WO2024045357A1 - 自移动设备的控制方法、装置和自移动设备 - Google Patents

自移动设备的控制方法、装置和自移动设备 Download PDF

Info

Publication number
WO2024045357A1
WO2024045357A1 PCT/CN2022/132657 CN2022132657W WO2024045357A1 WO 2024045357 A1 WO2024045357 A1 WO 2024045357A1 CN 2022132657 W CN2022132657 W CN 2022132657W WO 2024045357 A1 WO2024045357 A1 WO 2024045357A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
mobile device
target
area
operating
Prior art date
Application number
PCT/CN2022/132657
Other languages
English (en)
French (fr)
Inventor
刘元财
张泫舜
王雷
陈熙
Original Assignee
深圳市正浩创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市正浩创新科技股份有限公司 filed Critical 深圳市正浩创新科技股份有限公司
Publication of WO2024045357A1 publication Critical patent/WO2024045357A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface

Definitions

  • the present application relates to the technical field of autonomous mobile equipment, and in particular, to a control method and device for autonomous mobile equipment and autonomous mobile equipment.
  • a method and device for controlling a self-mobile device, a self-mobile device and a computer-readable storage medium are provided.
  • This application provides a control method for a self-moving device, which includes a moving mechanism and an operating mechanism.
  • the method includes:
  • the operating parameters of the motor driving the operating mechanism are monitored; the operating parameters are used to indicate the operating difficulty of the operating mechanism;
  • This application provides a control device for a mobile device, including:
  • One or more processors one or more processors working individually or jointly, are used to implement the steps of the aforementioned control method from a mobile device.
  • This application provides a self-mobile device, including:
  • a moving mechanism used to adjust the movement posture of the self-moving device
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the processor can implement the steps of the above-mentioned control method for a mobile device.
  • Figure 1 is a schematic flowchart of a control method for a mobile device according to an embodiment of the present application.
  • Figure 2 is a schematic block diagram of a mobile device in an embodiment.
  • FIG. 3 is a schematic diagram of a mobile device performing operations along a planned operation path in one embodiment.
  • FIG. 4 is a schematic diagram of determining a target operating area in an embodiment.
  • FIG. 5 is a schematic diagram of determining a target operating area in another embodiment.
  • Figure 6 is a schematic diagram of determining a target operating area in yet another embodiment.
  • FIG. 7 is a schematic diagram of determining a target operating area in yet another embodiment.
  • FIG. 8 is a schematic diagram of determining a target operating area in yet another embodiment.
  • Figure 9 is a schematic block diagram of a control device for a mobile device provided by an embodiment of the present application.
  • Figure 10 is a schematic block diagram of a mobile device provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a control method for a mobile device provided by an embodiment of the present application.
  • the control method of the self-mobile device is used to control the self-mobile device to perform operations.
  • the above-mentioned autonomous mobile device may be a device with autonomous mobility assistance function, or may be a semi-autonomous mobile device or a fully autonomous mobile device.
  • the self-mobility auxiliary function can be implemented by a vehicle-mounted terminal, and the corresponding self-mobility device can be a vehicle with the vehicle-mounted terminal.
  • the above-mentioned self-mobile device can be any type of self-mobile device such as a lawn mower, an agricultural harvester, and a sweeping robot.
  • the embodiments of this application mainly take a lawn mower as an example.
  • the self-moving device 100 includes a moving mechanism 110 and an operating mechanism 120 , where the operating mechanism 120 includes a motor 121 .
  • the operating mechanism 120 of the lawn mower includes a mounting base, a motor 121 and a cutting part 122.
  • the motor 121 is installed on the mounting base, and the cutting part 122 is installed on the output shaft of the motor 121;
  • the cutting member 122 rotates along with it to trim the grass.
  • the cutting member 122 includes but is not limited to at least one of the following: a cutterhead and a cutting rope.
  • the control method of the self-mobile device provided by the embodiment of the present application can be applied to the control device of the self-mobile device.
  • the control device of the self-mobile device is, for example, a chip or circuit in the self-mobile device, or it can also be a control device of the self-mobile device. Chips or circuits in equipment or control equipment.
  • control method for autonomous mobile devices provided by the embodiments of the present application can be applied to autonomous mobile devices, such as lawn mowers, and is of course not limited thereto.
  • the control method of a self-mobile device can also be applied to a control device of a self-mobile device such as a terminal or a server.
  • the terminal can be a mobile phone, tablet computer, notebook computer, desktop computer, personal digital assistant and other control devices;
  • the server can be an independent server or a server cluster.
  • control method of a mobile device includes the following steps S110 to S150.
  • Step S110 Obtain the planned operation path, and control the autonomous mobile device to perform operations along the planned operation path.
  • the above-mentioned planned operation path may include an arcuate path, and is certainly not limited thereto, for example, including at least one of a circular path, a spiral path, and the like.
  • FIG. 3 is a schematic diagram of the mobile device 100 operating within the operating range along an arcuate planned operating path.
  • the above-mentioned planned operation path can be determined according to the operation scope based on preset path planning rules. For example, when planning an arcuate path, the length direction of the arcuate path can be parallel to the long side of the operation range, but is of course not limited to this.
  • the planned work path may be generated by the terminal device.
  • the terminal device can determine the operation scope according to the user's operation, and determine the above-mentioned planned operation path according to the operation scope based on the preset path planning rules; the mobile device can obtain the above-mentioned planned operation path from the terminal device.
  • the mobile device can explore the boundaries of the operating range by itself, and determine the above-mentioned planned operating path based on the operating range based on preset path planning rules.
  • Step S120 During the operation of the above-mentioned mobile equipment, the operating parameters of the motor driving the above-mentioned working mechanism are monitored.
  • the operating parameters are used to indicate the operating difficulty of the operating mechanism
  • the operating parameters of the motor that drives the above-mentioned working mechanism may include at least one of motor current, motor power and other parameters.
  • the above-mentioned operating parameters can reflect the size of the workload at each working location, that is, the above-mentioned operating parameters can be used to indicate the operating difficulty of the above-mentioned operating mechanism.
  • the above-mentioned operating parameters include motor current and/or motor power
  • the above-mentioned operating parameters have a positive correlation with the operating difficulty of the above-mentioned operating mechanism.
  • the resistance of the working mechanism is greater, and the motor operating parameters such as motor current and/or motor power are also higher; when the grass at the working location is sparse or the grass is When the height is lower, the motor operating parameters such as motor current and/or motor power are also smaller.
  • the self-moving device as a sweeping robot as an example, when the ground is dirty, the motor current and/or motor power of the motor of the working mechanism (such as the floor brush) is also higher.
  • Step S130 When it is determined that the operating parameters of the motor meet the preset conditions, the target operating area is determined based on the current location of the autonomous mobile device.
  • Embodiments of the present application can determine the target operating area based on at least the current position of the mobile device and the operating parameters of the above-mentioned motor.
  • the target operating area is an area with a heavy operating load, such as denser grass or higher grass height. area; the operation effect can also be improved by performing multiple operations in the target operation area; and compared with the solution of performing multiple operations along the above-mentioned planned operation path to improve the operation effect, the embodiment of the present application can improve the operation efficiency.
  • the motor current/motor power of the cutterhead is positively correlated with the resistance encountered by the cutterhead, and the resistance encountered by the cutterhead is positively correlated with the growth of the grass. .
  • the greater the motor current/motor power of the cutterhead the greater the resistance the cutterhead encounters, and the better the grass growth at the current position of the lawn mower; the smaller the motor current/motor power of the cutterhead, the greater the resistance the cutterhead encounters. The less resistance you encounter, the worse the grass will grow where the mower is currently located.
  • the motor current and/or motor power of the cutterhead of the lawn mower can be monitored in real time while the cutterhead is mowing.
  • the motor current is greater than or equal to the preset current threshold, and/or it is detected that the motor power is greater than or equal to the preset power threshold, it means that the lawn mower is currently located in an area with dense grass or high grass height. area, the lawn mower's cutterhead is subject to greater resistance.
  • the target operating area can be determined based on the current position of the lawn mower.
  • the target operation area can be understood as an area with dense grass or a higher height of grass, or it can also be understood as an area that requires repeated mowing by the lawn mower. Subsequently, the lawn mower can be controlled to mow multiple times in the above target working area to make the trimmed grass smoother.
  • determining the target operating area based on the current location of the mobile device includes: when it is determined that the motor operating parameters meet the preset conditions, changing the above The current location of the self-mobile device is determined as the target operating point; after the operation of the self-mobile device along the planned operating path is completed, the target operating area is determined based on each of the target operating points.
  • the autonomous mobile equipment When the autonomous mobile equipment is operating along the above-mentioned planned operation path, such as an arcuate path, the operating parameters of the motor driving the above-mentioned operating mechanism are periodically monitored; wherein the above-mentioned motor is detected when the autonomous mobile equipment is operating at a. If the operating parameters meet the preset conditions, then a is determined as the target operating point; and then b to n are determined as the target operating points based on the operating parameters of the motor during operation. After the operation of the above-mentioned autonomous mobile device along the above-mentioned planned operation path is completed, the area where the multiple target operation points from a to n can be determined as the target operation area, as shown in the shaded area in Figure 4 .
  • the target operation area includes multiple target operation points.
  • the target operation area is determined with the outer target operation point among the multiple target operation points as the boundary.
  • the target operation area can also be determined with the outer target operation point among the multiple target operation points as the boundary outward. Expand a certain distance, such as the radius from the mobile device, and use the expanded area as the target operating area.
  • the sub-region corresponding to each target operation point can be determined with each target operation point as the center; the above-mentioned target operation area can be determined based on the union of the sub-regions corresponding to multiple target operation points; wherein the sub-region can be At least one of circle, rectangle, etc.
  • all target operation points on the above-mentioned planned operation path can be divided into several point sets according to the distance between adjacent target operation points.
  • the distance between adjacent target operation points in the same point set is less than distance threshold.
  • multiple areas with dense grass and long distances can be divided into multiple target working areas, and repeated pruning can be performed in each target working area, which can improve work efficiency.
  • determining the target operating area based on the current location of the mobile device includes: when it is determined that the motor operating parameters meet the preset conditions, determining The current position of the mobile device is taken as the center, and an area of a preset shape is determined as the target operating area.
  • a circular area A is generated based on the preset radius with the current working position as the center, and the circular area A is determined as the target. working area.
  • the above-mentioned preset radius may be a preset fixed value, or it may also be a dynamically adjusted value.
  • the preset radius can be determined according to the size of the working range. The larger the working range, the larger the preset radius. By adjusting the above preset radius according to the size of the working range, a target working area with a suitable size can be determined.
  • a rectangular area B is generated with the current working position as the center, and the rectangular area B is determined as the target working area.
  • the length and width of the above rectangular area may be preset fixed values, or may be dynamically adjusted values.
  • the length and width of the rectangular area B can be determined according to the length and width of the working range; for example, the length direction of the rectangular area B is parallel to the length direction of the working range. The longer the length of the working range, the longer the length of the rectangular area B. The longer it is; by adjusting the length and width of the above-mentioned rectangular area B according to the length and width of the working range, a target working area with a suitable size and shape can be determined.
  • the preset shape is not limited to the circle in Figure 5 and the rectangle in Figure 6 .
  • the preset shape can be determined based on the shape of the boundary of the working range, and is certainly not limited to this.
  • determining the target operating area based on the current location of the mobile device includes: when it is determined that the motor operating parameters meet the preset conditions, The above-mentioned starting point is the current position of the mobile device, and according to the preset exploration strategy, the target operating area is obtained by exploring along the arcuate line.
  • the preset exploration strategy is to adjust the traveling direction of the self-moving device when the motor operating parameter changes from greater than the first threshold to less than the first threshold.
  • the autonomous mobile equipment When the autonomous mobile equipment operates along the above-mentioned planned operation path, such as an arcuate path, the operating parameters of the motor driving the above-mentioned operating mechanism are periodically monitored; where when the autonomous mobile equipment operates at o If the operating parameters of the above motor meet the preset conditions, then determine o as the starting point; move along the arcuate line to p and operate, and continuously compare the motor operating parameters with the first threshold during the period.
  • the above-mentioned planned operation path such as an arcuate path
  • the operating parameters of the motor driving the above-mentioned operating mechanism are periodically monitored; where when the autonomous mobile equipment operates at o If the operating parameters of the above motor meet the preset conditions, then determine o as the starting point; move along the arcuate line to p and operate, and continuously compare the motor operating parameters with the first threshold during the period.
  • the motor when operating from the mobile device to p, the motor operates When the parameter changes from greater than the first threshold to less than the above-mentioned first threshold, the traveling direction of the above-mentioned mobile device is adjusted, for example, moving along the arcuate line to q and working; according to the above-mentioned preset exploration strategy, the subsequent steps are at q and r. and s to adjust the traveling direction of the above-mentioned mobile device.
  • the above target operation area can be determined based on the above starting point and the positions where the traveling direction is adjusted during the exploration process, such as at p, q, r and s.
  • the target operating area includes the above-mentioned starting point and the location where the direction of travel is adjusted during exploration.
  • the target operating area can be determined based on the above-mentioned starting point and the outer starting point/position among the positions where the traveling direction is adjusted during the exploration process; the target operating area can also be determined based on the above-mentioned starting point and the outer starting point/position among the positions where the traveling direction is adjusted during the exploration process. Expand the boundary outward by a certain distance, such as the radius from the mobile device, and use the expanded area as the target operating area.
  • the above-mentioned starting point and the position where the traveling direction is adjusted during the exploration process can be used as the center to determine the sub-region corresponding to each starting point/position; the above target can be determined based on the union of the sub-regions corresponding to multiple starting points/positions.
  • Working area; the sub-area can be at least one of circular, rectangular, etc.
  • determining the target operating area based on the current location of the mobile device is not limited to the methods shown in FIGS. 4 to 7 .
  • the lawn mower when the lawn mower detects that the motor current is greater than the current threshold when operating at t, it can first move to the left side of the lawn mower to explore the boundary; when it detects that the motor current is less than motor threshold, then change the direction such as exploring the boundary to the right side of the lawn mower; when exploring to v and detecting that the motor current is less than the motor threshold, change the direction again such as exploring the boundary to the right side of the lawn mower; when exploring to w
  • the direction is changed, such as exploring the boundary to the right side of the lawn mower; the exploration ends when the lawn mower returns to t, that is, when the explored path forms a closed curve, and the target operation is determined based on the above closed curve. area.
  • the lawn mower can turn right 90 degrees, or 45 degrees, of course, it is
  • Step S140 Control the mobile device to perform multiple operations in the target operation area.
  • the multiple operations performed by the self-mobile equipment in the above-mentioned target operation area may include operations performed in the above-mentioned target operation area when the self-mobile equipment operates along the above-mentioned planned operation path, and may also include the above-mentioned self-mobile equipment. The equipment alone performs operations in the above target operating area.
  • the above-mentioned control of the above-mentioned autonomous mobile device to perform multiple operations in the above-mentioned target operation area includes: after determining the above-mentioned target operation area, controlling the above-mentioned autonomous mobile equipment to perform at least one operation in the above-mentioned target operation area; After completing at least one operation in the above-mentioned target operation area, the above-mentioned mobile device is controlled to return to the above-mentioned planned operation path and continue to operate along the above-mentioned planned operation path.
  • the above-mentioned control of the above-mentioned autonomous mobile device to perform multiple operations in the above-mentioned target operation area includes: after determining the above-mentioned target operation area, controlling the above-mentioned autonomous mobile equipment to return to the above-mentioned planned operation path and continue to operate along the above-mentioned planned operation path; After the operation of the autonomous mobile device along the planned operation path is completed, the autonomous mobile device is controlled to perform at least one operation in the target operation area.
  • the target operation area After determining the above-mentioned target operation area, mark the target operation area on the map corresponding to the operation scope, and continue to operate along the above-mentioned planned operation path, so that all planned operation paths have been operated as soon as possible; After the planned operation path operation is completed, return to each of the above-mentioned target operation areas and perform operations in each of the above-mentioned target operation areas to improve the operation effect of the target operation area.
  • control logic when the mobile device performs multiple operations in the above-mentioned target operation area may be determined based on the size of the operation range.
  • the autonomous mobile device when the operation range is large, such as greater than or equal to a preset area threshold, after the autonomous mobile device completes at least one operation in the target operating area, the autonomous mobile device is controlled to return to the planned operation path and continue along the planned operation path.
  • the above-mentioned planned operation path is used for the operation; compared with the solution of returning to the target operation area after completing the operation of the planned operation path, the walking distance of the mobile device can be shortened and the operation efficiency can be improved.
  • the autonomous mobile device is controlled to perform at least one operation in the target operation area to enable the operation as soon as possible. All planned operation paths have been operated.
  • the above-mentioned mobile device when controlling the above-mentioned mobile device to perform multiple operations in the above-mentioned target operation area, it is determined whether the operating parameters of the motor driving the above-mentioned operation mechanism meet the preset conditions. When the operation parameters corresponding to each position in the target operation area do not meet When the preset conditions are met, for example, when the motor current is less than the current threshold, the above-mentioned autonomous mobile device is controlled to end multiple operations performed in the above-mentioned target operation area.
  • multiple operations performed in the target operation area are ended when the grass in the target operation area is trimmed to a low level; then the above-mentioned autonomous mobile device can be controlled to return to the above-mentioned planned operation path and continue to operate along the above-mentioned planned operation path, or the above-mentioned autonomous mobile device can be controlled to return to the above-mentioned planned operation path.
  • the mobile device moves to another target operating area for operation.
  • the number of operations of the self-mobile device in the target operating area may also be a preset fixed value.
  • the above-mentioned autonomous mobile device can be controlled to return to the above-mentioned planned operation path and continue to operate along the above-mentioned planned operation path, or the above-mentioned autonomous mobile device can be controlled Move to another target work area for work.
  • the control method of the self-mobile equipment includes: obtaining the planned operation path, controlling the self-mobile equipment to operate along the planned operation path; and monitoring the operating parameters of the motor driving the operating mechanism during the operation of the self-mobile equipment. ;
  • the target operating area is determined based on the current location of the self-mobile device; the self-mobile device is controlled to perform multiple operations in the target operating area.
  • the target operating area is determined based on the position of the autonomous mobile device during operation, and the autonomous mobile device is controlled to perform multiple operations in the target operating area to improve the efficiency of the operation. effect; and can improve work efficiency.
  • control device embodiments of the present application which can be used to execute the control methods in the above embodiments of the present application.
  • the control device provided by this device embodiment includes:
  • the path planning module is used to obtain the planned operation path and control the above-mentioned autonomous mobile device to operate along the above-mentioned planned operation path;
  • a parameter monitoring module used to monitor the operating parameters of the motor driving the above-mentioned operating mechanism during the operation of the above-mentioned self-mobile equipment; the operating parameters are used to indicate the operating difficulty of the said operating mechanism;
  • An area identification module used to determine the target operating area based on the current location of the above-mentioned mobile device when it is determined that the operating parameters of the above-mentioned motor meet the preset conditions
  • the repetitive operation module is used to control the above-mentioned autonomous mobile device to perform multiple operations in the above-mentioned target operation area.
  • the above-mentioned area identification module includes:
  • the operating point submodule is used to determine the current position of the above-mentioned autonomous mobile device as the target operating point when it is determined that the operating parameters of the above-mentioned motor meet the preset conditions;
  • the identification submodule is used to determine the target operation area based on each of the above target operation points after the operation of the autonomous mobile device along the above planned operation path is completed.
  • the above-mentioned area identification module includes:
  • the center submodule is used to determine an area of a preset shape as the target operating area with the current position of the self-moving device as the center when it is determined that the motor operating parameters meet the preset conditions.
  • the above-mentioned area identification module includes:
  • the exploration submodule is used to, when it is determined that the above-mentioned motor operating parameters meet the preset conditions, take the current position of the above-mentioned self-moving device as a starting point, and according to the preset exploration strategy, explore along the arcuate line to obtain the target operating area;
  • the above-mentioned preset exploration strategy is to adjust the traveling direction of the above-mentioned mobile device when the above-mentioned motor operating parameter changes from greater than the first threshold to less than the above-mentioned first threshold.
  • the above repeated job module includes:
  • the first return submodule is used to control the self-mobile device to return to the planned operation path after determining the target operation area, and continue to operate along the planned operation path;
  • the first operation submodule is used to control the autonomous mobile device to perform at least one operation in the target operation area after the autonomous mobile device completes its operation along the planned operation path.
  • the above repeated job module includes:
  • the second operation submodule is used to control the above-mentioned mobile device to perform at least one operation in the above-mentioned target operation area after determining the above-mentioned target operation area;
  • the second return submodule is used to control the self-mobile device to return to the planned operation path and continue to operate along the planned operation path after the self-mobile device completes at least one operation in the target operating area.
  • the above-mentioned motor operating parameters include motor current and/or motor power
  • the operating parameters are positively correlated with the operating difficulty of the operating mechanism.
  • FIG. 9 is a schematic block diagram of a control device 600 for a mobile device provided by an embodiment of the present application.
  • the self-mobile device control device 600 includes one or more processors 601, and the one or more processors 601 work individually or jointly to implement the steps of the above self-mobile device control method.
  • the control device 600 of the mobile device may be, for example, a chip or circuit in the mobile device, or may also be a control device of the mobile device or a chip or circuit in the control device. Of course, it is not limited to this.
  • the control device 600 of a mobile device may also be a control device such as a terminal or a server.
  • the terminal can be a mobile phone, tablet computer, notebook computer, desktop computer, personal digital assistant and other control devices; the server can be an independent server or a server cluster.
  • control device 600 of the mobile device may further include a memory 602.
  • processor 601 and the memory 602 are connected through a bus 603, such as an I2C (Inter-integrated Circuit) bus.
  • bus 603 such as an I2C (Inter-integrated Circuit) bus.
  • the processor 601 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU) or a digital signal processor (Digital Signal Processor, DSP), etc.
  • MCU Micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory 602 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk or a mobile hard disk, etc.
  • ROM Read-Only Memory
  • the memory 602 may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk or a mobile hard disk, etc.
  • the above-mentioned processor 601 is used to run the computer program stored in the memory 602, and implement the steps of the aforementioned self-mobile device control method when executing the above-mentioned computer program.
  • the above-mentioned processor 601 is used to run the computer program stored in the memory 602, and implement the following steps when executing the above-mentioned computer program:
  • the target operating area is determined based on the current position of the above-mentioned autonomous mobile device
  • FIG. 10 is a schematic block diagram of a mobile device 700 provided by an embodiment of the present application.
  • the mobile device 700 includes a moving mechanism 110, an operating mechanism 120, and the aforementioned control device 600.
  • the moving mechanism 110 is used to adjust the motion posture of the mobile device 700.
  • the moving mechanism 110 includes, for example, at least one of the following: motion drive motors, wheels, and crawlers, and is of course not limited thereto.
  • the operating mechanism 120 is used for operation.
  • the operating mechanism 120 includes a motor.
  • the working mechanism 120 of the lawn mower includes a mounting base, a motor and a cutting piece.
  • the motor is mounted on the mounting base, and the cutting piece is mounted on the output shaft of the motor; when the motor rotates, , the cutting piece rotates to trim the grass.
  • the cutting member includes but is not limited to at least one of the following: a cutterhead and a cutting rope.
  • the control device 600 is used to implement the steps of the above control method for a mobile device.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program includes program instructions.
  • the processor causes the processor to implement the provisions of the above embodiments. The steps of the self-mobile device control method.
  • the computer-readable storage medium may be the control device of the mobile device or the internal storage unit of the mobile device described in any of the previous embodiments, such as the hard disk or memory of the mobile device.
  • the above-mentioned computer-readable storage medium may also be the above-mentioned control device of the self-mobile device or an external storage device of the self-mobile device, such as a plug-in hard disk, a smart memory card (SMC) equipped on the above-mentioned control device of the self-mobile device. ), Secure Digital (SD) card, Flash Card, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Harvester Elements (AREA)

Abstract

一种自移动设备的控制方法,包括:获取规划作业路径,控制自移动设备沿规划作业路径进行作业;在自移动设备进行作业的过程中,监测驱动作业机构的电机的运行参数;在确定电机的运行参数满足预设条件时,根据自移动设备当前所处的位置确定目标作业区域;控制自移动设备在目标作业区域进行多次作业。

Description

自移动设备的控制方法、装置和自移动设备
相关申请的交叉引用
本申请要求于2022年08月31日提交中国专利局、申请号为202211055866.3、发明名称为“自移动设备的控制方法、装置、自移动设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自移动设备技术领域,尤其涉及一种自移动设备的控制方法、装置和自移动设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
随着科技的发展,自移动设备作为一种新型工具被广泛应用于生产和生活的各个领域中。自移动设备在实际应用场景中,作业范围内的负载通常是不均匀的;例如割草机作业的草坪区域中各区域的草的高度通常是不均匀的。对于一些草长得比较茂盛的区域,往往需要割草机反复收割几轮,才能达到比较好的修整效果。在以往通过人力操作割草机时,用户可以自行识别需要着重修整的区域,在该区域多收割几次草。但是,对于自动割草机而言,往往无法自行识别草长得比较茂盛的区域,导致修整后的草坪不平整,割草效果不佳,影响用户的感观。
发明内容
根据本申请的各种实施例,提供一种自移动设备的控制方法、装置、自移 动设备和计算机可读存储介质。
本申请提供了一种自移动设备的控制方法,所述自移动设备包括移动机构和作业机构,所述方法包括:
获取规划作业路径,控制所述自移动设备沿所述规划作业路径进行作业;
在所述自移动设备进行作业的过程中,监测驱动所述作业机构的电机的运行参数;所述运行参数用于指示所述作业机构的作业难度;
在确定所述电机的运行参数满足预设条件时,根据所述自移动设备当前所处的位置确定目标作业区域;
控制所述自移动设备在所述目标作业区域进行多次作业。
本申请提供了一种自移动设备的控制装置,包括:
一个或多个处理器,一个或多个处理器单独地或共同地工作,用于实现前述的自移动设备的控制方法的步骤。
本申请提供了一种自移动设备,包括:
移动机构,用于调整所述自移动设备的运动姿态;
作业机构,用于作业;以及
前述的控制装置。
本申请提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的自移动设备的控制方法的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需 要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的自移动设备的控制方法的流程示意图。
图2为一实施方式中自移动设备的示意性框图。
图3为一实施方式中自移动设备沿规划作业路径进行作业的示意图。
图4为一实施方式中确定目标作业区域的示意图。
图5为另一实施方式中确定目标作业区域的示意图。
图6为又一实施方式中确定目标作业区域的示意图。
图7为再一实施方式中确定目标作业区域的示意图。
图8为再一实施方式中确定目标作业区域的示意图。
图9为本申请实施例提供的一种自移动设备的控制装置的示意性框图。
图10为本申请实施例提供的自移动设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
请参阅图1,图1是本申请的实施例提供的一种自移动设备的控制方法的流程示意图。自移动设备的控制方法用于控制自移动设备进行作业。
在一些实施方式中,上述自移动设备可以是自移动辅助功能的设备,也可以是半自移动设备或者完全自主移动设备。自移动辅助功能可以是车载终端实现,相应的自移动设备可以是具有该车载终端的车辆。上述自移动设备可以为割草机、农业收割机、扫地机器人等类型的自移动设备中的任意一种。为便于说明,本申请实施例主要以割草机为例进行说明。
如图2所示,自移动设备100包括移动机构110和作业机构120,其中,作业机构120包括电机121。以自移动设备100为割草机为例,割草机的作业机构120包括安装座、电机121和切割件122,电机121安装于安装座上,切割件122安装在电机121的输出轴上;电机121转动时,切割件122随同转动以对草进行修剪。举例而言,切割件122包括但不限于以下至少一种:刀盘、切割绳。
本申请实施例提供的自移动设备的控制方法可以应用于自移动设备的控制装置中,自移动设备的控制装置例如为自移动设备中的芯片或者电路,或者,也可以为自移动设备的控制设备或者控制设备中的芯片或者电路。
本申请实施例提供的自移动设备的控制方法可以应用于自移动设备中,如割草机,当然也不限于此。
本申请实施例提供的自移动设备的控制方法也可以应用于终端或服务器等自移动设备的控制设备。终端可以是手机、平板电脑、笔记本电脑、台式电脑、个人数字助理等控制设备;服务器可以为独立的服务器,也可以为服务器集群。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
如图1所示,自移动设备的控制方法包括以下步骤S110至步骤S150。
步骤S110、获取规划作业路径,控制上述自移动设备沿上述规划作业路径进行作业。
在一些实施方式中,上述规划作业路径可以包括弓形路径,当然也不限于此,例如包括环形路径、螺旋形路径等中的至少一种。请参阅图3,图3为自移动设备100沿弓形的规划作业路径在作业范围内进行作业的示意图。
在一些实施方式中,上述规划作业路径可以基于预设的路径规划规则,根据作业范围确定,例如规划弓形路径时,弓形路径的长度方向可以与作业范围的长边平行,当然也不限于此。
在一些实施方式中,规划作业路径可以由终端设备生成。举例而言,终端设备可以根据用户的操作确定作业范围,以及基于预设的路径规划规则,根据作业范围确定上述规划作业路径;自移动设备可以从终端设备获取上述规划作业路径。
在另一些实施方式中,自移动设备可以自行探索作业范围的边界,以及基于预设的路径规划规则,根据作业范围确定上述规划作业路径。
步骤S120、在上述自移动设备进行作业的过程中,监测驱动上述作业机构的电机的运行参数。
其中,运行参数用于指示作业机构的作业难度;
举例而言,驱动上述作业机构的电机的运行参数可以包括电机电流、电机功率等参数中的至少一种。
自移动设备在各作业位置进行作业时,上述运行参数可以反映各作业位置的作业负载的大小,即上述运行参数可以用于指示上述作业机构的作业难度。
当上述运行参数包括电机电流和/或电机功率时,上述运行参数与上述作业机构的作业难度呈正相关关系。上述运行参数越大,则表示上述作业机构的作业难度越大;上述运行参数越小,则表示上述作业机构的作业难度越小。
举例而言,作业位置的草较密集或草的高度较高时,作业机构受到的阻力 较大,电机运行参数如电机电流和/或电机功率也较高;当作业位置的草较稀疏或草的高度较低时,电机运行参数如电机电流和/或电机功率也较小。以自移动设备为扫地机器人为例,当地面较脏时,作业机构(如地刷)的电机的电机电流和/或电机功率也较高。
步骤S130、在确定上述电机的运行参数满足预设条件时,根据上述自移动设备当前所处的位置确定目标作业区域。
在规划作业路径对应的作业范围中各位置的作业负载不同时,自移动设备沿上述规划作业路径进行一次作业后,作业的效果不够好。例如作业范围中各位置的草的密度和/或高度不同时,割草机沿规划作业路径进行一次修整后有些地方的草仍然比较高,作业范围的草地整体看上部不平整,修整效果不好。本申请实施例可以根据自移动设备的至少当前所处的位置和上述电机的运行参数,确定目标作业区域,目标作业区域为作业负载较重的区域,如为草较密集或草的高度较高的区域;还可以通过在目标作业区域进行多次作业,提高作业的效果;而且相较于沿上述规划作业路径进行多次作业以提高作业效果的方案,本申请实施例可以提高作业效率。
在一些实施方式中,当上述作业机构的电机的电机电流大于或等于电流阈值,和/或上述作业机构的电机的电机功率大于或等于功率阈值时,确定上述电机运行参数满足预设条件。
示例性地,以割草机割草的场景为例。在割草机的作业机构(如刀盘)进行割草时,刀盘的电机电流/电机功率与刀盘遇到的阻力呈正相关关系,而刀盘遇到的阻力与草的长势呈正相关关系。刀盘的电机电流/电机功率越大,则表示刀盘遇到的阻力越大,割草机当前所处位置的草长势越好;刀盘的电机电流/电机功率越小,则表示刀盘遇到的阻力越小,割草机当前所处位置的草长势越差。
因此,为了识别草较密集或草的高度较高的区域,可以在割草机的刀盘进行割草时,实时监测刀盘的电机电流和/或电机功率。当监测到上述电机电流大于或等于预设的电流阈值,和/或,监测到上述电机功率大于或等于预设的功率阈值时,表示当前割草机位于草较密集或草的高度较高的区域,割草机的刀盘受到较大的阻力。此时,为了提高割草效果,可以根据割草机当前所处的位置确定目标作业区域。该目标作业区域可以理解为草较密集或草的高度较高的区域,或者,也可以理解为需要割草机重复割草的区域。后续,可以控制割草机在上述目标作业区域进行多次割草,以使修整后的草地更为平整。
在一些实施方式中,上述在确定上述电机运行参数满足预设条件时,根据上述自移动设备当前所处的位置确定目标作业区域,包括:在确定上述电机运行参数满足预设条件时,将上述自移动设备当前所处的位置确定为目标作业点;在上述自移动设备沿上述规划作业路径作业结束后,根据各上述目标作业点确定目标作业区域。
请参阅图4,在自移动设备沿上述规划作业路径,如弓形路径进行作业时,周期性的监测驱动上述作业机构的电机的运行参数;其中在自移动设备在a处作业时检测到上述电机的运行参数满足预设条件,则确定a处为目标作业点;之后还根据各处作业时电机的运行参数确定b处至n处为目标作业点。在上述自移动设备沿上述规划作业路径作业结束后,可以根据a处至n处的多个目标作业点所在的区域为目标作业区域,如图4中的阴影区域所示。
目标作业区域包括多个目标作业点,例如以多个目标作业点中处于外侧的目标作业点为边界确定目标作业区域,还可以以多个目标作业点中处于外侧的目标作业点为边界向外扩充一定的距离,如自移动设备的半径,以扩充后的区域为目标作业区域。当然也不限于此,例如可以以各目标作业点为中心,确定 各目标作业点对应的子区域;根据多个目标作业点对应的子区域的并集确定上述目标作业区域;其中子区域可以为圆形、矩形等中的至少一种。
在一些实施方式中,可以根据相邻目标作业点之间的距离,将上述规划作业路径上的全部目标作业点划分为若干点集,同一点集中的相邻目标作业点之间的距离均小于距离阈值。例如可以将多处草较为茂密且距离较远的区域分为多个目标作业区域,分别在各目标作业区域进行重复修剪,可以提高作业效率。
在另一些实施方式中,上述在确定上述电机运行参数满足预设条件时,根据上述自移动设备当前所处的位置确定目标作业区域,包括:在确定上述电机运行参数满足预设条件时,以上述自移动设备当前所处的位置为中心,将一预设形状的区域确定为目标作业区域。
举例而言,如图5所示,在当前作业位置对应的电机运行参数满足预设条件时,以当前作业位置为中心根据预设半径生成圆形区域A,将该圆形区域A确定为目标作业区域。上述预设半径可以是预先设置的固定值,或者,也可以为动态调整的值。示例性的,预设半径可以根据作业范围的大小确定,作业范围越大预设半径越大,通过根据作业范围的大小调整上述预设半径,可以确定大小比较合适的目标作业区域。
举例而言,如图6所示,在当前作业位置对应的电机运行参数满足预设条件时,以当前作业位置为中心生成矩形区域B,将该矩形区域B确定为目标作业区域。上述矩形区域的长和宽可以是预先设置的固定值,或者,也可以为动态调整的值。示例性的,矩形区域B的长和宽可以根据作业范围的长和宽确定;例如矩形区域B的长度方向与作业范围的长度方向平行,作业范围的长度越长,则矩形区域B的长度也越长;通过根据作业范围的长和宽调整上述矩形区域B的长和宽,可以确定大小、形状比较合适的目标作业区域。
需要说明的是,预设形状并不限于为图5的圆形和图6的矩形,例如预设形状可以根据作业范围的边界的形状确定,当然也不限于此。
在其他一些实施方式中,上述在确定上述电机运行参数满足预设条件时,根据上述自移动设备当前所处的位置确定目标作业区域,包括:在确定上述电机运行参数满足预设条件时,以上述自移动设备当前所处的位置为起点,根据预设探索策略,沿弓形线探索得到目标作业区域。
在一些实施例中,上述预设探索策略为在上述电机运行参数从大于第一阈值变化为小于上述第一阈值时,调整上述自移动设备的行进方向。
举例而言,请参阅图7,在自移动设备沿上述规划作业路径,如弓形路径进行作业时,周期性的监测驱动上述作业机构的电机的运行参数;其中在自移动设备在o处作业时上述电机的运行参数满足预设条件,则确定o处为起点;沿弓形线向p处移动并作业,期间持续比较电机运行参数与第一阈值,例如当自移动设备作业至p处时电机运行参数从大于第一阈值变化为小于上述第一阈值,则调整上述自移动设备的行进方向,例如沿弓形线向q处移动并作业;根据上述预设探索策略,后续依次在q处、r处和s处调整上述自移动设备的行进方向。
示例性的,根据上述起点,以及探索过程中调整行进方向的位置,如p处、q处、r处和s处可以确定上述目标作业区域。举例而言,目标作业区域包括上述起点,以及探索过程中调整行进方向的位置。例如以上述起点,以及探索过程中调整行进方向的位置中处于外侧的起点/位置为边界确定目标作业区域;还可以以上述起点,以及探索过程中调整行进方向的位置中处于外侧的起点/位置为边界向外扩充一定的距离,如自移动设备的半径,以扩充后的区域为目标作业区域。当然也不限于此,例如可以以上述起点,以及探索过程中调整行进方向的位置为中心,确定各起点/位置对应的子区域;根据多个起点/位置对应的子 区域的并集确定上述目标作业区域;其中子区域可以为圆形、矩形等中的至少一种。
需要说明的是,根据上述自移动设备当前所处的位置确定目标作业区域并不限于图4至图7所示的方式。举例而言,如图8所示,割草机在t处作业时监测到电机电流大于电流阈值时,可以先向割草机的左侧移动探索边界;当探索至u处检测到电机电流小于电机阈值,则改变方向如向割草机的右侧探索边界;当探索至v处检测到电机电流小于电机阈值,则再次改变方向如向割草机的右侧探索边界;当探索至w处检测到电机电流小于电机阈值,则改变方向如向割草机的右侧探索边界;直至当割草机回到t处,即探索的路径形成闭合曲线时结束探索,根据上述闭合曲线确定目标作业区域。其中割草机改变方向时可以右转90度,或者45度,当然也不限于此;或者割草机在监测到电机电流大于电流阈值时也可以左转。
步骤S140、控制上述自移动设备在上述目标作业区域进行多次作业。
在一些实施方式中,自移动设备在上述目标作业区域进行的多次作业,可以包括自移动设备沿上述规划作业路径进行作业时在上述目标作业区域进行的作业,以及,还可以包括上述自移动设备单独在上述目标作业区域进行的作业。
示例性的,上述控制上述自移动设备在上述目标作业区域进行多次作业,包括:在确定上述目标作业区域之后,控制上述自移动设备在上述目标作业区域进行至少一遍作业;在上述自移动设备完成在上述目标作业区域进行至少一遍作业之后,控制上述自移动设备返回上述规划作业路径,继续沿上述规划作业路径进行作业。在确定目标作业区域之后及时在该目标作业区域进行至少一遍作业,以降低目标作业区域对应的负载;之后再继续沿上述规划作业路径进行作业,可以使整个作业范围的作业效果较好,例如使修整后的草地高度均匀。
示例性的,上述控制上述自移动设备在上述目标作业区域进行多次作业,包括:在确定上述目标作业区域之后,控制上述自移动设备返回上述规划作业路径,继续沿上述规划作业路径进行作业;在上述自移动设备沿上述规划作业路径作业结束之后,控制上述自移动设备在上述目标作业区域进行至少一遍作业。举例而言,在确定上述目标作业区域之后,在作业范围对应的地图上标记该目标作业区域,以及继续沿上述规划作业路径进行作业,以尽快使全部规划作业路径均进行过作业;在沿上述规划作业路径作业结束之后,再返回各上述目标作业区域,在各上述目标作业区域进行作业,以提高目标作业区域的作业效果。
在一些实施方式中,可以根据作业范围的大小,确定自移动设备在上述目标作业区域进行多次作业时的控制逻辑。
示例性的,在作业范围较大,如大于或等于预设面积阈值时,在上述自移动设备完成在上述目标作业区域进行至少一遍作业之后,控制上述自移动设备返回上述规划作业路径,继续沿上述规划作业路径进行作业;相较于完成规划作业路径的作业之后才返回目标作业区域的方案,可以缩短自移动设备的行走距离,提高作业效率。
示例性的,在作业范围较小,如小于预设面积阈值时,在上述自移动设备沿上述规划作业路径作业结束之后,控制上述自移动设备在上述目标作业区域进行至少一遍作业,以尽快使全部规划作业路径均进行过作业。
示例性的,在控制上述自移动设备在上述目标作业区域进行多次作业时,判断驱动上述作业机构的电机的运行参数是否满足预设条件,当目标作业区域中各位置对应的运行参数均不满足预设条件,如电机电流均小于电流阈值时,控制上述自移动设备结束在上述目标作业区域进行的多次作业。例如在目标作 业区域的草修整至较低时结束在上述目标作业区域进行的多次作业;之后可以控制上述自移动设备返回上述规划作业路径,继续沿上述规划作业路径进行作业,或者控制上述自移动设备移动至另一个目标作业区域进行作业。
示例性的,在控制上述自移动设备在上述目标作业区域进行多次作业时,自移动设备在上述目标作业区域的作业次数也可以为预先设置的固定值。在控制上述自移动设备在上述目标作业区域进行了预设作业次数的多次作业之后,可以控制上述自移动设备返回上述规划作业路径,继续沿上述规划作业路径进行作业,或者控制上述自移动设备移动至另一个目标作业区域进行作业。
本申请实施例提供的自移动设备的控制方法,包括:获取规划作业路径,控制自移动设备沿规划作业路径进行作业;在自移动设备进行作业的过程中,监测驱动作业机构的电机的运行参数;在确定电机的运行参数满足预设条件时,根据自移动设备当前所处的位置确定目标作业区域;控制自移动设备在目标作业区域进行多次作业。通过监测作业机构的电机的运行参数,在电机的运行参数满足预设条件时根据自移动设备作业时的位置确定目标作业区域,以及控制自移动设备在目标作业区域进行多次作业,提高作业的效果;而且可以提高作业效率。
以下介绍本申请的装置实施例,可以用于执行本申请上述实施例中的控制方法。本装置实施例提供的控制装置包括:
路径规划模块,用于获取规划作业路径,控制上述自移动设备沿上述规划作业路径进行作业;
参数监测模块,用于在上述自移动设备进行作业的过程中,监测驱动上述作业机构的电机的运行参数;所述运行参数用于指示所述作业机构的作业难度;
区域识别模块,用于在确定上述电机的运行参数满足预设条件时,根据上 述自移动设备当前所处的位置确定目标作业区域;
重复作业模块,用于控制上述自移动设备在上述目标作业区域进行多次作业。
在一些实施例中,上述区域识别模块,包括:
作业点子模块,用于在确定上述电机运行参数满足预设条件时,将上述自移动设备当前所处的位置确定为目标作业点;
识别子模块,用于在上述自移动设备沿上述规划作业路径作业结束后,根据各上述目标作业点确定目标作业区域。
在一些实施例中,上述区域识别模块,包括:
中心子模块,用于在确定上述电机运行参数满足预设条件时,以上述自移动设备当前所处的位置为中心,将一预设形状的区域确定为目标作业区域。
在一些实施例中,上述区域识别模块,包括:
探索子模块,用于在确定上述电机运行参数满足预设条件时,以上述自移动设备当前所处的位置为起点,根据预设探索策略,沿弓形线探索得到目标作业区域;
其中,上述预设探索策略为在上述电机运行参数从大于第一阈值变化为小于上述第一阈值时,调整上述自移动设备的行进方向。
在一些实施例中,上述重复作业模块,包括:
第一返航子模块,用于在确定上述目标作业区域之后,控制上述自移动设备返回上述规划作业路径,继续沿上述规划作业路径进行作业;
第一作业子模块,用于在上述自移动设备沿上述规划作业路径作业结束之后,控制上述自移动设备在上述目标作业区域进行至少一遍作业。
在一些实施例中,上述重复作业模块,包括:
第二作业子模块,用于在确定上述目标作业区域之后,控制上述自移动设备在上述目标作业区域进行至少一遍作业;
第二返航子模块,用于在上述自移动设备完成在上述目标作业区域进行至少一遍作业之后,控制上述自移动设备返回上述规划作业路径,继续沿上述规划作业路径进行作业。
在一些实施例中,上述电机运行参数包括电机电流和/或电机功率;
所述运行参数与所述作业机构的作业难度呈正相关关系。
请结合上述实施例参阅图9,图9是本申请实施例提供的自移动设备的控制装置600的示意性框图。该自移动设备的控制装置600包括一个或多个处理器601,一个或多个处理器601单独地或共同地工作,用于实现上述自移动设备的控制方法的步骤。
自移动设备的控制装置600例如为自移动设备中的芯片或者电路,或者,也可以为自移动设备的控制设备或者控制设备中的芯片或者电路。当然也不限于此,例如自移动设备的控制装置600也可以是终端或服务器等控制设备。终端可以是手机、平板电脑、笔记本电脑、台式电脑、个人数字助理等控制设备;服务器可以为独立的服务器,也可以为服务器集群。
示例性的,自移动设备的控制装置600还可以包括存储器602。
示例性的,处理器601和存储器602通过总线603连接,该总线603比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器601可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等。
具体地,存储器602可以是Flash芯片、只读存储器(ROM,Read-Only Memory) 磁盘、光盘、U盘或移动硬盘等。
其中,上述处理器601用于运行存储在存储器602中的计算机程序,并在执行上述计算机程序时实现前述自移动设备的控制方法的步骤。
示例性的,上述处理器601用于运行存储在存储器602中的计算机程序,并在执行上述计算机程序时实现如下步骤:
获取规划作业路径,控制上述自移动设备沿上述规划作业路径进行作业;
在上述自移动设备进行作业的过程中,监测驱动上述作业机构的电机的运行参数;
在确定上述电机的运行参数满足预设条件时,根据上述自移动设备当前所处的位置确定目标作业区域;
控制上述自移动设备在上述目标作业区域进行多次作业。
本申请实施例提供的自移动设备的控制装置的具体原理和实现方式均与前述实施例的自移动设备的控制方法类似,此处不再赘述。
请结合上述实施例参阅图10,图10是本申请实施例提供的自移动设备700的示意性框图。
自移动设备700包括移动机构110、作业机构120,以及前述的控制装置600。
移动机构110用于调整自移动设备700的运动姿态,移动机构110例如包括以下至少一种,运动驱动电机、轮子、履带,当然也不限于此。
作业机构120用于作业,具体的,作业机构120包括电机。举例而言,自移动设备700为割草机时,割草机的作业机构120包括安装座、电机和切割件,电机安装于安装座上,切割件安装在电机的输出轴上;电机转动时,切割件随同转动以对草进行修剪。举例而言,切割件包括但不限于以下至少一种:刀盘、切割绳。
控制装置600用于实现上述自移动设备的控制方法的步骤。
本申请实施例提供的自移动设备的具体原理和实现方式均与前述实施例的自移动设备的控制方法类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序中包括程序指令,上述计算机程序被处理器执行时使上述处理器实现上述实施例提供的自移动设备的控制方法的步骤。
其中,上述计算机可读存储介质可以是前述任一实施例上述的自移动设备的控制装置或自移动设备的内部存储单元,例如上述自移动设备的硬盘或内存。上述计算机可读存储介质也可以是上述自移动设备的控制装置或自移动设备的外部存储设备,例如上述自移动设备的控制装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上上述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种自移动设备的控制方法,所述自移动设备包括移动机构和作业机构,所述方法包括:
    获取规划作业路径,控制所述自移动设备沿所述规划作业路径进行作业;
    在所述自移动设备进行作业的过程中,监测驱动所述作业机构的电机的运行参数;所述运行参数用于指示所述作业机构的作业难度;
    在确定所述电机的运行参数满足预设条件时,根据所述自移动设备当前所处的位置确定目标作业区域;
    控制所述自移动设备在所述目标作业区域进行多次作业。
  2. 根据权利要求1所述的控制方法,其中,所述在确定所述电机运行参数满足预设条件时,根据所述自移动设备当前所处的位置确定目标作业区域,包括:
    在确定所述电机运行参数满足预设条件时,将所述自移动设备当前所处的位置确定为目标作业点;
    在所述自移动设备沿所述规划作业路径作业结束后,根据各所述目标作业点确定目标作业区域。
  3. 根据权利要求1所述的控制方法,其中,所述在确定所述电机运行参数满足预设条件时,根据所述自移动设备当前所处的位置确定目标作业区域,包括:
    在确定所述电机运行参数满足预设条件时,以所述自移动设备当前所处的位置为中心,将一预设形状的区域确定为目标作业区域。
  4. 根据权利要求1所述的控制方法,其中,所述在确定所述电机运行参数满足预设条件时,根据所述自移动设备当前所处的位置确定目标作业区域,包括:
    在确定所述电机运行参数满足预设条件时,以所述自移动设备当前所处的位置为起点,根据预设探索策略,沿弓形线探索得到目标作业区域;
    其中,所述预设探索策略为在所述电机运行参数从大于第一阈值变化为小于所述第一阈值时,调整所述自移动设备的行进方向。
  5. 根据权利要求3或4所述的控制方法,其中,所述控制所述自移动设备在所述目标作业区域进行多次作业,包括:
    在确定所述目标作业区域之后,控制所述自移动设备返回所述规划作业路径,继续沿所述规划作业路径进行作业;
    在所述自移动设备沿所述规划作业路径作业结束之后,控制所述自移动设备在所述目标作业区域进行至少一遍作业。
  6. 根据权利要求3或4所述的控制方法,其中,所述控制所述自移动设备在所述目标作业区域进行多次作业,包括:
    在确定所述目标作业区域之后,控制所述自移动设备在所述目标作业区域进行至少一遍作业;
    在所述自移动设备完成在所述目标作业区域进行至少一遍作业之后,控制所述自移动设备返回所述规划作业路径,继续沿所述规划作业路径进行作业。
  7. 根据权利要求1至6中任一项所述的控制方法,其中,所述电机的运行参数包括电机电流和电机功率中的至少一种;
    所述运行参数与所述作业机构的作业难度呈正相关关系。
  8. 根据权利要求2所述的控制方法,其中,在所述将所述自移动设备当前所处的位置确定为目标作业点之后,所述方法还包括:
    根据相邻目标作业点之间的距离,将所述规划作业路径上的全部目标作业点划分为若干点集,其中,同一点集中的相邻目标作业点之间的距离均小于距离阈值。
  9. 一种自移动设备的控制装置,包括:
    一个或多个处理器,一个或多个处理器单独地或共同地工作,用于实现如权利要求1至8中任一项所述的自移动设备的控制方法的步骤。
  10. 一种自移动设备,包括:
    移动机构,用于调整所述自移动设备的运动姿态;
    作业机构,用于作业;以及
    如权利要求9所述的控制装置。
PCT/CN2022/132657 2022-08-31 2022-11-17 自移动设备的控制方法、装置和自移动设备 WO2024045357A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211055866.3A CN115542894A (zh) 2022-08-31 2022-08-31 自移动设备的控制方法、装置、自移动设备和存储介质
CN202211055866.3 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045357A1 true WO2024045357A1 (zh) 2024-03-07

Family

ID=84725324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132657 WO2024045357A1 (zh) 2022-08-31 2022-11-17 自移动设备的控制方法、装置和自移动设备

Country Status (2)

Country Link
CN (1) CN115542894A (zh)
WO (1) WO2024045357A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103324191A (zh) * 2012-03-23 2013-09-25 苏州宝时得电动工具有限公司 控制方法及执行该控制方法的控制系统
EP2679083A1 (en) * 2012-06-27 2014-01-01 Fabrizio Bernini Apparatus for cutting grass
US20150012164A1 (en) * 2013-07-05 2015-01-08 Asia Technology Co., Ltd. Method and apparatus for controlling driving of robot
CN110915404A (zh) * 2019-11-27 2020-03-27 江苏沃得植保机械有限公司 割草机及其控制系统
CN112715133A (zh) * 2020-12-28 2021-04-30 南京苏美达智能技术有限公司 一种智能割草机系统及割草方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165775A (ja) * 2014-03-03 2015-09-24 日立工機株式会社 自走式草刈機
CN105988415B (zh) * 2015-02-13 2019-09-20 苏州宝时得电动工具有限公司 多区域切割控制系统及其控制方法
CN107229275A (zh) * 2017-04-24 2017-10-03 华南农业大学 一种果园自动遍历智能割草机控制系统及方法
CN110347144B (zh) * 2018-04-03 2023-06-09 苏州宝时得电动工具有限公司 自移动设备及其自学习方法、可读存储介质
WO2021037116A1 (zh) * 2019-08-27 2021-03-04 南京德朔实业有限公司 自行走割草系统及其漏割区域的补充作业的方法
CN113455167A (zh) * 2020-03-30 2021-10-01 苏州宝时得电动工具有限公司 边界附件以及割草系统
CN113625701A (zh) * 2020-05-09 2021-11-09 苏州宝时得电动工具有限公司 一种割草机器人路径规划方法及割草机器人
CN113741415B (zh) * 2021-07-08 2022-11-08 江苏云洲智能科技有限公司 路径规划方法、装置、终端设备及计算机可读存储介质
CN114303651B (zh) * 2021-12-20 2023-08-08 南京苏美达智能技术有限公司 一种割草机器人的割草作业优化方法
CN114326743B (zh) * 2021-12-31 2024-05-24 南京苏美达智能技术有限公司 一种工作地图生成方法、检测装置及园林系统
CN114815814A (zh) * 2022-03-31 2022-07-29 深圳市正浩创新科技股份有限公司 自移动设备的作业方法、计算机设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103324191A (zh) * 2012-03-23 2013-09-25 苏州宝时得电动工具有限公司 控制方法及执行该控制方法的控制系统
EP2679083A1 (en) * 2012-06-27 2014-01-01 Fabrizio Bernini Apparatus for cutting grass
US20150012164A1 (en) * 2013-07-05 2015-01-08 Asia Technology Co., Ltd. Method and apparatus for controlling driving of robot
CN110915404A (zh) * 2019-11-27 2020-03-27 江苏沃得植保机械有限公司 割草机及其控制系统
CN112715133A (zh) * 2020-12-28 2021-04-30 南京苏美达智能技术有限公司 一种智能割草机系统及割草方法

Also Published As

Publication number Publication date
CN115542894A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2021169188A1 (zh) 路径追踪方法、系统,机器人及可读存储介质
CN110537412A (zh) 一种智能割草机的路径规划方法
CN111941419B (zh) 自移动机器人的控制方法及自移动机器人系统
CN113766825A (zh) 节能草坪养护车辆
CN114342640A (zh) 数据处理方法、自动园艺设备及计算机程序产品
CN114937258B (zh) 割草机器人的控制方法、割草机器人以及计算机存储介质
CN114600622A (zh) 行进路径规划方法、控制装置、割草机、自移动系统
WO2024045357A1 (zh) 自移动设备的控制方法、装置和自移动设备
US20240085919A1 (en) Traversal Method and System, Robot, and Readable Storage Medium
WO2024016958A1 (zh) 割草方法、装置、割草机器人以及存储介质
US11849668B1 (en) Autonomous vehicle navigation
WO2020199149A1 (zh) 一种螺旋线渐开割草方法、系统及装置
CN114175912A (zh) 自动割草机及自动割草方法
WO2021139683A1 (zh) 自移动设备
CN214338686U (zh) 智能割草机
CN112558597B (zh) 自移动设备
WO2021031441A1 (zh) 路径规划方法、系统,机器人及可读存储介质
US11825760B2 (en) Path planning system and method for defining a harvest path for harvesting a crop material from a field
WO2022249486A1 (ja) 情報処理システム、作業機及びプログラム
US20240004392A1 (en) Method for establishing boundary of working area of lawnmower, method for mowing and lawnmower
US20240053760A1 (en) Self-moving device, moving trajectory adjusting method, and computer-readable storage medium
US20230297119A1 (en) Controlling movement of a robotic garden tool for docking purposes
EP4246275A1 (en) Method for controlling autonomous mobile device, autonomous mobile device, and computer storage medium
US20240000018A1 (en) Controlling movement of a robotic garden tool with respect to one or more detected objects
WO2022143506A1 (zh) 智能割草机及其控制方法、系统和存储介质