WO2024045531A1 - Méthode de traitement de déchets liquides contenant du magnésium - Google Patents

Méthode de traitement de déchets liquides contenant du magnésium Download PDF

Info

Publication number
WO2024045531A1
WO2024045531A1 PCT/CN2023/079349 CN2023079349W WO2024045531A1 WO 2024045531 A1 WO2024045531 A1 WO 2024045531A1 CN 2023079349 W CN2023079349 W CN 2023079349W WO 2024045531 A1 WO2024045531 A1 WO 2024045531A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
solid
waste liquid
containing waste
treating
Prior art date
Application number
PCT/CN2023/079349
Other languages
English (en)
Chinese (zh)
Inventor
曾志佳
李长东
阮丁山
陈若葵
乔延超
毛清敏
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024045531A1 publication Critical patent/WO2024045531A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • C01F11/08Oxides or hydroxides by reduction of sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content

Definitions

  • the invention belongs to the technical field of wastewater treatment, and specifically relates to a method for treating magnesium-containing waste liquid.
  • the sulfuric acid leaching process is a commonly used method to extract valuable metals.
  • sulfuric acid is used to leach valuable metals such as nickel and cobalt from the ore.
  • a refined magnesium-containing sodium sulfate solution is obtained.
  • Magnesium oxide is then used to precipitate cobalt.
  • the solution contains a large amount of magnesium, and then After removing other metals, magnesium-containing sodium sulfate waste liquid is obtained.
  • the above-mentioned treatment method for magnesium-containing waste liquid is often to directly add sodium hydroxide and sodium carbonate to the magnesium-containing waste liquid to obtain magnesium hydroxide/basic magnesium carbonate, and then roast the product into magnesium oxide and sell it externally. ; Or evaporate and concentrate the magnesium-containing waste liquid, freeze and crystallize, and carry out salt separation and purification through the above method to obtain magnesium sulfate and sodium sulfate crystals, and then further prepare other magnesium salts.
  • the above method has the problems of high cost of raw materials and poor economic benefits; evaporation and crystallization, salt separation and purification, easy to form double salts, making it difficult to ensure the quality of the magnesium sulfate and sodium sulfate crystals obtained.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a treatment method for magnesium-containing waste liquid to prepare high-purity magnesium salt.
  • step S2 Beat the solid phase residue obtained in step S1 and carbonize it once, perform solid-liquid separation on the carbonized product, and collect the liquid phase components;
  • step S3 Pyrolyze the liquid phase components obtained in step S2, conduct solid-liquid separation of the pyrolysis products, and collect the solid phase products;
  • step S4 Carry out secondary carbonization of the solid phase product obtained in step S3, collect the liquid phase components of the carbonized product, and prepare a refined magnesium bicarbonate solution;
  • the magnesium precipitating agent includes at least one of calcium oxide and calcium hydroxide
  • the primary carbonization and secondary carbonization are both the contact between reactants and carbon dioxide.
  • step S1 magnesium hydroxide and calcium sulfate hemihydrate are obtained by controlling the addition of calcium oxide or calcium hydroxide, and the filter residue obtained by filtration is calcium sulfate dihydrate and magnesium hydroxide;
  • step S2 a magnesium bicarbonate solution containing a small amount of calcium bicarbonate is obtained through one carbonization.
  • step S3 the magnesium bicarbonate solution in the liquid phase component separated by filtration in step S2 is pyrolyzed to obtain basic magnesium carbonate (magnesium salt).
  • the magnesium salt enters the solution preferentially, and the magnesium in the solution The content is getting higher and higher, the calcium and magnesium are separated, and the magnesium bicarbonate refined liquid is obtained.
  • step S1 of the present invention the calcium sulfate hemihydrate obtained by using a magnesium precipitation agent has good particle size, good filtration performance, and low attached water entrained on the surface, thereby reducing the moisture content of the entire product. , reducing the entrainment of impurities, thereby reducing the amount of product washing water and improving product quality; it can also reduce the subsequent drying costs of the product.
  • the purpose of primary carbonization is to convert magnesium hydroxide into magnesium bicarbonate solution and achieve separation from solid phase calcium sulfate. In this process, a small amount of calcium will enter the solution. Secondary carbonization removes calcium to obtain refined magnesium bicarbonate solution. Secondary carbonization Can remove impurities such as calcium.
  • the present invention uses secondary carbonization to realize the extraction of magnesium and the separation of magnesium and calcium, and effectively recover and produce high-purity magnesium salts. It also realizes the fixation and utilization of carbon dioxide, and effectively recovers and produces high-purity magnesium salts.
  • the mixing includes feed mixing by a peristaltic pump.
  • the feeding speed of the peristaltic pump is 0.001-0.009 mol/min on a molar ratio basis.
  • the feeding speed is too fast, it will cause agglomeration when the powder enters the solution. After the surface of the agglomerates participates in the reaction, it will be covered by the generated precipitate, so that the materials inside will no longer react and reduce the reaction efficiency.
  • the molar ratio of Mg 2+ in the magnesium-containing wastewater and the magnesium precipitation agent is 1: (1.05-1.1).
  • Adding the magnesium precipitating agent according to the above ratio can ensure the complete precipitation of magnesium. At the same time, it can prevent the magnesium precipitating agent from entering the product and increasing the impurity content of the product caused by excessive use of the magnesium precipitating agent.
  • the mixing includes stirring and mixing.
  • the stirring and mixing speed is 50-300 r/min.
  • the particle size and crystal form of calcium sulfate hemihydrate are guaranteed, thereby ensuring better filtration performance and reducing the amount of water used to wash the filter residue.
  • the particle size Dv50 of the calcium sulfate hemihydrate is 50-80 ⁇ m.
  • step S1 the main component of the filtrate obtained after the solid-liquid separation is sodium sulfate.
  • Yuanming powder After the above-mentioned sodium sulfate is evaporated and crystallized, Yuanming powder can be obtained, which can be used for external sales.
  • step S2 the solid content of the slurry obtained by beating is 10%-20%.
  • the slurry with the above solid content not only has good fluidity, but also does not introduce too much water and does not increase the subsequent processing steps.
  • the pH value of the system after primary carbonization is 7.0-7.5.
  • the pyrolysis temperature is 60-65°C.
  • the termination condition of the secondary carbonization is that the concentration change rate of Mg 2+ in the carbonization liquid is ⁇ 0.01g/L.
  • the carbonization is stopped, and the obtained carbonized liquid is a refined magnesium bicarbonate liquid.
  • step S4 also includes pyrolysis of the magnesium bicarbonate refined liquid.
  • the pyrolysis temperature of the magnesium bicarbonate refined liquid is 90-95°C.
  • the pyrolysis time of the magnesium bicarbonate refined liquid is 1-2 h.
  • basic magnesium carbonate is obtained after pyrolysis of the magnesium bicarbonate refined liquid.
  • the method further includes drying and roasting the basic magnesium carbonate to obtain activated magnesium oxide.
  • the carbon dioxide generated during the roasting process can be recycled into the primary carbonization process and the secondary carbonization process.
  • step S2 further includes pyrolytic reduction of the filter residue obtained by solid-liquid separation into the magnesium precipitating agent.
  • the filter residue includes calcium sulfate.
  • the pyrolysis reduction further includes drying the filter residue.
  • the drying temperature is 150-250°C.
  • the reducing agent used in the pyrolysis reduction of the filter residue includes coke.
  • the temperature of the pyrolysis reduction is 1000-1300°C.
  • the above method can realize the recycling of magnesium precipitating agent, greatly save the consumption of raw and auxiliary materials, and realize circular economy.
  • Figure 1 is a process flow chart for the treatment of magnesium-containing waste liquid in Embodiment 1 of the present invention.
  • This embodiment discloses a method for treating magnesium-containing waste liquid. The specific steps are:
  • step S2 Control the solid-to-liquid ratio of calcium sulfate dihydrate and magnesium hydroxide in step S1 to 15%, add water to beat, and introduce carbon dioxide to perform primary carbonization at 25°C.
  • the filter cake component is mainly calcium sulfate dihydrate, and the filtrate It is magnesium bicarbonate and a small amount of residual calcium bicarbonate.
  • the test results of the primary carbonization filtrate are shown in Table 3.
  • Calcium sulfate dihydrate (gypsum) is dried at 200°C to obtain anhydrous calcium sulfate. The roasting temperature is controlled at 1200°C, and coke is added.
  • Coke gypsum 0.15:1
  • sulfuric acid can be prepared and calcium oxide/calcium hydroxide can be co-produced.
  • the test results of the obtained calcium oxide are shown in Table 6, which can be used as raw material to precipitate magnesium.
  • This embodiment discloses a method for treating magnesium-containing waste liquid. The specific steps are:
  • step S2 Control the solid-to-liquid ratio of calcium sulfate dihydrate and magnesium hydroxide in step S1 to 15%, add water to beat, and add carbon dioxide Carbon is carbonized once at 25°C. After filtration, the filter cake composition is mainly calcium sulfate dihydrate, and the filtrate is magnesium bicarbonate and a small amount of residual calcium bicarbonate. The test results of the primary carbonization filtrate are shown in Table 3.
  • Calcium sulfate dihydrate (gypsum) is dried at 180°C to obtain anhydrous calcium sulfate, control the roasting temperature at 1250°C, add coke, coke: gypsum 0.18:1, and decompose through reduction roasting to prepare sulfuric acid and co-produce calcium oxide/calcium hydroxide to obtain
  • the test results of calcium oxide are shown in Table 6, which are used as raw materials to precipitate magnesium.
  • This embodiment discloses a method for treating magnesium-containing waste liquid. The specific steps are:
  • step S2 Control the solid-to-liquid ratio of calcium sulfate dihydrate and magnesium hydroxide in step S1 to 10%, add water to beat, and introduce carbon dioxide to perform primary carbonization at 25°C.
  • the filter cake component is mainly calcium sulfate dihydrate, and the filtrate It is magnesium bicarbonate and a small amount of residual calcium bicarbonate.
  • the test results of the primary carbonization filtrate are shown in Table 3.
  • Calcium sulfate dihydrate (gypsum) is dried at 250°C to obtain anhydrous calcium sulfate. The roasting temperature is controlled at 1300°C, and coke is added.
  • Coke gypsum 0.2:1
  • sulfuric acid can be prepared and calcium oxide/calcium hydroxide can be co-produced.
  • the test results of the obtained calcium oxide are shown in Table 6, which can be used as raw material to precipitate magnesium.
  • This embodiment discloses a method for treating magnesium-containing waste liquid.
  • the difference between this embodiment and Example 1 is that in step S1, the temperature of the stirring reaction is 100°C, and the other conditions are the same.
  • This comparative example discloses a method for treating magnesium-containing waste liquid.
  • the difference between this comparative example and Example 1 is that the stirring reaction temperature in step S1 in this comparative example is 85°C, and the other conditions are the same as in Example 1.
  • This comparative example discloses a method for treating magnesium-containing waste liquid.
  • the difference between this comparative example and Example 1 is that this comparative example
  • the stirring reaction temperature in step S1 is 90°C, and the other conditions are the same as in Example 1.
  • This test example tests the magnesium sedimentation filter residue in step S1 in Example 1 and Comparative Examples 1-2.
  • the test results are shown in Table 2.
  • Example 2 in Table 1 calcium hydroxide slurry is added at a feeding ratio of 1:1. Since the reaction ratio cannot reach 100% and there will be trace losses during the process, the hydroxide radicals entering the magnesium-containing waste liquid cannot reach the concentration required to completely precipitate magnesium. , so the concentration of magnesium in the filtrate is higher than that of the other two groups of examples.
  • the reaction temperatures in Comparative Example 1 and Comparative Example 2 are 85°C and 90°C respectively.
  • the filter residue product is mainly calcium sulfate dihydrate, and its crystal water and surface water are both higher than those of the filter residue obtained in Example 1.
  • the surface The content of entrained impurities is high, and the sodium content is more than 1.5%;
  • the reaction temperature of Example 1 is 95°C, the filter residue product is mainly hemihydrate gypsum, and its crystal water and surface water content are both lower than Comparative Example 1 and Comparative Example 2.
  • the sodium content It is only 0.1%, which is also much lower than Comparative Example 1 and Comparative Example 2.
  • This test example tests the secondary carbonization filtrate in step S3 of Example 1-3.
  • the test results are shown in Table 4.
  • the filter cake is beaten and carbonized according to different solid-liquid ratios.
  • the magnesium content involved in the reaction is basically the same. The lower the solid-liquid ratio, the higher the magnesium concentration in the filtrate after carbonization. In Example 3, the solid-liquid ratio is carbonized at 10%, and the magnesium in the filtrate is The recovery rate is the highest, and its process is the best in terms of recovery efficiency among the examples.
  • This test example tests the primary carbonization filtrate in step S3 of Example 1-3.
  • the test results are shown in Table 5.
  • the surface water content of the calcium sulfate dihydrate obtained by the present invention is low, below 7%.
  • the moisture content of conventional calcium sulfate dihydrate is above 20%. Therefore, the attached water entrained on the surface of the calcium sulfate dihydrate of the present invention is low, and the entire surface of the calcium sulfate dihydrate has a low moisture content.
  • the moisture content of the product decreases, reducing the entrainment of impurities, thereby reducing the amount of product washing water and improving product quality; it can also reduce the cost of drying subsequent products.
  • the above calcium oxide is obtained by the pyrolysis reduction of calcium sulfate. It is suitable for industrial calcium oxide standards for Class I chemical synthesis in HG/T 4205-2011.
  • the calcium oxide content is ⁇ 92% and the magnesium oxide content is ⁇ 1.5%. It can be used as a magnesium precipitating agent. Add it to magnesium-containing waste liquid for reuse.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

L'invention concerne une méthode de traitement de déchets liquides contenant du magnésium, comprenant les étapes suivantes : S1, le mélange d'un agent de précipitation de magnésium avec des eaux usées contenant du magnésium, la réalisation d'une séparation solide-liquide, et la collecte de résidus en phase solide, la température du mélange étant de 95 à 100°C, et les eaux usées contenant du magnésium contenant Mg2+ et SO4 2- ; S2, le battage des résidus en phase solide obtenus à l'étape S1 et la réalisation d'une carbonisation primaire sur ceux-ci, la réalisation d'une séparation solide-liquide sur le produit carbonisé, et la collecte d'un composant en phase liquide ; S3, la pyrolyse du composant en phase liquide obtenu à l'étape S2, la réalisation d'une séparation solide-liquide sur le produit de pyrolyse, et la collecte d'un produit en phase solide ; et S4, la réalisation d'une carbonisation secondaire sur le produit en phase solide obtenu à l'étape S3, et la collecte d'un composant en phase liquide du produit carbonisé, de façon à préparer une solution raffinée de bicarbonate de magnésium. L'agent de précipitation de magnésium comprend au moins l'un parmi l'oxyde de calcium et l'hydroxyde de calcium ; et la carbonisation primaire et la carbonisation secondaire font en sorte qu'un réactif soit en contact avec le dioxyde de carbone. La méthode de traitement d'eaux usées contenant du magnésium selon la présente invention peut récupérer et produire efficacement des sels de magnésium de haute pureté.
PCT/CN2023/079349 2022-09-01 2023-03-02 Méthode de traitement de déchets liquides contenant du magnésium WO2024045531A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211062554.5 2022-09-01
CN202211062554.5A CN115385366B (zh) 2022-09-01 2022-09-01 一种含镁废液的处理方法

Publications (1)

Publication Number Publication Date
WO2024045531A1 true WO2024045531A1 (fr) 2024-03-07

Family

ID=84125000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079349 WO2024045531A1 (fr) 2022-09-01 2023-03-02 Méthode de traitement de déchets liquides contenant du magnésium

Country Status (2)

Country Link
CN (1) CN115385366B (fr)
WO (1) WO2024045531A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385366B (zh) * 2022-09-01 2024-05-10 广东邦普循环科技有限公司 一种含镁废液的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101104522A (zh) * 2007-06-05 2008-01-16 昆明贵金属研究所 一种利用硫酸镁废液制备活性氧化镁的方法
CN101519219A (zh) * 2008-02-26 2009-09-02 中国恩菲工程技术有限公司 轻质碳酸镁制备工艺
CN101760641A (zh) * 2008-12-24 2010-06-30 中国恩菲工程技术有限公司 从硫酸镁溶液中回收镁的工艺
US20160200587A1 (en) * 2015-01-08 2016-07-14 Industry Foundation Of Chonnam National University Method for manufacturing hydrated magnesium carbonate
CN107098366A (zh) * 2017-04-25 2017-08-29 中国恩菲工程技术有限公司 处理含镁废液的方法
CN115385366A (zh) * 2022-09-01 2022-11-25 广东邦普循环科技有限公司 一种含镁废液的处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101760646A (zh) * 2008-12-24 2010-06-30 中国恩菲工程技术有限公司 含镁矿石的浸出方法
CN106277417A (zh) * 2015-05-26 2017-01-04 有研稀土新材料股份有限公司 含镁的冶炼废水综合回收的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101104522A (zh) * 2007-06-05 2008-01-16 昆明贵金属研究所 一种利用硫酸镁废液制备活性氧化镁的方法
CN101519219A (zh) * 2008-02-26 2009-09-02 中国恩菲工程技术有限公司 轻质碳酸镁制备工艺
CN101760641A (zh) * 2008-12-24 2010-06-30 中国恩菲工程技术有限公司 从硫酸镁溶液中回收镁的工艺
US20160200587A1 (en) * 2015-01-08 2016-07-14 Industry Foundation Of Chonnam National University Method for manufacturing hydrated magnesium carbonate
CN107098366A (zh) * 2017-04-25 2017-08-29 中国恩菲工程技术有限公司 处理含镁废液的方法
CN115385366A (zh) * 2022-09-01 2022-11-25 广东邦普循环科技有限公司 一种含镁废液的处理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LINCHENG LIU, ZUO HAIBIN; XU ZHIQIANG: "Effect of powdered carbon on the reductive decomposition of gypsum", JIANGXI METALLURGY, 北京科技大学钢铁冶金新技术国家重点实验室,北京100083, vol. 41, no. 3, 30 June 2021 (2021-06-30), pages 1 - 10, XP093145517, ISSN: 1006-2777, DOI: 10.19864/j.cnki.jxye.2021.03.001 *
RONGGUANG ZHENG, YAN SU: "Study of Distracting High Purity Magnaria By Carlionation Twice", JOURNAL OF EAST CHINA GEOLOGICAL INSTITUTE, vol. 20, no. 2, 30 June 1997 (1997-06-30), pages 173 - 177, XP093145515 *
ZHIQIANG WANG, LIU JIAXIANG; RAO FAMING: "Preparation of High Purity Basic Magnesium Carbonate with Light-burned Dolomite by Twice-Carbonation Method", JOURNAL OF THE CHINESE CERAMIC SOCIETY, vol. 41, no. 10, 24 September 2013 (2013-09-24), pages 1437 - 1441, XP093145520, DOI: 10.7521/j.issn.0454-5648.2013.10.19 *

Also Published As

Publication number Publication date
CN115385366B (zh) 2024-05-10
CN115385366A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN103950956B (zh) 一种锂辉石精矿硫酸法生产碳酸锂工艺
WO2011009351A1 (fr) Procédé de purification circulaire du sulfate de manganèse et du carbonate de manganèse
WO2010088863A1 (fr) Procédé de dépôt d'ions métalliques
WO2011006407A1 (fr) Procédé pour la préparation de sulfate de manganèse
CN101125668A (zh) 硫酸锂溶液生产低镁电池级碳酸锂的方法
CN108220626B (zh) 一种砷碱渣还原熔炼处理方法
JP2022510998A (ja) リチウム化学物質及び金属リチウムの製造
EP4240696A1 (fr) Procédé pour la production d'hydroxyde de lithium
WO2024045531A1 (fr) Méthode de traitement de déchets liquides contenant du magnésium
CN110078099B (zh) 一种从锂云母浸出净化液制备碳酸锂的方法
CN216662498U (zh) 制备电池级氢氧化锂和碳酸锂的系统
CN110902699B (zh) 从锂云母提锂后的废渣原料中制备高纯硫酸钾的方法
CN109911909B (zh) 一种钴酸锂正极材料制备过程中废弃匣钵的回收处理方法
WO2023016056A1 (fr) Procédé de récupération d'oxyde de magnésium à partir de scories de ferronickel
CN113462906B (zh) 锂辉石矿石中锂的高效多功能浸出工艺
CN109913652B (zh) 一种三元正极材料制备过程中废弃耐火材料的综合处理方法
CN108118143B (zh) 两段氯化焙烧-碱液浸出法从锂云母中提锂制备碳酸锂的方法
WO2023169432A1 (fr) Procédé et système de préparation d'hydroxyde de lithium et de carbonate de lithium de qualité batterie
CN113387374A (zh) 一种矿石提锂生产系统除钾工艺
US4071422A (en) Process for concentrating and recovering gallium
WO2024098620A1 (fr) Méthode de co-production de carbonate de lithium et d'hydroxyde de lithium à partir d'une solution contenant du lithium
WO2023246156A1 (fr) Procédé de préparation d'hydroxyde de lithium par caustification et son utilisation
CN112279277A (zh) 一种烟气镁法脱硫高端资源化利用的系统和方法
CN111410215A (zh) 一种高镁锂比卤水提取硫酸锂的方法
CN108063295B (zh) 从火法回收锂电池产生的炉渣中提取锂的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858574

Country of ref document: EP

Kind code of ref document: A1