WO2024045187A1 - 微波发生装置及雾化设备 - Google Patents

微波发生装置及雾化设备 Download PDF

Info

Publication number
WO2024045187A1
WO2024045187A1 PCT/CN2022/116852 CN2022116852W WO2024045187A1 WO 2024045187 A1 WO2024045187 A1 WO 2024045187A1 CN 2022116852 W CN2022116852 W CN 2022116852W WO 2024045187 A1 WO2024045187 A1 WO 2024045187A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
capacitor
chip
resistor
power supply
Prior art date
Application number
PCT/CN2022/116852
Other languages
English (en)
French (fr)
Inventor
尹坤任
梁峰
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Priority to PCT/CN2022/116852 priority Critical patent/WO2024045187A1/zh
Publication of WO2024045187A1 publication Critical patent/WO2024045187A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring

Definitions

  • the present application relates to the field of electronic atomization technology, and more specifically, to a microwave generating device and atomization equipment.
  • Atomization devices such as e-cigarettes
  • e-cigarettes are popular among many users because they are healthier and cost-effective.
  • current atomization equipment usually needs to output higher power to generate more aerosols to meet users' higher power taste needs.
  • it is usually necessary to set up more cascade loops.
  • Each stage has its own peripheral matching circuit and power transmission microstrip, which will occupy a larger area and is not conducive to the miniaturization of atomization equipment. .
  • the embodiment of the present application provides a microwave generating device and atomization equipment.
  • the microwave generating device includes a voltage controlled oscillator and a series-connected multi-stage power amplification module.
  • the voltage controlled oscillator is used to generate high-frequency radio frequency signals.
  • the multi-stage power amplification module is connected to the voltage controlled oscillator and is used to receive the radio frequency signal and perform power amplification on the radio frequency signal to output the amplified radio frequency signal to the load.
  • the multi-stage power amplification module The modules are arranged on the same substrate to form an integrated chip.
  • the multi-stage power amplification module and the voltage controlled oscillator are disposed on the same substrate to form the integrated chip.
  • the multi-level power amplification module includes a first-level power amplification module, a second-level power amplification module, and a third-level power amplification module; the first-level power amplification module, the second-level power amplification module
  • the amplification module and the third-stage power amplification module are connected in series between the voltage-controlled oscillator and the load, and amplify the radio frequency signal output by the voltage-controlled oscillator step by step.
  • the first-stage power amplification module includes a first chip, resistors R6, R7, R8, R13, R15, R16, R19, capacitors C21, C22, C24, Capacitor C26, capacitor C36, capacitor C42, emitter capacitor CE, inductor L2 and inductor L3.
  • the first pin of the first chip is connected to the output pin of the voltage controlled oscillator through the series connected capacitor C36 and resistor R6.
  • resistor R7 is connected between resistor R6 and the output pin of the voltage controlled oscillator, and the other end is grounded; one end of resistor R8 is connected between resistor R6 and capacitor C36, and the other end is connected to the other end of resistor R7 Connection; the second pin of the first chip is connected to one end of the inductor L3, the other end of the inductor L3 is connected to the first power supply, and the capacitor C42 is connected between the inductor L3 and the first power supply; the third pin of the first chip The third pin and the fourth pin are grounded; the fifth pin of the first chip is connected to the first power supply through the resistor R15, one end of the capacitor C21 is connected between the first power supply and the resistor R15, and the other end is grounded; The sixth pin of the first chip is connected to the first power supply through the resistor R16, one end of the capacitor C22 is connected between the first power supply and R16, and the other end is grounded; the seventh pin of the first chip is connected to the emitter through the
  • the capacitor CE is connected, one end of the capacitor C26 is connected between the resistor R19 and the seventh pin of the first chip, the other end is connected to ground, one end of the resistor R13 is connected between the resistor R19 and the seventh pin of the first chip between the other end and the other end of the capacitor C26; after the eighth pin and the ninth pin of the first chip are electrically connected, they are connected to the second-stage power amplifier module through the DC blocking capacitor C50, and the inductor L2 One end is connected between the eighth pin of the first chip and the DC blocking capacitor C50, and between the ninth pin of the first chip and the DC blocking capacitor C50, and the other end is connected to the second power supply, the capacitor C24 One end is connected between the inductor L2 and the second power supply, and the other end is connected to ground.
  • the second-level power amplification module includes a second chip, capacitor C41, capacitor C51, capacitor C52, capacitor C53 and inductor L4.
  • the first pin of the second chip passes through the DC blocking capacitor C50.
  • one end of the capacitor C52 is connected between the DC blocking capacitor C50 and the first pin of the second chip, and the other end is connected to the second pin of the second chip;
  • the second pin of the second chip is grounded;
  • the third pin of the second chip is connected to the third-level power amplification module through a DC blocking capacitor C37, and one end of the inductor L4 is connected to the second pin of the second chip. Between the third pin and the DC blocking capacitor C37, the other end is connected to the third power supply.
  • One end of the capacitor C41 is connected between the inductor L4 and the third power supply, and the other end is grounded.
  • One end of the capacitor C51 is connected to the second chip. between the third pin and the inductor L4, the other end is connected to the second pin of the second chip; one end of the capacitor C51 is connected between the inductor L4 and the DC blocking capacitor C37, and the other end is connected to the second chip of the second pin connection.
  • the load includes a cavity for storing the substrate and an FMA terminal provided on the cavity;
  • the third-level power amplification module includes a third chip, a variable resistor RT11, and a resistor R14 , resistor R36, capacitor C20, capacitor C39, capacitor C54, power supply VG and diode VD, the first pin and the second pin of the third chip are electrically connected to the second stage power amplifier through the DC blocking capacitor C37 Module connection, one end of the resistor R14 is connected between the first pin of the third chip and the DC blocking capacitor C37, and between the second pin of the third chip and the DC blocking capacitor C37, and the other end is connected to the power supply VG is connected, the variable resistor RT11 is set between the power supply VG and the resistor R14, the first end of the variable resistor RT11 is connected to the fourth power supply, the second end is connected to ground, and the third end is connected between the power supply VG and the resistor R14; capacitor One end of C20 is connected between resistor
  • the other end is grounded; one end of the capacitor C54 is connected between the DC blocking capacitor C38 and the diode VD, and the other end is grounded;
  • the fifth pin of the third chip is connected to ground.
  • the substrate is made of at least one of ceramics and metals.
  • the atomization device provided by this application includes a microcontroller and a microwave generating device.
  • the microcontroller is electrically connected to the microwave generating device.
  • the microwave generating device includes a voltage controlled oscillator and a series-connected multi-stage power amplification module.
  • the voltage controlled oscillator is used to generate high-frequency radio frequency signals.
  • the multi-stage power amplification module is connected to the voltage controlled oscillator and is used to receive the radio frequency signal and perform power amplification on the radio frequency signal to output the amplified radio frequency signal to the load.
  • the multi-stage power amplification module The modules are arranged on the same substrate to form an integrated chip.
  • the atomization device further includes a forward power detection module.
  • the forward power detection module is used to detect the power of the radio frequency signal amplified by the multi-stage power amplification module, and output a first voltage to the microcontroller, wherein the power of the radio frequency signal is greater than or less than the preset range, the microcontroller turns off the voltage controlled oscillator.
  • the forward power detection module and the multi-stage power amplification module are disposed on the same substrate to form the integrated chip.
  • the forward power detection module, the voltage controlled oscillator and the multi-stage power amplification module are disposed on the same substrate to form the integrated chip.
  • the forward power detection module includes a fourth chip, resistors R18, R24, R26, R28, R35, R37, capacitors C27, C29, C31, C33, and C61 and power supply VCC, the first pin of the fourth chip is connected to the power supply VCC, one end of the capacitor C31 is connected between the first pin of the fourth chip and the power supply VCC, and the other end is connected to ground; the fourth The second pin of the chip is connected to one end of the resistor R35, and the other end of the resistor R35 is connected between the first pin of the fourth chip and the capacitor C31; the third pin of the fourth chip is connected to the resistor R37 through the resistor R37.
  • the microcontroller is connected; the fourth pin of the fourth chip is grounded, one end of the capacitor C33 is connected between the third pin of the fourth chip and the resistor R37, and the other end of the capacitor C33 is connected to the third pin of the fourth chip.
  • the fourth pin of the four chips is connected; the fifth pin of the fourth chip is connected to ground; one end of capacitor C29 is connected to the sixth pin of the fourth chip, and the other end of capacitor C29 is connected to the fourth pin of the fourth chip.
  • the fifth pin is connected; the seventh pin of the fourth chip is grounded through the series connected capacitor C27, resistor R26, capacitor C61, first coupling line and R18.
  • the first coupling line is connected to the DC blocking capacitor C38 and the circulator.
  • the second coupling line between T1 forms a coupling.
  • One end of the resistor R28 is connected between the resistor R26 and the capacitor C27, and the other end is grounded.
  • One end of the resistor R24 is connected between the resistor R26 and the capacitor C61
  • the atomization device further includes a reverse power detection module.
  • the reverse power detection module is used to detect the power of microwave reflection in the load and output a second voltage to the microcontroller.
  • the microcontroller performs an algorithm on the first voltage and the second voltage. Processing is performed to output a resonant frequency, and the microcontroller controls the frequency of the radio frequency signal output by the voltage controlled oscillator according to the resonant frequency.
  • the reverse power detection module and the multi-stage power amplification module are disposed on the same substrate to form the integrated chip.
  • the reverse power detection module, the voltage controlled oscillator and the multi-stage power amplification module are disposed on the same substrate to form the integrated chip.
  • the reverse power detection module includes a fifth chip, resistors R91, R95, capacitors C89, C91, C92, C93 and power supply VCC.
  • the first pin of the fifth chip Connected to the power supply VCC; one end of the capacitor C91 is connected between the first pin of the fifth chip and the power supply VCC, and the other end is connected to ground; the second pin of the fifth chip is connected to one end of the resistor R95, and the resistor R95 The other end is connected between the first pin of the fifth chip and capacitor C91; the third pin of the fifth chip is connected to the microcontroller; one end of capacitor C93 is connected to the fifth chip Between the third pin of the microcontroller and the microcontroller, the other end of the capacitor C93 is connected to the fourth pin of the fifth chip, and the fourth pin of the fifth chip is grounded; The fifth pin is grounded; the sixth pin of the fifth chip is connected to one end of the capacitor C89, and the other end of the capacitor C89 is connected to the fifth pin of the fifth chip; one end end of
  • the atomization device further includes a temperature detection module.
  • the temperature detection module detects the temperature in the load and outputs a third voltage; wherein, when the temperature in the load is greater than a preset temperature range, the microcontroller turns off the voltage controlled oscillator.
  • the temperature detection module includes a thermistor RT1 and a resistor R99.
  • One end of the resistor R99 is electrically connected to the microcontroller, and the other end is connected to the first power supply; one end of the thermistor RT1 is connected to Between the microcontroller and resistor R99, the other end is grounded.
  • the microcontroller includes a sixth chip and a capacitor C3.
  • the first pin of the sixth chip is connected to the first power supply.
  • One end of the capacitor C3 is connected to the first pin of the sixth chip.
  • the second pin, the third pin and the fourth pin of the sixth chip are all electrically connected to the voltage controlled oscillator respectively;
  • the sixth chip The fifth pin of the sixth chip is grounded;
  • the sixth pin of the sixth chip is electrically connected to the reverse power detection module;
  • the seventh pin of the sixth chip is electrically connected to the forward power detection module;
  • the sixth chip The eighth pin is electrically connected to the temperature detection module.
  • the voltage controlled oscillator includes a seventh chip, resistors R1, R5, R9, capacitors C1, C2, C10, C12, C14, C15, C16, and C17 , capacitor C18, inductor L1 and crystal oscillator Y1, the first pin, second pin and third pin of the seventh chip are all connected to the first power supply after being electrically connected; one end of the capacitor C10 is connected to the first power supply and the third pin of the seventh chip, the other end is connected to ground; the fourth pin of the seventh chip is connected to one end of capacitor C12, and the other end of capacitor C12 is connected to capacitor C10 and the seventh chip between the third pins; the fifth pin of the seventh chip is connected to the first-level power amplifier module through a DC blocking capacitor C13, one end of the inductor L1 is connected between the capacitor C10 and the capacitor C12, and the other end Connected between DC blocking capacitor C13 and the fifth pin of the seventh chip; the sixth pin of the seventh chip is connected to one end of the capacitor C
  • the capacitor One end of C14 is connected between resistor R5 and capacitor C15, and the other end is grounded; the tenth pin, the eleventh pin, and the twelfth pin of the seventh chip are all electrically connected to the microcontroller; so The thirteenth pin of the seventh chip is connected to the third pin of the crystal oscillator Y1 through the series connected capacitor C1 and capacitor C2.
  • the fourth pin of the crystal oscillator Y1 is connected to the first power supply.
  • the first pin of the crystal oscillator Y1 is suspended.
  • the second pin of the resistor R1 is connected to the ground.
  • One end of the resistor R1 is connected between the capacitor C1 and the capacitor C2, and the other end is connected to the ground.
  • One end of the capacitor C18 is connected between the fourth pin of the crystal oscillator Y1 and the first power supply, and the other end is connected to the ground.
  • the microwave generating device and atomization equipment of this application are equipped with multi-stage power amplification modules connected in series to increase the power of the radio frequency signal emitted by the voltage-controlled oscillator, fully meet the power requirements of the atomization equipment, and ensure the atomization taste and aerosol Increase the amount to avoid the inability to produce atomization or insufficient atomization due to power mismatch, which affects the taste.
  • the multi-stage power amplification module is arranged on the same substrate to form an integrated chip, which reduces the space occupied by the multi-stage power amplification module, improves the efficiency of the overall amplification link, and ensures the miniaturization of the microwave generating device and atomization equipment.
  • Figure 1 is a module connection block diagram of an atomization device according to certain embodiments of the present application.
  • Figure 2 is a circuit schematic diagram of the first-stage power amplification module in the microwave generating device according to certain embodiments of the present application;
  • Figure 3 is a circuit schematic diagram of the second-stage power amplification module in the microwave generating device according to certain embodiments of the present application;
  • Figure 4 is a circuit schematic diagram of the load in the atomization device according to certain embodiments of the present application.
  • Figure 5 is a schematic structural diagram of the load in the atomization device according to certain embodiments of the present application.
  • Figure 6 is a circuit schematic diagram of the third-stage power amplification module in the microwave generating device according to certain embodiments of the present application.
  • Figure 7 is a circuit schematic diagram of the forward power detection module in the atomization device according to certain embodiments of the present application.
  • Figure 8 is a circuit schematic diagram of the reverse power detection module in the atomization device according to certain embodiments of the present application.
  • Figure 9 is a circuit schematic diagram of the microcontroller and temperature detection module in the atomization device according to certain embodiments of the present application.
  • Figure 10 is a schematic circuit diagram of a voltage-controlled oscillator in an atomization device according to certain embodiments of the present application.
  • Atomization devices such as e-cigarettes
  • e-cigarettes are popular among many users because they are healthier and cost-effective.
  • current atomization equipment usually needs to output higher power to generate more aerosols to meet users' higher power taste needs.
  • it is usually necessary to set up more cascade loops.
  • Each stage has its own peripheral matching circuit and power transmission microstrip, which will occupy a larger area and is not conducive to the miniaturization of atomization equipment. .
  • this application provides a microwave generating device 10 and an atomization device 100.
  • an embodiment of the present application provides a microwave generating device 10.
  • the microwave generating device 10 includes a voltage controlled oscillator 11 and a series-connected multi-stage power amplification module 13 .
  • the voltage controlled oscillator 11 is used to generate high-frequency radio frequency signals.
  • the multi-stage power amplification module 13 is connected to the voltage controlled oscillator 11 and is used to receive radio frequency signals and perform power amplification on the radio frequency signals to output the amplified radio frequency signals to the load 30 .
  • the multi-stage power amplification module 13 is disposed on the same substrate. to form an integrated chip.
  • the frequency of the radio frequency signal can be a 2.45GHz signal.
  • the multi-stage power amplification modules 13 are connected in series and amplify the power of the received radio frequency signal in sequence, so that the power of the radio frequency signal can meet the high power demand of the atmospheric sol amount and improve The taste of the atomizing device 100. It should be noted that in some embodiments, the frequency of the radio frequency signal can also be other frequency values.
  • the number of power amplification modules can be set to 2, 3, 4 or even more, which is not limited here.
  • This application only takes three power amplification modules as an example, and the three power amplification modules are connected in series.
  • the microwave generator 10 in the embodiment of the present application is provided with a series-connected multi-stage power amplification module 13 to increase the power of the radio frequency signal emitted by the voltage controlled oscillator 11, fully meeting the power requirements of the atomization equipment 100 and ensuring the atomization taste. And the aerosol volume is increased to avoid the inability to produce atomization or insufficient atomization due to power mismatch, which affects the taste.
  • the multi-stage power amplification module 13 is disposed on the same substrate to form an integrated chip, which reduces the space occupied by the multi-stage power amplification module 13, improves the efficiency of the overall amplification link, and ensures that the microwave generating device 10 and the atomization equipment 100 of miniaturization.
  • the multi-stage power amplification module 13 and the voltage controlled oscillator 11 are disposed on the same substrate to form an integrated chip.
  • the voltage-controlled oscillator 11 is electrically connected to the multi-stage power amplification module 13, and the high-frequency radio frequency signal generated by the voltage-controlled oscillator 11 is directly transmitted to the multi-stage power amplification module 13 for power amplification, thereby increasing the gain and improving The overall efficiency of the overall amplification link is thereby improved, thereby improving the working efficiency of the microwave generating device 10 and the atomization equipment 100.
  • the voltage controlled oscillator 11 and the multi-stage power amplifier module 13 are arranged on the same substrate to form an integrated chip, which reduces the matching circuit and power transmission microstrips around the multi-stage power amplifier module 13, thereby reducing the circuit area and further reducing microwave generation.
  • the space occupancy rate of the device 10 ensures the miniaturization of the microwave generating device 10 and the atomization equipment 100.
  • the material of the substrate is at least one of ceramic or metal.
  • the operation of the voltage controlled oscillator 11 and the multi-stage power amplification module 13 will generate a certain amount of heat.
  • the resistance in the multi-stage power amplification module 13 becomes larger, causing the resistance of the multi-stage power amplification module 13 to increase.
  • the output power is reduced, which in turn causes the atomization device 100 to be unable to produce sufficient atomization due to insufficient output power, affecting the taste, or even being unable to atomize at all.
  • the bottom of the integrated chip uses a ceramic substrate or a metal substrate, which can improve the thermal uniformity and heat dissipation effect of the integrated chip, avoid heat accumulation, thereby ensuring that the output power is large enough, thereby ensuring that the atomization device 100 has sufficient atomization volume and a better taste. good.
  • the multi-stage power amplification module 13 may include a first-stage power amplification module 131 , a second-stage power amplification module 133 and a third-stage power amplification module 135 .
  • the first-stage power amplification module 131, the second-stage power amplification module 133 and the third-stage power amplification module 135 are connected in series between the voltage controlled oscillator 11 and the load 30, and the radio frequency signal output by the voltage controlled oscillator 11 is Enlarge step by step.
  • the amplification ratios between the first-stage power amplification module 131, the second-stage power amplification module 133, and the third-stage power amplification module 135 may be different.
  • the amplification factor of the first-stage power amplification module 131 is 20db
  • the amplification factor of the second-stage power amplification module 133 is 17db
  • the amplification factor of the third-stage power amplification module 135 is 15db.
  • the multi-stage power amplification modules 13 have different amplification factors.
  • the radio frequency signal is amplified by the multi-stage power amplification modules 13 with different amplification factors in sequence and then transmitted to the load 30 , which can reduce the impact of the multi-stage power amplification module during the radio frequency signal power amplification process. 13 load, improves the stability of power amplification and ensures the accuracy of power amplification.
  • the amplification ratios of the first-stage power amplification module 131, the second-stage power amplification module 133, and the third-stage power amplification module 135 can be the same, so that the selection is relatively simple and unified, and once damaged, it is easy to replace and maintain. cut costs.
  • the first-stage power amplification module 131, the second-stage power amplification module 133, and the third-stage power amplification module 135 can also be connected through coupling.
  • the coupling method can be resistance-capacitance coupling, direct coupling, photoelectric coupling, etc., which is not limited here.
  • the first-stage power amplification module 131 includes a first chip U1, a resistor R6, a resistor R7, a resistor R8, a resistor R13, a resistor R15, a resistor R16, a resistor R19, and a capacitor.
  • the first pin of the first chip U1 is connected to the output pin of the voltage-controlled oscillator 11 through the series-connected capacitor C36 and the resistor R6.
  • One end of the resistor R7 is connected between the resistor R6 and the output pin of the voltage controlled oscillator 11, and the other end is connected to the ground GND.
  • One end of the resistor R8 is connected between the resistor R6 and the capacitor C36, and the other end is connected to the other end of the resistor R7.
  • the second pin of the first chip U1 is connected to one end of the inductor L3, the other end of the inductor L3 is connected to the first power supply V1, and the capacitor C42 is connected between the inductor L3 and the first power supply V1.
  • the third and fourth pins of the first chip U1 are connected to ground GND.
  • the fifth pin of the first chip U1 is connected to the first power supply V1 through the resistor R15.
  • One end of the capacitor C21 is connected between the first power supply V1 and the resistor R15, and the other end is connected to the ground GND.
  • the sixth pin of the first chip U1 is connected to the first power supply V1 through the resistor R16.
  • One end of the capacitor C22 is connected between the first power supply V1 and R16, and the other end is connected to the ground GND.
  • the seventh pin of the first chip U1 is connected to the emitter capacitor CE through the resistor R19.
  • One end of the capacitor C26 is connected between the resistor R19 and the seventh pin of the first chip U1.
  • the other end is connected to ground GND.
  • One end of the resistor R13 is connected. Between the resistor R19 and the seventh pin of the first chip U1, the other end is connected to the other end of the capacitor C26.
  • the eighth pin and the ninth pin of the first chip U1 are electrically connected to the second-stage power amplification module 133 through the DC blocking capacitor C50.
  • One end of the inductor L2 is connected to the eighth pin of the first chip U1 and the DC blocking capacitor C50.
  • the capacitor C50, and between the ninth pin of the first chip U1 and the DC blocking capacitor C50 the other end is connected to the second power supply V2, one end of the capacitor C24 is connected between the inductor L2 and the second power supply V2, and the other end Ground GND.
  • the main function of the first-stage power amplification module 131 in the embodiment of the present application is to receive the high-frequency radio frequency signal generated by the voltage-controlled oscillator 11 and perform power amplification, and to couple with the second-stage power amplification module 133 through the DC blocking capacitor C50, thereby The radio frequency signal whose power has been amplified by the first stage is transmitted to the second stage power amplification module 133 .
  • the second-stage power amplification module 133 includes a second chip U2, a capacitor C41, a capacitor C51, a capacitor C52, a capacitor C53, and an inductor L4.
  • the first pin of the second chip U2 is connected to the first-stage power amplifier module 131 through the DC blocking capacitor C50.
  • the first pin of the second chip U2 is connected to the first stage power amplifier module 131 through the DC blocking capacitor C50.
  • the eighth and ninth pins of the first chip U1 are both connected.
  • One end of the capacitor C52 is connected between the DC blocking capacitor C50 and the first pin of the second chip U2, and the other end is connected with the second pin of the second chip U2.
  • the second pin of the second chip U2 is connected to ground GND.
  • the third pin of the second chip U2 is connected to the third-stage power amplification module 135 through the DC blocking capacitor C37.
  • One end of the inductor L4 is connected between the third pin of the second chip U2 and the DC blocking capacitor C37, and the other end is connected to the DC blocking capacitor C37.
  • the third power supply V3 is connected, one end of the capacitor C41 is connected between the inductor L4 and the third power supply V3, and the other end is connected to the ground GND.
  • One end of the capacitor C51 is connected between the third pin of the second chip U2 and the inductor L4, and the other end is connected with the second pin of the second chip U2.
  • One end of the capacitor C51 is connected between the inductor L4 and the DC blocking capacitor C37, and the other end is connected to the second pin of the second chip U2.
  • the main function of the second-level power amplification module 133 in the embodiment of the present application is to receive the radio frequency signal amplified by the first-level power amplification module 131, perform second-level power amplification, and transmit the second-level power amplified radio frequency signal. to the third-stage power amplification module 135.
  • the load 30 includes a cavity 31 for storing the substrate 33 and an FMA terminal J1 provided on the cavity 31 .
  • the substrate 33 is at least partially disposed in the cavity 31, and the FMA terminal J1 is connected to the third-stage power amplification module 135, so that the radio frequency signal amplified by the multi-stage power amplification module 13 is introduced into the cavity 31, so as to The matrix 33 stored in the cavity 31 is heated.
  • the load 31 can also introduce the amplified radio frequency signal into the cavity 31 through devices such as antennas and probes.
  • the third-level power amplification module 135 includes a third chip U3, a variable resistor RT11, a resistor R14, a resistor R36, a capacitor C20, a capacitor C39, a capacitor C54, and a power supply VG. and diode VD.
  • the first pin and the second pin of the third chip U3 are electrically connected to the third pin of the second-stage power amplifier module 133 through the DC blocking capacitor C37, and one end of the resistor R14 is connected to the third chip U3. between the first pin and the DC blocking capacitor C37, and between the second pin of the third chip U3 and the DC blocking capacitor C37, the other end is connected to the power supply VG, and the variable resistor RT11 is set between the power supply VG and the resistor Between R14, the first end of the variable resistor RT11 is connected to the fourth power supply V4, the second end is connected to the ground GND, and the third end is connected between the power supply VG and the resistor R14.
  • One end of the capacitor C20 is connected between the resistor R14 and the power supply VG, and the other end is connected to the ground GND.
  • One end of the resistor R36 is connected to the third end of the variable resistor RT11, and the other end is connected to the second end of the variable resistor RT11.
  • the third pin and the fourth pin of the third chip U3 are electrically connected to the first pin of the circulator T1 through the DC blocking capacitor C38.
  • the second pin of the circulator T1 is connected to the FMA terminal J1, and the diode VD is connected.
  • one end of the capacitor C39 is connected to the third pin of the third chip U3. Between the third pin and the diode VD, and between the fourth pin connected to the third chip U3 and the diode VD, the other end is connected to the ground GND. One end of the capacitor C54 is connected between the DC blocking capacitor C38 and the diode VD, and the other end is connected to the ground GND. The fifth pin of the third chip U3 is connected to ground GND.
  • the circulator T1 can prevent the radio frequency signal amplified by the multi-stage power amplification module 13 from returning to the third-stage power amplification module 135 when there is no matrix 33 or an open circuit in the cavity 31 of the load 30 , thereby ensuring the normal operation of the third-level power amplification module 135 and preventing the third-level power amplification module 135 from being damaged.
  • the main function of the third-level power amplification module 135 in the embodiment of the present application is to receive the radio frequency signal amplified by the second-level power amplification module 133, perform third-level power amplification, and transmit the third-level power amplified radio frequency signal. to the FMA terminal J1 on the cavity 31, and then heat the matrix 33 stored in the cavity 31 to generate aerosol to ensure the suction taste of the atomization device 100.
  • an embodiment of the present application also provides an atomization device 100.
  • the atomization device 100 includes a microcontroller 20 and the microwave generating device 10 of any of the above embodiments.
  • the microcontroller 20 is electrically connected to the microwave generating device 10 .
  • the atomization device 100 may also include a forward power detection module 40 .
  • the forward power detection module 40 is used to detect the power of the radio frequency signal amplified by the multi-stage power amplification module 13, and output the first voltage to the microcontroller 20, where the power of the radio frequency signal is greater than or less than a preset range. Next, the microcontroller 20 turns off the voltage controlled oscillator 11.
  • the forward power detection module 40 and the multi-stage power amplification module 13 are disposed on the same substrate to form an integrated chip, so that the forward power detection module 40 can directly detect the power amplified by the multi-stage power amplification module 13 radio frequency signal, thereby improving the working efficiency of the microwave generating device 10 and the atomization device 100.
  • the forward power detection module 40 and the multi-stage power amplification module 13 form an integrated chip, thereby reducing the circuit area of the forward power detection module 40 and the multi-stage power amplification module 13, ensuring that the microwave generating device 10 and the atomization equipment 100 are compact. change.
  • the forward power detection module 40, the voltage controlled oscillator 11 and the multi-stage power amplifier module 13 are disposed on the same substrate to form an integrated chip, thereby further improving the performance of the microwave generating device 10 and the atomization device 100. work efficiency, and further reduce the space occupation rate of the microwave generating device 10.
  • the forward power detection module 40 includes a fourth chip U4, resistors R18, R24, R26, R28, R35, R37, capacitors C27, C29, C31, C33, C61 and power supply VCC.
  • the first pin of the fourth chip U4 is connected to the power supply VCC, one end of the capacitor C31 is connected between the first pin of the fourth chip U4 and the power supply VCC, and the other end is connected to the ground GND.
  • the second pin of the fourth chip U4 is connected to one end of the resistor R35, and the other end of the resistor R35 is connected between the first pin of the fourth chip U4 and the capacitor C31.
  • the third pin of the fourth chip U4 is connected to the microcontroller 20 through the resistor R37.
  • the fourth pin of the fourth chip U4 is connected to the ground GND, one end of the capacitor C33 is connected between the third pin of the fourth chip U4 and the resistor R37, and the other end of the capacitor C33 is connected to the fourth pin of the fourth chip U4.
  • the fifth pin of the fourth chip U4 is connected to ground GND.
  • One end of the capacitor C29 is connected to the sixth pin of the fourth chip U4, and the other end of the capacitor C29 is connected to the fifth pin of the fourth chip U4.
  • the seventh pin of the fourth chip U4 is connected to the ground GND through the series-connected capacitor C27, the resistor R26, the capacitor C61, the first coupling lines L1 and R18, and the first coupling line L1 is connected to the DC blocking capacitor C38 and the circulator T1.
  • the second coupling line L2 forms coupling, one end of the resistor R28 is connected between the resistor R26 and the capacitor C27, and the other end is connected to the ground GND.
  • One end of the resistor R24 is connected between the resistor R26 and the capacitor C61, and the other end is connected to the ground GND.
  • the forward power detection module 40 is coupled through the first coupling line L1 and the second coupling line L2 connected between the DC blocking capacitor C38 and the circulator T1, so that the forward power detection module 40 is configured Between the third-stage power amplification module 135 and the load 30 , the power of the radio frequency signal amplified by the multi-stage power amplification module 13 is detected, and the first voltage is output to the microcontroller 20 .
  • the first voltage output by the forward power detection module 40 to the microcontroller 20 indicates that the power of the radio frequency signal amplified by the multi-stage power amplification module 13 is greater than or less than the preset range, it indicates that the voltage controlled oscillator 11 If the voltage controlled oscillator 11 and/or the multi-stage power amplification module 13 are damaged and/or the multi-stage power amplification module 13 is damaged, the entire atomization device 100 cannot work normally. If the voltage controlled oscillator 11 and/or the multi-stage power amplification module 13 are always in working condition, they are likely to be burned out. At this time, The microcontroller 20 can turn off the voltage controlled oscillator 11, thereby protecting the voltage controlled oscillator 11 and/or the multi-stage power amplification module 13 to facilitate subsequent maintenance and avoid further damage.
  • the atomization device 100 may further include a reverse power detection module 50 .
  • the reverse power detection module 50 is used to detect the power of microwave reflection in the load 30 and output a second voltage to the microcontroller 20.
  • the microcontroller 20 performs algorithm processing on the first voltage and the second voltage to output the resonant frequency.
  • the controller 20 controls the frequency of the radio frequency signal output by the voltage controlled oscillator 11 according to the resonant frequency.
  • the reverse power detection module 50 and the multi-stage power amplification module 13 are disposed on the same substrate to form an integrated chip, thereby reducing the circuit area of the forward power detection module 40 and the multi-stage power amplification module 13 to ensure Miniaturization of the microwave generating device 10 and the atomizing equipment 100.
  • the reverse power detection module 50 , the voltage controlled oscillator 11 and the multi-stage power amplification module 13 are disposed on the same substrate to form an integrated chip, thereby further reducing the space occupation rate of the microwave generating device 10 .
  • the reverse power detection module 50 includes a fifth chip U5, resistors R91, R95, capacitors C89, C91, C92, C93 and power supply VCC.
  • the first pin of the fifth chip U5 is connected to the power supply VCC.
  • One end of the capacitor C91 is connected between the first pin of the fifth chip U5 and the power supply VCC, and the other end is connected to the ground GND.
  • the second pin of the fifth chip U5 is connected to one end of the resistor R95, and the other end of the resistor R95 is connected between the first pin of the fifth chip U5 and the capacitor C91.
  • the third pin of the fifth chip U5 is connected to the microcontroller 20 .
  • One end of the capacitor C93 is connected between the third pin of the fifth chip U5 and the microcontroller 20, the other end of the capacitor C93 is connected with the fourth pin of the fifth chip U5, and the fourth pin of the fifth chip U5 is connected to ground. GND.
  • the fifth pin of the fifth chip U5 is connected to ground GND.
  • the sixth pin of the fifth chip U5 is connected to one end of the capacitor C89, and the other end of the capacitor C89 is connected to the fifth pin of the fifth chip U5.
  • One end of the resistor R17 is connected to the third end of the circulator T1 through the third coupling line L3, and the other end is connected to the ground GND.
  • the seventh pin of the fifth chip U5 is connected to the ground GND through the series-connected capacitor C92, the fourth coupling line L4, and the resistor R91.
  • the fourth coupling line L4 is coupled to the first coupling line L1.
  • the reverse power detection module 50 is coupled to the third coupling line L3 connected between the resistor R17 and the circulator T1 through the fourth coupling line L4 to detect the power of microwave reflection in the load 30 , thereby outputting the second voltage to the microcontroller 20.
  • the microcontroller 20 performs algorithmic processing on the first voltage and the second voltage to output the resonant frequency.
  • the microcontroller 20 adjusts the voltage output by the voltage controlled oscillator 11 according to the resonant frequency.
  • the frequency of the radio frequency signal causes the frequency of the radio frequency signal to change within a certain frequency range, so as to effectively control the power of the microwave in the cavity 31, ensure a stable taste of the atomization device 100, and improve the user experience.
  • the atomization device 100 may further include a temperature detection module 60 .
  • the temperature detection module 60 includes a thermistor RT1 and a resistor R99. One end of the resistor R99 is electrically connected to the microcontroller 20, and the other end is connected to the first power supply V1. One end of the thermistor RT1 is connected between the microcontroller 20 and the resistor R99, and the other end is connected to the ground GND.
  • the value of the thermistor RT1 in the temperature detection module 60 can change as the temperature in the load 30 changes, thereby outputting a third voltage to the microcontroller 20 .
  • the microcontroller 20 turns off the voltage controlled oscillator 11 .
  • the matrix 33 in the cavity 31 of the load 30 will produce a certain amount of harmful substances due to the high temperature, such as formaldehyde, nicotine, etc., thus causing damage to the user's health. .
  • the third voltage output by the temperature detection module 60 to the microcontroller 20 can represent the temperature abnormality in the load 30, and the microcontroller 20 will turn off the voltage control.
  • the oscillator 11 will then turn off the atomization device 100 to prevent the excessive temperature from producing harmful substances and endangering the smoker's health.
  • the preset temperature range can be adjusted according to specific conditions such as the type of substrate 33 and the use environment.
  • the microcontroller 20 may include a sixth chip U6 and a capacitor C3.
  • the first pin of the sixth chip U6 is connected to the first power supply V1
  • one end of the capacitor C3 is connected between the first pin of the sixth chip U6 and the first power supply V1
  • the other end is connected to the ground GND.
  • the second pin, the third pin and the fourth pin of the sixth chip U6 are electrically connected to the voltage controlled oscillator 11 respectively.
  • the fifth pin of the sixth chip U6 is connected to ground GND.
  • the sixth pin of the sixth chip U6 is electrically connected to the third pin of the reverse power detection module 50 .
  • the seventh pin of the sixth chip U6 is electrically connected to the third pin of the forward power detection module 40 .
  • the eighth pin of the sixth chip U6 is electrically connected to the temperature detection module 60 .
  • the voltage controlled oscillator 11 may include a seventh chip U7, resistors R1, R5, R9, capacitors C1, C2, C10, C12, and C14 , capacitor C15, capacitor C16, capacitor C17, capacitor C18, inductor L1 and crystal oscillator Y1.
  • the first pin, the second pin, and the third pin of the seventh chip U7 are electrically connected to the first power supply V1.
  • One end of the capacitor C10 is connected between the first power supply V1 and the third pin of the seventh chip U7, and the other end is connected to the ground GND.
  • the fourth pin of the seventh chip U7 is connected to one end of the capacitor C12, and the other end of the capacitor C12 is connected between the capacitor C10 and the third pin of the seventh chip U7.
  • the fifth pin of the seventh chip U7 is connected to the resistor R6 of the first-stage power amplifier module 131 through the DC blocking capacitor C13.
  • One end of the inductor L1 is connected between the capacitor C10 and the capacitor C12, and the other end is connected between the DC blocking capacitor C13 and the capacitor C12.
  • the sixth pin of the seventh chip U7 is connected to one end of the capacitor C17, and the other end of the capacitor C17 is connected to the ground GND.
  • the seventh pin of the seventh chip U7 is connected to ground GND.
  • the eighth pin of the seventh chip U7 is connected to one end of the capacitor C16, and the other end of the capacitor C16 is connected to the ground GND.
  • the ninth pin of the seventh chip U7 is connected to one end of the resistor R9 through the capacitor C15. The other end of the resistor R9 is connected to the ground GND.
  • One end of the resistor R5 is connected between the ninth pin of the seventh chip U7 and the capacitor C15.
  • the other end of the resistor R9 is connected to the ground GND. It is connected between the eighth pin of the seventh chip U7 and the capacitor C16.
  • One end of the capacitor C14 is connected between the resistor R5 and the capacitor C15, and the other end is connected to the ground GND.
  • the tenth pin, the eleventh pin, and the twelfth pin of the seventh chip U7 are electrically connected to the fourth pin, the third pin, and the second pin of the microcontroller 20 respectively.
  • the thirteenth pin of the seventh chip U7 is connected to the third pin of the crystal oscillator Y1 through the series connected capacitor C1 and capacitor C2.
  • the fourth pin of the crystal oscillator Y1 is connected to the first power supply V1.
  • the first pin of the crystal oscillator Y1 is suspended.
  • the second pin of crystal oscillator Y1 is connected to ground GND
  • one end of resistor R1 is connected between capacitor C1 and capacitor C2
  • the other end is connected to ground GND
  • one end of capacitor C18 is connected between the fourth pin of crystal oscillator Y1 and the first power supply V1
  • the other end is connected to ground GND.
  • the crystal oscillator Y1 can be an active crystal oscillator or a passive crystal oscillator, which is not limited here.
  • the crystal oscillator Y1 can cooperate with the voltage controlled oscillator 11 to output a more stable high-frequency radio frequency signal.
  • DC-blocking capacitor C13, DC-blocking capacitor C37, DC-blocking capacitor C38, and DC-blocking capacitor C50 mainly use their DC-blocking and AC-blocking characteristics to enable high-frequency radio frequency signals to pass through the circuit smoothly and pass through the multi-stage power amplification module. 13 performs power amplification to prevent the previous-level power amplification module and the subsequent-level power amplification module from being connected in series or affecting each other, which affects the normal operation of the multi-level power amplification module 13.
  • the microcontroller 20 communicates with the tenth, eleventh and third pins of the voltage controlled oscillator 11 through the second pin, the third pin and the fourth pin.
  • the twelve pins are electrically connected and turn on the voltage controlled oscillator 11 through I2C communication.
  • the voltage controlled oscillator 11 outputs a radio frequency signal corresponding to the operating frequency (eg, 2.45 GHz).
  • the radio frequency signal passes through the multi-stage power amplification module 13 for power amplification.
  • the power-amplified RF signal passes through the circulator T1 and is input into the cavity 31 of the load 30 through the FMA terminal J1 to heat the substrate 33 in the cavity 31 .
  • the atomization device 100 can detect the power of the radio frequency signal amplified by the multi-stage power amplification module 13 through the forward power detection module 40 and output the first voltage to the microcontroller 20 .
  • the reverse power detection module 50 detects the power of the microwave reflected in the load 30 and outputs the second voltage to the microcontroller 20 .
  • the microcontroller 20 performs algorithm processing on the first voltage and the second voltage to output a resonant frequency, so that the microcontroller 20 controls the frequency of the radio frequency signal output by the voltage controlled oscillator 11 according to the resonant frequency.
  • the atomization device 100 also detects the temperature in the load 30 through the temperature detection module 60. When the temperature in the load 30 is greater than the preset temperature range, the microcontroller 20 turns off the voltage-controlled oscillator 11.
  • the atomization device 100 of this application is configured with a series-connected multi-stage power amplification module 13 to increase the power of the radio frequency signal emitted by the voltage controlled oscillator 11, fully meeting the power requirements of the atomization device 100, and ensuring the atomization taste and aerosol Increase the volume and avoid the inability to produce atomization or insufficient atomization due to power mismatch, which affects the taste.
  • the multi-stage power amplification module 13 is disposed on the same substrate to form an integrated chip, which reduces the space occupied by the multi-stage power amplification module 13, improves the efficiency of the overall amplification link, and ensures that the microwave generating device 10 and the atomization equipment 100 of miniaturization.
  • the atomization device 100 is provided with a forward power detection module 40 to detect the power amplified by the multi-stage power amplification module 13, and output the first voltage to the microcontroller 20. When the power is greater than or less than the preset range, The microcontroller 10 switches off the voltage controlled oscillator 11, thereby protecting the circuit.
  • the atomization device 100 is also provided with a reverse power detection module 50 to detect the power of microwave reflection in the load 30 and output a second voltage, so that the resonant frequency can be obtained together with the first voltage after being processed by the algorithm of the microcontroller 20, thereby Control the frequency generated by the voltage-controlled oscillator 11 to ensure a consistent amount of aerosol generated by the atomization device 100 and maintain a consistent taste.
  • the atomization device 100 is provided with a temperature detection module 60 to detect the temperature of the load 30.
  • a temperature detection module 60 to detect the temperature of the load 30.
  • it can avoid the problem of harmful substances being produced in the matrix 33 in the cavity 31 due to excessive temperature, and on the other hand, it can protect other components in the circuit. Components will not be damaged by high temperatures.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials or features are included in at least one embodiment or example of the present application. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Amplifiers (AREA)

Abstract

一种微波发生装置(10)及雾化设备(100),微波发生装置(10)包括压控振荡器(11)及串联的多级功率放大模块(13)。压控振荡器(11)产生高频的射频信号。多级功率放大模块(13)接收射频信号,并对射频信号进行功率放大,输出放大后的射频信号至负载(30),多级功率放大模块(13)设置于同一基底上以形成一集成芯片。

Description

微波发生装置及雾化设备 技术领域
本申请涉及电子雾化技术领域,更具体而言,涉及一种微波发生装置及雾化设备。
背景技术
雾化设备,例如雾化电子烟,由于较为健康且具有高性价比,而受到了众多用户的追捧。随着用户对雾化口感和气溶胶量的要求越来越高,目前的雾化设备通常需要输出更高的功率,来产生更多的气溶胶以满足用户更大功率的口感需求。然而,为了输出更高的功率,通常要设置较多的级联回路,每一级间自有的外围匹配电路和功率传输微带,会占用较大的面积,不利于雾化设备的小型化。
发明内容
本申请实施方式提供一种微波发生装置及雾化设备。
在某些实施方式中,本申请提供的微波发生装置包括压控振荡器及串联的多级功率放大模块。所述压控振荡器用于产生高频的射频信号。所述多级功率放大模块与所述压控振荡器连接,并用于接收所述射频信号,及对所述射频信号进行功率放大,以输出放大后的射频信号至负载,所述多级功率放大模块设置于同一基底上以形成一集成芯片。
在某些实施方式中,所述多级功率放大模块和所述压控振荡器设置于同一基底上以形成所述集成芯片。
在某些实施方式中,所述多级功率放大模块包括第一级功率放大模块、第二级功率放大模块、及第三级功率放大模块;所述第一级功率放大模块、第二级功率放大模块、及第三级功率放大模块依次串联于所述压控振荡器与所述负载之间,并对所述压控振荡器输出的所述射频信号进行逐级放大。
在某些实施方式中,所述第一级功率放大模块包括第一芯片、电阻R6、电阻R7、电阻R8、电阻R13、电阻R15、电阻R16、电阻R19、电容C21、电容C22、电容C24、电容C26、电容C36、电容C42、射极电容CE、电感L2及电感L3,所述第一芯片的第一引脚依次通过串联的电容C36和电阻R6与所述压控振荡器的输出引脚连接;电阻R7的一端连接于电阻R6和所述压控振荡器的输出引脚之间,另一端接地;电阻R8的一端连接于电阻R6和电容C36之间,另一端与电阻R7的另一端连接;所述第一芯片的第二引脚与电感L3的一端连接,电感L3的另一端与第一电源连接,电容C42连接于电感L3和第一电源之间;所述第一芯片的第三引脚和第四引脚接地;所述第一芯片的第五引脚通过电阻R15与第一电源连接,电容C21的一端连接于第一电源 和电阻R15之间,另一端接地;所述第一芯片的第六引脚通过电阻R16与第一电源连接,电容C22的一端连接于第一电源和R16之间,另一端接地;所述第一芯片的第七引脚通过电阻R19与射极电容CE连接,电容C26的一端连接于电阻R19与所述第一芯片的第七引脚之间,另一端接地,电阻R13的一端连接于电阻R19与所述第一芯片的第七引脚之间,另一端与电容C26的另一端连接;所述第一芯片的第八引脚和第九引脚电连接后通过隔直电容C50与所述第二级功率放大模块连接,电感L2的一端连接于所述第一芯片的第八引脚和隔直电容C50之间,及所述第一芯片的第九引脚和隔直电容C50之间,另一端与第二电源连接,电容C24的一端连接于电感L2与第二电源之间,另一端接地。
在某些实施方式中,所述第二级功率放大模块包括第二芯片、电容C41、电容C51、电容C52、电容C53及电感L4,所述第二芯片的第一引脚通过隔直电容C50与所述第一级功率放大模块连接,电容C52的一端连接于隔直电容C50与所述第二芯片的第一引脚之间,另一端与所述第二芯片的第二引脚连接;所述第二芯片的第二引脚接地;所述第二芯片的第三引脚通过隔直电容C37与所述第三级功率放大模块连接,电感L4的一端连接于所述第二芯片的第三引脚与隔直电容C37之间,另一端与第三电源连接,电容C41的一端连接于电感L4与第三电源之间,另一端接地;电容C51的一端连接于所述第二芯片的第三引脚与电感L4之间,另一端与所述第二芯片的第二引脚连接;电容C51的一端连接于电感L4与隔直电容C37之间,另一端与所述第二芯片的第二引脚连接。
在某些实施方式中,所述负载包括用于存储基质的腔体及设于所述腔体上的FMA端子;所述第三级功率放大模块包括第三芯片、可变电阻RT11、电阻R14、电阻R36、电容C20、电容C39、电容C54、电源VG及二极管VD,所述第三芯片的第一引脚和第二引脚电连接后通过隔直电容C37与所述第二级功率放大模块连接,电阻R14的一端连接于所述第三芯片的第一引脚与隔直电容C37之间,及所述第三芯片的第二引脚与隔直电容C37之间,另一端与电源VG连接,可变电阻RT11设置于电源VG与电阻R14之间,可变电阻RT11的第一端与第四电源连接,第二端接地,第三端连接于电源VG与电阻R14之间;电容C20的一端连接于电阻R14与电源VG之间,另一端接地;电阻R36的一端连接于可变电阻RT11的第三端,另一端连接于可变电阻RT11的第二端;所述第三芯片的第三引脚与第四引脚电连接后通过隔直电容C38与环形器T1的第一引脚连接,环形器T1的第二引脚与所述FMA端子连接,二极管VD连接于所述第三芯片的第三引脚与隔直电容C38之间,及所述第三芯片的第四引脚与隔直电容C38之间,电容C39的一端连接于所述第三芯片的第三引脚与二极管VD之间,及所述第三芯片的第四引脚与二极管VD之间,另一端接地;电容C54的一端连接于隔直电容C38与二极管VD之间,另一端接地;所述第三芯片的第五引脚接地。
在某些实施方式中,所述基底的材质为陶瓷或金属中的至少一种。
在某些实施方式中,本申请提供的雾化设备包括微控制器及微波发生装置。所述微控制器与所述微波发生装置电性连接。所述微波发生装置包括压控振荡器及串联的多级功率放大模块。所述压控振荡器用于产生高频的射频信号。所述多级功率放大模块与所述压控振荡器连接,并用于接收所述射频信号,并对所述射频号进行功率放大,以输出放大后的射频信号至负载,所述多级功率放大模块设置于同一基底上以形成一集成芯片。
在某些实施方式中,所述雾化设备还包括正向功率检测模块。所述正向功率检测模块用于检测经所述多级功率放大模块放大后的所述射频信号的功率,并输出第一电压至所述微控制器,其中,在所述射频信号的功率大于或小于预设范围的情况下,所述微控制器关闭所述压控振荡器。
在某些实施方式中,所述正向功率检测模块和所述多级功率放大模块设置于同一基底上以形成所述集成芯片。
在某些实施方式中,所述正向功率检测模块、所述压控振荡器及所述多级功率放大模块设置于同一基底上以形成所述集成芯片。
在某些实施方式中,所述正向功率检测模块包括第四芯片、电阻R18、电阻R24、电阻R26、电阻R28、电阻R35、电阻R37、电容C27、电容C29、电容C31、电容C33、电容C61及电源VCC,所述第四芯片的第一引脚与电源VCC连接,电容C31的一端连接于所述第四芯片的第一引脚与电源VCC之间,另一端接地;所述第四芯片的第二引脚与电阻R35的一端连接,电阻R35的另一端连接于所述第四芯片的第一引脚与电容C31之间;所述第四芯片的第三引脚通过电阻R37与所述微控制器连接;所述第四芯片的第四引脚接地,电容C33的一端连接于所述第四芯片的第三引脚与电阻R37之间,电容C33的另一端与所述第四芯片的第四引脚连接;所述第四芯片的第五引脚接地;电容C29的一端与所述第四芯片的第六引脚连接,电容C29的另一端与所述第四芯片的第五引脚连接;所述第四芯片的第七引脚通过串联的电容C27、电阻R26、电容C61、第一耦合线及R18接地,第一耦合线与连接于隔直电容C38与环形器T1之间的第二耦合线形成耦合,电阻R28的一端连接于电阻R26与电容C27之间,另一端接地;电阻R24的一端连接于电阻R26与电容C61之间,另一端接地。
在某些实施方式中,所述雾化设备还包括反向功率检测模块。所述反向功率检测模块用于检测所述负载中微波反射的功率,并输出第二电压至所述微控制器,所述微控制器对所述第一电压与所述第二电压进行算法处理,以输出谐振频率,所述微控制器根据所述谐振频率,控制所述压控振荡器输出的所述射频信号的频率。
在某些实施方式中,所述反向功率检测模块和所述多级功率放大模块设置于同一基底上以形成所述集成芯片。
在某些实施方式中,所述反向功率检测模块、所述压控振荡器及所述多级功率放大模块设置于同一基底上以形成所述集成芯片。
在某些实施方式中,所述反向功率检测模块包括第五芯片、电阻R91、电阻R95、电容C89、电容C91、电容C92、电容C93及电源VCC,所述第五芯片的第一引脚与电源VCC连接;电容C91的一端连接于所述第五芯片的第一引脚与电源VCC之间,另一端接地;所述第五芯片的第二引脚与电阻R95的一端连接,电阻R95的另一端连接于所述第五芯片的第一引脚与电容C91之间;所述第五芯片的第三引脚与所述微控制器连接;电容C93的一端连接于所述第五芯片的第三引脚与所述微控制器之间,电容C93的另一端与所述第五芯片的第四引脚连接,所述第五芯片的第四引脚接地;所述第五芯片的第五引脚接地;所述第五芯片的第六引脚与电容C89的一端连接,电容C89的另一端与所述第五芯片的第五引脚连接;电阻R17的一端通过第三耦合线与环形器T1连接,另一端接地;所述第五芯片的第七引脚通过串联的电容C92、第四耦合线及电阻R91接地,所述第四耦合线与所述第一耦合线耦合。
在某些实施方式中,所述雾化设备还包括温度检测模块。所述温度检测模块检测所述负载中的温度,并输出第三电压;其中,在所述负载中的温度大于预设温度范围的情况下,所述微控制器关闭所述压控振荡器。
在某些实施方式中,所述温度检测模块包括热敏电阻RT1、电阻R99,电阻R99的一端与所述微控制器电连接,另一端与第一电源连接;热敏电阻RT1的一端连接于所述微控制器与电阻R99之间,另一端接地。
在某些实施方式中,所述微控制器包括第六芯片及电容C3,所述第六芯片的第一引脚与第一电源连接,电容C3的一端连接于所述第六芯片的第一引脚与第一电源之间,另一端接地;所述第六芯片的第二引脚、第三引脚及第四引脚均分别与所述压控振荡器电连接;所述第六芯片的第五引脚接地;所述第六芯片的第六引脚与反向功率检测模块电连接;所述第六芯片的第七引脚与正向功率检测模块电连接;所述第六芯片的第八引脚与温度检测模块电连接。
在某些实施方式中,所述压控振荡器包括第七芯片、电阻R1、电阻R5、电阻R9、电容C1、电容C2、电容C10、电容C12、电容C14、电容C15、电容C16、电容C17、电容C18、电感L1及晶振Y1,所述第七芯片的第一引脚、第二引脚、及第三引脚电连接后均与第一电源连接;电容C10的一端连接于第一电源与所述第七芯片的第三引脚之间,另一端接地;所述第七芯片的第四引脚与电容C12的一端连接,电容C12的另一端连接于电容C10与所述第七芯片的第三引脚之间;所述第七芯片的第五引脚通过隔直电容C13与所述第一级功率放大模块连接,电感L1的一端连接于电容C10与电容C12之间,另一端连接于隔直电容C13与所述第七芯片的第五引脚之间;所述第七芯片的第六引脚与电容C17的一端连接,电容C17的另一端接地;所述第七芯片的第七引脚接地;所述第七芯片的第八引脚与电容C16的一端连接,电容C16的另一端接地;所述第七芯片的第九引脚通过电容C15与电阻R9的一端连接,电阻R9的另一端接地,电阻R5的一端连接于所述第七芯片的第九引脚与电容C15之间,另一端连接于所述第七芯片的第八引脚与 电容C16之间,电容C14的一端连接于电阻R5与电容C15之间,另一端接地;所述第七芯片的第十引脚、第十一引脚、第十二引脚均与所述微控制器电连接;所述第七芯片的第十三引脚通过串联的电容C1和电容C2与晶振Y1的第三脚连接,晶振Y1的第四脚与第一电源连接,晶振Y1的第一引脚悬空,晶振Y1的第二引脚接地,电阻R1的一端连接于电容C1与电容C2之间,另一端接地,电容C18的一端连接于晶振Y1的第四引脚与第一电源之间,另一端接地。
本申请的微波发生装置及雾化设备,通过设置串联的多级功率放大模块,从而提升压控振荡器发出的射频信号的功率,充分满足雾化设备对功率的需求,保证雾化口感和气溶胶量的提升,避免因为功率不匹配导致无法产生雾化或雾化不充足而影响口感。同时,多级功率放大模块设置于同一基底上以形成一集成芯片,减小了多级功率放大模块占据的空间,改善整体放大链路的效率,保证微波发生装置和雾化设备的小型化。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的雾化设备的模块连接框图;
图2是本申请某些实施方式的微波发生装置中第一级功率放大模块的电路原理图;
图3是本申请某些实施方式的微波发生装置中第二级功率放大模块的电路原理图;
图4是本申请某些实施方式的雾化设备中负载的电路原理图;
图5是本申请某些实施方式的雾化设备中负载的结构示意图;
图6是本申请某些实施方式的微波发生装置中第三级功率放大模块的电路原理图;
图7是本申请某些实施方式的雾化设备中正向功率检测模块的电路原理图;
图8是本申请某些实施方式的雾化设备中反向功率检测模块的电路原理图;
图9是本申请某些实施方式的雾化设备中微控制器及温度检测模块的电路原理图;
图10是本申请某些实施方式的雾化设备中压控振荡器的电路原理图。
具体实施方式
下面详细描述本申请的实施方式,实施方式的示例在附图中示出,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的实施方式的不同结构。为了 简化本申请的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。
雾化设备,例如雾化电子烟,由于较为健康且具有高性价比,而受到了众多用户的追捧。随着用户对雾化口感和气溶胶量的要求越来越高,目前的雾化设备通常需要输出更高的功率,来产生更多的气溶胶以满足用户更大功率的口感需求。然而,为了输出更高的功率,通常要设置较多的级联回路,每一级间自有的外围匹配电路和功率传输微带,会占用较大的面积,不利于雾化设备的小型化。请参阅图1,为解决此问题,本申请提供一种微波发生装置10及雾化设备100。
请参阅图1,本申请实施方式提供一种微波发生装置10。微波发生装置10包括压控振荡器11及串联的多级功率放大模块13。压控振荡器11用于产生高频的射频信号。多级功率放大模块13与压控振荡器11连接,并用于接收射频信号,及对射频信号进行功率放大,以输出放大后的射频信号至负载30,多级功率放大模块13设置于同一基底上以形成一集成芯片。
其中,射频信号的频率可以为2.45GHz信号,多级功率放大模块13之间串联,并依次对接收的射频信号的功率进行放大,以使射频信号的功率满足大气溶胶量的高功率需求,提升雾化设备100的口感。需要说明的是,在某些实施方式中,射频信号的频率也可以为其他频率值。
在某些实施方式中,功率放大模块的数量可以设置为2个、3个、4个甚至更多个,在此不作限制。本申请仅以功率放大模块为3个进行举例说明,3个功率放大模块之间串联。
本申请实施方式的微波发生装置10,通过设置串联的多级功率放大模块13,从而提升压控振荡器11发出的射频信号的功率,充分满足雾化设备100对功率的需求,保证雾化口感和气溶胶量的提升,避免因为功率不匹配导致无法产生雾化或雾化不充足而影响口感。同时,多级功率放大模块13设置于同一基底上以形成一集成芯片,减小了多级功率放大模块13占据的空间,改善整体放大链路的效率,保证微波发生装置10和雾化设备100的小型化。
在某些实施方式中,多级功率放大模块13和压控振荡器11设置于同一基底上以形成集成芯片。
具体地,压控振荡器11与多级功率放大模块13电性连接,压控振荡器11产生的高频的射频信号直接输送至多级功率放大模块13中进行功率放大,从而能够提高增益,改善整体放大链路的总体效率,进而提升微波发生装置10及雾化设备100的工作效率。
另外,压控振荡器11与多级功率放大模块13设置于同一基底上以形成集成芯片,减少多级功率放大模块13外围的匹配电路和功率传输微带,从而减少电路面积,进一步降低微波发生装置10的空间占用率,保证微波发生装置10及雾化设备100的小型化。
在某些实施方式中,基底的材质为陶瓷或金属中的至少一种。
具体地,压控振荡器11和多级功率放大模块13工作会产生一定的热量,在热量较高的情况下,多级功率放大模块13中的电阻变大,使多级功率放大模块13的输出功率降低,进而导致雾 化设备100因输出功率不足而无法产生足够的雾化量而影响口感,甚至是完全无法雾化。集成芯片的底部采用陶瓷衬底或金属衬底,可提升集成芯片的热均匀性及散热效果,避免热量堆积,从而保证输出功率足够大,进而保证雾化设备100的雾化量足够,口感较佳。
请再次参阅图1,在某些实施方式中,多级功率放大模块13可包括第一级功率放大模块131、第二级功率放大模块133及第三级功率放大模块135。其中,第一级功率放大模块131、第二级功率放大模块133及第三级功率放大模块135依次串联于压控振荡器11与负载30之间,并对压控振荡器11输出的射频信号进行逐级放大。
在一个实施方式中,第一级功率放大模块131、第二级功率放大模块133及第三级功率放大模块135之间的放大倍率可以不同。例如,第一级功率放大模块131的放大倍率为20db,第二级功率放大模块133的放大倍率为17db,第三级功率放大模块135的放大倍率为15db。多级功率放大模块13的放大倍率不同,射频信号依次经过不同放大倍率的多级功率放大模块13进行功率放大后传输至负载30,能够降低在射频信号功率放大的过程中对多级功率放大模块13的负荷,提升功率放大的稳定性,保证功率放大的精度。在另一个实施方式中,第一级功率放大模块131、第二级功率放大模块133及第三级功率放大模块135的放大倍率可以相同,由此选型较为简单统一,一旦损坏容易更换维护,节省成本。
在某些实施方式中,第一级功率放大模块131、第二级功率放大模块133及第三级功率放大模块135之间也可以通过耦合的方式进行连接。例如,耦合方式可以为阻容耦合、直接耦合、光电耦合等,在此不作限制。
请参阅图1及图2,在某些实施方式中,第一级功率放大模块131包括第一芯片U1、电阻R6、电阻R7、电阻R8、电阻R13、电阻R15、电阻R16、电阻R19、电容C21、电容C22、电容C24、电容C26、电容C36、电容C42、射极电容CE、电感L2及电感L3。
具体地,第一芯片U1的第一引脚依次通过串联的电容C36和电阻R6与压控振荡器11的输出引脚连接。电阻R7的一端连接于电阻R6和压控振荡器11的输出引脚之间,另一端接地GND。电阻R8的一端连接于电阻R6和电容C36之间,另一端与电阻R7的另一端连接。第一芯片U1的第二引脚与电感L3的一端连接,电感L3的另一端与第一电源V1连接,电容C42连接于电感L3和第一电源V1之间。第一芯片U1的第三引脚和第四引脚接地GND。第一芯片U1的第五引脚通过电阻R15与第一电源V1连接,电容C21的一端连接于第一电源V1和电阻R15之间,另一端接地GND。第一芯片U1的第六引脚通过电阻R16与第一电源V1连接,电容C22的一端连接于第一电源V1和R16之间,另一端接地GND。第一芯片U1的第七引脚通过电阻R19与射极电容CE连接,电容C26的一端连接于电阻R19与第一芯片U1的第七引脚之间,另一端接地GND,电阻R13的一端连接于电阻R19与第一芯片U1的第七引脚之间,另一端与电容C26的另一端连接。第一芯片U1的第八引脚和第九引脚电连接后通过隔直电容C50与第二级功率放大模块133 连接,电感L2的一端连接于第一芯片U1的第八引脚和隔直电容C50之间,及第一芯片U1的第九引脚和隔直电容C50之间,另一端与第二电源V2连接,电容C24的一端连接于电感L2与第二电源V2之间,另一端接地GND。
本申请实施方式的第一级功率放大模块131主要作用是:接收压控振荡器11产生高频的射频信号并进行功率放大,并通过隔直电容C50与第二级功率放大模块133耦合,从而将功率经一级放大后的射频信号传输至第二级功率放大模块133。
请参阅图1及图3,在某些实施方式中,第二级功率放大模块133包括第二芯片U2、电容C41、电容C51、电容C52、电容C53及电感L4。
具体地,第二芯片U2的第一引脚通过隔直电容C50与第一级功率放大模块131连接,具体地,请结合图2,第二芯片U2的第一引脚通过隔直电容C50与第一芯片U1的第八引脚和第九引脚均连接。电容C52的一端连接于隔直电容C50与第二芯片U2的第一引脚之间,另一端与第二芯片U2的第二引脚连接。第二芯片U2的第二引脚接地GND。第二芯片U2的第三引脚通过隔直电容C37与第三级功率放大模块135连接,电感L4的一端连接于第二芯片U2的第三引脚与隔直电容C37之间,另一端与第三电源V3连接,电容C41的一端连接于电感L4与第三电源V3之间,另一端接地GND。电容C51的一端连接于第二芯片U2的第三引脚与电感L4之间,另一端与第二芯片U2的第二引脚连接。电容C51的一端连接于电感L4与隔直电容C37之间,另一端与第二芯片U2的第二引脚连接。
本申请实施方式的第二级功率放大模块133主要作用是:接收经第一级功率放大模块131放大功率后的射频信号,并进行二级功率放大,并将二级功率放大后的射频信号传输至第三级功率放大模块135。
请参阅图1、图4及图5,在某些实施方式中,负载30包括用于存储基质33的腔体31及设于腔体31上的FMA端子J1。
具体地,基质33至少部分设置于腔体31中,FMA端子J1与第三级功率放大模块135连接,以使经多级功率放大模块13放大功率后的射频信号导入腔体31中,从而对存储于腔体31中的基质33进行加热。需要说明的是,在某些实施方式中,负载31还可以通过天线、探针等装置,将放大功率后的射频信号导入腔体31中。
请参阅图4至图6,在某些实施方式中,第三级功率放大模块135包括第三芯片U3、可变电阻RT11、电阻R14、电阻R36、电容C20、电容C39、电容C54、电源VG及二极管VD。
具体地,第三芯片U3的第一引脚和第二引脚电连接后通过隔直电容C37与第二级功率放大模块133的第三引脚连接,电阻R14的一端连接于第三芯片U3的第一引脚与隔直电容C37之间,及连接于第三芯片U3的第二引脚与隔直电容C37之间,另一端与电源VG连接,可变电阻RT11设置于电源VG与电阻R14之间,可变电阻RT11的第一端与第四电源V4连接,第二端接地GND, 第三端连接于电源VG与电阻R14之间。电容C20的一端连接于电阻R14与电源VG之间,另一端接地GND。电阻R36的一端连接于可变电阻RT11的第三端,另一端连接于可变电阻RT11的第二端。第三芯片U3的第三引脚与第四引脚电连接后通过隔直电容C38与环形器T1的第一引脚连接,环形器T1的第二引脚与FMA端子J1连接,二极管VD连接于第三芯片U3的第三引脚与隔直电容C38之间,及连接于第三芯片U3的第四引脚与隔直电容C38之间,电容C39的一端连接于第三芯片U3的第三引脚与二极管VD之间,及连接于第三芯片U3的第四引脚与二极管VD之间,另一端接地GND。电容C54的一端连接于隔直电容C38与二极管VD之间,另一端接地GND。第三芯片U3的第五引脚接地GND。
其中,环形器T1可以避免在负载30的腔体31中无基质33或发生开路的情况下,经多级功率放大模块13放大功率后的射频信号不会再次回到第三级功率放大模块135中,从而保证第三级功率放大模块135的正常工作,防止第三级功率放大模块135发生损坏。
本申请实施方式的第三级功率放大模块135主要作用是:接收经第二级功率放大模块133放大功率后的射频信号,并进行三级功率放大,并将三级功率放大后的射频信号传输至腔体31上的FMA端子J1,进而对存储于腔体31内的基质33进行加热,以产生气溶胶,保证雾化设备100的抽吸口感。
请参阅图1,本申请实施方式还提供一种雾化设备100。雾化设备100包括微控制器20及上述任一实施方式的微波发生装置10。微控制器20与微波发生装置10电性连接。
请结合图7,在某些实施方式中,雾化设备100还可包括正向功率检测模块40。正向功率检测模块40用于检测经多级功率放大模块13放大后的射频信号的功率,并输出第一电压至微控制器20,其中,在射频信号的功率大于或小于预设范围的情况下,微控制器20关闭压控振荡器11。
在一个实施方式中,正向功率检测模块40和多级功率放大模块13设置于同一基底上以形成集成芯片,从而使正向功率检测模块40能够直接检测经多级功率放大模块13放大功率后的射频信号,进而提升微波发生装置10及雾化设备100的工作效率。此外,正向功率检测模块40和多级功率放大模块13形成集成芯片,从而减少正向功率检测模块40和多级功率放大模块13的电路面积,保证微波发生装置10及雾化设备100的小型化。在另一个实施方式中,正向功率检测模块40、压控振荡器11及多级功率放大模块13设置于同一基底上以形成集成芯片,从而能够进一步提升微波发生装置10及雾化设备100的工作效率,以及进一步降低微波发生装置10的空间占用率。
其中,正向功率检测模块40包括第四芯片U4、电阻R18、电阻R24、电阻R26、电阻R28、电阻R35、电阻R37、电容C27、电容C29、电容C31、电容C33、电容C61及电源VCC。
具体地,第四芯片U4的第一引脚与电源VCC连接,电容C31的一端连接于第四芯片U4的第一引脚与电源VCC之间,另一端接地GND。第四芯片U4的第二引脚与电阻R35的一端连接, 电阻R35的另一端连接于第四芯片U4的第一引脚与电容C31之间。第四芯片U4的第三引脚通过电阻R37与微控制器20连接。第四芯片U4的第四引脚接地GND,电容C33的一端连接于第四芯片U4的第三引脚与电阻R37之间,电容C33的另一端与第四芯片U4的第四引脚连接。第四芯片U4的第五引脚接地GND。电容C29的一端与第四芯片U4的第六引脚连接,电容C29的另一端与第四芯片U4的第五引脚连接。第四芯片U4的第七引脚通过串联的电容C27、电阻R26、电容C61、第一耦合线L1及R18接地GND,第一耦合线L1与连接于隔直电容C38与环形器T1之间的第二耦合线L2形成耦合,电阻R28的一端连接于电阻R26与电容C27之间,另一端接地GND。电阻R24的一端连接于电阻R26与电容C61之间,另一端接地GND。
在某些实施方式中,正向功率检测模块40通过第一耦合线L1与连接于隔直电容C38与环形器T1之间的第二耦合线L2形成耦合,从而使得正向功率检测模块40设置于第三级功率放大模块135和负载30之间,并检测经多级功率放大模块13放大后的射频信号的功率,并输出第一电压至微控制器20。具体地,正向功率检测模块40输出给微控制器20的第一电压表征经过多级功率放大模块13放大后的射频信号的功率大于或小于预设范围的情况下,表明压控振荡器11损坏和/或多级功率放大模块13损坏,整个雾化设备100无法正常工作,若压控振荡器11和/或多级功率放大模块13一直处于工作状态,很可能全部烧坏,此时,微控制器20可关闭压控振荡器11,由此可以保护压控振荡器11和/或多级功率放大模块13,方便后续检修,避免损害扩大。
请参阅图1及图8,在某些实施方式中,雾化设备100还可包括反向功率检测模块50。反向功率检测模块50用于检测负载30中微波反射的功率,并输出第二电压至微控制器20,微控制器20对第一电压与第二电压进行算法处理,以输出谐振频率,微控制器20根据谐振频率控制压控振荡器11输出的射频信号的频率。
在一个实施方式中,反向功率检测模块50和多级功率放大模块13设置于同一基底上以形成集成芯片,从而能够减少正向功率检测模块40和多级功率放大模块13的电路面积,保证微波发生装置10及雾化设备100的小型化。在另一个实施方式中,反向功率检测模块50、压控振荡器11及多级功率放大模块13设置于同一基底上以形成集成芯片,从而进一步降低微波发生装置10的空间占用率。
其中,反向功率检测模块50包括第五芯片U5、电阻R91、电阻R95、电容C89、电容C91、电容C92、电容C93及电源VCC。
具体地,第五芯片U5的第一引脚与电源VCC连接。电容C91的一端连接于第五芯片U5的第一引脚与电源VCC之间,另一端接地GND。第五芯片U5的第二引脚与电阻R95的一端连接,电阻R95的另一端连接于第五芯片U5的第一引脚与电容C91之间。第五芯片U5的第三引脚与微控制器20连接。电容C93的一端连接于第五芯片U5的第三引脚与微控制器20之间,电容C93的另一端与第五芯片U5的第四引脚连接,第五芯片U5的第四引脚接地GND。第五芯片U5的 第五引脚接地GND。第五芯片U5的第六引脚与电容C89的一端连接,电容C89的另一端与第五芯片U5的第五引脚连接。请结合图4,电阻R17的一端通过第三耦合线L3与环形器T1的第三端连接,另一端接地GND。第五芯片U5的第七引脚通过串联的电容C92、第四耦合线L4及电阻R91接地GND,第四耦合线L4与第一耦合线L1耦合。
在某些实施方式中,反向功率检测模块50通过第四耦合线L4与连接于电阻R17与环形器T1之间的第三耦合线L3耦合,以实现对负载30中微波反射的功率进行检测,从而输出第二电压至微控制器20,微控制器20对第一电压与第二电压进行算法处理,以输出谐振频率,微控制器20根据谐振频率,从而调节压控振荡器11输出的射频信号的频率,使得射频信号的频率在一定的频率范围内变化,以便有效控制微波在腔体31内的功率,保证雾化设备100的口感稳定,提升用户体验。
请参阅图1及图9,在某些实施方式中,雾化设备100还可包括温度检测模块60。其中,温度检测模块60包括热敏电阻RT1及电阻R99,电阻R99的一端与微控制器20电连接,另一端与第一电源V1连接。热敏电阻RT1的一端连接于微控制器20与电阻R99之间,另一端接地GND。
在某些实施方式中,温度检测模块60中的热敏电阻RT1的值能够随着负载30中的温度的变化而变化,进而输出第三电压至微控制器20。其中,在负载30中的温度大于预设温度范围的情况下,微控制器20关闭压控振荡器11。具体地,当负载30中的温度大于预设温度范围时,负载30的腔体31中的基质33会因高温产生一定量的有害物质,例如甲醛、尼古丁等,从而对用户的健康有所损害。因此,在负载30中的温度大于预设温度范围的情况下,温度检测模块60输出给微控制器20的第三电压能够表征出负载30中的温度异常,微控制器20便会关闭压控振荡器11,进而关闭雾化设备100,以避免温度过高产生有害物质而危害吸烟者的身体健康。需要说明的是,在某些实施方式中,预设温度范围可以根据基质33的类型、使用环境等具体情况进行调整。
请参阅图1及图9,在某些实施方式中,微控制器20可包括第六芯片U6及电容C3。
具体地,第六芯片U6的第一引脚与第一电源V1连接,电容C3的一端连接于第六芯片U6的第一引脚与第一电源V1之间,另一端接地GND。第六芯片U6的第二引脚、第三引脚及第四引脚均分别与压控振荡器11电连接。第六芯片U6的第五引脚接地GND。第六芯片U6的第六引脚与反向功率检测模块50的第三引脚电连接。第六芯片U6的第七引脚与正向功率检测模块40的第三引脚电连接。第六芯片U6的第八引脚与温度检测模块60电连接。
请参阅图1及图10,在某些实施方式中,压控振荡器11可包括第七芯片U7、电阻R1、电阻R5、电阻R9、电容C1、电容C2、电容C10、电容C12、电容C14、电容C15、电容C16、电容C17、电容C18、电感L1及晶振Y1。
具体地,第七芯片U7的第一引脚、第二引脚、及第三引脚电连接后均与第一电源V1连接。电容C10的一端连接于第一电源V1与第七芯片U7的第三引脚之间,另一端接地GND。第七芯 片U7的第四引脚与电容C12的一端连接,电容C12的另一端连接于电容C10与第七芯片U7的第三引脚之间。第七芯片U7的第五引脚通过隔直电容C13与第一级功率放大模块131的电阻R6连接,电感L1的一端连接于电容C10与电容C12之间,另一端连接于隔直电容C13与第七芯片U7的第五引脚之间。第七芯片U7的第六引脚与电容C17的一端连接,电容C17的另一端接地GND。第七芯片U7的第七引脚接地GND。第七芯片U7的第八引脚与电容C16的一端连接,电容C16的另一端接地GND。第七芯片U7的第九引脚通过电容C15与电阻R9的一端连接,电阻R9的另一端接地GND,电阻R5的一端连接于第七芯片U7的第九引脚与电容C15之间,另一端连接于第七芯片U7的第八引脚与电容C16之间,电容C14的一端连接于电阻R5与电容C15之间,另一端接地GND。第七芯片U7的第十引脚、第十一引脚、第十二引脚分别与微控制器20的第四引脚、第三引脚和第二引脚电连接。第七芯片U7的第十三引脚通过串联的电容C1和电容C2与晶振Y1的第三引脚连接,晶振Y1的第四引脚与第一电源V1连接,晶振Y1的第一引脚悬空,晶振Y1的第二引脚接地GND,电阻R1的一端连接于电容C1与电容C2之间,另一端接地GND,电容C18的一端连接于晶振Y1的第四引脚与第一电源V1之间,另一端接地GND。
在某些实施方式中,晶振Y1可以采用有源晶振或无源晶振,在此不作限制。晶振Y1能够与压控振荡器11配合,以输出更加稳定的高频的射频信号。
其中,隔直电容C13、隔直电容C37、隔直电容C38、隔直电容C50主要是利用其隔直流阻交流的特性,使高频的射频信号能够顺利通过电路,并通过多级功率放大模块13进行功率放大,防止前一级功率放大模块与后一级功率放大模块之间出现串联或彼此影响的现象,影响多级功率放大模块13的正常工作。
在雾化设备100工作的情况下,首先,微控制器20通过第二引脚、第三引脚、第四引脚与压控振荡器11的第十引脚、第十一引脚、第十二引脚电连接,并通过I2C通讯方式,开启压控振荡器11。然后,压控振荡器11输出对应工作频率(如2.45GHz)的射频信号。之后,射频信号经过多级功率放大模块13进行功率放大。随后,功率放大后的射频信号经过环形器T1,并通过FMA端子J1输入负载30的腔体31中,以加热腔体31中的基质33。其中,在加热过程中,雾化设备100能够通过正向功率检测模块40检测经多级功率放大模块13放大后的射频信号的功率,并输出第一电压至微控制器20。反向功率检测模块50检测负载30中微波反射的功率,并输出第二电压至微控制器20。微控制器20对第一电压和第二电压进行算法处理,以输出谐振频率,从而微控制器20根据谐振频率控制压控振荡器11输出的射频信号的频率。同时,雾化设备100还通过温度检测模块60检测负载30中的温度,在负载30中的温度大于预设温度范围的情况下,微控制器20关闭压控振荡器11。
本申请的雾化设备100,通过设置串联的多级功率放大模块13,从而提升压控振荡器11发出的射频信号的功率,充分满足雾化设备100对功率的需求,保证雾化口感和气溶胶量的提升, 避免因为功率不匹配导致无法产生雾化或雾化不充足而影响口感。同时,多级功率放大模块13设置于同一基底上以形成一集成芯片,减小了多级功率放大模块13占据的空间,改善整体放大链路的效率,保证微波发生装置10和雾化设备100的小型化。
另外,雾化设备100设置正向功率检测模块40以检测经多级功率放大模块13放大后的功率,并输出第一电压至微控制器20,在功率大于或小于预设范围的情况下,微控制器10关闭压控振荡器11,从而保护电路。雾化设备100还设置反向功率检测模块50以检测负载30中微波反射的功率,并输出第二电压,从而能够与第一电压一起经微控制器20的算法处理后,获取谐振频率,从而控制压控振荡器11产生的频率,保证雾化设备100产生气溶胶量的一致性,保持口感的一致。此外,雾化设备100设置温度检测模块60,以检测负载30的温度,一方面能够避免因温度过高导致腔体31内的基质33产生有害物质的问题,另一方面能够保护电路中的其他元件不会因高温而受到损坏。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种微波发生装置,其特征在于,包括:
    压控振荡器,用于产生高频的射频信号;及
    串联的多级功率放大模块,与所述压控振荡器连接,并用于接收所述射频信号,及对所述射频信号进行功率放大,以输出放大后的射频信号至负载,所述多级功率放大模块设置于同一基底上以形成一集成芯片。
  2. 根据权利要求1所述的微波发生装置,其特征在于,所述多级功率放大模块和所述压控振荡器设置于同一基底上以形成所述集成芯片。
  3. 根据权利要求1所述的微波发生装置,其特征在于,所述多级功率放大模块包括第一级功率放大模块、第二级功率放大模块、及第三级功率放大模块;所述第一级功率放大模块、第二级功率放大模块、及第三级功率放大模块依次串联于所述压控振荡器与所述负载之间,并对所述压控振荡器输出的所述射频信号进行逐级放大。
  4. 根据权利要求3所述的微波发生装置,其特征在于,所述第一级功率放大模块包括第一芯片、电阻R6、电阻R7、电阻R8、电阻R13、电阻R15、电阻R16、电阻R19、电容C21、电容C22、电容C24、电容C26、电容C36、电容C42、射极电容CE、电感L2及电感L3,所述第一芯片的第一引脚依次通过串联的电容C36和电阻R6与所述压控振荡器的输出引脚连接;电阻R7的一端连接于电阻R6和所述压控振荡器的输出引脚之间,另一端接地;电阻R8的一端连接于电阻R6和电容C36之间,另一端与电阻R7的另一端连接;所述第一芯片的第二引脚与电感L3的一端连接,电感L3的另一端与第一电源连接,电容C42连接于电感L3和第一电源之间;所述第一芯片的第三引脚和第四引脚接地;所述第一芯片的第五引脚通过电阻R15与第一电源连接,电容C21的一端连接于第一电源和电阻R15之间,另一端接地;所述第一芯片的第六引脚通过电阻R16与第一电源连接,电容C22的一端连接于第一电源和R16之间,另一端接地;所述第一芯片的第七引脚通过电阻R19与射极电容CE连接,电容C26的一端连接于电阻R19与所述第一芯片的第七引脚之间,另一端接地,电阻R13的一端连接于电阻R19与所述第一芯片的第七引脚之间,另一端与电容C26的另一端连接;所述第一芯片的第八引脚和第九引脚电连接后通过隔直电容C50与所述第二级功率放大模块连接,电感L2的一端连接于所述第一芯片的第八引脚和隔直电容C50之间,及所述第一芯片的第九引脚和隔直电容C50之间,另一端与第二电源连接,电容C24的一端连接于电感L2与第二电源之间,另一端接地。
  5. 根据权利要求3所述的微波发生装置,其特征在于,所述第二级功率放大模块包括第二芯片、电容C41、电容C51、电容C52、电容C53及电感L4,所述第二芯片的第一引脚通过隔直电容C50与所述第一级功率放大模块连接,电容C52的一端连接于隔直电容C50与所述第二芯片 的第一引脚之间,另一端与所述第二芯片的第二引脚连接;所述第二芯片的第二引脚接地;所述第二芯片的第三引脚通过隔直电容C37与所述第三级功率放大模块连接,电感L4的一端连接于所述第二芯片的第三引脚与隔直电容C37之间,另一端与第三电源连接,电容C41的一端连接于电感L4与第三电源之间,另一端接地;电容C51的一端连接于所述第二芯片的第三引脚与电感L4之间,另一端与所述第二芯片的第二引脚连接;电容C51的一端连接于电感L4与隔直电容C37之间,另一端与所述第二芯片的第二引脚连接。
  6. 根据权利要求3所述的微波发生装置,其特征在于,所述负载包括用于存储基质的腔体及设于所述腔体上的FMA端子;所述第三级功率放大模块包括第三芯片、可变电阻RT11、电阻R14、电阻R36、电容C20、电容C39、电容C54、电源VG及二极管VD,所述第三芯片的第一引脚和第二引脚电连接后通过隔直电容C37与所述第二级功率放大模块连接,电阻R14的一端连接于所述第三芯片的第一引脚与隔直电容C37之间,及所述第三芯片的第二引脚与隔直电容C37之间,另一端与电源VG连接,可变电阻RT11设置于电源VG与电阻R14之间,可变电阻RT11的第一端与第四电源连接,第二端接地,第三端连接于电源VG与电阻R14之间;电容C20的一端连接于电阻R14与电源VG之间,另一端接地;电阻R36的一端连接于可变电阻RT11的第三端,另一端连接于可变电阻RT11的第二端;所述第三芯片的第三引脚与第四引脚电连接后通过隔直电容C38与环形器T1的第一引脚连接,环形器T1的第二引脚与所述FMA端子连接,二极管VD连接于所述第三芯片的第三引脚与隔直电容C38之间,及所述第三芯片的第四引脚与隔直电容C38之间,电容C39的一端连接于所述第三芯片的第三引脚与二极管VD之间,及所述第三芯片的第四引脚与二极管VD之间,另一端接地;电容C54的一端连接于隔直电容C38与二极管VD之间,另一端接地;所述第三芯片的第五引脚接地。
  7. 根据权利要求1所述的微波发生装置,其特征在于,所述基底的材质为陶瓷或金属中的至少一种。
  8. 一种雾化设备,其特征在于,包括:
    权利要求1-7任一项所述的微波发生装置;及
    微控制器,与所述微波发生装置电性连接。
  9. 根据权利要求8所述的雾化设备,其特征在于,所述雾化设备还包括:
    正向功率检测模块,用于检测经所述多级功率放大模块放大后的所述射频信号的功率,并输出第一电压至所述微控制器,其中,在所述射频信号的功率大于或小于预设范围的情况下,所述微控制器关闭所述压控振荡器。
  10. 根据权利要求9所述的雾化设备,其特征在于,所述正向功率检测模块和所述多级功率放大模块设置于同一基底上以形成所述集成芯片;或
    所述正向功率检测模块、所述压控振荡器及所述多级功率放大模块设置于同一基底上以形成 所述集成芯片。
  11. 根据权利要求9所述的雾化设备,其特征在于,所述正向功率检测模块包括第四芯片、电阻R18、电阻R24、电阻R26、电阻R28、电阻R35、电阻R37、电容C27、电容C29、电容C31、电容C33、电容C61及电源VCC,所述第四芯片的第一引脚与电源VCC连接,电容C31的一端连接于所述第四芯片的第一引脚与电源VCC之间,另一端接地;所述第四芯片的第二引脚与电阻R35的一端连接,电阻R35的另一端连接于所述第四芯片的第一引脚与电容C31之间;所述第四芯片的第三引脚通过电阻R37与所述微控制器连接;所述第四芯片的第四引脚接地,电容C33的一端连接于所述第四芯片的第三引脚与电阻R37之间,电容C33的另一端与所述第四芯片的第四引脚连接;所述第四芯片的第五引脚接地;电容C29的一端与所述第四芯片的第六引脚连接,电容C29的另一端与所述第四芯片的第五引脚连接;所述第四芯片的第七引脚通过串联的电容C27、电阻R26、电容C61、第一耦合线及R18接地,第一耦合线与连接于隔直电容C38与环形器T1之间的第二耦合线形成耦合,电阻R28的一端连接于电阻R26与电容C27之间,另一端接地;电阻R24的一端连接于电阻R26与电容C61之间,另一端接地。
  12. 根据权利要求9所述的雾化设备,其特征在于,所述雾化设备还包括:
    反向功率检测模块,用于检测所述负载中微波反射的功率,并输出第二电压至所述微控制器,所述微控制器对所述第一电压与所述第二电压进行算法处理,以输出谐振频率,所述微控制器根据所述谐振频率,控制所述压控振荡器输出的所述射频信号的频率。
  13. 根据权利要求12所述的雾化设备,其特征在于,所述反向功率检测模块和所述多级功率放大模块设置于同一基底上以形成所述集成芯片;或
    所述反向功率检测模块、所述压控振荡器及所述多级功率放大模块设置于同一基底上以形成所述集成芯片。
  14. 根据权利要求12所述的雾化设备,其特征在于,所述反向功率检测模块包括第五芯片、电阻R91、电阻R95、电容C89、电容C91、电容C92、电容C93及电源VCC,所述第五芯片的第一引脚与电源VCC连接;电容C91的一端连接于所述第五芯片的第一引脚与电源VCC之间,另一端接地;所述第五芯片的第二引脚与电阻R95的一端连接,电阻R95的另一端连接于所述第五芯片的第一引脚与电容C91之间;所述第五芯片的第三引脚与所述微控制器连接;电容C93的一端连接于所述第五芯片的第三引脚与所述微控制器之间,电容C93的另一端与所述第五芯片的第四引脚连接,所述第五芯片的第四引脚接地;所述第五芯片的第五引脚接地;所述第五芯片的第六引脚与电容C89的一端连接,电容C89的另一端与所述第五芯片的第五引脚连接;电阻R17的一端通过第三耦合线与环形器T1连接,另一端接地;所述第五芯片的第七引脚通过串联的电容C92、第四耦合线及电阻R91接地,所述第四耦合线与所述第一耦合线耦合。
  15. 根据权利要求8所述的雾化设备,其特征在于,所述雾化设备还包括:
    温度检测模块,检测所述负载中的温度,并输出第三电压;其中,在所述负载中的温度大于预设温度范围的情况下,所述微控制器关闭所述压控振荡器。
  16. 根据权利要求15所述的雾化设备,其特征在于,所述温度检测模块包括热敏电阻RT1、电阻R99,电阻R99的一端与所述微控制器电连接,另一端与第一电源连接;热敏电阻RT1的一端连接于所述微控制器与电阻R99之间,另一端接地。
  17. 根据权利要求8所述的雾化设备,其特征在于,所述微控制器包括第六芯片及电容C3,所述第六芯片的第一引脚与第一电源连接,电容C3的一端连接于所述第六芯片的第一引脚与第一电源之间,另一端接地;所述第六芯片的第二引脚、第三引脚及第四引脚均分别与所述压控振荡器电连接;所述第六芯片的第五引脚接地;所述第六芯片的第六引脚与反向功率检测模块电连接;所述第六芯片的第七引脚与正向功率检测模块电连接;所述第六芯片的第八引脚与温度检测模块电连接。
  18. 根据权利要求8所述的雾化设备,其特征在于,所述压控振荡器包括第七芯片、电阻R1、电阻R5、电阻R9、电容C1、电容C2、电容C10、电容C12、电容C14、电容C15、电容C16、电容C17、电容C18、电感L1及晶振Y1,所述第七芯片的第一引脚、第二引脚、及第三引脚电连接后均与第一电源连接;电容C10的一端连接于第一电源与所述第七芯片的第三引脚之间,另一端接地;所述第七芯片的第四引脚与电容C12的一端连接,电容C12的另一端连接于电容C10与所述第七芯片的第三引脚之间;所述第七芯片的第五引脚通过隔直电容C13与所述第一级功率放大模块连接,电感L1的一端连接于电容C10与电容C12之间,另一端连接于隔直电容C13与所述第七芯片的第五引脚之间;所述第七芯片的第六引脚与电容C17的一端连接,电容C17的另一端接地;所述第七芯片的第七引脚接地;
    所述第七芯片的第八引脚与电容C16的一端连接,电容C16的另一端接地;所述第七芯片的第九引脚通过电容C15与电阻R9的一端连接,电阻R9的另一端接地,电阻R5的一端连接于所述第七芯片的第九引脚与电容C15之间,另一端连接于所述第七芯片的第八引脚与电容C16之间,电容C14的一端连接于电阻R5与电容C15之间,另一端接地;所述第七芯片的第十引脚、第十一引脚、第十二引脚均与所述微控制器电连接;所述第七芯片的第十三引脚通过串联的电容C1和电容C2与晶振Y1的第三脚连接,晶振Y1的第四脚与第一电源连接,晶振Y1的第一引脚悬空,晶振Y1的第二引脚接地,电阻R1的一端连接于电容C1与电容C2之间,另一端接地,电容C18的一端连接于晶振Y1的第四引脚与第一电源之间,另一端接地。
PCT/CN2022/116852 2022-09-02 2022-09-02 微波发生装置及雾化设备 WO2024045187A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116852 WO2024045187A1 (zh) 2022-09-02 2022-09-02 微波发生装置及雾化设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116852 WO2024045187A1 (zh) 2022-09-02 2022-09-02 微波发生装置及雾化设备

Publications (1)

Publication Number Publication Date
WO2024045187A1 true WO2024045187A1 (zh) 2024-03-07

Family

ID=90100089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116852 WO2024045187A1 (zh) 2022-09-02 2022-09-02 微波发生装置及雾化设备

Country Status (1)

Country Link
WO (1) WO2024045187A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777243A (zh) * 2005-12-02 2006-05-24 邓明友 一种音视频无线发射装置
CN203278799U (zh) * 2013-06-04 2013-11-06 广东药学院 基于vco的功率频率可调微波发射器
CN104654381A (zh) * 2015-02-12 2015-05-27 广东美的厨房电器制造有限公司 半导体微波炉及用于微波炉的半导体功率源
CN206482028U (zh) * 2017-02-24 2017-09-12 湖南中烟工业有限责任公司 一种超声雾化片振荡控制电路及超声波电子烟
WO2019033888A1 (zh) * 2017-08-15 2019-02-21 惠州市新泓威科技有限公司 电子烟具的发热装置及其控制方法
WO2019033887A1 (zh) * 2017-08-15 2019-02-21 惠州市新泓威科技有限公司 一种电子烟的防干烧装置及其控制方法
CN210351111U (zh) * 2019-09-18 2020-04-17 曾雅萍 一种基于滤波电路的雾化芯片驱动控制电路
CN214228237U (zh) * 2020-11-25 2021-09-17 南京邮电大学 一种基于锁相环的saw传感器检测系统
US20220007740A1 (en) * 2018-12-29 2022-01-13 Huizhou Happy Vaping Technology Limited Constant-power electronic cigarette protecting against dry-heating and controlling method thereof
CN114223970A (zh) * 2022-01-28 2022-03-25 云南中烟工业有限责任公司 一种声表面波驱动控制电路及电子烟

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1777243A (zh) * 2005-12-02 2006-05-24 邓明友 一种音视频无线发射装置
CN203278799U (zh) * 2013-06-04 2013-11-06 广东药学院 基于vco的功率频率可调微波发射器
CN104654381A (zh) * 2015-02-12 2015-05-27 广东美的厨房电器制造有限公司 半导体微波炉及用于微波炉的半导体功率源
CN206482028U (zh) * 2017-02-24 2017-09-12 湖南中烟工业有限责任公司 一种超声雾化片振荡控制电路及超声波电子烟
WO2019033888A1 (zh) * 2017-08-15 2019-02-21 惠州市新泓威科技有限公司 电子烟具的发热装置及其控制方法
WO2019033887A1 (zh) * 2017-08-15 2019-02-21 惠州市新泓威科技有限公司 一种电子烟的防干烧装置及其控制方法
US20220007740A1 (en) * 2018-12-29 2022-01-13 Huizhou Happy Vaping Technology Limited Constant-power electronic cigarette protecting against dry-heating and controlling method thereof
CN210351111U (zh) * 2019-09-18 2020-04-17 曾雅萍 一种基于滤波电路的雾化芯片驱动控制电路
CN214228237U (zh) * 2020-11-25 2021-09-17 南京邮电大学 一种基于锁相环的saw传感器检测系统
CN114223970A (zh) * 2022-01-28 2022-03-25 云南中烟工业有限责任公司 一种声表面波驱动控制电路及电子烟

Similar Documents

Publication Publication Date Title
US7692490B2 (en) Power amplifying device having linearizer
JP4485487B2 (ja) 電力増幅器
JP2010124433A (ja) 高周波電力増幅器
US20030001677A1 (en) High-frequency amplifier and high-frequency mixer
Sapone et al. A 0.13-$\mu {\hbox {m}} $ SiGe BiCMOS Colpitts-Based VCO for $ W $-Band Radar Transmitters
US20230336134A1 (en) Radio frequency power amplifier that reduces load change sensitivity, chip, and communication terminal
WO2024045187A1 (zh) 微波发生装置及雾化设备
JP4277274B2 (ja) 熱分散型ダーリントン増幅器
CN106055732A (zh) 低杂波系统前级固态微波源的设计方法
US8130041B2 (en) Power amplifier device
JP2021034908A (ja) 発振器、撮像装置
CN218605121U (zh) 微波发生装置及雾化设备
CN109921807A (zh) 一种宽带混沌振荡电路
US7227421B2 (en) Crystal oscillator circuit
JPH05315862A (ja) 増幅回路
Ray et al. A highly linear bipolar 1 V folded cascode 1.9 GHz low noise amplifier
Barthelemy et al. A new floating controlled resistance operating in class AB
Ikeda et al. 2.4 GHz-band high power and high efficiency solid-state injection-locked oscillator using imbalanced coupling resonator in feedback circuit
Cressler et al. SiGe technology as a millimeter-wave platform: scaling issues, reliability physics, circuit performance, and new opportunities
CN201956974U (zh) 一种具有信号自适应性的射频入射频出dpd功放系统
Scuderi et al. A high performance RF power amplifier with protection against load mismatches
US11309842B2 (en) Power amplifier circuit
Lie et al. Highly efficient class E SiGe power amplifier design for wireless sensor network applications
JP5347992B2 (ja) 高周波増幅回路
US6794937B1 (en) Predistortion linearizer and method for linearizing a nonlinear device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957007

Country of ref document: EP

Kind code of ref document: A1