WO2021037116A1 - 自行走割草系统及其漏割区域的补充作业的方法 - Google Patents

自行走割草系统及其漏割区域的补充作业的方法 Download PDF

Info

Publication number
WO2021037116A1
WO2021037116A1 PCT/CN2020/111632 CN2020111632W WO2021037116A1 WO 2021037116 A1 WO2021037116 A1 WO 2021037116A1 CN 2020111632 W CN2020111632 W CN 2020111632W WO 2021037116 A1 WO2021037116 A1 WO 2021037116A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
lawn mower
propelled
area
propelled lawn
Prior art date
Application number
PCT/CN2020/111632
Other languages
English (en)
French (fr)
Inventor
陈伟鹏
杨德中
梅庆枭
Original Assignee
南京德朔实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京德朔实业有限公司 filed Critical 南京德朔实业有限公司
Priority to EP20856753.7A priority Critical patent/EP3998517A4/en
Publication of WO2021037116A1 publication Critical patent/WO2021037116A1/zh
Priority to US17/665,951 priority patent/US20220151147A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/63Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters having cutters rotating about a vertical axis
    • A01D34/76Driving mechanisms for the cutters
    • A01D34/78Driving mechanisms for the cutters electric
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/02Driving mechanisms or parts thereof for harvesters or mowers electric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers

Definitions

  • the present application relates to a garden electric tool, for example, a self-propelled mowing system and a method for supplementary operation of the missing mowing area.
  • the intelligent self-propelled lawn mower does not require long-term operation by the user. It is intelligent and convenient and is favored by users.
  • the path planning of self-propelled lawn mowers is usually random operation, so there will be missed cut areas. Relying on the random operation of self-propelled lawn mowers to supplement all the missing cut areas, it takes a long time to make self-propelled
  • the lawn mower has a short lifespan, wastes energy, and is prone to missing unmowed areas, which makes the lawn unsightly.
  • the present application provides a self-propelled mowing system and a method for supplementary operations in the missing mowing area, which can improve the mowing efficiency, prolong the service life of the self-propelled mowing system, and make the lawn more beautiful.
  • a self-propelled lawn mower including: a self-propelled lawn mower; a self-propelled lawn mower, including: a main body including a housing; a mowing element connected to the main body and used for cutting vegetation; output The motor drives the mowing element; the walking wheel is connected to the main body; the driving motor drives the walking wheel to rotate; the self-propelled mowing system also includes: a control unit connected to and controls the output motor and the drive motor; the positioning assembly includes at least an image sensor, It is used to sense the area passed by the self-propelled lawn mower and form a number of position image information to analyze the relative displacement of the self-propelled lawn mower; the control unit includes: a boundary acquisition module, which obtains the information of the working boundary to control the self-propelled mowing The machine is operating within the working boundary; the missing cut area judgment module identifies the missing cut area within the working boundary and the position information of the missing cut area; the filling planning module generates a cut-off area for at least one missing cut
  • the image sensor senses and forms the first location image information and the second location image information in a time sequence, wherein the first location image information and the second location image information have at least one common feature domain;
  • the control unit is at least based on the image sensor
  • the relative displacement of the self-propelled lawn mower is obtained by analyzing the time movement trajectory of at least one common feature domain in the first position image information and the second position image information.
  • a self-propelled lawn mower including: a self-propelled lawn mower; a self-propelled lawn mower, including: a main body including a housing; a mowing element connected to the main body and used for cutting vegetation; output The motor drives the mowing element; the walking wheel is connected to the main body; the driving motor drives the walking wheel to rotate; the self-propelled mowing system also includes: a control unit that connects and controls the output motor and the drive motor; the control unit includes: a boundary acquisition module, Obtain the information of the working boundary to control the self-propelled lawn mower to operate within the working boundary; the missing cut area judgment module, identify the missing cut area within the working boundary and the position information of the missing cut area; fill the planning module to generate a pair of all missed cuts At least one missing-cut area in the area sequentially performs the operation route of mowing; the control module is configured to control the self-propelled lawn mower to mow the at least one missing-cut area in all the missing-cutting areas according to the operation
  • the shortest path for sequentially mowing at least one of the missed areas is defined as the shortest working path, and the ratio of the length of the working path to the length of the shortest working path is greater than or equal to 1 and less than or equal to 1.2.
  • the ratio of the length of the working path to the length of the shortest working path is greater than or equal to 1 and less than or equal to 1.1.
  • the filling planning module is set to calculate the shortest operation route for the self-propelled lawn mower to supplement all the missing cut areas.
  • control module controls the self-propelled lawn mower to supplement the missing cutting area in sequence according to the sequence of the missing cutting area in the shortest operating route.
  • the self-propelled lawnmower is controlled to have a supplementary work coverage rate of greater than 80% in the missing cut area.
  • the positioning component includes one or a combination of a GPS positioning unit, an IMU inertial measurement unit, a displacement sensor, and an image sensor.
  • the positioning component obtains the operating trajectory of the self-propelled lawn mower through the positioning component, and determine that the self-propelled lawn mower is identifying the non-operating area within the operating boundary according to the operating trajectory and work boundary information of the self-propelled lawn mower, and in the non-operating area
  • the area is greater than the preset value, the unworked area is judged to be the missing cut area.
  • the detection module includes an image sensor, and the image sensor obtains a two-dimensional image or a three-dimensional image within the working boundary to obtain information about the missing cut area of the self-propelled lawnmower operation.
  • An embodiment proposes a supplementary operation method for a self-propelled mowing system to a missing cutting area, including: selecting a working area of the self-propelled mowing system; starting the self-propelled mowing system, and self-propelled cutting of the self-propelled mowing system Locate the lawn mower to obtain the operation trajectory and determine the area covered by the self-propelled lawn mower as the operating area; analyze the unoperated area in the work area according to the work area and the operated area, and determine the area larger than the preset value The un-operated area is the missing-cut area; plan the operation route for supplementary operations in the missing-cut area according to the information of the missing-cut area; control the self-propelled mower to supplement at least one of the missing-cut areas according to the operating route, and The ratio of the operating route of the self-propelled lawn mower to the shortest operating route length of at least one of the corresponding complete missed areas is greater than or equal to 1 and less than or equal to 1.2.
  • the supplementary operation method of the self-propelled mowing system to the missing cut area further includes: generating m simulation actuators, and each simulation actuator randomly selects the missing cutting area as a starting point; m simulation actuators use the transition probability P Select the next missed area.
  • the missed area is selected by the m simulation actuators, record the simulation route simulated by the m simulation actuators, and set the mark factor for the simulation route according to the information concentration function ⁇ and record it as an iteration Calculate; after the number of iterations is greater than the preset value, obtain the simulation route with the most simulation times of m simulation actuators, and judge it as the shortest simulation route; control the self-propelled lawn mower to follow the shortest simulation route to at least one of the missed cut areas Cut the area for supplementary operations.
  • Figure 1 is a plan view of a self-propelled mowing system
  • Figure 2a is a schematic structural diagram of the self-propelled mowing system in Figure 1;
  • Fig. 2b is a schematic diagram of the framework of the executive components of the self-propelled mowing system in Fig. 1;
  • Fig. 3 is a schematic diagram of the working area of the self-propelled mowing system in Fig. 1;
  • Fig. 4 is a schematic diagram of the track record of the work in the working area of Fig. 3 during the first working stage of the self-propelled lawn mower;
  • Fig. 5 is a schematic diagram of the track record of the operation in the working area of Fig. 3 during the second working stage of the self-propelled lawn mower;
  • Fig. 6 is an enlarged schematic diagram of a missing cut area in a part of the working area in Fig. 5;
  • Figure 7 is a schematic diagram of the missing cut area of the self-propelled mowing system in the working area
  • Fig. 8 is a schematic diagram of the shortest working path of the self-propelled mowing system supplementing the missing cut area of Fig. 7;
  • Figure 9 is a schematic diagram of one iteration of the shortest working path of the self-propelled mowing system simulation calculation
  • Figure 10 is a schematic diagram of iterative convergence of the shortest operation route calculated by the self-propelled mowing system
  • FIG. 11 is a schematic diagram of the interactive interface structure of the self-propelled mowing system in the second embodiment of the present application.
  • FIG. 12 is a schematic diagram of communication between a mobile device and a self-propelled mowing system in the second embodiment of the present application;
  • FIG. 13 is a schematic diagram of supplementary work path planning of the third embodiment of the present application.
  • Figure 14 is a flow chart of the supplementary operation method for the missed area of the optimal route of the self-propelled mowing system
  • Figure 15 is a flow chart of the supplementary operation method for the missing cut area of another optimal route of the self-propelled mowing system
  • Figure 16 is a flow chart of the method for identifying and judging the missing area of the self-propelled mowing system
  • Figure 17 is a flowchart of another method for identifying and judging the missing area of the self-propelled mowing system
  • FIG. 18 is a flowchart of a method for supplementary operations in the missed area of the self-propelled mowing system
  • Figure 19 is a three-dimensional structure diagram of a self-propelled lawn mower
  • FIG. 20 is a schematic diagram of the image sensor operation of the self-propelled lawn mower in FIG. 19;
  • Figure 21a is a structural block diagram of a self-propelled lawn mower
  • Figure 21b is a structural block diagram of the executive components of the self-propelled lawn mower
  • Figure 22 is a plan view of a self-propelled lawn mower according to an embodiment
  • Figure 23 is a plan view of another embodiment of a self-propelled lawn mower.
  • Figure 24 is a plan view of a self-propelled lawn mower according to another embodiment
  • Figure 25 is a plan view of a self-propelled lawn mower with a light source filter device
  • Figure 26 is a plan view of another embodiment of a self-propelled lawn mower.
  • FIG. 27 is a schematic diagram of the structure of an image sensor
  • Fig. 28a is a schematic diagram of the image sensor in Fig. 27 detecting the relative displacement of the self-propelled lawn mower on the x-axis;
  • Fig. 28b is a schematic diagram of the image sensor in Fig. 27 detecting the relative displacement of the self-propelled lawn mower on the y-axis;
  • Fig. 28c is a schematic diagram of the image sensor in Fig. 27 detecting the relative displacement of the self-propelled lawn mower;
  • FIG. 28d is a schematic diagram of the image sensor in FIG. 27 detecting the relative displacement of the self-propelled lawn mower;
  • Figure 29 is a flow chart for detecting the position of a self-propelled lawnmower.
  • a self-propelled mowing system is proposed.
  • the self-propelled mowing system is used to intelligently perform mowing in the lawn and trim the lawn.
  • the self-propelled lawn mower system includes at least a self-propelled lawn mower 10
  • the self-propelled lawn mower 10 includes: a main body 100 and an executive component 101 connected to the main body 100, the executive component 101 includes a walking wheel 120 and cutting
  • the grass element 130, the mowing element 130 may be a blade for cutting vegetation.
  • the main body 100 includes a housing 110, and the housing 110 packages and supports parts such as the traveling wheel 120 and the mowing element 130.
  • the traveling wheel 120 drives the intelligent self-propelled lawn mower 10, and the mowing element 130 is used to cut vegetation.
  • the self-propelled lawn mower 10 further includes a control unit 200 for controlling the operating state of the self-propelled lawn mower 10.
  • the self-propelled lawn mower 10 also includes an output motor 131 for driving the mowing element 130, a driving motor 123 connected to the walking wheel 130, the output motor 131 drives the mowing element 130 to rotate at a high speed to cut vegetation, and the driving motor 123 drives the walking wheel. 120 rotation drives the self-propelled lawn mower 10 to travel.
  • the control unit 200 controls the operation of the walking wheel 120 and the mowing element 130 by controlling the output motor 131 and the driving motor 123.
  • the self-propelled lawn mower 10 also includes a power supply device 140.
  • the power supply device 140 is implemented as at least one battery pack, and is connected to the self-propelled lawn mower 10 through a battery pack interface on the self-propelled lawn mower 10 to The output motor 131 and the drive motor 123 and the control unit 200 are powered.
  • the self-propelled lawn mower 10 includes an output controller for controlling the output motor 131 and a drive controller for controlling the drive motor 123.
  • the output controller is connected to the control unit 200, and the control unit 200 sends instructions to control the output motor 131 through the output controller. , Thereby controlling the cutting state of the cutting mowing element 130.
  • the drive controller is connected to control the drive motor 123, and the drive controller is communicatively connected to the control unit 200, so that the control unit 200 analyzes the driving route of the self-propelled lawn mower 10 after receiving the user's start instruction or judges the start The instruction is given to the drive controller to control the drive motor 123 to drive the walking wheel 120 to travel.
  • the control unit 200 is set in the self-propelled mowing system, is set as a circuit board, and is connected to an interactive interface 150 for receiving user instructions.
  • the interactive interface is provided with buttons for the user to input information.
  • at least part of the modules in the control unit 200 can also be installed in one or more mobile terminals, or the control unit 200 and the mobile terminal can be communicatively connected, and the mobile terminal serves as the upper computer of the self-propelled lawn mower 10.
  • the mobile terminal can be implemented as a smart mobile device such as a computer and a smart phone, and the user can control the operation of the self-propelled lawn mower 10 through the mobile terminal.
  • the self-propelled lawn mower 10 transmits a signal to the mobile terminal through a communication device, and the control unit 200 is set to run on the mobile terminal, which calculates and analyzes the position information of the self-propelled lawn mower 10, and transmits the signal The operation of the self-propelled lawn mower 10 is controlled.
  • the self-propelled lawn mower system includes a detection module for detecting the operating status of the self-propelled lawn mower 10, and the detection module includes at least a positioning component 300 for acquiring the position of the self-propelled lawn mower 10.
  • the traveling and mowing control of the self-propelled lawn mower 10 is obtained. 3
  • the operation of the self-propelled lawn mower 10 is limited to a working area 410, the working area 410 has a working boundary 420, and the self-propelled lawn mower 10 travels within the working boundary 420 and mowing when it is controlled to be turned on.
  • the working boundary 420 can be set by embedding, which is a common method in the technical field, and will not be described in detail here.
  • the working boundary 420 is selected by selecting the position coordinates of the target working boundary 420, and the real-time position information of the self-propelled lawn mower 10 is obtained and adjusted to realize the restriction on self-propelled mowing.
  • the machine 10 works within the working boundary 420.
  • the positioning component 300 includes one or a combination of a GPS positioning unit 310, an IMU inertial measurement unit 320, a displacement sensor 330, and an image sensor 340 for acquiring the position of the self-propelled lawn mower 10.
  • the positioning component 300 at least includes a GPS positioning unit 310 for acquiring the position of the self-propelled lawn mower 10, and the positioning component 300 further includes an image sensor 340 and/or a displacement sensor 330,
  • the image sensor 340 is arranged on the housing 110 or the main body 100 of the self-propelled lawn mower 10, and the displacement data of the self-propelled lawn mower 10 is analyzed by acquiring the scene image information around the self-propelled lawn mower 10.
  • the displacement sensor 330 can be set to drive The motor 123 or the traveling wheel 120 is used to obtain the displacement data of the self-propelled lawn mower 10, and the position information is directly obtained through one of the GPS positioning unit 310, the IMU inertial measurement unit 320, the displacement sensor 330, and the image sensor 340, or through The information obtained by multiple devices above is combined and corrected to obtain more accurate location information.
  • the self-propelled lawn mower system includes a boundary acquisition module 250, which acquires information of a working boundary to control the self-propelled lawn mower 10 to operate within the working boundary. The user sets the working boundary 420 through a self-propelled lawn mower or a mobile terminal, so that the boundary acquisition module 250 obtains the position and distribution information of the working boundary 420.
  • the position information of the working boundary 420 may be the distance between the working boundary 420 and the current position of the self-propelled mowing system The information can also be the latitude and longitude positioning data of the work boundary 420.
  • the self-propelled mowing system executes the first working stage. In the first working stage, the self-propelled lawn mower 10 is The control unit 200 controls the working area 410 within the working boundary 420 to travel and cut grass. The travel trajectory of the self-propelled lawn mower 10 may be disordered or controlled to run according to a preset path.
  • the control unit 200 obtains the real-time position of the self-propelled lawn mower 10 during operation.
  • the control unit 200 includes a position acquisition module 220 and a storage module 240.
  • the position acquisition module 220 is communicatively connected to the positioning component 300 to acquire the self-propelled
  • the implemented displacement track of the lawn mower 10 is stored and marked by the storage module 240 of the mowed area of the self-propelled lawn mower 10, so that the real-time distribution of the mowed area and the uncut area can be analyzed.
  • the self-propelled lawn mower 10 is controlled to end the first working stage and enter the second mowing stage.
  • the self-propelled lawn mower 10 is controlled to enter the second working stage when the ratio of the area of the working area to the area of the working area 410 is calculated to be greater than 90%.
  • the self-propelled lawn mower 10 is controlled to enter the second working stage.
  • the preset value may be greater than or equal to 60% and less than or equal to 90%.
  • the control unit 200 also includes a missing cut area judgment module 230 for obtaining information about the missing cut area 430 of the self-propelled lawn mower 10 during operation, the missing cut area judging module 230 obtains the working boundary 420, and the storage module 240 stores it Analyze the position information of the mowed area in the working area 410 within the working boundary 420, and analyze the position information outside the marked mowed area, so as to obtain the missing information of the self-propelled lawn mower 10 in the first working stage
  • the location information of the area, and the location information of the work missed area 430 is stored in the storage module 240, such as the area of the unworked area, coordinates, and the distance between the unworked areas, because the boundary of the unworked area is tracked by self-propelled cutting
  • the displacement of the grass machine 10 is obtained, so the above parameter information of the unoperated area can be obtained.
  • the detection module includes an image sensor 340 for detecting information about the missing area.
  • the judgment of the missing cut area 430 of the self-propelled lawn mower 10 is acquired by the image sensor 340.
  • the image sensor 340 is provided in the housing 110 or the main body 100.
  • the image sensor 340 is used. The lawn image is directly captured, and the image sensor obtains the two-dimensional image or the three-dimensional image within the working boundary to obtain the area and position information of the unmowed area, so as to obtain the missing area information of the self-propelled lawnmower operation.
  • the control unit stores the area and position information of the unmowed area in the storage module 240, and refreshes the information of the un-operated area as the self-propelled lawn mower 10 progresses, and stores it in the self-propelled lawn mower 10. , And after the ratio of the total area of the unworked area to the area of the working area 410 is less than a preset value such as 10%, it is judged that the first working stage is completed and the first working stage is controlled to end. At this time, the missed area judgment module 230 obtains The information of the unmowed area, that is, the position information of the missing area 430, the area and the distance of each missing area 430.
  • the control unit 200 also includes a filling planning module 210.
  • the filling planning module 210 is used to plan the supplementary work of the missed area 430, and the filling planning module 210 generates a sequence of mowing for at least one of the missed areas.
  • the filling planning module 210 analyzes the information of the missing cut area 430 in the first work stage.
  • the filling planning module 210 divides the missing cut area 430 that needs supplementary work into the first missing cut area, the second missing cut area, and the Nth missing cut area.
  • Mowing areas, etc. and orderly label or sort the first missed area, the second missed area, and the Nth missed area, so as to generate a supplementary operation route for the second work stage of supplementary mowing, and control self-propelled cutting
  • the lawn mower 10 travels and mows the grass according to the generated supplementary work path.
  • the control unit 200 includes a control module 260, the control module 260 is connected to and controls the drive motor and the output motor, the control module 260 drives the self-propelled lawn mower 10 to follow the supplementary working path and work to mowing, the walking wheel 120 Set to two, respectively, the first travel wheel 121 and the second travel wheel 122, the drive motor 123 is set to the first drive motor and the second drive motor, the drive controller is connected to the first drive motor and the second drive motor, and the control unit The driving controller 200 controls the rotation speeds of the first driving motor and the second driving motor to control the traveling state of the self-propelled lawn mower 10.
  • the control unit 200 controls the self-propelled lawnmower 10 to install the supplementary work path to move and operate according to the supplementary work path, so that the self-propelled lawnmower 10
  • the lawn mower 10 runs in sequence according to the missing cut area, so that the self-propelled lawn mower 10 efficiently completes the supplementary cutting work.
  • the positioning component 300 of the self-propelled lawn mower system obtains the real-time positioning of the self-propelled lawn mower 10, and sequentially controls the self-propelled lawn mower according to the position information of the missing cut area 430 stored in the storage module 240.
  • the traveling speed and turning of the lawn mower 10 are controlled, and the self-propelled lawn mower 10 is controlled to work in the corresponding missed cutting area 430.
  • the control unit 200 drives the self-propelled lawn mower 10 to move toward the first missing cut area.
  • the control unit 200 By analyzing the current position of the self-propelled lawn mower 10 and the distance between the first missing cut area, the control unit 200 passes The driving controller makes the first traveling wheel 121 and the second traveling wheel 122 rotate at a differential speed, and the self-propelled lawn mower turns to the first missing cutting area and moves through the differential rotation of the first traveling wheel 121 and the second traveling wheel 122.
  • the self-propelled lawn mower 10 includes a first traveling wheel 121 and a second traveling wheel 122, and a differential between the first traveling wheel 121 and the second traveling wheel 122, and the differential is used for
  • the transmission is controlled by the drive controller, so that the first traveling wheel 121 and the second traveling wheel 122 travel at a differential speed, so that the self-propelled lawn mower 10 is turned.
  • the positioning component 300 detects that the position of the self-propelled lawn mower 10 overlaps with the first missing cut area, it is determined that the self-propelled lawn mower 10 travels to the first missing cut area and sends a command to the output controller so that the output motor 131 drives the cutting.
  • the grass element 130 rotates to cut grass in the first missed cut area.
  • the missing-cutting area judgment module 230 obtains whether the first missing-cutting area is completed, and when the self-propelled lawn mower 10 completes the first missing-cutting area, it determines that the supplementary work for the first missing-cutting area is completed, and the control unit 200 Control the self-propelled lawn mower 10 to face the second missed cut area, and repeat the above steps until all the missed cut areas 430 or all the missed cut areas that need supplementary work in all missed cut areas are completed, and the self-propelled lawn mower is improved.
  • the working efficiency of 10 and effectively supplement the mowing area that the self-propelled lawn mower 10 missed in the early stage, so that the lawn modified by the self-propelled lawn mower system is more beautiful and saves energy.
  • the missed cut area judgment module 230 analyzes the unworked area according to the working track of the self-propelled lawn mower 10, and analyzes the unworked area boundary. When the area of the unworked area is greater than the preset value, it determines that it is the missed cut area 430, and combines it with the user The operation of determining the missing areas that require supplementary work among all missing areas, and controlling the self-propelled lawn mower 10 to sequentially supplement the missing areas 430. When the area of the non-operating area is less than the preset value, it is determined that the non-operating area is not required Supplementary work, and control the self-propelled lawn mower 10 not to work on the unworked area.
  • the control unit establishes a positioning coordinate system to analyze the position of the self-propelled lawn mower 10 and the position information of the working path.
  • the positioning component establishes a positioning coordinate system on the horizontal plane, and uses a certain point as the origin, such as the position of the charging station or the starting position of the self-propelled lawn mower 10, and is obtained by the GPS positioning unit 310 of the positioning component, the IMU inertial measurement unit 320 and other devices.
  • the position information of the self-propelled lawn mower 10, and the position information of the self-propelled lawn mower 10 is converted to the corresponding position coordinate data in the positioning coordinate system, and stored in the storage module; the positioning component records the operation of the self-propelled lawn mower 10
  • the trajectory is converted to the corresponding position coordinate data and stored in the storage module.
  • the unworked area is calculated and whether it is a missing cut area is determined according to the area or shape.
  • the self-propelled lawn mower 10 is controlled to enter the missing cut area and is in self-propelled
  • the mowing element 130 is controlled to rotate to cut the grass.
  • the control unit 200 may generate a positioning coordinate system or an electronic map for analyzing the position and planning path of the self-propelled lawn mower 10. Referring to Fig.
  • the optimal path planning algorithm is stored in the filling planning module 210, and the path of supplementary operations in the missing cut area is analyzed through the optimal path planning algorithm, and the self-propelled lawn mower 10 is analyzed for the first missing cut area and the second missing cut area.
  • the operation sequence of the cutting area and the Nth missing cutting area in order to obtain the shortest work path plan for the supplementary operation of the missing cutting area 430, so that the self-propelled lawn mower 10 can complete all the missing cuttings with the highest efficiency and the shortest distance.
  • Supplementary work in the missing cut area, or the distance deviation from the shortest working path is less than 50%, so that the self-propelled lawn mower 10 can relatively efficiently supplement the missing cut area and improve the working efficiency of the self-propelled lawn mower 10 .
  • the self-propelled lawn mower 10 takes the mark point 431 of the missed cut area 430 as a target point, and moves to the missed cut area 430 by the guiding action of the position information of the mark point 431.
  • the actual operating path of the self-propelled mower 10 on the shortest operating path has an error with the shortest operating path.
  • the calculation of the planning module will be filled in.
  • the shortest path in which at least one of the missing cut areas is sequentially mowing is defined as the shortest working path, and the ratio of the length of the working path of the self-propelled lawn mower 10 actually executed to the length of the shortest working path is greater than or equal to 1 and less than or equal to 1.2. In one case, the ratio of the length of the working path to the length of the shortest working path is greater than or equal to 1 and less than or equal to 1.1.
  • the shortest operation route referred to in this embodiment is a sequence of supplementary operations to the missing area.
  • the selection of different marker points 431 corresponds to different supplementary operation route lengths. Therefore, the actual operation distance of the shortest operation route may be A range interval.
  • the control module 260 controls the self-propelled lawn mower 10 to supplement the missing cut area in sequence according to the order in which the missing cut area in the shortest operating route is supplemented. operation.
  • the self-propelled lawn mower 10 enters the missing cut area, and the mowing element is driven to rotate to perform the mowing operation.
  • the self-propelled lawn mower 10 is controlled to rotate and move in the missing cutting area, the bow-shaped moving operation, or the disorderly operation within a certain range, and the self-propelled lawn mower 10 is controlled to supplement the coverage of the missing cutting area After more than 80%, it is determined that supplementary work has been completed for the missing cut area.
  • the ratio of the area covered by the self-propelled lawn mower 10 during operation to the total area of the missing cut area when it is not in operation is greater than 80%.
  • the self-propelled lawn mower 10 moves between missed cut areas, it may pass through other missed cut areas.
  • the operating coverage of the missed cut area that it has not passed through reaches more than 80%, this situation is not mentioned in this implementation method.
  • the filling planning module is equipped with a path planning algorithm, so as to calculate and generate a working route for sequentially mowing the grass in at least one of the missing cut areas, and the control module controls the self-propelled cutting according to the calculated working path.
  • the grass machine supplements the missing cut area.
  • the filling planning module is equipped with a path planning algorithm, so as to calculate and generate a shortest operation route for mowing at least one of the missed areas in sequence.
  • the path planning algorithm can be: taboo algorithm, Dijkstra algorithm, Fuzzy logic algorithm, artificial potential field method, spatial discrete method, A* method, ant colony algorithm, etc., to calculate the shortest operation route to the missing area, the shortest operation route to the missing area can be understood as the selection of the missing area
  • the sequence of operations, the sequence of selecting operations for the missing cut area can achieve the fastest supplementary work for the missing cut area.
  • the shortest operation route for the missing cut area can also be the shortest route for controlling the self-propelled lawn mower to supplement the missing cut area, thereby increasing the speed of the supplementary operation.
  • a method for calculating the shortest work path for filling the path plan in the planning module 210 is provided.
  • the filling planning module 210 calculates the simulated routes between the missing areas, and stores them as the first simulated route 441, the second simulated route 441, the Nth simulated route 441, and so on.
  • the filling planning module 210 calculates the simulation route of the simulation actuator through all the missing cut areas, that is, selects and sorts the paths from the first simulation path, the second simulation path, and the Nth simulation path, so that the simulation route includes all the miss cut areas, and simulates
  • the total route includes a first simulated route, a second simulated route, and an Nth simulated route.
  • Different simulated routes correspond to different sorts of the first simulated route, the second simulated route, and the Nth simulated route.
  • the simulated route does not need to include all simulated paths 441, but includes all missing cut areas.
  • One of the first simulated route, the second simulated route, and the Nth simulated route is the shortest work route 440, which corresponds to the shortest path for completing all the work areas 410 for completion of work.
  • the filling planning module 210 simulates the actuator to drive multiple times on the first simulation path, the second simulation path, and the Nth simulation path 44, and once in the simulation path 441 that the simulation actuator traverses, correct A marking factor is added to the simulation path 441.
  • the marking factor is a pheromone.
  • the simulation route with different concentration of the marking factor corresponds to the selection probability of different simulation execution agencies.
  • the analysis method of the shortest operation route 440 is now provided.
  • the filling planning module 210 generates m simulated actuators. Taking a simulated actuator as an example, the simulated actuator can choose a missing cutting area as the starting point, from the missing cutting area i to the missing cutting area.
  • the transition probability of area j is P.
  • the simulation actuator selects the next missed area according to the transition probability.
  • the filling planning module 210 adds or volatilizes the marking factor and the concentration of the marking factor according to the selection of the simulation path 441 by the simulation actuator. Determined according to the information concentration function ⁇ , the filling planning module 210 refreshes the marking factor according to the information concentration function ⁇ , increases the marking factor of the selected simulated path 441, volatilizes the marking factor of the unselected simulated path 441, and reduces the number of marking factors. .
  • the filling planning module 210 reads the distance of the simulation path 441, and takes the reciprocal of the distance of the simulation path 441 as the heuristic function ⁇ , and the transition probability of the simulation actuator is positively correlated with the information concentration function relationship ⁇ and the heuristic function ⁇ .
  • the transition probability P of the simulation actuator from the missing area i to the missing area j is the product of the heuristic function ⁇ and the information concentration function ⁇ and the transition probability P from the missing area i to each missing area point is the heuristic function ⁇ and the information concentration
  • the ratio of the sum of the products of the function ⁇ , for the missing cut area that the simulation actuator has passed, the probability of passing it is reduced.
  • the information concentration function relationship ⁇ is calculated from the sum of the information enhancement function and the information volatilization function.
  • the information volatilization function has a volatilization coefficient such as 0.5.
  • the marking factor of the simulated path 441 passed by the simulated actuator is based on the information enhancement function Increase ⁇ , and the cumulative mark factor function is the sum of the previous 50% mark factor number and the information enhancement ⁇ , and the mark factor concentration of the path that is not traversed by the simulated actuator is reduced by 50%.
  • the self-propelled mowing system simulates and calculates a schematic diagram of one iteration of the shortest working path. After the simulation actuator completes a transfer, the marking factor of the simulated path 441 is updated according to the preset algorithm, and the missing cut area is changed.
  • each simulation actuator is assigned to the next missed area according to its transition probability P, repeat the above actions until all missed areas are selected to pass, judge that the simulation actuator simulates a simulated route, and Update the number of marking factors according to the information concentration function ⁇ , and after all m simulation actuators complete the simulation route, update the information concentration function ⁇ for the simulation route, and repeat the above actions, and iteratively calculate until the simulation actuator is marking the factor
  • the preset value is for example 100 times or more, and it is determined that the shortest operation route 440 is the most frequently selected simulation route.
  • FIG. 10 it is a schematic diagram of the iterative convergence of the shortest operation route calculated by the self-propelled mowing system.
  • the dashed points in the figure are the distance statistics of the simulated operation routes of all the simulation actuators of the self-propelled mowing system.
  • the solid line is the self-propelled in this embodiment.
  • a simulation actuator of the mowing system simulates the distance statistics of the operating route. After 80 iterations, the shortest operation route for supplementing the missing area under the current operation situation is obtained.
  • the information enhancement ⁇ is a constant ratio to the distance of the current simulated path 441, that is, the ant-period system is used to calculate the information enhancement ⁇ .
  • the information enhancement ⁇ is 0.
  • the information enhancement ⁇ can also be calculated by the ant quantity system or the ant secret system, and will not be described in detail again.
  • the transition probability P can be calculated using the following formula:
  • is the marker factor index
  • is the heuristic index
  • J k is the unmowed area.
  • the information density function ⁇ and the information enhancement ⁇ are respectively:
  • is the volatilization coefficient of the labeling factor.
  • the optimal path planning algorithm in the filling planning module 210 adopts the A* algorithm, and the simulation execution mechanism is generated in the positioning coordinate system or the electronic map.
  • the filling planning module 210 calculates the simulated route between the missing areas, and calculates one of the first simulated route, the second simulated route, and the Nth simulated route as the shortest operation route 440, which corresponds to the completion of all tasks in the waiting area 410 The shortest path.
  • the work path planning for the supplementary operation in the filling planning module 210 can adopt the artificial potential field method: establish the potential field function, and the target point is the gravitational force, and the obstacle is the repulsion force; or
  • the dynamic window DWA method and the like are used to find the shortest simulation path between the missing cut areas 430. Combining the supplementary sequence of the missing cut area 430 of the shortest operating path, the shortest operating distance of the shortest simulated route is obtained.
  • the self-propelled mowing system is provided with an interactive interface 150 that interacts with the user.
  • the interactive interface can be communicatively connected to the control unit, and the interactive interface 150 can display the self-propelled mowing.
  • the interactive interface 150 is connected to the control unit. When the user transmits control instructions through keys or switches, the control unit obtains, analyzes and outputs the corresponding control instructions to the corresponding controller to control the operation of the self-propelled mowing system.
  • the interactive interface 150 can be installed on the mobile terminal 20, and the mobile terminal 20 provides the user with operating status information of the self-propelled mowing system, and the user transmits the operating status of the self-propelled mowing system through the mobile terminal 20 to control the operating status of the self-propelled mowing system.
  • the control unit generates an electronic map 151 to analyze the position of the self-propelled lawn mower 10a and the working path position information.
  • the electronic map can be displayed to the user through the interactive interface 150.
  • the positioning component 300 obtains the real-time position and running trajectory of the self-propelled lawn mower 10a, and generates the corresponding virtual self-propelled lawn mower 10a and running trajectory on the electronic map 151, and analyzes the corresponding virtual self-propelled lawn mower 10a according to the operation of the self-propelled lawn mower 10a.
  • the unworked area of, that is, the missed area 430a, and the corresponding virtual missed area is generated on the electronic map 151.
  • the control unit generates an electronic map 151, and stores the information content of the electronic map 151 in the storage module, so that the electronic map 151 is equipped with the control unit to operate.
  • the control unit matches the working area 410a of the self-propelled lawn mower 10a to the electronic map 151, thereby selecting the working boundary 420a of the working area 410a of the self-propelled lawn mower 10a by operating the electronic map 151 and displaying it on the electronic map 151.
  • the control unit includes an electronic map control.
  • the electronic map control includes world electronic map information or regional electronic map information, or can load one or a combination of online electronic map information and offline electronic map information.
  • the electronic map control is set to extract regional electronic map information.
  • any point displayed on the electronic map 151 corresponds to the international standard longitude and latitude data information
  • the electronic map control or the cloud stores its display area map
  • the latitude and longitude data information of any location point in the, that is, the latitude and longitude data of the actual location corresponding to the location point displayed on the electronic map 151 can be obtained through the electronic map control.
  • the electronic map control is implemented as a G-Map control.
  • the G-Map control is a loading processing tool for the electronic map 151 in the related technology.
  • the display content and operating data information of the electronic map 151 are initialized and loaded through the G-Map control to set the electronic map.
  • 151 displays display information such as center point, zoom level, resolution, and view type.
  • the boundary acquisition module and the electronic map control can be communicatively connected. The user selects the boundary of the work area on the electronic map 151 and corresponds to the boundary of the actual work area, so that the boundary acquisition module acquires the work boundary to be operated.
  • the missing-cut area judgment module analyzes the un-operated area according to the working trajectory of the self-propelled lawn mower 10a, and the filling planning module determines whether the un-operated area is the missing-cut area 430a, and projects the area to be operated on the electronic map 151.
  • 151 generates a virtual missed area, analyzes the boundary of the missed area, generates the virtual missed area boundary on the electronic map 151, and the filling planning module determines whether the unworked area is a missed area.
  • the positioning component 300 detects that the position of the virtual self-propelled lawn mower 10a has entered the boundary of the virtual missed cut area, that is, the positioning component 300 detects that the position of the self-propelled lawn mower 10a has entered the boundary of the missed cut area, and judges that the self-propelled lawn mower 10a is within the boundary of the missed cut area.
  • the self-propelled lawn mower 10a is operating in the missed cut area 430a, and the missed cut area judgment module obtains whether the first missed cut area is completed, and when the self-propelled lawn mower 10a completes the work on the first missed cut area, it determines whether the first missed cut area is completed.
  • the supplementary work of one missing cut area is completed, and the control unit controls the self-propelled lawn mower 10a to face the second missing cut area, and the above steps are repeated until the work on all the missing cut areas 430a is completed.
  • the control unit displays the simulated missed area corresponding to the electronic map 151, that is, the location of the simulated missed area corresponds to the actual location of the missed area, and displays the electronic map 151 through an interactive interface so that the user can obtain the status of the missed area.
  • the user can choose to output information to add or delete the missing area.
  • the user analyzes the missing cut area by observing the situation within the work boundary, such as the actual work area that needs to be added, or the obstacle in the work area, and analyzes and judges that the missing cut area is on the electronic map 151 or positioning coordinates For the position in the system, select the corresponding missing area in the electronic map 151 or the positioning coordinate system through the interactive interface to increase the missing area or delete the corresponding missing area selected by the system.
  • the filling planning module generates a simulation actuator a, which is used to simulate the travel operation of the actuator a on the missing cut area.
  • the difference from the first embodiment is that in the second working phase, that is, when the self-propelled mower misses the cutting area, the control module is set to control the self-propelled mower.
  • the lawn mower cuts grass one by one in at least one of the missing areas.
  • the filling planning module plans a supplementary path 440b that does not repeat operations in the missed area 430b according to the location of the missed cut area 430b.
  • the control unit controls the installation of the supplementary work path for the self-propelled lawn mower according to the supplementary sequence of the missed cut area 430b.
  • the trajectory moves and works, so that the self-propelled lawn mower runs in the order of the missing cut area, and does not repeat the work on the missing cut area to efficiently complete the mending work.
  • the positioning component of the self-propelled lawn mower system obtains the real-time positioning of the self-propelled lawn mower, and sequentially according to the position information of the missing area 430b stored in the storage module, the missing area 430b in the figure is also It can be understood as a landmark.
  • the control unit drives the self-propelled lawn mower to move toward a certain missing cut area.
  • the control unit drives the controller to make the first missing cut area.
  • a traveling wheel and a second traveling wheel rotate at a differential speed, and the self-propelled lawn mower is turned to the first missing cutting area and moved through the differential rotation of the first traveling wheel and the second traveling wheel.
  • the positioning component detects that the position of the self-propelled lawnmower overlaps with the first missing cut area, it is determined that the self-propelled lawnmower travels to the first missing cut area and sends instructions to the output controller so that the output motor drives the mowing element to rotate. Mowing the grass in the first missed area.
  • the missing-cutting area judgment module obtains whether the first missing-cutting area is completed, and when the self-propelled mower completes the first missing-cutting area, it determines that the supplementary work for the first missing-cutting area is completed, and the control unit controls the self-propelled The lawnmower faces the second missed area, and repeats the above steps until the work on all missed areas 430b is completed, and does not repeatedly mow the uncut area, which improves the working efficiency of the self-propelled lawnmower, and Effectively supplement mowing the area that the self-propelled lawn mower missed in the early stage, so that the lawn modified by the self-propelled lawn mower is more beautiful and saves energy.
  • the filling scale module is equipped with an algorithm to select the point closest to the self-propelled lawn mower as the starting point, and select the missing cut that is closest to the previous missing cut area or the starting point.
  • the area is used as the next missing cut area until all the missing cut areas are selected, and the corresponding supplementary work path is generated according to the selected order of the missing cut areas. Therefore, the control module is set to control the self-propelled lawnmower to supplement the Nth missing cut area, and select the Mth missing cut area that is not supplemented with the smallest distance from the missing cut area as the missing cut area for the next supplementary operation. .
  • the self-propelled lawn mower is controlled to supplement the missing cut area in the corresponding sequence to complete the supplementary work for all the missing cut areas, and the missing cut area will not be repeated multiple times to supplement the work, thus improving the self-propelled The operating efficiency of the lawn mower.
  • a supplementary operation method for the missed area 430 of the optimal route of the self-propelled lawn mower 10 S1, obtain the position information and area of the non-operating area of the self-propelled lawn mower 10, if the area of the self-propelled lawn mower 10 is not operated If the area is larger than the preset value L, it is judged to be a missing cut area, and the distance between the missing cut areas is calculated; S2, m simulation actuators are generated, and each simulation actuator randomly selects the missing cut area as the starting point; S3, m simulations The executive agency selects the next missed area with the transition probability P. If the missed area is selected by the simulated actuator n, the probability that the selected missed area is selected by the simulated actuator n is reduced; S4.
  • step S3 determines whether the missed area Yes, all m simulation actuators are selected, if not, repeat step S3, if yes, go to step S5, record the simulation route simulated by the m simulation actuators, and set the mark factor for the simulation route according to the information concentration function ⁇ . Recorded as an iterative calculation; S6, judge whether the number of iterations is greater than the preset value, if not, repeat step S2, if yes, execute step S7 to obtain m self-propelled lawn mower 10 simulation routes with the most simulation times, and judge it as the shortest Operation route 440; S8. Control the self-propelled lawn mower 10 to perform supplementary operations on at least one of the missed areas according to the shortest simulated route.
  • a supplementary operation method for the missed area 430 of the optimal route of the self-propelled lawn mower 10 S1, obtain the position information and area of the non-operating area of the self-propelled lawn mower 10, if the area of the self-propelled lawn mower 10 is not operating If the area is larger than the preset value L, it is judged to be a missing cut area, and the distance between the missing cut areas is calculated; S2, m simulation actuators are generated, and each simulation actuator randomly selects the missing cut area as the starting point; S3, m simulations The executive agency selects the next missed area with the transition probability P. If the missed area is selected by the simulated actuator n, the probability that the selected missed area is selected by the simulated actuator n is reduced; S4.
  • step S3 Determine the missed area Yes, all m simulation actuators are selected, if not, repeat step S3, if yes, go to step S5, record the simulation route simulated by the m simulation actuators, and set the mark factor for the simulation route according to the information concentration function ⁇ . Recorded as an iterative calculation; S16. Determine whether a simulated route has been simulated more than the preset value N. If not, repeat steps S2 to S4. If yes, perform step S17 to obtain the simulated route and determine the shortest work route S18, controlling the self-propelled lawn mower 10 to perform supplementary operations on at least one of the missing cutting areas according to the shortest simulated route.
  • step S17 Determine the missed area Yes, all m simulation actuators are selected, if not, repeat step S3, if yes, go to step S5, record the simulation route simulated by the m simulation actuators, and set the mark factor for the simulation route according to the information concentration function ⁇ . Recorded as an iterative calculation; S16. Determine whether a simulated route has
  • a method for identifying and judging the missing cut area 430 of the self-propelled lawn mower 10 is provided: S21, select the working area 410 of the self-propelled lawn mower 10; S22, start the self-propelled lawn mower The machine 10 obtains and records the operation track of the self-propelled lawn mower 10 through the positioning component 300, and determines that the area that the self-propelled lawn mower 10 passes through is the mowed area; S23, calculates the self-propelled lawn mower Whether the ratio of the area of the working area of 10 to the total area of the working area 410 is greater than the preset value M; S24. If it is, obtain the un-operated area of the self-propelled lawn mower 10 in the working area 410, and determine that it is missed Area 430. Optionally, the area of each non-operating area of the self-propelled lawn mower 10 is calculated, and if the area of the operating area is greater than the preset value L, it is determined that the operating area is the missing cut area 430.
  • a method for identifying and judging the missing cut area 430 of the self-propelled lawnmower 10 is provided: S31, select the working area 410 of the self-propelled lawnmower 10; S32, start the self-propelled The lawn mower 10 obtains and updates the non-operating area of the intelligent self-propelled lawn mower 10 through the image sensor 340; S33, judges whether the ratio of the area of the work area 410 of the currently unself-propelled lawn mower 10 to the total area of the work area 410 is not Less than the preset value N; S34, if yes, obtain the unworked area currently analyzed by the image sensor 340 and determine it as the missing cut area 430. The area of each non-operating area of the self-propelled lawn mower 10 is calculated, and if the area of the operating area is greater than the preset value L, it is determined that the operating area is the missing cut area 430.
  • a self-propelled lawn mower 10 missing cutting area 430 supplementary operation method is provided: S41, select the working area of the self-propelled mowing system; S42, start the self-propelled mowing system, and compare the self-propelled mowing system The self-propelled lawn mower 10 is positioned to obtain the operation trajectory, and the area covered by the walking operation of the self-propelled lawn mower 10 is determined as the operating area; S43, analyzing the unoperated area in the working area according to the working area and the operating area, And determine that the unworked area with an area greater than the preset value is a missing cut area; S44.
  • the self-propelled lawn mower in order to realize the positioning of the self-propelled lawn mower to determine the position information of the missing cut area of the self-propelled lawn mower operation, a self-propelled lawn mower is proposed, with reference to Figs. 19 to 19 Figure 21, the self-propelled lawn mower includes at least a main body 100a and an executive assembly 101a connected to the main body 100a.
  • the executive assembly 101a includes a mowing element 110a and an output motor 120a for driving the mowing element 110a to rotate.
  • the mowing element 110a is provided Below the main body 100a.
  • the mowing element 110a is driven to rotate by the output motor 120a for cutting vegetation.
  • the actuator 101a includes a walking wheel 130a and a driving motor 140a that provides driving force to the walking wheel 130a to make it rotate.
  • the self-propelled lawn mower also includes a control unit 200a.
  • the control unit 200a controls the rotation speed of the walking wheel 130a by controlling the driving motor 140a.
  • the self-propelled lawn mower further includes a power supply device 800.
  • the power supply device 800 is implemented as at least one battery pack, and is connected to the self-propelled lawn mower through the battery pack interface on the self-propelled lawn mower to provide the output motor 120a. And the drive motor 140a is powered.
  • the self-propelled lawn mower includes an output controller 150a for controlling the output motor 120a, and a drive controller 160a for controlling the drive motor 140a.
  • the output controller 150a is connected to the control unit 200a, and the control unit 200a sends instructions through the output
  • the controller 150a controls the operation of the output motor 120a, thereby controlling the cutting state of the mowing element 110a.
  • the drive controller 160a is connected to control the drive motor 140a, and the drive controller 160a is communicatively connected with the control unit 200a, so that the control unit 200a analyzes the driving route of the self-propelled lawn mower after receiving the user's start instruction or judges the start
  • the driving command is sent to the driving controller 160a to control the driving motor 140a to drive the walking wheel 130a to travel.
  • the self-propelled lawn mower is provided with a positioning component 300a for detecting the position of the self-propelled lawn mower and an information collection module 400a that collects position information of the self-propelled lawn mower.
  • the information collection module 400a acquires the self-propelled lawn mower detected by the positioning component 300a To determine the current mowed path of the lawn mower, the information collection module 400a is connected to the control unit 200a, and transmits the position information of the self-propelled lawn mower to the control unit 200a.
  • the positioning component 300a includes at least a first positioning unit 310a and a second positioning unit 320a.
  • the first positioning unit 310a includes a positioning sensor 311.
  • the positioning sensor 311 can be a GPS positioning component or a GNSS positioning component, and is used to obtain the primary level of a self-propelled lawn mower. Position information or main position estimate, and the starting position of the movement.
  • the second positioning unit 320a is used to detect the precise position information of the self-propelled lawn mower, that is, on the basis of the primary position information obtained by the first positioning unit 310a, the precise position information with a smaller error is determined to obtain the accurate position information of the self-propelled lawn mower. Estimated final location.
  • the first positioning unit 310a and the second positioning unit 320a send the detected position information to the information collection module 400a, and the information collection module 400a analyzes the displacement status of the self-propelled lawn mower.
  • the GNSS positioning component is a global navigation satellite system, which includes US GPS, China Beidou, Russian GLONASS, EU GALILEO, regional systems such as Japan’s QZSS and India’s IRNSS, augmentation systems such as US WASS, Japan’s MSAS, EU’s EGNOS, and India’s GAGAN and Nigeria’s NIG-GOMSAT-1.
  • the second positioning unit 320a includes at least an image sensor 321.
  • the image sensor 321 is arranged on the main body 100a.
  • the image sensor 321 generates the corresponding image sensing area 322 and acquires images in the image sensing area 322.
  • the movement of the self-propelled lawn mower drives the image sensor 321 moves to make the image sensing area 322 move to acquire different images.
  • the image sensor 321 continuously or intermittently acquires images in the image sensing area 322, and acquires the first position image information 323 at the first time point and the second time thereafter.
  • the second location image information 328 of the point is obtained by acquiring at least one common feature domain of the first location image information 323 and the second location image information 328, the common feature domain includes one or more feature points, and the comparison of one or more
  • the displacement state of the common feature point is obtained from the displacement or relative displacement state of the walking mower on the ground.
  • the common feature domain may be a collection of points, lines, surfaces, or colors in the image, such as HOG features, Hddr features, and LEP features, and through the time movement trajectory of the common feature domain, The analysis comes from the actual displacement of the walking mower at the corresponding time.
  • the vegetation area A is the first position image information 323, and the vegetation area A'is the second position image information 328.
  • the relative position relationship between the first position image information 323 and the second position image information 328 can determine the relative positions of the self-propelled lawn mower on the x-axis and the y axis, and then obtain the position information of the self-propelled lawn mower.
  • the control unit 200a or the information collection module 400a can establish a coordinate system to calculate the position of the self-propelled lawn mower, wherein the plane where the x-axis and the y-axis are located is parallel to the horizontal plane.
  • the first position image information and the second position image information may also be image information of other objects such as obstacles.
  • the image sensor is used to detect the relative displacement of the self-propelled lawn mower, and one or more common features in the first position image information and the second position image information 328 of the vegetation behind the walking wheel are obtained continuously or intermittently through the imaging device of the image sensor
  • the imaging device of the image sensor projects light onto the vegetation near the back side of the walking wheel.
  • the vegetation area A and the vegetation area A'th The motion trajectory of a small grass 329a on the image sensor film is obtained, that is, the relative displacement of the first small grass 329a is obtained to obtain the relative displacement of the self-propelled lawn mower in the first time period, where the vegetation area A and The vegetation area A'has an overlapping area and the first grass 329a is located at different positions of the vegetation area A and the vegetation area A'overlapping area; in the next second time period t1, the vegetation area B and the vegetation area B'are second The motion trajectory of the grass 329b on the image sensor film is obtained, that is, the relative displacement of the second grass 329b is obtained to obtain the relative displacement of the self-propelled lawnmower in the second time period, where the vegetation area B and the vegetation The area B'has an overlapping area and the second grass 329b is located at different positions of the vegetation area E and the vegetation area E'overlapping area.
  • the self-propelled lawnmower moves on the ground over time
  • the self-propelled lawnmower and the image sensor (including the negative film) installed on the self-propelled lawnmower are regarded as stationary
  • the image sensor acquires the relative displacement state of the first grass 329a or the second grass 329b in the image information of the first position and the image information of the second position.
  • the displacement information of the first small grass 329a and the second small grass 329b is obtained by cumulatively superimposing the displacement information.
  • the acquisition interval of the first position image information 323 and the second position image information 328 can be set according to the speed of the self-propelled lawnmower, so that the first position image information 323 and the second position image information 328 can effectively acquire a common location.
  • the characteristic area is used to judge the travel displacement information of the self-propelled lawn mower based on the common area characteristics.
  • the second positioning unit 320a may further include an image sensor and a calibration device 327.
  • the calibration device 327 is used to detect the posture information and/or position information of the self-propelled lawn mower to compensate according to the position of the image sensor.
  • the calibration device 327 may include an inertial sensor 325, the motion trajectory of the self-propelled lawn mower is obtained through the image sensor on the self-propelled lawn mower, and the angle offset information on the motion trajectory of the self-propelled lawn mower is obtained by the inertial sensor 325 to correct
  • the position information obtained by the image sensor can be used to obtain more accurate position information of the self-propelled lawn mower.
  • the inertial sensor detects the posture of the self-propelled lawn mower
  • the control unit calculates a calibration coefficient according to the posture of the self-propelled lawn mower, and calibrates the displacement of the self-propelled lawn mower based on the position image information based on the calibration coefficient.
  • the control unit obtains the relative displacement or position of the self-propelled lawn mower on the x-axis and/or the y-axis according to the time movement trajectory analysis of at least one common feature domain in the first position image information and the second position image information of the image sensor
  • the information inertial sensor can detect the angle of the main body relative to the plane where the x-axis and the y-axis are located.
  • the control unit obtains the relative displacement or position of the self-propelled lawn mower on the x-axis and/or the y-axis according to the time movement trajectory analysis of at least one common feature domain in the first position image information and the second position image information of the image sensor information.
  • the height sensor can measure the distance of the self-propelled lawn mower relative to the corresponding object in the common feature domain on the z-axis.
  • the control unit is set according to the distance of the self-propelled lawn mower relative to the corresponding object in the common feature domain on the z-axis, the angle of the main body relative to the plane where the x-axis and the y-axis are located, and the first position image information and the second position image of the image sensor Analysis of the time movement trajectory of at least one common feature domain in the information obtains relative displacement or position information of the self-propelled lawn mower on the x-axis and/or the y-axis.
  • the inertial sensor 325 can be implemented as an IMU inertial measurement unit.
  • the IMU inertial measurement unit includes an accelerometer and a gyroscope, and is used to detect the angle offset information of the self-propelled lawn mower during the traveling process to determine the self-propelled mower.
  • the posture of the lawn mower The control unit calculates the calibration coefficient according to the posture of the self-propelled lawn mower, and calibrates the displacement of the self-propelled lawn mower obtained by the position image information according to the calibration coefficient.
  • the inertial sensor is applied to the detection image sensor to acquire the image information of the first position and the image information of the second position while acquiring the posture of the self-propelled lawn mower for the analysis and calibration of the image information of the first position and the second position.
  • the inertial sensor 325 transmits the detected angle offset information of the self-propelled lawn mower to the information collection module 400a.
  • the information collection module 400a analyzes the self-propelled lawn mower’s primary position information, displacement information, and angle offset information.
  • the final displacement information of the walking lawn mower is used to obtain real-time accurate position data of the self-propelled lawn mower.
  • the calibration device 327 may also include a height sensor 326 for detecting the level information of the lawn.
  • the height sensor 326 may also be used to measure self-propelled cutting.
  • the distance sensor for the distance information between the grass machine and the measured object in the height direction such as a distance measuring sensor such as a TOF sensor.
  • the TOF sensor emits light, and calculates the time difference between the time when the light is emitted and the time when the light is reflected by an object such as a lawn or the ground to calculate the height of the lawn relative to the image sensor.
  • the height sensor 326 can detect the distance of the self-propelled lawn mower relative to the corresponding object in the common feature domain on the z-axis. If the common feature domain is vegetation, it can measure the distance of the vegetation relative to the self-propelled lawn mower.
  • the control unit calculates the calibration coefficient according to the height parameter of the self-propelled mower, and calibrates the displacement of the self-propelled mower from the position image information according to the calibration coefficient, thereby improving the accuracy of the displacement of the self-propelled mower detected by the image sensor.
  • the height sensor 326 transmits the detected horizontal height data of the lawn relative to the image sensor to the information collection module 400a, and the information collection module 400a generates information about the position information detected by the positioning component 300a according to the real-time height information of the self-propelled lawn mower. Calibration factor.
  • the position information detected by the image sensor 321 is adjusted by the calibration coefficient to prevent the change of the lawn height during the driving process of the self-propelled lawn mower from affecting the deviation of the first position image information 323 and the second position image information 328 acquired by the image sensor 321, and the acquisition is accurate
  • the position information has a large error.
  • the height sensor 326 can also be used to calibrate the excessive angular deviation of the self-propelled lawn mower detected by the inertial sensor 325 due to the height change.
  • the first positioning unit 310a can also be a displacement sensor 312 that detects the rotation speed or displacement of the walking wheel 130a.
  • the displacement sensor 312 can be arranged on or on the driving motor 140a connected to the walking wheel 130a. Nearby, the rotation speed of the traveling wheel 130a is obtained by detecting the rotation speed or displacement of the driving motor 140a, or the displacement sensor 312 is arranged on or near the traveling wheel 130a to detect the rotation speed or displacement of the traveling wheel 130a, thereby obtaining a self-propelled lawn mower Estimate of the main position.
  • the driving motor 140a is set as the first driving motor 141a and the second driving motor 142a
  • the displacement sensor 312 is provided with at least Two are respectively arranged in the first travel wheel 131a and the second travel wheel 132a, or are respectively provided in the first drive motor 141a and the second drive motor 142a to obtain the rotational speed of the first travel wheel 131a and the second travel wheel 132a,
  • the main position estimate of the self-propelled lawn mower is obtained, combined with the motion trajectory obtained by the image sensor and the self-propelled mowing detected by the inertial sensor 325
  • the angle offset information of the motion trajectory of the machine can be obtained from the accurate relative position of the walking lawn mower.
  • the displacement angle of the self-propelled lawn mower can also be obtained by analyzing the speed difference between the first traveling wheel 131a and the second traveling wheel 132a, and the rotation speed and the number of rotations of the traveling wheel 130a can be combined to obtain the self-propelled lawn mower. Precise relative position.
  • the control unit includes at least a main position estimation unit for establishing a main position estimation function g(x, y) of the self-propelled lawn mower to obtain the main position estimation of the self-propelled lawn mower.
  • the control unit also includes a position estimation auxiliary unit, which uses the position image information obtained by the image sensor to establish a position estimation auxiliary function h(x,y) according to the position image information obtained by the image sensor to compensate the main position estimation obtained by the position estimation main unit, Obtain the final position estimate of the self-propelled lawn mower; wherein, the control unit drives at least one traveling wheel toward the target position at least according to the target position instruction and the obtained final position estimate.
  • control unit 200a establishes the main position estimation function or main position estimation function g(x, y) of the self-propelled lawn mower according to the positioning data of the first positioning unit, and obtains the primary position data or main position data of the self-propelled lawn mower.
  • Position estimation for example, obtain the self-propelled lawn mower in a certain area; use the position information of the second detection unit to establish the position estimation auxiliary function h(x, y), for example, obtain the self-propelled lawn mower in the area To compensate for the obtained primary position data or main position estimation data, to obtain the final precise position data of the self-propelled lawn mower.
  • control unit establishes the main position estimation function g(x,y) of the self-propelled lawn mower according to the displacement data detected by the displacement sensor and/or the positioning data of the positioning sensor, and obtains the main position estimation of the self-propelled lawn mower;
  • the position information obtained by the sensor, inertial sensor, and height sensor is used to establish a position estimation auxiliary function h(x,y), combined with the main position estimation, to obtain the final position estimation of the self-propelled lawn mower.
  • the image sensor 321 includes a film and an imaging device.
  • the imaging device can be set as a camera, including a lens 324 and a package 325 for mounting the lens; the film can be an imaging substrate or a photosensitive surface 327, and the imaging device senses projections from the self-propelled lawnmower
  • the first position image information 323 and the second position image information 328 corresponding to the measured object or the object to be measured are generated on the negative film, so that one or more of the first position image information 323 and the second position image information 328 are shared by one or more of the first position image information 323 and the second position image information 328.
  • the motion trajectory of the characteristic domain analyzes the displacement state of the self-propelled lawn mower.
  • the image sensor may also include a control chip or a PFE board, which can process the generated first position image information and second position image information 328 to analyze and calculate the displacement information of the self-propelled lawn mower or the object under test.
  • the housing 111a has a front end corresponding to the uncut area of the mowing element 110a and a rear end corresponding to the cut area of the mowing element 110a.
  • the first edge at the front end of the body 111a, the second edge at the rear end of the housing 111a, and the third and fourth edges between the front end and the rear end form the boundary of the self-propelled lawn mower housing 111a.
  • the image sensor acquires position image information through its corresponding image sensing area, the image sensing area is set at the back of the main body, and the image sensor acquires the first position image information and the second position of the image sensing area in time sequence Image information, where the first location image information and the second location image information have at least one common feature domain, and the control unit is based on at least one common feature domain in the first location image information and the second location image information of the image sensor.
  • the relative displacement of the self-propelled lawn mower is obtained by the analysis of the motion trajectory.
  • the image sensor 321 is provided at the rear end 112a of the housing 111a, or at the rear end of the self-propelled lawn mower, and is connected to the information collection module 400a.
  • the angle or steering of the image sensor 321 can be It is adjusted to be set relatively downward so that the image sensing area 322 acquired by the self-propelled lawn mower is the ground.
  • the image sensing area 322 corresponds to The image of is a lawn, and the first location image information 323 and the second location image information 328 are changed lawn images.
  • the image sensor 321 is arranged at the rear end of the housing 111a, corresponding to the cut area of the self-propelled lawnmower, and the grass is flattened by the self-propelled lawnmower, which can effectively prevent lawns of different heights from blocking the image sensor 321.
  • the content of the image sensing area 322 is acquired, thereby improving the accuracy of the displacement of the self-propelled lawn mower detected by the image sensor 321.
  • the image sensor 321d can be arranged close to the rear side of the walking wheel 130d or the grass-pressing wheel of the self-propelled lawn mower, and is connected to the information collection module.
  • the image sensor area generated by the image sensor 321d corresponds to the self-propelled mower. Behind the walking wheel 130d of the lawn mower, the lens is arranged downward so that the ground or vegetation can enter the image sensing area.
  • the image sensor 321 acquires the image of the grass that is crushed by the walking wheel 130d of the self-propelled lawn mower, so that the image sensing area acquired by the image sensor 321d can be less affected by height differences.
  • the occlusion of grass with a higher height improves the accuracy of the image information of the first position and the image information of the second position acquired by the image sensor 321d, thereby improving the accuracy of the displacement judgment of the self-propelled lawnmower.
  • the distance between the image sensor 321d and the traveling wheel 130d is set to be greater than or equal to 1.5 cm and less than or equal to 3.5 cm.
  • the distance between the image sensor 321d and the traveling wheel 130d is less than 2 cm, so that by pushing the traveling wheel 130d down the vegetation, the interference of the vegetation on the detection of the image sensor 321d is reduced.
  • the self-propelled lawn mower is provided with a grass pressing member 500.
  • the grass pressing member 500 is provided on the walking wheel 130e, such as a grass pressing surface or convex formed on the walking wheel 130e.
  • the raised surface, or the grass pressing member 500 is connected to the housing 111e of the self-propelled lawn mower.
  • the grass pressing member 500 forms a grass pressing surface for rolling the lawn.
  • the grass pressing surface has a preset width, so that the self-propelled lawn mower When driving on vegetation, the grass pressing surface of the grass pressing member 500 forms a rolling surface 510 on the vegetation to lower the grass surface.
  • the image sensing area of the image sensor 321e corresponds to the rolling surface 510 produced by the current self-propelled lawn mower, and at least part of the rolling surface is located in the image sensing area.
  • the lowered lawn can reduce the interference of the grass height on the image sensor 321e acquiring the image information of the first position and the image information of the second position, thereby making the acquired image information of the first position and the second position image information clear and complete, and improving self-promotion.
  • the walking wheel can be directly made into a grass pressing wheel, that is, the grass pressing member is arranged on the walking wheel, so as to reduce the interference of the height of the grass on the image information of the image sensor.
  • the grass pressing member is arranged to be connected to the rear end of the housing, and the image sensor is arranged at the rear end of the housing, so that the image sensor detects that the grass pressing member is crushed by the vegetation as the self-propelled lawn mower travels. After the vegetation, it reduces the interference of vegetation with different heights on the image sensor to obtain the image information of the location, and improves the accuracy of the image sensor's detection.
  • the height sensor is also arranged at the rear end of the housing, close to the image sensor.
  • the self-propelled lawn mower forms an air flow on the main body 100 f through the air flow generating device 600, and makes the air flow flow through the surface of the image sensor 321 f. Because the image sensor 321f judges the displacement state of the self-propelled lawn mower by shifting the common area feature of the first position image information and the second position image information, the imaging quality requirements of the first position image information and the second position image information are more demanding. high. When the self-propelled lawn mower is working, it cuts the grass while driving. The grass clippings and dust brought by the mowing are attached to the image sensor 321f.
  • the distance between the air flow generating device and the image sensor is set to be greater than or equal to 2 cm and less than or equal to 8 cm, and the flow direction of the air flow generated by the air flow generating device is far away from the imaging device.
  • the airflow generating device 600 may be a fan arranged near the image sensor 321f, and continuously generate airflow when the self-propelled lawn mower is working, so as to reduce the interference of dust or grass clippings on the detection of the image sensor 321f.
  • the main body 100f includes an air inlet, an air outlet, and an air flow channel leading the air flow from the air inlet to the air outlet.
  • the image sensor 321 is arranged near the air outlet of the air channel, and the surface of the image sensor 321 is impacted by the air flow from the air outlet.
  • the airflow in the airflow channel can be generated by the traveling state of the self-propelled lawnmower, or can be generated by the operation of an airflow generating device 600, such as a fan, arranged in the self-propelled lawnmower or on the housing 111f.
  • a light source supplement device 700 and a light source filter device 710 may be provided.
  • the light source supplement device 700 may emit light with a single spectrum, such as a light source such as a laser, and project it to the image transmission.
  • the image sensor 321g is provided with a light source filtering device 710, and the light source filtering device 710 filters other light sources and only passes the light with a single spectrum, such as a laser light source, by acquiring the detected light with a single spectrum emitted by the light source supplement device 700
  • the first position image information and the second position image information of the self-propelled lawn mower can be obtained to obtain the displacement information of the self-propelled lawn mower, so that the accuracy of the displacement position detection of the self-propelled lawn mower can be improved.
  • a light source with a single spectrum of light is sent through the light source supplement device 700 to emit a single spectrum of light to the vegetation passing by the self-propelled lawnmower; the light source filter device 710 is set to pass through the detection light source sent by the light source supplement device 700
  • the light source of the same spectrum light so that only the light having the same spectrum is acquired by the image sensor 321g and detected and analyzed, thereby effectively reducing the influence of outdoor ambient light on the measurement accuracy of the optical flow sensor.
  • the self-propelled lawn mower also includes an ultrasonic sensor and a collision sensor for detecting obstacles.
  • Both the ultrasonic sensor and the collision sensor are communicatively connected with the information acquisition module 400.
  • the ultrasonic sensor sends ultrasonic waves and detects preset self-propelled Whether there are obstacles in the path of the mower, and record the position information of the obstacles.
  • the ultrasonic wave bounced by the obstacle is sensed by the ultrasonic sensor, and the obstacle position is obtained through time interval analysis.
  • the collision sensor feels the shell 111a shaking or the pressure change of the shell 111a, and analyzes whether it hits the obstacle. Therefore, the collision sensor can be set as a Hall sensor that detects the displacement state, or a pressure sensor that detects pressure changes.
  • the self-propelled lawn mower only uses one or more image sensors to obtain the final accurate position information, that is, no longer uses the fusion of the first positioning unit and the second positioning unit to obtain the final accurate position information , But only use a combination of one or more image sensors to directly obtain the final precise location information.
  • One or more image sensors can be used to obtain the 3G three-dimensional scene of the self-propelled lawn mower, so as to obtain the positioning information of the self-propelled lawn mower.
  • one or more image sensors can be used to collect the location of the self-propelled lawn mower.
  • map interfaces such as AutoNavi map or Google map to obtain the actual positioning information of the self-propelled lawn mower, and then the control unit of the self-propelled lawn mower at least according to the target position instruction and the final position obtained Estimate to drive at least one traveling wheel toward the target position.
  • map interfaces such as AutoNavi Maps or Google Maps can be directly set on the display screen of the self-propelled lawn mower, or on the display screen of a mobile device such as a mobile phone.
  • one or more image sensors can be movably steered to obtain a 3G three-dimensional scene or a 360° three-dimensional scene of a predetermined area of the self-propelled lawn mower, which is not limited here.
  • the self-propelled lawn mower further includes a plurality of image sensors 321h, which are provided at least two of the front end 113, the rear end, and the side end 114 of the main body.
  • the image sensor 321h is disposed near the peripheral edge of the main body to sense the object to be measured to form the first position image information and the second position image information in a time sequence within a predetermined reference plane, wherein the first position image information and the second position image information
  • the two-position image information has at least one common feature domain, and the at least one common feature domain includes one or more feature points, wherein the peripheral edge of the main body includes a first edge, a second edge, a third edge, and/or a fourth edge.
  • One or more image sensors can be arranged on the top side of the main body or the main housing, and the position information of the self-propelled lawn mower or the object to be measured can also be obtained.
  • the object to be measured is the vegetation or the obstacle to be measured on the ground.
  • the first edge, the second edge, the third edge, and the fourth edge not only refer to the boundary of the self-propelled lawn mower, but may also include one of the lawn mowers at a certain distance from the intelligent lawn mower boundary. position.
  • the image sensor provided on the top side of the main body or the main housing can obtain the self-propelled lawn mower or the object under test by acquiring the 3G three-dimensional scene of the location of the self-propelled lawn mower or the 3G three-dimensional scene of the object under test. Location information or location information.
  • Obstacle information can be acquired through the image sensor 321h, and one or more image sensors can be arranged on the peripheral edge of the self-propelled lawn mower body, such as the first edge, the second edge, the third edge, and/or the fourth edge, Obtain the information of the image sensing area through one or more image sensors, and analyze whether there is an obstacle in the image sensing area, or the distance between the obstacle and the self-propelled lawn mower, that is, the position information of the obstacle.
  • at least two image sensors may be provided, or the image sensing device is provided with a binocular camera, and the location information of the obstacle is obtained by fusion of image information of different positions collected by the binocular camera.
  • control unit analyzes the path of the self-propelled lawn mower according to the analyzed position information and control instructions of the self-propelled lawn mower, and according to the tracked displacement state of the self-propelled lawn mower, and drives at least A walking wheel travels towards the target position and drives the mowing blade to rotate.
  • step S51 is executed, and the position of the self-propelled lawn mower is detected by a positioning sensor to obtain an estimate of the main position of the self-propelled lawn mower;
  • step S52 Detect the posture of the self-propelled lawn mower through the inertial sensor; perform step S53, sense the area passed by the self-propelled lawn mower through the image sensor and form a number of position image information, and form the first position image information and Second location image information;
  • Step S54 is executed to obtain at least one common feature domain of the first location image information and the second location image information;
  • Step S55 is executed to detect the height parameter of the self-propelled lawnmower relative to the location image information through the height sensor
  • Step S56 is performed to calculate the displacement of the self-propelled lawn mower combined with the movement trajectory of the common feature domain in time, the obtained posture and height parameters of the self-propelled lawn mower;
  • Step S57 is performed to combine the self-propelled lawn mower obtained by

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Guiding Agricultural Machines (AREA)
  • Harvester Elements (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自行走割草系统及其对漏割区域的补充作业的方法,包括:自行走割草机(10),控制单元(200);控制单元包括:边界获取模块(250),获取工作边界(420)的信息以控制自行走割草机在工作边界内作业;漏割区域判断模块(230),识别工作边界内的漏割区域(430、430a、430b)信息;填充规划模块(210),生成一个对全部漏割区域中的至少一个漏割区域依次进行割草的作业路线;控制模块(260),被设置成根据作业路线控制自行走割草机对全部漏割区域中的至少一个漏割区域进行割草。

Description

自行走割草系统及其漏割区域的补充作业的方法
本申请要求申请日为2019年8月27日、申请号为201910793036.2,申请日为2019年9月12日、申请号为201910865102.2,以及申请日为2019年12月31日、申请号为201911411522.X的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种花园电动工具,例如涉及自行走割草系统及其漏割区域的补充作业的方法。
背景技术
智能的自行走割草机作为户外割草工具,不需要用户长期操作,智能方便而受到用户的青睐。目前自行走割草机的路径规划通常为随机作业,因此会产生漏割区域,依靠自行走割草机的随机作业对所有漏割区域补充割草完成,需要较长的时间,从而使得自行走割草机寿命较短,浪费能源,还容易产生遗漏的未割草区域,因此使得草坪不美观。
发明内容
本申请提供了一种自行走割草系统及其漏割区域的补充作业的方法,可以提升割草效率,延长自行走割草系统的使用寿命,且使得草坪更加美观。
一种实施方式中,提供一种自行走割草系统,包括:自行走割草机;自行走割草机,包括:主体,包括壳体;割草元件,连接于主体并用于切割植被;输出马达,驱动割草元件;行走轮,连接于主体;驱动马达,驱动行走轮转动;自行走割草系统还包括:控制单元,连接并控制输出马达和驱动马达;定位组件,至少包括图像传感器,用以感测自行走割草机行经过的区域并形成若干位置图像信息,以分析自行走割草机的相对位移;控制单元包括:边界获取模块,获取工作边界的信息以控制自行走割草机在工作边界内作业;漏割区域判断模块,识别工作边界内的漏割区域以及漏割区域的位置信息;填充规划模块,生成一个对全部漏割区域中的至少一个漏割区域依次进行割草的作业路线;控制模块,被设置成根据作业路线控制自行走割草机对全部漏割区域中的至少一个 漏割区域进行割草。
可选的,图像传感器以时间顺序感应形成第一位置图像信息和第二位置图像信息,其中,第一位置图像信息和第二位置图像信息具有至少一个共同特征域;控制单元至少根据图像传感器的第一位置图像信息和第二位置图像信息中至少一个共同特征域在时间上的运动轨迹分析获得自行走割草机的相对位移。
一种实施方式中,提供一种自行走割草系统,包括:自行走割草机;自行走割草机,包括:主体,包括壳体;割草元件,连接于主体并用于切割植被;输出马达,驱动割草元件;行走轮,连接于主体;驱动马达,驱动行走轮转动;自行走割草系统还包括:控制单元,连接并控制输出马达和驱动马达;控制单元包括:边界获取模块,获取工作边界的信息以控制自行走割草机在工作边界内作业;漏割区域判断模块,识别工作边界内的漏割区域以及漏割区域的位置信息;填充规划模块,生成一个对全部漏割区域中的至少一个漏割区域依次进行割草的作业路线;控制模块,被设置成根据作业路线控制自行走割草机对全部漏割区域中的至少一个漏割区域进行割草。
可选的,对全部漏割区域中的至少一个漏割区域依次进行割草的最短路径定义为最短作业路径,作业路径的长度与最短作业路径的长度比值大于等于1且小于等于1.2。
可选的,作业路径的长度与最短作业路径的长度比值大于等于1且小于等于1.1。
可选的,填充规划模块被设置计算自行走割草机对全部漏割区域补充作业的最短作业路线。
可选的,控制模块控制自行走割草机按照最短作业路线中的漏割区域被补充作业次序,依次对漏割区域补充作业。
可选的,自行走割草机对漏割区域补充作业后,自行走割草机被控制对漏割区域的补充作业覆盖率大于80%。
可选的,定位组件包括GPS定位单元、IMU惯性测量单元、位移传感器、图像传感器的一种或组合。
可选的,通过定位组件获取自行走割草机的作业轨迹,根据自行走割草机的作业轨迹和工作边界信息判断自行走割草机在识别工作边界内的未作业区域,在未作业区域面积大于预设值时,判定未作业区域为漏割区域。
可选的,检测模块包括图像传感器,图像传感器获取工作边界内的二维图 像或三维图像以获取自行走割草机作业的漏割区域信息。
一实施例提出一种自行走割草系统的对漏割区域的补充作业方法,包括:选择自行走割草系统的工作区域;启动自行走割草系统,对自行走割草系统的自行走割草机定位,以获取作业运行轨迹,判定自行走割草机行走作业覆盖的区域为已作业区域;根据工作区域和已作业区域分析工作区域内的未作业区域,并判定面积大于预设值的未作业区域为漏割区域;根据漏割区域的信息规划对漏割区域补充作业的作业路线;控制自行走割草机对全部漏割区域中的至少一个漏割区域按照作业路线补充作业,且自行走割草机的作业路线和对应的完成全部漏割区域中的至少一个漏割区域的最短作业路线长度比值大于等于1且小于等于1.2。
可选的,自行走割草系统的对漏割区域的补充作业方法还包括:生成m个模拟执行机构,每个模拟执行机构随机选择漏割区域作为起点;m个模拟执行机构以转移概率P选择下个漏割区域,漏割区域是被m个模拟执行机构分别全部选择后,记录m个模拟执行机构模拟的模拟路线,根据信息浓度函数τ对模拟路线设定标记因子并记录为一次迭代计算;迭代次数大于预设值后,获取m个模拟执行机构模拟次数最多的模拟路线,并判断为最短模拟路线;控制自行走割草机按照最短模拟路线对全部漏割区域中的至少一个漏割区域进行补充作业。
附图说明
图1是一种自行走割草系统的平面图;
图2a是图1中的自行走割草系统结构框架示意图;
图2b是图1中的自行走割草系统的执行组件的框架示意图;
图3是图1中的自行走割草系统作业的工作区域的示意图;
图4是自行走割草机第一工作阶段时对图3中的工作区域内作业的轨迹记录示意图;
图5是自行走割草机第二工作阶段时对图3中的工作区域内作业的轨迹记录示意图;
图6是对图5中的部分工作区域中的漏割区域的放大示意图;
图7是自行走割草系统在工作区域内的漏割区域示意图;
图8是自行走割草系统对图7的漏割区域补充作业的最短作业路径示意图;
图9是自行走割草系统模拟计算最短作业路径一次迭代示意图;
图10是自行走割草系统计算最短作业路线迭代收敛示意图;
图11是本申请第二实施方式中自行走割草系统交互界面结构示意图;
图12是本申请第二实施方式中移动设备与自行走割草系统通信示意图;
图13是本申请第三实施方式的补充作业路径规划示意图;
图14是自行走割草系统最优路线的漏割区域补充作业方法流程图;
图15是自行走割草系统另一种最优路线的漏割区域补充作业方法流程图;
图16是自行走割草系统漏割区域的识别与判断的方法流程图;
图17是自行走割草系统漏割区域的另一种识别与判断方法流程图;
图18是中的自行走割草系统漏割区域的补充作业的方法流程图;
图19是一种自行走割草机的立体结构图;
图20是图19中的自行走割草机的图像传感器工作示意图;
图21a是自行走割草机结构模块图;
图21b是自行走割草机的执行组件的结构模块图;
图22是一种实施方式的自行走割草机的平面图;
图23是另一种实施方式的自行走割草机的平面图;
图24是另一种实施方式的自行走割草机的平面图;
图25是带有光源过滤装置的自行走割草机的平面图;
图26是另一种实施方式的自行走割草机的平面图;
图27是图像传感器的结构示意图;
图28a是图27中图像传感器检测自行走割草机在x轴相对位移的原理图;
图28b是图27中图像传感器检测自行走割草机在y轴相对位移的原理图;
图28c是图27中图像传感器检测自行走割草机相对位移的原理图;
图28d是图27中图像传感器检测自行走割草机的相对位移的一种原理图;
图29是一种检测自行走割草机位置的流程图。
具体实施方式
在本申请的一种实施方式中,提出一种自行走割草系统,自行走割草系统用于在草坪中智能地执行割草,并修整草坪。参照图1和图2,自行走割草系统至少包括自行走割草机10,自行走割草机10包括:主体100以及连接于主体100的执行组件101,执行组件101包括行走轮120和割草元件130,割草元件130可以是用以切割植被的刀片。主体100包括壳体110,壳体110包装支撑行 走轮120和割草元件130等部分。行走轮120驱动智能自行走割草机10的行驶,割草元件130用于切割植被。自行走割草机10还包括控制单元200,用于控制自行走割草机10的运行状态。自行走割草机10还包括用于驱动割草元件130的输出马达131,连接行走轮130的驱动马达123,输出马达131带动割草元件130高速转动用以切割植被,驱动马达123带动行走轮120转动驱动自行走割草机10行驶。控制单元200通过控制输出马达131和驱动马达123,从而控制行走轮120和割草元件130的运行。自行走割草机10还包括电源装置140,可选的,电源装置140被实施为至少一电池包,且通过自行走割草机10上的电池包接口接入自行走割草机10,以给输出马达131和驱动马达123以及控制单元200供能。
自行走割草机10包括用于控制输出马达131的输出控制器,以及控制驱动马达123的驱动控制器,输出控制器与控制单元200连接,控制单元200发送指令通过输出控制器控制输出马达131的运行,从而控制切割割草元件130的切割状态。驱动控制器连接控制驱动马达123,且驱动控制器与控制单元200可通信地连接,从而控制单元200在接收用户的启动指令或判断启动后,分析自行走割草机10的行驶路线,发送行走指令到驱动控制器控制驱动马达123带动行走轮120行进。
参照图2a和图2b,控制单元200设置于自行走割草系统内,被设置为为线路板,并连接用于接收用户指令的交互界面150,交互界面设有供用户输入信息的按键。在一种实施方式中,控制单元200中至少部分模块还可以被安装于一或多个移动终端,或者使控制单元200和移动终端可通讯连接,移动终端作为自行走割草机10的上位机,移动终端可以被实施为计算机、智能手机等智能移动设备,用户可以通过移动终端控制自行走割草机10的运行。在一种实施方式中,自行走割草机10通过通讯装置与该移动终端传递信号,且设置控制单元200运行于该移动终端,其计算分析自行走割草机10的位置信息,并传递信号控制自行走割草机10的运行。
自行走割草系统包括检测模块,用于检测所述自行走割草机10的作业状态,检测模块至少包括定位组件300,用于获取自行走割草机10的位置。通过对自行走割草机10的实时定位数据分析,获取对自行走割草机10行进和割草控制。参照图3,自行走割草机10的运行被限定在工作区域410内,工作区域410具有其工作边界420,自行走割草机10在被控制开启时在工作边界420内行进并 进行割草。工作边界420可以通过埋线设置,此为本技术领域常见手段,在此不再详述。在另一种工作边界420的限定方式中,通过选取目标工作边界420的位置坐标选定工作边界420,并获取自行走割草机10的实时位置信息并调控,以实现对限制自行走割草机10于工作边界420内工作。
参照图2和图4,定位组件300包括GPS定位单元310、IMU惯性测量单元320、位移传感器330、图像传感器340的一种或组合,用于对自行走割草机10位置的获取。在一种定位组件300的实施方式中,定位组件300至少包括GPS定位单元310,用于对自行走割草机10的位置实施获取,定位组件300还包括图像传感器340和/或位移传感器330,图像传感器340设置于自行走割草机10的壳体110或主体100上,通过获取自行走割草机10周围的景象图像信息分析自行走割草机10的位移数据,位移传感器330可以设置驱动马达123或者行走轮120上,用于获取自行走割草机10的位移数据,通过GPS定位单元310、IMU惯性测量单元320、位移传感器330、图像传感器340的一种直接获取位置信息,或者通过多个以上装置获取的信息结合修正,获取较为精确的位置信息。自行走割草系统包括边界获取模块250,获取工作边界的信息以控制自行走割草机10在所述工作边界内作业。用户通过自行走割草机或移动终端设定工作边界420,从而边界获取模块250获取工作边界420位置和分布信息,工作边界420位置信息可以是工作边界420相对自行走割草系统当前位置的距离信息,也可以为工作边界420的经纬度定位数据,在自行走割草系统获取工作开启指令后,自行走割草系统执行第一工作阶段,在第一工作阶段内,自行走割草机10被控制单元200控制在工作边界420内的工作区域410行进并割草,自行走割草机10的行进轨迹可以是无序的,或者按照预设路径地被控制运行。
参照图5,控制单元200获取自行走割草机10在运行过程中的实时位置,控制单元200包括位置获取模块220和储存模块240,位置获取模块220可通信地连接于定位组件300获取自行走割草机10的实施位移轨迹,并由储存模块240储存自行走割草机10的已割草区域并标记,从而可以分析实时的已割草区域和未割草区域分布。在计算到已作业区域面积与工作区域410面积之比大于预设比值,如60%时,判断第一工作阶段完成,并控制自行走割草机10结束第一工作阶段,进入第二割草阶段。在另一种实施方式中,计算到已作业区域面积与工作区域410面积之比大于90%时控制自行走割草机10进入第二工作阶段。在另一种方式中,计算到已作业区域面积与工作区域410面积之比大于预设值时 控制自行走割草机10进入第二工作阶段,该预设值可以大于等于60%且小于等于90%。
参照图6为图5中部分工作区域410A中的漏割区域的放大示意图。控制单元200还包括漏割区域判断模块230,用于获取自行走割草机10在运行过程中的漏割区域430的信息,漏割区域判断模块230获取工作边界420,以及储存模块240内储存的已割草区域的位置信息,分析工作边界420内的工作区域410中,被标记的已割草区域之外的位置信息,从而获取自行走割草机10在第一工作阶段中作业遗漏的区域的位置信息,并将作业漏割区域430的位置信息储存在储存模块240,如未作业区域的面积,坐标,各未作业区域之间的距离,因为未作业区域的边界通过追踪自行走割草机10的位移情况而获得,所以未作业区域的以上参数信息可以获得。
在另一种漏割区域判断方式中,检测模块包括用于检测漏割区域信息的图像传感器340。对自行走割草机10的漏割区域430的判断通过图像传感器340获取,图像传感器340设置于壳体110或主体100,在自行走割草机10进行第一工作阶段时,通过图像传感器340直接捕获草坪图像,图像传感器获取工作边界内的二维图像或三维图像获取未割草区域面积和位置信息,以获取所述自行走割草机作业的漏割区域信息。控制单元并将未割草区域面积和位置信息储存在储存模块240内,并随着自行走割草机10的行进作业过程,刷新未作业区域的信息,并储存在自行走割草机10内,并在未作业区域的总面积与工作区域410的面积之比小于预设数值如10%后,判断第一工作阶段完成,并控制第一工作阶段结束,此时漏割区域判断模块230获取未割草区域的信息,即漏割区域430的位置信息,面积和各漏割区域430的距离。
控制单元200还包括填充规划模块210,填充规划模块210用于对漏割区域430的补充作业的规划,填充规划模块210生成一个对全部漏割区域中的至少一个漏割区域依次进行割草的作业路线,填充规划模块210分析第一工作阶段内的漏割区域430信息,填充规划模块210将需要补充作业的漏割区域430分为第一漏割区域,第二漏割区域,第N漏割区域等,并有序地对第一漏割区域、第二漏割区域、第N漏割区域标号或排序,从而生成补充割草的第二工作阶段的补充作业路线,并控制自行走割草机10根据已生成的补充作业路径行进并割草。
参照图2a和图2b,控制单元200包括控制模块260,控制模块260连接并 控制驱动马达和输出马达,控制模块260驱动自行走割草机10按照补充作业路径行进并作业割草,行走轮120设为两个,分别为第一行走轮121和第二行走轮122,驱动马达123设为第一驱动马达和第二驱动马达,驱动控制器连接第一驱动马达和第二驱动马达,控制单元200通过驱动控制器控制第一驱动马达和第二驱动马达的转速,以控制自行走割草机10的行进状态。在第二工作阶段,即对自行走割草机漏割区域进行补充作业时,控制单元200根据补充作业路径,控制自行走割草机10安装补充作业路径的轨迹移动并作业,使得自行走割草机10按照漏割区域顺序依次行驶作业,从而使得自行走割草机10高效地完成补割工作。
在第二工作阶段中,自行走割草系统的定位组件300获取自行走割草机10的实时定位,并按顺序地根据储存模块240内所储存的漏割区域430位置信息,控制自行走割草机10的行进速度和转向,并控制自行走割草机10在对应的漏割区域430工作。如在第二工作阶段内,控制单元200驱动自行走割草机10朝向第一漏割区域移动,通过分析自行走割草机10当前的位置和第一漏割区域的距离,控制单元200通过驱动控制器使得第一行走轮121和第二行走轮122差速转动,通过第一行走轮121和第二行走轮122的差速转动使得自行走割草机转向第一漏割区域并移动。在另一种实施方式中,自行走割草机10包括第一行走轮121和第二行走轮122,和第一行走轮121和第二行走轮122之间的差速器,差速器用于第一行走轮121和第二行走轮122的差速控制,通过驱动控制器控制变速器,使得第一行走轮121和第二行走轮122差速行驶,从而使得自行走割草机10转向。
在定位组件300检测到自行走割草机10位置和第一漏割区域重叠时,判断自行走割草机10行驶到第一漏割区域并发送指令到输出控制器,使得输出马达131驱动割草元件130转动对第一漏割区域割草。漏割区域判断模块230获取第一漏割区域是否完成,并在自行走割草机10对第一漏割区域作业完成时,判断对第一漏割区域的补充作业完成,并由控制单元200控制自行走割草机10朝向第二漏割区域,并重复以上步骤直到完成对所有漏割区域430或者所有漏割区域中需要补充作业的漏割区域的作业工作,提升了自行走割草机10的工作效率,并有效的对自行走割草机10前期漏割的区域补充割草,使得自行走割草系统所修正的草坪更加美观,且节约能源。
漏割区域判断模块230根据自行走割草机10的工作轨迹分析未作业区域, 并分析未作业区域边界,在未作业区域面积大于预设值时,判断其为漏割区域430,并结合用户的操作判断全部漏割区域中的需要补充作业的漏割区域,并控制自行走割草机10依次对漏割区域430补充作业,在未作业区域面积小于预设值时,判断未作业区域无需补充作业,并控制自行走割草机10不对未作业区域作业。
在本申请的第一实施方式中,参照图7,控制单元建立定位坐标系分析自行走割草机10位置和工作路径位置信息。定位组件在水平面建立定位坐标系,并以某点为原点如充电站的位置或自行走割草机10的起始位置,并通过定位组件的GPS定位单元310,IMU惯性测量单元320等装置获取自行走割草机10的位置信息,并将自行走割草机10的位置信息转换到定位坐标系内对应的位置坐标数据,并储存在储存模块;定位组件记录自行走割草机10作业的轨迹,转换到对应的位置坐标数据,并储存在储存模块。通过分析自行走割草机10的轨迹数据,计算未作业区域并根据面积或形状判断是否为漏割区域。在控制自行走割草机10对补充作业时,根据分析自行走割草机10的实施位置信息,和漏割区域的位置信息,控制自行走割草机10进入漏割区域,且在自行走割草机10进入漏割区域后,控制割草元件130旋转以割草。参照图4,控制单元200可生成定位坐标系或电子地图,用于分析自行走割草机10的位置和规划路径。参照图8,填充规划模块210内储存路径规划最优算法,通过路径规划最优算法对漏割区域补充作业的路径进行分析,分析自行走割草机10对第一漏割区域、第二漏割区域、第N漏割区域依次的作业次序,以获取对漏割区域430补充作业的最短作业路径规划,使得自行走割草机10以最高效率地,行驶最短距离地完成对所有漏割的漏割区域的补充作业,或者与最短作业路径的路程偏差小于50%以内,使得自行走割草机10相对高效的对漏割的漏割区域补充作业,提升自行走割草机10的工作效率。在计算漏割区域430之间的距离时,可以选择漏割区域的几何中心作为漏割区域430的标志点431,或者选择某个方向上漏割区域的最外围的点作为标志点431,参照图6,如选取所有漏割区域430最西侧的点作为标志点431,或者漏割区域中的任意一点作为标志点431。计算两两漏割区域430的标志点431的距离,以计算漏割区域之间的距离。自行走割草机10以漏割区域430的标志点431为目标点,通过标志点431的位置信息的导向作用向漏割区域430移动。
因为不同标识点431的选取和障碍物的影响,实际自行走割草机10对最短 作业路径的执行的作业路径,与最短作业路径存在误差,在本实施例中,将填充规划模块计算的对全部漏割区域中的至少一个漏割区域依次进行割草的最短路径定义为最短作业路径,则实际执行的自行走割草机10的作业路径的长度与所述最短作业路径的长度比值大于等于1且小于等于1.2。在一种情况中,作业路径的长度与最短作业路径的长度比值大于等于1且小于等于1.1。
在本实施例中所指的最短作业路线,为一种对漏割区域的补充作业的顺序,不同的标志点431的选取对应不同的补充作业路线长度,因此最短作业路线的实际作业距离可能在一个范围区间。
在自行走割草机10对漏割区域进行补充作业时,控制模块260控制自行走割草机10按照最短作业路线中的所述漏割区域被补充作业次序,依次对所述漏割区域补充作业。自行走割草机10进入漏割区域内,且割草元件被驱动转动以进行割草作业。自行走割草机10被控制在漏割区域内旋转移动作业,弓字形移动作业,或者在一定范围内无序作业,且在自行走割草机10被控制对漏割区域的补充作业覆盖率大于80%后,判定对该漏割区域完成补充作业。即自行走割草机10作业覆盖的面积与未被作业时的漏割区域总面积之比大于80%。自行走割草机10在漏割区域之间移动时,可能经过其它漏割区域,在没有对其经过的漏割区域作业覆盖率达到大于80%时,该情况不为本实施方法所提到的补充作业。填充规划模块内设有路径规划算法,从而计算出生成一个对全部所述漏割区域中的至少一个漏割区域依次进行割草的作业路线,并由控制模块根据计算的作业路径控制自行走割草机对漏割区域补充作业。
填充规划模块内设有路径规划算法,从而计算出生成一个对全部所述漏割区域中的至少一个漏割区域依次进行割草的最短作业路线,路径规划算法可以是:禁忌算法、Dijkstra算法、模糊逻辑算法、人工势场法、空间离散法、A*法、蚁群算法等,从而计算出对漏割区域的最短作业路线,对漏割区域的最短作业路线可以理解为对漏割区域选择作业的顺序,该对漏割区域选择作业的顺序可以实现对漏割区域最快补充作业的目的。对漏割区域的最短作业路线也可以是控制自行走割草机对漏割区域补充作业的最短路径的路线,从而提升补充作业的速度。
提供一种填充规划模块210内的路径规划的计算最短作业路径的方法。在定位坐标系或电子地图内生成模拟执行机构。填充规划模块210计算漏割区域之间的模拟路线,并储存为第一模拟路径441、第二模拟路径441、第N模拟路 径441等。填充规划模块210计算模拟执行机构经过所有漏割区域的模拟路线,即从第一模拟路径、第二模拟路径、第N模拟路径选取路径并排序,使得模拟路线包括了所有的漏割区域,模拟总路线包括第一模拟路线,第二模拟路线、第N模拟路线,不同的模拟路线对应不同的第一模拟路径、第二模拟路径、第N模拟路径的排序。示例性的,模拟路线并非需要包括所有的模拟路径441,而是包括所有的漏割区域。第一模拟路线、第二模拟路线、第N模拟路线中的一条为最短作业路线440,其对应着作业完成所有待工作区域410的最短路径。
填充规划模块210按照预设的蚁群算法,模拟执行机构在第一模拟路径、第二模拟路径、第N模拟路径44多次行驶,且在模拟执行机构每驶过的模拟路径441一次,对该模拟路径441添加标记因子,标记因子为一种信息素,不同标记因子浓度的模拟路线,对应不同的模拟执行机构的选择概率。
现提供最短作业路线440的分析方法,填充规划模块210生成m个模拟执行机构,以一个模拟执行机构为例,模拟执行机构任选某一漏割区域作为起点,从漏割区域i到漏割区域j的转移概率为P。可选的,模拟执行机构也可以是多个,填充规模模块210同时生成多个模拟执行机构,并使得模拟执行机构同时根据转移概率P选择漏割区域转移,进而模拟计算最短作业路径。
模拟执行机构遵循转移概率选择下一个漏割区域,在模拟执行机构对所有的漏割区域标记经过后,填充规划模块210根据模拟执行机构对模拟路径441的选择添加或挥发标记因子,标记因子浓度根据信息浓度函数τ决定,填充规划模块210根据信息浓度函数τ刷新标记因子,对被选中的模拟路径441的标记因子增加,对未被选择的模拟路径441的标记因子挥发,降低其标记因子数量。填充规划模块210读取模拟路径441的距离,并取模拟路径441的距离的倒数为启发函数η,模拟执行机构的转移概率与信息浓度函数关系τ和启发函数η正相关。
模拟执行机构在漏割区域i到漏割区域j的转移概率P为启发函数η和信息浓度函数τ的乘积与漏割区域i到各漏割区域点的转移概率P为启发函数η和信息浓度函数τ的乘积之和的比值,对于模拟执行机构已经经过的漏割区域,其经过的概率被降低。信息浓度函数关系τ由信息增强函数和信息挥发函数之和计算,信息挥发函数具有挥发系数如0.5,则在单次路径模拟中,被模拟执行机构经过的模拟路径441的标记因子根据信息增强函数增加Δτ,且累计标记因子函数为之前的50%的标记因子数目与信息增强量Δτ之和,未被模拟执行机 构经过的路径的标记因子浓度降低50%。
参照图9,自行走割草系统模拟计算最短作业路径一次迭代的示意图,在模拟执行机构在完成一次转移后,根据预设算法对模拟路径441的标记因子更新,并更改已经过的漏割区域为已作业区域,且各模拟执行机构根据其转移概率P被分配到下一个漏割区域,重复以上动作,直到所有的漏割区域被选择经过,判断该模拟执行机构模拟出一模拟路线,并根据信息浓度函数τ更新标记因子数量,并在所有的m个模拟执行机构完成模拟路线后,对模拟路线更新信息浓度函数τ,并对以上动作重复执行,迭代运算,直到模拟执行机构在标记因子的引导下重复某一模拟路线预设值A次以上,或者迭代运算预设值B次以上,如模拟执行机构在标记因子的引导下重复某一模拟路线预设值50次以上,或者迭代运算预设值如100次以上,并确定模拟路线被选定次数最多的为最短作业路线440。
参照图10,为自行走割草系统计算最短作业路线迭代收敛示意图,图中虚点为自行走割草系统的所有模拟执行机构模拟作业路线的距离统计,实线为本实施例中的自行走割草系统的一个模拟执行机构模拟作业路线的距离统计。在迭代80次后,得出当前作业情境下的对漏割区域补充作业的最短作业路线。
在一种实施方式中,信息增强量Δτ为一常数与当前模拟路径441距离之比,即采用蚁周系统计算信息增强量Δτ,在模拟路径441未被选择经过时,信息增强量Δτ为0。信息增强量Δτ也可以通过蚁量系统、或蚁密系统计算,在次不再详述。
转移概率P可以采用以下公式计算:
Figure PCTCN2020111632-appb-000001
其中,α为标记因子指数,β为启发指数,J k为未割草区域。
信息浓度函数τ和信息增强量Δτ分别为:
τ ij(t+n)=(1-ρ)·τ ij(t)+Δτ ij(t)    (2)
Figure PCTCN2020111632-appb-000002
其中,ρ为标记因子挥发系数。
在另一种实施方式中,填充规划模块210内的路径规划最优算法采用A*算法,并在定位坐标系或电子地图内生成模拟执行机构。填充规划模块210计算漏割区域之间的模拟路线,并计算第一模拟路线、第二模拟路线、第N模拟路线中的一条为最短作业路线440,其对应着作业完成所有待工作区域410的最短路径。填充规划模块210建立启发代价函数F=G+H,F为总移动代价,G为父节点到当前块的移动代价,H为当前块到终点的移动代价,每一步均选择代价数最小的方案,从而计算出上述最短作业路线。
在两个漏割区域之间具有障碍物时,填充规划模块210内的对补充作业的作业路径规划可以采用人工势场法:建立势场函数,与目标点为引力,障碍物为斥力;或者采用动态窗口DWA法等等,以寻求对漏割区域430之间的最短模拟路径。结合最短作业路径的对漏割区域430的补充顺序,从而得到最短模拟路线的最短作业距离。
在本申请的第二实施方式中,参照图11和图12,自行走割草系统设有与用户交互的交互界面150,交互界面可通信地和控制单元连接,交互界面150可显示自行走割草系统的运行状态信息,并设有按键或开关供用户控制自行走割草系统的启动和运行。交互界面150与控制单元连接,用户通过按键或开关传输控制指令时,由控制单元获取分析并输出响应的控制指令到对应的控制器,以控制自行走割草系统的运行。交互界面150可以设置搭载于移动终端20,通过移动终端20向用户提供自行走割草系统的运行状态信息,并由用户通过移动终端20传递用于控制自行走割草系统的运行状态。
控制单元生成电子地图151分析自行走割草机10a位置和工作路径位置信息。电子地图可通过交互界面150显示给用户。定位组件300获取自行走割草机10a的实时位置和运行轨迹,并在电子地图151上生成对应的虚拟自行走割草机10a和运行轨迹,并随着自行走割草机10a的作业分析对应的未作业区域,即漏割区域430a,并在电子地图151上生成对应的虚拟漏割区域。控制单元生成电子地图151,并将电子地图151的信息内容存储到存储模块内,使得电子地 图151搭载控制单元运行。控制单元匹配自行走割草机10a的工作区域410a到该电子地图151,从而通过操作电子地图151选取自行走割草机10a工作区域410a的工作边界420a,并在电子地图151上显示出来。控制单元包电子地图控件,电子地图控件内包括世界电子地图信息或者区域电子地图信息,或可加载在线电子地图信息和离线电子地图信息的一种或组合。电子地图控件被设置可提取区域电子地图信息,本领域的技术人员可以理解,电子地图151展示的任意位置点对应着的国际标准的经纬度数据信息,电子地图控件或云端内储存着其展示区域地图中任意位置点的经纬度数据信息,也就是说电子地图151所展示的位置点对应的实际位置的经纬度数据通过电子地图控件可获取。电子地图控件被实施为G-Map控件,G-Map控件为相关技术中的电子地图151加载处理工具,通过G-Map控件初始化及加载电子地图151的显示内容和运行数据信息,设定电子地图151显示中心点、缩放级别、分辨率、视图类型等显示信息。边界获取模块和电子地图控件可通信连接,用户在电子地图151上选择工作区域边界,并与实际工作区域边界对应,从而边界获取模块获取待作业的工作边界。
漏割区域判断模块根据自行走割草机10a的工作轨迹分析未作业区域,并由填充规划模块判断未作业区域是否为漏割区域430a,并将待作业区域投射到电子地图151,在电子地图151生成虚拟漏割区域,并分析漏割区域边界,在电子地图151生成虚拟漏割区域边界,并由填充规划模块判断未作业区域是否为漏割区域。在定位组件300检测到虚拟自行走割草机10a位置进入虚拟漏割区域边界内时,即定位组件300检测到自行走割草机10a位置进入漏割区域边界内,判断自行走割草机10a行驶到第一漏割区域并发送指令到输出控制器,使得输出马达131驱动割草元件130转动对第一漏割区域割草。自行走割草机10a在对漏割区域430a内作业,漏割区域判断模块获取第一漏割区域是否完成,并在自行走割草机10a对第一漏割区域作业完成时,判断对第一漏割区域的补充作业完成,并由控制单元控制自行走割草机10a朝向第二漏割区域,并重复以上步骤直到完成对所有漏割区域430a的作业工作。
控制单元通过电子地图151对应的显示模拟漏割区域,即模拟漏割区域的位置和实际的漏割区域位置对应,且通过交互界面显示该电子地图151,以便用户获取漏割区域状态。通过交互界面,用户可选择输出信息以添加或删除漏割区域。示例性的,用户通过观察工作边界内情况,分析漏割区域情况,如实际需要增加的作业区域,或者工作区域内有障碍物等情况,并分析判断该漏割区 域在电子地图151或定位坐标系内的位置,通过交互界面对应的在电子地图151或定位坐标系内选定对应的漏割区域,以增加漏割区域,或删除系统选定的相应漏割区域。填充规划模块生成模拟执行机构a,用于模拟执行机构a对漏割区域的行进作业。
在本申请的第三实施方式中,与第一实施方式不同的是,在第二工作阶段,即对自行走割草机漏割区域进行补充作业时,控制模块,被设置成控制自行走割草机对全部漏割区域中的至少一个漏割区域逐一的进行割草。参照图13,填充规划模块根据漏割区域430b的位置规划出对漏割区域不重复作业的补充路径440b,控制单元根据漏割区域430b的补充顺序,控制自行走割草机安装补充作业路径的轨迹移动并作业,使得自行走割草机按照漏割区域顺序依次行驶作业,不重复地对漏割区域作业以高效地完成补割工作。
在第二工作阶段中,自行走割草系统的定位组件获取自行走割草机的实时定位,并按顺序地根据储存模块内所储存的漏割区域430b位置信息,图中漏割区域430b也可以理解为标志点。控制自行走割草机的行进速度和转向,并控制自行走割草机在对应的漏割区域430b工作。如在第二工作阶段内,控制单元驱动自行走割草机朝向某漏割区域移动,通过分析自行走割草机当前的位置和第一漏割区域的距离,控制单元通过驱动控制器使得第一行走轮和第二行走轮差速转动,通过第一行走轮和第二行走轮的差速转动使得自行走割草机转向第一漏割区域并移动。
在定位组件检测到自行走割草机位置和第一漏割区域重叠时,判断自行走割草机行驶到第一漏割区域并发送指令到输出控制器,使得输出马达驱动割草元件转动对第一漏割区域割草。漏割区域判断模块获取第一漏割区域是否完成,并在自行走割草机对第一漏割区域作业完成时,判断对第一漏割区域的补充作业完成,并由控制单元控制自行走割草机朝向第二漏割区域,并重复以上步骤直到完成对所有漏割区域430b的作业工作,且不会对未割草区域重复割草,提升了自行走割草机的工作效率,并有效的对自行走割草机前期漏割的区域补充割草,使得自行走割草系统所修正的草坪更加美观,且节约能源。在一种对漏割区域的补充规划路线方式中,填充规模模块设有算法,选取距离自行走割草机最近的点作为起始点,选择距离上一个漏割区域或者起始点距离最近的漏割区域作为下一个漏割区域,直到所有的漏割区域被选中,并按照漏割区域的被选中顺序生成对应的补充作业路径。因此,控制模块被设置控制自行走割草机 对第N漏割区域补充作业后,选择距离所述漏割区域最小的未被补充作业的第M漏割区域作为下一个补充作业的漏割区域。根据该补充作业路径控制自行走割草机按照对应顺序对漏割区域补充作业,以完成对所有漏割区域的补充作业,且漏割区域不会被多次重复补充作业,从而提升了自行走割草机的作业效率。
参照图14,提供一种对自行走割草机10最优路线的漏割区域430补充作业方法:S1、获取自行走割草机10的未作业区域的位置信息和面积,若未作业区域的面积大于预设值L则判断其为漏割区域,计算漏割区域的之间距离;S2、生成m个模拟执行机构,每个模拟执行机构随机选择漏割区域作为起点;S3、m个模拟执行机构以转移概率P选择下个漏割区域,其中,漏割区域被模拟执行机构n选择,则该被选择的漏割区域被模拟执行机构n的选择的概率降低;S4、判断漏割区域是被m个模拟执行机构分别全部被选择,如果否,重复步骤S3,如果是,执行步骤S5,记录m个模拟执行机构模拟的模拟路线,根据信息浓度函数τ对模拟路线设定标记因子并记录为一次迭代计算;S6、判断迭代次数是否大于预设值,如果否,重复步骤S2,如果是,执行步骤S7获取m个自行走割草机10模拟次数最多的模拟路线,并判断为最短作业路线440;S8、控制自行走割草机10按照最短模拟路线对全部漏割区域中的至少一个漏割区域进行补充作业。
参照图15,提供一种对自行走割草机10最优路线的漏割区域430补充作业方法:S1、获取自行走割草机10的未作业区域的位置信息和面积,若未作业区域的面积大于预设值L则判断其为漏割区域,计算漏割区域的之间距离;S2、生成m个模拟执行机构,每个模拟执行机构随机选择漏割区域作为起点;S3、m个模拟执行机构以转移概率P选择下个漏割区域,其中,漏割区域被模拟执行机构n选择,则该被选择的漏割区域被模拟执行机构n的选择的概率降低;S4、判断漏割区域是被m个模拟执行机构分别全部被选择,如果否,重复步骤S3,如果是,执行步骤S5,记录m个模拟执行机构模拟的模拟路线,根据信息浓度函数τ对模拟路线设定标记因子并记录为一次迭代计算;S16、判断是否有一条模拟路线被模拟次数超过预设值N,如果否,重复步骤S2到S4,如果是,执行步骤S17,获取该模拟路线,并判断为最短作业路线;S18、控制自行走割草机10按照最短模拟路线对全部漏割区域中的至少一个漏割区域进行补充作业。综上,参照图16,提供一种自行走割草机10漏割区域430的识别与判断的方法:S21、选择自行走割草机10的工作区域410;S22、启动所述自行走割草机10, 通过定位组件300获取并记录所述自行走割草机10的作业运行轨迹,判定自行走割草机10作业经过的区域为已割草区域;S23、计算所述自行走割草机10的已作业区域面积和所述工作区域410总面积之比是否大于预设值M;S24、如果是,获取工作区域410中所述自行走割草机10未作业区域,并判断为漏割区域430。可选的,计算自行走割草机10的各未作业区域的面积,若为作业区域的面积大于预设值L,判断所述作业区域为漏割区域430。
参照图17,在另一种实施方式中,提供一种自行走割草机10漏割区域430的识别与判断方法:S31、选择自行走割草机10的工作区域410;S32、启动自行走割草机10,通过图像传感器340获取智能自行走割草机10的未作业区域并更新;S33、判断当前未被自行走割草机10工作区域410的面积与工作区域410总面积之比是否小于预设值N;S34、如果是,获取图像传感器340当前分析的未作业区域并判断为漏割区域430。计算自行走割草机10的各未作业区域的面积,若为作业区域的面积大于预设值L,判断所述作业区域为漏割区域430。
参照图18,提供一种自行走割草机10漏割区域430的补充作业的方法:S41、选择自行走割草系统的工作区域;S42、启动自行走割草系统,对自行走割草系统的自行走割草机10定位,以获取作业运行轨迹,判定自行走割草机10行走作业覆盖的区域为已作业区域;S43、根据工作区域和已作业区域分析工作区域内的未作业区域,并判定面积大于预设值的未作业区域为漏割区域;S44、如果是,根据工作区域和已作业区域分析工作区域内的未作业区域,并判定面积大于预设值的未作业区域为漏割区域,并且根据漏割区域的信息规划对漏割区域的补充作业的作业路线,如果否,重复步骤S43;S45、使得自行走割草机10的作业路线和对应的完成全部漏割区域中的至少一个漏割区域的最短作业路线长度比值大于等于1且小于等于1.2,并停止。
在本申请的一种实施方式中,为了实现对自行走割草机的定位,以确定自行走割草机作业的漏割区域的位置信息,提出一种自行走割草机,参照图19到图21,自行走割草机至少包括主体100a和设置连接于主体100a的执行组件101a,执行组件101a包括割草元件110a和用于驱动割草元件110a转动的输出马达120a,割草元件110a设置于主体100a下方。割草元件110a被输出马达120a带动转动,用于切割植被。执行组件101a包括行走轮130a以及给行走轮130a提供驱动力使之转动的驱动马达140a,自行走割草机还包括控制单元200a,控制单元200a通过控制驱动马达140a,控制行走轮130a的转速,以控制自行走 割草机的行进状态。自行走割草机还包括电源装置800,可选的,电源装置800被实施为至少一电池包,且通过自行走割草机上的电池包界面接入自行走割草机,以给输出马达120a和驱动马达140a供能。可选的,自行走割草机包括用于控制输出马达120a的输出控制器150a,以及控制驱动马达140a的驱动控制器160a,输出控制器150a与控制单元200a连接,控制单元200a发送指令通过输出控制器150a控制输出马达120a的运行,从而控制割草元件110a的切割状态。驱动控制器160a连接控制驱动马达140a,且驱动控制器160a与控制单元200a可通信地连接,从而控制单元200a在接收用户的启动指令或判断启动后,分析自行走割草机的行驶路线,发送行走指令到驱动控制器160a控制驱动马达140a带动行走轮130a行进。
自行走割草机设有用于检测自行走割草机位置的定位组件300a以及收集自行走割草机位置信息的信息采集模块400a,信息采集模块400a通过获取定位组件300a检测的自行走割草机的位置信息,确定当前割草机的已割草路径,信息采集模块400a与控制单元200a连接,并传递自行走割草机的位置信息给控制单元200a。定位组件300a至少包括第一定位单元310a和第二定位单元320a,第一定位单元310a包括定位传感器311,定位传感器311可以是GPS定位组件或GNSS定位组件,用于获取自行走割草机的初级位置信息或主位置估算、以及移动的起始位置。第二定位单元320a用于检测自行走割草机的精确位置信息,即在第一定位单元310a获取初级位置信息的基础上,确定误差更小的精确位置信息,以获取对自行走割草机的最终位置估算。第一定位单元310a和第二定位单元320a将检测的位置信息发送给信息采集模块400a,由信息采集模块400a分析自行走割草机的位移状态。GNSS定位组件为全球导航卫星系统,其包括美国GPS、中国北斗、俄罗斯GLONASS、欧盟GALILEO、区域系统如日本QZSS和印度的IRNSS、增强系统如美国的WASS、日本的MSAS、欧盟的EGNOS、印度的GAGAN以及尼日尼亚的NIG-GOMSAT-1。
第二定位单元320a至少包括图像传感器321,图像传感器321设置于主体100a,图像传感器321生成对应图像传感区322,并获取图像传感区322内的图像,自行走割草机移动带动图像传感器321移动,使得图像传感区322移动获取不同图像,通过图像传感器321连续或间断获取图像传感区322内的影像,并获取第一时间点的第一位置图像信息323和之后的第二时间点的第二位置图像信息328,通过获取第一位置图像信息323和第二位置图像信息328的至少一 个共同特征域,共同特征域包括一个或多个的特征点,通过比对一个或多个共同特征点的位移状态,获取自行走割草机在地面上的位移或相对位移状态。在本申请的一个实施例中,共同特征域可以为图像内的点、线、面或颜色的合集,如HOG特征,Hddr特征,LEP特征,并通过对共同特征域在时间上的运动轨迹,分析出自行走割草机在对应时间的实际位移。
例如,参照图28a,假设自行走割草机仅在x轴上相对位置,通过第一小草329a在第一位置图像信息323和第二位置图像信息328在x轴的相对位移检测,可以获取自行走割草机在x轴的位移;参照图28b,假设自行走割草机仅在y轴上相对位置,通过第一小草329a在第一位置图像信息323和第二位置图像信息328在y轴的相对位移检测,可以获取自行走割草机在y轴的位移。参照图28f,假设自行走割草机在x轴和y轴上都有相对位置,植被区域A为第一位置图像信息323,植被区域A’为第二位置图像信息328,通过小草329a在第一位置图像信息323和第二位置图像信息328的相对位置关系,可以判断自行走割草机在x轴和y轴上的相对位置,进而获取自行走割草机的位置信息。其中,控制单元200a或信息采集模块400a可以建立坐标系计算自行走割草机的位置,其中x轴和y轴共同所在的平面平行于水平面。参照图28d,第一位置图像信息和第二位置图像信息也可以是其它物体如障碍物的图像信息。
图像传感器作为检测自行走割草机的相对位移,通过图像传感器的成像装置连续或间断地获取行走轮后侧的植被的第一位置图像信息和第二位置图像信息328内一个或多个共同特征域的运动轨迹,来获得自行走割草机的位置信息或在x轴和/或y轴上的相对位移。例如,图像传感器的成像装置将光线投射到靠近行走轮后侧的植被,随着自行走割草机的行进时间和行进位移,在第一时间段t0内,植被区域A和植被区域A’第一小草329a在图像传感器底片上的运动轨迹被获得,也就是第一小草329a的相对位移被得到来获取自行走割草机在第一时间段内的相对位移,其中,植被区域A和植被区域A’有重叠区域且第一小草329a分别在植被区域A和植被区域A’重叠区域的不同位置上;在接下来的第二时间段t1,植被区域B和植被区域B’第二小草329b在图像传感器底片上的运动轨迹被获得,也就是第二小草329b的相对位移被得到来获取自行走割草机在第二时间段内的相对位移,其中,植被区域B和植被区域B’有重叠区域且第二小草329b分别在植被区域E和植被区域E’重叠区域的不同位置上。示例性的,自行走割草机随时间的推移在地面上移动时,如将自行走割草机及其 安装在自行走割草机上的图像传感器(包括底片)看作是静止不动的,图像传感器获取第一位置图像信息和第二位置图像信息内第一小草329a或第二小草329b的相对位移状态,则自行走割草机在地面上的位移信息可以通过任意片段时间内的第一小草329a和第二小草329b的位移信息进行累积叠加而得到。
第一位置图像信息323和第二位置图像信息328的获取间隔时间可以根据自行走割草机的速度设定,使得第一位置图像信息323和第二位置图像信息328能有效地获取一处共同特征区域,以通过共同区域特征判断自行走割草机的行进位移信息。
可选的,第二定位单元320a还可以包括图像传感器和校准装置327,校准装置327用于检测所述自行走割草机的姿态信息和/或位置信息,以补偿根据所述图像传感器的位置图像信息计算的偏移误差。校准装置327可以包括惯性传感器325,通过在自行走割草机上的图像传感器获得自行走割草机的运动轨迹,且通过惯性传感器325获取自行走割草机运动轨迹上的角度偏移信息来修正图像传感器所获得的位置信息,以此得到自行走割草机更精确的位置信息。
惯性传感器检测自行走割草机的姿态,控制单元根据自行走割草机的姿态计算校准系数,根据校准系数校准位置图像信息得出的自行走割草机的位移。
控制单元根据图像传感器的第一位置图像信息和第二位置图像信息中至少一个共同特征域在时间上的运动轨迹分析获得自行走割草机在x轴和/或y轴上的相对位移或位置信息惯性传感器能检测主体相对x轴和y轴所在平面的角度。
控制单元根据图像传感器的第一位置图像信息和第二位置图像信息中至少一个共同特征域在时间上的运动轨迹分析获得自行走割草机在x轴和/或y轴上的相对位移或位置信息。高度传感器能测自行走割草机在z轴上相对于共同特征域对应物体的距离。制单元被设置根据自行走割草机在z轴上相对于共同特征域对应物体的距离、主体相对x轴和y轴所在平面的角度,以及图像传感器的第一位置图像信息和第二位置图像信息中至少一个共同特征域在时间上的运动轨迹分析获得自行走割草机在x轴和/或y轴上的相对位移或位置信息。
惯性传感器325可以被实施为IMU惯性测量单元(Inertial Measurement Unit),IMU惯性测量单元包括加速度计、陀螺仪,用于检测自行走割草机在行进过程的角度偏移信息,以确定自行走割草机的姿态。控制单元根据自行走割草机的姿态计算校准系数,根据校准系数校准位置图像信息得出的自行走割草机的位移。惯性传感器应用于检测图像传感器获取第一位置图像信息和第二位 置图像信息的同时获取自行走割草机的姿态,以用于对第一位置图像信息和第二位置图像信息的分析校准。
惯性传感器325将其检测的自行走割草机的角度偏移信息传递给信息采集模块400a,信息采集模块400a根据检测的自行走割草机的初级位置信息、位移信息、角度偏移信息分析自行走割草机的最终位移信息,以获取自行走割草机的实时精确位置数据。
为了防止草坪的高低起伏的地形给定位组件300a或图像传感器的检测带来误差,校准装置327还可以包括用于检测草坪的水平高度信息的高度传感器326,高度传感器326也可以是测量自行走割草机与被测物体的高度方向的距离信息的距离传感器,如TOF传感器等测距传感器。TOF传感器发射光线,计算发射光线的时间和物体如草坪或地面反射光线的时间差计算草坪相对图像传感器的高度。高度传感器326可以检测自行走割草机在z轴上相对于共同特征域对应物体的距离,如共同特征域为植被,即能测量植被相对自行走割草机的距离。控制单元根据自行走割草机的高度参数计算校准系数,根据校准系数校准位置图像信息得出的自行走割草机的位移,从而提升图像传感器检测的自行走割草机位移的准确性。
高度传感器326将检测到的草坪相对图像传感器的水平高度数据传递给信息采集模块400a,信息采集模块400a根据获取的自行走割草机的实时高度信息,生成对定位组件300a检测到的位置信息的校准系数。通过校准系数调节图像传感器321检测的位置信息,防止自行走割草机行驶过程中草坪高度的变化影响图像传感器321获取的第一位置图像信息323和第二位置图像信息328偏移,获取的精确位置信息误差较大。高度传感器326也可以同时用于惯性传感器325因高度变化检测到的自行走割草机的角度偏差过大的校准。
第一定位单元310a除了上述提及的GPS定位组件或GNSS定位组件,还可以为检测行走轮130a转速或位移的位移传感器312,位移传感器312可设置于与行走轮130a连接的驱动马达140a上或附近,通过检测驱动马达140a的转速或位移获取行走轮130a的转速,或者将位移传感器312设置于行走轮130a上或附近,用于检测行走轮130a的转速或位移,从而获得自行走割草机的主位置估算。
例如,行走轮130a设有两个,分别为第一行走轮131a和第二行走轮132a,对应的,驱动马达140a设为第一驱动马达141a和第二驱动马达142a,位移传 感器312设有至少两个分别设置于第一行走轮131a和第二行走轮132a内,或者分别设置于第一驱动马达141a和第二驱动马达142a,以获取第一行走轮131a和第二行走轮132a的转速,通过分析第一行走轮131a和第二行走轮132a的转速和转动圈数,来获取自行走割草机的主位置估算,结合图像传感器获得的运动轨迹和惯性传感器325检测得到的自行走割草机的运动轨迹的角度偏移信息,获取自行走割草机的精确的相对位置。可选的,也可以通过分析第一行走轮131a和第二行走轮132a的速度差获取自行走割草机的位移角度,结合行走轮130a的转速和转动圈数,获取自行走割草机的精确的相对位置。
所述控制单元至少包括位置估算主单元,用以建立自行走割草机的主位置估算函数g(x,y),获得自行走割草机的主位置估算。控制单元还包括位置估算辅助单元,通过图像传感器获得的位置图像信息,根据图像传感器获得的位置图像信息建立位置估算辅助函数h(x,y),以补偿位置估算主单元获得的主位置估算,获得自行走割草机的最终位置估算;其中,控制单元至少根据目标位置指令和获得的最终位置估算以驱动至少一个行走轮朝向目标位置行进。
可选的,控制单元200a根据第一定位单元定位数据,建立自行走割草机的主位置估算函数或主位置估算函数g(x,y),获得自行走割草机的初级位置数据或主位置估算,例如获取自行走割草机在某一个区域范围内;通过第二检测单元的位置信息,建立位置估算辅助函数h(x,y),例如获取自行走割草机在该区域范围内的运动轨迹,以补偿获得的初级位置数据或主位置估算数据,获得自行走割草机的最终精确位置数据。例如,控制单元根据位移传感器检测位移数据和/或定位传感器的定位数据,建立自行走割草机的主位置估算函数g(x,y),获得自行走割草机的主位置估算;通过图像传感器和惯性传感器、高度传感器获得的位置信息,建立位置估算辅助函数h(x,y),结合主位置估算,获得自行走割草机的最终位置估算。
图像传感器321包括底片以及成像装置,成像装置可以设置为摄像头,包括透镜324和用于安装透镜的封装件325;底片可以是成像基板或感光面327,通过成像装置感应自行走割草机所投射的受测物体或被测物体,并在底片上生成对应的第一位置图像信息323和第二位置图像信息328,以通过第一位置图像信息323和第二位置图像信息328一个或多个共同特征域的运动轨迹分析自行走割草机的位移状态。图像传感器还可以包括控制芯片或PFE板,可以处理产生的第一位置图像信息和第二位置图像信息328,以分析计算获得自行走割草机 或受测物体的位移信息。
自行走割草机在向前行驶切割的过程中,壳体111a具有对应割草元件110a未切割区域的前端,和对应割草元件110a已切割区域的后端,壳体111a或主体具有位于壳体111a前端的第一边缘,位于壳体111a后端的第二边缘,以及位于前端和后端之间的第三边缘和第四边缘,组成自行走割草机壳体111a的边界。
可选的,图像传感器通过其对应的图像传感区获取位置图像信息,图像传感区被设置在主体后端,图像传感器以时间顺序获取图像传感区的第一位置图像信息和第二位置图像信息,其中,第一位置图像信息和第二位置图像信息具有至少一个共同特征域,控制单元至少根据图像传感器的第一位置图像信息和第二位置图像信息中至少一个共同特征域在时间上的运动轨迹分析获得自行走割草机的相对位移。
可选的,参照图20,图像传感器321设置于壳体111a的后端112a,或是设置于自行走割草机的后端,且与信息采集模块400a连接,图像传感器321的角度或转向可调整成被相对向下的设置,使得自行走割草机所获取的图像传感区322为地面,在自行走割草机在草坪上移动且割草的过程中,图像传感区322所对应的图像为草坪,且第一位置图像信息323和第二位置图像信息328为变化的草坪图像。将图像传感器321设置于壳体111a后端,对应自行走割草机已切割区域,且草被行驶过的自行走割草机压平,可以有效的防止高度不一的草坪遮挡图像传感器321对的图像传感区322内容的获取,从而提升对图像传感器321检测的自行走割草机位移的准确性。
参照图22,图像传感器321d可以设置于靠近于自行走割草机的行走轮130d或压草轮的后侧,且与信息采集模块连接,图像传感器321d生成的图像传感区对应着自行走割草机行走轮130d后方,透镜被朝下地设置,使得地面或植被能进入图像传感区。使得自行走割草机移动割草时,图像传感器321获取自行走割草机行走轮130d碾压过的草地的图像,从而图像传感器321d所获取的图像传感区可以较少地受高度不一或高度较高的草的遮挡,提升图像传感器321d获取的第一位置图像信息和第二位置图像信息的准确性,从而提升对自行走割草机位移判断的精度。可选的,设置图像传感器321d和行走轮130d距离大于等于1.5cm且小于等于3.5cm。之内,可选的,使得图像传感器321d和行走轮130d距离小于2cm,从而通过将行走轮130d压低植被,降低植被对图像传感器321d 检测的干扰。将图像传感器设置在该位置后,可以有效提升图像传感器对自行走割草机的位置定位的精度,并将误差控制合适的精度范围内,例如在3%左右。
在一种实施方式中,参照图23,自行走割草机设有压草件500,可选的,压草件500设置于行走轮130e,如在行走轮130e上形成的压草面或凸起面,或者压草件500设置连接于自行走割草机壳体111e,通过压草件500形成用于碾压草坪的压草面,压草面具有预设宽度,使得自行走割草机行驶在植被上时,通过压草件500的压草面在植被上形成碾压面510,以压低草坪面。并使得图像传感器321e的图像传感区对应于当前自行走割草机所产生的碾压面510,至少部分碾压面位于图像传感区内。被压低的草坪可以降低草高对图像传感器321e获取第一位置图像信息和第二位置图像信息的干扰,从而使得获取的第一位置图像信息和第二位置图像信息的清晰完整,提升对自行走割草机位置检测的精度。示例性的,可以直接将行走轮做成压草轮,即压草件被设置于行走轮,也达到降低草高低对图像传感器解析图像信息的干扰。压草件被设置连接于壳体的后端,图像传感器被设置于壳体的后端,从而通过压草件随着自行走割草机的行驶对植被的碾压,图像传感器检测被碾压后的植被,从而降低高低不一的植被对图像传感器获取位置图像信息的干扰,提升图像传感器检测的准确性。可选的,高低传感器也被设置在壳体的后端,靠近图像传感器的设置。
在一种实施方式中,参照图24,自行走割草机在主体100f上通过气流产生装置600形成气流,并使得气流流经图像传感器321f的表面。因为图像传感器321f通过对第一位置图像信息和第二位置图像信息的共同区域特征位移,判断自行走割草机的位移状态,因此对第一位置图像信息和第二位置图像信息成像质量要求较高。自行走割草机在工作时,边行驶边割草,割草带来的草屑和尘土附着在图像传感器321f上,长时间累积会严重影响图像传感器321f的成像效果,且自行走割草机割草工作带来的灰尘或草屑会遮挡图像传感区,影响成像结果,干扰对自行走割草机位移的判断。气流产生装置与图像传感器的距离被设置大于等于2cm且小于等于8cm,且气流产生装置产生的气流的流向远离成像装置。气流产生装置600可以是在图像传感器321f附近设置的风扇,并在自行走割草机工作时持续产生气流,从而降低灰尘或草屑等杂物对图像传感器321f检测的干扰。
主体100f包括入风口、出风口,以及将气流从入风口向出风口导出的气流通道,图像传感器321设置在气流通道的出风口附近,且图像传感器321表面 受出风口流出的气流冲击。气流通道内的气流可通过自行走割草机的行进状态而产生,也可以通过设置在自行走割草机之内或壳体111f上的气流产生装置600如风扇运行产生。
参照图25,一种实施方式中,为了优化图像传感器321g,可设置光源补充装置700和光源过滤装置710,光源补充装置700可发射具单一频谱的光线,如激光等光源,并投射到图像传感区322g。图像传感器321g前设有光源过滤装置710,并通过光源过滤装置710过滤其它光源并仅通过该具单一频谱的光线,如激光等光源,通过获取经光源补充装置700发出的具单一频谱的检测光线的第一位置图像信息和第二位置图像信息,获取自行走割草机的位移信息,从而可以提升对自行走割草机位移位置检测精确程度。可选的,通过光源补充装置700发送单一频谱光线的光源,用以发射单一频谱光线至自行走割草机行经过的植被;光源过滤装置710设定可通过与光源补充装置700发送的检测光源同一频谱光线的光源,从而使得仅具有同一频谱的光线被图像传感器321g获取并检测分析,从而有效减小户外环境光对光流传感器的测量精度的影响。
可选的,自行走割草机还包括超声波传感器和碰撞传感器,用于检测障碍物,超声波传感器和碰撞传感器都与信息采集模块400可通信连接,超声波传感器通过发送超声波并检测预设的自行走割草机路径是否有障碍物,并记录障碍物的位置信息。超声波被障碍物反弹被超声波传感器感应,通过时间间隔分析获取障碍物位置,碰撞传感器在自行走割草机碰撞到障碍物时感到壳体111a晃动或者壳体111a压力变化,分析是否碰撞到障碍物,因此碰撞传感器可以被设置为检测位移状态的霍尔传感器,或者检测压力变化的压力传感器。
可选的,自行走割草机仅采用一个或多个图像传感器用以获取最终精确的位置信息,也就是说,不再采用第一定位单元和第二定位单元的融合来获得最终精确位置信息,而是仅采用一个或多个图像传感器的组合直接获取最终精确位置信息。采用一个或多个图像传感器可以获取自行走割草机所在位置的3G三维场景,从而获取自行走割草机的定位信息,例如可以通过一个或多个图像传感器采集自行走割草机所在位置的3G三维场景,并与高德地图或google地图等地图界面相互交互,以此获得自行走割草机的实际定位信息,进而自行走割草机的控制单元至少根据目标位置指令和获得的最终位置估算以驱动至少一个行走轮朝向目标位置行进。其中,高德地图或google地图等地图界面可以直接设置在自行走割草机的显示屏上,也可以设置在移动装置如手机的显示屏上。 示例性的,一个或多个图像传感器可以活动式转向以获得自行走割草机预定区域的3G三维场景或360°三维场景,在此并非有所限制。
参照图26,自行走割草机还包括多个图像传感器321h,被设置于主体的前端113、后端以及侧端114的至少两处。
图像传感器321h设置在主体的周侧边缘附近,用以感测受测物体以在预定参考平面内以时间顺序形成第一位置图像信息和第二位置图像信息,其中,第一位置图像信息和第二位置图像信息具有至少一个共同特征域,至少一个共同特征域包括一个或多个特征点,其中,主体周侧边缘包括第一边缘、第二边缘、第三边缘和/或第四边缘。一个或多个图像传感器可以设置在主体或主壳体的顶侧,也可以获得自行走割草机或被受测物体的位置信息,受测物体为地面上被测植被或被测障碍物。可选的,第一边缘、第二边缘、第三边缘、第四边缘不仅是指自行走割草机的边界,还可以包括距离智能割草边界一定距离的割草机的边界附近的某一个位置。可选的,设置在主体或主壳体的顶侧的图像传感器可以通过获取自行走割草机所在位置的3G三维场景或受测物体的3G三维场景来获取自行走割草机或受测物体的位置信息或定位信息。
可以通过图像传感器321h获取障碍物信息,将一个或多个图像传感器设置在自行走割草机主体周侧边缘,例如第一边缘、第二边缘、第三边缘、和/或第四边缘上,通过一个或多个图像传感器获取图像传感区的信息,分析图像传感区内是否出现障碍物、或障碍物离自行走割草机的距离,也就是障碍物的位置信息。可选的,可以设置至少两个图像传感器,或此图像传感装置设有双目摄像头,通过双目摄像头采集的不同位置图像信息的融合来获取障碍物的位置信息。在以上实施方式的基础上,控制单元根据分析的自行走割草机的位置信息和控制指令,并根据追踪到的自行走割草机的位移状态,分析自行走割草机路径,并驱动至少一个行走轮朝向目标位置行进,并带动割草刀片转动。
综上,提供一种检测自行走割草机位置的定位流程.参照图29,执行步骤S51,通过定位传感器检测自行走割草机的位置,获取自行走割草机的主位置估算;执行步骤S52,通过惯性传感器检测自行走割草机的姿态;执行步骤S53,通过图像传感器感测自行走割草机行经过的区域并形成若干位置图像信息,以时间顺序感应形成第一位置图像信息和第二位置图像信息;执行步骤S54,获取第一位置图像信息和第二位置图像信息的至少一个共同特征域;执行步骤S55,通过高度传感器检测自行走割草机相对于位置图像信息的高度参数;执行步骤 S56,结合共同特征域在时间上的运动轨迹、获得的自行走割草机的姿态以及高度参数计算自行走割草机的位移;执行步骤S57,结合图像传感器获取的自行走割草机的位移,计算自行走割草机的最终位置估算。执行步骤S58,检测自行走割草机是否继续行走,如果是,重复执行步骤S51,如果不是,流程结束。

Claims (45)

  1. 一种自行走割草系统,包括:自行走割草机;
    所述自行走割草机包括:
    主体,包括壳体;
    割草元件,连接于所述主体并用于切割植被;
    输出马达,驱动所述割草元件;
    行走轮,连接于所述主体;
    驱动马达,驱动所述行走轮转动;
    控制单元,至少与所述驱动马达连接以使所述自行走割草机在工作边界内行走;
    定位组件,至少包括图像传感器,用以感测所述自行走割草机的行走轨迹或/和若干位置图像信息;
    所述控制单元被配置为:
    依据所述自行走割草机的行走轨迹或/和与所述行走轨迹相关的图像位置识别工作边界内的全部漏割区域;
    生成一个对全部所述漏割区域中的至少一个漏割区域进行割草的作业路线;
    控制所述驱动马达以使所述自行走割草机依据所述作业路线对全部所述漏割区域中的所述至少一个漏割区域进行割草。
  2. 如权利要求1所述的自行走割草系统,其中,
    所述控制单元还被配置为:
    依据所述自行走割草机的行走轨迹或/和与所述行走轨迹相关的图形位置计算所述自行走割草机未作业区域的面积,若所述未作业区域的面积大于等于预设值则判断所述作业区域为所述漏割区域。
  3. 如权利要求1所述的自行走割草系统,其中,
    所述控制单元还被配置为:
    生成一个对全部所述漏割区域中的至少一个漏割区域进行割草的最短作业路线。
  4. 如权利要求3所述的自行走割草系统,其中,
    实际作业路径的长度与所述最短作业路径的长度比值大于等于1且小于等于1.2。
  5. 如权利要求1所述的自行走割草系统,其中,
    所述控制单元还被配置为:
    获取多个所述漏割区域;
    生成一个在多个所述漏割区域的区域之间进行行走的最短作业路线以控制所述自行走割草机按照所述最短作业路线依次对所述漏割区域补充作业。
  6. 如权利要求1所述的自行走割草系统,其中:
    所述图像传感器以时间顺序感应形成第一位置图像信息和第二位置图像信息,所述第一位置图像信息和所述第二位置图像信息具有至少一个共同特征域;
    所述控制单元至少根据所述图像传感器的第一位置图像信息和第二位置图像信息中至少一个共同特征域在时间上的运动轨迹分析获得所述自行走割草机的相对位移。
  7. 如权利要求2所述的自行走割草系统,其中:
    所述定位组件还包括校准装置,所述校准装置用于检测所述自行走割草机的姿态信息和/或位置信息,以补偿根据所述图像传感器的位置图像信息计算的偏移误差。
  8. 如权利要求7所述的自行走割草系统,其中:
    所述校准装置包括高度传感器,通过所述高度传感器获取所述自行走割草机相对于共同特征域对应物体的高度参数;
    所述控制单元根据所述自行走割草机的所述高度参数计算校准系数,根据所述校准系数校准所述位置图像信息得出的所述自行走割草机的位移。
  9. 如权利要求8所述的自行走割草系统,其中:
    所述图像传感器和所述高度传感器被设置在所述壳体的后端。
  10. 如权利要求7所述的自行走割草系统,其中:所述校准装置包括惯性传感器,所述惯性传感器检测所述自行走割草机的姿态;
    所述控制单元根据所述自行走割草机的姿态计算校准系数,根据所述校准系数校准所述位置图像信息得出的所述自行走割草机的位移。
  11. 如权利要求7所述的自行走割草系统,其中:所述定位组件还包括定位传感器和位移传感器的至少一种,用于检测所述自行走割草机的位置信息,所述控制单元结合所述定位传感器检测的位置信息和所述位置图像信息计算所述自行走割草机的位置。
  12. 如权利要求11所述的自行走割草系统,其中:所述定位组件包括第一定位单元和第二定位单元,所述第一定位单元包括所述定位传感器和所述位移传感器的至少一种,所述第二定位单元至少包括所述图像传感器、高度传感器 以及惯性传感器;
    所述第一定位单元检测所述自行走割草机的初级位置信息,所述第二定位单元结合初级位置信息检测所述自行走割草机的精确位置信息。
  13. 如权利要求11所述的自行走割草系统,其中:所述控制单元至少包括:
    位置估算主单元,用以建立所述自行走割草机的主位置估算函数g(x,y),获得所述自行走割草机的主位置估算;
    以及位置估算辅助单元,通过图像传感器获得的位置图像信息,根据图像传感器获得的位置图像信息建立位置估算辅助函数h(x,y),以补偿位置估算主单元获得的主位置估算,获得所述自行走割草机的最终位置估算。
  14. 如权利要求12所述的自行走割草系统,其中:所述控制单元根据所述第一定位单元的定位数据,建立所述自行走割草机的主位置估算函数g(x,y),获得所述自行走割草机的主位置估算;通过所述图像传感器和所述惯性传感器、所述高度传感器获得的位置信息,建立位置估算辅助函数h(x,y),结合主位置估算,获得所述自行走割草机的最终位置估算。
  15. 如权利要求1所述的自行走割草系统,其中:所述图像传感器获取所述工作边界内的二维图像或三维图像以获取所述自行走割草机的漏割区域信息。
  16. 如权利要求1所述的自行走割草系统,其中:所述控制单元建立定位坐标系或电子地图分析所述自行走割草机的所述作业轨迹、所述工作边界以及所述漏割区域的位置信息。
  17. 如权利要求1所述的自行走割草系统,其中:所述控制模块被设置在所述自行走割草机对第N个漏割区域补充作业后,选择距离所述第N个漏割区域最小的未被补充作业的第M漏割区域作为下一个补充作业的漏割区域。
  18. 如权利要求1所述的自行走割草系统,其中:
    所述自行走割草系统还包括:交互界面,所述交互界面与所述控制单元通信连接,通过操作所述交互界面可增加或移除所述漏割区域。
  19. 如权利要求1所述的自行走割草系统,其中,所述图像传感器被设置在所述行走轮的后方。
  20. 如权利要求19所述的自行走割草系统,其中,所述图像传感器与所述行走轮中的一个的距离大于等于1.5cm且小于等于3.5cm。
  21. 如权利要求1所述的自行走割草系统,其中,所述图像传感器包括透镜和用于安装所述透镜的封装件,所述透镜被朝下设置,使得地面或植被能进 入所述图像传感区。
  22. 如权利要求21所述的自行走割草系统,其中,所述自行走割草机还包括压草件,在所述自行走割草机行驶时,压草件在植被上形成碾压面,至少部分所述碾压面位于所述图像传感区内。
  23. 如权利要求22所述的自行走割草系统,其中,所述压草件被设置于所述行走轮。
  24. 如权利要求22所述的自行走割草系统,其中,所述压草件被设置连接于所述壳体的后端,所述图像传感器被设置于所述壳体的后端。
  25. 如权利要求1所述的自行走割草系统,其中:
    所述控制单元根据所述图像传感器的第一位置图像信息和第二位置图像信息中至少一个共同特征域在时间上的运动轨迹分析获得所述自行走割草机在x轴和/或y轴上的相对位移或位置信息。
  26. 如权利要求25所述的自行走割草系统,其中:所述定位组件包括高度传感器,用于检测所述自行走割草机在z轴上相对于所述共同特征域对应物体的距离;
    所述定位组件还包括惯性传感器,用于检测所述主体相对所述x轴和所述y轴所在平面的角度;
    所述控制单元被设置根据所述自行走割草机在z轴上相对于所述共同特征域对应物体的距离、所述主体相对所述x轴和所述y轴所在平面的角度,以及所述图像传感器的第一位置图像信息和第二位置图像信息中至少一个共同特征域在时间上的运动轨迹分析获得所述自行走割草机在x轴和/或y轴上的相对位移或位置信息。
  27. 如权利要求1所述的自行走割草系统,其中:
    所述自行走割草机还包括气流产生装置,所述气流产生装置产生的气流能流经所述图像传感器表面。
  28. 如权利要求27所述的自行走割草系统,其中:所述气流产生装置与所述图像传感器的距离被设置大于等于2cm且小于等于8cm。
  29. 如权利要求27所述的自行走割草系统,其中:
    所述图像传感器生成图像传感区,所述图像传感器以时间顺序获取图像传感区的第一位置图像信息和第二位置图像信息,
    所述自行走割草机还包括光源补充装置以及光源过滤装置,所述光源过滤 装置设置于图像传感器前方,所述光源补充装置发射检测光源到图像传感区,所述光源过滤装置能过滤检测光源的频谱之外的光线。
  30. 如权利要求27所述的自行走割草系统,其中:
    所述定位组件还包括校准装置,所述校准装置用于检测所述自行走割草机的姿态信息和/或位置信息,以补偿根据所述图像传感器的位置图像信息计算的偏移误差。
  31. 如权利要求30所述的自行走割草系统,其中:
    所述校准装置包括高度传感器和惯性传感器,所述高度传感器检测所述自行走割草机相对于所述共同特征域对应物体的高度参数,所述惯性传感器检测所述自行走割草机的姿态;
    所述控制单元根据所述自行走割草机的姿态以及所述自行走割草机相对于所述共同特征域对应物体的高度参数计算校准系数,根据所述校准系数校准所述位置图像信息得出的所述自行走割草机的位移。
  32. 一种自行走割草机器人,包括:
    主体,包括壳体;
    割草元件,连接于所述主体并用于切割植被;
    输出马达,驱动所述割草元件;
    行走轮,连接于所述主体;
    驱动马达,驱动所述行走轮转动;
    所述自行走割草机还包括:
    控制单元,连接并控制所述输出马达和所述驱动马达;
    所述控制单元被配置为:
    依据所述自行走割草机的行走轨迹或/和与所述行走轨迹相关的图像位置识别工作边界内的全部漏割区域;
    生成一个对全部所述漏割区域中的至少一个漏割区域进行割草的作业路线;
    控制所述驱动马达以使所述自行走割草机依据所述作业路线对全部所述漏割区域中的所述至少一个漏割区域进行割草。
  33. 如权利要求32所述的自行走割草机器人,其中:对全部所述漏割区域中的所述至少一个漏割区域依次进行割草的最短路径定义为最短作业路径,所述作业路径的长度与所述最短作业路径的长度比值大于等于1且小于等于1.2。
  34. 如权利要求32所述的自行走割草机器人,其中:所述填充规划模块被 设置计算所述自行走割草机对全部所述漏割区域补充作业的最短作业路线。
  35. 如权利要求34所述的自行走割草机器人,其中:所述控制模块控制所述自行走割草机按照所述最短作业路线中的所述漏割区域被补充作业次序,依次对所述漏割区域补充作业。
  36. 如权利要求35所述的自行走割草机器人,其中:所述自行走割草机对所述漏割区域补充作业后,所述自行走割草机被控制对漏割区域的补充作业覆盖率大于80%。
  37. 如权利要求32所述的自行走割草机器人,其中:所述自行走割草系统还包括定位组件,所述定位组件包括GPS定位单元、IMU惯性测量单元、位移传感器、图像传感器的一种或组合。
  38. 如权利要求32所述的自行走割草机器人,其中:通过所述定位组件获取所述自行走割草机的作业轨迹,根据所述自行走割草机的作业轨迹和所述工作边界信息判断所述自行走割草机在识别所述工作边界内的未作业区域,在未作业区域面积大于预设值时,判定未作业区域为漏割区域。
  39. 如权利要求32所述的自行走割草机器人,其中:所述自行走割草系统还包括图像传感器,所述图像传感器获取所述工作边界内的二维图像或三维图像以获取所述自行走割草机作业的漏割区域的信息。
  40. 一种用于自行走割草系统的对漏割区域的补充作业方法,包括:
    选择自行走割草系统的工作区域;
    启动所述自行走割草系统,对自行走割草系统的自行走割草机定位,以获取作业运行轨迹,判定所述自行走割草机行走作业覆盖的区域为已作业区域;
    根据所述工作区域和所述已作业区域分析所述工作区域内的未作业区域,并判定面积大于预设值的未作业区域为漏割区域;
    根据所述漏割区域的信息规划对所述漏割区域补充作业的作业路线;
    控制所述自行走割草机对全部所述漏割区域中的至少一个漏割区域按照作业路线补充作业。
  41. 如权利要求40所述的自行走割草系统的对漏割区域的补充作业方法,其中,所述的自行走割草系统的对漏割区域的补充作业方法还包括:
    生成m个模拟执行机构,每个所述模拟执行机构随机选择漏割区域作为起点;
    m个模拟执行机构以转移概率P选择下个漏割区域,其中,漏割区域被模拟 执行机构n选择,则该被选择的漏割区域从所述模拟执行机构n的可选择对象中排除;
    所述漏割区域是被m个模拟执行机构分别全部选择后,记录m个模拟执行机构模拟的模拟路线,根据信息浓度函数τ对模拟路线设定标记因子并记录为一次迭代计算;
    迭代次数大于预设值后,获取m个所述模拟执行机构模拟次数最多的模拟路线,并判断为最短模拟路线;
    控制所述自行走割草机按照所述最短模拟路线对全部所述漏割区域中的至少一个漏割区域进行补充作业。
  42. 如权利要求41所述的自行走割草系统的对漏割区域的补充作业方法,其中,所述漏割区域之间模拟路径的距离的倒数为启发函数η,所述转移概率P与启发函数η和信息浓度函数τ的乘积正相关。
  43. 如权利要求40所述的自行走割草系统的对漏割区域的补充作业方法,其中,所述信息浓度函数τ为信息增强函数和信息挥发函数之和,设每次迭代中未被选择的模拟路径的标记因子根据信息挥发函数挥发,被选择的模拟路径的标记因子根据信息增强函数增加。
  44. 如权利要求40所述的自行走割草系统的对漏割区域的补充作业方法,其中,对自行走割草系统的自行走割草机定位包括:
    通过惯性传感器检测所述自行走割草机的姿态;
    通过图像传感器感测所述自行走割草机行经过的区域并形成若干位置图像信息,以时间顺序感应形成第一位置图像信息和第二位置图像信息;
    获取所述第一位置图像信息和所述第二位置图像信息的至少一个共同特征域;
    通过高度传感器检测所述自行走割草机相对于位置图像信息的高度参数;
    结合所述共同特征域在时间上的运动轨迹、所述自行走割草机的姿态以及所述高度参数计算所述自行走割草机的位移。
  45. 如权利要求44所述的自行走割草系统的对漏割区域的补充作业方法,其中,通过定位传感器检测所述自行走割草机的位置,获取所述自行走割草机的主位置估算;
    结合所述图像传感器获取的所述自行走割草机的位移,计算所述自行走割草机的最终位置估算。
PCT/CN2020/111632 2019-08-27 2020-08-27 自行走割草系统及其漏割区域的补充作业的方法 WO2021037116A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20856753.7A EP3998517A4 (en) 2019-08-27 2020-08-27 RIDING MOWING SYSTEM AND METHOD OF PERFORMING ADDITIONAL MOWING OPERATION ON MISSED AREAS
US17/665,951 US20220151147A1 (en) 2019-08-27 2022-02-07 Self-moving lawn mower and supplementary operation method for an unmowed region thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910793036 2019-08-27
CN201910793036.2 2019-08-27
CN201910865102 2019-09-12
CN201910865102.2 2019-09-12
CN201911411522 2019-12-31
CN201911411522.X 2019-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/665,951 Continuation US20220151147A1 (en) 2019-08-27 2022-02-07 Self-moving lawn mower and supplementary operation method for an unmowed region thereof

Publications (1)

Publication Number Publication Date
WO2021037116A1 true WO2021037116A1 (zh) 2021-03-04

Family

ID=74684632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111632 WO2021037116A1 (zh) 2019-08-27 2020-08-27 自行走割草系统及其漏割区域的补充作业的方法

Country Status (3)

Country Link
US (1) US20220151147A1 (zh)
EP (1) EP3998517A4 (zh)
WO (1) WO2021037116A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220197295A1 (en) * 2020-12-22 2022-06-23 Globe (jiangsu) Co., Ltd. Robotic mower, and control method thereof
CN116088533A (zh) * 2022-03-24 2023-05-09 未岚大陆(北京)科技有限公司 信息确定方法、远程终端、设备、割草机及存储介质
SE2250085A1 (en) * 2022-01-31 2023-08-01 Husqvarna Ab Improved operation for a robotic work tool system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115542894A (zh) * 2022-08-31 2022-12-30 深圳市正浩创新科技股份有限公司 自移动设备的控制方法、装置、自移动设备和存储介质
US11678604B1 (en) * 2022-12-21 2023-06-20 Sensori Robotics, LLC Smart lawnmower with development of mowing policy and system and method for use of same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027945A1 (en) * 2012-08-14 2014-02-20 Husqvarna Ab Mower with object detection system
CN107390698A (zh) * 2017-08-31 2017-11-24 珠海市微半导体有限公司 扫地机器人的补扫方法及芯片
WO2018014838A1 (zh) * 2016-07-19 2018-01-25 苏州宝时得电动工具有限公司 自移动园艺机器人及其系统
CN107637255A (zh) * 2016-07-22 2018-01-30 苏州宝时得电动工具有限公司 智能割草机的行走路径控制方法、自动工作系统
CN107831773A (zh) * 2017-11-30 2018-03-23 深圳市沃特沃德股份有限公司 扫地机器人全覆盖清扫的方法及扫地机器人
CN109634287A (zh) * 2019-01-22 2019-04-16 重庆润通智能装备有限公司 割草机路径规划方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014226084A1 (de) * 2014-12-16 2016-06-16 Robert Bosch Gmbh Verfahren zur Kartierung einer Bearbeitungsfläche für autonome Roboterfahrzeuge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027945A1 (en) * 2012-08-14 2014-02-20 Husqvarna Ab Mower with object detection system
WO2018014838A1 (zh) * 2016-07-19 2018-01-25 苏州宝时得电动工具有限公司 自移动园艺机器人及其系统
CN107637255A (zh) * 2016-07-22 2018-01-30 苏州宝时得电动工具有限公司 智能割草机的行走路径控制方法、自动工作系统
CN107390698A (zh) * 2017-08-31 2017-11-24 珠海市微半导体有限公司 扫地机器人的补扫方法及芯片
CN107831773A (zh) * 2017-11-30 2018-03-23 深圳市沃特沃德股份有限公司 扫地机器人全覆盖清扫的方法及扫地机器人
CN109634287A (zh) * 2019-01-22 2019-04-16 重庆润通智能装备有限公司 割草机路径规划方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU RONG;YANG FAN;ZHANG HENG: "Path Planning for UAV Based on Improved Chaotic Ant Colony Algorithm (CACA)", COMMAND INFORMATION SYSTEM AND TECHNOLOGY, vol. 9, no. 6, 14 January 2019 (2019-01-14), pages 41 - 48, XP009526366, ISSN: 1674-909X, DOI: 10.15908/j.cnki.cist.2018.06.008 *
See also references of EP3998517A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220197295A1 (en) * 2020-12-22 2022-06-23 Globe (jiangsu) Co., Ltd. Robotic mower, and control method thereof
SE2250085A1 (en) * 2022-01-31 2023-08-01 Husqvarna Ab Improved operation for a robotic work tool system
CN116088533A (zh) * 2022-03-24 2023-05-09 未岚大陆(北京)科技有限公司 信息确定方法、远程终端、设备、割草机及存储介质
CN116088533B (zh) * 2022-03-24 2023-12-19 未岚大陆(北京)科技有限公司 信息确定方法、远程终端、设备、割草机及存储介质

Also Published As

Publication number Publication date
US20220151147A1 (en) 2022-05-19
EP3998517A1 (en) 2022-05-18
EP3998517A4 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
WO2021037116A1 (zh) 自行走割草系统及其漏割区域的补充作业的方法
US10338602B2 (en) Multi-sensor, autonomous robotic vehicle with mapping capability
EP3234718B1 (en) Robotic vehicle learning site boundary
EP3553620B1 (en) Robotic vehicle grass structure detection
US11480973B2 (en) Robotic mower boundary detection system
US10806075B2 (en) Multi-sensor, autonomous robotic vehicle with lawn care function
US20170303466A1 (en) Robotic vehicle with automatic camera calibration capability
CN104714547B (zh) 带有相机的自主园林车辆
CN112567959A (zh) 自行走割草系统及其漏割区域的补充作业的方法
EP4020112B1 (en) Robotic mower and control method thereof
CN112684785A (zh) 自行走割草系统和户外行走设备
CN112438112B (zh) 自行走割草机
CN112673799B (zh) 自行走割草系统和户外行走设备
US20230320263A1 (en) Method for determining information, remote terminal, and mower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020856753

Country of ref document: EP

Effective date: 20220210

NENP Non-entry into the national phase

Ref country code: DE