作模块将所吸取的流体推入所述流体使用系统。
  33. 如权利要求29至31任一项所述的流体运输方法,其特征在于,在所述第一工作模块与所述第二工作模块分别向不同流体使用系统输送流体的情况下,所述步骤c)包括:通过分配组件接通所 述第一工作模块与所述流体使用系统,及启动所述第一工作模块将所吸取的流体推入所述流体使用系统;所述步骤d)包括:通过所述分配组件接通所述第二工作模块与所述另一流体使用系统,及启动所述第二工作模块将所吸取的流体推入所述另一流体使用系统。
  34. 一种流体运输方法,其特征在于,包括:
    从一流体存储组件中吸取第一种流体,花费时间TA1;
    将所述第一种流体推入一流体使用系统,花费时间TA2;
    从所述流体存储组件或另一流体存储组件中吸取第二种流体,花费时间TB1;
    将所述第二种流体推入所述流体使用系统或另一流体使用系统,花费时间TB2;
    其中,将所述第一种流体、第二种流体从所述流体存储组件或所述另一存储组件转移至所述流体使用系统或所述另一流体使用系统的总时间T小于所述TA1、TA2、TB1、TB2的总和。
  35. 如权利要求34所述的流体运输方法,其特征在于,所述TB1在时间轴上与所述TA1至少部分重叠,及/或所述TB1在时间轴上与所述TA2至少部分重叠。
  36. 如权利要求35所述的流体运输方法,其特征在于,所述TB1与TB2在时间轴上不重叠,所述TA1与TA2在时间轴上不重叠,所述TB1与TB2在时间轴上不重叠。
  37. 如权利要求34至36任一项所述的流体运输方法,其特征在于,在所述第一种流体与第二种流体均推入同一流体使用系统的情况下,所述第一种流体与第二种流体均通过同一分配组件或不同分配组件推入所述同一流体使用系统,及,在所述第一种流体与第二种流体被推入不同流体使用系统的情况下,所述第一种流体与所述第二种流体通过同一分配组件推入所述不同流体使用系统。
  38. 一种流体使用装置,其特征在于,所述流体使用装置采用如权利要求1-18任一项所述的流体运输系统进行流体运输,或者,所述流体使用装置采用如权利要求19-37任一项所述的流体运输方法进行流体运输。
PCT/CN2019/107591 2019-09-24 2019-09-24 流体运输系统、方法及应用该系统、方法的流体使用装置 WO2021056207A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022518011A JP7471398B2 (ja) 2019-09-24 2019-09-24 流体輸送システム、方法、並びにそれを適用する流体使用装置
PCT/CN2019/107591 WO2021056207A1 (zh) 2019-09-24 2019-09-24 流体运输系统、方法及应用该系统、方法的流体使用装置
CN201980098626.1A CN114127247B (zh) 2019-09-24 2019-09-24 流体运输系统、方法及应用该系统、方法的流体使用装置
EP19947010.5A EP4036203A4 (en) 2019-09-24 2019-09-24 FLUID TRANSPORT SYSTEM AND METHOD AND FLUID USE DEVICE APPLICATION SYSTEM AND METHOD
US17/763,266 US20220341407A1 (en) 2019-09-24 2019-09-24 Method and system for transportating fluid, and device employing system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107591 WO2021056207A1 (zh) 2019-09-24 2019-09-24 流体运输系统、方法及应用该系统、方法的流体使用装置

Publications (1)

Publication Number Publication Date
WO2021056207A1 true WO2021056207A1 (zh) 2021-04-01

Family

ID=75165560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107591 WO2021056207A1 (zh) 2019-09-24 2019-09-24 流体运输系统、方法及应用该系统、方法的流体使用装置

Country Status (5)

Country Link
US (1) US20220341407A1 (zh)
EP (1) EP4036203A4 (zh)
JP (1) JP7471398B2 (zh)
CN (1) CN114127247B (zh)
WO (1) WO2021056207A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023108962A1 (zh) * 2021-12-17 2023-06-22 深圳铭毅智造科技有限公司 一种用于基因测序的液路系统
WO2024098385A1 (zh) * 2022-11-11 2024-05-16 深圳华大智造科技股份有限公司 流体运输系统、基因测序仪及流体运输方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117597426A (zh) * 2022-10-08 2024-02-23 深圳华大智造科技股份有限公司 流体系统、流体运输方法、基因测序仪及生化检验方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2713712A1 (en) * 2008-05-06 2009-11-12 Kollmorgen Corporation Genetic sequencer incorporating fluorescence microscopy
CN102426261A (zh) * 2011-12-27 2012-04-25 重庆医科大学附属永川医院 微流控芯片多样品顺序加载装置及其样品加载方法
US20150298123A1 (en) * 2010-10-07 2015-10-22 Vanderbilt University Organ on chip integration and applications of the same
CN105733936A (zh) * 2014-12-12 2016-07-06 深圳华大基因研究院 基因测序仪
CN107514355A (zh) * 2017-09-30 2017-12-26 南方科技大学 一种微流泵
WO2019104580A1 (zh) * 2017-11-30 2019-06-06 深圳华大智造科技有限公司 用于基因测序的流路装置、其工作方法及其测序仪

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714545A (en) * 1986-03-20 1987-12-22 Hewlett-Packard Company Fluid proportioning pump system
JPH0510959A (ja) * 1991-07-04 1993-01-19 Sanuki Kogyo Kk 理化学機械用複液混合送液装置
US5215715A (en) * 1991-07-10 1993-06-01 Cem Corporation Microwave heated digesting system for digesting materials to be analyzed
JP3670851B2 (ja) * 1998-07-21 2005-07-13 アクト・サイエンス株式会社 液体クロマトグラフィー用送液ポンプ
FR2815719B1 (fr) * 2000-10-24 2003-01-17 Junior Instruments Dispositif de pipetage automatique avec rincage
US20070068573A1 (en) * 2005-08-22 2007-03-29 Applera Corporation Device and method for microfluidic control of a first fluid in contact with a second fluid, wherein the first and second fluids are immiscible
US8241013B2 (en) * 2005-10-27 2012-08-14 Waters Technologies Corporation Serial capillary pump
JP2011524527A (ja) * 2008-06-16 2011-09-01 ライカ バイオシステムズ メルボルン ピーティーワイ エルティーディー 染色機器及び方法における改良
US9158308B2 (en) * 2011-05-13 2015-10-13 Fluke Corporation Apparatus using electronically-controlled valves
EP2644258A1 (en) * 2012-03-29 2013-10-02 Roche Diagniostics GmbH Micro flow filtration system and flow filtration method for a fluid sample

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2713712A1 (en) * 2008-05-06 2009-11-12 Kollmorgen Corporation Genetic sequencer incorporating fluorescence microscopy
US20150298123A1 (en) * 2010-10-07 2015-10-22 Vanderbilt University Organ on chip integration and applications of the same
CN102426261A (zh) * 2011-12-27 2012-04-25 重庆医科大学附属永川医院 微流控芯片多样品顺序加载装置及其样品加载方法
CN105733936A (zh) * 2014-12-12 2016-07-06 深圳华大基因研究院 基因测序仪
CN107514355A (zh) * 2017-09-30 2017-12-26 南方科技大学 一种微流泵
WO2019104580A1 (zh) * 2017-11-30 2019-06-06 深圳华大智造科技有限公司 用于基因测序的流路装置、其工作方法及其测序仪

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4036203A4
ZHANG ANLIANG: "Priority Scheduling of Microfluidic Droplets in Digital Microfluidics-Based Biochips", CHINESE JOURNAL OF ELECTRON DEVICES, vol. 31, no. 4, 15 August 2008 (2008-08-15), pages 1327 - 1330, XP055795112, ISSN: 1005-9490 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023108962A1 (zh) * 2021-12-17 2023-06-22 深圳铭毅智造科技有限公司 一种用于基因测序的液路系统
WO2024098385A1 (zh) * 2022-11-11 2024-05-16 深圳华大智造科技股份有限公司 流体运输系统、基因测序仪及流体运输方法

Also Published As

Publication number Publication date
JP2022549251A (ja) 2022-11-24
EP4036203A1 (en) 2022-08-03
CN114127247A (zh) 2022-03-01
US20220341407A1 (en) 2022-10-27
EP4036203A4 (en) 2023-07-05
JP7471398B2 (ja) 2024-04-19
CN114127247B (zh) 2024-07-23

Similar Documents

Publication Publication Date Title
WO2021056207A1 (zh) 流体运输系统、方法及应用该系统、方法的流体使用装置
AU2019355273B2 (en) Multi-valve fluid cartridge
CN113145185B (zh) 一种模块化的微流控核酸检测芯片及系统
CN111373026B (zh) 用于基因测序的流路装置、其工作方法及其测序仪
WO2024027159A1 (zh) 流体系统
CN218872245U (zh) 流体系统及分析仪器
CN115870027A (zh) 流体系统、分析仪器及流体输送方法
EP4431183A1 (en) Liquid path system, gene sequencer, and reagent recovery method
EP2466316B1 (en) Fluidic systems, fluid containers and processes for washing fluid lines
WO2024073885A1 (zh) 流体系统、流体运输方法、基因测序仪及生化检验方法
WO2018006286A1 (zh) 一种流控机构及含有该机构的系统
CN221148709U (zh) 液体输送装置及样本分析仪
CN110734851B (zh) 换液装置、基因测序仪
CN117384749B (zh) 用于基因测序的流路系统及其方法以及基因测序仪
CN110404597A (zh) 一种多功能自清洁移液装置及其使用方法
WO2024119462A1 (zh) 歧管组件、流体系统和生化分析检测平台
CN112881393B (zh) 样本检测过程中的吸液方法
CN220413341U (zh) 流体运输系统及检测仪器
CN220231770U (zh) 样本分析系统
WO2024130534A1 (zh) 液路系统及其相关设备和一种清洗方法
CN118731383A (zh) 一种血细胞分析仪、血细胞分析方法
CN117129689A (zh) 特定蛋白检测方法
JP2024538304A (ja) 流路システム、遺伝子シーケンサ及び試薬回収方法
CN116771951A (zh) 微流体切换阀、多样品进样分析系统以及多样品分析方法
CN117250297A (zh) 一种自动进样系统以及与该系统配套使用的进样方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947010

Country of ref document: EP

Effective date: 20220425